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Abstract. We consider systems of stochastic evolutionary equations of the p-Laplace
type. We establish convergence rates for a finite-element based space-time approximation,

where the error is measured in a suitable quasi-norm. Under natural regularity assumptions

on the solution, our main result provides linear convergence in space and convergence of
order α in time for all α ∈ (0, 1

2
). The key ingredient of our analysis is a random time-grid,

which allows us to compensate for the lack of time regularity.

1. Introduction

We study the space-time discretization of stochastic evolutionary PDEs of the type{
du = div S(∇u) dt+ Φ(u) dW

u(0) = u0

,(1.1)

in a bounded Lipschitz domain O ⊂ Rd and a finite time interval [0, T ]. Here S is a nonlinear
operator with p-growth (see (2.1) for a precise definition), for instance the p-Laplacian

S(∇u) =
(
κ+ |∇u|

)p−2∇u(1.2)

where p ∈ (1,∞) and κ ≥ 0. We assume that W is a cylindrical Wiener process in a Hilbert
space defined on a probability space (Ω,F,P) and Φ has linear growth (see Section 2 for more
details). This system can be understood as a model for a large class of problems important for
applications. We particularly mention the flow of non-Newtonian fluids (the literature devoted
to the deterministic setting is very extensive, for the corresponding stochastic counterparts
we refer the reader to [5, 30, 34]).

The deterministic analogue of (1.1), which reads as{
∂tu = div S(∇u)

u(0) = u0

,(1.3)

seems to be well understood. Existence of a unique weak solution follows from the classical
monotone operator theory. Also the regularity of solutions is well-known, see [12, 17, 25, 31].
For the numerical approximation of (1.3) one approximates the time-derivative by a difference
quotient and solves in every (discrete) time-step a stationary problem. The latter one finally
has to be approximated by a finite element method. In order to understand the convergence
properties of the scheme it proved beneficial to introduce the nonlinear quantity

F(ξ) = (κ+ |ξ|)
p−2
2 ξ, ξ ∈ Rd×D,
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which linearizes the approximation error in a certain sense. Starting from the paper [1] it has
been known that the correct way to express the error is through the quasi-norm

‖F(∇u)− F(∇v)‖2L2(O) ∼
∫
O

(κ+ |∇u|+ |∇v −∇u|)p−2|∇u−∇v|2 dx

as a distance of functions u,v ∈ W 1,p(O). This led to optimal convergence results for finite
element based space-time approximations of (1.3) for p ≥ 2 in [2] and in [13] for all 1 < p <∞.
More precisely, it was shown that

max
1≤m≤M

‖u(tm)− uh,m‖22 + τ

M∑
m=1

‖F(∇u(tm))− F(∇uh,m)‖22 ≤ c
(
h2 + τ2

)
where uh,m denotes the discrete solution with space discretization parameter h and time-

discretization τ = T
M at time points tm = τm, m = 1, . . . ,M . The constant c depends on the

geometry of O, on p, as well some quantities involving u arising from the following regularity
properties:

F(∇u) ∈ L2(0, T ;W 1,2(O))), F(∇u) ∈W 1,2(0, T ;L2(O)),

∇u ∈ L∞(0, T ;L2(O)), ∂tu ∈ L∞(0, T ;L2(O)).

Regarding the stochastic problem there is a lot of literature for the linear case. The
literature dedicated to the regularity theory for linear SPDEs (e.g. (1.2) with p = 2) is quite
extensive, we refer to [22], [23] and [24] and the references therein. One can show that

u ∈ L2(Ω;Cα([0, T ];W k,2(O))) ∀α ∈ (0, 1
2 )(1.4)

provided the initial datum is smooth and Φ satisfies appropriate assumptions (here, the order
k ∈ N is mainly determined by the smoothness of Φ). There is also a growing literature
for the numerical approximation of linear SPDEs, see e.g. [26, 32, 33]. One possible way is

an implicit Euler scheme. Given a finite dimensional subspace Vh ⊂ W 1,2
0 (O) and an initial

datum uh,0 one computes uh,m such that∫
O

uh,m ·ϕ dx+ τ

∫
O
∇uh,m : ∇ϕdx

=

∫
O

uh,m−1 ·ϕ dx+

∫
O
Φ(uh,m−1) ∆mW ·ϕ dx, m = 1, . . . ,M,

for every ϕ ∈ Vh, where ∆mW = W (tm) −W (tm−1). Based on the regularity (1.4) one can
show that the approximation is of order one with respect to the space-discretization and of
order α with respect to the time-discretization. The correct error estimator is

E
[

max
1≤m≤M

∫
O
|u(tm)− uh,m|2 dx+ τ

M∑
m=1

∫
O
|∇u(tm)−∇uh,m|2 dx

]
.

For nonlinear stochastic problems like (1.1) with p 6= 2 there is a lot of literature regarding
the existence of PDE weak solutions. The popular variational approach by Pardoux [27]
provides an existence theory for a quite general class of stochastic evolutionary equations.
Existence of (unique) PDE strong solutions to generalized p-Laplace stochastic PDEs with
p ≥ 2 has been proved in [18]. Regularity results for (1.1) with 1 < p <∞ have been shown
in [4]. In particular, the first author proves that the unique weak solution satisfies1

∇u ∈ L2
w∗(Ω;L∞(0, T ;L2(O))), F(∇u) ∈ L2(Ω;L2(0, T ;W 1,2(O))),(1.5)

at least locally in space and hence u is a strong solution (in the analytical sense, see Defini-
tion 2.3). Hölder-regularity in time of u (with values in some Lp-space) can be shown directly

1Here L2
w∗ (Ω;L∞(0, T ;L2(O))) is the space of weak∗-measurable mappings h : Ω→ L∞(0, T ;L2(O)) such

that E esssup0≤t≤T ‖h‖2L2(O)
<∞.
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from the equation once having established the existence of second derivatives. In the linear
case a boot-strap argument yields the same for space-derivatives and so (1.4) holds. Both
arguments do not apply for F(∇u) if p 6= 2. In fact, the best one can hope for is

F(∇u) ∈ L2(Ω;Wα,2(0, T ;L2(O))) ∀α ∈ (0, 1
2 ),(1.6)

cf. [6]. The time-regularity is obviously much lower than in the deterministic case (due to
the roughness of the driving Wiener process) or the linear stochastic case (due to the limited
space-regularity). In fact, the mapping t 7→ F(∇u(t)) is not expected to be continuous in
time (with values in L2(O)). Hence, the natural error estimator

E
[

max
1≤m≤M

∫
O
|u(tm)− uh,m|2 dx+ τ

M∑
m=1

∫
O
|F(∇u(tm))− F(∇uh,m)|2 dx

]
is not well-defined. The same problem appears in the deterministic case if the time regularity
of F(∇u) is too low as a consequence of irregular data, cf, [7].

In order to overcome this problem we introduce a random time-grid. To be precise, we
consider random time-points tm which are distributed uniformly in [mτ−τ/4,mτ+τ/4] where

τ = T/M . These time points are defined on a probability space (Ω̂, F̂, P̂) which is possibly
different from (Ω,F,P), the space where the Brownian motion in (1.1) is defined. We obtain

a corresponding error estimator by taking the expectation Ê with respect to (Ω̂, F̂, P̂). Based
on the regularity in (1.5) and (1.6) we prove that

Ê⊗ E
[

max
1≤m≤M

∫
O
|u(tm)− uh,m|2 dx+

M∑
m=1

τm

∫
O
|F(∇u(tm))− F(∇uh,m)|2 dx

]
≤ c(h2 + h2

τ + τ2α),

where τm = tm − tm−1, see Theorem 3.1. In other words, we understand our scheme as

a random variable on a product space Ω̂ × Ω, where ω̂ ∈ Ω̂ accounts for the randomness
introduced through our random time-grid whereas ω ∈ Ω is the randomness coming from the
Brownian motion in (1.1). As a matter of fact the convergence rates from the linear problem
still hold: we have convergence order one in space and α in time.

As space-time discretizations of evolutionary SPDEs with monotone coefficients were al-
ready studied in [19, 20], let us explain what are the main differences with the result that
we put forward in the present paper. The class of equations considered in [19, 20] is more
general and contains (1.1) as a special case, at least if p > 2d

d+2 . Indeed, the approach in

[19, 20] is based on the Gelfand triple V ↪→ H ↪→ V ∗, which in our case of (1.1) corresponds

to H = L2(O) and V = W 1,p
0 (O) as the main part of the equation, i.e. given by div S(∇u),

takes values in V ∗. Clearly, the situation p < 2d
d+2 cannot be included as the embedding

W 1,p
0 (O) ↪→ L2(O) fails, nevertheless, this drawback does not occur in our approach.
In order to establish the convergence rates in [20], the authors take an additional assump-

tion upon space regularity of the solution which consequently implies a better time regularity.
To be more precise, they suppose that

sup
0≤t≤T

E‖u‖2H + E
∫ T

0

‖u(t)‖2V dt ≤ C(1.7)

for some separable Hilbert spaces V ↪→ H ↪→ V . This can certainly be expected in case of
equations or in the case of systems with Uhlenbeck-structure, that is,

S(ξ) = ν(|ξ|)ξ,
which are nondegenerate, i.e. κ > 0. Indeed, solutions to the corresponding deterministic
counterpart can be shown to take values C∞. In the degenerate case, i.e. if κ = 0, the
situation becomes critical as generally only α-Hölder continuity of ∇u holds true for some
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α < 1. Optimal values for α were obtained in the elliptic setting for d = 2 (see [21]). For
systems without Uhlenbeck-structure there even exists examples with unbounded solutions in
the elliptic case (see [11]). So, in this situation (1.7) implies restrictive conditions on p as in
fact only the case H = W 2,2 and V = W 1,p seems realistic.

Our proof of convergence rates is not based on the assumption (1.7), which allows us to
overcome the drawback explained above and to deal with general systems with p-growth. The
method relies rather on space and time regularity of F(∇u) which is the natural quantity,
the regularity of which can be studied via energy methods. Let us finally mention that our
convergence rates are the same as in [20].

In the papers [8, 9] space-time discretizations of stochastic Navier–Stokes equations are
considered. The paper [8] contains a convergence analysis whereas in [9] convergence rates –
similar to our results – were shown for the two-dimensional space-periodic problem. It would
be of great interest to combine this with the results from this paper and to study numerical
approximations for generalized Newtonian fluids as done in the deterministic case in [3].

2. Mathematical framework

We now give the precise assumptions on the system (1.1).

2.1. Nonlinear operator S. We assume that S : Rd×D → Rd×D is of class C0(Rd×D) ∩
C1(Rd×D \ {0}) and satisfies

λ(κ+ |ξ|)p−2|ζ|2 ≤ DS(ξ)(ζ, ζ) ≤ Λ(κ+ |ξ|)p−2|ζ|2(2.1)

for all ξ, ζ ∈ Rd×D with some positive constants λ,Λ, some κ ≥ 0 and p ∈ (1,∞). It is
well known from the deterministic setting (and was already discussed in [4] in the stochastic
setting) that an important role for this system is played by the function

F(ξ) = (κ+ |ξ|)
p−2
2 ξ.

The following two properties are essential for our analysis (see [14] and [15] for a proof).

Lemma 2.1. Let p ∈ (1,∞) and let S satisfy (2.1).

(a) For all ξ,η ∈ Rd×D we have

|F(ξ)− F(η)|2 ∼
(
S(ξ)− S(η)

)
: (ξ − η),

where the constants hidden in ∼ only depend on p.2

(b) For every ε > 0 and all ξ,η, ζ ∈ Rd×D it holds∣∣(S(ξ)− S(η)
)

: (ξ − ζ)
∣∣ ≤ ε

(
S(ξ)− S(η)

)
: (ξ − η) + c(ε, p)

(
S(ξ)− S(ζ)

)
: (ξ − ζ).

2.2. Stochastic noise. Let (Ω,F, (Ft)t≥0,P) be a stochastic basis with a complete, right-
continuous filtration. The process W is a cylindrical Wiener process, that is, W (t) =∑
k≥1 βk(t)ek with (βk)k≥1 being mutually independent real-valued standard Wiener pro-

cesses relative to (Ft)t≥0 and (ek)k≥1 a complete orthonormal system in a separable Hilbert
space U. To give the precise definition of the diffusion coefficient Φ, consider z ∈ L2(G) and
let Φ(z) : U → L2(O) be defined by Φ(z)ek = gk(·, z(·)). In particular, we suppose that
gk ∈ C1(O × RD) and the following conditions∑

k≥1

|gk(x, ξ)|2 ≤ c(1 + |ξ|2),
∑
k≥1

|∇ξgk(x, ξ)|2 ≤ c,(2.2)

∑
k≥1

|∇xgk(x, ξ)|2 ≤ c(1 + |ξ|2),(2.3)

2We write f ∼ g provided f ≤ cg ≤ Cf for some constants c, C > 0.
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for all x ∈ O and ξ ∈ RD. The conditions imposed on Φ, particularly the first assumption
from (2.2), imply that

Φ : L2(O)→ L2(U;L2(O)),

where L2(U;L2(O)) denotes the collection of Hilbert-Schmidt operators from U to L2(O).
Thus, given a progressively measurable process u ∈ L2(Ω;L2(0, T ;L2(O))), the stochastic
integral

t 7→
∫ t

0

Φ(u) dW

is a well defined process taking values in L2(O) (see [10] for a detailed construction). Moreover,
we can multiply by test functions to obtain〈∫ t

0

Φ(u) dW,ϕ

〉
=
∑
k≥1

∫ t

0

〈gk(u),ϕ〉dβk, ϕ ∈ L2(O).

The initial datum may be random in general, i.e. F0-measurable, and we assume at least
u0 ∈ L2(Ω;L2(O)).

2.3. The concept of solution and preliminary results. In this subsection we recall the
definition of weak and strong solution as well as the basic existence, uniqueness and regularity
results established in [4].

Definition 2.2 (Weak solution). An (Ft)-progressively measurable function

u ∈ L2(Ω;C([0, T ];L2(O))) ∩ Lp(Ω;Lp(0, T ;W 1,p
0 (O)))

is called a weak solution to (1.1) if for every ϕ ∈ C∞c (O) and all t ∈ [0, T ] it holds true P-a.s.∫
O

u(t) ·ϕdx+

∫
O

∫ t

0

S(∇u(σ)) : ∇ϕ dxdσ

=

∫
O

u0 ·ϕdx+

∫
O

∫ t

0

Φ(u) dW ·ϕ dx.

Definition 2.3 (Strong solution). A weak solution to (1.1) is called a strong solution provided

div S(∇u) ∈ L1(Ω;L1
loc((0, T )×O))

and we have for all t ∈ [0, T ]

u(t) = u0 +

∫ t

0

div S(∇u) dσ +

∫ t

0

Φ(u) dW

P-a.s.

The following result, which is taken from [4, Theorem 4, Theorem 5], is the starting point
of our analysis (we remark that the case κ = 0 is not included in [5] but can be obtained by
approximation).

Theorem 2.4. Assume u0 ∈ L2(Ω;W 1,2
0 (O)) is an F0-measurable random variable. Suppose

further that (2.1), (2.2) and (2.3) hold. Then there is a unique weak solution u to (1.1) which
is a strong solution and satisfies

E
[

sup
t∈(0,T )

∫
O′
|∇u(t)|2 dx+

∫ T

0

∫
O′
|∇F(∇u)|2 dx dt

]
<∞

for all O′ b O.

It is expected that the theorem above holds even globally in space provided the boundary of
O is smooth enough - at least under appropriate compability conditions such as zero boundary
values for the noise (see the counterexamples by Krylov [22] on the global regularity for SPDEs
in connection with this). A proof however, is still missing.
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2.4. Discretization in space. Let O ⊂ Rd be a connected, open domain with polyhedral
boundary. We assume that ∂O is Lipschitz continuous. For an open, bounded (non-empty)
set U ⊂ Rd we denote by hU the diameter of U , and by ρU the supremum of the diameters
of inscribed balls. We denote by Th be a simplicial subdivision of O with

h = max
S∈Th

hS

is non-degenerate:

max
S∈Th

hS
ρS
≤ γ0.(2.4)

For S ∈ Th we define the set of neighbors NS and the neighborhood ST by

NS := {S ′ ∈ Th : S ′ ∩ S 6= ∅}, MS := interior
⋃
S′∈NS

S ′.

Note that for all S,S ′ ∈ Th: S ′ ⊂ MS ⇔ S ⊂ MS′ ⇔ S ∩ S ′ 6= ∅. Due to our assumption
on O the MS are connected, open bounded sets.

It is easy to see that the non-degeneracy (2.4) of Th implies the following properties, where
the constants are independent of h:

(a) |MS | ∼ |S| for all S ∈ Th.
(b) There exists m1 ∈ N such that #NS ≤ m1 for all S ∈ Th.

For O ⊂ Rd and ` ∈ N0 we denote by P`(O) the polynomials on O of degree less than or
equal to `. Moreover, we set P−1(O) := {0}. Let us characterize the finite element space Vh
as

Vh := {v ∈ L1
loc(O) : v|S ∈ (P1(S))D ∀S ∈ Th}.

We will now state assumption on an interpolation operator between the continuous and
discrete function spaces (satisfied e.g. by the Scott-Zhang operator [29]). More precisely, we
assume the following.3

Assumption 2.5. Let Πh : (W 1,1(O))D → Vh be such that the following holds.

(a) There holds uniformly in S ∈ Th and v ∈ (W 1,1(O))D

−
∫
S

|Πhv|dx+−
∫
S

|hS∇Πhv|dx ≤ c hS −
∫
MS

|∇v|dx.

(b) For all v ∈ (P1(O))D it holds

Πhv = v.

An easy consequence of this assumption is the inequality

−
∫
S

∣∣∣v −Πhv

hS

∣∣∣2 dx+−
∫
S

|∇v −∇Πhv|2 dx ≤ c −
∫
MS

|∇v|2 dx(2.6)

for all v ∈ (W 1,2(MS))D. The following crucial estimate is shown in [16, Theorem 5.7]

Lemma 2.5. Let Πh satisfy Assumption 2.5. Let v ∈ (W 1,p(O))D then for all T ∈ Th holds

−
∫
S

∣∣F(∇v)− F(∇Πhv)
∣∣2 dx ≤ c inf

Q∈RD×d
−
∫
MS

∣∣F(∇v)− F(Q)
∣∣2 dx,

with c depending only on p and γ0. In particular, if F(∇v) ∈ (W 1,2(O))D×d then

−
∫
S

∣∣F(∇v)− F(∇Πhv)
∣∣2 dx ≤ c h2

S −
∫
MS

∣∣∇F(∇v)
∣∣2 dx.(2.7)

3We denote by −
∫
A f dx = |A|−1

∫
A f dx the mean value of a integrable function f over the set A.
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3. Finite element based space-time approximation

With the preparations from the previous section at hand, we are able to formulate our
algorithm for the space-time approximation of (1.1). We construct a random partition of
[0, T ] with average mesh size τ = T/M as follows. Let t0 = 0 and let tm for m = 1, . . . ,M be
independent random variables such that tm is distributed uniformly in [mτ − τ/4,mτ + τ/4].

We assume that the random variables τm are defined on a probability space (Ω̂, F̂, P̂) and we

denote by Ê the corresponding expectation. Let τm = tm − tm−1 and observe that τm is a
random variable satisfying τ/2 ≤ τm ≤ 3τ/2. Let uh,0 := Πhu0 and for every m ∈ {1, . . . ,M}
find uh,m ∈ L2(Ω;Vh) such that for every ϕ ∈ Vh it holds true P-a.s.∫

O
uh,m ·ϕ dx+ τm

∫
O

S(∇uh,m) : ∇ϕ dx

=

∫
O

uh,m−1 ·ϕ dx+

∫
O
Φ(uh,m−1) ∆mW ·ϕ dx,

(3.1)

where ∆mW = W (tm)−W (tm−1).

3.1. Error analysis. In this subsection we establish convergence with rates of the above
defined algorithm.

Theorem 3.1. Let u be the unique weak solution to (1.1) in the sense of Definition 2.2 where

u0 ∈ L2(Ω,W 1,2
0 (O)) is F0-measurable. Suppose that (2.2) hold. Finally, assume that

F(∇u) ∈ L2(Ω;L2(0, T ;W 1,2(O))),∇u ∈ L2
w∗(Ω;L∞(0, T ;L2(O))),(3.2)

F(∇u) ∈ L2(Ω;Wα,2(0, T ;L2(O))), u ∈ L2(Ω;Cα([0, T ];L2(O))),(3.3)

where α ∈ (0, 1
2 ). Then we have

Ê⊗ E
[

max
1≤m≤M

∫
O
|u(tm)− uh,m|2 dx+

M∑
m=1

τm

∫
O
|F(∇u(tm))− F(∇uh,m)|2 dx

]
≤ c

(
h2 + h2

τ + τ2α
)
,

where uh,m is the numerical solution to (1.1) given by (3.1) .

Remark 3.2. For h ≤ cτα+ 1
2 we gain the optimal convergence order of α.

The rest of the paper is devoted to the proof of Theorem 3.1.

Proof of Theorem 3.1. Define the error em = u(tm)−uh,m. Subtracting (3.1) from the weak
formulation of (1.1) we obtain∫

O
em ·ϕ dx+

∫ tm

tm−1

∫
O

(
S(∇u)− S(∇uh,m)

)
: ∇ϕ dx dσ

=

∫
O

em−1 ·ϕ dx+

∫
O

(∫ tm

tm−1

Φ(u) dW − Φ(uh,m−1) ∆mW

)
·ϕ dx.

for every ϕ ∈ Vh or equivalently∫
O

em ·ϕdx+ τm

∫
O

(
S(∇u(tm))− S(∇uh,m)

)
: ∇ϕdx

=

∫ tm

tm−1

∫
O

(
S(∇u(tm))− S(∇u(σ))

)
: ∇ϕ dx dσ +

∫
G

em−1 ·ϕ dx

+

∫
O

(∫ tm

tm−1

Φ(u) dW − Φ(uh,m−1) ∆mW

)
·ϕ dx.
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Setting ϕ = wm − uh,m (with wm ∈ Vh to be chosen later) we gain∫
O
|em|2 dx+ τm

∫
G

(
S(∇u(tm))− S(∇uh,m)

)
: ∇em dx

=

∫
O

em · (wm − uh,m) dx+ τm

∫
G

(
S(∇u(tm))− S(∇uh,m)

)
: ∇(wm − uh,m) dx

+

∫
O

em · (u(tm)−wm) dx+ τm

∫
O

(
S(∇u(tm))− S(∇uh,m)

)
: ∇(u(tm)−wm) dx

=

∫ tm

tm−1

∫
O

(
S(∇u(tm))− S(∇u(σ))

)
: ∇(wm − uh,m) dxdσ +

∫
O

em−1 · (wm − uh,m) dx

+

∫
O

(∫ tm

tm−1

Φ(u) dW − Φ(uh,m−1) ∆mW

)
· (wm − uh,m) dx

+

∫
O

em · (u(tm)−wm) dx+ τm

∫
O

(
S(∇u(tm))− S(∇uh,m)

)
: ∇(u(tm)−wm) dx.

Such that∫
O

em · (em − em−1) dx+ τm

∫
O

(
S(∇u(tm))− S(∇uh,m)

)
: ∇em dx

=

∫ tm

tm−1

∫
O

(
S(∇u(tm))− S(∇u(σ))

)
: ∇(wm − u(tm)) dxdσ +

∫
O

em−1 · (wm − u(tm)) dx

+

∫ tm

tm−1

∫
O

(
S(∇u(tm))− S(∇u(σ))

)
: ∇(u(tm)− uh,m) dxdσ

+

∫
O

(∫ tm

tm−1

Φ(u) dW − Φ(uh,m−1) ∆mW

)
· (wm − uh,m) dx

+

∫
O

em · (u(tm)−wm) dx+ τm

∫
O

(
S(∇u(tm))− S(∇uh,m)

)
: ∇(u(tm)−wm) dx.

Now, we apply the identity a·(a−b) = 1
2

(
|a|2−|b|2+|a−b|2

)
(which holds for any a,b ∈ Rn,

here with a = em and b = em−1) to the first term to gain∫
O

1

2

(
|em|2 − |em−1|2 + |em − em−1|2

)
dx+ τm

∫
O

(
S(∇u(tm))− S(∇uh,m)

)
: ∇em dx

=

∫ tm

tm−1

∫
O

(
S(∇u(tm))− S(∇u(σ))

)
: ∇(wm − u(tm)) dxdσ

+

∫ tm

tm−1

∫
O

(
S(∇u(tm))− S(∇u(σ))

)
: ∇(u(tm)− uh,m) dxdσ

+

∫
O

(∫ tm

tm−1

Φ(u) dW − Φ(uh,m−1) ∆mW

)
· (wm − uh,m) dx

+

∫
O

(em − em−1) · (u(tm)−wm) dx+ τm

∫
O

(
S(∇u(tm))− S(∇uh,m)

)
: ∇(u(tm)−wm) dx

= I1 + · · ·+ I5.

Applying Lemma 2.1 we have

I1 ≤ ε

∫ tm

tm−1

∫
O

(
S(∇u(tm))− S(∇wm)

)
: ∇(u(tm)−wm) dxdσ

+ cε

∫ tm

tm−1

∫
O

(
S(∇u(tm))− S(∇u(σ))

)
: ∇(u(tm)− u(σ)) dxdσ
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≤ c ε τm

∫
O
|F(∇u(tm))− F(∇wm)|2 dx+ cε

∫ tm

tm−1

∫
O
|F(∇u(tm))− F(∇u(σ))|2 dxdσ

and similarly

I2 ≤ ετm

∫
O
|F(∇u(tm))− F(∇uh,m)|2 dx+ cε

∫ tm

tm−1

∫
O
|F(∇u(tm))− F(∇u(σ))|2 dxdσ,

I5 ≤ ετm

∫
O
|F(∇u(tm))− F(∇uh,m)|2 dx+ cετm

∫
O
|F(∇u(tm))− F(∇wm))|2 dx,

for every ε > 0. Young’s inequality yields

I4 ≤ ε

∫
O
|em − em−1|2 dx+ cε

∫
O
|wm − u(tm)|2 dx.

Plugging all together and choosing ε small enough (to absorb the corresponding terms to the
left hand side) we have shown∫

O
|em|2 dx+ c

∫
O
|em − em−1|2 dx+ cτm

∫
O
|F(∇u(tm))− F(∇uh,m)|2 dx

≤ c

∫ tm

tm−1

∫
O
|F(∇u(tm))− F(∇u(σ))|2 dxdσ +

∫
O
|em−1|2 dx

+ c

∫
O

(∫ tm

tm−1

Φ(u) dW − Φ(uh,m−1) ∆mW

)
· (wm − uh,m) dx

+ c

∫
O
|u(tm)−wm|2 dx+ c τm

∫
O
|F(∇u(tm))− F(∇wm)|2 dx

for every wm ∈ Vh. Now we choose wm = Πhu(tm) and gain by (2.6), (2.7) and the assump-
tions on F(∇u)∫

O
|em|2 dx+ c

∫
O
|em − em−1|2 dx+ c τm

∫
O
|F(∇u(tm))− F(∇um)|2 dx

≤ c

∫ tm

tm−1

∫
O
|F(∇u(tm))− F(∇u(σ))|2 dxdσ +

∫
O
|em−1|2 dx

+ c h2

∫
O
|∇u(tm)|2 dx+ c τmh

2

∫
O
|∇F(∇u(tm))|2 dx

+ c

∫
O

(∫ tm

tm−1

Φ(u) dW − Φ(uh,m−1) ∆mW

)
· (wm − uh,m) dx.

Iterating this inequality yields∫
O
|em|2 dx+ c

m∑
n=1

∫
O
|em − em−1|2 dx+ c

m∑
n=1

τn

∫
O
|F(∇u(tn))− F(∇uh,n)|2 dx

≤ c

m∑
n=1

∫ tn

tn−1

∫
O
|F(∇u(tn))− F(∇u(σ))|2 dx dσ +

∫
O
|e0|2 dx

+ c

m∑
n=1

∫
O

(∫ tn

tn−1

Φ(u) dW − Φ(uh,n−1) ∆nW

)
· (wn − uh,n) dx

+ c
h2

τ

m∑
n=1

τn

∫
O
|∇u(tn)|2 dx+ c h2

m∑
n=1

τn

∫
O
|∇F(∇u(tn))|2 dx.
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It remains to estimate the stochastic term which we call Mm and write as

Mm =

m∑
n=1

∫
O

∫ tn

tn−1

(
Φ(u)− Φ(uh,n−1)

)
dW · (wn − uh,n) dx

=

m∑
n=1

∫
O

∫ tn

tn−1

(
Φ(u)− Φ(uh,n−1)

)
dW · (u(tn)− uh,n) dx

+

m∑
n=1

∫
O

∫ tn

tn−1

(
Φ(u)− Φ(uh,n−1)

)
dW · (wn − u(tn)) dx

=

m∑
n=1

∫
O

∫ tn

tn−1

(
Φ(u)− Φ(uh,n−1)

)
dW · en−1 dx

+

m∑
n=1

∫
O

∫ tn

tn−1

(
Φ(u)− Φ(uh,n−1)

)
dW · (en − en−1) dx

+

m∑
n=1

∫
O

∫ tn

tn−1

(
Φ(u)− Φ(uh,n−1)

)
dW · (wn − u(tn)) dx

= Mm,1 + Mm,2 + Mm,3.

For Mm,1 we gain by the Burgholder-Davis-Gundy inequality

E
[

max
1≤m≤M

∣∣Mm,1

∣∣] ≤ cE
[ M∑
n=1

∫ tn

tn−1

‖Φ(u)− Φ(uh,n−1)‖2L2(U,L2(O))‖en−1‖2L2(O) dt

] 1
2

≤ cE
[

max
1≤n≤M

‖en‖L2(O)

( M∑
n=1

∫ tn

tn−1

‖Φ(u)− Φ(uh,n−1)‖2L2(U,L2(O)) dt

) 1
2
]

≤ εE
[

max
1≤n≤M

‖en‖2L2(O)

]
+ cε E

[ M∑
n=1

∫ tn

tn−1

‖u− uh,n−1‖2L2(O) dt

]
≤ 2εE

[
max

1≤n≤M
‖en‖2L2(O)

]
+ cε E

[ M∑
n=1

∫ tn

tn−1

‖u− u(tn−1)‖2L2(O) dt

]
+ cε E

[ M∑
n=1

∫ tn

tn−1

‖u(tn−1)− uh,n−1‖2L2(O) dt

]
Here, we also used (2.2) as well as Young’s inequality for ε > 0 arbitrary. Applying (2.6) and
(3.3) we gain

E
[

max
1≤m≤M

∣∣Mm,1

∣∣] ≤ 2εE
[

max
1≤n≤M

‖en‖2L2(O)

]
+ cετ + cε E

[ M∑
n=1

τn‖en−1‖2L2(O)

]
.

The remaining two terms are estimated using similar arguments as follows

E
[

max
1≤m≤M

|Mm,2|
]
≤ E

[ M∑
n=1

(
ε‖en − en−1‖2L2(O) + cε

∥∥∥∥∥
∫ tn

tn−1

(
Φ(u)− Φ(uh,n−1)

)
dW

∥∥∥∥∥
2

L2(O)

)]

≤ εE
[ M∑
n=1

‖en − en−1‖2L2(O)

]
+ cε E

[ M∑
n=1

∫ tn

tn−1

‖u− uh,n−1‖2L2(O) dt

]

≤ εE
[ M∑
n=1

‖en − en−1‖2L2(O)

]
+ cετ + cε E

[ M∑
n=1

τn‖en−1‖2L2(O)

]
,
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E
[

max
1≤m≤M

|Mm,3|
]
≤ cE

[ M∑
n=1

(
‖wn − u(tn)‖2L2(O) +

∥∥∥∥∥
∫ tn

tn−1

(
Φ(u)− Φ(un−1)

)
dW

∥∥∥∥∥
2

L2(O)

)]

≤ c h
2

τ
+ cτ + cE

[ M∑
n=1

τn‖en−1‖2L2(O)

]
.

Hence we may apply the discrete Gronwall lemma, choose ε sufficiently small and apply (2.6)
to e0 to deduce

E
[

max
1≤m≤M

∫
O
|em|2 dx+

M∑
m=1

τm

∫
O
|F(∇u(tm))− F(∇um)|2 dx

]

≤ cE
[ M∑
m=1

∫ tm

tm−1

∫
O
|F(∇u(tm))− F(∇u(σ))|2 dxdσ

]
+ c

h2

τ
+ cτ

+ c h2 E
[ M∑
m=1

τm

∫
O
|∇F(∇u(tm))|2 dx

]
.

Now we observe that due to the construction of the points tm, m = 1, . . . ,M − 1, as indepen-
dent uniformly distributed random variables, the expectation Ê can be computed explicitly
as follows

Ê⊗ E
[ M∑
m=1

∫ tm

tm−1

∫
O
|F(∇u(tm))− F(∇u(σ))|2 dxdσ

]
= Ê⊗ E

[ ∫ t1

0

∫
O
|F(∇u(t1))− F(∇u(σ))|2 dxdσ

]
+

M∑
m=2

Ê⊗ E
[ ∫ tm

tm−1

∫
O
|F(∇u(tm))− F(∇u(σ))|2 dxdσ

]

=
2

τ
E
∫ τ+τ/4

τ−τ/4

∫ ξ

0

∫
O
|F(∇u(ξ))− F(∇u(σ))|2 dxdσ dξ

+
4

τ2

M∑
m=2

∫ (m−1)τ+τ/4

(m−1)τ−τ/4
E
∫ mτ+τ/4

mτ−τ/4

∫ ξ

ζ

∫
O
|F(∇u(ξ))− F(∇u(σ))|2 dx dσ dξ dζ

≤ cτ2αE‖F(∇u)‖2Wα,2(0,τ+τ/4;L2(O))

+
cτ2α

τ

M∑
m=2

∫ (m−1)τ+τ/4

(m−1)τ−τ/4
dζ E‖F(∇u)‖2Wα,2((m−1)τ−τ/4,mτ+τ/4;L2(O))

≤ cτ2αE‖F(∇u)‖2Wα,2(0,T ;L2(O)).

Similarly, for the last term we deduce

Ê⊗ E
[ M∑
m=1

τm

∫
O
|∇F(∇u(tm))|2 dx

]

=
2

τ

∫ τ+τ/4

τ−τ/4
ξ E
∫
O
|∇F(∇u(ξ))|2 dxdξ

+
4

τ2

M∑
m=2

∫ (m−1)τ+τ/4

(m−1)τ−τ/4

∫ mτ+τ/4

mτ−τ/4
(ξ − ζ)E

∫
O
|∇F(∇u(ξ))|2 dxdξ dζ

≤ cE‖∇F(∇u)‖2L2(0,τ+τ/4;L2(O))
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+
c

τ

M∑
m=1

∫ (m−1)τ+τ/4

(m−1)τ−τ/4
dζ E‖∇F(∇u)‖2L2((m−1)τ−τ/4,mτ+τ/4;L2(O))

≤ cE‖∇F(∇u)‖2L2(0,T ;L2(O)).

Consequently, in view of (3.2) and (3.3), the proof is complete. �
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