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ABSTRACT. In this paper, we investigate the strong solutions to SDE’s driven by Lévy
processes with Holder drifts. We show that the singular SDE has a unique strong solution
for each starting point and the collection of these strong solutions starting from single
points forms a C'-stochastic flow. Moreover, the Malliavin differentiability of the strong
solutions is obtained, which extends the main result in [11]. As an application, we also
prove a path-by-path uniqueness result for the related random ODE.
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1. INTRODUCTION

Suppose (2,.7, (Z;)i=0, P) is a filtered probability space satisfying the usual conditions,
Z is an Z;-adapted d-dimensional pure jump Lévy process with Lévy measure v. The
main aim of this paper is to study the stochastic homeomorphism flow of

dX,(z) = b(X(2))dt + o(X,_(2))dZ,, Xo(z) =z € RY, (1.1)
under low regularity assumptions on the coefficients b : R = R? and ¢ : R? — R? @ R%.

The classical subject of SDEs driven by non-degenerated noises with singular drifts
dates back at least to [37], where Zovnkin showed that if d = 1,0 = 1 and b is bounded,
then (1.1) has a unique strong solution. And later, Veretennikov [29] extended the similar
result for d > 1. Using Girsanovs transformation and results from PDEs, Krylov and
Rockner [13] obtained the existence and uniqueness of strong solutions to (1.1) when

2

o is the identity matrix and b satisfies [[b]| o2 < oo with % + 2 < 1. One can see

also [31, 34] for more delicate results about the well-posedness as well as the stochastic
homeomorphism flows (1.1). It should be mentioned that in [17, 16, 19], the authors
gave another approach based on Malliavin calculus to study the strong existence. Their
method does not rely on a pathwise uniqueness argument and can be used to get the
Malliavin differentiability of obtained solutions. And we also need to mention that in [8],
Davie proved a remarkable result, it says that if b is only bounded and measurable, W, is
a Brownian motion, b (z) := b(x + W;(w)), then the random ODE df;(w)/dt = by (6;) has
a unique solution for almost all w € Q. His proof was simplified by Shaposhnikov in [24]
by using the flow property of strong solutions of SDE driven by the Brownian motion.
When the noise Z is a pure jump Lévy process, for one-dimensional case, Tanaka,
Tsuchiya and Watanabe [27] proved that if Z is a symmetric a-stable process with a €
[1,2), o(z) = 1 and b is bounded measurable, then pathwise uniqueness holds for SDE
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(1.1). They further show that if o € (0,1), and even if b is Holder continuous, the
pathwise uniqueness may fail. For multidimensional case, Priola [21] first proved pathwise
uniqueness for (1.1) when o(z) = I, Z is a non-degenerate symmetric but possibly non-
isotropic a-stable process with a € [1,2) and b € C?(RY) with 8 € (1 — a/2,1). This
result was extended to drift b in some fractional Sobolev spaces in the subcritical case
in Zhang [32] and also extended to more general Lévy type driven noises in Priola [22].
In [5], the authors established strong existence and pathwise uniqueness for SDE (1.1)
when o(z) = I, b is Holder continuous and the semigroup of Z; satisfies some regularity
assumptions. It partially answers an open question posted in [22] on the pathwise well-
posedness of SDE (1.1) in the supercritical case. Later, Chen, Zhang and Zhao [7] drop the
constraint in [5] and give an affirmative answer to the above problem. In [26], Song and Xie
extend this method to study singular SDEs driven by Poisson measures. We must mention
that Haadem and Proske in [11] studied the existence and Malliavin differentiability by
the similar approach used in [17, 16]. However, they had to assume that Z; is a truncated
rotational symmetric a-stable process(a > 1), ¢ = I and b € C? with 8 > 2 — «, which
are much stronger than our assumptions below.

For a € (0,2), denote by M, the space of all non-degenerate a-stable measures v(®),

that is,
V9 (A) = /Ooo (/S %ﬁ(d@) dr, Ae BRY, (1.2)

where ¥ is a finite measure over the unit sphere S*! in R? with
inf / 16 - 6] (d6) > 0.
fpeSd—1 §d—1
All the assumptions on v, b, 0 will be used in this paper are following:
(H;) There are two measures vy, v € M, and p € (0,1) such that

n(A) <v(A) <1p(A) for AC B, (1.3)

(H3) There are positive constants 3, A such that
Be(l-21), beC (1.4)
0 €Cy, ATEl < o(x)g] < Algl- (1.5)

(H;) o € C}° for some ¢ € (0,1). v has a compact support and
supp v C B,,, 10 < ||[Vol|lL. (1.6)

Thought out this paper, we assume v satisfies (H;), which is the Lévy measure of Z. And
the characteristic exponent ¥ (&) of Z; is given by

)(€) = —log(Be* ) = — / (€% =1 —i¢ - 2)w(dz),
Rd

where 2(®) = 21,51 + 214115, (2).
Our main result is

Theorem 1.1. (1) Suppose v, b, o satisfy assumptions (Hy) and (Hy), then there
is a unique strong solution to equation (1.1). Moreover, if the jumping size of Z,
is bounded, then for each t > 0, the strong solution X,(x) to (1.1) is Malliavin
differentiable.

(2) Suppose v, b, o satisfy assumptions (H;), (Hy) and (Hs), then {X(2)}i>0.0era

forms a C*-stochastic diffeomorphism flow.
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We also have the following corollary:

Corollary 1.2. Suppose v satisfies (H), o =1, b € CP with 3 € (1 — 5.1), then there
is a full set Qo C Q i.e. P(Qo) =1 such that for any w € Qy, the following ODE:

d@t (u))
dt

admits a unique solution, where by (x) = b(x + Z,(w)).

=070 (w)), b=z (1.7)

As mentioned before, by using the similar method in [7], we will show that all the strong
solutions from single points are Malliavin differentiable and they form a C'-stochastic
flow. In order to study the strong well-posedness of SDE (1.1), we use the well known
Zvonkin’s transform, which requires a deep understanding for the following nonlocal PDE
(Resolvent equation):

M—ZLu—b-Vu=f, (1.8)
where

ZLu(x) = /Rd(u(x +0(x)z) —u(r) — Vu(z) - o(z)2Y)v(dz2),

and 2 = 21,91 + 214-11p,(2). When £ is the usual fractional Laplacian A®/2 :=
—(—A)*"? with a € (0,1) and b € L>®(]0,7]; C?) with 8 € ((1 — a) V0, 1), Silvestre [25]
obtained the following a priori interior estimate:

||u||L°°([0,1};C’a+B(B1)) < C(HUHLOO([072]><32) + Hf”LOO([O,2};CB(Bg))>-

See also [9], [35] and [15] for similar estimates for more general operators. Our approach of
studying (1.8) is based on the Littlewood-Paley decomposition and some Bernstein’s type
inequalities. As showed in [7], this approach allows us to handle a large class of Lévy’s
type operator in a uniform way, in particular, for Lévy’s type operators with singular
Lévy measures. However, in [7], the authors worked in the space B; ., this space does not
enjoy the localization principle(see Lemma 3.5 below), so the usual freezing coefficients
method does not work for general Lévy type operators, so they can not get a global
diffeomorphism & by using Zovnkin’s transform(see Theorem 3.3 of [7] and the proof of
Theorem 1.1 therein). In order to overcome this difficulty, in this paper, we replace the
working space B, . with Bj , which is coincide with the classic Sobolev-Slobodeckij space
W7 when s ¢ N. Due to the classic freezing coefficient method, Zovnkin’s transform and
a localization technique from [36] and [30], we can get a global C'-diffeomorphism @ for
any non-degenerate o € C}, provided that b satisfies (Hz). This helps us to prove the
stochastic flow property of (1.1).

This paper is organized as follows: In Section 2, we recall some well-known facts from
Littlewood-Paley theory. In Section 3, we study the nonlocal advection equation (1.8)
when v is compactly supported and b is Hoélder continuous, and obtain some apriori
estimates in Sobolev spaces. In Section 4, we prove our main theorem by Zvonkin’s
transform. In the appendix, we give a simple proof of a Bernstein’s type estimate.

Finally, we introduce some conventions used throughout this paper: The letter ¢ or C
with or without subscripts stands for an unimportant constant, whose value may change
in difference places. We use A < B to denote that A and B are comparable up to a

constant, and use A < B to denote A < C' - B for some constant C.
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2. PRELIMINARY

2.1. Sobolev space and Besov space. We first give some definitions about fractional
Sobolev space.

Definition 2.1. Let HS := (I— A)~*/%(L?) be the usual Bessel potential space with norm

1Ly == 1= A2 fllp = 1Fllp + I(=2)72f -
The Sobolev-Slobodeckij semi-norm is defined by

oy = <//RW % da dy) %.

Let s > 0 be not an integer and set § = s — |s] € (0,1). Sobolev-Slobodeckij space W is
defined as

W; = {f € Wptsj ; \SIEIL)J[aaf]O’p < OO}) Hf||W; = ||j-‘||WpLSJ + | slg?J[aaf]g,p.

Suppose s > 0,e >0,p>1,0< s — g ¢ N, then
s+e s s—¢. s s—< s s—2
H W, = Hy* Hy—C"r; W;—C > (2.1)
Let x : R? — [0,1] be a smooth radial function with

X(€) =1, [§] <1, x(§) =0, [¢] >3/2,
and x*(z) := x(x — z). We define the following localized fractional Sobolev space:

Definition 2.2. Let s > 0, p € [1,00], we define

W, = {u € Wyioe = SUD [Jux:[lwy < oo} )
z€R4

and define the norm

||UHW; ‘= sup HUXZHW;-
z€R4

W, is a Banach space and the enjoys the following property:
Lemma 2.3. (1) If v > ;%7 v — % ¢ N, then W) — C’V_%;
(2) If B>~ >0, then C% — Wj.

Proof. The first conclusion is just a consequence of Sobolev embedding theorem, and we
only need to prove the second conclusion when 1 > 3 > v > 0. Obviously, if u € C”?, then

lux:llp S lullze S llullce-

Hence, C% — W0, If 1 > 8 >~ > 0, by definition,

_ p
/ / ux:(z) — ux:(y)] dudy
RdxRe |z — y|*tP
— p — p
|m—z|<%,|m—y|<1 |$ - y| p lz—y|>1 ‘:U - y‘ o

p. — p
|:E7z|<g,|xfy|<1 |:U - y| P
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o P ) =0 g, [ I Tl
\x—z\gg,|x—y|<1 |$ - y|d+'yp lz—y|>1 |‘T - y|d+7p
wll?,s |z — y|?P )P
If e LY ¥
|x—z|§%,|x—y|<1 |l’—y| w lz—y|>1 |.I‘— | R

SJHUH%B/ dx/ |w|_d+(ﬁ_7)pdw + Hqum/ da:/ |w|_d_7pdw
lo=21<3 hwl<1 |lz—2|<3 |w|>1

2 2
Sllulles

AN

This yields, [[ux.|lwy < Cllullcs and the constant C' does not depends on z.
0

Next we recall some basic facts from the Littlewood-Paley theory. Let .(R%) be the
Schwartz space of all rapidly decreasing functions, and .#”(R?) the dual space of .7 (R?)
called Schwartz generalized function (or tempered distribution) space. Given f € .%(R%),

let .Z f = f be the Fourier transform of f defined by
f) = m [ oo o
R4

Let x : R? — [0,1] be the function defined above. Define

@(§) = x(§) — x(29).
It is easy to see that ¢ > 0 and supp ¢ C B3/, \ Bi/2 and

Y (26) +ng x(27F¢) F20 1, (2.2)

In particular, if [j — j'| > 2, then
suppp(277-) N suppp(27"-) = 0,
From now on we shall fix such y and ¢, and introduce the following definitions.

Definition 2.4. The dyadic block operator A; is defined by

_[F@)Fn, G-
si={ F0e 0P, |

For s € R and p,q € [1,00], the Besov space By , is defined as the set of all f € S (RY)
with
1/q
Wy o= 32 0urlg) <o
j=>-1
The following two Lemmas can be found in [28].

Lemma 2.5. (1) (Bernstein’s inequality) For any 1 < p < ¢ < 0o and j > 0, we have

1958 flly < C2 "G A f e k=0,1, (2.3)

and

I(=2)22;flly < G20 G| A f |, s € R. (2.4)
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(2) For any s > 0,

(3 2msr) "

j>—1

[ f 1y = : (2.5)

p

Lemma 2.6. Ifs > 0,s ¢ N
B oo =< C% By, < W,
where C® 1s the usual Holder space.
Let h := .% 1y be the inverse Fourier transform of . Define
hoy(x) = Fx(2)(z) = 27¢h(27'2) € L(RY),

and for j > 0,

hj(x) = F 'p(277.) () = 24h(202) — 2U" V(27 y) € Z(RY). (2.6)
By definition it is easy to see that

Aifa) = (hy+ Pa) = [ hylo =) fwidy. 5> =1, (2.7

2.2. Mallivian Derivate for Lévy processes. In this subsection, we introduce some
basic conceptions of Mallivian calculus for Lévy processes. One can find more details in

[20]. Suppose N(dt,dz) is a Poisson point process with intensity measure v(dz). Let
{Fi}o<t<r be the filtration generated by N and N(d¢,dz) := N(dt,dz) — v(dz)dt.

For each n € N, and f € L*(([0, 7] x R%)™; (X x v)"), define

1
f(t1721; o 7tn7 Zn) = E Z f(t0(1)>za(l); o ;ta(n)wza(n))-
O'GSTL

We denote the space of square integrable symmetric functions by L2(([0, 7] x R%)™; (A x
v)")(abbreviated by L*((A x v)")).

Definition 2.7. The stochastic Sobolev space DY consists of all Fr measurable random
variables F' € L*(P) with chaos expansion

F= Zln<fn)7 fn € LQ(()‘ X V>n)

n=1

satisfying
Sl fallZ ey < 00
n=0

Here

L) = [ hltm st ) NG b= ()2 = ()
([0, T xRd)n
Define o
Dt,zF = ann—l(ﬁb(';tv’Z))?
n=1
then

||DF||2L2((AXVxP)) = Z"”!||fn||2L2((AXV)n)-
n=1
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Thus, F' € D} if and only if F' € L*(P) and DF € L*((A x v x P)).

The next lemma is consequence of Theorem 12.6 of [20].

Lemma 2.8 (Closability of Mallivian derivate). If F,, € D3, F,, — F in L*(P) and
sup HDFnHLQ()\XuxP) <M < oo.

Then, F € D} and
IDF|| z2((axvxpy) < M.

Proof. By our assumption, {DF},},ey is bounded in L*(\ x v x P), thus Banach-Saks
theorem implies, the Cesaro mean sequence of a suitable subsequence of {DF,}, say
{DF,,}, converges strongly to some G € L*(\ x v x P), i.e.

1 « 1 <
D(—E Fnk> =—>) DF, —G, in *(AxvxP).
m m
k=1 k=1

On the other hand, = %"" | F,, — F in L*(P), by Theorem 12.6 of [20], we get F € D},
DF = @ and

1
| DF || r2((axvxpy) = lim E” Z DF,, || 2((xwxP))
k=1

L
< I%Iriloréf — ; | DFo |2 (oxwxpy) < M.
=1

3. A STUDY OF NONLOCAL PARABOLIC EQUATIONS

In this section we study the solvability and regularity of nonlocal elliptic equations with
Holder drift. First of all, we introduce the nonlocal operator studied in this work. Let o
be a invertible d x d-matrix and v a Lévy measure, that is,

/ (|2]* A 1)rv(dz) < oo.
RN\ {0}
We define a Lévy-type operator by
L, = — . v/ o2\ u(d
f(@) /R (flo+02) = f(@) = Vf(@) - 02 w(d2)

with 2(®) = 21,51 + 214-11p,(2). By Fourier’s transform, we have

L.1(6) = vo()f (&),
where the symbol ¢, () takes the form

V(&) = — /Rd(eig'az —1—ioz@® -&r(dz).

Now, let o(z) : R? — R? @ R? be a Borel measurable function. Define

.,Z”f(m) = ,Cg(x)f(.’l?).
In this section we want to study the solvability of the following resolvent equation with
Holder drift b(z) : R — R,

M—ZLu—b-Vu=f;, X>0. (3.1)
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3.1. Constant coefficient case: o(z) = . In this subsection we consider equation (3.1)
with non-degenerated constant coefficient o(x) = o € R¥?. First of all, we establish the
following Bernstein’s type inequality for nonlocal operator £, which plays a crucial role
in the sequel.

Lemma 3.1. Suppose v satisfies (H;), o is a constant matriz and A= < ||o|| < A, then
for any p = 2, there are constants ¢ = c(v,A,p) > 0, jo = jo(v,A,p) € N such that for
anyj:j07j0+17"'7

[ 100028 120 e <~ a1, 32)
R
and for —1 < j < jo,
/ ’Ajf’piZAjfﬁgAjfdl’ < 0.
R4
Remark 3.2. Readers can find the proof of above lemma in [7], this kind of estimate was

first proved in [4] for L, = A%, We will give a much simpler proof in the appendiz for
symmetric operator L.

We also need the following easy commutator estimate:
Lemma 3.3. For any j > —1, € (0,1),
114;. 6 Vull, 277 ]1bllos | Vull-
Proof. By (2.7) we have
855 luta) = [ hyu)(be — ) = b(o)) - Yt = ),

by Minkowski ’s inequality and (2.6), we have

I1Az;6- Viull, < /Rd hi@)16(- = y) = b()|ool [Vl pdy

< blleslIV h; fd
S Wles el [ sl ol dy s

= [blles Tl 27 [ [2h(25) = hio) Iy

< 277 bllos [Vl

Now we can state our main result of this subsection.

Theorem 3.4. Let a € (0,2), 8,7 € (0,1), 1 —a) <y < B, A>1and p € [2,00).
Suppose v satisfy (H;), b € C® and A=' < ||o|| < A, then for any f € W), there exists a
unique solution u € W7 to equation (3.1). Moreover, there is a constant Ao > 0, such
that, for all A > \g > 0,

Mullwy + lullyoss < Cllfllwy (3.4)
o, C depend only on d,p, o, 3,7, A, v and ||b]|cs.

Proof. We first assume

beCy, f e msgowlf.
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Under this assumption, it is well-known that PDE (3.1) has a unique smooth solution w.
Our main task is to show the apriori estimates (3.4). Using operator A; act on both sides
of (3.1) and noticing that A;.Z = AL, = L,A; = LA;, we have

For p > 2, by the chain rule or multiplying both sides by |A;u[P~?A;u and then integrating
in x, we obtain

A / |Ajulf = / |Aju|p—2Aju{$Aju +Aj(b- V) + A, f} do
Rd Rd
:/ |AjulP 2 A jul Ajudz + / |AjulP2Au A, b - V]udz
R4 Rd
—1—/ 1A uP2Aju (b V)Ajudz + | |AjulP2Aud; fde
R4 Rd

_ .7 (2) (3) (4)

=L+ 7+ 7+
For I ;1), recalling . = L, and by Lemma 2.5, there is a ¢ > 0 such that

LV <0, iz -t IV < =290l 5= Gojot+ Lo

For [;2), using Lemma 3.3 and Hélder’s inequality, we have for all j = —1,0,1,---,

2 .
12 <18y, b VIulpl1Aulz!
S 2l oo [Vl Ajulp.

For I ;3), let us write
1% = /R (b S,b) - V)2 u [ Aul A juda

_ (6D (32
= 1% 4 [P,

8

+ / (Sjb . V)A]U ]Aju\p_zAjud
Rd

For I ;31), by Bernstein’s inequality (2.3), we have
31 _
17 < DA V) Ajull, Al

k>j
<D NAD IV A ullpl1Azullp ™!
k>j
S 2NAzully 1Al < 2| AzulBlbles Y27

k>j k=>j
< 2077 bll s | Aullp.

For I ;32), by integration by parts formula and (2.3) again, we have
1 1
I == / (S;b- V)| AufPde = —= / S;divh | AjulPdz
P Jre P Jra

1. 1 .

< = [185divhllcl1Azullf < =D 1 Ardivh ool Azullp
p P

S 2 AkbllsollAull?

k<j
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< 287991b] oo | A
Combining the above calculations, we obtain
A ullh + €297 2oy | Agully <C27|[bl|os ||Vl | A ][~
+C20 P bl ca | Agullh + Cl Al 1A, f
By dividing both sides by ||[Ajul[2~", we get
MAjully + 2991 ooy 1A ull, — C28 b oo | Azl
<C27bllgs [ Vull, + CllA; fll,-
Since 1 — 8 < «, for some A sufficiently large and all j > —1,
MAjullp + 291Gz 1A ull, < C277)blles [ Vull, + CllIA; f, (3.5)
Multiplying both sides of (3.5) by 2%/ and then taking ¢’ norm over j, we obtain

Mully + lullyg e < Cr (I9ully + 11wy ).

where C} only depends on d, p, «, 5,7, A, v and ||b||cs. Recalling that «++ > 1 and using
interpolation theorem, we have |Vu/|, < ﬁ”u”waﬂ + C'||ullwy . Choosing Ag > 2C, (",
we complete the proof for (3.4). O

3.2. Varying coeflicient case. In this subsection we consider the varying coefficient
case. We drop the large jump part below, and consider the following operator

LU (@)1= L @)= [ (o +0(0)2) = Fla) = VE@) - o@)=)olda). (6)

where R is any real number larger than zero. We need the following lemma(see [28,
Theorem 2.4.7]) in order to localize the resolvent equation.

Lemma 3.5 (localization principle). Let ¢ > 0, (,, € C®, k = 1,2,---. Assume for any
multi-indexr o and x € RY, sup,cpa Y., |0°C ()| < C, < 00. Then, there is a constant C
such that

D NuGllfy, < Cllullw-
k
Moreover, if Y, |Ce(x)[? = ¢ > 0, then we have

el = > Gl (3.7)
k

The following lemma is taken from [18, Lemma 3.5].
Lemma 3.6. Suppose s € (0,2), p > max{1, g}, then

o ) = £ = V1))
y#0 |y|8

< Ol f|

p

Hs- (3.8)

The main result of this subsection is

Theorem 3.7. Suppose v,b, 0 satisfy assumption (Hy) and (Hy), 8 > v > max{0,1—a}
and L is defined as (3.6), then there is a constant Ny such that for any X\ > o and
f € CP the following equation:

u—ZLPu—b-Vu=f
10



has a unique solution in C*T7. Moreover, we have
Muller + [[ullgorr < Cll fllcs, (3.9)
here the constants Ao, C' only depend on d, o, 8,7, R, A, v and ||b||cs.
The above theorem is just a consequence of Lemma 2.3 and following lemma.
Lemma 3.8. Suppose v, b, o satisfies assumption (Hy) and (Hy), f > v > max{0,1—a},

Do = Mmax {ad—jl, a+’dy—1 }, pE (po, oo). Then, for any f € W), the following equation:

u— Ly —b-Vu=f
has a unique solution in W;“r“/. Moreover, we have
Mullwg + l[ullyye s < Cllf Iy (3.10)
where Ao, C' depend only on d,p, o, B,7v, R, A, v and ||b||cs.

Remark 3.9. The above theorem can be improved under weaker conditions, but we do
not attempt to do that here, since it is enough for our main propose of this paper.

In order to prove the above lemma, we need a commutator estimate under the following
assumption.

(A.) There are € € (0,7) and A > 1 such that

o(z) —o(y)| < Az —yl,0(x) = 0(0), |z| >e, (3.11)
ATHER < Jo(0)E* < Af¢?, € e RY (3.12)

Lemma 3.10. Under (A.), for any s € (0,1),p > 1, we have
(A, 2|, < O 5 ufen, (3.13)

where [A*?, LTy = A2 L Py — LEN?u, and the constant C > 0 is independent of e.
One can find the proof of above lemma was proved in [7].

Lemma 3.11. Under (A.), for any p € (-%-

|

ant’ o0), v € (0,1), we have
(50 = L3S Ny < cell g

where ¢ — 0 as € — 0.

Proof. We only prove the estimate for o € (0,1). The case a € [1,2) is similar. By 6,
(2.19)], we have
1£e.f = Lo, fllp < (lox = a2l AL f |- (3.14)
Define
Tof = L3 f — Lo f-
By (3.11), we have

7o f ()] < L5 (@) = Lo (@) < sup L7 f(2) — Lo f(2)],

llo—o(0)]|<Ae

since p > d*/a, by [6, Lemma 2.2] and (3.14), we have

IToflly < || sup|LZF() = Lo ()]

llo—c(0)[<Ae

S €1 g (3.15)

p
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By Minkowski’s inequality,
AT fll < S INATA N+ D IATA Sl = T + T2,

J>i J<t
For ji(l), by (3.15), we have

TV < N8l S e > IA f g

=i j>i
(2.4) , |
S e 2908 fllp S I g D276,
> j>i

where ¢; = 20| A, /|1 f |+ Thus,

) 1 « i—7]
21T S e Y Lia-p<0r 2 - 1z nye
JEZL

where aj, = 1y>_1)c; and b, = 1{k<0}27k (Vk € Z). Thus,

; 1
127 T e S & Fllyz | aller Bl o

1/p
Sl s (Z c§> S & oo

j>—1

(3.16)

For 7, if i = —1, then
TD = ALT A fllp S e 1A fllag S e Fllorre-r.

If © > 0, choose s € (max{vy,1 — a + d/p},1) in Lemma 3.10. By Bernstein’s inequality
and Lemma 3.10, we have

24
T = 3" AN PAPTA S, S 27 Y IATPTAL],

—lg<e —-1<e

<2 30 (1A 1A + 18724, f1),)
—1<j<i
_ g Z (A2, LBA |l + | To A0 £,
—l<y<i

(3.13),(3.15) 2

< g Z (51‘5+d/p||Ajf||cl + 2| AY AijHg)

—1<j<s

23 | .
S 270 Y (Tt I| A fl, 4 €220 A )

—-1g<a
5€1—s+d/p2—si Z 2(a+s)j||Ajf||p
—1<g<i
ST fllypea27 Y 267

—1<y<i
12



Denoting A = 1{k2—1}ck7 dk = 1{]@20}2(7_8%, then
1 2 —S —s)(1—j —s
20T T fllyaer D 2070y LT £ e (d % )i

—1<j<i
Thus,
12772 S €544 gl lallos S €442 (3.17)

~Y

By (3.16) and (3.17), we get
1 7o fllwy =127 1A:To fllpler < 127 T llew + 112 T2 oo
S| il
this yields our desired result. O
Now we are on the position of proving Lemma 3.8.

Proof of Lemma 3.8. Like before, we only give the aprior estimate here. Let {(}ren be
a standard partition of unity, such that, for any &, the support of (j lies in a ball By of
radius £/8, where e will be determined later. Denote by y, the center of By. Also for any
k, we take functions 7y, §, € C*°, such that, n, = 1 on B./4(yx), nx = 0 outside B.)2(yi),
and 0 < mp < 1; & = 1 on Beja(yw), & = 0 outside B.(yx), and 0 < & < 1. Define

or(x) = &(x)o(z) + (1 — &(@))o(yk),
2@ = [ (1+ @) - 1) = V@) vdz).

£ff@) = [ (fatom)2) = £(@) = ¥ aolu)= )r(dz).
Multiplying ¢; on both sidz of (1.8), we get
Aucr) = L (uC) = -V (uCr) = G+ G(b- Vu) =b-V (uly) + G (L) — LiF (Gru) (3.18)
Theorem 3.4 yields,
Mlucillwy + [ucillyars S (1 Cellwy + llub - Vllwy + [1G(L ) — L (G llwy) -

Hence, using Lemma 3.5 we have,

N [ully, +IIUI|Wa+vNZ>\I’IIUCkII 7 el et

(3.19)
52 (L7Gell + b - VGl + 16 (L70) = LGl )
k

Again by Lemma 3.5,
DGR = s D lub- VGl < bl S Hlullhy;. (3.20)
k k

the last inequality above is due to the following fact:

ub(z) — ub(y) P
||Ub||wv Slludlly + // | |z — y’d+Sp)| dzdy
7o)
< p b pood d |u ( )| |
R e et

y)[P[b(z) — b(y)[?
dzd
//Rde’i |I_ |d+7p e

13




D51z — yI?P A 0]
|z — y|dtP

Slalgbl + [0z, + | lut)Pay [
R4 R4
S

Next we estimate the third term in the last line of (3.19). We only give the proof for
« < 1 here, because the proof for @ > 1 is almost the same.

Ge(@) (L) () — L5 (Gru) ()
= [ L7 (uGi) (x) — Ly (uG) ()] me() + [L7 () (@) — L (uGe) (2)] (1 = mi())

- {u<x>fR<k<x> + [ fute+ o)) —u(o)] - e + 0(0)2) - <k<x>Ju<dz>}

Br
= V(@) + [P (2) = [V (2)

For I,gl), notice o (z) = o(x) when x belongs to the support of 7, so we have

I (@) = L8 () () = L (ue) (@) i),
ZE satisfies assumption (A.), by Lemma 3.11, we have

17wz < eelluGellyos (e = 0 as & = 0). (3.21)

For 1,22)(37), since 1 —ni(x) = 0 if [z — yi| < § and uCe(z) = 0 if |2 — yx| > §, we have

1) = [ o)) —u o))~ ) ()

8A
Choosing s € (d/p, 1 A(a+~—1)), by Minkowski inequality, Lemma 3.6 and interpolation
theorem, we have

I,f?)p\ uCr(- +o(-)z) — ulx(-)|[r(dz
< [ G+ 00)2) — Gl (a2

8A S

" /E<IZI<R ude (- + o (yi)2) = udi()llpv(d2)

8A

o 1HGC ) — G )

s[ ks v(d2)
S<lel<R yeR® lyl*
(3.8)
Sl [ Jalvid) S e ludelg
SLA<|2\<R
g&“HUCkHW;H—“/ + CgHuCka
And
VIPw) = [ IV + o@)2)+ Vo) - Vi) + o))

s <lzl<R

(1= mw(2)) = [uCk(z + o (2)2) — ulp(z + U(yk)Z)]Vnk(w)}V(dZ)

N /a< <R {v(ugk)(x +o(x)z) - Vo(z)z (1 — ()

8A S

+ [V (uG) (@ + o(x)2) = V(uG) (@ + o (yr)2)](1 — mi(z))

— [uC(x + o(x)z) — ul(x + a(yk)z)]Vnk(x)}l/(dz).
14



Like the estimates for ||],i2)||p, choosing s € (d/p,1 A (o« + v — 1)), then

s { 190G +0()2) = TGOl + 19 (i)l - 190l
FIV @G+ 0()2) = V@) + o)),

IVnlloo - [lugk(- +0()2) — udp(- + U(ZJk)Z)Hp}V(dZ)
b [V (i) (- + ) = V()
< s
Se /;Ag|z<R || sup e H (dz) + /E<| . 2] |V (udi) [l v (d2)

Selluell s < elludllygr + Celludill,
So
12 llwy < 1P llwy < llucellyor + Cellucell,. (3.22)

For ],23) (x), for any |z| < R, it’s not hard to see,
SHPZKkWrO’ r)z) = G(@)[” S 12, SHPZID%R@(HPSL

zER4 xER4

Hence, for any s € ((a — 1) V0, A 1),

1/p 1/p
(Z I\fé3’\!£> < (Z / d ru(x)\prﬁck(x)rpdx)

1/p
+ /|<R { [ e+ ate ypz el + oz (x)|”dx} V(d2)

Slull, + /| Tl v102) < el + Coll,
z|I<

Similarly, we have

1/p
3
(Z VI >||z> < ellullyyosr + Cellully.
k

So,

1/p 1/p
(an,?)rm;) <<ZHI§>H€V5> < ellullyor + Cellull,. — (3.23)
k k

Now using Lemma 3.5, combining (3.19), (3.20), (3.21), (3.22), (3.23) and choosing ¢
sufficiently small and \q sufficiently large, we get

Mlullwy + lullwers < Cllfllwy- (3.24)
Now nultiplying both sides of (3.1) by x., we have
Aux.) — gR(uXZ> —b-V(ux:) =g,

where

g = sz + ngRu - gR(qu) —ub - sz-
15



We omit the subscript z below and just prove the case when o < 1. By definition,

& — L% (ux)](2) = / u(z +o(x)2)(x(x + o(r)z) — x(x))v(dz),

|z|<R

SO

2P — 2R, <l '

/ (- + 0()2) — x(n(dz)
|z|]<R

<C|lu||oo

p

Notice that

V2L — L (uy)|(z) = Vu(z + o(x)2) T+ Vo(x)z)(x(z + o(x)z) — x(x))v(dz)

Br

+ /B u(@ +0o(2)2)(Vx (e + o(x)2) (I + Vo(z)z) — Vx(z))r(dz),

we have
VDL — 27y, <ClIVall H [+ 0002) = xvla)
# Ol | [ 936+ ()2) = TrOluta)
+ C|u)| s ; Vx(-+0(-)z) - Vo(x)zr(dz)
<Clluler.
Thus,

19:llwy <Ifxllwy + Clluller + Cllblles [uVxllwy
<C(1F gy + lluller + llullwg)-

By (3.24), we get

[[llyyesr + Allellwy = suﬂ@(”“Xszgﬂ + Allulwg)
zZE

SCUAlwg + lluller + Nlulbng)-
By Lemma 2.3 and interpolation, for any 6 > 0 there is a constant Cy such that
[Juller < 8[|l + Collullwn,

so we complete our proof by choosing ¢ small and Ay sufficiently large.

4. PROOF OF THEOREM 1.1
Let N(dt,dz) be the Poisson random measure associated with Z, that is,

N((0,1] x B) = ) 15(AZ,),

s<t
16



where F is any compact set 0f~Rd\{O} and AZg := Z; — Zs_. The intensity measure of
N is denoted by dtr(dz). Let N(dt,dz) = N(dt,dz) — dtv(dz) and

N(dt,dz), a<l
N@(dt,dz) = { N(dt,dz) — dtlp, (2)v(dz), a=1
N(dt,dz) — dtr(dz), a>1

Recalling that
Ec“% = exp {/ (€% — 1 —if - 2(d2) |,
Rd

by Lévy-1t6’s decomposition, we have

t
Zt:// ZzN@(ds, dz).
0JRd

Thus, SDE (1.1) can be rewritten as

X = Xo —i—/ s)ds + //Rd @) (ds, dz). (4.1)

Now we are on the point to give the proof of our main results.

Proof of Theorem 1.1. (1). For the well-posedness, one can assume v compactly sup-
ported on Bp i.e. sup,q|AZ;| < R, otherwise, we can take 7 := 0,7, := inf{t > 7, :
AZ; > R} for any k > 1, and solve the SDE step by step.

Let u be the solution of equation:

Mo— ZLBu—b-Vu=0b A=\
By Theorem 3.7, for any u € (a/2,a+ 8 — 1), we have u € C'™ with [Ju||ci+s = c(\, p)
and c¢(A\,u) — 0 as A — oo. Choose A sufficiently large so that ||Vulls. < 1/2, thus
:x— x+u(x)is a C* A -diffeomorphism. By a generalized version of It6’s formula(c.f.
[21]), we get
t
u(Xy) =u(Xp) + / [ Ly + b - Vu)(X,)ds
0
t
+ // [w(Xs— + 0(Xs-)z) — u(Xs-)|N(ds, dz).
0/ Bg
Define Y; := ®(X;), then

Y, = B(X,) = (Xo) + /t/\u(X)d

/ /B (Xo + 0(X, )2) — B(X, )| N(ds, dz) (4.2)

=Yy + / d3+// Y, .,z dsdz)
Br

where



It has been showed in [21] and [5] that we only need to show the well-posedness of (4.2),
in order to get the well-posedness of (4.1). Elementary calculation yields,

Va(y) = AVu(® ' (y)) VO (y);

Vug(y, 2) =[Vu(@ ' (y) + o (27 (y))2) — Vu(@ ' (y))[VE ' (y)
+Vu(@7 (y) + o(27(y))2) Va(27 (y)) VO (y)z (4.3)
+ V(27 (y)) VO (y)2.
Fix p € (a/2, + B — 1), noticing that u € C*™* with |lu||ci+s = ¢(A, 1), we have,
lallgren < o0, gy, 2)] < Clz] (4.4)
and
V490 2) e <Vullen VO s (llofloc - |2])"
IVl Vol [V lool2] + [V lloo [V oo 2] (4.5)
< 1) (1= e 1)~ (llellsc |2l + 11V el 2]) + 1V llsolz].

Thanks to the estimates (4.4) and (4.5), the proof for existence and uniqueness of solution
to (4.2) becomes quite standard. Indeed, let

V) =Yy Y=Y+ / (Y] ds+// N(ds, dz),
Br

then by Doob’s inequality and (4.4), (4.5), we get

E sup [Y7* — Y72 <C||Va|LE / Yy Pds

0<s<t
+CE // (Y, g(YS":I,z)}gv(dz)ds
Br

t
<¢ (Ivai+ | ||vyg<-,z>||iou<dz>)E |-y
Br 0

t
<c [1 [ e \z!?)u(dz)} B[y s
Br 0

t

0<s<t
Choosing T' sufficiently small such that C'T" < 3, we get
lim E sup |Y" — Y;tm|2 = 0. (4.6)

nM—00  O<tLT
And notice that all the estimates above do not depends on the initial data Yy, so we
obtain that (4.6) holds for any 7" > 0. And the limit point Y of {Y™},, is a strong solution
0 (4.2). The uniqueness for (4.2) can be obtained by using Gronwall’s inequality and
similar estimates above.

Next we show that for each ¢, X; is Mallivian differentiable. Notice that V(®~1)(y) =
(V@) o ®d(y) and (V®) ! = (VP)*(det V@)~ ! € C*, we get &' € C'™. Since
X; = ®71(Y;), by Theorem 12.8 of [20], we only need to show that Y; is Mallivian differ-

entiable. And by the closability of Mallivian derivate(Lemma 2.2), the desired result can
18



be obtained after we prove the following estimate:

Sup ”DnzYthLQ(AXVxP) < 0. (4.7)
neN;te[0,7)

Assume Y;" above is Mallivian differentiable for each ¢ and sup;cp 7y [ Dr2 Y| L2(axwxp) <
co. By (4.4), we have

a(Y") € L*(P), a(Y"+ D,.Y") —a(Y") € L*(A x v x P).
Thanks to Theorem 12.8 of [20], we obtain a(Y,") € D} and
Droa(Y]") = a(Y]" + Dr.Y]) — a(Y]).
Similarly, by (4.4) and (4.5), we have
B[ [ oo mfvinas < oo
0 Jrd

and by It6’s isometry, for any ¢t € [0, 7],

E -/Ot /R (/Ot /]R Dr,zg(Y;”,n)ﬁ(ds,dn))Qu(dz)dr]
| [ [ ([ [ povz g0z ¥ ) u<dz>dr]
Lex[[ [ 1 g IVl 1D Y Pl (]

T T
<CE / / { / |Dr,zm|2ds} Y(d2)dr < C sup [|Dy2Y [ pauancp) < 0
o JBr LJo

te[0,7

Thanks to Theorem 12.15 of [20], we obtain

Dm// ds ,dn)
Br

=[]t + Dy - vz st + 90072 2)| 6 0
Br
So we obtain Y;""! € D} and for almost every r € [0, ],

t
DYy =g(v7 )+ [ [alYY 4 DoY) - a¥))ds

t ~
+ / / g(Y + DY ) — g(Y]2,n)]N(ds,dn)
T BR

For any r € [0, 7], denote

fr"=E {/ [ sup ]DMY;/"P] I/(dz)}
B Lr<t<T

Again by Doob’s inequality,

- [ 00 ]
R LTSIS

T
<c{ [ a2+ [ValLE [ [ D Pdzas
Br r JBgr
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T
-/ E[/ / ||vyg<~,n>||zo|Dr,zm|2u<dn>ds] u<dz>}
Br r J BRr
<(J{1 +TE U { sup |DT,ZY;1|2} y(dz)}
Br Lr<t<T

+TE/ {Sup |DT,ZY£IQ] V(dZ)/ |77|2"V(d77)}
BR r<t<T BR

=C+CTf",
here C' is independent with n,r,T". By choosing T' < Tj := %, then we have
n—1
Bgr
Thus,
sup E / sup |D,.Y"*| v(dz)| < oo.
neN;re(0,T) Bgr | te[r,T]

which implies (4.7) for sufficiently small T'. For arbitrary 7" > Ty, by the similar argument
above, we can see that

sup E
neN;re[0,7T)

v(dz)| < sup f)

neN;re[0,7)

/ sup |D,.Y," ]2
BR tE[r,T]

<20+ s B[ D7 ()
071 JBg

neN;re|

N

<20(T/Ty] + 1) + sup E / D, Yol20(dz) < oo,
Br

rel0,T]
So we complete our proof.
(2) Choosing A sufficiently large, by (Hzs), (4.5), for any z € B,,, we have

IVya(y, 2)| <IVollclzl +e(X w)(1 = e(A, 1)~ (llolih ]2 + Vool 2])
<rol| Vo |2+ C e\ p) < 1,
which implies that for each z € suppv C B,, the map y — y+¢(y, z) is homeomorphic and

I+ V,g(y, ) is invertible. Again by (4.5), for any z € By, ||V49(-, 2)||cc < K(2) < |2|".
Since 2u > «, by (H;),

K(2)*v(dz) SC’/ 2|1y (dz) < Crgh ™ < oo.

By, By,

Notice that ¢ € C1*, by (4.3) and the regularity estimates for u, one can also check that
IV,9(y, 2) — Vg, 2)| < L(z)|y — /|0

and L(z) =< |z|*. So we also have

/ L(2)*v(dz) < co.
By,
Thanks to [14, Theorem 3.11], {Y;(2)}50.0crae defines a C'-stochastic flow, so does

{Xt<x>}t>0;xeRd- O
20



Remark 4.1. By Theorem 3.4 and the proof of Theorem 1.1, one can see that if o is
a constant invertible matriz, then the conclusions in Theorem 1.1 still hold if v satisfies
(Hy) and b € CP with € (1—%,1).

Following the argument in [24], we give the proof of Corollary 1.2. The flow property
of strong solutions will play a crucial role in this proof.

Proof of Corollary 1.2. Suppose 6 solves (1.7). Denote

Ye =0+ Zy,  O(t) = Xai(y),

where {X;(2)}i>0..era is the stochastic flow associated with (1.1). Recalling that there is
a full set g C Q such that for any w € §y, For any ¢ € [0, 1] and § € (0,1),

’Xt(l.?w) - Xt(yaw)‘ < K(W)’Q] - y’(S,

here K is a integrable variable depending on 0. We will show that ¢(¢,w) are constant
functions for any w € 2y. By the above inequality, we obtain that for any w € ),

|¢<t’w) - gb(S,W)l = |X1—t(yt(w)7w) - Xl—t(Xt—S(y8<w)vw>vw)|

4.8
K@) |() — Xea (). )P 48)
and
90(0) = X o (50(0), )] =I[5() — 90(@)] — X (30(0), @) — pa()]
—| [ bondu = [ X)) (09)
<2|blloclr — o]
Hence,
) = Xies0e @) )] = | [ bonl)dr = [0 fuufe) )
<l [ () = Xoms(a). )
L [ - spar<ci -
Combining (4.8) and above inequalities, we obtain
p(t,w) — ¢(s,w)] < CK(W)|t —s[°TH | w e Q.
By choosing § > (1 + 8)7!, we obtain that for all w € Qg
X, 0) = 6(0,0) = B(1,w) = Xo(pr (), w) = 2(w).
[l

5. APPENDIX

The full proof of (3.2) for general non-degenerate a-stable like operator is quite com-
plicated(c.f. [4] and [7]). He we give a simple proof for (3.2) under the assumption that
v is symmetric.

Proof of Lemma 3.1. By the following elementary inequality:

pla—0)(lal"a — [bP~*0) > (alal>~* —0]p|27")?, Vp>2, a,bER,
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we have,

/ FIIP 2 (Lo f)da
Rd

:% /d d(f(x +oz)— f@)(|fIP2f(z+02) — [f]P f2))v(dz)de
1 o p , (5.1)
2 Jo Rd(f|f|5_1(x+az) FIf12 N (@) v(dz)da

1 / 1 2_1
= [ |coir1s
N CSEUIESTE
This implies the second inequality in Lemma 3.1.

Noticing that for all x € [0,1], 1 — cosx > cz?, so by (Hy), for any [¢] > (Ap)~!(p is
the constant in (H;)),

-(&) = 1—cos(oz-€&))v(dz) > ¢ z-o'¢|Pu(dz
4ol@) = [ (1 —eostoz @ ze [ - oteftua

t
>loteP / o'C |
|z|<(AlE])~

L e
>l / redr > |,
0

and it is easy to see that

V(dz) > | inf / 12 01 (d2)
ENO

feSd—1

va(€) 2161, Vgl < (Ap) ™

By Plancherel formula,

L =etaistnfae = [ w2t
s . lﬁ\a\ﬁ(ﬂf\%’l)(&)}?dx—C RGN GIRE

> [ Jeaiuinifa—c [ irpas

Combing (5.1), (5.2) and using the elementary inequality:
‘a|a|g_1 — b|p|z? ’ > cpla —bfP, Ya,be R, p > 2,
we obtain

/ SIP 2= Lo f)de 2 / SN e / fPde
R4 Rd Rd
B / A @)~ CAAS W
R4 x R4

— p
— 171

(5.2)

_ p
oo | = JO gy — il = el — Ul

axrd |z — g

Now using Theorem 2.36 of [2], for any j > 0,

(Al =111 45 = S 2 AL = 2, I

k=—o00
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Thus,

— [ 1A £ A e > (20 = Ol

Letting jo = 1 4 log,(C/c)/a, we get the desired result. O
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