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Abstract

In this paper, we establish a small time large deviation principle (small time asymp-
totics) for the dynamical Φ4

1 model, which not only involves study of the space-time white
noise with intensity

√
ε, but also the investigation of the effect of the small (with ε)

nonlinear drift.
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1 Introduction
In this paper we study small time behaviour of the dynamical Φ4

1 model :

du(t) = ∆u(t)dt− u(t)3dt+ dW (t), for (t, x) ∈ [0, T ]× T,
u(0) = u0,

(1.1)

where T is one dimensional torus and W is a cylindrical Wiener process on L2(T).
Equation (1.1) in d dimensional case describes the natural reversible dynamics for the Eu-

clidean Φ4
d quantum field theory. It is formally given by the following probability measure

ν(dφ) = N−1
∏
x∈Td

dφ(x) exp[−
∫
Td

(
1

2
|∇φ(x)|2 + φ4(x))dx],

where N is a renormalization constant and φ is the real-valued field. This measure was investi-
gated intensively in the 1970s and 1980s (see [GJ87] and the references therein). Parisi and Wu
in [PW81] proposed a program named stochastic quantization of getting the measure as limiting
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distributions of stochastic processes, especially as solutions to nonlinear stochastic differential
equations(see [JLM85]). The issue to study Φ4

d measure is to solve and study properties of (1.1)
in d dimensional case.

The dynamical Φ4
1 model with Dirichlet boundary condition (also named as reaction-diffusion

equations) was studied systematically in [DP04]. In [DP04] not only existence and uniqueness
of solutions to this equation have been obtained, but also the strong Feller property and ergod-
icity. For more details and more properties we refer to [DP04, Section 4]. We can obtain the
results on the torus case similarly.

In 2 and 3 dimensions, the equation (1.1) falls in the category of the singular SPDEs due
to the irregular nature of the noise dW (t). Solutions are expected to take value in distribution
spaces of negative regularity, which means the cubic term in the equation is not well-defined in
the classical sense and renormalization has to be done for the nonlinear term.

In two spatial dimensions, weak solutions to (1.1) have been first constructed in [AR91]
by using Dirichlet form theory. In [DDP03] the authors decomposed (1.1) into the linear
equation and a shifted equation (so called Da Prato-Debussche trick) and obtain a probalistical
strong solution via a fixed-point argument and invariant measure ν(dφ). Recently, global well-
posedness to (1.1) via a PDE argument has been obtained in [MW17b]. See also [RZZ17] for a
study of relation between weak solutions and strong solutions.

By Hairer’s breakthrough work on regularity structures [Hai14], (1.1) in the three dimen-
sional case is well-defined and local existance and uniqueness can be obtained. In [GIP15]
Gubinelli, Imkeller and Perkowski introduced paracontrolled distributions method for singular
SPDEs and by this method in [CC18] the authors also obtained local-in-time well-posedness
result. Mourrat and Weber in [MW17a] gave existence and uniqueness of global-in-time solu-
tions on T3 by energy estimate and mild formulation. Recently, Gubinelli and Hofmanová in
[GH19] proved the global existence and uniqueness results for (1.1) on R3 based on maximum
principle and localization technique.

The purpose of this paper is to study the small time asymptotics (large deviations) of the
dynamical Φ4

1 model. We try to estimate the limiting behavior of the solution in time interval
[0, t] as t goes to zero, which describes how fast the solution approximating its initial data in
sense of probability. The small time asymptotics in this case is also theoretically interesting,
since the study involves the investigation of the small rough noise and the effect of the small
nonlinear drift. The study of the small time asymptotics of finite dimensional diffusion processes
was initiated by Varadhan in the influential work [Var67]. The small time asymptotics (large
deviation) of SPDEs were studied in [Zha00], [XZ09], [LRZ13] and references therein.

We also want to mention the following small time asymptotics result by Dirichlet form. By
[AR91] and [ZZ18] we know that the dynamical Φ4

d model associated with a conservative and
local Dirichlet form. Then the main result in [HR03] implies the following Varadhan-type small
time asymptotics for the dynamical Φ4

d model:

lim
t→0

t logP ν(u(0) ∈ A, u(t) ∈ B) = −d(A,B)2

2
,

for all measurable sets A,B, where d is the intrinsic metric associated with the Dirichlet form
of Φ4

d model (see [HR03] for the definition). However, these results is for the stationary case or
holds for ν(dφ)-almost every starting point (see [HR03, Theorem 1.3] for a stronger version).
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The small time large deviation results in our paper hold for every starting point and is of its
own interest.

Let ε > 0, by the scaling property of the Brownian motion, it is easy to see that u(εt)
coincides in law with the solution of the following equation:

duε = ε∆uεdt− εu3
εdt+

√
εdW,

uε(0) = u0.
(1.2)

To establish the small time large deviation, we follow the idea of [XZ09] to prove the solution
to (1.2) is exponentially equivalent to the solution to the linear equation. In our case, due to
the irregularity of the white noise, the Itô formula in [XZ09] cannot be uesd. Our calculations
are based on the energy estimate for the shifted equation (see (4.4)) and the mild formulation.

In [HW15] the small noise large deviation principle for the dynamical Φ4
d model is estab-

lished. The authors considered the solution as a continuous map F of the noise
√
εξ and some

renormalization terms which belong to the Wiener chaos with the help of the regularity struc-
ture, then the result follows from the large deviation for Wiener chaos and the contraction
principle. However, this method seems not work for the small time asymptotics problem. By
this method, we have to prove the large deviation principle for the solution to linear equations
in a better space (compared to Theorem 3.1 in our paper), which seems not true since eε∆ → I
as ε→ 0 and the smoothing effect of heat flow will disappear. We will also meet this problem
for the higher dimensional case which we will try to solve in the future.

Organization of the paper
In Section 2, we introduce the basic notation and recall some preliminary results. In Section

3, we give the definition of large deviation principle, and prove the small time asymptotics for
the linear equation. The small time large deviation for the dynamical Φ4

1 model (Theorem 4.1)
is established in Section 4.

Acknowledgement
The authors would like to thank Rongchan Zhu for helpful discussions and also Peter Friz

for pointing out [HR03] to us.

2 Preliminary
In the following we recall some definitions of Besov spaces. For a general introduction to the
theory we refer to [BCD11], [Tri78], [Tri06]. First we introduce the following notations. The
space of real valued infinitely differentiable functions of compact support is denoted by D(Rd)
or D. The space of Schwartz functions is denoted by S(Rd). Its dual, the space of tempered
distributions, is denoted by S ′(Rd). The Fourier transform and the inverse Fourier transform
are denoted by F and F−1, respectively.

Let χ, θ ∈ D be nonnegative radial functions on Rd, such that
i. the support of χ is contained in a ball and the support of θ is contained in an annulus;
ii. χ(z) +

∑
j>0 θ(2

−jz) = 1 for all z ∈ Rd;
iii. supp(χ)∩ supp(θ(2−j·)) = ∅ for j > 1 and suppθ(2−i·)∩ suppθ(2−j·) = ∅ for |i− j| > 1.
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We call such (χ, θ) dyadic partition of unity, and for the existence of dyadic partitions of
unity we refer to [BCD11, Proposition 2.10]. The Littlewood-Paley blocks are now defined as

∆−1u = F−1(χFu) ∆ju = F−1(θ(2−j·)Fu).

Besov spaces
For α ∈ R, p, q ∈ [1,∞], u ∈ D we define

‖u‖Bαp,q := (
∑
j>−1

(2jα‖∆ju‖Lp)q)1/q,

with the usual interpretation as l∞ norm in case q = ∞. The Besov space Bα
p,q consists of

the completion of D with respect to this norm and the Hölder-Besov space Cα is given by
Cα(Rd) = Bα

∞,∞(Rd). For p, q ∈ [1,∞),

Bα
p,q(Rd) = {u ∈ S ′(Rd) : ‖u‖Bαp,q <∞}.

Cα(Rd)  {u ∈ S ′(Rd) : ‖u‖Cα(Rd) <∞}.
We point out that everything above and everything that follows can be applied to distributions
on the torus (see [Sic85], [SW71]). More precisely, let S ′(Td) be the space of distributions on
Td. Besov spaces on the torus with general indices p, q ∈ [1,∞] are defined as the completion
of C∞(Td) with respect to the norm

‖u‖Bαp,q(Td) := (
∑
j>−1

(2jα‖∆ju‖Lp(Td))
q)1/q,

and the Hölder-Besov space Cα is given by Cα = Bα
∞,∞(Td). We write ‖·‖α instead of ‖·‖Bα∞,∞(Td)

in the following for simplicity. For p, q ∈ [1,∞)

Bα
p,q(Td) = {u ∈ S ′(Td) : ‖u‖Bαp,q(Td) <∞}.

Cα  {u ∈ S ′(Td) : ‖u‖α <∞}.
Here we choose Besov spaces as completions of smooth functions, which ensures that the

Besov spaces are separable which has a lot of advantages for our analysis below.
In this paper, we use the following notations: CCβ := C([0, T ], Cβ), CL∞ := C([0, T ], L∞(Td)).

Estimates on the torus
In this part we give estimates on the torus for later use. We will need several important

properties of Besov spaces on the torus and we recall the following Besov embedding theorems
on the torus first (c.f. [Tri78, Theorem 4.6.1], [GIP15, Lemma A.2]):

Lemma 2.1. Let 1 ≤ p1 ≤ p2 ≤ ∞ and 1 ≤ q1 ≤ q2 ≤ ∞, and let α ∈ R. Then Bα
p1,q1

(Td) is
continuously embedded in Bα−d(1/p1−1/p2)

p2,q2 (Td).

We recall the following Schauder estimates, i.e. the smoothing effect of the heat flow, for
later use.

Lemma 2.2 ([GIP15, Lemma A.7]). Let u ∈ Cα for some α ∈ R. Then for every δ > 0, there
exists a constant C independent of u such that

‖et∆u‖α+δ 6 Ct−δ/2‖u‖α.
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3 Large deviation principle and some preparations

3.1 Large deviation principle

We recall the definition of the large deviation principle. For a general introduction to the theory
we refer to [DPZ09], [DZ10].

Definition. Given a family of probability measures {µε}ε>0 on a complete separable metric
space (E, ρ) and a lower semicontinuous function I : E → [0,∞], not identically equal to +∞.
The family {µε} is said to satisfy the large deviation principle(LDP) with respect to the rate
function I if
(U) for all closed sets F ⊂ E we have

lim sup
ε→0

ε log µε(F ) 6 − inf
x∈F

I(x),

(L) for all open sets G ⊂ E we have

lim inf
ε→0

ε log µε(G) > − inf
x∈G

I(x).

A family of random variable is said to satisfy large deviation principle if the law of these
random variables satisfy large deviation princple.

Moreover, I is a good rate function if its level sets Ir := {x ∈ E : I(x) 6 r} are compact
for arbitrary r ∈ (0,+∞).

Given a probabilty space (Ω,F , P ), the random variables {Zε} and {Zε} which take values
in (E, ρ) are called exponentially equivalent if for each δ > 0,

lim
ε→0

ε logP (ρ(Zε, Zε) > δ) = −∞.

Lemma 3.1 ([DZ10, Theorem 4.2.13]). If an LDP with a rate function I(·) holds for the
random variables {Zε}, which are exponentially equivalent to {Zε}, then the same LDP holds
for {Zε}.

3.2 Small time asymptotics in the linear case

In this subsection we concentrate on the following linear equations on the torus T:

dZε(t) = ε∆Zε(t)dt+
√
εdW (t),

Zε(0) = z0.
(3.1)

where W (t) is an L2(T) cylindrical Wiener process and z0 ∈ C−β for 0 < β < 1
4
. We will prove

that the solutions to (3.1) satisfy a large deviation principle.

The mild solutions to (3.1) are given by

Zε(t) = eεt∆z0 +
√
ε

∫ t

0

eε(t−s)∆dW (s).
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Theorem 3.1. Assume z0 ∈ C−β for 0 < β < 1
4
. Let µε,z0 = L(Zε(·)) and α > 0 small enough.

Define a functional I on CC− 1
2
−α by

Iz0(g) = inf
h∈Γg
{1

2

∫ T

0

‖h′(t)‖2
L2(T)dt},

where

Γg = {h ∈ CC−
1
2
−α : h(·) is absolutely continuous, g(t) = z0 +

∫ t

0

h′(s)ds}.

Then µε,z0 satisfies a large deviation principle with the rate function Iz0(·).
Moreover, Iz0 is a good rate function.

Proof. Let xε be the solution to the stochastic equation

xε(t) = z0 +
√
ε

∫ t

0

dW (s).

Since xε is Gaussian on CC− 1
2
−α, by [DPZ09, Theorem 12.9], we know that xε− z0 satisfy a

large deviation principle with the rate function I0. Combing the deterministic initial data, we
deduce that xε satisfy a large deviation principle with the rate function Iz0 .

Now we prove that Iz0 is a good rate function. Consider the level set for r ∈ (0,∞)

Iz0r = {g ∈ CC−
1
2
−α : Iz0(g) 6 r}.

For any g ∈ Iz0r , we have for s, t ∈ [0, T ]

‖g(t)− g(s)‖− 1
2
−α 6 C‖g(t)− g(s)‖L2(T) 6 C

∫ t

s

‖g′(l)‖L2(T)dl 6 C(2r)
1
2 |t− s|

1
2 ,

where we use Lemma 2.1 in the first inequality and Hölder’s inequality in the last inequality.
Since the constant C does not depend on g, Iz0r is equicontinuous. For each t ∈ [0, T ], let
Iz0r,t := {g(t), g ∈ Iz0r }. For any a ∈ Iz0r,t, there exists g ∈ Iz0r such that a = g(t). Then Hölder’s
inequality implies

‖a− z0‖L2(T) = ‖g(t)− g(0)‖L2(T) 6 Cr
1
2 .

Thus Iz0r,t is contained in a ball BL2(z0, Cr
1
2 ). By [Tri06, Proposition 4.6], the embedding

L2(T) ↪→ C− 1
2
−α is compact, which implies that Iz0r,t is relatively compact in C− 1

2
−α for any t.

Then the generalized Aerelà-Ascoli theorem implies that Iz0r is compact, i.e., Iz0 is a good rate
function.

By Lemma 3.1, the task remain is to show that Zε and xε are exponentially equivalent, that
is, for any δ > 0,

lim
ε→0

ε logP ( sup
06t6T

‖Zε(t)− xε(t)‖− 1
2
−α > δ) = −∞.

Let wε = Zε − xε, we have

d

dt
wε(t) = ε∆wε(t) + ε∆xε(t), wε(0) = 0.
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The mild formulation of wε is given by

wε(t) = ε

∫ t

0

eε(t−s)∆∆xε(s)ds

= ε

∫ t

0

eε(t−s)∆∆z0ds+ ε
√
ε

∫ t

0

eε(t−s)∆∆W (s)ds.

Now we estimate every term in the second line. By Lemma 2.2, we have

sup
06t6T

‖ε
∫ t

0

eε(t−s)∆∆z0ds‖− 1
2
−α 6 sup

06t6T
Cε

∫ t

0

1

[ε(t− s)] 34−α−β2
‖∆z0‖−2−βds

6 Cε
1
4

+α−β
2 ‖z0‖−β.

Similarly, we have for 0 < κ1 <
α
2
,

sup
06t6T

‖ε
√
ε

∫ t

0

eε(t−s)∆∆W (s)ds‖− 1
2
−α 6 sup

06t6T
Cε
√
ε

∫ t

0

1

[ε(t− s)]1−κ1
‖∆W (s)‖− 5

2
−α+2κ1

ds

6 C
√
εεκ1 sup

06t6T
‖W (t)‖− 1

2
−α+2κ1

.

We should point out that the constant C above is independent of ε and may change from
line to line.

For the cylindrical Wiener process W , we have for s, t ∈ [0, T ], 0 < κ1 <
α
3

E|4j(W (t)−W (s))|2 = E|
∑
k∈Z

θj(k)ek〈W (t)−W (s), ek〉|2

6 C|t− s|(1 +
∑

k∈Z\{0}

2j(1+2α−6κ1)

|k|1+2α−6κ1
) 6 C|t− s|2j(1+2α−6κ1),

where ek = 2−
1
2 eiπkx and we use k ∈ suppθj ⊂ 2jA(A is an annulus).

By Nelson’s hypercontractive estimate in [Nel73], for p > 2, there exists a constant C
independent of p such that

E‖4j(W (t)−W (s))‖pLp(T) =

∫
E|4j(W (t)−W (s))|p(x)dx

6 Cpp
p
2

∫
(E|4j(W (t)−W (s))|2(x))

p
2dx.

Then we obtain for 1
p
< κ1

E‖W (t)−W (s)‖p
B
− 1

2−α+2κ1+
1
p

p,p (T)

6 Cp|t− s|
p
2 p

p
2

∑
j>−1

2j(−κ1+ 1
p

)p.

Thus Lemma 2.1 and Kolmogorov’s continuity criterion imply that for p > 1
κ1

(E[ sup
06t6T

‖W‖p− 1
2
−α+2κ1

])
1
p 6 C(E[ sup

06t6T
‖W‖p

B
− 1

2−α+2κ1+
1
p

p,p (T)

])
1
p 6 Cp

1
2 .
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Hence, with the above estimates in hand, we have

(E sup
06t6T

‖wε(t)‖p− 1
2
−α)

1
p 6 Cε

1
4

+α−β
2 ‖z0‖−β + C

√
εεκ1(E[ sup

06t6T
‖W‖− 1

2
−α+2κ1

]p)
1
p

6 Cεκ1(1 +
√
εp

1
2 ),

where C is the constant independent of ε, p and may change from line to line.
Therefore Chebyshev’s inequality implies that

ε logP ( sup
06t6T

‖wε(t)‖− 1
2
−α > δ) 6 ε log

E sup06t6T ‖wε(t)‖
p

− 1
2
−α

δp

6 εp(logCεκ1(1 +
√
εp

1
2 )− log δ).

Let p = 1
ε
and ε→ 0, the proof is finished.

4 Small time asymptotics for Φ4
1 model

In this section we consider the equation

du(t) = ∆u(t)dt− u3(t)dt+ dW (t),

u(0) = u0,

where u0 ∈ C−β for 0 < β < 1
4
and W is a cylindrical Wiener process on L2(T). By a similar

argument as [DP04, Theorem 4.8], we obtain that the equation has a unique solution u ∈ CC−β.
Let ε > 0, by the scaling property of the Brownian motion, it is easy to see that u(εt)

coincides in law with the solution to the following equation:

duε = ε∆uεdt− εu3
εdt+

√
εdW,

uε(0) = u0.

Our purpose is to establish a large deviation principle for uε. The main result is the following
Theorem:

Theorem 4.1. Assume u0 ∈ C−β for 0 < β < 1
4
and α > 0 small enough, then uε satisfies

LDP on CC− 1
2
−α with the good rate function Iu0, where Iu0 is given in Theorem 3.1.

Let Zε(t) be the solution to the linear equation with the same initial condition as u :

dZε(t) = ε∆Zε(t)dt+
√
εdW (t),

Zε(0) = u0.

Theorem 3.1 implies that Zε satisfies a large deviation principle on the space CC− 1
2
−α with

the rate function Iu0 . By Lemma 3.1, our task is to show that uε and Zε are exponentially
equivalent in CC− 1

2
−α.
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4.1 Estimate of Zε

In this subsection, we follow the notations from [GP16, Section 9] to estimate Zε: We represent
the white noise in terms of its spatial Fourier transform. Let E = Z \ {0} and let W (s, k) =

〈W (s), ek〉, where {ek := 2−
1
2 eiπkx}k∈Z is the Fourier basis of L2(T). Here for simplicity we

assume that 〈W (s), e0〉 = 0 and restrict ourselves to the flow of
∫
T u(x)dx = 0. In the following

we view W (s, k) as a Gaussian process on R× E with covariance given by

E[

∫
R×E

f(η)w(dη)

∫
R×E

g(η′)w(dη′)] =

∫
R×E

f(η1)g(η−1)dη,

where ηa = (sa, ka) and the measure dηa = dsadka is the product measure of the Lebesgue
measure ds on R and the counting measure dk on E .

Let Zε = Zε − eεt∆u0, then

Zε(t, x) =

∫
R×E

√
εek(x)e−ε(t−s)π|k|

2

1{0<s<t}W (dη).

Now we have the following calculations: for s, t ∈ [0, T ],

E[|4j(Zε(t)− Zε(s))|2]

=E[|
∫
θj(k1)(

√
εek1e

−ε(t−s1)π|k1|21{0<s1<t} −
√
εek1e

−ε(s−s1)π|k1|21{0<s1<s})W (dη1)|2]

6εC
∫
θ2
j (k1)(e−2ε(t−s1)π|k1|21{s<s1<t} + |e−ε(t−s)π|k1|2 − 1|2e−2ε(s−s1)π|k1|21{0<s1<s})dη1

6C
∫
θj(k1)2 (ε|t− s||k1|2)2κ

|k1|2
dk1

6Cε2κ|t− s|2κ2j 1

(2j)2−4κ
= Cε2κ|t− s|2κ2j(−1+4κ),

(4.1)

where we use 1−ex 6 |x|κ for κ ∈ (0, 1), x < 0 in the fourth inequality and k ∈ suppθj ⊂ 2jA(A
is an annulus) in the last inequality. Here the constant C is independent of ε and may change
from line to line.

By Nelson’s hypercontractive estimate in [Nel73], we have for p > 2, there exists a constant
C independent of p, ε such that

E‖4j(Zε(t)− Zε(s))‖pLp(T) =

∫
E|4j(Zε(t)− Zε(s))|p(x)dx

6 Cpp
p
2

∫
(E|4j(Zε(t)− Zε(s))|2(x))

p
2dx.

Let κ = 1
4
− κ′ for κ′ > 0 small enough, we obtain

E‖Zε(t)− Zε(s)‖pBκ′p,p(T)
6 Cpp

p
2 (ε|t− s|)( 1

4
−κ′)p.

Then Lemma 2.1 and Kolmogorov’s continuity criterion implies that for p > 1
κ′
, we have

E‖Zε‖pCL∞ 6 E‖Zε‖p
CCκ

′− 1
p
6 E‖Zε‖pC([0,T ];Bκ′p,p(T))

6 Cpε( 1
4
−κ′)pp

p
2 . (4.2)
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Remark. We want to emphasize that (4.2) only holds for Zε due to Zε(0) = 0. For the
stationary one this does not hold since the expectation of the stationary one does not depend on
ε.

4.2 Exponentially equivalence

To prove Theorem 4.1, by Lemma 3.1, we only need to prove the following theorem:

Theorem 4.2. For any δ > 0,

lim
ε→0

ε logP ( sup
06t6T

‖uε(t)− Zε(t)‖− 1
2
−α > δ) = −∞. (4.3)

Proof. At the beginning of the proof, we should point out that the constant C in the following
is independent of ε, p and may change from line to line.

Let vε(t) := uε(t)− Zε(t), then vε is the solution to the following shifted equation:

dvε(t) = ε∆vε(t)dt− ε(vε(t) + Zε(t))
3dt,

vε(0) = 0.
(4.4)

For p > 1, we have

1

2p

d

dt
‖vε‖2p

L2p(T) = ε〈∆vε, v2p−1
ε 〉 − ε〈v3

ε , v
2p−1
ε 〉 − 3ε〈v2

εZε, v
2p−1
ε 〉 − 3ε〈vεZ2

ε , v
2p−1
ε 〉 − ε〈Z3

ε , v
2p−1
ε 〉.

Then

1

2p
‖vε(t)‖2p

L2p(T) + ε

∫ t

0

[(2p− 1)〈∇vε(s), v2p−2
ε (s)∇vε(s)〉+ ‖v2p+2

ε (s)‖L1(T)]ds

=− ε
∫ t

0

[3〈v2p+1
ε (s), Zε(s)〉+ 3〈v2p

ε (s), Z2
ε (s)〉+ 〈v2p−1

ε (s), Z3
ε (s)〉]ds

6ε
∫ t

0

(a‖vε(s)2p+2‖L1(T) + C‖Zε(s)‖2p+2
L∞(T))ds,

where we use Hölder’s inequality and Young’s inequality in the last inequality and a ∈ (0, 1).
Take p = 3, for t ∈ [0, T ], we have

‖vε(t)‖6
L6(T) 6 εC

∫ t

0

‖Zε(s)‖8
L∞(T)ds

6 εC

∫ t

0

(‖eεs∆u0‖8
β′ + ‖Zε(s)‖8

L∞(T))ds

6 εC

∫ t

0

(
1

(εs)
8(β′+β)

2

‖u0‖8
−β + ‖Zε(s)‖8

L∞(T))ds

6 C(ε1−4(β′+β)‖u0‖8
−β + ε‖Zε‖8

CL∞),

(4.5)

where 0 < β′ < 1
4
− β and we use Lemma 2.2 in the third inequality.
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Thus Young’s inequality and the mild formulation of vε given by

vε(t) = ε

∫ t

0

eε(t−s)∆[−v3
ε − 3v2

εZε − 3vεZ
2
ε − Z3

ε ]ds

imply that

sup
t∈[0,T ]

‖vε(t)‖L2(T) 6 εC

∫ T

0

(‖vε(s)‖3
L6(T) + ‖Zε(s)‖3

L∞(T))ds

6 εC

∫ T

0

(‖vε(s)‖3
L6(T) +

1

(εs)
3(β′+β)

2

‖u0‖3
−β + ‖Zε(s)‖3

L∞(T))ds

6 C(ε
3
2
−2(β′+β) + ε

3
2‖Zε‖4

CL∞ + ε1− 3(β′+β)
2 + ε‖Zε‖3

CL∞),

where we use Lemma 2.2 in the second inequality and (4.5) in the last inequality.
Thus by (4.2) we have for 3q > 1

κ′

(E sup
t∈[0,T ]

‖vε(t)‖qL2(T))
1
q 6 C(ε

3
2
−2(β′+β) + ε

3
2 (E[‖Zε‖4q

CL∞ ])
1
q + ε1− 3(β′+β)

2 + ε(E[‖Zε‖3q
CL∞ ])

1
q )

6 C(ε
3
2
−2(β′+β) + ε

5
2
−4κ′q2 + ε1− 3(β′+β)

2 + ε
7
4
−3κ′q

3
2 ).

Therefore, by Chebyshev’s inequality and Lemma 2.1 we have

ε logP ( sup
06t6T

‖vε(t)‖− 1
2
−α > δ)

6ε log
E supt∈[0,T ] ‖vε(t)‖

q
L2(T)

δq

6εq[log[C(ε
3
2
−2(β′+β) + ε

5
2
−4κ′q2 + ε1− 3(β′+β)

2 + ε
7
4
−3κ′q

3
2 )]− log δ].

Let q = 1
ε
, we deduce that

lim
ε→0

ε logP ( sup
06t6T

‖vε(t)‖− 1
2
−α > δ) = −∞.

Then Theorem 4.1 follows from Lemma 3.1 and Theorem 4.2 .
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