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OPTIMAL INSTALLATION OF SOLAR PANELS WITH PRICE
IMPACT: A SOLVABLE SINGULAR STOCHASTIC CONTROL

PROBLEM∗

TORBEN KOCH† AND TIZIANO VARGIOLU‡

Abstract. We consider a price-maker company which generates electricity and sells it in the
spot market. The company can increase its level of installed power by irreversible installations of
solar panels. The electricity price evolves as an Ornstein–Uhlenbeck process, whose drift is negatively
impacted by the current level of the company’s installed power. The company aims at maximizing
the total expected profits from selling electricity in the market, net of the total expected proportional
costs of installation. This problem is modeled as a two-dimensional degenerate singular stochastic
control problem. We find that the optimal installation strategy is triggered by a curve which separates
the waiting region, where it is not optimal to install additional panels, and the installation region,
where it is. Such a curve is the unique strictly increasing solution of a first-order ordinary differential
equation. Finally, we show numerically the dependence of the optimal installation strategy on the
model’s parameters.

Key words. singular stochastic control, irreversible investment, variational inequality, Ornstein–
Uhlenbeck process, market impact
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1. Introduction. This paper proposes a model where a company can increase
its current electricity production by irreversible investments in solar panels, while
maximizing net profits. Irreversible investment problems have been widely stud-
ied in the context of real options and optimal capacity expansion. Related mod-
els in the economics literature can be found, for example, in the monograph [11].
Other relevant works in the mathematical literature are [9, 21, 24, 26], among many
others.

We consider an infinitely lived profit maximizing company which is a large player
in the market. The company can install solar panels in order to increase its pro-
duction level of electricity up to a maximum level (given, for example, by physical
constraints). The electricity generated will immediately be sold in the market, and
while installing additional panels, the company incurs constant proportional costs. As
it is assumed that the company is a large market player, its activities have an impact
on the electricity price. In particular, we assume that the long-term electricity price
level is negatively affected by the current level of installed power; that is, the elec-
tricity price will tend to move toward a lower price level if the electricity production
is increased. Therefore, the company has to install solar panels carefully in order to
avoid permanently low electricity prices which clearly decrease the marginal profits
from selling electricity in the market.
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OPTIMAL INSTALLATION OF SOLAR PANELS 3069

The mathematical formulation of the model leads to a two-dimensional degenerate
singular stochastic control problem (see, for example, [17, 18] as early contributions)
whose components are the electricity price and the current level of installed power
which is purely controlled. In particular, we derive an explicit solution to a problem of
singular stochastic control where the drift of one component of the state process (the
electricity price) is linearly affected by the monotone process giving the cumulative
amount of control (the level of installed power). In our model the electricity price
evolves as an Ornstein–Uhlenbeck process, and dealing with such a process makes the
problem more difficult in comparison to, for example, a geometric Brownian motion
setting, due to the unhandy and nonexplicit expressions of the fundamental solutions
of the second-order ordinary differential equation (ODE) involving the infinitesimal
generator of the underlying Ornstein–Uhlenbeck process (see [7, Chapter II.10] for an
introduction and Lemma A.1 for the analytical form of the fundamental solutions in
our case). While a suitable transformation of the state variables leads to stochastic
dynamics that have been studied (see, for example, [5, 13]), the corresponding value
function is significantly different from those considered in the relevant literature, and
another approach is required (see also Remark 2.4). Our ansatz involves the previ-
ously mentioned fundamental solutions to be computed on both components of the
state variable, which is in contrast to the common case, where the corresponding
fundamental solutions do solely depend on the underlying diffusion which represents,
for instance, the economic indicator like the asset’s price. It is worth noticing that
our mathematical formulation shares similarities with the recent article [12] where an
Ornstein–Uhlenbeck process is linearly controlled in the drift by a purely controlled
variable. However, due to nonidentical sets of admissible controls, the methodology
and results of [12] are different with respect to ours. We refer to Remark 2.1 for more
details.

Price impact models have gained the interest of many researchers in recent years.
Some of these works are also formulated as a singular stochastic control problem and
study questions of optimal execution: [4] and [5] take into account a multiplicative
and transient price impact, whereas [16] considers an exponential parametrization in
a geometric Brownian motion setting allowing for a permanent price impact. Also, [1]
presents an irreversible capital accumulation problem with permanent price impact,
while [13] considers an extraction problem with Ornstein–Uhlenbeck dynamics and
transient price impact. In all of the aforementioned papers dealing with singular
stochastic controls [1, 4, 5, 13, 16], the agents’ actions are modeled in such a way that
they can lead to an immediate jump in the price. Instead, in our setting, the agent’s
singular control does not cause price jumps and rather lead to a long-term impact on
the underlying price process by linearly affecting the mean-reversion level.

In our model the firm’s installation strategy is represented by an increasing con-
trol, possibly non-absolutely continuous, and we take into account a running payoff
function which depends linearly on the level of installed power and on the electricity
price. In order to solve this problem, we follow the approach (quite classical in op-
timal stopping and singular control) of finding a classical solution to the associated
Hamilton–Jacobi–Bellman (HJB) equation via the principle of smooth fit along the
so-called free boundary, which separates the waiting and installation regions (see the
beginning of section 4 for a more detailed description). This free boundary is also
unknown and can be more or less hard to find, depending on the particular struc-
ture of the problem. In one-dimensional problems, it reduces to one or two points,
characterized by algebraic equations; see, e.g., [14] and references therein. Instead,
in two-dimensional problems like the one that we are studying, the free boundary
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3070 TORBEN KOCH AND TIZIANO VARGIOLU

turns out to be the graph of a function F , which is thus to be found with the help of
functional equations which originate from C2,1 regularity. While in some cases these
functional equations are easy and give directly the free boundary F , possibly in terms
of integrals to be computed numerically (see, e.g., [1, 2, 4, 13, 21] for examples), our
functional equation turns out to be an ODE, whose solution cannot be computed
analytically but that we prove to admit a unique global solution. (See [5] for an anal-
ogous result and also Remark 2.4 for highlights on the differences of methods used
there versus ours.) Then, we characterize the geometry of the waiting and installa-
tion regions. We show that the optimal installation strategy is such that the company
keeps the state process inside the waiting region. In particular, the state process is
pushed toward the free boundary by installing a block of solar panels immediately
if the initial electricity price is above the critical threshold (if the maximum level of
installed power, that the company is able to reach, is not sufficiently high, the com-
pany will immediately install the maximum number of panels). Thereafter, the joint
process will be reflected along the free boundary. The construction of the reflected
diffusion relies on ideas in [10] that are based on the transformation of probability
measures in the spirit of Girsanov. The uniqueness of the optimal diffusion process
then follows by the global Lipschitz continuity of our free boundary. Our results are
finally complemented by a numerical illustration of our problem, together with a dis-
cussion of the dependence on the model parameters. This comparative statics analysis
shows interesting new behaviors. For instance, we find a nonmonotone dependence
on the electricity price mean-reversion speed and a nontrivial dependence of the free
boundary on the upper bound of the firm’s production level.

The rest of the paper is organized as follows. In section 2 we introduce the
setting and formulate the problem. In section 3 we provide preliminary results and a
verification theorem. Then, in section 4 we derive an expression of the free boundary
via an ODE, and an explicit solution is constructed. Finally, section 5 studies the
dependence of the free boundary with respect to the model parameters.

2. Model and problem formulation. Let (Ω,F ,F := (Ft)t≥0,P) be a filtered
probability space with a filtration F satisfying the usual conditions and carrying a
standard one-dimensional F-Brownian motion W .

We consider an infinitely lived company which installs solar panels and sells the
electricity produced by those panels instantaneously in the spot market. The level
of installed power can be increased at constant proportional cost c ≥ 0 due to the
installation costs of panels. It is assumed that the firm cannot reduce the number of
solar panels, and thus the installation is irreversible. The current level of installed
power is described by the process (Y y,It )t≥0, which is given by

Y y,It = y + It,(2.1)

where the initial level of installed power is denoted by y ≥ 0, and It is identified as
the company’s control variable: it is an F-adapted nonnegative and increasing càdlàg
process I = (It)t≥0, where It represents the total power installed within the interval
[0, t]. In the following, (It)t≥0 is also referred to as the installation strategy. Moreover,
we assume that the level of installed power cannot exceed a given ȳ ∈ [y,∞) since, for
example, only a finite number of solar panels can be installed. The set of admissible
installation strategies is therefore defined as

I ȳ(y) := {I : Ω× [0,∞) 7→ [0,∞) : (It)t≥0 is F-adapted, t 7→ It is increasing, càdlàg,

with I0− = 0 ≤ It ≤ ȳ − y a.s.}.
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OPTIMAL INSTALLATION OF SOLAR PANELS 3071

We write I ȳ(y) in order to stress the dependence on both the initial level of installed
power y and the maximum possible level ȳ.

Remark 2.1. The absence of an upper bound ȳ would lead to a different problem.
In fact, the paper [12], in which the mathematical formulation is similar to ours, stud-
ies a problem where the controlled variable is nonmonotone (but still with bounded
variation) and not bounded. The authors are then forced to use viscosity theory and
arrive to formulate a system of equations which lacks the initial conditions and is not
able to construct an analytical solution, as instead we do.

We assume that the current level of electricity production, which is proportional
to Y y,It , affects the electricity market price. In particular we assume that, when
following an installation strategy I ∈ I ȳ(y), the market electricity price is of Ornstein–

Uhlenbeck type having its mean instantaneously reduced at time t by βY y,It , for some
β > 0, and therefore the spot price Xx,y,I evolves as1

dXx,y,I
t = κ

((
µ− βY y,It

)
−Xx,y,I

t

)
dt+ σdWt, Xx,y,I

0− = x > 0.(2.2)

Remark 2.2. It is common to represent electricity prices via a mean-reverting be-
havior and to include seasonal fluctuations and daily spikes; see, e.g., [6, 8, 22] and
citations therein. Here, we do not represent the spikes and seasonal fluctuations. On
the one hand, the installation time of solar panels usually takes several days or weeks,
while they have a much longer lifespan (usually some decades). This makes the com-
pany indifferent to daily or weekly spikes and/or seasonality.2 On the other hand,
time homogeneous Ornstein–Uhlenbeck processes give tractable analytical tools (like
known solutions of related ODEs). With the same arguments, we are also neglecting
the stochastic and seasonal effects of solar production: in fact, since here we are inter-
ested in a long-term optimal behavior, we interpret the average electricity produced
in a generic unit of time as proportional to the installed power.

Remark 2.3. The model in (2.2) also allows for negative prices, which can indeed
be observed in some markets (e.g., in Germany; cf. [25]), which, however, do not seem
to be persistent. One way to model this is to assume that the long-term mean of X
remains positive, no matter what the level of Yt ∈ [0, ȳ], for all t ≥ 0, is. This is
achieved by imposing

µ− βȳ > 0.(2.3)

For the solar energy application motivating our mathematical problem, it would be
sensible to require the above inequality, but our mathematical derivation does not
require it. Thus, all the results that follow are independent of whether the condition
in (2.3) holds or not.

The company aims at maximizing the total expected profits from selling electricity
in the market, net of the total expected costs of installation. That is, the company
aims at determining

V (x, y) := sup
I∈Iȳ(y)

J (x, y, I), (x, y) ∈ R× [0, ȳ],(2.4)

1There are several studies on the presence of price impact in electricity markets. For instance,
[8] shows how to incorporate a market impact due to cross-border trading in electricity markets, and
[27] models the price impact of wind electricity production on power prices.

2This can be justified if we interpret our fundamental price to be, for example, a weekly average
price as in [2], where a calibration of this model to the Italian power market data is also carried out.
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3072 TORBEN KOCH AND TIZIANO VARGIOLU

where for any I ∈ I ȳ(y)

J (x, y, I) := E
[ ∫ ∞

0

e−ρtXx,y,I
t

(
αY y,It

)
dt− c

∫ ∞

0

e−ρtdIt

]
, α > 0.(2.5)

In (2.5), the parameter α is the proportional factor between the average electricity
produced in a generic unit of time and the current level of installed power. Thus, the
running gain αXx,y,I

t Y y,It can be viewed as a time-averaged revenue deriving from
solar production.

For the sake of simplicity, we set α = 1 in the following. In fact, the problem
of finding an optimal control I ∈ I ȳ(y) in (2.5) does not change for α > 0 upon
introducing a new cost factor c̃ = c

α .

Remark 2.4. It is worth noticing that the controlled state process (2.2) can be
transformed to similar dynamics studied in [5, 13] by considering the process X̃ :=
Xx,y,I + βY y,I . Then, (2.2) leads to

dX̃x,y,I
t = κ

(
µ− X̃x,y,I

t

)
dt+ σdWt + βdY y,It , X̃x,y,I

0− = x̃ := x+ βy > 0,(2.6)

and the value function V for any (x, y) ∈ R× [0, ȳ] is given by

V (x, y) := sup
I∈Iȳ(y)

E
[ ∫ ∞

0

e−ρt
(
X̃x,y,I
t Y y,It − β

(
Y y,It

)2)
dt− c

∫ ∞

0

e−ρtdIt

]
.(2.7)

Here, the structure of the value function is highly different from that in [5, 13] (cf. (2.5)
in [5] and (2.3) in [13], respectively). To see this, we apply Itô’s formula to get

de−ρt
(
X̃x,y,I

t Y y,I
t − β

(
Y y,I
t

)2)
= e−ρt

[
κY y,I

t

(
µ− X̃x,y,I

t

)
− ρ

(
X̃x,y,I

t Y y,I
t − β

(
Y y,I
t

)2)]
dt

+ e−ρtσY y,I
t dWt + e−ρt

(
X̃x,y,I

t − βY y,I
t

)
dIt.(2.8)

Then, using (2.8) in (2.7) gives

ρV (x, y) = sup
I∈Iȳ(y)

E
[ ∫ ∞

0

e−ρtκY y,It

(
µ− X̃x,y,I

t

)
dt

+

∫ ∞

0

e−ρt
(
X̃x,y,I
t − βY y,It − cρ

)
dIt

]
+
(
x̃y − βy2

)
.

Our setting is not covered by [5, 13], and neither in adverse. This is, apart from

the presence of running gains
∫∞
0
e−ρtκY y,It (µ − X̃x,y,I

t )dt, due to the fact that the
integrand of the second term inside the expectation depends also on Y . In [13], where
the problem is solved by a combined use of a calculus of variation method developed
by [5] and, as we do here, of a direct study on the HJB equation, the authors rely on
the chain rule to derive the solution to the problem. This method fails here; see also
Remark 4.1. The paper [5] considers, conversely to this setting and [13], a nonlinear
integrand where the presence of the corresponding Y is not covered. The interesting
calculus of variations method followed there leads to an ODE which characterizes the
solution to the problem (analoguous to our results). However, that approach cannot
be applied directly when working with linear integrands because it would require
conditions which restrict the parameter space (see also Remark 4.10 in [13]).
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OPTIMAL INSTALLATION OF SOLAR PANELS 3073

3. A verification theorem. The aim of this section is to provide a verification
theorem which characterizes the solution to our problem.

The admissible noninstallation strategy is denoted by I0 ≡ 0, and we indicate the

electricity price process implied by I0 by (Xx,y
t )t≥0, that is, X

x,y
t ≡ Xx,y,I0

t . Also, we

denote Xx = Xx,0 = Xx,0,I0 .

Lemma 3.1. For all x ∈ R, y ∈ [0, ȳ], and I ∈ I ȳ(y), it holds that

|Xx,y,I
t | ≤ |Xx

t |+ κβȳt.(3.1)

Moreover, E[Xx,y
t ] = mt and Var[Xx,y

t ] = σ2
t , where

mt := xe−κt + (µ− βy)(1− e−κt) and σt := σ

√
1− e−2κt

2κ
.(3.2)

Finally,

E[|Xx,y
t |] ≤ K(1 + |x|),(3.3)

for a suitable constant K > 0 which does not depend on t and y.

Then, the expected profits of the firm following the noninstallation strategy is
described by the function R : R× [0, ȳ] 7→ R such that

R(x, y) := J (x, y, I0) = E
[ ∫ ∞

0

e−ρtXx,y
t ydt

]
=

xy

ρ+ κ
+

µκy

ρ(ρ+ κ)
− κβy2

ρ(ρ+ κ)
.

(3.4)

Here the integral converges thanks to (3.3) and is computed thanks to (3.2). The
following preliminary result provides a growth condition and a monotonicity property
of the value function V , and its connection to the function R. The proof of the
proposition can be found in Appendix B.

Proposition 3.2. There exists a constant K > 0 such that for all (x, y) ∈ R ×
[0, ȳ] one has

|V (x, y)| ≤ K
(
1 + |x|

)
.(3.5)

Moreover, V (x, ȳ) = R(x, ȳ), and V is increasing in x.

In a next step we derive the HJB, a particular partial differential equation which
characterizes the solution to our problem.

For given and fixed y ≥ 0, let Ly be the infinitesimal generator of the diffusion
Xx,y given by the second-order differential operator

Lyu(x, y) := 1

2
σ2 ∂

2

∂x2
u(x, y) + κ((µ− βy)− x)

∂

∂x
u(x, y),(3.6)

where u(·, y) ∈ C2(R).
The HJB equation, for singular control problems as this one (following, for exam-

ple, [15, Chapter VIII]), should identify with an appropriate solution w to the HJB
equation

max {Lyw(x, y)− ρw(x, y) + xy,wy(x, y)− c} = 0, (x, y) ∈ R× [0, ȳ),(3.7)

D
ow

nl
oa

de
d 

09
/0

7/
21

 to
 1

29
.7

0.
23

6.
21

8 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3074 TORBEN KOCH AND TIZIANO VARGIOLU

with boundary condition

w(x, ȳ) = R(x, ȳ).(3.8)

With reference to (3.7), we introduce the waiting region

W := {(x, y) ∈ R× [0, ȳ) : Lyw(x, y)− ρw(x, y) + xy = 0, wy(x, y)− c < 0},(3.9)

where we expect it not to be optimal to install additional solar panels, and the in-
stallation region

I := {(x, y) ∈ R× [0, ȳ) : Lyw(x, y)− ρw(x, y) + xy ≤ 0, wy(x, y)− c = 0},(3.10)

where we expect it to be.
We move on by proving a verification theorem. It shows that an appropriate

solution to the HJB equation (3.7) identifies with the value function, if an admissible
installation strategy exists which keeps the state process (X,Y ) inside the waiting
region W (here we have denoted by W the closure of W) with minimal effort, i.e.,
the level of installed power is increased only at the time when (X,Y ) enters the
installation region I. These results are standard in singular control, but for the sake
of completeness we provide a proof in Appendix B

Theorem 3.3 (verification theorem). Suppose there exists a function w : R ×
[0, ȳ] 7→ R such that w ∈ C2,1(R× [0, ȳ]) solves the HJB equation (3.7) with boundary
condition (3.8) and satisfies the growth condition

|w(x, y)| ≤ K
(
1 + |x|

)
(3.11)

for a constant K > 0. Then w ≥ v on R× [0, ȳ].

Moreover, suppose that for all initial values (x, y) ∈ R × [0, ȳ), there exists a
process I⋆ ∈ I ȳ(y) such that(

Xx,y,I⋆

t , Y y,I
⋆

t

)
∈ W for all t ≥ 0, P-a.s.,(3.12)

I⋆t =

∫ t

0−
1{(Xx,y,I⋆

s ,Y y,I⋆
s )∈I}dI

⋆
s for all t ≥ 0, P-a.s.(3.13)

Then we have
V (x, y) = w(x, y), (x, y) ∈ R× [0, ȳ],

and I⋆ is optimal; that is, V (x, y) = J (x, y, I⋆).

4. Constructing an optimal solution to the installation problem. As
mentioned in the introduction, we start to solve the problem by finding a classical
solution w to the associated HJB equation (3.7) with boundary condition (3.8). To do
so, we make the educated guess that the regions W and I, defined in (3.9) and (3.10),
are separated by a so-called free boundary; then we solve the HJB equation separately
in these two regions, and we glue together the two solutions in the free boundary so
that the resulting function w satisfies the global C2,1 regularity required by Theorem
3.3. This free boundary is also unknown, and here it turns out to be characterized as
the solution of an ODE, whose solution cannot be computed analytically but that we
prove to admit a unique global solution. This is done in section 4.1, while in section
4.2 we build the candidate optimal strategy and verify the optimality by applying
Theorem 3.3.

D
ow

nl
oa

de
d 

09
/0

7/
21

 to
 1

29
.7

0.
23

6.
21

8 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL INSTALLATION OF SOLAR PANELS 3075

As described above, we now assume that there exists an injective function F :
[0, ȳ] → R, called the free boundary, which separates the waiting region W and the
installation region I, defined respectively in (3.9) and (3.10), such that

W = {(x, y) ∈ R× [0, ȳ) : x < F (y)},(4.1)

I = {(x, y) ∈ R× [0, ȳ) : x ≥ F (y)}.(4.2)

For all (x, y) ∈ W, the candidate value function w should satisfy (cf. (3.9))

Lyw(x, y)− ρw(x, y) + xy = 0.(4.3)

Notice that the left-hand side of (4.3) only takes into account the derivatives with
respect to x, and instead, y can be treated as a parameter here: thus, (4.3) is a
second-order linear ODE in x, where the differential operator is parameterized by y.
Hence, we can apply the standard theory of ODEs in order to solve (4.3).

It is straightforward to check that a particular solution to (4.3) is given by the
function R defined in (3.4). Moreover, the homogeneous ODE

Lyw(x, y)− ρw(x, y) = 0(4.4)

admits two fundamental strictly positive solutions (see pp. 18–19 of [7]). These are
given by ϕ(x + βy) and ψ(x + βy), with ϕ(·) strictly decreasing and ψ(·) strictly
increasing; cf. Lemma A.1(1) and (5). Therefore, our candidate value function w
takes the form

w(x, y) = A(y)ψ(x+ βy) +B(y)ϕ(x+ βy) +R(x, y), (x, y) ∈ W,(4.5)

for some functions A,B : [0, ȳ] 7→ R to be found. Notice that, for y ≥ 0 to be given
and fixed, ϕ(x+βy) grows to +∞ exponentially fast whenever x ↓ −∞; see Appendix
1 in [7]. In light of both the linear growth of V (cf. Proposition 3.2) and the structure
of the waiting region W (cf. (4.1)), we must have B(y) = 0 for all y ∈ [0, ȳ]. Thus, we
conjecture that

w(x, y) = A(y)ψ (x+ βy) +R(x, y) for (x, y) ∈ W(4.6)

with A(ȳ) = 0 from (3.8).
Equation (4.6) gives the following intuition: R represents the value of selling

permanently y units of electricity (the initial level of installed power) in the market,
while the product of A and ψ represents the value of the option to increase the solar
production. The sum of both then gives the company’s total expected profits.

Remark 4.1. In [13], the corresponding equation to (4.6) is solely the product
of some function A and the increasing fundamental solution ψ where the latter is
independent of the variable y; cf. (4.4) therein. In this way, the authors are able to
derive an explicit expression for the free boundary upon relying on an application
of the chain rule (cf. derivation after Lemma 4.2). Instead, our analysis is more
involved as we cannot follow the same approach which is due to the dependence of
the fundamental solution on y and the presence of R.

We move on to derive equations that characterize the function A appearing in the
representation (4.6) and the free boundary F which separates W and I according to
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3076 TORBEN KOCH AND TIZIANO VARGIOLU

the assumptions in (4.1)–(4.2). With reference to (3.10), for all (x, y) ∈ I, w should
instead satisfy

wy(x, y)− c = 0,(4.7)

implying

wyx(x, y) = 0.(4.8)

Now, we impose the so-called smooth fit condition, i.e., we suppose that w ∈ C2,1(R×
[0, ȳ]), and therefore by (4.6), (4.7), and (4.8), we must have for all (x, y) ∈ W ∩ I
(that is, where x = F (y))

A′(y)ψ
(
F (y) + βy

)
+ βA(y)ψ′(F (y) + βy

)
+Ry(F (y), y)− c = 0,(4.9)

A′(y)ψ′(F (y) + βy
)
+ βA(y)ψ′′(F (y) + βy

)
+Ryx(F (y), y) = 0.(4.10)

Notice that the derivatives of R can be easily obtained from (3.4), which gives

Ry(x, y) =
x

ρ+ κ
+

µκ

ρ(ρ+ κ)
− 2κβy

ρ(ρ+ κ)
and Rxy(x, y) = (ρ+ κ)

−1
.

For the sake of simplicity, we introduce a function F̃ for a substitution, that is,
we let

F̃ (y) = F (y) + βy.(4.11)

We have

Ry(F (y), y) =
ρF (y) + µκ− 2κβy

ρ(ρ+ κ)
=
µκ+ ρF̃ (y)− β(ρ+ 2κ)y

ρ(ρ+ κ)
= R̃(F̃ (y), y),

where R̃ : R2 7→ R is defined as

R̃(x, y) :=
µκ+ ρx− β(ρ+ 2κ)y

ρ(ρ+ κ)
.

Notice that

R̃x(F̃ (y), y) = (ρ+ κ)−1 = Ryx(F (y), y).

From now on, we will often use the functions Qk : R 7→ R, k ∈ N0, and their first
derivatives, given by

Qk(z) := ψ(k)(z)ψ(k+2)(z)− ψ(k+1)(z)2,

Q′
k(z) = ψ(k)(z)ψ(k+3)(z)− ψ(k+1)(z)ψ(k+2)(z).

(4.12)

Substituting F according to (4.11) in both (4.9) and (4.10), and solving for A and A′,
gives

A(y) = β−1 ×
ψ′(F̃ (y))

(
c− R̃(F̃ (y), y)

)
+ (ρ+ κ)

−1
ψ(F̃ (y))

−Q0(F̃ (y))
(4.13)
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OPTIMAL INSTALLATION OF SOLAR PANELS 3077

and

A′(y) =
ψ′′(F̃ (y))

(
c− R̃(F̃ (y), y)

)
+ (ρ+ κ)

−1
ψ′(F̃ (y))

Q0(F̃ (y))
.(4.14)

Lemma A.1(3) ensures that Qk is strictly positive for all k ∈ N0, and therefore the
denominator on the right-hand side of both (4.13) and (4.14) is nonzero.

The following lemma provides essential properties of the function A and a lower
bound for F̃ that are needed for results of sections 4.1 and 4.2. Its proof can be found
in Appendix B.

Lemma 4.2. The function A appearing in the representation formula (4.6) is
strictly positive and strictly decreasing. Moreover, A admits the representation

A(y) = (βρ(ρ+ κ))
−1 ×

(ρ+ κ)
(
cρ+ (ρ+2κ)β

ρ+κ y − F̃ (y)
)
ψ′(F̃ (y)) + σ2

2 ψ
′′(F̃ (y))

−Q0(F̃ (y))
,

(4.15)

where F̃ is defined in (4.11), and we have

F̃ (y) ≥ cρ+
(ρ+ 2κ)β

ρ+ κ
y for all y ∈ [0, ȳ].(4.16)

From (4.16), we therefore obtain the inequality

F (y) ≥ cρ+
κβ

ρ+ κ
y ≥ cρ for all y ∈ [0, ȳ],(4.17)

which will be exploited in section 4.2.

4.1. The free boundary: Existence and characterization. In this section,
we aim to prove the existence and a monotonicity property of F̃ , satisfying (4.9) and
(4.10) (with F being replaced according to (4.11)), so as to draw the implications for
F after. The proofs of the following lemma and proposition can be found in Appendix
B.

In light of the boundary condition w(x, ȳ) = R(x, ȳ) (cf. Theorem 3.3), we impose

A(ȳ) = 0.(4.18)

Due to (4.13) and (4.18), we must have that there exists a point x̃ = F̃ (ȳ) ∈ R such
that

ψ′(x̃)
(
c− R̃(x̃, ȳ)

)
+ (ρ+ κ)

−1
ψ(x̃) = 0.(4.19)

Lemma 4.3. There exists a unique x̃ ∈ R such that (4.19) holds.

Remark 4.4. An analytically tractable expression for R is necessary (when imi-
tating the proofs we follow) for getting a (full) characterization of the free boundary
of F in terms of an ODE that we are able to study. A more general case seems to
be when the running integral in J in (2.5) is equal to e−ρtXtY

γ
t , with γ ∈ (0, 1] (in

this paper γ = 1), with the cost c of the singular control unchanged (we conjecture
that, in this more general case, one could obtain results analogous to those which
follow). However, we would have a value function with derivatives in y which explode
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3078 TORBEN KOCH AND TIZIANO VARGIOLU

for y = 0, so the treatment of this more general case should be more delicate. Here,
the linear-quadratic structure of R provides analytically tractable functions A and
A′ (cf. (4.13) and (4.14)). These functions, for instance, make it possible to prove
Lemma 4.3 and thus obtain the boundary condition of the ODE (4.24).

Differentiating (4.13), we find after some algebra

A′(y) = (β(ρ+κ)Q0(F̃ (y))
2)−1 ×

(
F̃ ′(y)D(y, F̃ (y))− β(ρ+2κ)

ρ
ψ′(F̃ (y))Q0(F̃ (y))

)
,

(4.20)

where D : R2 7→ R is defined as

D(y, z) = ψ(z)[(ρ+ κ)(c− R̃(z, y))Q1(z) +Q′
0(z)].(4.21)

Now, equating both expressions (4.14) and (4.20), we get

F̃ ′(y)D(y, F̃ (y)) = βN(y, F̃ (y)),(4.22)

where N : R2 7→ R is defined as

N(y, z) = Q0(z)

(
ρ+ 2κ

ρ
ψ′(z) +

(
(ρ+ κ)

(
c− R̃(z, y)

)
ψ′′(z) + ψ′(z)

))
.(4.23)

We then obtain from (4.22) the ODE

F̃ ′(y) = G(y, F̃ (y)),(4.24)

with boundary condition F̃ (ȳ) = x̃ (cf. Lemma 4.3), and where G : (R×R) \ {(y, z) ∈
R2 : D(y, z) = 0} 7→ R is such that

G(y, z) = β × N(y, z)

D(y, z)
.(4.25)

The next result guarantees the existence and uniqueness of a solution F̃ on [0, ȳ]
of (4.24) which is such that F̃ ′(y) > β for all y ∈ [0, ȳ]. Consequently, we then
obtain the existence and uniqueness of a strictly increasing free boundary F on [0, ȳ]
(cf. (4.11)).

Proposition 4.5. There exists a unique solution F̃ on [0, ȳ] of the ODE (4.24)
with boundary condition F̃ (ȳ) = x̃. Moreover, F̃ ′(y) ≥ β for all y ∈ [0, ȳ].

Corollary 4.6. The free boundary F as in (4.1) and (4.2) is well defined. More-
over, it is strictly increasing and given by

F (y) = F̃ (y)− βy for all y ∈ [0, ȳ].

Proof. The existence and uniqueness is an implication of Proposition 4.5. It also
ensures that F ′(y) = F̃ ′(y)− β > 0 for all y ∈ [0, ȳ].

4.2. The optimal strategy and the value function: Verification. In the
following, the initial price level at which the company starts to install solar panels is
denoted by x0 := F (0), and we define x̄ := F (ȳ) = x̃ − βȳ (cf. (4.11)). Since F is
strictly increasing, its inverse function exists on [x0, x̄] and is denoted by F−1.
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OPTIMAL INSTALLATION OF SOLAR PANELS 3079

We divide the (candidate) installation region I into

I1 := {(x, y) ∈ R× [0, ȳ) : x ∈ [F (y), x̄)} and I2 := {(x, y) ∈ R× [0, ȳ) : x ≥ x̄}.

An optimal installation strategy can be described as follows: in W (cf. (4.1)), that
is, when the current price x is sufficiently low such that x < F (y), the company
does not increase the level of installed power. Whenever the price crosses F (y),
then the company makes infinitesimal installations so as to keep the state process
(X,Y ) inside W. Conversely, if the current price x is sufficiently large such that
x ≥ F (y) (i.e., in I; cf. (4.2)), then the company makes an instantaneous lump sum
installation. In particular, on the one hand, whenever the maximum level of installed
power ȳ, that the firm is able to reach, is sufficiently high (that is, (x, y) ∈ I1),
then the company pushes the state process (X,Y ) immediately to the locus of points
{(x, y) ∈ R × [0, ȳ] : x = F (y)} in direction (0, 1), so as to increase the level of
installed power by F−1(x)− y units. The associated payoff to this action is then the
difference of the continuation value starting from the new state (x, F−1(x)) and the
costs associated to the installation of additional solar panels, that is, c(F−1(x)− y).
On the other hand, whenever the firm has to restrict its actions due to the upper
bound ȳ (that is, (x, y) ∈ I2), then the company immediately installs the maximum
number of panels, so as to increase the level of installed power up to ȳ units, and the
associated payoff to such a strategy is R(x, ȳ)− c(ȳ − y).

In light of the previous discussion, we now define our candidate value function
w : R× [0, ȳ] 7→ R as

w(x, y) =



A(y)ψ
(
x+ βy

)
+R(x, y) if x ∈ W ∪ ((−∞, x̄)× {ȳ}) ,

A(F−1(x))ψ
(
x+ βF−1(x)

)
+R(x, F−1(x))− c(F−1(x)− y) if (x, y) ∈ I1,

R(x, ȳ)− c(ȳ − y) if (x, y) ∈ I2 ∪ ([x̄,∞)× {ȳ}) .

(4.26)

The next two results verify that w is a classical solution to the HJB equation
(3.7).

Lemma 4.7. The function w is C2,1(R× [0, ȳ]).

Proof. In the following, we denote by Int(·) the interior of a set. Clearly, by (4.26)
it holds for all (x, y) ∈ Int(W) that

wx(x, y) = A(y)ψ′(x+ βy) +Rx(x, y),(4.27)

wxx(x, y) = A(y)ψ′′(x+ βy),(4.28)

wy(x, y) = A′(y)ψ(x+ βy) + βA(y)ψ′(x+ βy) +Ry(x, y),(4.29)

and moreover,

wx(x, y) = Rx(x, ȳ), wxx(x, y) = 0, wy(x, y) = c, for all (x, y) ∈ Int(I2).
(4.30)

To evaluate wx, wxx, and wy inside I1, we need some more work. We find for all
(x, y) ∈ Int(I1)
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3080 TORBEN KOCH AND TIZIANO VARGIOLU

wx(x, y) = (F−1)′(x)
[
A′(F−1(x)

)
ψ
(
x+βF−1(x)

)
+βA

(
F−1(x)

)
ψ′(x+βF−1(x)

)
+Ry

(
x, F−1(x)

)
− c
]
+A(F−1(x))ψ′(x+ βF−1(x)

)
+Rx

(
x, F−1(x)

)
= A(F−1(x))ψ′(x+ βF−1(x)

)
+Rx

(
x, F−1(x)

)
,

(4.31)

wxx(x, y) = A(F−1(x))ψ′′(x+ βF−1(x)) + (F−1)′(x)
[
A′(F−1(x))ψ′(x+ βF−1(x)

)
+ βA(F−1(x))ψ′′(x+ βF−1(x)

)
+Ryx(x, F

−1(x))
]

= A(F−1(x))ψ′′(x+ βF−1(x)),

(4.32)

wy(x, y) = c,
(4.33)

where we have used (4.9) in (4.31), and (4.10) in (4.32). Notice that the functions
A, F−1, ψ, ψ′, Ry, and Rx are continuous. The previous equations and (4.9) easily
provide the continuity of the derivatives on R × {ȳ}. Letting (xn, yn)n ⊂ I1 be any
sequence converging to (F (y), y), y ∈ [0, ȳ), we find the required continuity results
along W ∩ I1 upon employing (4.9). Moreover, (4.18) ensures the continuity of wx
and wxx along I1 ∩ I2, and we clearly have the continuity of wy along I1 ∩ I2.

Proposition 4.8. The function w from (4.26) is a C2,1(R × [0, ȳ]) solution of
the HJB equation (3.7), with boundary condition given in (3.8).

Proof. Lemma 4.7 guarantees the claimed regularity of w. Moreover, from (4.26)
we see that w(x, ȳ) = R(x, ȳ) since A(ȳ) = 0, and by construction, we clearly have
Lyw(x, y)− ρw(x, y) + xy = 0 for all (x, y) ∈ W, and wy(x, y)− c = 0 for all (x, y) ∈
I1 ∪ I2. We prove the inequalities Lyw(x, y)− ρw(x, y) + xy ≤ 0 for all (x, y) ∈ I, and
wy(x, y)− c ≤ 0 for all (x, y) ∈ W in the following three steps separately. It is worth
bearing in mind that Rx(x, y) =

y
ρ+κ by (3.4).

Step 1. Let (x, y) ∈ I1 be fixed. From the second line of (4.26), (4.31), and (4.32),
we find

Lyw(x, y)− ρw(x, y) + xy = LF
−1(x)w(x, F−1(x))− ρw(x, F−1(x)) + xF−1(x)

+ κβwx(x, F
−1(x))(F−1(x)− y)+ (cρ−x)(F−1(x)− y)(4.34)

= (F−1(x)− y)
(
cρ+ κβwx(x, F

−1(x))− x
)
,

where we have employed that w(x, F−1(x)) solves

LF
−1(x)w(x, F−1(x))− ρw(x, F−1(x)) + xF−1(x) = 0.

For any (x, y) ∈ I1, we have x ≥ F (y) implying F−1(x) ≥ y because F , and hence
F−1, is strictly increasing (cf. Corollary 4.6). Thus, in order to show that (4.34) is
negative on I1, it suffices to prove that the function

Z(x, F−1(x)) := cρ+ κβwx(x, F
−1(x))− x(4.35)

is negative for any x ∈ [x0, x̄]. Due to the regularity of w, we can use (4.31), and the
fact that A(F−1(x̄)) = A(ȳ) = 0, to obtain
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Z(x̄, F−1(x̄)) = cρ+Rx(x̄, ȳ)− x̄ < 0,(4.36)

where the inequality holds by (4.17) with y = ȳ. Taking the total derivative of
Z(x, F−1(x)) with respect to x gives

dZ(x, F−1(x))

dx
= κβwxx(x, F

−1(x))− 1 = κβA(F−1(x))ψ′′(x+ βF−1(x))− 1

=
[
ρ
(
ψ(x+ βF−1(x))ψ′′(x+ βF−1(x))− ψ′(x+ βF−1(x))2

)]−1

×
[
ρ
(
ψ′(x+ βF−1(x))2 − ψ(x+ βF−1(x))ψ′′(x+ βF−1(x))

)
− κψ′(x+ βF−1(x))ψ′′(x+ βF−1(x))

(
cρ+

κβ

ρ+ κ
F−1(x)− x

)
− σ2

2
κψ′′(x+ βF−1(x))2Rxy(x, F

−1(x))

]
,

(4.37)

where we have employed wxy(x, F
−1(x)) = 0 (cf. (4.8)) for the first equality, and

(4.15) with F̃ being replaced according to (4.11) for the last equality (after rear-
ranging terms). Now, suppose that there exists a point x⋆ ∈ [x0, x̄) such that
Z(x⋆, F−1(x⋆)) = 0. It follows from (4.35), together with (4.15) and (4.31), that
(x⋆, F−1(x⋆)) satisfies

cρ+
κβ

ρ+ κ
F−1(x⋆)− x⋆

=
−σ2

2 κψ
′(x⋆ + βF−1(x⋆))ψ′′(x⋆ + βF−1(x⋆))Rxy(x

⋆, F−1(x⋆))

(ρ+ κ)ψ′(x⋆ + βF−1(x⋆))2 − ρψ(x⋆ + βF−1(x⋆))ψ′′(x⋆ + βF−1(x⋆))
.

(4.38)

Then, exploiting the latter, one can find with (4.37) that

dZ(x, F−1(x))

dx

∣∣∣∣
x=x⋆

=
σ2

2
Q1(x

⋆ + βF−1(x⋆))−1Q2(x
⋆ + βF−1(x⋆)) > 0(4.39)

after using (A-3) with k = 0, 1, 2, and some simple algebra. We conclude from both
(4.36) and (4.39) that there cannot exist a point x⋆ ∈ [x0, x̄) such that Z(x⋆, F−1(x⋆))
= 0. Therefore, we have Lyw(x, y)− ρw(x, y) + xy ≤ 0 for all (x, y) ∈ I1.

Step 2. For all (x, y) ∈ I2 we find from the third line of (4.26) and (4.30)

Lyw(x, y)− ρw(x, y) + xy

= LȳR(x, ȳ)− ρR(x, ȳ) + xȳ + κβRx(x, ȳ)(ȳ − y) + (cρ− x)(ȳ − y)

= (ȳ − y)

(
κβ

ρ+ κ
ȳ + cρ− x

)
≤ (ȳ − y)

(
κβ

ρ+ κ
ȳ + cρ− x̄

)
≤ 0,

where we have used that R(x, ȳ) solves (Lȳ−ρ)R(x, ȳ)+xȳ = 0 for the second equality,
x ≥ x̄ for any (x, y) ∈ I2 for the first inequality, and (4.17) with y = ȳ and F (ȳ) = x̄
for the last inequality.

Step 3. Let (x, y) ∈ W be fixed. We define

S(x, y) := wy(x, y)− c = A′(y)ψ(x+ βy) + βA(y)ψ′(x+ βy) +Ry(x, y)− c,

where the last equality holds true by (4.29). We clearly have S(F (y), y) = 0 by (4.9).
Hence, it suffices to show that Sx(x, y) ≥ 0 because x < F (y) for all (x, y) ∈ W.
Computing the derivative of S with respect to x gives

Sx(x, y) = A′(y)ψ′(x+ βy) + βA(y)ψ′′(x+ βy) +Rxy(x, y),
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and from (4.10) we observe that Sx(F (y), y) = 0. Moreover, we have

Sxx(x, y) = A′(y)ψ′′(x+ βy) + βA(y)ψ′′′(x+ βy).(4.40)

Recall (4.11) and (4.21). Lemma A.3 and Proposition 4.5 imply that

D(y, F (y) + βy) > 0 for all y ∈ [0, ȳ].(4.41)

Now, exploiting (4.13) and (4.14), we find

Sxx(F (y), y) = − [(ρ+ κ)ψ(F (y) + βy)Q0(F (y) + βy)]
−1
D(y, F (y) + βy) < 0

(4.42)

for all y ∈ [0, ȳ], where the inequality is due to (4.41) and the fact that Q0 is (strictly)

positive. Since ψ′′′(·)
ψ′′(·) is increasing by Lemma A.1(3), and A(y) is positive for all

y ∈ [0, ȳ] by Lemma 4.2, we have for all x ≤ F (y)

A′(y) +
ψ′′′(x+ βy)

ψ′′(x+ βy)
βA(y) < A′(y) +

ψ′′′(F (y) + βy)

ψ′′(F (y) + βy)
βA(y) < 0,

where we have employed both (4.40) and (4.42) for the last inequality. Thus, we have
Sxx(x, y) < 0, and therefore Sx(x, y) > 0 for all (x, y) ∈ W. This completes the
proof.

We conclude that w identifies with the value function.

Theorem 4.9. Recall w from (4.26), and let ∆ := (ȳ − y)1{x≥x̄} + (F−1(x) −
y)1{x̄>x>F (y)}. The function w identifies with the value function V from (2.4), and
the optimal installation strategy, denoted by I⋆, is given by

I⋆0− = 0, I⋆t = ∆+Kt∧τ , t ≥ 0,(4.43)

where τ := inf{t ≥ 0 : Kt = ȳ − (y +∆)}, and where (X,K) is the unique F-adapted
process on [0, τ ] with increasing K and starting point (X0,K0) = (x, 0) such that

Xt ≤ F (y +∆+Kt),

dXt = κ
(
(µ− β(y +∆+Kt))−Xt

)
dt+ σdWt,

dKt = 1{Xt=F (y+∆+Kt)}dKt.

(4.44)

Proof. To prove the claim, we aim at applying Theorem 3.3. We already know
that w ∈ C2,1(R × [0, ȳ]) is a solution to the HJB equation (3.7) by Proposition 4.8.
Moreover, the function w satisfies the growth condition in (3.11) upon exploiting the
facts that A is continuous, ψ is continuous and increasing, and |R(x, y)| ≤ K

(
1+ |x|

)
for any y ∈ [0, ȳ] and some constant K > 0.

In a next step, we show the existence of (X,K) satisfying the stochastic differential
equation (4.44). To do so, we borrow ideas from [10]; cf. section 5 therein. Fix an
arbitrary T > 0. We let (Ω,F , (Ft)t∈[0,T ],Q) be a filtered probability space with a
filtration (Ft)t∈[0,T ] satisfying the usual conditions and let B be a (Ft)t∈[0,T ]-Brownian
motion under Q. Define the process (X,K) such that, for all t ∈ [0, T ],

dXt = κ
(
(µ− β(y +∆))−Xt

)
dt+ σdBt,(4.45)

Kt = min

{
sup

0≤s≤t
{F̄−1(Xs)}, ȳ − (y +∆)

}
,(4.46)
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with starting point (X0,K0) = (x, 0), and where F̄−1 is such that

F̄−1(x) :=


0 if x < x0,

F−1(x) if x ∈ [x0, x̄],

ȳ if x > x̄.

(4.47)

Notice that the pair (X,K) satisfies

Xt ≤ F (y +∆+Kt),

dKt = 1{Xt=F (y+∆+Kt)}dKt

for any t ≤ τ∧T . Since K is increasing and Kt ≤ ȳ − (y + ∆) for any t ≤ τ∧T ,
we apply Girsanov’s theorem (cf. section 3.5 in [19]), so as to obtain an equivalent
probability measure P with respect to Q such that

dP
dQ

∣∣∣∣
FT

= exp

(
−
∫ T

0

κβ

σ
KsdBs −

1

2

∫ T

0

(
κβ

σ
Ks

)2

ds

)
and

Wt = Bt +

∫ t

0

κβ

σ
Ksds

is a standard Brownian motion on (Ω,F , (Ft)t∈[0,T ],P). The pair (X,K) constructed
in this way is a weak solution to (4.44) on [0, T ]. We will prove in the following that,
indeed, (4.44) admits a pathwise unique solution, hence a strong solution. Recall
(4.11). We obtain

0 <
(
F−1

)′
(x) ≤ max

x0≤x′≤x̄
β−1 D(F−1(x′), x′)

N(F−1(x′), x′)−D(F−1(x′), x′)
for all x ∈ [x0, x̄],

where the first inequality is due to the monotonicity of F−1 and the last inequality is
due to (4.24) and (4.25). The continuity of the functions N and D and the fact that

N(F−1(x), x)−D(F−1(x), x) > 0 for any x ∈ [x0, x̄],

which is due to Lemma A.3, Proposition 4.5, and Lemma A.2, imply
(
F−1

)′
(x) <∞

for all x ∈ [x0, x̄]. The previous results show that F̄−1 is (globally) Lipschitz contin-
uous. Now, let (X̃, K̃) and (X̂, K̂) be two weak solutions of (4.44), defined on the
same filtered probability space (Ω,F , (Ft)t∈[0,T ],P) with respect to the same Brown-

ian motion W , and starting from (x, 0), such that both K̃ and K̂ are nondecreasing.
The (global) Lipschitz continuity of F̄−1 implies

∣∣∣K̃t − K̂t

∣∣∣
=

∣∣∣∣ sup
0≤s≤t

{
F−1(X̃s)− (ȳ− (y+∆))

}+ − sup
0≤s≤t

{
F−1(X̂s)− (ȳ − (y+∆))

}+∣∣∣∣
≤ sup

0≤s≤t

{ ∣∣∣F−1(X̃s)− F−1(X̂s)
∣∣∣ } ≤ sup

0≤s≤t
K̄
∣∣∣X̃s − X̂s

∣∣∣ .

(4.48)

The second line of (4.44) written in integral form, together with X̃0 = X̂0 = x, implies
(recall that now we are working under the new probability measure P)

E
[∣∣∣X̃t − X̂t

∣∣∣] ≤ C0

∫ t

0

E
[∣∣∣X̃s − X̂s

∣∣∣+ ∣∣∣K̃s − K̂s

∣∣∣] ds
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for some constant C0 > 0. This, combined with (4.48), gives for some constant C1 > 0
the estimate

E
[∣∣∣X̃t − X̂t

∣∣∣+ ∣∣∣K̃t − K̂t

∣∣∣] ≤ C1

∫ t

0

E
[∣∣∣X̃s − X̂s

∣∣∣+ ∣∣∣K̃s − K̂s

∣∣∣] ds.(4.49)

Now, Grönwall’s inequality applied on t 7→ E[|X̃t − X̂t|+ |K̃t − K̂t|] yields

0 ≤ E
[∣∣∣X̃t − X̂t

∣∣∣+ ∣∣∣K̃t − K̂t

∣∣∣] ≤ 0(4.50)

upon recalling that t 7→ Xt and t 7→ Kt are continuous for any solution of (4.44).
Thus, by (4.50), pathwise uniqueness holds. By [19, Corollary 5.3.23], we find that
(4.44) admits a unique strong solution on [0, T ]. However, since T > 0 was chosen
to be arbitrary, (4.44) admits a unique strong solution on the whole time interval
[0,+∞).

Finally, since I⋆ from (4.43) satisfies (3.12) and (3.13), we conclude that w iden-
tifies with V , and I⋆ is an optimal installation strategy by Theorem 3.3.

5. Numerical illustrations. The ODE (4.24) cannot be solved analytically,
but we are able to solve it numerically with MATLAB. Figure 1 displays a plot of the
inverse of the free boundary F with parameters’ values given in Table 1.

Recalling the discussion at the beginning of section 4.2, the waiting region W lies
to the left of the free boundary F , while the installation region I lies to the right.
Inside the installation region I, it is optimal to make a lump installation sufficient to
arrive to the boundary of I, i.e., to (x,min(F−1(x), ȳ)).

5.1. Comparative statics. In this section, we study the sensitivity of the free
boundary on the model parameters numerically. The baseline parameters’ values are
given as in Table 1, and in the following we let σ, β, κ, and ȳ vary within a particular
set. The sensitivity behaviors of µ, ρ, and c do not show interesting new patterns
as the studied ones and are not shown explicitly here. The numerical results can be
observed in Figure 2.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 1. Plot of x 7→ F−1(x) with parameters’ values provided in Table 1 and with the waiting
region W (as in (4.1)) and the installation regions I1 and I2 (as defined in section 4.2).

Table 1
Parameters’ values.

κ µ σ ρ c β ȳ
0.10 1.00 0.50 0.05 0.30 0.15 5
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(a) The function F−1 with σ = 0.5 (dot-
ted black), σ = 0.6 (dash-dot red), σ = 0.7
(dashed blue), σ = 0.8 (solid cyan).
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(b) The function F−1 with β = 0.15 (dotted
black), β = 0.175 (dash-dot red), β = 0.2
(dashed blue), β = 0.225 (solid cyan).
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1
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(c) The function F−1 with κ = 0.1 (dotted
black), κ = 0.15 (dash-dot red), κ = 0.20
(dashed blue), κ = 0.25 (solid cyan).

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
0

1

2

3

4

5

6

7

(d) The function F−1 with ȳ = 2 (dotted
black), ȳ = 3 (dash-dot red), ȳ = 5 (dashed
blue), ȳ = 7 (solid cyan)

Fig. 2. Sensitivity of the function x 7→ F−1(x) with respect to the model parameters. In each
subfigure, the parameter values which are not varied are those provided in Table 1.

We first study the behavior of the free boundary with respect to the volatility dis-
played in Figure 2(a). Here the volatility parameter σ takes values in {0.5; 0.6; 0.7; 0.8},
and we can observe that F−1 is shifted to the right as σ increases, that is, the instal-
lation of additional panels is undertaken at higher prices. Though monotone, the shift
is not parallel, differently from what the figure suggests. The firm might be afraid of
receiving lower (possibly even negative) future prices due to higher uncertainty. This
behavior is in line with the real options literature: when uncertainty increases, the
agent is more reluctant to act; see, for example, [23].

In Figure 2(b), the impact parameter β takes values in {0.15; 0.175; 0.2; 0.225},
and as a consequence we find that F−1 is shifted to the right as β increases. We explain
this observation by the fact that the impact of a higher electricity production on the
future electricity prices is higher as β increases. Therefore, the company starts to
produce more electricity at higher prices, so as to avoid lower (and possibly negative)
electricity prices in the short run.

The dependence on κ can be observed in Figure 2(c) and is maybe the most
peculiar of the observed dependencies, acting in a nonmonotone way. Here, we let κ
take values in {0.1; 0.15; 0.2; 0.25}. We find that higher values for the mean reversion
speed κ lead the company to start installing solar panels at lower prices, but after some
point, the company becomes instead more reluctant. This behavior can be explained
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3086 TORBEN KOCH AND TIZIANO VARGIOLU

by the fact that two effects play a role: on one hand, a higher mean reversion speed
reduces its ratio with respect to σ, the uncertainty is decreased, and hence a converse
behavior with respect to Figure 2(a) can be observed. On the other hand, a higher
mean reversion speed also intensifies the impact of the company’s actions on the price
dynamics. Therefore, it behaves as in 2(b).

Finally, we let ȳ vary in {0.5; 1; 2; 5}, and we observe that F−1 moves to the right
as ȳ increases. Consequently, the possibility to increase the level of installed power
up to a higher level makes the company more reluctant to act.

As concerns the sensitivity with respect to the other parameters µ, ρ, and c, we
do not provide graphical illustrations explicitly here, as they are similar to other plots
shown in Figure 2. In more detail, the dependence of the free boundary on c is similar
to that of σ, while instead the dependence on µ and ρ are “symmetric” to that on β,
i.e., the free boundary is displaced toward negative values of x as µ or ρ increases.

Appendix A. Auxiliary results.

Lemma A.1. Let Ly, for y ≥ 0, be the generator from (3.6). Then the following
holds true.

(1) The strictly increasing positive fundamental solution ψ(·) and the strictly de-
creasing positive fundamental solution ϕ(·) to the ODE (L0 − ρ)u = 0 are
given by

ψ(x) = e
κ(x−µ)2

2σ2 D− ρ
κ

(
− x− µ

σ

√
2κ

)
and

ϕ(x) = e
κ(x−µ)2

2σ2 D− ρ
κ

(
x− µ

σ

√
2κ

)
,

(A-1)

where

Dα(x) :=
e−

x2

4

Γ(−α)

∫ ∞

0

t−α−1e−
t2

2 −xtdt, α < 0,(A-2)

is the cylinder function of order α and Γ( · ) is the Euler’s Gamma function.
(2) Denoting by ψ(k) and ϕ(k) the kth derivative of ψ and ϕ, k ∈ N0, one has

that ψ(k) and ϕ(k) are strictly convex and ψ(k) (ϕ(k), respectively) identifies
with the strictly increasing positive (strictly decreasing positive, respectively)
fundamental solution (up to a positive constant) to (L0 − (ρ+ kκ))u = 0. In
particular, it holds that

σ2

2
ψ(k+2)(x+ βy) + κ

(
(µ− βy)− x

)
ψ(k+1)(x+ βy)

− (ρ+ kκ)ψ(k)(x+ βy) = 0

(A-3)

for any x ∈ R and y ≥ 0.
(3) For any k ∈ N0, ψ

(k)(x)ψ(k+2)(x)− ψ(k+1)(x)2 > 0 for all x ∈ R.
(4) For any k ∈ N0, the function Ψk : R 7→ R defined as

Ψk(x) =
ψ(k+1)(x)2

ψ(k)(x)ψ(k+2)(x)

is strictly increasing.
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(5) Denote by ψ( · ; y) (ϕ( · ; y), respectively) the strictly increasing (strictly de-
creasing, respectively) positive fundamental solution to (Ly − ρ)u = 0 for
y ≥ 0. Then, one can identify

ψ(x; y) = ψ(x+ βy), ϕ(x; y) = ϕ(x+ βy).

Proof. The proofs of (1)–(3) can be found in [13]; cf. Lemma 4.3 therein. In [20],
the author provides bounds and monotonicity properties of ratios involving a class
of Hermite and parabolic cylinder functions. These results are helpful for problems
that deal with the eigenfunctions of the Ornstein–Uhlenbeck generators as they are
connected to Hermite and parabolic cylinder functions. Here, we exploit the result
from Step 1 in the proof of Theorem 3.1 in [20] in order to obtain (4). Moreover, (5)
follows from (2), and in particular from equation (A-3) with k = 0.

Lemma A.2. Recall the functions D and N from (4.21) and (4.23). For any
(y, z) ∈ R× R such that D(y, z) ≥ 0, we have

N(y, z) > D(y, z).

Proof. Let (y, z) ∈ R × R be such that D(y, z) ≥ 0. The previous inequality
implies

(ρ+ κ)
(
c− R̃(z, y)

)
≥ −Q

′
0(z)

Q1(z)
,(A-4)

as Q1 is strictly positive.
In order to proceed, we introduce the function Θ : R× R 7→ R such that

Θ(z) := ψ′′(z)Q0(z)− ψ(z)Q1(z).

Exploiting Lemma A.1(4) with k = 0, we find that Θ is strictly positive. Now, we use
both (A-4) and the positivity of Θ to get

N(y, z)−D(y, z) = (ρ+ κ)
(
c− R̃(z, y)

)
Θ(z) +

2(ρ+ κ)

ρ
ψ′(z)Q0(z)− ψ(z)Q′

0(z)

≥ −Q
′
0(z)

Q1(z)
Θ(z) +

2(ρ+ κ)

ρ
ψ′(z)Q0(z)− ψ(z)Q′

0(z)

= (ρQ1(z))
−1
Q0(z) [−ρψ′′(z)Q′

0(z) + 2(ρ+ κ)ψ′(z)Q1(z)] ,

(A-5)

where we have rearranged terms after the equality. To finish the proof, we employ
(A-3) with k = 0, 1, 2 for (A-5), to obtain

N(y, z)−D(y, z) ≥σ
2

2
(ρQ1(z))

−1
Q0(z)

[
ψ′′′(z)Q1(z)− ψ′(z)Q2(z)

]
> 0,(A-6)

where the last inequality holds true upon recalling Qk > 0 and by the fact ψ′′′(z)Q1(z)
− ψ′(z)Q2(z) > 0 which is due to Lemma A.1(4) with k = 1.

Lemma A.3. We have D(ȳ, F̃ (ȳ)) > 0, and it holds that F̃ ′(ȳ) > β.

Proof. Recall (4.19) and Lemma 4.3 accordingly. Since F̃ (ȳ) = x̃, the point ȳ
satisfies

(ρ+ κ)
(
c− R̃(F̃ (ȳ), ȳ)

)
= − ψ(F̃ (ȳ))

ψ′(F̃ (ȳ))
.(A-7)
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We get from (4.21) and (A-7) that

D(ȳ, F̃ (ȳ)) =
Q0(F̃ (ȳ))ψ(F̃ (ȳ))ψ

′′(F̃ (ȳ))

ψ′(F̃ (ȳ))
> 0(A-8)

upon recalling that Q0 > 0. Now, Lemma A.2 implies N(ȳ, F̃ (ȳ)) −D(ȳ, F̃ (ȳ)) > 0.
Hence, we find

F̃ ′(ȳ) = G(ȳ, F̃ (ȳ)) = β × N(ȳ, F̃ (ȳ))

D(ȳ, F̃ (ȳ))
> β.(A-9)

Appendix B. Proofs of results from sections 3 and 4.

Proof of Lemma 3.1. To prove (3.1), first notice that Xx,y,I
t ≤ Xx

t P-a.s. for all
t ≥ 0, and therefore

Xx,y,I
t = x+

∫ t

0

κ
(
(µ− βY y,It )−Xx,y,I

s

)
ds+ σWt

≥ x+

∫ t

0

κ
(
µ−Xx

s

)
ds+ σWt − κβȳt

= Xx
t − κβȳt ≥ −|Xx

t | − κβȳt,

where we have used that Y y,It ≤ ȳ P-a.s. for all t ≥ 0. Also, one clearly has Xx,y,I
t ≤

Xx
t ≤ |Xx

t | + κβȳt. Hence, (3.1) follows. Equation (3.2) follows from elementary
properties of Ornstein–Uhlenbeck processes. Finally, for all t > 0 we have

E [|Xx,y
t |] ≤

(
E[(Xx,y

t )2]
)1/2

=
(
Var[Xx,y

t ] + (E[Xx,y
t ])2

)1/2
≤
(
σ2

2κ
+ 2x2e−2κt + 2(µ− βy)2(1− e−κt)2

)1/2

≤
(
2x2 + 2(µ− βy)2 +

σ2

2κ

)1/2

.

Since
√
a2 + x2 ≤ a + |x| for all a > 0 and x ∈ R, we obtain (3.3) by letting K :=

max(
√
2,
√
2µ2 + σ2

2κ ,
√
2(µ− βȳ)2 + σ2

2κ ).

Proof of Proposition 3.2. The proof employs arguments from the proof of Propo-
sition 3.1 in [13] that are adjusted to our setting. In a first step we prove that (3.5)
holds true, and then in a second step we show the monotonicity property of V .

Step 1. Let (x, y) ∈ R × [0, ȳ] be given and fixed. In order to prove the lower
bound of V , we take the admissible (non-)installation strategy I0, and since y ∈ [0, ȳ],
we obtain

V (x, y) ≥ R(x, y) > −K1

(
1 + |x|

)
(B-1)

for some K1 > 0.
To determine the upper bound of V , recall that we indicate the uncontrolled price

process with Xx and notice that, for any I ∈ I ȳ(y), upon observing that Xx,y,I ≤ Xx

P-a.s. for any I ∈ I ȳ(y) we find by (3.3)

J (x, y, I) ≤ E
[ ∫ ∞

0

e−ρtXx,y,I
t Y y,It dt

]
≤ E

[ ∫ ∞

0

e−ρtXx
t Y

y,I
t dt

]
≤ E

[ ∫ ∞

0

e−ρt
∣∣Xx

t

∣∣Y y,It dt

]
≤ ȳE

[ ∫ ∞

0

e−ρt|Xx
t |dt

]
≤ K2

(
1 + |x|

)(B-2)
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OPTIMAL INSTALLATION OF SOLAR PANELS 3089

for K2 := K1/ρ > 0, where K1 is the constant in (3.3). Finally, from (B-1) and (B-2),
we have that (3.5) holds with K = max(K1,K2).

Step 2. If y = ȳ, then the only admissible strategy is I0, thus V (x, ȳ) = R(x, ȳ).
In order to show that x 7→ V (x, y) is increasing, let x2 > x1, and notice that one has

Xx2,y,I
t ≥ Xx1,y,I

t P-a.s. for any t ≥ 0 and I ∈ I ȳ(y). Thus J (x2, y, I) ≥ J (x1, y, I)
which implies V (x2, y) ≥ V (x1, y).

Proof of Theorem 3.3. Since we have w(x, ȳ) = R(x, ȳ) = V (x, ȳ) by assumption,
we let y < ȳ. In a first step, we prove that w ≥ v on R× [0, ȳ), and then in a second
step, we show that w ≤ v on R× [0, ȳ) and the optimality of I⋆ satisfying (3.12) and
(3.13).

Step 1. Let (x, y) ∈ R × [0, ȳ) be given and fixed, and I ∈ I ȳ(y). For N > 0 we
set τR,N := τR ∧N, where τR := inf{s > 0 : Xx,y,I

s /∈ (−R,R)}. In the following, we
write ∆Is := Is − Is−, s ≥ 0, and Ic denotes the continuous part of I ∈ I ȳ(y). By an
application of Itô’s formula, we have

e−ρτR,Nw
(
Xx,y,I
τR,N

, Y y,IτR,N

)
− w(x, y)

=

∫ τR,N

0

e−ρs
(
Lyw

(
Xx,y,I
s , Y y,Is

)
− ρw

(
Xx,y,I
s , Y y,Is

) )
ds

+ σ

∫ τR,N

0

e−ρswx
(
Xx,y,I
s , Y y,Is

)
dWs︸ ︷︷ ︸

=:MτR,N

+
∑

0≤s≤τR,N

e−ρs
[
w
(
Xx,y,I
s , Y y,Is

)
− w

(
Xx,y,I
s , Y y,Is−

)]
+

∫ τR,N

0

e−ρswy
(
Xx,y,I
s , Y y,Is

)
dIcs

(B-3)

upon noticing that t 7→ Xx,y,I
t is continuous almost surely for any I ∈ I ȳ(y). Now,

we find

w
(
Xx,y,I
s , Y y,Is

)
− w

(
Xx,y,I
s , Y y,Is−

)
= w

(
Xx,y,I
s , Y y,Is− +∆Is

)
− w

(
Xx,y,I
s , Y y,Is−

)
=

∫ ∆Is

0

wy

(
Xx,y,I
s , Y y,Is− + u

)
du,

which substituted back into (B-3) gives the equivalence∫ τR,N

0

e−ρsXx,y,I
s Y y,I

s ds− c

∫ τR,N

0

e−ρsdIs = w(x, y)− e−ρτR,Nw
(
Xx,y,I

τR,N
, Y y,I

τR,N

)
+

∫ τR,N

0

e−ρs
(
Lyw

(
Xx,y,I

s , Y y,I
s

)
− ρw

(
Xx,y,I

s , Y y,I
s

)
+Xx,y,I

s Y y,I
s

)
ds+MτR,N

+
∑

0≤s≤τR,N

e−ρs

∫ ∆Is

0

[
wy

(
Xx,y,I

s , Y y,I
s− + u

)
− c

]
du

+

∫ τR,N

0

e−ρs
[
wy

(
Xx,y,I

s , Y y,I
s

)
− c

]
dIcs

upon adding
∫ τR,N

0
e−ρsXx,y,I

s Y y,Is ds−c
∫ τR,N

0
e−ρsdIs on both sides of (B-3). Since w

satisfies (3.7) and (3.11), by taking expectations on both sides of the latter equation,
and using that E[MτR,N

] = 0, we have
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3090 TORBEN KOCH AND TIZIANO VARGIOLU

E
[∫ τR,N

0

e−ρsXx,y,I
s Y y,Is ds− c

∫ τR,N

0

e−ρsdIs

]
(B-4)

≤ w(x, y) +KE
[
e−ρτR,N

(
1 + |Xx,y,I

τR,N
|
)]
.

In order to apply the dominated convergence theorem in (B-4), we use (3.1) and we
find that P-a.s.

∣∣∣∣ ∫ τR,N

0

e−ρsXx,y,I
s Y y,Is ds− c

∫ τR,N

0

e−ρsdIs

∣∣∣∣ ≤ ȳ

∫ ∞

0

e−ρs
(
|Xx

s |+ κβȳs
)
ds+ cȳ,

(B-5)

and the first expression on the right-hand side of (B-5) is integrable by (3.3). On the
other hand, to take care of the expectation on the right-hand side of (B-4), we employ
again (3.1) to get for some constant C1 > 0

E
[
e−ρτR,N

(
1 + |Xx,y,I

τR,N
|
) ]

≤ C1E
[
e−ρτR,N (1 + τR,N )

]
+ E

[
e−

ρ
2 τR,N sup

t≥0
e−

ρ
2 t|Xx

t |
]

≤ C1E
[
e−ρτR,N (1 + τR,N )

]
+ E

[
e−ρτR,N

] 1
2 E
[
sup
t≥0

e−ρt(Xx
t )

2

] 1
2

,

(B-6)

where we have used Hölder’s inequality in the last step. As for the last expectation
in (B-6), observe that by Itô’s formula we find

e−ρt(Xx
t )

2 ≤ x2 +

∫ t

0

e−ρu
[
ρ(Xx

u)
2 + σ2

]
du

+

∫ t

0

2e−ρu|Xx
u |(κ(|µ|+ |Xx

u |))du+ 2σ sup
t≥0

∣∣∣∣ ∫ t

0

e−ρuXx
udWu

∣∣∣∣.

(B-7)

By an application of the Burkholder–Davis–Gundy inequality (cf. Theorem 3.28 in
[19]), we find that

E
[
sup
t≥0

∣∣∣∣∫ t

0

e−ρuσXx
udWu

∣∣∣∣] ≤ C2(1 + |x|)(B-8)

for some constant C2 > 0. Then, since standard calculations show that E
[
|Xx

u |q
]
≤

C̃(1 + |x|q) for q ∈ {1, 2} and some C̃ > 0, we obtain from (B-7) and (B-8)

E
[
sup
t≥0

e−ρt(Xx
t )

2

]
≤ C3(1 + x2)(B-9)

for some constant C3 > 0, and therefore, it follows with (B-6)

lim
N↑∞

lim
R↑∞

E
[
e−ρτR,N

(
1 + |Xx,y,I

τR,N
|
) ]

= 0.(B-10)

Hence, we can invoke the dominated convergence theorem in order to take limits as
R → ∞ and then as N → ∞, so to get J (x, y, I) ≤ w(x, y). Since I ∈ I ȳ(y) is
arbitrary, we have V (x, y) ≤ w(x, y), which yields V ≤ w by arbitrariness of (x, y) in
R× [0, ȳ).
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Step 2. Let I⋆ ∈ I ȳ(y) satisfying (3.12) and (3.13), and τ⋆R,N := inf{t ≥ 0 :

Xx,y,I⋆

t /∈ (−R,R)} ∧ N . Arguing in the same way as in Step 1 all the inequalities
become equalities and we obtain

E
[∫ τR,N

0

e−ρsXx,y,I⋆

s Y y,I
⋆

s ds− c

∫ τR,N

0

e−ρsdI⋆s

]
(B-11)

+ E
[
e−ρτ

⋆
R,Nw

(
Xx,y,I⋆

τ⋆
R,N

, I⋆τ⋆
R,N

) ]
= w(x, y).

Now, because I⋆ is admissible and upon employing (3.11) and (B-10), we proceed as
in Step 1 and take limits as R ↑ ∞ and N ↑ ∞ in (B-11) to find J (x, y, I⋆) ≥ w(x, y).
Since clearly V (x, y) ≥ J (x, y, I⋆), then V (x, y) ≥ w(x, y) for all (x, y) ∈ R × [0, ȳ).
Hence, using Step 1, V = w on R× [0, ȳ) and I⋆ is optimal.

Proof of Lemma 4.2. In the following, Step 1 proves the positivity and the mono-
tonicity property of the function A, while Step 2 provides both the representation of
A and the lower bound of F .

Step 1. Recalling that Ryx(x, y) = (ρ+ κ)
−1

for all (x, y) ∈ R × [0, ȳ], we find
from (4.10) that

A′(y) = −βψ
′′(F̃ (y))

ψ′(F̃ (y))
A(y)−

(
(ρ+ κ)ψ′(F̃ (y))

)−1

= H(F̃ (y), A(y)),(B-12)

where H : R× R 7→ R is such that

H(F̄ , A) = −βψ
′′(F̄ )

ψ′(F̄ )
A−

(
(ρ+ κ)ψ′(F̄ )

)−1

= −
(
(ρ+ κ)ψ′(F̄ )

)−1 (
β(ρ+ κ)ψ′′(F̄ )A+ 1

)
.

In light of the boundary condition w(x, ȳ) = R(x, ȳ) (cf. Theorem 3.3), we must have
that

A(ȳ) = 0.(B-13)

Due to (B-13) and the fact thatH|R×[0,∞) is strictly negative as ψ(k) is strictly positive
for any k ∈ N0 (cf. Lemma A.1(2)), we conclude that A is both strictly positive and
strictly decreasing.

Step 2. Recall (4.13), that is,

A(y) = β−1 ×
ψ′(F̃ (y))

(
c− R̃(F̃ (y), y)

)
+ (ρ+ κ)

−1
ψ(F̃ (y))

−Q0(F̃ (y))
.(B-14)

Now, the numerator on the right-hand side of (B-14) reads as

(ρ(ρ+ κ))
−1
[
ρ(ρ+ κ)ψ′(F̃ (y))

(
c− R̃(F̃ (y), y)

)
+ ρψ(F̃ (y))

]
= (ρ(ρ+ κ))

−1

[
(ρ+ κ)

(
cρ+

(ρ+ 2κ)β

ρ+ κ
y − F̃ (y)

)
ψ′(F̃ (y)) +

σ2

2
ψ′′(F̃ (y))

]
upon using (A-3) with k = 0. Hence,

A(y) = (βρ(ρ+ κ))
−1 ×

(ρ+ κ)
(
cρ+ (ρ+2κ)β

ρ+κ y − F̃ (y)
)
ψ′(F̃ (y)) + σ2

2 ψ
′′(F̃ (y))

−Q0(F̃ (y))
.

(B-15)
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3092 TORBEN KOCH AND TIZIANO VARGIOLU

Due to the facts that the denominator on the right-hand side of (B-15) is strictly
negative by Lemma A.1(3) and that A is strictly positive by Step 1, the numerator
on the right-hand side of (B-15) must be strictly negative: this is possible only if

cρ+
(ρ+ 2κ)β

ρ+ κ
y − F̃ (y) < 0

as ψ(k) is strictly positive for any k ∈ N. Hence, F̃ satisfies

F̃ (y) > cρ+
(ρ+ 2κ)β

ρ+ κ
y for all y ∈ [0, ȳ].(B-16)

Proof of Lemma 4.3. We rewrite the left-hand side of (4.19) as follows:

ψ′(x̃)
(
c− R̃(x̃, ȳ)

)
+ (ρ+ κ)

−1
ψ(x̃)

= − (ρ+ κ)
−1
(
ψ′(x̃)

(
(ρ+ κ)R̃(x̃, ȳ)− c(ρ+ κ)

)
− ψ(x̃)

)
.

Now, the proof is a slight modification of the proof of Lemma 4.4 in [13] upon adjusting

the cost factor in [13] by c(ρ+ κ)− µκ−β(ρ+2κ)ȳ
ρ .

Proof of Proposition 4.5. The proof is organized into two steps: in a first step,
we provide a representation of the function D that is used after. Then, in Step 2, we
show the existence and uniqueness of a strictly increasing maximal solution F̃ of the
ODE (4.24) and prove (by a contradiction) that F̃ in fact exists on the interval [0, ȳ].

Step 1. Recall (4.21), and let D̃ : R× R 7→ R be a function which is given by

D̃(y, z) = [(ρ+ κ)ψ(z)Q0(z)]
−1
D(y, z).(B-17)

Then, where F̃ exists, we find upon employing (4.13) and (4.14)

D̃(y, F̃ (y)) = −βψ′′′(F̃ (y))A(y)− ψ′′(F̃ (y))A′(y).(B-18)

Now, Lemma A.1(2) gives for any k ∈ N0

σ2

2
ψ(k+2)(x) + κ(µ− x)ψ(k+1)(x)− (ρ+ kκ)ψ(k)(x) = 0, x ∈ R,(B-19)

and therefore we have

ψ(k+2)(F̃ (y)) = −2κ

σ2

(
µ− F̃ (y)

)
ψ(k+1)(F̃ (y)) +

2(ρ+ kκ)

σ2
ψ(k)(F̃ (y)), k ∈ N0.

(B-20)

Using (B-18) and the latter equation (B-20) with k = 0, 1, we obtain

D̃(y, F̃ (y)) =
2

σ2

[
κ
(
µ− F̃ (y)

) (
βψ′′(F̃ (y))A(y) + ψ′(F̃ (y))A′(y)

)
− ρ
(
βψ′(F̃ (y))A(y) + ψ(F̃ (y))A′(y)

)
− κβψ′(F̃ (y))A(y)

]
=

2

σ2

[
F̃ (y)− cρ− (ρ+ 2κ)β

ρ+ κ
y − κβψ′(F̃ (y))A(y)

]
,

(B-21)

where we have employed (4.9) and (4.10) (with F being replaced according to (4.11))
for the last equality.

D
ow

nl
oa

de
d 

09
/0

7/
21

 to
 1

29
.7

0.
23

6.
21

8 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL INSTALLATION OF SOLAR PANELS 3093

Step 2. Recall (4.24) and (4.25). In the following, we denote by DG the domain
of G, that is, DG = (R × R) \ {(y, z) ∈ R2 : D(y, z) = 0}. Since ψ(k) is continuously
differentiable for any k ∈ N, the functions N and D are continuously differentiable,
respectively. Therefore, G(y, ·) is locally Lipschitz-continuous on its domain DG which
is an open set. Hence, we find that the ODE (4.24) with the boundary condition
F̃ (ȳ) = x̃ admits a unique maximal solution F̃ on an interval Imax = (y−, y+) with
ȳ ∈ Imax. Since we want to show the existence and uniqueness of a solution on [0, ȳ],
it is enough to prove that y− < 0. Following, for example, Theorem 2.10 in [3], y− < ȳ
is such that

either (i) lim
y↓y−

(
||(y, F̃ (y))||

)−1

= 0, or (ii) lim
y↓y−

inf
w∈∂DG

||(y, F̃ (y))− w|| = 0,

where ∂DG = {(y, z) ∈ R2 : D(y, z) = 0} is the boundary of the domain of G, and
|| · || is a norm in R2.

Now, suppose y− ≥ 0. Notice that N(y, F̃ (y)) > D(y, F̃ (y)) > 0 for all y ∈ Imax

by Lemmas A.3 and A.2, and therefore we have F̃ ′ > β > 0 on Imax. Lemma 4.2
guarantees that F̃ is bounded from below on (y−, ȳ], and together with its monotonic-
ity property, we must have that limy↓y−(||(y, F̃ (y))||)−1 > K for some K > 0. Thus,
in order to derive a contradiction, it is left to prove that condition (ii) above is not
satisfied, so as to show limy↓y− D(y, F̃ (y)) ̸= 0. Again, due to the boundedness of F̃
and the fact that both Q0 and ψ are strictly positive, we find

ψ(F̃ (y))Q0(F̃ (y)) > K1 for all y ∈ (y−, ȳ]

for some K1 > 0. Therefore, upon recalling (B-17), we can complete the proof by
showing that limy↓y− D̃(y, F̃ (y)) ̸= 0. Lemma A.3 implies

D̃(ȳ, F̃ (ȳ)) > 0.(B-22)

Computing the total derivative of D̃(y, F̃ (y)) with respect to y ∈ Imax, upon using
(B-21), gives

d

dy
D̃(y, F̃ (y)) =

2

σ2

[
F̃ ′(y)

(
1− κβψ′′(F̃ (y))A(y)

)
− (ρ+ 2κ)β

ρ+ κ
− κβψ′(F̃ (y))A′(y)

]
=

2

σ2

(
F̃ ′(y)− β

)(
1− κβψ′′(F̃ (y))A(y)

)
,

(B-23)

where the last equality holds by an application of (4.10) (again, with F being re-
placed according to (4.11)). Next, we write the last coefficient in (B-23), that is,
1− κβψ′′(F̃ (y))A(y), as a function of G : R× R 7→ R defined as

G(y, z) = ((ρ+ κ)Q0(z))
−1
[
(ρ+ 2κ)ψ(z)ψ′′(z)− (ρ+ κ)ψ′(z)2

+ κ(ρ+ κ)
(
c− R̃(z, y)

)
ψ′(z)ψ′′(z)

]
.

Employing (4.13), we get 1− κβψ′′(F̃ (y))A(y) = G(y, F̃ (y)), and thus we have

d

dy
D̃(y, F̃ (y)) =

2

σ2

(
F̃ ′(y)− β

)
G(y, F̃ (y)).(B-24)
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Now, let (y⋆, z⋆) ∈ R × R be such that D̃(y⋆, z⋆) = 0. We find from (B-17) that
D(y⋆, z⋆) = 0. Hence, upon recalling (4.21), it holds that

(ρ+ κ)
(
c− R̃(z⋆, y⋆)

)
= −Q

′
0(z

⋆)

Q1(z⋆)
.(B-25)

Then, exploiting (B-25), we obtain

G(y⋆, z⋆) =

(
(ρ+ κ)Q0(z

⋆)Q1(z
⋆)

)−1

×
[
(ρ+ κ)ψ(z⋆)ψ′(z⋆)ψ′′(z⋆)ψ′′′(z⋆)− (ρ+ 2κ)ψ(z⋆)ψ′′(z⋆)3

+ (ρ+ 2κ)ψ′(z⋆)2ψ′′(z⋆)2 − (ρ+ κ)ψ′(z⋆)3ψ′′′(z⋆)

]
= −σ

2

2

(
(ρ+ κ)Q1(z

⋆)

)−1

Q2(z
⋆) < 0.

(B-26)

In (B-26) we have used (B-19) with k = 0, 1, 2 for the last equality, and the fact that
Q1 and Q2 are strictly positive for the strict inequality.

Recalling that F̃ ′ − β > 0 on Imax, we conclude from (B-22), (B-24), and (B-26)
that D̃(y, F̃ (y)) cannot tend to zero as y ↓ y−. This completes the proof.
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