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1. Introduction

The Navier-Stokes equation 
∂tu = ν∆u+ u · ∇u+∇p,
div u = 0,

u(0) = ϕ

(1.1)

in Rd is the core of Eulerian approach dealing with the time evolution of the velocity fields of
Newtonian fluids. Here u represents the velocity, ν > 0 is the viscosity constant and p is the
pressure. It is well known that for any divergence free vector field ϕ ∈ L2(Rd), there exists a
divergence free Leray-Hopf weak solution to NS equations in

V :=
{
u : ‖u‖L∞([0,T ];L2(Rd)) + ‖∇u‖L2([0,T ];L2(Rd)) <∞, ∀T > 0

}
. (1.2)

However, it is still unknown whether the above Leray-Hopf solution is unique and smooth when
d = 3, which is one of the most famous open problems in the area of partial differential equations.

If one imagine the fluid as being composed of many ‘fluid particles’, then one can work out
the paths followed by these particles, this is the Lagrangian approach to hydrodynamics studies
the configuration of the underlying particles, namely the solutions of the equation

d

dt
Xt(x) = u(t,Xt(x)), X0(x) = x ∈ Rd. (1.3)

It was first proved by Chemin and Lerner [3] that if d = 2, there is a unique trajectories
corresponding to each Leray-Hopf solution u with an initial condition that is only L2. However,

when d = 3 and u is a Leray-Hopf weak solution of (1.1) with initial data ϕ ∈ H
1
2 , only local

well-posedness of (1.3) is proved. Their proof was later simplified by Dashti and Robinson in
[5].

It is also interesting and meaningful to construct the stochastic Lagrangian particle trajectory
Xt associated with the velocity field u. More precisely, suppose W is a d−dimensional standard
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Brownian motion on some probability space (Ω,F ,P), u is a Leray-Hopf weak solution to (1.1),
we want to investigate the well-posedness of the following SDE

dXt = u(t,Xt)dt+
√

2νdWt, X0 = ξ, (1.4)

in weak or strong sense. If u is smooth in x, then by Constantin and Iyer’s representation [4]
(see also [20]), u can be reconstructed from Xt(x), the unique solution to (1.4) with ξ = x, as
follows:

u(t, x) = PE(∇tX−1
t (x) · ϕ(X−1

t (x))),

where P is the Leray projection and X−1
t (x) is the inverse of stochastic flow x 7→ Xt(x), and

∇t stands for the transpose of the Jacobian matrix. However, it is well known that even if the
initial data is smooth with compact support, the smoothness of u in x can only be proved in
short time. When the initial data ϕ is only square integrable, by (1.2) and Sobolev’s embedding,

u ∈ LqtLpx, p, q > [2,∞], d
p + 2

q = d
2 . (1.5)

When d > 2, the classic result of Krylov and Röckner [9] can not be applied in this case, since in
their work, the drift term u in (1.4) should satisfy the following Ladyzhenskaya-Prodi-Serrin’s
type condition (abbreviated as LPS):

u ∈ LqtLpx, p, q ∈ [2,∞), d
p + 2

q < 1.

See also [22, 24] for further discussion. Recently, in [26], Zhang and the author of this paper
studied the following singular SDE:

Xt = x+

∫ t

0
br(Xs)ds+Wt

beyond the LPS condition. Their main result shows that if

b, (divb)− ∈ LqtLpx, p, q ∈ [2,∞), d
p + 2

q < 2,

then the above SDE admits at least one weak(martingale) solution. This implies that when
d = 3, for each x ∈ R3, (1.4) admits at least one weak solution. Unfortunately, the uniqueness
of finite dimensional distribution of solutions to the above SDE starting from each single point
was not proved or disproved in that work, and we tend to think it is not true.

Motivated by [4] and [26], in this paper, we want to show a suitable sort of well-posedness of
the following Itô’s type SDE with rough coefficients:

Xt = ξ +

∫ t

0
b(s,Xs)ds+

∫ t

0
σ(s,Xs)dWs, (1.6)

where b : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → Rd ⊗ Rm are measurable functions and W is an
m−dimensional standard Brownian motion. For deterministic case, in the celebrated paper [6],
DiPerna and Lions studied the connection between the transport equation and the associated
ODE

Xt(x) = x+

∫ t

0
b(s,Xs(x))ds.

They showed that the existence and uniqueness for the transport equation is equivalent to a
sort of well-posedness of the ODE. Roughly speaking, their result shows the ODE has a unique
solution for λd−a.e. initial datum(here and below, λd denotes the Lebesgue measure in Rd)
provided that b ∈ L1

t (W
1,1
loc ) and divb ∈ L∞t,x. In [1], Ambrosio developed the theory of Regular

Lagrangian Flows(Abbreviated as RLF), which relates existence and uniqueness for the continu-
ity equation with well-posedness of the ODE and the well-posedness of the continuity equations
in L∞ is proved in the case of vector fields with BV regularity whose distributional divergence is
in L∞. Later, Figalli [7] studied the stochastic counterpart of RLF and a formalization akin to
that of DiPerna-Lions is introduced, the main objects is called Stochastic Lagrangian Flows(see
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Definition 2.3). As in the deterministic case, the well-posedness of SDE (1.6) has to be un-
derstood “in average” with respect to λd−a.e. initial datum. Such a theory provides efficient
tools to study stochastic differential equations under low regularity assumptions(see also [18]).
Deep connections between well-posedness of Fokker-Planck equation and martingale problems
associated with (1.6) are established in their works, in particular for a wide class of diffusions
having not necessarily continuous nor elliptic coefficients, provided that some Sobolev regularity
holds.

Let us denote

aij(t, x) :=
1

2
σik(t, x)σkj(t, x), Lf := aij∂ijf + bi∂if,

and

L∗f := ∂ij(a
ijf)− ∂i(bif) = ∂j(a

ij∂if)− ∂i(V if),

where V i := bi − ∂jaij . Formally, the distribution of Xt solves the following Fokker-Planck(or
Kolmogorov’s forward) in the sense of distribution:{

∂tµt − L∗tµt = ∂tµt − ∂ij(aijµt) + ∂i(b
iµt) = 0

µ0 = µ̄
(FPE1)

where µ̄ = P ◦X−1
0 . As showed in [7] and [18] under some mild conditions, the existence and

uniqueness of Stochastic Lagrangian Flow associated to L is equivalent with the well-posedness
of above Fokker-Planck equation in L∞ setting. So a good understanding of above equation is
crucial for studying of Stochastic Lagrangian Flow associated to L. If µt is absolutely continuous
with respect to the Lesbesgue measure, and µt(dx) = u(t, x)λd(dx), µ̄(dx) = φ(x)λd(dx), then
the above equation can be rewritten as{

∂tu−∇ · (a∇u) +∇ · (V u) = 0

u(0) = φ.
(FPE2)

Inspired by [7] and [18], in this paper, by studying the above Forker-Planck equation in
L∞−setting, we establish the well-posedness of (1.6) in the sense of DiPerna-Lions(or Stochas-
tic Lagrangian Flow corresponding to (1.6)) under some local integrability assumptions on b,
∂ja

ij and divV (see (A2) below), provide that the diffusion coefficient a is uniformly elliptic.
Compared with the result in [7] and [18] for bounded elliptic case, we do not need to assume
the drift coefficient b is bounded in x. To prove the existence and uniqueness for L∞ solution
of (FPE2), the key point for us is to establish a priori global maximum estimate. We use the
classic energy method and establish the key maximum estimate (3.11) by De Giorgi’s iteration.
It should be mentioned that similar local maximum principle for homogenous Kolmogorov’s
backward equation is proved by Nazarov and Ural’tseva in [12] by using Moser’s iteration. In
[26], global result for general backward equation was established by De Giorgi’s method. And
when b is divergence-free and smooth, Qian and Xi [13] studied the Aronson’s type estimate for
the heat kernel of operator L b

t = ∆+ b ·∇, where the bound depends only on the norm ‖b‖LltLqx ,

where q, l ∈ (2,∞) satisfies 1 6 d
q + 2

l < 2.

Obviously, the Stochastic Lagrangian Flows are close related to the weak solutions to SDE.
In [21] and [23], Zhang proposed the “strong” version of Stochastic Lagrangian Flows, which
is called almost everywhere Stochastic Flow. When b and σ satisfy some Sobolev regularity
assumption(see (A4) below), in this paper, a pathwise uniqueness result is proved for particular
solutions to the original SDE (1.6). Combine this and a Yamada-Watanabe’s type argument,
we show that there is a unique almost everywhere Stochastic Flow corresponding to (1.6). Since

each Leray-Hopf solution u of 3D-NS equation with L2 initial datum is in L2
tW

1,2
x , our results
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imply a sort of strong well-posedness of (1.4). However, we should point out that the weak
differentiability of the stochastic flow with respect to the starting point x remains open.

This paper is organized as follows: In Section 2, we give some basic definitions of certain local
Sobolev spaces and state our main results. In Section 3, we study the Fokker-Planck equation
(FPE2) using classic energy method and establish the key maximum estimate (3.11) by De
Giorgi’s iteration. In Section 4, we prove our main result Theorem 2.4 and Theorem 2.7.

2. Definition and Main Results

Suppose (E, E) is a measurable space, the collection of all σ−finite measures and probability
measures on E are denoted by M (E) and P(E), respectively. Given T > 0, let C([0, T ];Rd) be
the continuous function space equipped with the uniform topology, ωt be the canonical process
on it and Bt := σ{ωs ∈ C([0, T ];Rd) : 0 6 s 6 t}.

For p, q ∈ [1,∞], we define

Lpq(T ) := Lq([0, T ];Lp(Rd)),

and Lp(T ) := Lpp(T ). For p, q ∈ (1,∞), s ∈ R, we also define

Hs,p
q (T ) = Lq([0, T ];Hs,p(Rd)),

where Hs,p is the Bessel potential space. The usual energy space is defined as the following way:

V (T ) :=
{
f ∈ L2

∞(T ) ∩ L2([0, T ];H1) : ‖f‖V (T ) := ‖f‖L2
∞

+ ‖∇xf‖L2(T ) <∞
}
.

Throughout this paper we fix a cutoff function

χ ∈ C∞c (Rd; [0, 1]) with χ|B1 = 1 and χ|Bc2 = 0,

and for r > 0 and x ∈ Rd, define

χr(x) := χ(r−1x), χyr(x) := χr(x− y), x ∈ Rd. (2.1)

Next we introduce the localized Sobolev spaces for later use.

Definition 2.1. Let p, q ∈ [1,∞], we define the Banach space: for fixed r > 0,

L̃pq(T ) :=

{
f ∈ Lq([0, T ];Lploc(R

d)) : ‖f‖L̃pq(T )
:= sup

y∈Rd
‖fχyr‖Lpq(T ) <∞.

}

and L̃p(T ) := L̃pp(T ); For any p, q ∈ (1,∞), s ∈ R,

H̃s,p
q (T ) :=

{
f ∈ Lq([0, T ];Hs,p

loc ) : ‖f‖H̃s,pq (T )
:= sup

y∈Rd
‖fχyr‖Hs,pq (T )

}
.

Moreover, we also introduce the localized energy space

Ṽ (T ) :=
{
f ∈ L̃2

∞(T ) ∩ H̃1,2
2 (T ) : ‖f‖

Ṽ (T )
:= ‖f‖L̃2

∞(T )
+ ‖∇xf‖L̃2(T )

<∞
}
,

Ṽ 0(T ) :=
{
f ∈ Ṽ (T ) : for any r > 0, y ∈ Rd, t 7→ f(t)χyr

is strong continuous from [0, T ] to L2(Rd)
}
.

Let us recall the definition of martingale solutions associated to operator L.
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Definition 2.2 (MP). A continuous process {Xt}t∈[0,T ] with value in Rd define on some filtered
probability space (Ω,F ,Ft,P) is a solution of the martingale problem(MP) associated to (L, µ0)
or martingale solution to (1.6), if it holds

P ◦X−1
0 = µ0 = law(ξ) ∈P(Rd);

E

∫ T

0
|a(t,Xt)|+ |b(t,Xt)|dt <∞;

and for each f ∈ C1,2
t,x , the process

t 7→Mf
t := f(t,Xt)− f(0, X0)−

∫ t

0
[∂s + Ls]f(s,Xs)ds

is a Ft−martingale. Or equivalently, a probability measure P on C([0, T ];Rd) is a solution
to MP associated to (L, µ0) or martingale solution of (1.6), if the above relations hold for
(C([0, T ];Rd),B,Bt,P, ω).

The following definition of Stochastic Lagrangian Flow is taken from [7].

Definition 2.3 (SLF). Given a measure m0 = ρ0λd ∈M (Rd) with ρ0 ∈ L∞, we say that a mea-
surable family of probability measures {Px}x∈Rd on C([0, T ];Rd) is a m0−Stochastic Lagrangian
Flow (m0−SLF) associated with L, if:

(i) for m0−a.e. x, Px is a martingale solution of the SDE (1.6) starting from x;
(ii) for any t ∈ [0, T ]

mt :=

∫
Rd

Px ◦ ω−1
t m0(dx)� λd,

and mt = ρtλd with ρt ∈ L∞ uniformly in t ∈ [0, T ].

And the λd−SLF is abbreviated as SLF.

Our main assumptions on the coefficients a and b are following:

Assumption 1. There are constants Λ > 1, κ > 0 p1, p2, q1, q2 ∈ [2,∞) and d
pi

+ 2
qi
< 2 (i = 1, 2)

such that

Λ−1|ξ|2 6 aijξiξj 6 Λ|ξ|2; (A1)

‖b‖L̃p1q1 (T )
+ ‖∂jaij‖L̃p1q1 (T )

+ ‖(∇ · V )−‖L̃p2q2 (T )
6 κ; (A2)

∂ta
ij ∈ L∞(T ). (A3)

The following Theorem is our first main result:

Theorem 2.4. Under Assumption 1,

(1) for any m0 = ρ0λd ∈ M (Rd) with ρ0 ∈ L∞, then there is a unique µ0−SLF associated
with L;

(2) for any µ0 ∈P(Rd) with bounded density with respect to λd, there is a unique martingale
solution P associated to (L, µ0) such that µt = P◦ω−1

t � λd and µt = ρtλd with ρt ∈ L∞
uniformly in t.

If u is a Leray-Hopf solution to 3D-NS equation with initial condition u(0) ∈ L2(R3), then
u ∈ L∞([0, T ];L2) ∩ L2([0, T ];H1), by Sobolev embedding and interpolation theorem,

u ∈ Lpq(T ), 3
p + 2

q = 3
2 < 2, p, q ∈ [2,∞].

Thus, Theorem 2.4 implies the following corollary:
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Corollary 2.5. Suppose u is the Leray-Hopf weak solution to 3D-NS equation with L2 initial
datum, then

(1) for m0 ∈M (R3) with a bounded density with respective to λ3, there is a unique m0−SLF
associated with (1.4);

(2) for any µ0 ∈ P(R3) with bounded density with respect to λ3, (1.4) admits a unique
martingale solution P such that µt = P ◦ ω−1

t � λ3 and µt = ρtλ3 with ρt ∈ L∞

uniformly in t.

From the probabilistic view, both results above are about the weak(martingale) solutions of

SDE. Notice that a Leray-Hopf solution u of 3D-NS equation with L2 initial datum is in H1,2
2 (T ).

Our next main result show that the Sobolev regularity of u leads a sort of well-posedness of (1.4)
in strong sense. Before presenting our statement of second theorem, let us give the definition
of almost everywhere Stochastic Flow mentioned by Zhang in [23, Definition 2.1], which can be
regard as the “strong” version of SLF.

Definition 2.6 (AESF). Suppose (Ω,F ,Ft,P) is a filtered probability space satisfying the com-
mon conditions and W is a standard d−dimensional Brownian motion on it. Given a mea-
sure m0 = ρ0λd ∈ M (Rd) with ρ0 ∈ L∞, we say a Rd−valued measurable stochastic field on
[0, T ]× Ω× Rd, Xt(ω, x), is a m0−almost everywhere Stochastic Flow (AESF) of (1.6) if

(1) {Px}x∈Rd := {P ◦X−1(x)}x∈Rd is a m0−SLF corresponding to L;

(2) for m0−almost all x ∈ Rd, Xt(x)is a continuous Ft−adapted process satisfying that

Xt(x) = x+

∫ t

0
b(s,Xs(x))ds+ σ(s,Xs(x))dWs, ∀t ∈ [0, T ].

In order to get the well-posedness of almost everywhere Stochastic Flow, we need a stronger
assumption on the coefficients.

Assumption 2. The coefficients b and σ satisfy

b ∈ L1([0, T ],W 1,1
loc (Rd)), σ ∈ L2([0, T ];W 1,2

loc (Rd)). (A4)

Theorem 2.7. Under Assumption 1 and 2,

(1) for any m0 = ρ0λd ∈M (Rd) with ρ0 ∈ L∞, equation (1.6) admits a unique m0−AESF;
(2) if ξ ∈ F0 is a random variable with bounded density, then equation (1.6) has a unique

strong solution Xt such that the density of P ◦X−1
t is uniformly bounded in t.

We should emphasize that a similar result had been stated in [11] under the assumptions that

σ = I, ∇ · b = 0, b ∈ H1,r
1 ∩ Lpq with r > 1, dp + 2

q < 2. Their argument essentially follows Zhang

[23]. In this paper, we will give a slight different proof based on some techniques from [19], [23]
and [2]. Theorem 2.7 implies

Corollary 2.8. If d = 3,

(1) for any m0 = ρ0λd ∈M (Rd) with ρ0 ∈ L∞, there is a unique m0−AESF corresponding
to each Leray-Hopf solution of 3D-NS equation;

(2) for any random variable ξ ∈ F0 with bounded density, equation (1.4) admits a unique
strong solution Xt satisfying P ◦X−1

t ∈ L∞(T ).

3. Kolmogorov and Fokker-Planck Equation

In this section, we study the Fokker-Planck Equation associated to (1.6) and establish the
well-posedness of (FPE2) in L∞ setting.

Here and in the sequel, we always assume d > 2, (pi, qi, ei) ∈ (1,∞)2 × (0, 1) and

d

pi
+

2

qi
= 2− ei. (3.1)
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For any (pi, qi) given above, we define p∗i , q
∗
i ∈ [2,∞) by relations

1

pi
+

2

p∗i
= 1,

1

qi
+

2

q∗i
= 1, (3.2)

which implies that

d

pi
+

2

qi
= 2− ei ⇔

d

p∗i
+

2

q∗i
=
d+ ei

2
. (3.3)

Let I be an open interval of R and D be a domain in Rd, Q := I ×D. Consider the following
PDE:

∂tu−∇ · (a∇u) +∇ · (V u) + cu = f in Q. (3.4)

Definition 3.1. We say u ∈ Ṽ (Q) is a subsolution(supersolution) to (3.4) if for any almost
every t ∈ I, ϕ ∈ C∞c (Q) with ϕ > 0,∫

D
u(t)ϕ(t) +

∫
Dt

[
− u∂tϕ+ (a∇u) · ∇ϕ− uV · ∇ϕ+ cuϕ

]
6 (>)

∫
Dt

fϕ, (3.5)

where Dt = (I ∩ (−∞, t])×D.

3.1. A maximum principle. We first prove an energy inequality for the subsolution of (3.4),
which is crucial for the De-Giorgi iteration technique.

We need the following assumption:

‖V ‖L̃p1q1 + ‖(1
2∇ · V + c)−‖L̃p2q2 + ‖(∇ · V + c)−‖L̃p2q2 6 κ

′. (A2’)

Lemma 3.2 (Energy inequality). Let 0 < ρ < R 6 1, k > 0, I ⊆ R, Q = I × BR. Suppose
u ∈ V (Q) is a locally bounded weak subsolution to (3.4) and a, V, c satisfy (A1), (A2’). η is a
cut off function in x, compactly supported in BR, η(x) ≡ 1 in Bρ and |∇η| 6 2(R−ρ)−1. Then,
for any uk := (u− k)+ and almost every s, t ∈ I with s < t, we have(∫

D
u2
kη

2

)
(t)−

(∫
D
u2
kη

2

)
(s) +

∫ t

s

∫
D
|∇(ukη)|2

6
C

(R− ρ)2

(
‖uk‖2L2(Ats(k)) +

3∑
i=1

‖uk‖2
L
p∗
i
q∗
i

(Ats(k))

)
+ C

(
k2 + ‖f‖2L̃p3q3

) 3∑
i=2

‖1Ats(k)‖2
L
p∗
i
q∗
i

,

(3.6)

where Ats(k) = {u > k} ∩ [s, t]×BR and the constant C only depends on d,Λ, κ and (pi, qi).

Proof. We claim that : for almost every s, t ∈ I with s < t, it holds that

1

2

(∫
D
u2
kη

2

)
(t)− 1

2

(∫
D
u2
kη

2

)
(s) +

∫ t

s

∫
D
∇uk · a∇(ukη

2)

6
∫ t

s

∫
D

(uk + k)V · ∇(ukη
2)−

∫ t

s

∫
D
c(uk + k)ukη

2 +

∫ t

s

∫
D
fukη

2.

(3.7)

Indeed, if [t, t+ h] ⊆ I, we define the Steklov’s mean of u:

uh(t, x) :=
1

h

∫ h

0
u(t+ s, x)ds =

1

h

∫ t+h

t
u(s, x)ds, (3.8)

and define uhk := (uh−k)+. Suppose ϕ ∈ C∞c (Q) with ϕ > 0, by (3.5) and choosing h sufficiently
small, we get∫

I×D
−u∂tϕ−h + (a∇u) · ∇ϕ−h − (uV ) · ∇ϕ−h + (cu)ϕ−h 6

∫
I×D

fϕ−h.
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Notice that for sufficiently small h > 0, ∂tu
h ∈ L2

2(Q′), by the above inequality, we obtain∫
I×D

∂tu
hϕ+ (a∇u)h · ∇ϕ− (uV )h · ∇ϕ+ (cu)hϕ 6

∫
I×D

fhϕ. (3.9)

Now let ε > 0 sufficiently small such that [s− ε, t+ ε] b I, define

ζεs,t(r) =


ε−1(r + ε− s), r ∈ [s− ε, s)
1, r ∈ [s, t]

(1− ε−1(r − t)), r ∈ (t, t+ ε]

0, I\[s− ε, t+ ε]

Let ϕ = uhkη
2 · ζεs,t, integration by parts yields∫

I×D
∂tu

hϕ =
1

2

∫
I×D

∂t[(u
h
k)2]η2 · ζεs,t =

1

2

∫
I×D

∂t[(u
h
kη)2 · ζεs,t]−

1

2

∫
I×D

(uhkη)2(ζεs,t)
′

=
1

2ε

∫ t+ε

t

∫
D

(uhkη)2 − 1

2ε

∫ s

s−ε

∫
D

(uhkη)2.

By standard approximation argument one can see that (3.9) still holds for ϕ = uhkη
2 · ζεs,t(h is

sufficiently small). Thus,

1

2ε

∫ t+ε

t

∫
D

(uhkη)2 − 1

2ε

∫ s

s−ε

∫
D

(uhkη)2

+

∫
I×D

[
(a∇u)h · ∇(uhkη

2)ζεs,t − (uV )h · ∇(uhkη
2)ζεs,t + (cu)h(uhkη

2)ζεs,t

]
6
∫
I×D

fh(uhkη
2)ζεs,t.

Letting h→ 0 and then ε→ 0, by Lebesgue’s dominated convergence theorem and differentiation
theorem, we obtain that for almost every s, t ∈ I,

1

2

(∫
D
u2
kη

2

)
(t)− 1

2

(∫
D
u2
kη

2

)
(s) +

∫ t

s

∫
D
∇uk · a∇(ukη

2)

6
∫ t

s

∫
D
uV · ∇(ukη

2)−
∫ t

s

∫
D
cu ukη

2 +

∫ t

s

∫
D
fukη

2.

Notice that u · 1{u>k} = (uk + k)1{u>k}, we complete the proof for (3.7).

For almost every s, t ∈ I, using integration by parts, we get∫ t

s

∫
D

(uk + k)V · ∇(ukη
2) =

1

2

∫ t

s

∫
D
η2V · ∇(u2

k) + 2

∫ t

s

∫
D
u2
kηV · ∇η

+ k

∫ t

s

∫
D
η2V · ∇uk + 2k

∫ t

s

∫
D
ukηV · ∇η

=−
∫ t

s

∫
D
u2
kηV · ∇η −

1

2

∫ t

s

∫
D
∇ · V u2

kη
2 + 2

∫ t

s

∫
D
u2
kηV · ∇η

− 2k

∫ t

s

∫
D
ukηV · ∇η − k

∫ t

s

∫
D
∇ · V ukη2 + 2k

∫ t

s

∫
D
ukηV · ∇η

=

∫ t

s

∫
D
u2
kηV · ∇η −

1

2

∫ t

s

∫
D
∇ · V u2

kη
2 − k

∫ t

s

∫
D
∇ · V ukη2.

(3.10)

8
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Combing (3.7), (3.10), (A1) and using Hölder’s inequality, we obtain

1

2

(∫
D
u2
kη

2

)
(t)− 1

2

(∫
D
u2
kη

2

)
(s) +

1

Λ

∫ t

s

∫
D
|η∇uk|2

(A1)

6
1

2

(∫
D
u2
kη

2

)
(t)− 1

2

(∫
D
u2
kη

2

)
(s) +

∫ t

s

∫
D
η2∇uk · a∇uk

(3.7),(3.10)

6 − 2

∫ t

s

∫
D
ukη∇η · (a∇uk) +

∫ t

s

∫
D
u2
kηV · ∇η −

∫ t

s

∫
D

(
1
2∇ · V + c

)
u2
kη

2

− k
∫ t

s

∫
D

(∇ · V + c)ukη
2 +

∫ t

s

∫
D
fukη

2

(A1)

6 2Λ

∫ t

s

∫
D
|η∇uk| · |uk∇η|+

∫ t

s

∫
D
u2
k|V | · |∇η|+ k2

∫ t

s

∫
D

(∇ · V + c)−η2

+

∫ t

s

∫
D

[
(1

2∇ · V + c)− + (∇ · V + c)−
]
u2
kη

2 +

∫ t

s

∫
D
fukη

2.

For any δ > 0, by Hölder’s inequality, (3.2) and (A2’), we have

2Λ

∫ t

s

∫
D
|η∇uk| · |uk∇η| 6 δ

∫ t

s

∫
D
|η∇uk|2 + 4Λ2δ−1(R− ρ)−2‖uk‖2L2(Ats(k)),

where Ats(k) = {u > k} ∩ [s, t]×BR;∫ t

s

∫
D
u2
k|V | · |∇η| 6 2(R− ρ)−1κ′‖uk‖2

L
p∗1
q∗1

(Ats(k))
;

k2

∫ t

s

∫
D

(∇ · V + c)−η2 6 k2 κ′‖1Ats(k)‖2
L
p∗2
q∗2

;

∫ t

s

∫
D

[
(1

2∇ · V + c)− + (∇ · V + c)−
]
u2
kη

2 6 2κ′‖uk‖2
L
p∗2
q∗2

(Ats(k))
;

∫ t

s

∫
D
fukη

2 6 ‖f‖L̃p3q3 ‖uk‖Lp
∗
3
q∗3

‖1Ats(l)‖Lp
∗
3
q∗3

6 ‖f‖2L̃p3q3
‖1Ats(k)‖2

L
p∗3
q∗3

+ ‖uk‖2
L
p∗3
q∗3

(Ats(k))
.

Choosing δ = (2Λ)−1 and combining the above inequalities, we get(∫
D
u2
kη

2

)
(t)−

(∫
D
u2
kη

2

)
(s) +

∫ t

s

∫
D
|∇(ukη)|2

6C(R− ρ)−2

(
‖uk‖2L2(Ats(k)) +

3∑
i=1

‖uk‖2
L
p∗
i
q∗
i

(Ats(k))

)
+ C

(
k2 + ‖f‖2L̃p3q3

) 3∑
i=2

‖1Ats(k)‖2
L
p∗
i
q∗
i

,

where C only depends on d,Λ, κ′ and (pi, qi).
�

From now no, we assume Q = I ×D = (0, T )× Rd. Using De Giorgi iteration, we will prove
a global L∞ estimate for the solutions to (3.4). A similar approach can be found in [10].

We need the following elementary lemma.

Lemma 3.3. Suppose {yj}j∈N is a nonnegative nondecreasing real sequence,

yj+1 6 NC
jy1+ε
j

9
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with ε > 0 and C > 1. Assume

y0 6 N
−1/εC−1/ε2 ,

then yj → 0 as j →∞.

The following maximum principle is crucial.

Theorem 3.4 (Global maximum principle). Assume u ∈ Ṽ 0(T ) is a locally bounded weak
subsolution to (3.4), u+(0) ∈ L∞(Rd) and V, c satisfy (A2’), then there is a constant C only

depends on d,Λ, κ′, T and (pi, qi) such that for any f ∈ L̃p3
q3 (T ),

‖u‖
Ṽ (T )

+ ‖u+‖L∞(T ) 6 C
(
‖u+(0)‖L∞ + ‖f‖L̃p3q3 (T )

)
. (3.11)

Proof. Take R = 1, ρ = 1
2 in Lemma 3.2 and let η be the same function there. Define ηx(·) :=

η(· − x) and Qτ,x := (0, τ ]×B1(x).
Step 1: choose k > K0 := ‖u+(0)‖L∞ + ‖f‖L̃p3q3 (T )

, by (3.6) and letting s ↓ 0, we have

sup
t∈[0,τ ]

(∫
B1(x)

u2
kη

2
x

)
(t) +

∫ τ

0

∫
B1(x)

|∇(ukηx)|2

6C

(
‖uk‖2L2(Qτ,x) +

3∑
i=1

‖uk‖2
L
p∗
i
q∗
i

(Qτ,x)

)
+ Ck2

3∑
i=2

‖1A(x,k)‖2
L
p∗
i
q∗
i

,

(3.12)

where τ ∈ (0, T ) and A(x, k) := Qτ,x ∩ {u > k}.
Let η̃x(·) = η( ·−x2 ), 1

p̄i
= 1

p∗i
− ei

2d+4 , 1
q̄i

= 1
q∗i
− ei

2d+4 . By (3.3), we have d
p̄i

+ 2
q̄i

= d
2 and

Lp̄iq̄i (τ) ⊆ V (τ), so Hölder’s inequality yields,

‖uk‖Lp
∗
i
q∗
i

(Qτ,x)
6C‖ukη̃x‖Lp̄iq̄i (τ)

|Qτ,x|
ei

2d+4

6C‖ukη̃x‖V (τ)τ
ei

2d+4 6 Cτ
ei

2d+4 ‖uk‖Ṽ (τ)
.

(3.13)

Obviously,

‖uk‖L2
2(Qτ,x) 6 Cτ

1
2 ‖uk‖Ṽ (τ)

.

By above estimates and (3.12), we get

‖uk‖2Ṽ (τ)
6Cd sup

x∈Rd
‖ukηx‖2V (τ)

6Cτ δ‖uk‖2Ṽ (τ)
+ Ck2

3∑
i=2

sup
x∈Rd

‖1A(x,k)‖2
L
p∗
i
q∗
i

,

where δ = mini{ ei
d+2}. By choosing τ = (2C)−δ

−1
, we get

‖uk‖2Ṽ (τ)
6 Ck2

3∑
i=2

sup
x∈Rd

‖1A(x,k)‖2
L
p∗
i
q∗
i

. (3.14)

Now let p̃i = (d + ei)p
∗
i /d, q̃i = (d + ei)q

∗
i /d, then by (3.3), d

p̃i
+ 2

q̃i
= d

2 , so Lp̃iq̃i (τ) ⊆ V (τ). For

any h > k, since A(x, h) ⊆ {uk > h− k} ∩Qτ,x, by Chebyshev’s inequality, Hölder’s inequality
10
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and (3.14), we get

‖1A(x,h)‖Lp
∗
i
q∗
i

6 (h− k)−1‖uk‖Lp
∗
i
q∗
i

(Qτ,x)
6 (h− k)−1‖uk‖Lp̃iq̃i (Qτ,x)

‖1A(x,k)‖L(d+ei)p
∗
i
/ei

(d+ei)q
∗
i
/ei

6(h− k)−1‖ukη̃x‖Lp̃iq̃i (τ)
‖1A(x,k)‖

ei
d+ei

L
p∗
i
q∗
i

6 C(h− k)−1‖ukη̃x‖V (τ)‖1A(x,k)‖
ei
d+ei

L
p∗
i
q∗
i

6C(h− k)−1‖uk‖Ṽ (τ)
‖1A(x,k)‖

ei
d+ei

L
p∗
i
q∗
i

(3.14)

6 C
k

h− k

(
3∑
i=2

sup
x∈Rd

‖1A(x,k)‖Lp
∗
i
q∗
i

)
‖1A(x,k)‖

ei
d+ei

L
p∗
i
q∗
i

6C1
k

h− k

(
3∑
i=2

sup
x∈Rd

‖1A(x,k)‖Lp
∗
i
q∗
i

)1+ε

(∀x ∈ Rd),

(3.15)

where ε = mini{ ei
d+ei
} and C1 only depends on d,Λ, κ′ and (pi, qi). Let N > 1 be a number will

be determined later, define kj := NK0(2− 2−j) (j ∈ N) and

yj :=

3∑
i=2

sup
x∈Rd

‖1A(x,kj)‖Lp
∗
i
q∗
i

.

By (3.15), we have

yj+1 6 8C12jy1+ε
j .

Thus, by Lemma 3.3, if

3∑
i=2

sup
x∈Rd

‖1A(x,NK0)‖Lp
∗
i
q∗
i

= y0 6 (8C1)−1/ε2−1/ε2 , (3.16)

then limj→∞ yj = 0, i.e. u+ 6 2NK0 almost everywhere. Indeed, by (3.15), for any x ∈ Rd,

‖1A(x,NK0)‖Lp
∗
i
q∗
i

6
C1

N − 1

(
3∑
i=2

sup
x∈Rd

‖1A(x,K0)‖Lp
∗
i
q∗
i

)1+ε

6
C1

N − 1

(
3∑
i=2

sup
x∈Rd

|Qτ,x|
1
qi

)1+ε

6 21+εC1/(N − 1),

which implies y0 6 22+εC1/(N − 1). Let N = 1 + 2
100
ε2 (C1)1+ 1

ε , then we have (3.16). Thus,
there is a constant C2 depending only on d,Λ, κ′ and (pi, qi) such that u+(t, x) 6 C2K0 =
C2(‖u+(0)‖L∞ + ‖f‖L̃p3q3 ) for almost every (t, x) ∈ [0, τ ]×Rd. Since C2 does not depends on the

initial value of u, we obtain that ‖u+‖L∞(T ) 6 C2([T/τ ] + 1)K0.
Step 2: choose k = 0, by (3.6) and similar argument in Step 1, we can obtain that for any

τ ∈ [0, T ],

‖u+‖2L̃2
∞(τ)

+ sup
x∈Rd

‖∇(u+ηx)‖2L2(τ) 6 ‖u
+(0)‖2

L̃2 + Cτ δ‖u+‖2
Ṽ (τ)

+ C‖f‖2L̃p3q3 (τ)
,

and the constant C only depends on d,Λ, κ′ and (pi, qi). This yields

‖u+‖
Ṽ (T )

6 C
(
‖u+(0)‖L∞ + ‖f‖L̃p3q3 (T )

)
.

So we complete our proof. �

Next we give the precise definition of weak solution to Cauchy problem.
11
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Definition 3.5. u ∈ Ṽ 0(T ) is called a weak solution of equation{
∂tu−∇ · (a∇u) +∇ · (V u) + cu = f

u(0) = φ
(3.17)

in [0, T ]× Rd, if for any ϕ ∈ C∞c ([0, T ]× Rd) and almost every t ∈ [0, T ], it holds that∫
Rd
u(t)ϕ(t)−

∫
Rd
φϕ(0)

+

∫ t

0

∫
Rd

[
− u∂tϕ+ (a∇u) · ∇ϕ− uV · ∇ϕ+ cuϕ

]
=

∫ t

0

∫
Rd
fϕ.

(3.18)

3.2. Existence, uniqueness and stability. In this section, we will use the apriori estimate
(3.11) to prove the existence-uniqueness and stability of weak solutions for equation{

∂tu−∇ · (a∇u) +∇ · (V u) = f

u(0) = φ.
(3.19)

Theorem 3.6 (Existence-uniqueness). Under (A1) and (A2), for each f ∈ Lp3
q3 , φ ∈ L∞ there

exists a unique weak solution to (3.19) in Ṽ 0(T ) ∩ L∞(T ).

Proof. The proof is essentially the same as the one of [26, Theorem 2.3]. First of all, the
uniqueness is a direct consequence of (3.11). We prove the existence by weak convergence
method. Let

%n(x) := nd%(nx),

where 0 6 % ∈ C∞c (B1) with
∫
% = 1. an(t, x) := a(t, ·) ∗ %n(x), Vn(t, x) := V (t, ·) ∗ %n(x),

fn(t, x) := f(t, ·) ∗ %n(x) and φn = φ ∗ %n. By Proposition 4.1 of [26], we have

Vn ∈ Lq1([0, T ];C∞b (Rd)), fn ∈ Lq3([0, T ];C∞b (Rd)),
and

sup
n

(
‖Vn‖L̃p1q1 + ‖(∇ · Vn)−‖L̃p2q2 + ‖fn‖L̃p3q3 (T )

)
<∞. (3.20)

It is well known that the following PDE has a unique smooth solution un ∈ C([0, T ];C∞b (Rd)):
∂tun = ∇ · (an∇un)−∇ · (Vnun) + fn, un(0) = φn

holds in the distributional sense. In particular, for any ϕ ∈ C∞c ([0, T ]× Rd) and t ∈ [0, T ],∫
Rd
un(t)ϕ(t)−

∫
Rd
φnϕ(0) =

∫ t

0

∫
Rd
un∂tϕ

+

∫ t

0

∫
Rd
−(an∇un) · ∇ϕ+ unVn · ∇ϕ+ fnϕ.

(3.21)

Since

‖∂tun‖H̃−1,2
2 (T )

6 ‖∇ · (an∇un)−∇ · (Vnun) + fn‖H̃−1,2
2 (T )

6 C
(
‖an∇un‖L̃2

2(T )
+ ‖Vnun‖L̃2

2(T )
+ ‖fn‖H̃−1,2

2 (T )

)
6 C

(
‖an‖L∞‖un‖H̃1,2

2 (T )
+ ‖Vn‖L̃2

2(T )
‖un‖L∞(T ) + ‖fn‖L̃p3q3

)
6 C

(
‖un‖H̃1,2

2 (T )
+ ‖un‖L∞(T ) + ‖fn‖L̃p3q3 (T )

)
.

By Theorem 3.4, we get for any T > 0,

sup
n

(
‖un‖L∞(T ) + ‖un‖Ṽ (T )

+ ‖∂tun‖H̃−1,2
2 (T )

)
<∞. (3.22)

12
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Hence, by the fact that every bounded subset of Ṽ (T ) is relatively weak compact, there is a

subsequence(still be denoted by n) and ū ∈ Ṽ (T )∩L∞(T ) such that for any ϕ ∈ C∞c ([0, T ]×Rd)∫ t

0

∫
Rd
un∂tϕ+

∫ t

0

∫
Rd
−(an∇un) · ∇ϕ+ unVn · ∇ϕ+ fnϕ

→
∫ t

0

∫
Rd
ū∂tϕ+

∫ t

0

∫
Rd
−(a∇ū) · ∇ϕ+ ūV · ∇ϕ+ fϕ

(3.23)

and
‖ū‖L∞(T ) + ‖ū‖

Ṽ (T )
+ ‖∂tū‖H̃−1,2

2 (T )
<∞.

By Lions-Magenes lemma(cf. [17, Lemma 1.2, Chapter 3]), we obtain that ū ∈ C([0, T ]; L̃2(Rd)),
hence ū ∈ Ṽ 0(T ) ∩ L∞(T ). On the other hand, by (3.22) and Aubin-Lions lemma (cf. [14]),
there is a subsequence of n(still be denoted by n) such that (3.23) holds and

lim
n→∞

‖un − ū‖L2([0,T ]×BR) = 0, ∀R > 0.

It holds that for Lebesgue almost all (t, x) ∈ [0, T ]× Rd,
un(t, x)→ ū(t, x),

as n→∞ along an appropriate subsequence. Thus, for almost every t ∈ [0, T ],∫
Rd
ū(t)ϕ(t)−

∫
Rd
φnϕ(0)→

∫
Rd
ū(t)ϕ(t)−

∫
Rd
φϕ(0). (3.24)

Combing (3.21),(3.23) and (3.24), we obtain that for all ϕ ∈ C∞c ([0, T ]× Rd) and almost every
t ∈ [0, T ]∫

Rd
ū(t)ϕ(t)−

∫
Rd
φϕ(0) =

∫ t

0

∫
Rd
ū∂tϕ+

∫ t

0

∫
Rd
−(a∇ū) · ∇ϕ+ ūV · ∇ϕ+ fϕ,

i.e. ū solves (3.19). �

Theorem 3.7. (Stability) Let (pi, qi) ∈ [2,∞) with d
pi

+ 2
qi
< 2, where i = 1, 2, 3, T > 0. For

any n ∈ N ∪ {∞} =: N∞, let bn, fn, φn satisfy

sup
n∈N∞

(
‖Vn‖L̃p1q1 + ‖(∇ · Vn)−‖L̃p2q2 + ‖fn‖L̃p3q3 (T )

+ ‖φn‖L∞
)
<∞.

For n ∈ N∞, let un ∈ Ṽ 0(T ) ∩ L∞(T ) be the unique weak solutions of (3.19) associated with
coefficients (Vn, fn, φn) with initial value un(0) = φn. Assume that for any ϕ ∈ Cc(Rd),

lim
n→∞

(
‖(Vn − V∞)ϕ‖Lp1q1 (T ) + ‖(fn − f∞)ϕ‖Lp3q3 (T ) + ‖φn − φ∞‖L∞

)
= 0.

Then it holds that for Lebesgue almost all (t, x) ∈ [0, T ]× Rd,
lim
n→∞

un(t, x) = u∞(t, x).

The proof of above theorem is essentially same with Theorem 3.6, so we omit its proof here.

Let us also mention the following Kolmogorov’s backward equation{
∂tu− Lu = ∂tu− aijt ∂iju− bit∂iu = f

u(0) = φ,

which can be rewritten as{
∂tu−∇ · (a∇u)−∇ · (V u) +∇ · V u = f,

u(0) = φ.
(KE)

13
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If V ∈ L̃p1
q1 (T ), (∇ · V )− ∈ L̃p2

q2 (T ), due to Theorem 3.4, any subsolution u ∈ Ṽ 0(T ) satisfies
(3.11). Using similar argument in Theorem 3.6(see also [26]), we have

Proposition 3.8. Assume a, b, V satisfy (A1) and (A2), then for each f ∈ L̃p3
q3 (T ) and φ ∈ L∞

equation (KE) admits a unique weak solution u ∈ Ṽ 0(T ) ∩ L∞(T ).

In order to apply the theory on SLF developed in [7] and [18], we first need to extend the
uniqueness result in Theorem 3.6 to larger space L∞(T ).

We first give a standard lemma.

Lemma 3.9. Suppose F ∈ L̃2(T ), then the following PDE:{
∂tu−∇ · (a∇u) = ∇ · F in (0, T )× Rd,

u(0) = φ ∈ L̃2.
(3.25)

admits a unique weak solution u ∈ Ṽ 0(T ) and

‖u‖
Ṽ (T )

6 ‖u(0)‖
L̃2 + C‖F‖L̃2

2(T )
.

Proof. The proof is quite standard, here we prove the apriori estimate for reader’s convenience.
Take test function ϕ = uη2

x, where ηx is the same cut off function in the proof of Theorem 3.4.
By basic calculations and Hölder’s inequality, we obtain that for almost every s, t ∈ [0, T ],(∫

Rd
u2η2

x

)
(t)−

(∫
Rd
u2η2

x

)
(s) +

∫ t

s

∫
Rd
|∇(uηx)|2

6C
∫ t

s

∫
Rd

(u∇ηx)2 + C

∫ t

s

∫
Rd
F 2(|ηx|2 + |∇ηx|2).

Thus,

‖u‖2
Ṽ (τ)
6 sup
x∈Rd

[
sup
t∈[0,τ ]

(∫
Rd
u2η2

x

)
(t) +

∫ τ

0

∫
Rd
|∇(uηx)|2

]

6‖u(0)‖2
L̃2 + C‖F‖2L̃2

2(τ)
+ C

∫ τ

0
‖u‖2L̃∞2 (t)

dt.

Gronwall’s inequality yields

‖u‖
Ṽ (T )

6 ‖u(0)‖
L̃2 + C‖F‖L̃2

2(T )
.

�

Now we extend the uniqueness result of Theorem 3.6 to larger space L∞(T ). Our proof mainly
follows [7, Theorem 4.3].

Theorem 3.10. Suppose a, b satisfy (A1), (A2), for any φ ∈ L∞, (FPE2) has a unique solution

u ∈ Ṽ 0(T ) ∩ L∞(T ). If moreover, a satisfies (A3), then uniqueness also holds in L∞(T ). In
particular, any L∞(T ) distributional solution of (FPE2) with bounded initial value belongs to

Ṽ 0(T ) ∩ L∞(T ).

Proof. Suppose u ∈ L∞(T ) is a distributional solution to (FPE2), then

∂tu−∇ · (a∇u) = −∇(V u), u(0) ∈ L∞

Notice that V u ∈ L̃2(T ), by Lemma 3.9, there exists ū ∈ Ṽ 0(T ) solves the above equation,

with the same initial condition. Let us define g := ū − u, Ag := ∇ · (a∇g). g ∈ L̃2(T ) is a
distributional solution to equation

∂tg −Ag = ∂tg −∇ · (a∇g) = 0, g(0) = 0. (3.26)
14
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Here ∇ · (a∇g) should be read by ∂ij(a
ijg) + ∂i(∂ja

ijg). Assume w ∈ H̃1,2
2 (T ) solves

λw −Aw = λw −∇ · (a∇w) = g, λ > 0. (3.27)

in [0, T ]× Rd. Multiple the above equation by wη2
x, integrate on [0, t]× Rd obtaining

λ

∫ t

0

∫
Rd
w2η2

x +
1

Λ

∫ t

0

∫
Rd
|∇wηx|2 6C

∫ t

0

∫
Rd

(w∇ηx)(∇wηx) +

∫ t

0

∫
Rd

(gηx)(wηx)

6C‖w‖2L̃2(t)
+

1

2Λ
‖∇wηx‖L2(t) + ‖g‖2L̃2(t)

,

this yields that there is a constant λ0 > 0 such that for any λ > λ0,

λ‖w‖L̃2(T )
+ ‖∇w‖L̃2(T )

6 C‖g‖L̃2(T )
.

This estimate implies that for any λ > λ0, there is a unique solution w =: Gλg ∈ H̃1,2
2 (T ), here

Gλ is the solution map of (3.27). It is also easy to verify that Gλ is also bounded from L2(T )

to H1,2
2 (T ) and

λ‖Gλg‖L2(T ) + ‖∇Gλg‖L2(T ) 6 C‖g‖L2(T ). (3.28)

By (3.26), we have

0 = ∂tG
−1
λ w −AG−1

λ w = G−1
λ (∂tw −Aw) + [∂t, G

−1
λ ]w,

thus formally

∂tw −Aw = Gλ{[G−1
λ , ∂t]w} = Gλ[∇ · (∂ta∇w)] (3.29)

in the sense of distribution. One can find the rigurous proof for (3.29) in [7]. Like before,
multiplying (3.29) by wη2

x, integrating on [0, t] × Rd, using Hölder’s inequality and (3.28), we
obtain

1

2

∫
Rd
|w(t)ηx|2 +

1

Λ

∫ t

0

∫
Rd
|∇w · ηx|2

6
∫ t

0

∫
Rd
∇ · (∂ta∇w) [Gλ(wη2

x)] = −
∫ t

0

∫
Rd
∂ta∇w · ∇[Gλ(wη2

x)]

6‖∂ta‖L∞
∫ t

0

∑
z∈Zd/2

∫
B 1

2
(z)
∇w · ∇[Gλ(wη2

x)]

6C
∑

z∈Zd/2

∫ t

0

∫
B 1

2
(z)
|∇w · ηz|2

1/2∫ t

0

∫
B 1

2
(z)
|∇[Gλ(wη2

x)]|2
1/2

6C

(
sup

z∈Zd/2

∫ t

0

∫
Rd
|∇w · ηz|2

)1/2

·
(∫ t

0

∫
Rd
|∇[Gλ(wη2

x)]|2
)1/2

6C

(
sup
x∈Rd

‖∇(wηx)‖L2
2(t)

)
‖wη2

x‖L2
2(t)

6
1

2Λ
sup
x∈Rd

‖∇(wηx)‖2L2
2(t) + C‖w‖2L̃2

2(t)
.

In the first inequality, we use the fact that Gλ is a symmetric operator in L2 space. Taking
supermum over x ∈ Rd on the left side of above inequalities, we get

‖w(t)‖
L̃2 6 C

∫ t

0
‖w(s)‖2

L̃2ds, t ∈ [0, T ].

Gronwall’s inequality yields w ≡ 0 and hence g ≡ 0. �
15



Guohuan Zhao

4. Proof of Main results

Before proving our main results, let us list some conclusions in [26] and [18](see also [7]).

Proposition 4.1 (cf. [26]). Assume a, b satisfy (A1) and (A2), then for each µ0 ∈ P(Rd),
there exists at least one martingale solution associated with (L, µ0), say P, which satisfies the
following Krylov’s type estimate: for any p, q ∈ [2,∞) with d

p + 2
q < 2, there exist θ = θ(p, q) > 0

and a constant C > 0 such that for all 0 6 t0 < t1 6 T and f ∈ C∞c (Rd+1),

EP
(∫ t1

t0

f(t, ωt)dt
∣∣∣Bt0) 6 C(t1 − t0)θ‖f‖L̃pq(T )

. (4.1)

Define

L+ :=
{
µ : [0, T ] 3 t 7→ µt ∈P(Rd) :

∫ T

0

∫
Rd

(|a(t, x)|+ |b(t, x)|)µt(dx)dt <∞

µt = ρtλd, ρt ∈ L∞ uniformly for t ∈ [0, T ],

and for any ϕ ∈ Cb(Rd), t 7→
∫
Rd
ϕdµt is continuous

}
.

The following two Propositions are consequences of [18, Theorem 2.5] and [18, Lemma 2.12]
respectively.

Proposition 4.2. Suppose {µt}t∈[0,T ] ∈ L+, then there exists P ∈P(C([0, T ];Rd)) which is a
solution to the MP associated to the diffusion operator L such that, for every t ∈ [0, T ], it holds
µt = P ◦ ω−1

t .

Proposition 4.3. Assume that forward uniqueness for the (FPE1) hold in the class L+ for
any initial time. Then, for any µ0 = ρ0λd ∈ P(Rd)with ρ0 ∈ L∞, the µ0−SLF is uniquely
determined µ0−a.e..

Lemma 4.4. Under Assumption 1, assume that µ0 = ρ0λd ∈ P(Rd) with ρ0 ∈ L∞, then
equation (FPE1) admits a unique solution in µ ∈ L+.

Proof. The uniqueness follows from Theorem 3.10, so we only need to show the existence. We
prove this by using probability method. Let an, Vn be the same functions in the proof of Theorem
3.6, then we can find a collection of probability measures {Pn}n∈N on C([0, T ];Rd) such that Pn
is the unique martingale solution associated to Ln := aijn ∂ij + bin∂i with initial data µ0. For any
stopping time τ , δ > 0 with τ + δ 6 T , thanks to (4.1), we have

sup
n∈N

EPn
∫ τ+δ

τ
|bn|(s, ωs)ds 6 Cδθ‖b‖L̃q1p1 (T )

.

Using above estimate and BDG inequality, we get

EPn
(

sup
06s6δ

|ωτ+s − ωτ |
)
6 EPn

∫ τ+δ

τ
|bn|(t, ωt)dt+ EPn

∣∣∣∣ sup
06s6δ

∫ τ+s

τ

√
2an(t, ωt)dWt

∣∣∣∣
6 C(δθ + δ1/2),

where C is independent of n. Thus by [25, Lemma 2.7], we obtain

sup
n

EPn
(

sup
|t−s|6δ

|ωt − ωs|1/2
)
6 C(δθ + δ1/2).

From this, by Chebyshev’s inequality, we derive that for any ε > 0,

lim
δ→0

sup
n

Pn
(

sup
|t−s|6δ

|ωt − ωs| > ε

)
= 0.

16
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Hence, {Pn} is tight in P(C([0, T ];Rd)). Suppose P is an limit point of {Pn}, then for each
t ∈ [0, T ], µnt := Pn ◦ ω−1

t ⇒ P ◦ ω−1
t =: µt, as n → ∞ along an appropriate subsequence.

For each n ∈ N, notice that ρnt (x) :=
dµnt
dλd

(x) is a distributional solution of (FPE2) with a, b, φ

replaced by an, bn, ρ0 and

sup
n

(
‖Vn‖L̃p1q1 + ‖(∇ · Vn)−‖L̃p2q2

)
<∞, Λ−1|ξ|2 6 aijn ξiξj 6 Λ|ξ|2.

By Theorem 3.7, we obtain that 0 6 ρnt (x) → ρt(x) for almost everywhere (t, x) ∈ [0, T ] × Rd,
where ρt is the unique solution to (FPE2)(with φ = ρ0) in class L∞(T )(or Ṽ 0(T ) ∩ L∞(T )).
Moreover,

‖ρ‖L∞(T ) 6 sup
n∈N
‖ρn‖L∞(T ) <∞.

Lebesgue’s dominated convergence theorem yields that for each f ∈ Cb(Rd) and almost every
t ∈ [0, T ], ∫

Rd
fρt = lim

n→∞

∫
Rd
fρnt = lim

n→∞

∫
Rd
fdµnt =

∫
Rd
fdµt.

Notice that the map [0, T ] 3 t 7→ µt ∈P(Rd) is continuous, so for any t ∈ [0, T ],

sup
‖f‖L1=1;

f∈Cb(Rd)

∫
Rd
fdµt 6 sup

‖f‖L1=1;

f∈Cb(Rd)

esssupt∈[0,T ]

∫
Rd
fρt 6 ‖ρ‖L∞(T ) 6 C.

Thus, µt = P ◦ ω−1
t ∈ L+. �

Proof of Theorem 2.4. (1). If m0 is a probability measure, then the uniqueness of m0−SLF is
a consequence of Lemma 4.4 and Proposition 4.3. For arbitrary m0 ∈ M (Rd), one can find a
probability measure µ0 such that µ0(dx) = ρ′(x)m0(dx) and 0 < ρ′ 6 C <∞, m0−a.e.. Notice
that each m0−SLF is a µ0−SLF, by the uniqueness of µ0−SLF and the fact m0 � µ0, we obtain
the uniqueness of m0−SLF.

For the existence, we only need to prove the case m0 = λd. Let %(x) = e−|x|
2/2. mk

0(dx) :=

%(x/k)dx ∈ M (Rd), µk0(dx) := (2πk2)−d/2%(x/k)dx ∈ P(Rd). The existence of µk0−SLF(or
mk

0−SLF) is a consequence of Proposition 4.2 and Lemma 4.4. Suppose {Pkx}x∈Rd is a mk
0−SLF,

notice that for any k, k′ ∈ N, λd � mk
0 � mk′

0 , by the uniqueness result proved above, we obtain
that Pkx = Px for all k ∈ N and a.e. x ∈ Rd. Thus, by the definition of mk

0−SLF, for each k,

mk
t :=

∫
Rd

Px ◦ ω−1
t mk

0(dx)

has a bounded density with respect to λd, say ρkt . m
k
t (dx) = ρkt (x)dx is the unique L+−solution

to (FPE1) with initial value mk
0(dx) = %(x/k)dx. By Theorem 3.4 and Theorem 3.10,

sup
k∈N

sup
t∈[0,T ]

‖ρkt ‖L∞ 6 C sup
k∈N
‖%(·/k)‖L∞ 6 C.

Hence, for any A ∈ B(Rd), t ∈ [0, T ],∫
Rd

Px ◦ ω−1
t (A) dx = lim

k→∞

∫
Rd

Pkx ◦ ω−1
t (A) %(x/k)dx

= lim
k→∞

mk
t (A) = lim

k→∞

∫
A
ρkt 6 Cλd(A),

which implies {Px}x∈Rd is also an SLF.

(2). Suppose {Px}x∈Rd is the SLF associated with L. For any µ0 ∈ P(Rd) with µ0 � λd,
P :=

∫
Px µ0(dx) is a martingale solution associated with (L, µ0).

17
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Suppose P is a a martingale solution associated with (L, µ0) and µt := P ◦ ω−1
t = ρtλd

with ρt ∈ L∞ uniformly in t. Let {Qx}x∈Rd ⊆ P(C([0, T ];Rd)) be the regular conditional
distribution given by ω0 = x. By [16, Theorem 6.1.2] for µ0−a.e. x, Qx is a martingale solution
to corresponding to (L, δx). Notice that∫

Rd
Qx ◦ ω−1

t µ0(dx) =

(∫
Rd
Qx µ0(dx)

)
◦ ω−1

t = P ◦ ω−1
t = µt,

we get {Qx}x∈Rd is a µ0−SLF. The uniqueness of P follows by the uniqueness of µ0−SLF. �

Remark 4.5. If m0(dx) = ρ0(x)dx ∈ M (Rd) with 0 < ρ0 6 C < ∞ and ρ0 ∈ C(Rd), by the
proof of Theorem 2.4, one can see that under Assumption 1, any m0−SLF is an SLF and vice
versa.

Before we give the proof of Theorem 2.7, we need state a lemma about the maximum functions.
One can find its proof in [23, Lemma 3.6] and [15].

Lemma 4.6. (i) Let f ∈ W 1,1
loc (Rd), %n(x) := nd%(x/n) ∈ C∞c (Rd) with

∫
% = 1. For almost

every x, y ∈ Rd with |x− y| 6
√
ε� 1,

|f(x)− f(y)|√
|x− y|2 + ε2

6 2d(F fε,n(x) + F fε,n(y)),

where F fε,n is a function depends on f , %, ε, n. And there is a constant C = C(ρ, d),∫
BR

F fε,n(x)dx 6 Cnd‖∇f‖L1(BR+1) + log ε−1 ‖∇ (fn − f)‖L1(BR+1) . (4.2)

(ii) For any p > 1, r,R > 0,∫
Br

(MRf(x))p dx 6 Cd,p

∫
Br+R

|f(x)|pdx (4.3)

Now we are on the point to prove Theorem 2.7. Instead of proving an stability result for
the approximation solutions of (1.6), we first prove the pathwise uniqueness of (1.6) if ξ has
a bounded density, then using an Yamada-Watanabe type argument(cf. [19]) we show the
existence of AESF.

Lemma 4.7. Suppose b, σ satisfy Assumption 2, ξ ∈ F0 is a random variable with bounded
density. Assume Xt, Yt are two strong solutions of (1.6) whose one dimensional distributions
have uniformly bounded densities, then we have X = Y a.s..

Proof. For any ε > 0, let φε be a increasing smooth function on [0,∞),

φε(s) =

{
s s ∈ [0, ε/2]

ε s ∈ [ε,∞)

and φ′ε(s) 6 C1[0,ε](s), φ
′′
ε(s) 6 Cε

−11[0,ε](s).

Φε(z) := log

(
1 +

φε(|z|2)

ε2

)
, Zt := Xt − Yt.

Then,

|∂iΦε(z)| =
∣∣∣∣ 2φ′ε(|z|2)zi
ε2 + φε(|z|2)

∣∣∣∣ 6 C1{|z|6
√
ε}√

ε2 + |z|2
,

|∂ijΦε(z)| =
∣∣∣∣ 2φ′ε(|z|2)δij
ε2 + φε(|z|2)

+
4φ′′ε(|z|2)zizj
ε2 + φε(|z|2)

− 4φ′2ε (|z|2)zizj
[ε2 + φε(|z|2)]2

∣∣∣∣ 6 C1{|z|6
√
ε}

ε2 + |z|2
.

18
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Denote τR := inf{t > 0 : |Xt| > R, |Yt| > R}. By Itô’s formula and Lemma 4.6,

EΦε (Zt∧τR) =

∫ t∧τR

0
E
[
∂iΦε (Zs) ·

(
bi (s,Xs)− bi (s, Ys)

)]
ds

+
1

2

∫ t∧τR

0
E∂ijΦε(Zs)

[
(σik(Xs)− σik(Ys)) · (σjk(Xs)− σjk(Ys))

]
ds

62E

∫ t∧τR

0

|b (s,Xs)− b (s, Ys)|1{|Xs−Ys|6√ε}√
ε2 + |Xs − Ys|2

ds

+ CE

∫ t∧τR

0

|σ(Xs)− σ(Ys)|2

ε2 + |Xs − Ys|2
ds

6CE

∫ t∧τR

0
[Fε,n(s,Xs) + Fε,n(s, Ys)]ds+

+ CE

∫ t∧τR

0
[M |∇σ|(s,Xs) +M |∇σ|(s, Ys)]2 ds =: I1(ε) + I2,

where Fε,n(s, x) = F
b(s)
ε,n (x) in Lemma 4.6. Let ρXt , ρ

Y
t be the density of Xt and Yt respectively,

then

I2 6C
∫ t∧τR

0
E
[
(MR|∇σ|(Xs))

2 + (MR|∇σ|(Ys))2
]

ds

6C
∫ t

0

∫
BR

[MR|∇σ|(s, x)]2
(
ρXs (x) + ρYs (x)

)
dxds

6C
∫ t

0

∫
B2R

|∇σ|2(s, x)dxds 6 C.

For I1(ε), by (4.2),

I1(ε) 6C
∫ t

0

∫
BR

Fε,n(s, x)(ρXs + ρYs )dxds

6Cnd
∫ t

0

∫
BR+1

∇b(s, x)dxds+ C| log ε|
∫ t

0

∫
BR+1

|∇b(s, x)−∇bn(s, x)|dxds.

Thus,

EΦε(Zt∧τR) 6 C(1 + nd‖∇b‖L1([0,t]×BR+1)) + C| log ε|‖∇b−∇bn‖L1([0,t]×BR+1).

By Chebyshev’s inequality,

P
(
|Xt − Yt| >

√
ε; t 6 τR

)
6E log

(
1 +

φε(|Zt∧τR |2)

ε2

)
/| log ε|

6C(1 + nd‖∇b‖L1([0,t]×BR+1))/| log ε|+ C‖∇b−∇bn‖L1([0,t]×BR+1).

Let ε→ 0, then n→∞ and then R→∞, we obtain

P (|Xt − Yt| > 0) = 0.

Notice X,Y are both continuous processes, we obtain that X = Y a.s..
�

Proof of Theorem 2.7. Let µ0(dx) = (2π)−d/2e−|x|
2/2dx. By Remark 4.5, we only need to prove

the existence and uniqueness of µ0−AESF associated to SDE (1.6). By Proposition 4.1, there
exists at least one weak solution(martingale solution), say (X,W ) to (1.6) with law(ξ) = µ0 and
ρt := dP ◦ X−1

t /dλd is uniformly bounded on [0, T ] × Rd. Suppose (X ′,W ′) is another weak
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solution to (1.6) and the one-dimensional distribution of X ′ is also uniformly bounded. Let
Q(x,w; dω) be the regular conditional distribution of X given (X0,W ) = (x,w) and Q′(x,w; dω′)
is defined as the some way. Denote Ω := C([0, T ];Rd)× C([0, T ];Rd)× C([0, T ];Rm),

Q(dω,dω′, dw) :=

∫
Rd
Q(x,w; dω)×Q′(x,w; dω′)µ0(dx) η(dw),

where η is the Wiener on C([0, T ];Rm). Let F 0
t = Bt(C([0, T ];Rd)) × Bt(C([0, T ];Rd)) ×

Bt(C([0, T ];Rm)), N be the collection of subsets of Ω with zero measure under Q and F :=
(F 0

T ∨N ), Ft :=
⋂
s>t(F

0
s

∨
N ). Suppose (ω, ω′, w) is the canonical process on the probability

space (Ω,F ,Q), then (ω,w) and (ω′, w) have the same distributions as (X,W ) and (X ′,W ′),
respectively. Moreover, w is an Ft−Brownian motion under Q(see [8, Lemma 1.2, Chapter IV]).
In the probability space (Ω,F ,Q), (ω,w) and (ω′, w) are two solutions of (1.6), and Q ◦ ω−1

t ,

Q◦ω′t
−1 both enjoy uniformly bounded density. Thus, pathwise uniqueness yields Q(ω = ω′) = 1,

which implies

Q(x,w; ·)×Q′(x,w; ·)(ω = ω′) = 1, µ0 × η − a.s. (x,w).

Hence, there exists a measurable map ψ(x,w) such that for µ0 × η−a.s. (x,w),

Q(x,w; {ω = ψ(x,w)}) = Q′(x,w; {ω′ = ψ(x,w)}) = 1,

i.e.

Q(x,w;B) = 1B(ψ(x,w)), ∀B ∈ B(C([0, T ];Rd)).
Moreover, for a.e. x, the map w 7→ ψ(x,w) is Bt(C([0, T ];Rm))

η
/Bt(C([0, T ];Rd))−measurable(see

[8, Lemma 1.1, Chapter IV]). Recalling that Q(x,w; ·) is the the regular conditional probability
of ω given (ω0 = x,w), so

∫
Q(x,w; ·)η(dw) is the regular conditional probability of ω given

ω0 = x. Notice that (Ω,Q, ω) is a martingale solution to (1.6) with initial distribution µ0, by
[16, Theorem 6.1.2], for a.e. x the probability measure

B(C([0, T ];Rd)) 3 B 7→
∫
Q(x,w;B)η(dw) =

∫
1B(ψ(x,w))η(dw) = η ◦ ψ−1(x, ·)(B)

is a martingale solution to (1.6) with initial data ξ = x. Thus, given a filtered probability space
(Ω,F ,Ft,P) and a standard Brownian motion W on it, for a.e. x ∈ Rd,

(X(x) := ψ(x,W ),W )

is a strong solution to (1.6) with initial datum ξ = x. Moreover, for any A ∈ B(Rd)

µt(A) :=

∫
Rd

P ◦X−1
t (x)(A)µ0(dx)

=

∫
Rd
µ0(dx)

∫
Q(x,w;ωt ∈ A)η(dw) 6 Cλd(A).

Thus, {X(x)}x∈Rd is a µ0−AESF. The proof for uniqueness of AESF is essentially the same
with the one of Lemma 4.7, so we leave it to the reads. �
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