A MARKOV PROCESS FOR AN INFINITE INTERACTING PARTICLE
SYSTEM IN THE CONTINUUM

YURI KOZITSKY AND MICHAEL ROCKNER

ABSTRACT. An infinite system of point particles placed in R? is studied. Its constituents perform
random jumps (walks) with mutual repulsion described by a translation-invariant jump kernel and
interaction potential, respectively. The pure states of the system are locally finite subsets of R?, which
can also be interpreted as locally finite Radon measures. The set of all such measures I is equipped with
the vague topology and the corresponding Borel o-field. For a special class Pexp of (sub-Poissonian)
probability measures on I', we prove the existence of a unique family {P;, : t > 0, pt € Pexp} of
probability measures on the space of cadlag paths with values in I" that solves a restricted initial-value
martingale problem for the mentioned system. Thereby, a Markov process with cadlag paths is specified
which describes the stochastic dynamics of this particle system.
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1. INTRODUCTION

As a challenging object of probability theory, measure-valued Markov processes attract considerable
attention. They have also become popular due to applications in mathematical physics, biology,
ecology, etc. Among such applications one can distinguish those describing stochastic evolution of
infinite systems of point particles dwelling in a continuous habitat, e.g., R?. 1In this case, as the
state space of the system is taken the set of all locally finite configurations of particles, which can
also be interpreted as counting Radon measures. For finite particle systems, the construction of the
corresponding Markov processes is now quite standard. For infinite systems, however, the list of
results reduces mostly to those describing free (noninteracting) systems [22], conservative diffusions
with invariant Gibbs measures [I], or birth-and-death dynamics with generators obeying essential
restrictions [17), 18] 23] 29]. In this context, one can also mention models with interactions of Curie-
Weiss (mean-field) type, e.g., [26], where one starts with a system of N particles interacting with a
uniform strength proportional to 1/N, and then passes to the limit N — +oo.

In the present paper, we prove the existence and uniqueness of a Markov process with cadlag paths
for an infinite system of point particles performing random jumps (walks) in R¢ with mutual repulsion,
which appears to be the first result of this kind known in the literature. The starting point of our
construction is the configuration space I'. As in [25], by a configuration vy we mean a finite or countably
infinite, unordered system of points placed in R¢, in which several points may have the same location.
Configurations are supposed to be locally finite, which means that each compact A C R? contains
a finite number of elements of a given v € I". The set I' is equipped with the vague (weak-hash)
topology — the weakest topology that makes continuous all the maps v — >, .. g(2), g € Ces(RY),

where Cis(R?) denotes the set of all compactly supported continuous functions g : R¢ — R. Here by
writing >, g(x) we understand _, g(x;) for a certain enumeration of the elements of «. Clearly,
such sums are independent of the enumeration choice, see [25]. The vague topology is separable and
consistent with a complete metric, i.e., is metrizable in such a way that the corresponding metric space
is complete. Then the states of the considered system are probability measures on I', the set of which
is denoted by P(I'). The point states vy are associated to the Dirac measures d,. The evolution of the
system which we consider is described by the (backward) Kolmogorov equation
d

—Fy = LF; 1.1
dt t tsy ( )

where F; : I' = R, t > 0, are test functions and

LR0) = X [ clann (PO \aUn) ~ POl dy (12)

ey

a(z—y)exp [ — > ¢(z—y)

zev\z

c(x, y;7)

Here — and in sequel in similar expressions — by writing v\ x, z € , or YUz, x € R?, we mean v\ {z}
and v U {z}, respectively, i.e., z is considered as the singleton {x}.

The model specified by presents an infinite collection of point particles performing random
walks (jumps) over R9, such that the probability that the particle located at a given € ~ changes
instantly its position to y € R? at time ¢ is 1 — exp(—tc(x,y;)). This probability is asymmetric in
x and y and is state dependent. This means that the remaining particles prevent the one located at
xz € « from jumping to y — by diminishing the jump kernel — if the target point is ‘close’ to v \ z.
The diminishing factor exp (— > 2eNs o(z — y)) is independent of xz. Originally, models of this kind

were introduced and (heuristically) studied in physics [19], where they are known under a common
name Kawasaki model. In the rigorous setting, the stochastic dynamics of the model described by
(L.1), were studied in [4] (see also [6] for preliminary results). In [4], for a class of states
Pexp C P(I') — defined by a certain analytic condition — and each jig € Pexp, there was constructed a
map [0,4+00) 3t — py € Pexp that can be interpreted as the evolution of states described by .
In the present work, we construct a Markov process with cadlag paths such that the mentioned p; is
its law at time ¢. Let us outline now some of the aspects of this construction. As we show here, for a
sufficiently large set of functions F' : I' — R, the map [0,400) 3 t — py € Pexp constructed in [4] is
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the unique (in the set of all measures) solution of the Fokker-Planck equation

u(F) = po(F)+ [ (L) (F)i= [ Fap, (1.3)

holding for all 0 < s < t < o0, see [§] for a general theory of the equations of this kind. Unfortunately,
the Dirac measure d, is not in Peyp, for any v € I'. Therefore, one cannot directly construct a transition
function (and hence the corresponding Markov process) just by setting po = . In view of this, we
take a version of the martingale approach suggested in [30], see also [13, Sect. 5.1], [I5, Chapter 4], and
proceed as follows. When dealing with measures p € Pexp, it is natural to use a subset I'y C I" such
that u(T',) = 1 for all 1 € Peyp. We define it by means of a positive continuous function ¢ : R4 — R,
chosen in such a way that W(y) := > . ¥(x) be p-integrable for each yu € Pexp. Thereby, we set
Iy = {y:¥(y) < o}, and equip it with the weakest topology that makes continuous all the maps
Y D, 9(@)Y(2), g € Cp(RY), where the latter is the set of all bounded continuous functions.
This topology makes I'y a Polish space, continuously embedded in I'. Then the measures of interest
are redefined as measures on I'y. To construct the process in question, we use spaces of cadlag maps
[s,+00) 2t v € I's, s > 0, denoted by D, 1)(I'x), equipped with the Skorohod metric, see
[15, page 118], constructed with the help of a complete metric of I'.. The principal result of this
work (Theorem can be characterized as follows. We prove that there exists a family of probability
measures, {Ps ;1§ >0, 1t € Pexp}, on DR N (T'x) which is a unique solution of the restricted initial-value
martingale problem corresponding to . For such measures, their one-dimensional marginals belong
to Pexp and satisfy the corresponding version of the Fokker-Planck equation , i.e., they coincide
with the measures p; constructed in [4]. By this we prove the existence of a unique Markov process
with cadlag paths taking values in I',. Finally, we prove that with probability one the constructed
process takes values in the subset of I'y consisting of simple configurations.

In [5], there was studied a model in which point particles of two types perform random jumps over
R¢. Their common dynamics are described by the corresponding analog of the Kolmogorov operator
in which particles of different types repel each other, whereas those of the same type do not
interact. This kind of interaction is typical for the classical Widom-Rowlinson model (see [I1] and
the literature quoted therein), for which the states of thermal equilibrium can be multiple [IT], 24].
The latter fact ought to have an essential impact on the stochastic dynamics of such models, cf. [20],
which further stimulates constructing Markov processes here. The results of [5] are pretty analogous
to those of [4], which means that — after proper modification — the approach developed in the present
work can be applied also to the model of [5], which we will realize in a subsequent paper.

The rest of the paper is organized as follows. In Sect. 2, we introduce all necessary facts and
notions, among which are sub-Poissonian measures and the above-mentioned set I', C I". Here we
also introduce and study two classes of functions F': I'y — R, which play a crucial role in defining the
Kolmogorov operator L introduced in . In Sect. 3, we impose standard assumptions on a and ¢
and then make precise the domain of L. Thereafter, in Theorem [3.6] we formulate the result, the main
part of which is the statement that the restricted initial value martingale problem for our model has
precisely one solution. Then we outline our strategy of proving this statement. In Sect. 4, we present
and employ the results of [4] where the evolution of states ¢t — p; € Pexp was constructed. In Sect. 5,
we prove that the restricted initial value martingale problem for our model has at most one solution.
This is done by proving that the Fokker-Planck equation has a unique solution, which lies in
the class of sub-Poissonian measures. Since the one-dimensional marginals of the path measures in
question should solve , this yields a tool of proving the desired uniqueness. In Sect. 6 and 7, we
prove the existence of the path measures by employing auxiliary models (Sect. 6) for which one can
construct the processes directly (by means of transition functions), and then by proving (Sect. 7) that
these models approximate the main model. Their Markov property is then obtained similarly as in
[13, Sect. 5.1, pages 78, 79].

NOTATIONS AND NOTIONS

In view of the size of this work, for the reader convenience we collect here essential notations and
notions used throughout the whole paper.

Sets and spaces.
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e The habitat of the system which we study is the Euclidean space R%. By A we always denote
a compact subset of it. Further related notations: R4y = [0,4+00); N = {1,2,3...}, Ny =
IN U {0}; Ces(R?) - the set of all compactly supported continuous functions g : R — R,
B.(y) ={r € R¥: |z —y| <r},r>0and y € R%. For a finite subset A C R, by |A| we
denote its cardinality.

e By a Polish space we mean a separable topological space, the topology of which is consistent
with a complete metric, see, e.g., [I2, Chapt. 8]. Subsets of such spaces are usually denoted
by A, B, whereas A, B (with indices) are reserved for denoting operators. For a Polish space
E, by Cy(F) and By (FE) we denote the sets of bounded continuous and bounded measurable
functions g : E — R, respectively; B(F) denotes the Borel o-field of subsets of E. For a
suitable set A, by T we denote the indicator of A.

e By I' Iy, I'x and ', we denote configurations spaces consisting of all configurations, finite
configurations (2.1, tempered configurations , and tempered simple configurations, re-
spectively, see These sets are equipped with the vague topology (I') and the weak
topologies (T'y, T'x, I'x), which make them Polish spaces, see Lemma By P(T'), P(T.) we
denote the sets of probability measures defined on these spaces. The set of sub-Poissonian
measures Peyp is introduced in Definition Its crucial property is established in Lemma
210

® By D[ 1) (I'x) we denote the space of cadlag paths v : [0,+00) — T, and Dg, ([) =
D(0,400)(I's). Functions on such spaces are denoted by F, G, etc. By w; we denote the
evaluation map, i.e., wi(y) = 3¢ € I'x. Related o-fields of measurable subsets are defined in
(13.14]).

Functions, measures, operators.

e Functions f : R — R are usually denoted by small letters f, g, 0, etc. By 1 we denote the
function by which we define tempered configurations, see and . For a positive
integrable 6 : R — R, we write (§) = [60(z)dz. Functions F : T, — R are denoted by
capital letters, often F' with additional symbols. The key functions are defined in and
(2.42)). Functions defined on finite configurations I'g are mostly denoted by capital G with
exception for correlation functions k,, see .

e Measures on configuration spaces and their correlation measures are denoted by p and x,,
respectively. Measures on R? are usually denoted by v. By A we denote the Lebesgue-Poisson
measure, see . Measures on path spaces are denoted by capital P. For a tempered
configuration v € Ty, by v, we denote the measure er,yﬂ)(l‘)&c, see . The complete
metric on I'y used to obtain Chentsov-like estimates is defined in .

e By L we denote the Kolmogorov operator (|1.2 , whereas L stands for the approximating
operator Then LA and L are the counterparts of L acting in the spaces of functlons

of n € Fo, see -, . and -, - By K we define the operator defined in .

Operators LT act in the Banach space of signed measures M., see (7.9), (7.10).

2. PRELIMINARIES

2.1. The configuration spaces. Each v € I' gives rise to a counting Radon measure Zx@

Bearing this fact in mind, we shall mostly keep using set notations, i.e., for a compact A C R?, the
value of the mentioned measure on A is denoted by |y N A|. The vague (weak-hash) topology of T’
is defined as the weakest topology that makes continuous all the maps I' > v — Zmew () with
f € Ces(R?). The corresponding Borel o-field B(I') is the smallest o-field of subsets of I' that makes
measurable all the maps v+ Ny (7) := |y N A| with compact A € R%. By P(I') we denote the set of
all probability measures on (I", B(I")).

As mentioned in Introduction, configurations v € I' may have multiple points. Let z1,x9,... be
any enumeration of the elements of a given « in which coinciding x receive distinct numbers. Then, for
a suitable function g, by >_ .. g(x) we will mean }_; g(z;), which is independent of the enumeration
used herein.The same relates to the sums

)PP

z€Y yey\z z€7\{z,y}
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Along with I', we also use

To= | J I, TW={yeT:}y=n} (2.1)

n€lNg
Obviously, each T — and hence the set of finite configurations I'y — belong to B(T'). The topology
induced on I'g by the vague topology of I' coincides with the weak topology determined with the help
of Cp(R%). Then the corresponding Borel o-field B(I'g) is a sub-field of B(I'). It is possible to show

that a function G : I'y — R is measurable if and only if there exists a family of symmetric Borel
functions G™ : (R%)™ — R, n € IN such that

Gz, ... zp}) = G (zy, ... ). (2.2)
In this context, we also write G(0) = G(2).

Definition 2.1. A measurable function, G : I'go — R, is said to have bounded support if there exist
N € N and a compact A such that: (a) G™ = 0 for all n > N; (b) G(n) = 0 whenever 1 is not
a subset of A. By Byps we will denote the set of all bounded functions with bounded support. For
G € Bys, Ng and Ag will denote the least N and A as in (a) and (b), respectively. We also set

Cg = supyer, |G(n)]-

The Lebesgue-Poisson measure A is defined on I'y by the integrals

=1
GMdn) = G(2) + Y ,/ GO (21, wn)das -+ - dzy, (2.3)
To — n: (Rd)m
holding for all G € Byg. For G € By, we set
(KG)(y)=>_Gn), €T, (2.4)
ney

where 7 € v means 7 € 'y, i.e., the sum in (2.4)) runs over finite subsets of ~.

Remark 2.2. [21] Proposition 3.1] For each G € Bys, KG is measurable and such that |(KG)(y)| <
Ca(1+ |y N Ag|Ne) with Cg, Ag and Ng as in Definition .

2.2. Sub-Poissonian measures. When dealing with infinite configurations, one might expect prob-
lems (e.g., blowups) if the dynamics start from certain v € T or u € P(I"). Thus, it seems reasonable
to avoid considering such states by imposing appropriate restrictions. Another reason to do this is
gaining technical advantages, which is especially important in view of the high complexity of the
problem. The main observation here is that, for measures having finite correlations [25], integration
over I' can be performed in the following way

_ L (g 2™ (da .
L@@ =c@ 320 [ @), @5)

where XEZL) are the correlation measures of p. That is, for a compact A C R, Xftn) (A™)/n! is the

p-expected value of the number of n-clusters of particles contained in A. Next, one observes that the
Kolmogorov operator (|1.2)) contains the probability kernel a(z — y)dy, which is absolutely continuous

with respect to Lebesgue’s measure on R?. In view of this, we shall demand that each XL") satisfy

XMy, ... doy) = K (21, @)dey - dag, kY € LO(RY™), neN. (2.6)
Thereby, the right-hand side of (2.5 can be rewritten in the form, cf. ,
/F(KG)(’Y)M(dV) = /F k(MG Aldn) =: (K, G)), (2.7)
0

where k, : I'gp — R is defined as in 1) Then k&n) (resp. k) is called n-th order correlation function
(resp. correlation function) of p. Keeping this in mind, we introduce the following class of measures.
For 0 € Cs(R%) and n € IN, we write 09" (x1,...,2,) = 0(x1) - 0(xy,).

Definition 2.3. By Py, we denote the set of all those p € P(I') that have finite correlations and
their correlation measures satisfy
W (09™) < 310112 (2.8)

holding for some p-specific s > 0 and all § € Ces(R?) and n € IN.
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Remark 2.4. It is clear from (2 l that the map Ces(R?) 3 0 X(n) (0°™) € R can be continued to
a homogeneous continuous monomial of 0 € L*(R?). One can show that ji € Pexp holds if and only if

each X,(f) satisfies with k:,(f) such that

0< kM (z1,...,20) < 5", (2.9)

for the same »x as in (@ Moreover, if we set

Fy) = JJ(1 +6(z)) = exp (Z log (1 + 0(3:))) . 0€Cu(RY, (2.10)

ey xrey

then the map Ces(RY) 2 0 — M(Fa) € R can be continued to a real exponential entire function of
normal type of € L'(RY). The least s satisfying will be called the type of u.

A Poisson measure, ,, is characterized by its intensity measure x, see, e.g., [13| page 45], by the
following formula

T (F7) = exp (x(0))
Then 7, € Pexp if
x(dz) = o(z)dz, 0 € L®(RY).
In particular, this holds for the homogeneous Poisson measure 7,,, for which o(z) = » > 0.

Remark 2.5. Let G in be positive, i.e., such that G(n) > 0 for alln € T'y. Then by (@ it
follows that u(KG) < m,.(KG), where s is the type of p. In view of this, the elements of Pexp are
called sub-Poissonian measures. By taking in (@ 0 = 15 one gets that the p-expected value of the
number of n-clusters contained in A does not exceed that of the homogeneous Poisson measure with
density », i.e., clusters are not more probable than in the case of free particles. Moreover, the states
of thermal equilibrium of infinite systems of physical particles interacting via super-stable potentials
belong to Pexp, see [27].

Recall that 1, denotes the indicator of A. Then Nx(vy) :=[yNA[=3_, . 1a(z), and thus

ZS (n, 1) Z Z Z Tp(zy) - Ta(zy)

T1€Y zo€y\z1 2 €EY\{Z1,-.,x1—1}

:Zl!S(n,Z) Z Ta(zy) - Ta(xy), n € NN,
=1

{Z1, 21 }CY

where S(n, 1) is Stirling’s number of second kind — the number of ways to divide n labeled items into
[ unlabeled groups. By ([2.7) this yields

n

T (ND) = 3" 8(n,1) (A = T (#[A),  neN, (2.11)

=1

where |A| is the Lebesgue measure (volume) of A and T}, n € IN, are Touchard’s polynomials, attrib-
uted also to J. A. Grunert, S. Ramanujan, and others, see [, page 6]. For these polynomials, it is
known that, see eq. (2.19) ibid,

exp (z(e? — 1)) ZT . (2.12)

Then for pt € Pexp, by (2.11)) we obtain, cf. Remark

((NR) < T (5A]). (2.13)
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2.3. Tempered configurations. When dealing with measures from Peyp, it might be natural to
distinguish a subset I', C I' by the condition that p(I'y) = 1 for each p € Pexp. Obviously, the
choice of such I'y should also be consistent with the properties of L, in particular, with those of the
aforementioned probability kernel a(z — y)dy. Let ¢ € Cp(R?) be a strictly positive function that
vanishes at infinity. Denote

U(y) =Y w(z), TV={yel:¥(y)<oo} (2.14)

xey
Let {tn}nen C Ces(RY) be an increasing sequence such that 0 < ¢, (x) — ¥ (z), n — 400, for each
z. Then the maps I' 3 v = W, () := >, . ¥n(x) are vaguely continuous; hence {7y : ¥y, (y) < N},
N € IN are measurable, which by (2.14) yields I'Y € B(I'). Moreover, if ¢ has similar properties and

satisfies zﬁ(x) < (x), z € RY, then TY C I'Y. Thus, the slower the decay of 1 is, the more restrictive
condition is imposed on the configurations. Bearing this in mind, we will choose 1 satisfying

. ) i a(x)
0 mw<o i) [ S4

By and it follows that
H(0) = xu(0) = [ KD @),

R4

dx < 0. (2.15)

and thus condition (i) in ([2.15]) turns into

(W) == Y(x)dr < oo. (2.16)
Rd
Our choice of ¥ in this work is
1
Y(x) = Wv (2.17)

which means that we prefer to be less restrictive in choosing the jump kernel a at the expense of
stronger restrictions imposed on the configurations.
Similarly as in (2.13), for all n € IN and each p1 € Pexp, one obtains

p(@) <D S(n,1) (i)' = T (32()), (2.18)
=1

where we have taken into account that ¢ (z) < ¢ (x) for all n > 1 and x, s is the type of u. By (2.18)
and (2.12) it follows that

[ exp (B9 ula) < exp (et (e = 1). (2.19)
holding for all 8 > 0. Next, we define
I, =TIY, (2.20)
with ¢ as in (2.17). By (2.18) it follows that
Vi € Pexp w(ly) = 1. (2.21)

This crucial property of the elements of Peyp, will allow us to consider only configurations belonging
to I'x. In particular, this means that we will use the following sub-field of B(T"):

A, ={AeBI):AcCT.}. (2.22)
Now let us consider

o)
CLRY) = {g € CoRY) : gl < ooh, llgls = sup LB =9W
z,y€R?, x#£y |{L‘ - y‘

and then define

lgllsr = llgllz + sup |g(z)|, g€ CERY),
zeR4
and also
v,y = sup  |v(g) —V(9)|, wV EN,
g:llgllBr <1

where N is the set of all positive finite measures Borel on R,
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Proposition 2.6. [14, Theorem 18] The following three types of the convergence of a sequence {v,} C
N to a certain v € N are equivalent:
(i) va(g) = v(g) for all g € Ch(RY);
(ii) vn(g) — v(g) for all g € CL(RY);
(iii) v(vp,v) — 0.

By means of this statement we prove the following important facts. For a configuration, v € Ty, by
vy € N we mean the measure defined by

vy(9) =D g(@)p(z), g€ Cu(RY). (2.23)
Then we set
ve(1,7) = v(vy, vy) = P D g@(z) =Y g@p(@), v,y €T (2.24)
g:llgllBL=1 | zey zey!

In the next statement, by ', we mean the subset of T, consisting of single configurations. That is,
v € Ty belongs to I'y if Bs(x) Ny = {x}, holding for each x € v and an z-specific § > 0.

Lemma 2.7. The metric space (T'x,vy) is complete and separable. I, is a G5 subset of f*, and thus
is a Polish spaces.

Proof. First, we prove that I'. has the properties in question. Let {v,}nenw C I'x be a v,-Cauchy
sequence. Since the metric space (N, v) is complete, see [7, Corollary 8.6.3, Sect. 8.6], the sequence
{vy, Jnen converges to a certain v € N. As each h € Ce5(R?) can be written in the form h(z) =
g(x)h(x), g € Ces(RY), this convergence implies the vague convergence of {7V, }nen to a certain y € T
Let now {gm}men C Ces(R?) be such that g, (z) = 1 for |z| < m and g,,(z) = 0 for |z| > m + 1,
which is possible by Urysohn’s lemma. Then

lim > gm(@)y(z) =Y gm(@)t(x) < v(RY),

n—-+o0o
TEYn rey

which by the dominated convergence theorem yields v € Ty, and hence v = v,,. Then (I'y,vy) is a
complete metric space. Its separability follows by the separability of R¢.

When dealing with a topological property of a subset of 'y, we may use any metric consistent with
its weak topology. As such one, we take Prohorov’s metric, cf. [15, page 96|, introduced as follows.
For ¢ > 0 and A C R?, we set A° = UzeaB:(z) and also

vp(7,Y) =inf{e > 0: vy (A) < vy (A®%) +e, & vy(A) < vy (A%) ¢, VA — closed}. (2.25)
Let {Ry}rew be such that 0 < R} < Re < -+ < Ry < --- and limg_, 1o R = +00. Set Dy, = {x €
R?: |z| < Ry} and v, = yN Dy, v €Ty, k € IN. By (2.17) we then have

sup 1/¢(x) =1+ Rg“ = a; !, (2.26)
€Dy,
(@) —p(y)| < (d+ D]z —yl,  z,y€ Dy
Next, we set
Iig={vel.:ywell}, ke N, (2.27)
i.e., v € I'y belongs to I'y . if its part in Dy, is a simple configuration. Our aim is to show that I', . is
an open subset of the Polish space I'y. To this end, we take any v € I, ;, and look for » > 0 such that
Y. () :={y :vp(v,7) <r} C Tk
For the chosen ~y, we pick ¢ > 0 satisfying By(x) N~y = {z} for all x € 7;. Now take positive £ and &
such that

1 1
e < 1 min{/; oy}, 0 < 1 min{¢; ag/(d+ 1)}, (2.28)

and then assume that 7" € T, () with r < e. For & € 74, the second estimate in (2.25)) for A = Bs(z)
yields in this case

> W) <v@) +e, (2.29)

y€Y'NB;(x)
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where we have taken into account that B§(z) C By(z), see (2.28). For y € Bs(x), by (2.26) we have
¥(y) = ¢(x) = 0(d+1). Thus,

LHS(2:29) > m(z)y(x) — m(z)é(d + 1),
where m(z) = |y N Bs(x)|. Then
€ m(z)dé(d+ 1)
I ITE)

which means that m(z) = 1, holding for each = € v and Bs(x). At the same time, for v € T, (v)
with 7 < ¢, it follows that o' N (D \ Uze~, Bs(x)) = @. For otherwise, the second estimate in (|2.25)
with A = Bs(y), y lying in the mentioned intersection, would yield v (y) < & which contradicts (2.28)
Thus, 7' € T, , and hence the latter is an open subset of I',. Therefore, I, = Nrkenl's i is a Gs-subset

m(zx) —1<

< (m(z) +1)/4,

of I'y. In view of the first part of this statement, I, is a Polish space, see [12, Proposition 8.1.5, page
242]. This completes the proof. O

The following formulas summarize the relationships between the configuration spaces we will deal
with
I,cl.cr. (2.30)

Note that the embedding of the Polish space I'y into the Polish space I' is continuous, since the weak
convergence -y, — ~ implies also the corresponding vague convergence. Let B(T'.), B(I'x) be the Borel
o-field of subsets of T', and Ty, respectively. Recall that we have another o-field, Ay, defined in 1’

Corollary 2.8. It follows that A, = B(T'y) = {A € B(I',) : A c I,} = B(I",).

Proof. The first equality follows follows by the continuity of the embedding and then by Kuratowski’s
theorem, see [28, Theorem 3.9, page 21]. The second equality follows by the equality of the weak
topology of I'y with that induced by the weak topology of I'.. O

Remark 2.9. The latter statement allows one to redefine each p € P(I") with the property u(I'y) =1 as
a measure on the measurable space (I'y, B(I'y)). And similarly, each measure on (I'y, B(I'y)) possessing
the property p(I'x) =1 can be considered as a measure on (I'y, B(I'y)).

Now we turn to proving the following statement.

Lemma 2.10. For each p1 € Pexp, see Deﬁnition follows that u(f‘*) = 1. Hence, this p can be

redefined as a measure on (I'y, B(',)), ¢f. Corollary|2.8 and Remark .
Proof. By our assumption the correlation measures X,(P) of the measure under consideration have the
properties corresponding to (2.6) and (2.9). For N € N and € € (0, 1), we set

=33 hwley). hwla,y) = w(e)o(y) min{N; |o -y =),

TEY yey\z

Note that Hy () < oo for all N € IN and v € I'. By (2.7) we then have

ptit) = [ ke ey < 2 [ o) ([ 08 an

2 dy (¥) .2
< /]Rdlb(x) </Br(x)|x_y|de+ Td€>dac—.%0,

for an appropriate C' > 0. Since Hy < Hpy.1, we can apply here the Beppo Levi (monotone conver-
gence) theorem, which yields that the point-wise limit

NLHEOOHN( =y 1‘” ‘de (2.31)

T€Y yey\z

is finite for p-almost all v, i.e., for all v € I, ;, such that pu(I'y,) = 1. For ¢ > 0, we set I'. = {~ :
H(v) < ¢}. Then |z —y| > ¢ /% for all pairs z,y € v and each v € I'.. That is, 7 is simple; hence,
Iy, C 'y, which completes the proof. O
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v

Remark 2.11. By (2.21)) it follows that the class of measures u € P(T'y) with the property u(I'y) =1
includes Pexp. Therefore, depending on the context, we can and will consider such measures on either
of these spaces.

2.4. Functions and measures on I',. The main aim of this part is to introduce suitable classes of
functions F' : T'x, — R, for which we define LF" and then use in (1.3]). We begin by introducing suitable
functions g : R? — R. For 1 defined in (2.17)), we set

Oy = {0(x) = g(x)y(z) : g € Gy(RY), 6(x) >0}, (2.32)
O = {#e6y:0(x)>0 VoeRY.
Clearly, each 0 € O, is integrable. For such 6, we also define

1
cyp = su log (14 0(x)), cyp:=e? — 1. 2.33
o= sup Sslog (L40), G (2.33)
Then
0 <0(x) < cpp(x), 0 € Oy. (2.34)

Now let us turn to F? defined in (2.10). By Remark , Remark and then by (2.34), for

[t € Pexp of type 2 we have

[ Femtan) = [ Pt < mlF) < e Gelwlan) 0 € e
Remark 2.12. In general, for 0 € Oy the map ' 2 vy 37
But it is weakly continuous for all such 8, which is also the case for I, > =D

0(x) need not be vaguely continuous.
vey 0(2). In
particular, the map Ty 3 v +— W(7) is weakly continuous, that is one of the advantages of passing to
tempered configurations. Since the measurability and continuity of F : I >R and F: Ty = R occur
simultaneously, each such a function can and will be considered as a map acting from either of these
spaces. In the sequel, when we speak of the properties of a given F : 'y — R, we tacitely assume that
the same also holds for its restriction to f*

For 6 € Oy, we set, see (2.32)) and (2.33)),
1
6
vi(x) =71 —
)

Note that V C Cp(R?) is closed with respect to the pointwise addition and its elements are separated
away from zero. The former follows by the fact that § + ¢’ 4 66’ belongs to O, for each 6,6 € O.
Next, define

log (14 6(x)), V= {v?_ 10 €0y, T> ce} . (2.35)

Fo() =TT (14 0(@) ™) = exp (=0, (08) ) (2.36)
xey
Recall here that 7 > ¢g, see (2.35). We extend this to 7 = 0 and #(z) = 0 by setting ﬁg('y) =1 and
include this function in the set

F={Fl:0e0y 7>c} CCyl,). (2.37)
Similarly as in [I3], Sect. 3.2, page 41], see also [15, page 111], we introduce the following notion.

Definition 2.13. A sequence of bounded measurable functions F, : 'y — R, n € IN is said to
boundedly and pointwise (bp-) converge to a given F : Ty — R if: (a) F,(y) — F(y) for all v € T'y;
(b) sup, e sup,er, | Fn(y)| < 0o. The bp-closure of a set H C By,(T'x) is the smallest subset of By,(I'x)
that contains H and is closed under the bp-convergence. In a similar way, one defines also the bp-
convergence of sequences of functions g : R* — R.

It is well-known that C},(R%) contains a countable family of nonnegative functions, {g;}cw, which
is convergence determining and such that its linear span is bp-dense in By (IRd), see [15l, Proposition
4.2, page 111] and [I3, Lemma 3.2.1, page 41]. This means that a sequence of finite positive measures
{v,} € P(RY) weakly converges to a certain v if and only if v,(g;) — v(g:), n — +oo for all i € IN.
One may take such a family containing the constant function g(z) = 1 and closed with respect to the
pointwise addition. Moreover, one may assume that

Vie N inf gi(z) =:¢; > 0. (2.38)
zeR4
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If this is not the case for a given g;, in place of it one may take g;(x) = g;i(x) + ¢; with some ¢; > 0.
The new set, {g;}, has both mentioned properties and also satisfies ([2.38]). Then assuming the latter
we conclude that

Vo == {gi}iew C V. (2.39)

To see this, for a given g;, take 7; > sup, g;(z) and then set

01(x) = exp ([ - gimw)) Y (2.40)

Clearly, 6;(x) > 0. Since ¥"™(z) < ¥(x), n € IN, we have that §;(x) < e™¢(x), and hence {0;}iew C Oy,
see (2.32). At the same time, vfii = g; and ¢y, = sup,(7; — gi(z)) < 7; in view of (2.38). By (2.40) and
(2.39), for all i € IN, it follows that

FeF,  F(7):=exp(-1y(g).

Proposition 2.14. The set F defined in 1s closed with respect to the poinwise multiplication.
Moreover, it has the following properties:
(i) It is separating: p1(F) = pa(F), holding for all F € F, implies i1 = po for all 1, o € P(Ty).
(i) It is convergence determining: if a sequence {jn}nenw C P(T'y) is such that pn(F) — p(F),
n — 400 for all F € F and some p € P(Ty), then pn(F) — w(F) for all F € Cp(T'y).

(iii) The set By(I'x) is the bp-closure of the linear span of F.

Proof. The closedness of F under multiplication follows directly by and the fact that 61 + 63 +
0102 € Oy, for each 01,02 € Oy. It is clear that F separates points of 'y, i.e., one finds F' € F such that
F(v1) # F(72) whenever 71 # 72, that holds for each pair 71,72 € I'x. Then claim (i) follows by [15,
claim (a) Theorem 4.5, page 113]. Claim (ii) follows by the fact that {F;};en C F has the property

in question, which in turn follows by [13, Theorem 3.2.6, page 43]. Likewise, claim (iii) follows by [13]
Lemma 3.2.5, page 43]. O

Note that each function as in (2.36]) can be written in the form
F(7) = exp (~1¥ (7)) F*(7), (2.41)

where F? is as in (2.10), which is a v,-continuous function for each 6 € Oy.
FormeN, 04,...,0, € (9;;, see 1D we set

Ff0m () (242)
=) bi(x1) D Oa(wa)- > Om () EX (Y \ {21, ., 2 })
1€y z2E€Y\T1 Tn€Y\{Z1,. s Tm—1}

- Z Z el(xa(l))em(xo'(m))ﬁ7(')<7\{$17axm})v

{Z1,ey@m }Cy OESM

where Sy, is the symmetric group and FO(v) = exp (—7¥(7)), see (2.41).

Proposition 2.15. For each 7 >0, m € N and 01,...,0,, € 9;[, it follows that Fovefm o Cp(Ty).

Proof. To prove the continuity of ﬁf Lefm e rewrite 1’ in the form
Eeetm(y) = exp (—1¥0(7)) (2.43)

X ) eo@) oy (@m),
{xlv"'vmm}C’yO—GSm
with ;(x) = 0;(x)e™®), j = 1,...,m. Clearly, all ¢; belong to 9;[. By an inclusion-exclusion
formula the right-hand side of (2.43) can be written as a linear combination of the products of the
following terms

Biy, i (V) =D i (@) i (),

ey
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multiplied by a continuous function, v — exp (—7V¥(y)). Since (9:; is closed with respect to the

pointwise multiplication, such terms are continuous that yields the continuity of Fofm g prove
the boundedness we estimate each ;(x) < ¢(x) := cp(2)e™®) < cyp(x)e™. Then

Blofn() < ep(-r¥) Y ple) Y e Y. elaw)

T1€Y r2EY\T1 TmEY\{Z1,;@m—1}
< exp(—7¥(v)) <Z w(rc)) < MU (y) exp (=7 [¥(y) — m])
S
cm\m
<?) exp (m(r — 1)),
which completes the proof. O

3. THE RESuULT

3.1. The domain of L. Here we recall that the model we study is specified by the Kolmogorov

operator , cf. (1.2)),

@) =3 [ aa=pew |~ 3 o) | PG\ - Foldy. (31

TEeY zey\x

Let us make precise the conditions imposed on the model. The positive measurable functions a and ¢
are supposed to satisfy the following;:

supa(x) = a < oo, sup ¢(z) = ¢ < 00, (3.2)

xT

/Rd ¢(x)dr =: (¢) < oo, /R Ja(a)dr =1,

and
/ lz|'a(z)dz =: m$ < oo, for I=1,...,d+1. (3.3)
R4
The conditions in (3.2]) are the same as in [4]. We impose them to be able to use the results of this
work here. Note that the assumed boubedness of ¢ excludes a hard-core repulsion. The condition in
(3.3]) is the realization of item (ii) of (2.15]). It was not used in [4].
As mentioned in Introduction, we are going to construct the process as a solution of a restricted

initial value martingale problem. In this case, the domain of the operator introduced in (1.2} is crucial,
cf. [13, page 79]. Along with the set introduced in (2.37)), we define

F = {Fl0m . m e N, 01,...,0m € OF, T >0}, (3.4)

where F/0%m ig as in (2.42).

Definition 3.1. By D(L) we denote the linear span of the set FUF.

By (2.37) and Proposition one concludes that D(L) C Cp(T'y). Let us show that LES0m ¢
By(T,). For v €Ty, € v, y € R? and a suitable F : T, — R, define, cf. (1.2),
VPF(y) = F(y\zUy) — F(7).
By (2.42)) we have
Eftm(y) = 37 (@) B (v \ ).

xr1EY
Then

Vo Rt () = [0 (y) — 01 (@) FPfm(y N )+ Y Ou(a) VIR ER O (y \ ).

z1€7\x
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By iterating the latter we get

m
z 1301,...,0m o 501,05 1,05 11,....0m
v EOeOm(h) = N [0(y) — G5 (@) Fp et (o g (3.5)
=1

<.

+ (e (i) - exp (<o) ) B0 0\ 0)
For § € ©, and a as in (3.2)), we set
(ax0)(z) = / a(z —y)0(y)dy = [ 6(z —y)a(y)dy. (3.6)
R4 R4

Then a * 6 € Cp(R?), where the continuity follows by the dominated convergence theorem and the
latter equality in (3.6)). Moreover, by (2.34)) we have

@s0)@) < i) [ 0+l el = o)y (37)

< ovt) |1+ [ (o= al 4 ale = i)

d+1

B 1+Z<d“> [ y\d“—ﬂyvz/}(y)a(xy)dy]

B d+1
< () 1+Z<dil>m7]
L =0

where we have used (3.2)), (3.3) and the fact that |y|'49(y) < 1 holding for all y and 0 <1 < d + 1.
Therefore,

01(2) = (a % 0;) () + 0 (x) < cato, (@), (3.8)
Since 6; € (9;;, we then get by the latter that also 01 € 9:/5, j=1,...,m. Here

d+1
d+1
Ca ._2+Z< M )mf. (3.9)

1=0
At the same time

| exp (=74(y)) — exp (—=m¢(x)) | < Te(y)e ()] T —[y*H]. (3.10)
Then proceeding as in (3.7)) we get
| ate = n)lexp (=r(w) - exp (~ro(a)) 1y < res(o) (3.11)
Thereafter, by , , , and we obtain
)Lﬁfl’"" Z/ a(lx —y)exp | — Z B(z —y) | VIEEI 0 () dy (3.12)
rEY zey\z

15e05-1,07,0541,..0m
i- ! v¥) + T¢a H09 Fm+1

VAN
Ms
‘\q:.

7j=1
where, cf. ,
Fry) = > w(an) Y wlaa) > Y(@m) FP( \ {21, }). (3.13)
zT1€Y z2€Y\T1 zmeV\{Z1,....Zm -1}

Then the boundedness of @Vﬁf b follows by Proposition m
Now let us show that LEF? € By, (T,) for all 6 € Oy and T > ¢y. Similarly as in |D we get

vy,:pﬁf(,y) _ |:677—7,Z)(y) . e*"”f’(gﬁ)} ﬁf(,y \ I) + [e(y)e*ﬂ/l(y) _ e(x)e*’rw(w)} ﬁf('y \ :L“)
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Then by (3.8), (3.9), (3.10) and (3.11)) we arrive at

LEL ()| < €71+ m)eatb(y) exp (oW (y)) [T (1 +6(a)) -0,

where 19 > 0 is such that 7 — 79 > ¢y which is possible for each 7 > ¢4y. Then the boundedness in

question follows similarly as in Proposition 2.15] The next statement summarizes the properties of
D(L).
Proposition 3.2. The set of functions introduced in Definition has the following properties:

(i) D(L) C Co(Ty) and L : D(L) — By(Ts).

(ii) The set By(T'x) is the bp-closure of D(L).

(i) D(L) is separating. That is, if 1, 2 € Pexp satisfy p(F) = po(F) for all F € D(L), then

M1 = K2 _

(iv) For each F € F, see , and p1 € Pexp, the measure Fu/pu(F) belongs to Pexp.

Proof. Claim (i) has been just proved. Claims (ii) and (iii) follow by Proposition and the fact

F C D(L). Tt remains to check the validity of (2.8) for pup := Fu/u(F). For positive 6 € Ces(RY) and
a bounded positive F', we have that

n 1
™) = s [P Y Y 1)6(s) -0l | pla)
w(F) Jr, = NS0T (ORI
< 6™ (sup FO) /().
Y
which completes the proof. O

3.2. Formulating the result. As mentioned in Introduction, following [13, Chapter 5] we are going
to obtain the process by solving a restricted initial value martingale problem. Recall that Dgr_ (')
stands for the space of all cadlag maps [0, +00) =: Ry 2 ¢ — ¢ € T'y, and the evaluation maps oy,
t >0, act as follows: DR, (I'x) 3 v+ @i(y) = % € I's. In a similar way, one defines also the spaces
Ds,400)(l'x), 8> 0. For 5,2 >0, s <t, by ngt we denote the o-field of subsets of Dr, (I's) generated
by the family {w, : u € [s,t]}. Then we set

%SJ = ﬂ S(s),t—o—e’ Ss,-l—oo = \/ %s,s—i—n- (314)

e>0 nelN

That is, §s oo is the smallest o-field which contains all §ss4pn. Given s > 0 and p € Pexp, in the
definition below — which is an adaptation of the definition in [I3, Section 5.1, pages 78, 79]) — we deal
with probability measures Ps;, on (D5 yo0)(I's), s, +00)-

Definition 3.3. A family of probability measures {Ps, 1 s > 0, p € Pexp} is said to be a solution
of the restricted initial value martingale problem for our model if, for all s > 0 and p € Pexp, the
following holds: (a) Ps, 0 w;' = p; (b) Psy 0w, ' € Pexp for all t > s; (c) for each F € D(L)
(Definition , ta > t1 > s and any bounded function G : Dy 1 )(T') = R which is §s 1, -measurable,
the function

to
H(v) :== [F(%(v)) — F(w, (7)) —/t (LE)(wu(y))du| G(v) (3.15)
is such that

/ H(¥) Ps,u(dvy) = 0. (3.16)
9

s,+00)

The restricted initial value martingale problem is said to be well-posed if, for each s > 0 and p € Pexp,
there exists a unique Py, satisfying all the conditions mentioned above. Exactly in the same way one
defines

Here by saying “for our model” along with the Kolmogorov operator L given in (1.2)) we mean also
its domain D(L) (Deﬁnition and the class Peyp defined by the property (12.8). Note that H defined
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in (3.15)) is P; ,-integrable, that follows by claim (i) of Proposition Note also that the functions
G in (3.15) can be taken in the form

G(7) = Fi(ws, (7)) - - Fin(@5,,, (7)), (3.17)

with all possible choices m € N, Fi,..., F, € F (see Proposition , and s <851 <82 <+ <85y <
t1, see [15] eq. (3.4), page 174].

Definition 3.4. For a given s > 0, a map, [s,+00) 3t — u € P(I'y), is said to be measurable if the
maps [s,+00) Dt — u(A) € R are measurable for all A € B(T'.). Such a map is said to be a solution
of the Fokker-Planck equation for our model if, for each F' € D(L) and any ty > t1 > s, the following
holds

t2
b (F) = e (F) + [ (L) (3.18)
t1
Remark 3.5. In view of the integral form of , its solutions are often called weak. We do not do
this as the precise meaning of this notion is clear from the definition above. By taking G=1 in
one comes to the following conclusion. Let {Ps, : s> 0,1 € Pexp} be a solution as in Definition .
Then, for each s and pi € Pexp, the map [s,4+00) >t + Py, 0 w;l solves for allta > t; > s.

Below, by D5 1) (f*), s > 0, we mean the space of cadlag maps [s, +00) Dt + v € I'., where the
latter is the space of single configurations, see (2.30). Now we formulate our principal result.

Theorem 3.6. For the model defined in satisfying and , the following is true:

(a) The restricted initial value martingale problem is well-posed in the sense of Definition .
(b) The stochastic process X related to the family

(Q[s,—i-oo) (F*)’SS,JrOO’ {3s,t it > s}, {Ps,u pE PeXp})SEO
is Markov. This means that, for allt > s and B € §t 400, the following holds
Prob(X € B) = Ps ,(B|Ss,t) = Ps . (B|S¢), P, — almost surely.

Here §; is the smallest o-field of subsets of s 1) that contains all w; H(A), A e B(T).
(c) The aforementioned process has the property

Prob (X € DR, (f*)> =1

The proof of claim (a) of this statement is the main concern of the rest of the paper. It will be
done in the following two steps. First we prove that the restricted initial value martingale problem as
in Definition has at most one solution. Thereafter, we construct a solution by ‘superposing’ (cf.
[32]) the collection of measures constructed in [4].

3.3. Strategy of the proof and some comments. Our approach is essentially based on the Fokker-
Planck equation , for which a solution, t — 1y € Pexp, o € Pexp Was constructed in [].
In Sect. 6, we introduce approximating models by modifying the jump kernel in such the way that
allows one to solve the Fokker-Planck equation directly by constructing stochastic semigroups in a
Banach space of signed measures, with the possibility to take Dirac measures d,, v € Iy, as the initial
conditions. This allows in turn for introducing finite-dimensional marginals of the presumed law of the
processes corresponding to these approximating models by means of the transition functions obtained
in that way. Then we prove that these marginals satisfy a Chentsov-like condition (see [I5, Theorem
3.8.8, page 139]) — the same for all approximating models. Here we employ the complete metric of T'y,
see . This yields the existence of cadlag versions of the approximating processes and is used in
Sect. 7 to prove that their distributions have accumulating points — possible distributions of the process
in question. Then we prove that such accumulation points solve the martingale problem in the sense
of Definition To prove uniqueness we again use the Fokker-Planck equation and the construction
made in [4]. At this stage — realized in Sect. 5 — we show that this equation has a unique solution,
which implies that the mentioned accumulation points have coinciding one-dimensional marginals. A
classical result (see [15, claim (a) of Theorem 4.4.2, page 184]) is that one would have uniqueness if the
one-dimensional marginals were equal for all initial p € P(I's). Since we have such an equality only
for p from a subset of P(I'y), we turn to the restricted version of the martingale problem [I3, Chapter
5]. A crucial element of this version is Lemma that states that a solution of the Fokker-Planck
equation with pig € Pexp is also in Pexp, and its type satisfies s < 27 for ¢ < T, where s¢r depends on
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T and 3¢ only. The proof of Lemma is the most technical element of this part, based on a number
of combinatorial results (see also Appendix). By means of Lemma we then prove (Theorem [5.2))
that with 19 € Pexp has a unique solution coinciding with the map ¢ — p; constructed in [4].
This finally yields the uniqueness of the solution.

4. THE EVOLUTION OF STATES ON I',

As mentioned above, in the proof of Theorem we essentially use the construction of the family
of measures {jut}+>0 C Pexp performed in [4]. Notably, in this construction, there was used the space
of single configurations f‘*, which for measures from Pey, makes no difference, see Remark Thus,
we begin by describing this family in a way adapted to the present context.

4.1. Spaces of functions on I'g. By (2.19) it follows that each measurable F' satisfying |F'(7y)| <
Cexp(BY(y)) for some positive § and C' is p-absolutely integrable for each pt € Peyxp. This obviously
relates to F' = KG with G € By, see Remarkﬂ For a and ¢ as in (3.2]) and G € By, let us consider

ZZ/ a(x —y)e(ry; Ee(tyin \ ) [G(E\ x Uy) — G(S)] dy, (4.1)
§Cn z€¢
Ty(2) = e_¢($_y)a ty(z) =7y(x) -1, =z,y€ R,

In (4.1]), the sums are finite and the integral is convergent in view of the integrability of the jump
kernel a. It turns out that

LKG = KLG,
holding for all G € By, see [16, Corollary 4.3 and eq. (4.7)]. By (2.5) this yields

WILKG) = ((ky, LG)), (4.2)

which by 1} points to the possibility to extend L from By to integrable functions. For a given
¥ € R, let Gy stand for the weighted L'-space equipped with the norm

cly = /F G )| exp (I]) Mdn) (4.3)

> ez?n
= |G(@)| + / G (1, ..., 2)|dzy - - - day.
|G(2)] ; .y (Rd)n\ (21 )|dz1

In fact, we have a descending scale {Gy : ¥ € R} such that
Gy — Gy, ¥ >0, (4.4)

where by < we mean continuous embedding. For a given ¥ € R and G € By, let us estimate |EG |-
By means of [16, Lemma 2.3], see also [4, Lemma 3.1], by (3.2]) we get

icl, < / ﬂ"'(zz/ az — y) (G \ E\ 2 Uy)|

ECnzen\é

n er\s>\>e<|ty|;s>dy)A<dn>

_ /(/ MY a(e ) (1G\ 2 Uy)| +[Gm))

TEN

([ 0 (el ) )y ) )

< 20 () [ Malicmirn).

0

X
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To estimate the last line in the latter formula we use the inequality xe™** < 1/ea, both z, « positive,
and the fact that Bps C Gy for each 1 > 1J. Thereafter, we obtain

LGl < - exp (€(0)) Gl (4.5)

2
(0" =)

Below by means of this estimate we extend L to operators acting in the scale {Gy}yer, cf. lj

Along with Gy we introduce the following Banach spaces. For symmetric k(" € L>((R%)"), n € IN,
let k be defined by k(™ as in , that includes also some constant k(@) = k(®). Such k constitute
a real linear space and can be considered as essentially bounded functions k : I'g — R. Note that the
correlation functions k,, cf. , are such functions. Then for ¢ € R, we define

[[k[ly = sup (Ilk(")llm((m)n)e_ﬁ”> = esssup (Ik(n)l exp (ﬁlnl))-
n>0 nelo
The linear space Ky equipped with this norm is the Banach space in question. Clearly, cf. ,
Ky = Ky, ford <. (4.6)
Note that Ky is the topological dual to Gy as the value of k on G is given by the formula
(k. G) = . k()G (n)A(dn).

Let us now define L by the condition, cf. (4.2)),
(L% F G = (ks LG). (4.7)
By (4.1)) it is obtained in the following form, see [4, egs. (2.21), (2.22)],

0@ = X [ ale e\ yun) W)\ yuo)ds (19)
yen

= X [ ale = et (w )

xen

where

(W k) () = / B U €)e(ty; )M dE). (4.9)

To
Proceeding similarly as in obtaining (4.5)), for all ¥ € R and 9’ > 9, we get

124kl < g exp (<(6)) (4.10)

where we have taken into account that (a) = 1, see ({3.2]).
4.2. The evolution in spaces of functions on I'y. By combining (4.2)) with (4.7)) we introduce the
following versions of the Kolmogorov equation (|1.1)

d

56 = LGi,  Gil=o = Go, (4.11)
d A
k= L%, kili=o = ko, (4.12)

which we will solve in the scales {Gy : ¥ € R} and {Ky : ¥ € R}, respectively, see and ([4.6)).

Let us first consider . By we see that L2 maps each Ky in each Ky, cf. , and the
corresponding map is linear and bounded. Likewise, one can define the linear maps (L2)" : Ky — Ky,
n € IN the norm of which can be estimated by means of the inequality

n

122"kl < 7 1%l (4.13)

(eT (v, 0))"
where, cf. [4, eq. (4.2)],

I
T(99,91) = ——

exp (—(gb)e%) , o > . (4.14)
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It is known, see [4, egs. (4.3), (4.4)] that

oy 0(9) Ly _
g&% T, 9) = — oxXP <_(5(19)> =: 7(19), (4.15)

where 6(19) is a unique solution of §e? = e=?/(¢). The supremum in is attained at ¢ = 9 +4(09).
Then the expression in , can be used to define: (a) bounded linear operators (L2)%,, : Ky —
Ky, n € IN the norm of which can be estimated by means of ; (b) unbounded linear operators
Lﬁ, with domains, cf. [4, eq. 3.19)],

DomLﬁ} ={keKy: LAk € Ko}

Now we turn to (4.11)). In a similar way, by means of (4.5 one defines: (a) bounded linear operators
(L) = Gor — Gy, n € IN, the norm of which satisfies

D)5l = 1ol ne; (4.16)
(b) unbounded operators Ly with domains

Doqug ={Ge€gy: LG € Go}..
It can be shown, see [4, Lemma 3.1], that, for each ¥ € R and ¢’ > ¢, the following is true

Ky C DomL%, Gy C DomLy,
by which one readily obtains that, for all 9,9, ¥ > 1, the following holds

Yk € Ky Lok = L5k, (4.17)
Furthermore, up to the embedding we have that
Ly gk = Lk,

holding for all ¥ € (¢,¢). By (4.13)) the series
o tn N
Quo(t) =1+ Z E(LA)W& (4.18)
n=1 "

converges in the operator norm topology — uniformly on compact subsets of [0, T'(¢#)) — to a bounded
linear operator

Qury(t) : Ky — DomL5 C Kyr,

the norm of which satisfies

T, 9)
()| £ =————. 4.19
Qa0 < g (4.19)
Moreover, the map [0, T(¢, %)) 3 t — Quy(t) is differentiable and the following holds
d
— Qo (t) = Ly Qo (t) = LgnQumy(t) = Quron (t) Ligiy, (4.20)

dt

with an arbitrary " € (9,9) provided t satisfies t < T(¢¥”,9) and ¢t < T(¢,9") in the latter two
terms, respectively, cf. (4.19). By (4.20) one readily obtains that the Cauchy problem in (4.12)) with

ko € Ky has a unique classical solution in Ky, on the time interval [0, T (¢, 1)), cf. [4, Lemma 4.1].
It is
ke = Quro (t)ko. (4.21)

In a similar way, one shows that the Cauchy problem in (4.11)) has a unique classical solution in Gy,
on the time interval [0,7(¢,9)), given by the formula

o
Gy = Hyy (t)GO =: <1 + Z TL'(L)gW) Go, Go € Gyr. (4.22)
n=1

By construction these solutions of (4.12)) and (4.11)) satisfy
{(kt, Go)) = ((ko, G4)), t< T, 9). (4.23)
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4.3. The evolution of states. A priori, the solution given in (4.21) need not be the correlation
function for any measure. Moreover, it may not even be positive, cf. (2.9). To check whether a given
k:T'g — R4 is the correlation function of a certain u € Pexp we introduce the following set

By, ={G € Bps: Y G(§) =0, for all n € T}. (4.24)
£Cn

Note that some of its members can take also negative values. By [2I, Theorems 6.1 and 6.2 and
Remark 6.3] one proves the following statement.

Proposition 4.1. Let a measurable function, k : o — R, have the following properties:
(a) (k,G)) >0 for all G € By, see ;
(b) k(@) =1,
(c) k(n) < 5 for some » > 0, cf. .

Then k is the correlation function for a unique p € Pexp.

Recall that the least s as in item (c) above is the type of p of which & is then the correlation
function. Set
P,fxp = {1t € Pexp : 1 is of type < e’} (4.25)
Let K* be the set of all kK : I'y — R that possess the properties listed in Proposition In [4,
Theorem 3.3], it was shown that k; as in (4.21]) belongs to K* whenever ky is the correlation function
of a certain p € Pexp. In the context of the present study, the relevant results of [4] can be formulated
as follows.

Proposition 4.2. Given 99 € R, let pu be an arbitrary element of P;ng. For this 9¢, set ¥y = ¥y + t,
t > 0. Then there exists a unique map, [0,4+00) 3 t — ky € K*, such that kg = k, and the following
holds:
(a) for eacht >0,
0<ki(n) el pery,
by which ki € Ky, .
(b) For each T >0 and t € [0,T"), the map t — ks € Ky, C DomLﬁT is continuous on [0,T) and
continuously differentiable on (0,T) in ICy, and the following holds:

d A
k= LG k. (4.26)

5. THE UNIQUENESS

In this section, we prove that the restricted initial value martingale problem has at most one solution.
To this end we use the properties of D(L) stated in Proposition In view of Remark see also
Lemma below, the proof of the uniqueness in question amounts to proving that, for each j1 € Peyp,
the Fokker-Planck equation has at most one solution p; € Pexp satisfying p9 = p. The main
tool for this is based on controlling the type of u; by a method based on the use of the concrete form
of the elements of D(L), see Definition

5.1. Solving the Fokker-Planck equation. We begin by pointing out that in Definition [3.4 we do
not assume that fiy € Pexp for ¢ > 0. Recall that (KG)(7y) = > ¢, G(£), see (2.4).

Lemma 5.1. Let [0,+00) 5 t +— pu € P(Ts) be a solution of with all F' belonging to the linear
span of F and a given pg € ngp. Then, for each T > 0, there exists 97 € R such that, for all
t€[0,T], us € PP with some ¥; < V.

exp

Note that here we assume that only the initial state ;o belongs to Pexp. Also, we assume that py
solves (3.18) with F' belonging only to a subset of D(L). It turns out that this is enough to solve it
for all D(L), and even more. Set

F= {FeBb(F*):F:KG, Ge ) gﬁ}, (5.1)

YeR
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where K is defined in (2.4) and G is supposed to be such that |G|y is finite for all ¥, see (4.3)). Let us
show that D(L) C F. Since K is linear, this will follow from the fact that

FUFCF (5.2)
By we have
Fl(v) = [[0+0@)e ™ =3 e(r;n) = (KG) (), (5.3)
rey nCy
O,(x) = O@)e ™ £ (x),  po(x) = —1+e VO

Clearly, 0, € LY(R?) for each 7 > 0 and 6 € Oy, cf. Definition Then GY = e(6,;-) € Gy for any
¥ € R, which yields F C F.
In the case of F' given in (2.42)), (2.43]), we write

Footm(y)y = N ga() T (1 +wr(2) (5.4)

£Cy z€Y\E

= > D gm©e@rin\ &) | = > Gy,

nCy \&Cn nCy
where ¢, (z) is as in (5.3) and
Zaesm 61 (xo(l)) T em(xa(m))a if £ = {$17 s 7mm};
gm(&) =

0 otherwise.

Let us estimate G2 with 6y, ...,6m, € Q;Z. For 7 € (0, 1], we have |- (z)| < ¥(z), and hence

GOt <37 gm(©elwin\ €). (5:5)

&Cn

At the same time, for each n € Iy, it follows that
G () = gm(n), T =0 (5.6)
By 1) let us show that @21""’9’” belongs to Gy, ¥ € R Indeed, by 1} we have

GO |y = GO 0m () |1\ (dp) (5.7)

IN

1)
/F /F 1€l g, (€)1 e (1p; ) A(dE) A(dn)

< emﬁ<91> -+ (0p,) exp (€ﬂ<¢>>

=1 §01fm (),

where (), (0;), i =1,...,m are the corresponding L'-norms, cf. (2.16). This completes the proof of
52).

Lemma [5.1] is proved below. Now assuming that its claim holds true, we prove the next statement
— one of the two basic tools of proving Theorem

Theorem 5.2. For each py € Pexp, the solution of the Fokker-Planck equation in the sense of Defi-
nition exrists and is unique.

Proof. We begin by showing that l) has a solution. Take G = éﬁlﬁ"'ﬁm and let k; be as in
Proposition with kg being the correlation function of the initial state pg. Since k; is in K*, by
Proposition it determines a unique p; € P;ng, see 1) for which

pa(F) = (KG) = (kr, G)), £ 20, (5.8)
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holding for all F' € F. By claim (a) of Proposition and |D 1D the integral in the right-hand
side of (5.8) is absolutely convergent for each ¢t > 0. Moreover, by claim (b) of Proposition we
have that ,

2

ky, — ks, = / L3 kudu
t1
holding for all to > ¢; > 0 and T > to. We multiply both parts of the latter equality by an arbitrary
G € NyerGy — also corresponding to F' € F — and then integrate with respect to A. By claim (b) of
Proposition this integration and that over [t1, t3] can be interchanged, that implies
to

ity (F) — puny (F) = / (LB e, G = / (ks DG = / w( LF)du, (5.9)

t1 t1 t1
where we have used (4.2), (4.7) and the fact that G € NyerGy. This yields (3.18]). By (5.2) we then
get that u; corresponding to k; is a solution.
Assume now that there exists another solution, say {fi:}:>0 C P(I'x), such that g = po. By

Lemma we have that fi; € Pt and = (Yo, 1§T) for some U7 and all ¢ < T. This means that the

exp ~ ~
corresponding correlation functions, k¢, t < T belong to K 3, Then the vector g, = Lg ky = L? J ky,
T

see {i lies in ’Cﬁw and hence in IngT 4 foreach e > 0, see 1) Then, for a fixed ¢, by 1) ‘and
(2.9) we have

Hqu||7§TJr€ < C(T, E)eﬁT, u € [0,¢], (5.10)
with C(T,¢) = 1/eT (91 + ¢, 07), see . Let us prove that the following holds
5 t
VGeG  (f—FoG)= [ (anG)iu (5.11)
9ER 0

A priori, the equality in (5.11]) holds for only for G corresponding to F' € D(L), that includes G =

GoOm | see . For 7 € (0,1], by and we then have

[ Che — ko, G20 | < ([ = o, |G|y < 2776000 (G + ),

[ 0@ omyind < [

Now we write 1} for G = éf.l’---ﬁm and pass to the limit 7 — 0". By the dominated convergence
theorem and (j5.6)) we then obtain

/(Rd)m {I%gm)(xl, ) — K (@, ,xm)} 01(21) - - O () dat - - - dm (5.12)

)

Gt du < 4C(T, )¢ a0 (i + ),

t
-/ ( / q&’“)(m,...,xm)el(ml)---9m<xm>dx1---dxm> du,
0 (]Rd)m

that holds for all m € N and 64,...,60,, € @:g, see (2.32). For a fixed m € N, the set of functions
(X1, .y Tm) = O1(x1) - O () With 61 ...,0,, € @;Z is closed with respect to the pointwise multipli-

cation and separates points of (R?)™. Such functions vanish at infinity and are everywhere positive.
Then by the corresponding version of the Stone-Weierstrass theorem [I0] the linear span of this set
is dense (in the supremum norm) in the algebra Cp((R%)™) of all continuous functions that vanish at
infinity. At the same time, Co((R%)™) N L'((RY)™) is dense in L'((R%)™). For its subset Ces((RY)™)
has this property. This allows us to extend the equality in to the following

/ [l%gm)(a;l, B . kém)(ml, . ,xm)] G (z1, ... xp)day - dem,
(R

t
= / / qqsm)(xl,...,xm)G(m)(ﬂsl,...,xm)dazl--~dmm du,
0 (Rd)'m

holding for all G € L'((R%)™). Then the passage from this equality to that in (5.11)) follows by the
fact that G belongs to each Gy, ¥ € R.
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By (4.7) the equality in (5.11)) yields
t
(e, G) = (ko, C) + /0 (Four £, G, (5.13)

in which E@MOG =: G1 € NyerGy. In view of 1D we can repeat 1) with G instead of GG, and
repeat this procedure again by employing the same arguments. After repeating n times we arrive at
2

(i G = (o, G) + ko, LG + (ko (B5,0)°G)

tn_l - 1 t t1 tn—1  _ -
bt o, B G+ [ [ [T (B, G i
(n—1)! ! 0 Jo 0 ’
Assume now that d7 > ¥g + T, see Proposition that is clearly possible by 1) Then we write
down the same formula — in the same spaces — for k; considered in ([5.8)), i.e., described in Proposition

[4:2] This yields

~ t rt1 tn—1 N
(ke — ke, G) = / / / (e, — Kty (L, o) " Ghdty - - dty.
0o Jo 0
Now we take ¥ = 0; + 0(0;), see (4.15). Then by (4.13), (4.16) and (4.15) we have from the latter

n

- n t n -
— < —_— q q . .
<<kt kt’G»‘ — nlen <7'(19t)> |G|ﬂuS€1[1£t] (HkuHﬁt + HkuHﬁt) (5 14)

Note that here 7(0;) > 7(07). Then for t < 7(J7), the right-hand side of can be made as small
as one wants by taking big enough n. Since G € Gy is arbitrary, this yields k; = k; for all such t. The
latter implies fi; = p1, see Proposition [4.2] The continuation to bigger values of ¢ is made by repeating
the same procedure. The proof that these continuations cover the whole R can be done similarly as
in the proof of Theorem 3.3 [4]. O

Corollary 5.3. Let t — py satisfy the assumptions of Lemma . Then it solves with all
F = KG with G € NyerGy, also for unbounded ones.

Proof. By Lemma a solution gy is in PgXTp for t < T. Let k; be its correlation function, which

satisfies the equality in 1' with G = @21""’9’“. As we have shown in the proof of Theorem it
satisfies this equality for all G such that F' = KG with G € NyGy, see (5.11)). This yields the proof. [

5.2. Further properties of the solutions. In this subsection, we prepare proving Lemma[5.1] Our
ultimate goal here is to estimate the integrals of the solutions of (3.18)) taken with the functions

Fp() =) 0@) D> 0@) > Oam) 0€6f, (5.15)

z1€Y z2€7\71 Tm €Y\{T1, s Tm—1}
which can be obtained from the functions defined in (2.42)) by setting 6; = --- = 6,, = 6 and 7 = 0.
Note that F? is unbounded, but integrable for each u € Pexp, as it follows from the formula, see 1)
HER) = [ K n)f@n) ) dar - o, (5.16)
R4

Then by estimating ,ut(Fgl) we will prove the mentioned lemma.
To simplify notations by @”" we denote a particular case of the function defined in (2.42)), corre-
sponding to the choice 6y = --- =60, =0 € @;Z with ¢y = 1, see 1' Namely, for 6 € Qﬁ’ we set,

cf. also ,
O (y) =D 0x1) D> Ow)-- > 0(xm) FX(v\ {21, - am}), (5.17)

r1ey T2€EY\ 71 TmE€Y\{Z1,..,Tm—1}

and consider such functions with 7 € (0,1]. Note that the function defined in (3.13)) is a particular
case of @7"(y) corresponding to the choice § = 1. Then by (3.12) we obtain

1 ~
L ()] < md? (7) + 70, I () = @ (). (5.18)

Here 0! = a %0 + 6, see (3.8), and
QST,G/ _ F\flﬁg,...,@m’ Oy =---=86,,=86. (5.19)
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Note that @7 is a linear combination of the elements of F , see li Hence, any solution of (|3.18))
should satisfy it also with this function. Let us then estimate L&7",. Proceeding as in || we obtain

VIR () = mlf! () — 0 @) 87 () +mlm = D[O(y) — 0@ (3 2)
[0 — O B 3\ @)+ (m o+ Drealt(y) — v @EN (7 2)

+7cq [eiﬂz’(y) — e*w(w)} EmHl(y\ z).

Now to estimate LOT"; we perform the same calculations as in passing to the second line in the right-
hand side of (3.12), see (3.10)), (3.11]). In addition, the third term in the right-hand side of the latter
is estimated by employing 0(z) < ¥(x), cf. (2.34), and 81 (x) < catp(x), cf. (3.8)). This yields

m ‘e—w(y) — e @ @m0 (4 \ &) < mreali(y) — (@) |[EM(y \ @),

see also (3.13]). Thereafter, we obtain
Lo ()| < mdI (y) + m(m — )BT () (5.20)

+ (2m+ 1)703?1”“(7) + 72031?;”*2(7)

— P ().
Here and below we denote 69 = § and
0F —ax 0"+ 01 k=23, ..., (5.21)

2
®™"" is obtained according to 1' and
1 gl =n! pl
@Tﬂ A FT@ 0 7937---70m’ O3 = =0, =0.

Note that by (3.8) we have 6%(z) < cf(x) (recall that g = 1).
To proceed further we introduce the following notations. For m € IN and n € INg, by C,, ,, we denote
the set of all sequences ¢ = {cy}rew, C INg such that the following holds:

cot+ecr+--Fcept=m, c1+2c+ -+ keg+---=n. (5.22)

Since all ¢; are nonnegative integers, for ¢ € Cp, , by we have that c¢,4; = 0 for all j > 1,
¢n < 1,and ¢; = 0 for all j = 1,2,...,n — 1 whenever ¢, = 1. For example, C,, 0 and C,,1 are
singletons, consisting of ¢ = (m,0,0...) and ¢ = (m — 1,1,0...), respectively. C,, 2 consists of
c=(m—-1,0,1,0,...,) and ¢ = (m — 2,2,0,...). For ¢ € Cpp o, 7 € (0,1] and v € Iy, we set

Velei) = B0 (), (5.23)

where ¢y members of the family {#9',...,609} are equal to ° = 6, c¢; of them are equal to 6,

etc. In particular, @T’QQ and @T’Gl’el can be written as in 1) with ¢ = (m — 1,0,1,0,...,) and
c=(m—2,2,0,...), respectively. In Appendix below, we prove the following estimates

Vv e T, Lo, ()| <PT.(7), neN, (5.24)

T,n—1

holding with @7, given by the following formula

() = Y. Con(OVe(ey) + e > mFwg(m,n) EME(y), (5.25)
c€Cm,n k=1

m!n!

Crn(c)

We also prove that

> Crnle) =m™ (5.26)

c€Cm,n
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The coefficients in the second summand of the first line in (5.25]) are subject to the following recurrence
relations

wi(m,n+1) = m"+ (m+ wi(m,n), (5.27)
wr(m,n+1) = wig_1(m,n) + (m+ k)wg(m,n), k=2,...n,
Wpr1(m,n+1) = wy(m,n) =1,

that can be deduced in the same way as we obtained the estimate in . In the first line of (5.27))
we take into account also . The initial condition w;(m, 1) = 1 can easily be derived from ([5.18)).
Then iterating back to n = 1 in the first line of yields wi(m,n) = (m +1)" —m™. It turns out
that the complete solution of has the following simple form

k
wy(m,m) = Ak — %Z (’Z) (—1)F(m + 8)", (5.28)
s=0

where A is the forward difference operator — a standard combinatorial object. Note that the right-hand
side of makes sense for all k& € Ng: wo(m,n) =m", wip(m,n) =0 for all k > n.

In view of and Proposition all the terms of the linear combination in the first line in
are continuous bounded functions of 7. Hence, the same is @7,. However, its bound may
depend on n, and our aim now is to control this dependence. For p > 0, set

+oo

) =Y Sene),  reo (5:29)

n=0

To get an upper bound for 7" we estimate each ¢ in the first line of 1' as 09 < cli, ¢ > 0, see

(B:21), which by (5:23) and (5.22) yields

Valein) < 4 B () = LB (),

where we have taken into account that ¢; +---4+¢p = c1 +2c2+ -+ kep +- - - = n. In view of (5.26)),
this leads to the following
RS (cap)” - k m-k
1) < 30 S by o, m) B ) (5.30)
n=0 " k=0
“+oo “+o00
_ S ( (Cat)” i m, n>) B+t (s)
k=0 n=~k TL.
“+oo —+00 n
_ 3 ( (car) wk<m,n>> Bk (a)
k=0 n=0 s
+oo . k +o00
T k _ (cap(m + s))
= X mX (S> (-1t (Z - E7E(y)
k=0 = s=0 n=0
+00 [k
= gfaP™m Z z (€% — 1)F Fmh(y),
k=0

Here we used the fact that AFm™ = 0 for k > n, see (5.28). To proceed further we use Proposition
and (3.13) and then obtain

E () < enmRwgtk () exp (—m00(v)),
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which in turn yields in the last line of ((5.30) the following estimate
T%('y) < em(Cap-i-T)\IjBn(,},) exp < — TUo(7) [1 — T (e — 1)]>

< MPTDUE(y) exp (—eWo (7))

m m
< —e)" = 6,,
- <e7'€) (e+1-¢) Om(7),
holding for some fixed ¢ € (0,1) and all
1
p<pei=—[log(l+e—e)—1]. (5.31)

By (5.29) this yields the estimate in question in the following form

o7, (v) < n—iém(T), T € (0,1]. (5.32)

3

5.3. Proof of Lemma According to Definition and (5.17), we have that @ lies in the linear
span of F for each 7 > 0 and m € IN. If {1 }y>0 C P(L,) solves (3.18), then

t t
@) = po(@7) + [ L) < (@) + [ (@) (5.33)
0 0

where we have used 1D Since @7 is a linear combination of the elements of F , we can repeat
(5.33) with this function and obtain

(@2) < po(@2) + [l @),

which then can be used in (5.33). In view of (5.24), we can repeat this procedure due times and
thereby get the following estimate

”lk’

t rt1 tn—1
< Z @+ [ [T [T @t (5.34)
0 JO 0

1t (P7F)

n—1 k t n
S Z k|,U0 e 5m(7-)7

where we have used (5.32]) and the fact that p; is a probability measure. For ¢t < p., the last summand
in the right-hand side of (5.34]) vanishes as n — +o00. Hence,

"
H(DM) < Z —Ho(® t < pe, T€(0,1]. (5.35)
By (2.42) and (5.23) it follows that the element of F in the first summand in the first line in (5.25)
satisfies
Vo(eiy) < Voley) =D 0% (1) Y 0% (wg) - > 0 (zm),  0€OF.
T1E€Y x2€Y\z1 TmE€Y\{Z1,y®m—1}

Vo(c;+) is an unbounded function, which, however, is pop-integrable. Let s be the type of pg. As in
Remark we then have

po(Vr(c; ) < mgy(Vo(e; ) = 5 (071) -+ (07m) = 2" (50(6))™ (5.36)
where
(09 = /le 0 (z)dx = 2% /Rd O(x)dx = 29 (0),
see and . Here we have taken into account that ¢; +--- 4+ ¢m = n. By we have

Erk(y) < Y b)Y w(a) - > Y(Tmin).

T1EY r2EY\ 21 Ttk EYN{Z 1, Tt k—1}
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Then similarly as in ([5.36)) we obtain
cﬁ"H*vfg<}m<w>Y"+k. (5.37)
We use ) and ( in ) and then in and arrive at the following estimate

(@) < w%wwwvmwwmeﬁﬂmwwwm—ﬁ

IN

(2520(0))™ + 7 (a0 {u)) ™ 4™ (e — 1) exp (0¥ (e — 1)),
where we have applied the same approach as in obtaining (5.30) and the fact that 7 < 1. Since, for

each v € T'y and an arbitrary sequence 7, — 0, {ﬁfn (7) }nenw is a nondegreasing sequence, by 1)
and Beppo Levi’s monotone convergence theorem we then get from the latter that, cf. (5.16]),

lim iy (') = pu(Fp,) = (ki 0°™) (5.38)

= / kl(% Nx1,. .., am)0(x1) - O(am)dz - day,
Rd

< (e*50(0)"
holding for all m € IN and t < p., see (5.31). Since § € O, we have () = 101/ 21 (ray, and the latter
2.8

estimate can be rewritten in the form, cf.

Vm e N (k( m) 9®m> (2¢'320) ™ 017 gy, 0 € O (5.39)

Bt

The set of functions @;r defined in (| is closed with respect to the pointwise multiplication and

separates points of R%. Such functions vanish at infinity and are everywhere positive. Then by the
aforementioned version of the Stone-Weierstrass theorem [10] the linear span of this set is dense (in
the supremum norm) in the algebra Cy(RR%) of all continuous functions that vanish at infinity. At
the same time, Co(R?) N L'(R?) is dense in L'(R?). Therefore, by (5 the maps 6 — <k/(u ™) ,0%my
m € IN can be extended to homogeneous continuous monomials on Ll(IRd) This yields the proof of
the considered statement for ¢t < p., see Remark Since p. is independent of 37, the continuation
to all ¢ > 0 can be made by the repetition of the same arguments.

5.4. Proof of the uniqueness. By employing Lemma [5.1] and Corollary [5.3] see also Remark [3.5]
we prove the following statement.

Lemma 5 4. Assume that two solutions {PS(ZBL :52>0, € Pexp}, 1 =1,2, see Deﬁnition satisfy
P1 o wt P2 ow; Yforallt >s, s>0 and p € Pexp- Then PS{M = PS%M for all s and p.

Proof. By Kolmogorov’s extension theorem it is enough to prove that all finite-dimensional marginals
of both path measures coincide. In view of claim (i) of Proposition to this end we have to show
that the following holds

P,y (Fey-oFr) = P2, (Fy - Fu,), (5.40)
where Fy, (7) = fff (g, (7)), i =1,...,n, see 1} ought to be taken with all possible 0; € O, 7; > ¢y,
and t; satisfying s < t; < --- <t,. Assume that (5.40) holds with a given n and prove its validity for
n+ 1. Since Fy,(y) > 0, see (2.36)), we may set

Ct =P, (Fy - Fr),
and then define two path measures on (D, ;), &n#oo)
Q'(B)=CP., (Fy---Fylp), i=12

Since both P’ satisfy (3.16]), we have also

/ HMQ'(dy) =0,  i=1.2
g[tn7+00)
Hence, both maps [t,, +00) 3 t — Q' o wt_l =:ut € P(Ty), i=1,2 solve

u2

) = () + [Py, FeD(),

1
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for all us > ug > tn, see Remark . 3.5l By the 1nduct1ve assumption and claim (1v) of Proposition
it follows that ,ut = /,Lt =: [t € Pexp- By Lemma [5.1] we then conclude that ui € Pexp, i = 1,2 for all
t > t,. That is, both @’ satisfy all the three cond1t10ns of Definition and thus belong to solutions
of the restricted initial value martingale problem. Hence, uf = u? by the assumption of the lemma.
In particular,

phy o (FLi) = i, (B2,
which completes the proof. O

Theorem 5.5. Let {Ps(z,l 185>0, ft € Pexp}, @ = 1,2 be two solution of the restricted initial value
martingale problem in the sense of Definition E Then Ps(,lu) = Pégi) for all s > 0 and p1 € Pexp.

Proof. By Remark both PSBL owy, t > s solve | , which by Theorem yields PS(}M) ow; !t =
PS@M) ow; ! holding for all ¢t > s and p € Pexp- Then the proof follows by Lemma (Il

6. THE EXISTENCE: APPROXIMATING MODELS

The aim of this and the subsequent sections is to prove the following statement which is the second
corner stone in the proof of Theorem

Theorem 6.1. There exists a family of probability measures which solves the restricted initial value
martingale problem for our model in the sense of Definition[3.3

The basic idea is to approximate the model by auxiliary models described by L%, « € [0,1] with
LY coinciding with L defined in . For o € (0,1], the solution {Pg, : s > 0,11 € Pexp} of the
corresponding restricted initial value martingale problem for L will be constructed in a direct way.
Then the proof of Theorem [6.1] will be done by showing the weak convergence P2, = P, as a — 0,
and then by proving that {Ps,u s >0, 4t € Pexp} is a solution in question. In the current section, we
introduce the auxiliary models and study their relations with the basic model. The construction of
the path measures Py, will be preformed in the subsequent section.

6.1. The approximating models. Recall that 1) was introduced in (2.17)), see also (2.14]). Along
with these functions, we shall use ¥1(v) = 1+ ¥(y) and

Yalz) = !

1T = € [0,1]. (6.1)
Set

aq(z,y) = a(x — y)ba(x), z,y € RY. (6.2)
Note that ag(z,y) = a(x —y) and an(z,y) # aa(y,x) for a € (0,1]. Now let L* be defined as in
with a replaced by a,. That is,

Z yexp [ — Y ¢(z—y) | [F(y\zUy) — F(y)]dy. (6.3)

TeY zey\z
Then keeping in mind (4.2)) and we define L2 by the following expression
(L“Fe) (LR e(0;)),  a€o,1].

One observes that L20 coincides with the operator introduced in (4.8). For a € (0,1], LA is then

obtained by replacing in (4.8)) a(x —y) by an(z,y) < a(x —y). Hence, L clearly satisfies (4.13)) and
similar estimates. Then by repeating the construction realized in subsection we obtain the family

of bounded operators {QF,,(t) : t € [0,T(¥',9))} (resp. {Hfy(t) : t € [0,T(¥,9))}), ¥ > ¥ acting
from Ky to Ky (resp. from Gy to Gy). By employing these families we then set
k? == Qg/,ﬂ(t)ko, Gta == Hgﬁ/ (t)GO, (64)
with kg € ICy and Gy € Gyr. Note that, for o = 0, these vectors coincide with those introduced in 1-)
and (|4.22) -, respectively, and thus they satisfy - 4.23)) for all a € [0,1]. Moreover, as in Proposition
for each 99 € R and p € Pexp, by (6.4) with ko = k,, we obtain a family, {u : ¢ > 0, o = pu} C Pexp,
€ PY%  such that

exp

i (F%) = (ki e(6,)), 6 L'(R). (6.5)
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Next, by repeating the construction used in the proof of Theorem one obtains that the map ¢ — u¢*
is a unique solution of the equation

to
M%(F):M%(F)—I-/ ug(LaF)du, to >t >0,
t1

holding for all F' : I, — R which can be written as F' = KG with G € NyerGy, see Corollary
Here and below we set

D(L*)=D(L), a€(0,1],
with D(L) as in Definition

6.2. The weak convergence. Our aim now is to prove that the families {uf* : ¢ > 0, o = p} C Pexp,
a € [0, 1] constructed above have the following property.

Lemma 6.2. For each t > 0, it follows that pg = u; as « — 0, where we mean the weak convergence
of measures on the Polish space I',.

We begin by proving the convergence of the corresponding correlation functions.
Lemma 6.3. For each t > 0, one finds 9, > 9, such that the following holds
VG € Gy, (K, G) — (K, GY), as a — 0. (6.6)

Proof. We recall that k; satisfies 1} with LﬁT corresponding to o = 0. Note that the domains of

L5 are the same for all a € [0, 1].

Assume now that the convergence stated in holds for a given ¢ > 0. Note that kg = kff = k,;
hence, this assumption is valid for at least t = 0. Let us prove that there exists sg > 0 — possibly
dependent on ¢ — such that this convergence holds for all ¢t + s, s < s9. Keeping in mind that Q¢ and
kf satisfy the corresponding analogs of (4.20) and (4.26]), respectively, we write

kt“l‘s - kta+8 = Qﬁtﬁt(s)kt - Q%t'ﬂt (8>kta7 (67)

where 9; = 9y + §(9;) and ¥; = ¥y + t. Note that the left-hand side of is considered as a vector
in Kg,. Both Qg,4,(s) and Qgtﬂt(s) are defined only for s < 7(¢;), see . At the same time, for
each ¥ > 9, Qyy(0) = QF,5(0) = Iyy, where the latter is the embedding operator, see . Keeping
this and in mind we rewrite as follows

Sd
kiys — k?ta+5 = Q@tﬁt(s)(kt — k) — (/0 %[Qﬁtﬁl(s - U)lem (u)]du) k' (6.8)

Qy,v,(8) (ke — k') + ; Qy,9,(s — U)Lﬁgﬁnglm (u)ki'du
Ao Ha «
- 0 Q’l§t’l92 (S - u)Lﬁéﬂl Q’ﬂlﬁt (u)kt du

TA«
Qﬁtﬁt(s)(kt — k') + . Q7§t192(8 - U)Lﬂgﬁlkﬁ-udu?

where L2 is given in (4.8) with a(z — y) replaced by da(z,y) = a(x — y)(1 — tha(z)). The choice of
s and ¥, ¥ should be made in such a way that the series as in (4.18|) converge for the corresponding
operators. Set V1 = U¢ + §(;)/2. We use this in (4.14) and obtain that

(V)
2

T(94,91) = < T(91,9). (6.9)

Then for some € € (0,1), we set
so = e7(0¢)/2 = €T (¢, 91). (6.10)

Since the map ¥ + T(J¢, 1) is continuous, one can find ¥ € (91,9;) such that sq < T(Jy,02), cf.
(6.10)), which together with yields that all the three Qg,4, (s — u), Qg,9,(s — u) and QF 4, (u) in
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are defined for all s < sp and u € [0, s]. Now we take G' € Gy, and set Gs = Hy,5,(s)G, s < sp.
Then G5 € Gy, C Gy,, which yields by . ) the following

Qs — Ko G) = (ke — K, ) + Yals), (6.11)
Valo)i= [ (D355 K Gom

Thus, we have to prove that Y,(s) — 0 as @ — 0. Since LA consists of two terms, see (4.8), it is
convenient for us to write Y, (s) = Yogl)(s) + YOS2)(5), where

v - [ /F(Z | ol etmin\ DOV, y U )i (6.12)

yen

X Gs—y(m)A(dn)du

= /Os /ro </(Rd)2 aa(x, y)e(ry;n)(Wykiy,)(n U z)Gs—u(n U y)dﬂfdy> A(dn)du,

and

_/Os /FO <Z/Rd (z,y)e(ry;n \ 2)(Wykiy.,)(n )dy> (6.13)

xen

X Gsmu(n)A(d)du
= [ (ol el OV ) UGy ) N
0
To estimate both terms we take into account that e(r,;7) <1 and

(W) (n U )] < exp (1 + Vln] + (@)™ )

where the latter estlmate follows by the fact that k:t+u( ) < exp(Vepuln|) < exp(d1]n]), see claim (a)
of Proposition 4.2, By these estimates we obtain from and (6.13)) the following

YO < [ 00wy, =12 (6.14)
Rd
where
WO) = [ aalede = [ (1= dallaD)ate — g)da. (6.15)

Vo (r) := (14 ardtH)=1 cf. (6.1)), and
9 M(y) = 6(191)/08 | [Gamuln )] "IN (dn) du,
0
c(V) :=exp <191 + <¢)e§1> .
Let us show that ggl) is integrable for all s < sy. To this end we use the fact that G,_, € Gy, for all

s < sp and u < s. Then its norm can be estimated

T (¢, 92)

Gsfu S T3 o~
| |192 T(ﬂt, 192) — S0

|Glg, =: Ca
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which is finite by our choice of 99 and sg. Then

(1 _ . ’ ) e " _
oy = e [ ] 16 tmomie dyaana (6.16)

= <o [ [ 1Gastllle® Mg aan
= (e / [ (e Y (G e
0

(V1
< - .
= €1+ﬁ1(§2 _ 191)CG

Now let us turn to l} First of all, we note that hgl)(y) <1, see |D The function r +— 1 — ), ()

is increasing. Then, for a certain r > 0, we have

PO = [ (= alle ot yl)ale)ds (617)

< /(1—&a(r+]y\))a(x)dm+/ a(z)dz

c
T T

- My
< (1l + ) + et

where the second term of the last line was obtained by Markov’s inequality and (3.3) together with
the estimate 1 — 1), (r) < 1. Now we set in (6.17) r = a~'/(4+2) and obtain

1/(d+2) (1 d+1 a1
(1) o (1+ [y
ha'(y) < 14 al/(@+2)(1 4 |y[)d+1 T M O

(1)

Hence, for each y, he’(y) — 0 as o — 0. Then by Lebesgue’s dominated convergence theorem and

d6.16|) and (I6.14|) we conclude that Yogl)(s) — 0 as a — 0, holding for all s < sq.
Now we turn to (6.13)) by which we get

1@ (y) = %( Ja(z — y)dz = pa(y) =: 1 — va(y),

and g§2) (y) = ggl)(y). Hence, also YCS )(s) — 0 as a — 0, holding for all s < sg, which by 1’ yields
the proof of for t + s with s < sg whenever it holds for . To complete the proof let us consider
the following sequences, cf. (6.10)),

t =t_1+ so, to =10, [ €N, (6.18)

Sol — 67’(19“_1)/2.

Since kg = ko = k,,, the proof made above yields the stated convergence for ¢t < sup; t; = lim; ¢;. Thus,
our aim is to show that t; — 400 as [ — +00. Assume that sup;t; = t. < co. By the first line in
6.18]) we have that t; = sg1 + - - - sg; and hence sg; — 0 in this case. Now we pass in the second line of
6.18) to the limit I — +oo (7 is continuous) and get that ¢, should satisfy 7(9¢,) = 7(Jg + t.) = 0,
which is impossible as 7(J) > 0 for all ¥ € R. This completes the proof with 9y = Uy O

Proof of Lemma 6.2 By Lemma and (2.7)) it follows that pf FE) = e (F ) as a — 0, holding for
all F € F, see ll Then the proof follows by the fact that FC F, see , and claim (ii) of
Proposition [2.14] O
Below we us the following fact, that can be considered as a complement to Lemma

Lemma 6.4. Assume that a sequence {vp tnew C ngp, ¥ € R, cf. , satisfy v, = v asn — +o0
for some v € P(I'y). Thenv € P,fxp Furthermore, for each G € NyGy, it follows that
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Proof. By assumption v, (F') — v(F) for each F' € .7?, see li and Proposition 2.15l By (2.42)), (5.17)
and 1' for given m € IN, 0 € @;Z and 7 € (0, 1], we then get

Y(@) < sup v, < (@)em||o]]".
nelN

Then the proof of v € Pfxp follows by the monotone convergence theorem and 1' The validity of

1) for G such that KG € F follows by the fact just mentioned, i.e., just because v has a correlation
function. The extension of (6.19) to all G € NyGy is then made by the same arguments as the proof

of (5-11). O

7. THE EXISTENCE: APPROXIMATING PROCESSES

In this section, we prove Theorem by constructing path measures for the models described by
L®, o € (0.,1] introduced in the preceding section. This will be done in a direct way by means of the
corresponding Markov transition functions.

7.1. The Markov transition functions. The transition functions in question will be obtained in
the form

p2(y,-) = 8%(t)d,, t>0, ac(0,1], (7.1)

where 0, is the Dirac measure with atom at v € I'y and S* = {S%(t) };>0 is a stochastic semigroup of
linear operators, related to the Kolmogorov operator L®. Hence, we begin by constructing S¢.

7.1.1. Stochastic semigroups. A more detailed presentation of the notions and facts which we introduce
here can be found in [2, [3 B1].

Let € be an ordered real Banach space, and £ be a generating cone of its positive elements. Set
EPl ={xr € &F :||z|e = 1} and assume that the norm is additive on £, i.e., |z +ylle = ||lz]le + |ylle
whenever z,y € £T. In such spaces, there exists a positive linear functional, ¢g, such that

ve(x) = |z|le, x€&T. (7.2)

A Cp-semigroup, S = {S(t)}+>0, of bounded linear operators on & is said to be stochastic (resp.
substochastic) if the following holds || S(t)z|le = 1 (resp. ||S(t)z|e¢ < 1) for all t > 0 and x € L.
Let D C € be a dense linear subspace, DT = DN ET and (A, D), (B, D) be linear operators in &.
A paramount question of the theory of stochastic semigroups is under which conditions the closure
(resp. an extension) of (A + B, D) is the generator of a stochastic semigroup. Classical works on this
subject trace back to Feller, Kato, Miyadera, etc, see [2], B1]. In the present work, we will use a result
of [31], which we present now in the form adapted to the context.
To proceed we need to further specify the properties of the space &.

Assumption 7.1. There exists a linear subspace, EcC E, which has the following properties:

(i) & is dense in & in the norm || - ||¢.

(ii) There exists a norm, || - ||z, on & that makes it a Banach space.

iii :=ENET is a generating cone in &; || - || 7 is additive on ET and hence there exists a linear
(iii) ET:=ENEt isay ting n &E; |- ||z is additi ET and h th ists a li

Junctional, ¢z, on &, such that lzllg = ¢z(x) whenever x € et of. .
(iv) The cone E is dense in .

For D as above, set D = {z € DNE : Az € £}. Then (A, D) is the trace of A in £. The next
statement is an adaptation of [31, Theorem 2.7].

Proposition 7.2 (Thieme-Voigt). Assume that:
(i) —A: DT =& and B: Dt — £T;
(ii) (A, D) is the generator of a substochastic semigroup, S = {S(t)}+>0, on € such that S(t) : £ —
& for all t > 0 and the restrictions S(t)|z constitute a Co-semigroup on & generated by (A, D);
(iii) B: D — & and gs (A+ B)x) =0, for z € DF;
(iv) there exist ¢ > 0 and € > 0 such that

¢z ((A+ B)z) < cpg(z) — el Ax|e, for z€eDNET.
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Then the closure of (A+ B, D) in & is the generator of a stochastic semigroup, Sg = {Sg(t)}+>0, on &
which leaves £ invariant. The restrictions Sg(t) := Sg(t)|z, t > 0 constitute a Cy-semigroup, Sz, on
& generated by the trace of the generator of Sg in &.

Remark 7.3. Without assuming item (iv) above one can only guarantee that an extension of (A+B, D)

1s the generator of a substochastic semigroup on &, which corresponds to a dishonesty of the evolution
described by this semigroup. More on this item can be found in [2].

Now we turn to constructing the semigroups S¢.

7.1.2. The Banach spaces of measures. Let M be the linear space of finite signed measures on
(I, B(I')), see [12, Chapter 4]. That is, p € M is a o-additive map p : B(I') — R which takes
only finite values. By M™ we denote the set of all such u that take only nonnegative values. Then
the Jordan decomposition of 4 is the unique representation y = pu* — p~ with u* € M*. Thus, M+
is a generating cone. Set |u| = p* + p~. Then

[lall := [l (T) (7.3)

is a norm, that is clearly additive on M*. By [12, Proposition 4.1.8, page 119] with this norm M is
a Banach space. Let ¥y be the function defined in . For n € IN, let M,, be the subset of M
consisting of all those p for which Wy are finite signed measures. Recall that ¥; =1+ U, see .
We equip M,, with the norm

il = /F W ()| al(dy) = n(lu])- (7.4)

By the same [12, Proposition 4.1.8, page 119] with this norm M,, is a Banach space. Now for 5 > 0, let
M be the subset of M the elements of which remain finite measures being multiplied by exp(8¥o(7)).
We equip it with the norm

lills = | exp(B¥a(a))lul(d) = ea(lul)

Then also (Mg, || - ||g) is a Banach space. By (2.20) and (£2.21)) it follows that

Vpe My |pl(Ty) = [p/(T).
That is, for each p € My, it follows that |u|(T'¢) = 0. Define

M, = {p e M: |p[(T5) =0}
Thus, M1 C M.. Obviously, also all M,, and Mg have the same property. For a subset, M’ C M,
let M’ denote its closure in || - || defined in (7.3).
Lemma 7.4. For eachn € N and 8 > 0, it follows that

M, = Mg = M.. (7.5)

Proof. Obviously, for each n € IN and 8 > 0, the following holds Mg C M,,. Then it is enough to
prove the validity of for Mg. Let us prove the inclusion ./\/Tg C M.,. For a given u € /\/Tﬁ, let
{tn}new C Mg be a sequence such that ||u — pn|| = 0. Fix n and let then I' = PUN be the Hahn
decomposition for p— i, i.e., (A) > pup(A) for each A C P, and p(A) < ppn(A) for each A C N. Then

[ = pnll = (1= ) (P) + (. — 0)(N) = (= ) P OLTE) + (n — ) (NN TY)
=p(P NI —p(NOTE) = (T5) + p~ (T5) = |ul(T9),

where we have taken into account that |u,|(T'S) = 0. Then the assumed convergence u, — p yields
that y© € M,. To prove the opposite inclusion we take an arbitrary u € M, and write its Jordan
decomposition y = p* — p~. For a given n € N, let I, be the indicator of the set Iy, defined in
. Then both puf := IL,u® are in M 3. At the same time, by the sequence of function
Jn(7v) :==1 — I,,(y) converges to zero pointwise on I',. Since pu € M,, we have

It =it = [ o) = [ ) 50, as 0 oc (7.6)
I *

By the triangle inequality we then obtain that ||p — p,|| — 0, where uy, := pt — ;€ Mag. O
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By the very definition of the spaces M,,, Mg and M., we conclude that they have generating cones
of positive elements consisting of those p that take nonnegative values only.

Corollary 7.5. The set M, equipped with the norm || -|| defined in is a Banach space. Let M}
be its cone of positive elements. Then for eachm € N and 8 > 0, it follows that

M = M = M,
where we mean the closure in the norm of M.

Proof. The first part of the statement follows directly by (7.5). The second part is obtained by the
construction used in ([7.6]). O

Let M! be the subset of M, consisting of probability measures, i.e., for which ||u|| = u(T') =
p(Ty) = 1. Then by (2.21)) it follows that

Pexp C M ML
By (2.19), for each 8 > 0, we also have
Pexp C MJ = Mg MPT C M, n MP!, forall n e IN.

7.1.3. The stochastic semigroup. For a given « € (0, 1], set

Pa(y) = Z/}Rd ao(z,y)exp [ = Y dly—2)|dy, yeT. (7.7)

ey zeY\z
Since ¥ (z) < ta(z) < ¢(z)/a, see (2.17), for all a € (0,1] we have
U(y) < ®aly) < ¥(v)/a, (7.8)

and hence ®,(y) < oo for v € T',. Now let L% be the corresponding Kolmogorov operator (6.3). Our
aim is to define its ‘predual’, LT®, acting according to the rule

WLOF) = (LYu)(F), (7.9)

for appropriate € P(I'y) and F : I', — R, and then to use it to define the corresponding operators
acting in the spaces of measures just introduced. Obviously, we can restrict ourselves to the elements

of M,. By (6.3) and (6.2) we thus obtain it in the form
L' =A4+B (7.10)

where A is the multiplication operator by the function —®, defined in (7.7). In view of (7.8]) the
domain of A is to be

D={pueM,:P,uec M.} =Mj. (7.11)
To define B we introduce the following measure kernel
0w =3 [ aalegyes (= 3 olw-2) | 16\ 20y, (712)
zey /R ze€y\z
with v € I’y and A € B(T',). By (7.7) we then have
25(Ts) = @a(v). (7.13)
Next, define
(Bro®) = [ 2Bl (7.14)
Note that
B: M7 — M. (7.15)
Moreover, for u € M7, by (7.13)) and (7.14) we have
Bl = (Bu)(T) =/ Do (V) pu(dy) = —(Ap) (). (7.16)

*

Hence, we can take M as the domain of B and then define LH® by (7.10)) with domain D = My, see
(7.11).



34 YURI KOZITSKY AND MICHAEL ROCKNER

In the sequel, we will use one more property of B. By (7.12)), (7.14) and (7.4]) we get
on(B) = [ W) (Br)(ay) (717)

*

= / Z/Rdaa(w)exp =Y bly—2) | (v \zUy)dy | p(dy).

Lo \zey ze€y\z
By (2.17)) it follows that
Pi(y\zUy) = (T1(7) +9(y) — ()" < 2T (7). (7.18)
We apply this and ([7.8)) in ((7.17) and obtain
Vue My 1Bulln = oa(Bh) < (27/a)llpllntr-
This yields the following extension of ((7.15))
B: M} = M, (7.19)
holding for all n € IN. Since || Apll, < = |pllnr1, by (7.19) we also get
VneNy LM My — My,
that can be used to define the powers of LT
(LP)™: My — M,,  neNg meN. (7.20)
Here — and in the sequel in similar expressions — My (corresponding to M,, with n = 0) is understood
as M, Let us now define a bounded linear operator Lg% : Mg — Mg, ' < j3, the action of which is
the same as that of the unbounded operator L"* = A + B defined in (7.10) and (7.14)). For a given
e My, let p=pu" — = be its Jordan decomposition. Then
Lbep= (But —Ap~) — (Bu™ — Apt) = pf —py,  pf e M}
This yields that
1LY pllgr < el llpr + iy o = 1Bu* g+ 11Br~llgr + 1 Au™ g + 1| An~ |15, (7.21)

holding for all u € Mpg. Here we have used the additivity of the norms on the positive cone as well as
the positivity of B and —A. By (7.8) and the following evident inequality ze™** < 1/ex holding for
all positive z and x, we obtain

Do (y) exp (8'Po(7)) <
By 1} for 4 € M}, we then get

T S (). (722)

IIE
Aplly < — 1B 7.23
Next, similarly as in ([7.17)) it follows that

/ exp (8'V(~)) (Bp)(d)

*

).

< exp (80 (7)) exp (81(y) — ¥(@)]) dy)mdw

Z/Rdaa(x,y)exp - Y oly—=)

TEY zey\z

of
< [ ) e (90) ) < licle

ae(B—p')
We combine this estimate with (7.23)) and (7.21) to obtain

F+1
L)< —1=
15 = aes— 9
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In a similar way, for each n € IN, we also obtain, cf. (4.13)),

n " a(B —B")
rheyn < (—2 T.(8,8) = 22— 2 7.24
Il < ()« TalB8) = 2025 (7:24)
By (7.20)), for each n € N and p € Mg, we have that (Lhyr e Mg, B < 3, and the following holds
(L) = (TP (7.25)

Lemma 7.6. For each o € (0,1], the closure of (LH®, My) in M, is the generator of a stochastic
semigroup, S¢ = {S*(t) }+>0, in M, such that S“(t) : M,, = M,, for each n € IN. The restrictions
S%(t)|m,, constitute a Cy-semigroup on M,,. Moreover, for each 8 > 0 and 8’ € (0, 3), S*(t) : /\/lér —

ME, fort < Tu,(B,5), see (@)

Proof. The construction of the semigroup in question will be made, in particular, by showing that all
the conditions of Proposition are met. We thus begin by checking whether each of the spaces M,
and Mg enjoys the properties listed in Assumption By Lemma the density assumed in (i) is
guaranteed. Each of these spaces is a Banach space with the corresponding norm, that was already
mentioned in the course of their introduction. The properties assumed in (iii) are evident, whereas
(iv) follows by Corollary Thus, we can start checking the validity of the conditions imposed in
Proposition Recall that both A and B are (densely) defined on the domain D = M, see
and Lemma and A is the multiplication operator by the function (—®,). Hence, condition (i)
of Proposition is satisfied. Moreover, A generates the semigroup S consisting of the following
operators

(St)p)(dvy) = exp (—tPa(7)) p(dy). (7.26)
Then
I1S@ull < llull, (7.27)

which obviously holds for all p € M,. To check whether S is strongly continuous in M, for a given
p € M, and € > 0, we have to find § > 0 such that |[u — S(¢t)pu| < € for all ¢ < §. Since M, is the
| - ||-closure of M; (by Lemma [7.4), for the chosen p, one finds p/ € My such that ||u — p/|| < /3.

Then by (|7.26|) and (7.27) we get
[l = S(E)ull e = 1+ 1S@ (= w11 = SO (7.28)

tlAW | +2e/3 < (t/a)llpll1 + 2¢/3,

IN

A

which completes the proof for M. Clearly, S(t) : M} — M., and the domain of the trace of A in

no
M, is D, = My41. Then the proof that S(¢)|a, is strongly continuous in M, can be performed
similarly as in . Thus, condition (ii) of Proposition is met. In view of to complete the
proof of (iii) we have to show ¢((A + B)u) = 0 whenever u € M7, which is obviously the case by
(7.16]). Then it remains to show that, for a fixed n € IN,

/ VI () (L) (d) < e / VI () () — € / Ba(m)pldn), (7.29)

* I *

holding for each u € ./\/l;f 41 and some positive ¢ and ¢, possibly dependent on n. In view of the
following estimate, cf. (7.8)),

a®a(y) <14+n) () <Ti(y), nelN, yeT,,
xrey

it is enough to show (7.29)) with ¢ = 0 and sufficiently big c. By (7.9) this amounts to showing
LY (y) < e¥i(y),  veTw (7.30)
By ([7.18]) it follows that
[WE (v \ & Uy) = UT(7)] < 2"[(y) — (@)W (). (7.31)
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Assume that |z| > |y|. By (2.17) we have
) = @] = (e = ™) v () (7.32)

< (e = ul + )™ = 1™ wee)
d

+1
= . (dJlr 1) = y['ly| T () (y)

=1

< v ()l

=1
= vl )
For |y| > |z|, in a similar way we get
d+1
w =@l < 30 (17 e -t i) (7.53)
=1
d+1
< S (N7l sl )

d+1
< v X ("7 e - ol = vl@etie - o,

=1

Now we apply ((7.31)), (7.32)) and ( - to obtain

LHS(3) < ) / Yale)b(@)alz — y)o(le — y) TG (7)dy
xreYy
< 2url(y) (Zw ) [ antuay
rey

< (2 [ atwetshay) v

that by proves . Thus, all the conditions of Proposition are met, which proves the part
of the lemma related to the stochastic semigroup S¢ acting in M, and its restrictions to M,,, n € IN.
To prove the second part of the lemma we use the estimate in and define bounded operators
SGi(t) : Mg — Mg, t <To(B, ') by the series

Ship(t —HB'/HZ S (e )B4

where Ig/g is the embedding operator. By the latter formula and (7.25) we conclude that

Ve Mg S¥t)p = Sga(t)p, t< To(B,8). (7.34)
By ) S5i5(t) : Mg — Mg is a bounded operator, the norm of which satisfies
To(8,8")
S| € =———
H 5,3( )H = Ta(ﬁvﬁ/) —t

The positivity of Sg (t) follows by |D and the positivity of S*(¢). This completes the proof. [

In view of , we conclude that Lemma establishes the existence of the transition function
corresponding to L, with the properties arising from the corresponding properties of the semigroup.
Note that 6, € M, (and hence in all M,, and Mg) if and only if v € T',, that will be assumed below.
It is straightforward that p§*(7, -) satisfies the corresponding standard conditions and thus determines
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finite-dimensional distributions of a Markov process, see [15, pages 156, 157]. Our next step is to show
that it has cadlag versions.

7.2. Constructing path measures. The construction of the families of path measures P“ which
solve the martingale problem in the sense of Definition can be done by defining their finite di-
mensional marginals with the help of the transition function . In this case, however, the one
dimensional marginals

I3 = 5% (1) = /F P2y, Yuldy), (7.35)

need not be in Peyp, even for u € Pexp. The only fact guaranteed by Lemma is that IIf € M,,, for
all n € IN, and that II{ € Mg with ¢ belonging to a bounded interval. This obstacle is removed by
the following statement.

Lemma 7.7. For a given j1 € Pexp, let {uf : po = i, t > 0} C Pexp e the family of measures defined
by their correlation functions ki* according to . For the same p, let II¥, ¢ > 0 be as in .
Then 11 = pg for allt >0 and a € (0, 1].

Proof. Exactly as in Theorem one proves that the Fokker-Planck equation (3.18) with L replaced
by L® has a unique solution, which is pf*. At the same time, by construction II* also solves this
equation. O

Now we can start constructing the path measures in question. To this end we use Chentsov’s theorem
in the following version, see [I5, Theorems 8.6 — 8.8, pages 137-139]. Recall that the complete metric
v, of I'y was introduced in (2.24). For « € (0,1], v € I'x and u,v > 0, set

wi(y) = / (1) (1 ), (7.36)

*

We,(9) = / vu(ra 7 s (Y )2 (3, ).

*

Thereafter, for t3 > to > t1 > 0 (such sets are called triples), let us consider
W (t1,t2,t3) = . Wtogéftz,trtl(V/)H%(d’Y/) = . Wtcéftg,tgftl (’Yl)/ﬁtal (d’Y/), (7.37)
where p, pf and IIf are as in ([7.35)).

Proposition 7.8. (Chentsov) Assume that there exists Co, > 0 and 6 > 0 such that, for each triple
t1,ta, ts, the following holds

WO(ty,ta, t3) < Calts — t1]?, t3 —t; < 0. (7.38)
Then the following is true:

(i) The transition function and i € Pexp determine a probability measure P* on Or_ (I'y).

(ii) If the estimate in holds uniformly in «, i.e., with some C > 0 independent of o € (0, 1],
and if the family {11 : o € (0,1]} C P(Tx) is tight for each t > 0, then the family {P® : o €
(0,1]} of measures as in (i) is also tight, and hence possesses accumulation point in the weak
topology.

Note that the tightness of the family {II{ : « € (0, 1]} follows by Lemmas and

Lemma 7.9. For each p1 € Pexp, the estimate in holds true for all o € (0,1] with one and the
same C' > 0.

Proof. By ([7.1) and standard semigroup formulas, e.g., [15, page 9], we have

P2y, ) =6, + /0 Lhepe (4, )ds, (7.39)

since 0, € D = M. Then by this formula and (7.36|) we obtain

uto) =ws+ [ ( | 3 L ) ) ds (7.40)

- /Ou (/ fLa“*(’W)p?(%dv’)) ds,
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where we have taken into account that w(y) = v«(7,7) = 0 as v, is a metric. We apply now L* to
U« (7, -) — which is a bounded continuous function of 4/, and obtain

) = (L) (1,7")

=Y [ asemen (= 3 =2 | [0\ Un) v d

xey! ze€vy\x
By the triangle inequality for v, we then get from the latter
PN Y [ aae e \ 2 U )y (7.41)
zey!

In view of (2.24), to estimate vi(7' \ « U y,v') we consider |0(y) — 0(z)| with 6(z) = g(z)y¥(x),
gE C’bL(IRd), lgllBr < 1, for which we obtain, cf. (3.7)),

0() — 0(x)] = ¥(a)ly) \g((i)) - 98 (7.42)
ol 9(y) — g(z) 11
= @) ' o) TIW) [wx) w(w] ‘

< Y@l -yl + B@)(y) [lo]* — 2]

d+1
d+1
< U() [\wa( l >|xy|l] .
=1
Now we use this in (7.41)) and arrive at

d+1 d+1
|J(Y)| £ Ca¥ (v, Co:=m§ + Z ( ] >ml“ (7.43)
=1

Then we use (7.43]) in (7.40) and obtain

W (y) < C /Ouxwds, Xo() = / (Y )pS (o). (7.44)

*

Note that x§(y) = ¥(v). Similarly as in (7.39) we write
o =vo+ [ ([ eewemeam) i (7.45)

Like in ([7.30) one gets
(LOW) () < [(LOW)()] < 2¢,9(7),

where ¢, is as in (3.9). We use this in (7.45)), take also into account the definition of x¢ in (7.44) and
obtain

60 < VO + 26 [ )
which by the Gronwall inequality and yields the following estimate
wi(7) < Coue®" V(7).
We employ this in the second line of and obtain

We,(7) < Caue®ig2(7),  q2() = / By You (7,7 )2 (7, ). (7.46)

*

Note that ¢§(v) = 0 as v, is a metric. Similarly as in (7.40) we then get

co=[ ([ (LW () (00 ) ds.
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Thus, we have to estimate

[(LTv(y, ) (7))

IN

> /R a(z — y)"P(v’\ny)v*(w’\ny) (7.47)

ey

- by < 3 [ ate - o) — vl

xrey

+ T / a(z — y)v (v, 7 \ zUy)dy
, JRA
ey
¥ (') + Ca¥?(Y),
where we used the same estimate as in as in ([7.42)). Now we use ([7.47)) in (7.46)) and then plug this
into ((7.37). In doing so, we will deal with

/ P2 (y, d Y12 (dy) =TI, (d) = 4§, (),

*

IN

that follows by the Chapman-Kolmogorov property of the transition function ([7.1)), see [15, page 156],
and then by Lemma [7.7 Thereafter, we obtain

v

Wty + o, t +u+v) < CaueQC““/O (captf +s() + Copdt 4, (T?)) ds. (7.48)

We recall that p € Pf}fp and thus the correlation functions of puf* satisfy the estimate in claim (a) of
Proposition with ¥; = ¥ +t. Then by we get
HE (W) < (e (U%) < (et () et
We use this in and obtain
Wt t + vt +u+v) < Cu+v)?

where, for a fixed 6 > 0, the independent of a constant can be calculated explicitly for u+v < §. This
yields (|7.38)) with C' independent of a, and hence completes the whole proof. O

7.3. Proof of Theorem For each a € (0,1], s > 0 and g € Pexp, by Proposition the
measure Py, on D, 4 )(I's) is defined by its finite dimensional marginals constructed with the use
of the transition function . Namely, for s <ty <ty < -+ <ty and Ay,..., A, € B(I',), we have,
cf. [15 eq. (1.10), page 157],

Pg‘# ((]]'Al owy ) - (1a,, 0 wt,)) = /Fm+1 14, (Vm)p?m*tmfl (Ym—1,dYm) (7.49)
XL ppy (Ym—1)P, i (Ym—2s dym—1) - La, (71)Pf _ s (70, dy1) (d0)-
In particular, for ¢ > s, this yields
P ow; !t =St —s)p. (7.50)

Then the validity of conditions (a) and (b) of Definition follow by (7.50) and Lemma Now
we turn to proving the validity of (c). Let G be as in (3.17)) with a given m € IN and s < s1 < s9 <

<o < 8§y < tg. For a given F' € D(L) and u € [sy,, t2], we set F, = F o w,, K, = (LF) o w, and
K& = (L“F) o w,. Next, we define

X2 (dn) = CLE (1), (d) = C1Fy () /F P (o d)uldr), Ot = / Fy ()i, ().

Iy
By 1' and Lemma (7.7} and then by claim (iv) of Proposition we have that x§, € ngp with 14
dependent on s; — s and the type of u € Pexp, and independent of « since the norms of LA can be
estimated uniformly in « € [0,1]. Then we define recursively

X2 (dy) = CFy() /F Py (ode (dy),  1=2,....m,
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and obtain x§ € PUm with 9, independent of a. Thereafter, by 1} we conclude that

exp

Py (FuG) = CP; (Fy) = CPY (F owy,), U > S, (7.51)

SmsXsm SmsXsm
where C' is a normalizing constant, i.e. C = Py, (G). Then P (H) = 0 follows by the fact that the
map u — PSanuX.sm o w, ! solves the Fokker-Planck equation 1’ with L%, see . This proves
(c), and hence the family {Pg, : s > 0,1 € Pexp} is a unique solution of the corresponding restricted
martingale problem, see Theorem

By Lemma and claim (ii) of Proposition for each s and p, the family {Pg, : o € (0,1]}
is relatively weakly compact, and each of its accumulation points has the same one dimensional
marginals, that coincide with the measures p;, see Lemmas [6.2] and [7.7] Let us show that these
accumulation points solve the restricted initial value martingale problem for L. By Lemmas [6.2] and
7.7| one concludes that conditions (a) and (b) of Definition are met, and we thus turn to proving
3.16). Given sequence {ap}nen C (0,1], o — 0 and s > 0, p € Pexp, let Pip = Ps . Let also G in
3.15) be as in with a given m, s1,..., s, and Fj € F,j=1,...,m. Set C, = Pg7(G). Then
the measures vy, ,, € P(I'y) defined by

Vnu(A) = C 7 PEn(G - (Tg 0 wy)) = PO (w0, (A)),  w€ [sm,ta], A€ B(T.).

SmXsm

are in P, with ¢ independent of n and u € [sm, t2] (see (7.51))). We also let
vu(A) = O P, (G- (14 0 wy)), U € [Sm,ta], A€ B(T,),

with C' = P; ,(G). Then vy, = v, for all u € [s,,,t2]. By Lemmathis yields v, € P2, and hence
the corresponding correlation functions satisfy k0™, k, € Ky for all u € [s,,,t2] and n € IN. To prove

P ,,(H) = 0 we rewrite it, cf. (3.15]),

to
P, ,(F1,G) — P, ,(F1,G) — / Py, (KyG)du = 0. (7.52)

t1

For u € [s,, t2] and n € IN, we then set
an(u) = Ps ;1 (FuG) — Pgi (FuG),
bu(u) = Py u(KuG) — P22 (K, G),
cn(u) = P ((Ky — KG™)G).
Since Py (H) = 0, it follows that

to to
LHS(7.52) = [an(ts) — an(t1)] — / b (1)t — / en(w)du = I 4+ 1@ 4 1) (7.53)

t1 t1

By the assumed weak convergence of Py} one readily gets an(u) — 0, which yields Ir(bl) — 0 as
n — +o0o. At the same time,

bn(u) = O [Vu(LF) — vy o (LF)] 4+ (C7F — O Yy (LF). (7.54)

Since Cp, — C > 0, to prove by(u) — 0 as n — +oo by (7.54) it is enough to show that v, (LF) —
Unu(LF) — 0 for F' € D(L). To this end we recall that G = G,,—1(Fy, 0 ws,, ), see (3.17)). Set

ﬁn,u(A) = églpsojﬁ(Gm_l(ﬂA (¢] wu)), u € [Sm—la Sm]a
7u(A) = C7 Py (Gt (14 © @)

As above, we have that 7, ,, 7, € ngp for all n and u as above. Clearly, we may assume that ¥ > 9,

and hence their correlation functions, k, and l;;f}", lie in the corresponding Kj. As in 1’ we then
can write

ku = kgm = Qui(u — sm)ks,, — Q53 (u — sm)kSn. (7.55)

For m = 1, k, and 1233" are the correlation functions of 1, and p5™, and hence one may apply Lemma
which yields

pu(LF) = pon(LF) = (ky — k2", LGY) = (ky — k2", G) — 0, n — +00,
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where G € NyGy is such that F = KG, see and . Therefore, we may inductively assume in
that
(ks — k5, LGY = 0,
and obtain
Vu(LF) = vy o (LF) = {(ky — k3, LGY) — 0,
by repeating the steps made in the proof of Lemma This yields b, (u) — 0. As already mentioned
above, both terms of b,(u) are bounded uniformly in n and wu, that yields in I,(f) — 0.

Let us now turn to L({Q’). As above, we have here

ea(w)] = |k ZaGY| < €’ LaGl,

where G € NyGy is such that F = KG, see 1' and 1 , and En is obtained by replacing a(z — y)
in (4.1) by

an(,y) = a(z — y)(1 = Ya,)(z) = a

a(z — y)|z| ™!
"1+ w4t

Proceeding as in obtaining (4.5 we then get, see (3.3),

exp ((6)) Gl

|d+1

< ana(z —y)|z =: apa(x,y).

a
20nMg 4

S 20am,
[EnGlo < e — )

Here 9’ can be an arbitrary number since G € Ny Gy, see 1' This yields IT(L?’) — 0 asn — 4oo (and
hence «;,, — 0), which by (7.53)) implies ([7.52)). Therefore, the proof of Theorem is completed.

7.4. Proof of Theorem Claim (a) follows by Theorem [6.1] (existence) and Theorem [5.2] (unique-
ness). The validity of (b) is then a standard fact, cf. [I3| Theorem 5.1.2, claim (iv), page 80]. To

prove (c), we proceed as follows. By construction, the law of X (¢) is s € Pexp; hence, X (t) € I,
with probability one, see Lemma Let {Dy}rew and {I'y }rew be the collections of balls and
sets, respectively, used in the proof of Lemma see (2.27). As we show there, each I, ;; is an open

subset of I'y, and T, = Mels . For H as in (2.31) and k € N, we set Hy(y) = H(w) = H(y N Dy).
Then Hy(y) < oo for y € I'y . For N € IN and s > 0, let us consider the following stopping time

Th =inf{t > s: Hy(X(t)) > N},
cf. [15, page 180], and then set T% At = min{T%;t} and Z(t) = limy_, 100 X (T% At), which exists as
TY <Tk.,. Let &7 € D(L) be the same as in (5.33). Then

F(X (1)) - / (L) (X (u))du

is a right-continuous martingale. Let ji; be the law of Z(t) and T* = limy_, 400 T%. Similarly as in
[15, page 180], for each ¢t > s by the optional sampling theorem, we can write

9

Th At
E @2 (X (Th AD)| = B@r(X(s)] + B / (L) (X (u)du

which after passing to the limit N — 4oco yields

r(B1) = p(@) + E

TkAt
/ <L@:”><X<u>>du]

< (@) + E

TkAL
/ (L) (X (u)) du]

<)+ 2| [ 1ol i) < uep) + [ e
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where 1, = Py, 0w, ! is the law of X (u). Note that in the last line we used (5.24). By this estimate
and (5.35)) (with pp = ) we then get the following

“+00

N t—s)"

@y <3 L=

n=0

(@),

Now we proceed as in (5.38]) and arrive at
.~ 2t—
lim iy (82) < (20 0] .

holding for all m € IN and t — s < p.. Here s is the type of . This yields that fi; € Pexp for such ¢,
and hence Z(t) € I', almost surely, implying T* > t. Now we fix v < s + p., repeat this procedure

with the martingale
t+v

FI(X (L +v)) - /+ (L&2)(X (u))du

and eventually conclude that T% > t for all ¢, and hence almost all sample paths of X remain
in D 4o0)(Ts k), holding for every k. Since I'x = Mgy, this yields that these paths remain in

Dis,400)(I's), cf. [15, Proof of Proposition 3.10, page 180, 181], which complete the proof.
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APPENDIX

Here we prove (5.24)), (5.25) and (5.26). For n = 2, (5.24)) is just (5.20) with &7y given by (5.25)
with wi(m,2) = (m+1)? —m? = 2m+1, wa(m,2) = 1, see (5.28) and (5.27). Assume then that @I,
is as in (b.25)). By (5.23), similarly as in (3.12]), we get

m
‘LVT(C; ’Y)| < Z ﬁ;nﬁ‘“ yeen093=1,0% 1, 0% +1 | gIm (’Y)) + TCZ+1F\;’L+1 (7)
j=1
Here we have taken into account that ¢g = 1, and also 0%(x) < cl(z), see (3.6) and (3.7). In a similar
way, by (3.13]) we obtain

LB ()] < meaF7 () + rea B ().
Now we use both this estimates in (5.25)) and obtain
’L@fn(y)} < Z Crnn(c) <60VT(60— Liev+1,¢0, 0. Ch,y--257) (7.56)

c€Cm,n

+ Cl‘/‘f'(c(]vcl_1762+1,...,Ck,.,_;'y)+..._|_

+ V(e c1yvoyen — 1, Cny1 + 1,...;7))

n
Lot B () 4 ( S ok m 4 Ry (m, ) ()
k=1

n+1
T3 e+ Ry, n)ﬂ”*"’(v)) .
k=2
If one takes into account the recurrence formulas in (5.27)), the latter two lines of the right-hand side
of (7.56) convert into the second term of (5.25) written for @7, ;. Thus, it remains to prove that
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the first three lines of ((7.56) yield the first term of (5.25) written for @7, .,. Note that therein the
summands corresponding to ¢; = 0 vanish automatically since we multiply them by zero in this case.
Assuming that a given ¢; # 0 we can write the corresponding summand in 1) denoted S’;LH, as
follows, see the second line in (5.25)),

min!(j + 1)!(cjt1 + 1)

gntl 7.57
7T g Dl + D) (e G s e

X Vr(cﬂucl,...,Cj—l,Cj+1+1,...;7)

Jj+1
= mc;drlcm,n—i—l (CI)VT(C/;’}/), de Cm,n-‘,—la
where ¢ = (co,...,¢j—1,¢j41+1,...). To get convinced that ¢ is indeed in Cp, ,,+1 one computes the
corresponding sums, cf. (5.22)), that yields co+---+cj—14+cjp1+14+--- = co+---+cj+cjp1+--- =m,
and ci+--+5(c;—1)+(G+1)(cjpr+1)+- - =1+ -+jcj+(j+1)cjy1+---—j+j+1 =n+1. Then we

rewrite each summand in the first three lines of (7.56)) as in ((7.57)) and observe that the corresponding
¢ runs over the whole Crm,n+1 when c runs through C,, ,. Then these three lines, denoted Sl take
the following form

n+1

n 1 ,

s= <n+1ZJCQ'>Cm,n+1(c')VT(C’;V) (7.58)
=

Clecm,n-‘—l

= Z Cm,n-l-l(cl)VT(C/; ),

C/ECm,n+1
where we have taken into account that Ej jcj = n+ 1, see 1D This completes the proof of

(5.24) and (5.25). It then remains to prove (5.26). For n = 1, Cp,1 is a singleton consisting of
c¢c=(m—1,1,0,...), which yields

m!
Z Cm,1(c) = (=D = m.

CGCmJ

Now we set in the second line of (7.58) V,(c/;v) = 1 and calculate S™*! with this V,, which is equal
to the first three lines of ([7.56]). That is,

Y Comna(d)= ) cm,n(c)(co+cl+...+cn> =m Y Cmnlc),

¢ ECmmt1 c€Comom c€Crm.m

where we once again have used the first equality in (5.22). Now ([5.26|) is obtained from the latter by
the induction in n.
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