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Abstract Let L = −div(A∇) be a uniformly elliptic operator in Rn with real, symmetric,
measurable coefficients. We study the identity of two families of Besov spaces Bs,L

p,q and Bs
p,q,

where the former one is defined using the heat semigroup of L, while the latter one is defined in
a classical way, using the metric structure of Rn. A sharp range of parameters p, q, s ensuring
the identity Bs,L

p,q = Bs
p,q is given by a Hardy-Littlewood-Sobolev-Kato diagram.
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1 Introduction

Let A := (ai, j) be an n×n real-valued matrix function defined on the Euclidean space Rn, which
is symmetric (namely, ai, j ≡ a j,i) and satisfies the uniform ellipticity condition that there exists
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Λ > 0 such that for any ξ ∈ Rn and a.e. x ∈ Rn,

Λ−1|ξ|2 ≤

n∑
i, j=1

ai, j(x) ξiξ j ≤ Λ|ξ|2. (1.1)

Define the bilinear form E associated with A by setting for any f , g ∈ dom [E],

E ( f , g) :=
∫
Rn

n∑
i, j=1

ai, j(x)
∂

∂x j
f (x)

∂

∂xi
g(x) dx,

where the domain dom [E] := W1, 2(Rn) denotes the usual first order Sobolev space on Rn.
It is well-known that the bilinear form E is symmetric, closed and Markovian in L2(Rn), namely,

E is a Dirichlet form. Thus, by the classical theory of Dirichlet forms [21], there exists a correspon-
dence between E and its associated operator L, which is nonngegative and self-adjoint in L2(Rn).
We call the operator L, written formally L := −div(A∇), the second order divergence form el-
liptic operator with the domain dom [L] consisting of all f ∈ dom [E] satisfying the following
condition: there exists g := L f ∈ L2(Rn) such that for any h ∈ dom [E],

E ( f , h) = (g, h)L2(Rn),

where (·, ·)L2(Rn) denotes the L2(Rn) inner product.
The second order divergence form elliptic operator L generates a strongly continuous contrac-

tive Markovian semigroup {e−tL}t>0 on L2(Rn). The regularity theory of the associated parabolic
problems (see [2, 3, 14, 27, 40, 41] and their references) asserts that e−tL has the integral kernel
Pt(x, y) (called also heat kernel) that is defined on R+ ×R

n ×Rn, is symmetric in x, y, and satisfies
the following properties:

(a) Gaussian upper and lower bounds: for any t ∈ (0, ∞) and x, y ∈ Rn,

c0

tn/2 exp
{
−
α0|x − y|2

t

}
≤ Pt(x, y) ≤

c1

tn/2 exp
{
−
α1|x − y|2

t

}
. (1.2)

(b) Hölder continuity: ∀ t ∈ (0, ∞), Pt(x, y) is jointly continuous in (x, y) and, for any x,
y, y′ ∈ Rn satisfying |y − y′| ≤

√
t,∣∣∣Pt(x, y) − Pt(x, y′)

∣∣∣ ≤ c2

(
|y − y′|
√

t

)Θ 1
tn/2 exp

{
−
α2|x − y|2

t

}
, (1.3)

where all constants Θ, c0, c1, c2, α0, α1, α2 are positive and depend only on n and Λ; besides
Θ ∈ (0, 1).

The properties (a) and (b) will be denoted shortly by G(Θ). Let us emphasize that the value of
Θ can be arbitrary small (see [55, 46]).

It is also known that the semigroup {e−tL}t>0 is conservative (see, for example, [4, Chapter 2.5]),
that is, e−tL1 = 1, which implies that for any t ∈ (0, ∞) and x ∈ Rn,∫

Rn
Pt(x, y) dy ≡ 1. (1.4)

Let us also mention the following further properties of operatorL in the Lebesgue space Lp(Rn),
p ∈ (1, ∞), that follow from G(Θ) (except for (i) that follows from (1.4)).
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(i) Extrapolation of semigroup to Lp(Rn): the semigroup {Tt}t>0 = {e−tL}t>0 on L2(Rn) can be
extrapolated to a strongly continuous contractive semigroup on Lp(Rn) for any p ∈ (1, ∞),
which is consistent with the original semigroup {e−tL}t>0 in L2(Rn) ∩ Lp(Rn) (see [13, 48]
and their references). We use the same notation {Tt}t>0 for all the semigroups on Lp(Rn).

(ii) Independence of spectrum in Lp(Rn): let p ∈ (1, ∞) and Lp be the generator of the
semigroup {Tt}t>0 on Lp(Rn). The Gaussian estimates (1.2) imply that the spectrum σ(Lp) ⊂
[0, ∞) is independent of p ∈ (1, ∞) (see [1, 15]). We use the same notation L to denote all
the generators Lp in Lp(Rn), and {e−tL}t>0 to denote the associated semigroup on Lp(Rn).

(iii) Functional calculus of L in Lp(Rn): for any p ∈ (1, ∞), the operator L satisfies the
bounded H∞ functional calculus in Lp(Rn) (see [5, 16]). More precisely, for any µ ∈ (0, π),
let Σµ := {z ∈ C \ {0} : | arg z| < µ} be an open sector in the complex plane C and H∞(Σµ)
the space of all bounded holomorphic functions in Σµ. Then there exists a positive constant
C such that for any ϕ ∈ H∞(Σµ) and f ∈ Lp(Rn),

‖ϕ(L) f ‖Lp(Rn) ≤ C‖ϕ‖L∞(Σµ)‖ f ‖Lp(Rn), (1.5)

where ϕ → ϕ(L) is a bounded homomorphism from the Banach algebra H∞(Σµ) into the
Banach algebra L (Lp(Rn)) of all bounded linear operators on Lp(Rn). The H∞ functional
calculus is consistent with the functional calculus of L2-spectral theory and can be extended
from H∞(Σµ) to the following extended Dunford-Riesz class E (Σµ), which is defined for
some fixed c, s, s′ > 0 as follows:

E (Σµ) :=
{
f is holomorphic in Σµ : for any ξ ∈ Σµ, | f (ξ)| ≤ c max

{
|ξ|s, |ξ|−s′

}}
. (1.6)

As the functions in E (Σµ) may be unbounded, this extension may allow us to define some
unbounded operators such as the fractional power Ls of L for any s ∈ C+ (namely, s ∈ C
with Re s > 0). See [39, 12, 28] for more systematic descriptions on the H∞ functional
calculus.

(iv) Holomorphic semigroup of L on Lp(Rn): By the uniform ellipticity condition (1.1), we
know that L is a 0-sectorial operator in L2(Rn) (see, for example, [28, Chapter 2] for the
definition of the sectorial operator). This immediately implies that L generates a bounded
holomorphic semigroup {e−zL} on L2(Rn) for any z ∈ C+ (see [28]). This bounded holomor-
phic semigroup {e−zL} can be extrapolated from L2(Rn) to Lp(Rn) for any p ∈ (1, ∞), due
to the property G(Θ) (see [42, 29]). Moreover, it was proved in [13, 43] that e−zL has an
integral kernel Pz satisfying the following estimate:

|Pz(x, y)| ≤
c3

(Re z)n/2 exp
{
−
α3|x − y|2

|z|

}
, (1.7)

for any z ∈ C+ and x, y ∈ Rn, where c3 and α3 are positive constants.

The aforementioned analytical properties of L form basis for us to construct function spaces
related to smoothness properties of L. For example, let us introduce the following heat Besov
space Bs,L

p,q for any p, q ∈ (1, ∞) and s ∈ [0, ∞) by

Bs,L
p,q :=

{
f ∈ Lp(Rn) : ‖ f ‖Bs,L

p,q
:= ‖ f ‖Lp(Rn) + ‖ f ‖Ḃs,L

p,q
< ∞

}
, (1.8)
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where

‖ f ‖Ḃs,L
p,q

:=
{∫ ∞

0

[
t−s/2

∥∥∥(tL)k e−tL f
∥∥∥

Lp(Rn)

]q dt
t

}1/q

(1.8a)

with k ∈ Z+ ∩ (s/2, ∞). Clearly, Bs,L
p,q is a Banach space. Moreover, as pointed out in [35,

Theorem 6.1] or [26, Proposition 2.9], the norms ‖·‖Bs,L
p,q

in (1.8) are equivalent for different choices

of k ∈ Z+ ∩ (s/2, ∞), so that Bs,L
p,q does not depend on k.

In the case L = −∆, where ∆ is the Laplacian, this family of Besov spaces was first introduced
by Taibleson [49] to characterize the classical Besov spaces via temperatures (Gaussian kernel) and
harmonic functions (Poisson kernel) by using the Littlewood-Paley method (see [49, 50, 51, 20]
and their references). Triebel [54] introduced a certain family of Besov spaces in a more general
set up, using instead of {e−tL}t>0 an abstract semigroup {Tt}t>0. Haase [28] proved that if {Tt}t>0 is
generated by a sectorial operator L, the Besov spaces of Triebel coincide with those defined as in
(1.8)-(1.8a). In the setting of metric measure space, the heat Besov spaces were introduced by Hu
and Zähle [33]. See also [8, 35, 26, 38, 7] for recent developments of this topic.

On the other hand, it is known that one of the main motivations for O. V. Besov to introduce
his notion of Besov spaces was to provide a unified scale of function spaces that contain both the
Sobolev and Hölder spaces (see [52] for an excellent historical review). As both of those spaces
are defined via the difference, it is natural to define the Besov spaces in the same way. To be
precise, for any p, q ∈ (1, ∞) and s ∈ (0, ∞), define the Lipschitz Besov space Bs

p,q by

Bs
p,q :=

{
f ∈ Lp(Rn) : ‖ f ‖Bs

p,q := ‖ f ‖Lp(Rn) + ‖ f ‖Ḃs
p,q
< ∞

}
, (1.9)

where

‖ f ‖Ḃs
p,q

:=


∫ ∞

0

["
|x−y|<r

| f (x) − f (y)|p

rn+sp dy dx
]q/p dr

r


1/q

. (1.9a)

Let us emphasize that this definition does not depend on the operator L.
It is known that for any s ∈ (0, 1) and p ∈ (1, ∞), the space Bs

p,p equals to the fractional
order Sobolev space W s,p(Rn) defined via the Gagliardo norm. Also, for any s ∈ (0, 1), with the
usual modification in (1.9)-(1.9a) when p = q = ∞, the space Bs

∞,∞ coincides with the Hölder
space Cs(Rn) (see [51, 19, 20, 52]). In the general setting of metric measure space, the Lipschitz
Besov space also plays an important role in the geometric analysis of the underlying space (see
[34, 44, 24, 56, 25, 45, 27]).

Returning to our setting, we have now two families of Besov spaces Bs,L
p,q and Bs

p,q. In 2010,
Pietruska-Pałuba [44] raised a question on the relationships between these two families of Besov
spaces. The following is the main problem considered in this paper.

Main problem: when the spaces Bs,L
p,q and Bs

p,q are identical?

If L = −∆, then the identity

Bs,L
p,q = Bs

p,q (1.10)
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is known to be true for the full range of all p, q ∈ (1, ∞) and s ∈ (0, 1) (see [51, 52]). For general
L as above, the situation is more complicated. Hu and Zähle [33] first showed that (1.10) holds
for p = q = 2 and any s ∈ (0, 1). Later, Grigor’yan and Liu [26] proved that (1.10) holds for
any p, q ∈ (1, ∞) and any s ∈ (0, Θ), where Θ denotes the Hölder exponent as in (1.3) (see also
[56] for some similar results in the setting of RD-spaces). Figure 1 below shows the range of
parameters p and s in the (1/p, s)-plane, where (1.10) was known before.

1/p

s

Figure 1: previously known range for p and s
O = (0, 0) C = (1,0)

D = (0,Θ) B′ = (1,Θ)

A′ = (1/2, 1)

E= (1/2,0)
1/p

s

P(Θ, σ)

Figure 2: new range for p and s

O = (0, 0) C = (1,0)

D= (0,Θ)

A = (1/σ, 1) B = (1,1)

Our main result says that this range can be extended as on Figure 2. More precisely, let

σ ∈ (2, ∞) (1.11)

be the upper limit of the numbers p ∈ (1, ∞) satisfying that the Riesz transform ∇L−1/2 is bounded
in Lp(Rn). For Θ and σ respectively as in (1.3) and (1.11), let P(Θ, σ) be the Hardy-Littlewood-
Sobolev-Kato diagram in the (1/p, s)-plane defined by

P(Θ, σ) :=


(

1
p
, s

)
∈ (0, 1) × (0, 1) :

1
p
∈

(0, 1), s ∈ (0, Θ),
( s−Θ

(1−Θ)σ , 1), s ∈ [Θ, 1)

 . (1.12)

Our result is stated in the next theorem.

Theorem 1.1. Let P(Θ, σ) be the open range of (1/p, s) as on Figure 2 (see also (1.12)). Then for
any (1/p, s) ∈ P(Θ, σ) and q ∈ (1, ∞),

Bs,L
p,q = Bs

p,q. (1.13)

The range P(Θ, σ) of parameter (1/p, s) is optimal in the entire class E (Rn) of all operators L
as above. Indeed, denote by P the intersection of all P(Θ, σ) for any Θ ∈ (0, 1) and σ > 2 (see
Figure 5 and (4.24)).

Theorem 1.2. For any (1/p, s) ∈ (0, 1) × (0, 1) \ P with P as on Figure 5 (see also (4.24)), there
exists L ∈ E (Rn) such that for any q ∈ (1, ∞),

Bs,L
p,q , Bs

p,q.
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From Theorems 1.1 and 1.2, it seems that the parameter q is irrelevant to the identity (1.13).
Also, as it follows from the proof of Theorem 1.1, the inclusion Bs

p,q ⊂ Bs,L
p,q is in fact true for the

entire range (1/p, s) ∈ (0, 1)× (0, 1). Let us emphasize that under some additional assumptions on
L, the parameters Θ and σ may reach their boundary values. For example, if the coefficients of
the matrix A belong to the Hölder space Cγ(Rn) for some γ ∈ (0, 1), then by [17, Theorem 1.3],
we have that σ = ∞, which implies that P(Θ, σ) = (0, 1) × (0, 1) so that the identity (1.13) holds
for the full range of all p, q ∈ (1, ∞) and s ∈ (0, 1) (see Remark 5.11).

Both Theorems 1.1 and 1.2 are proved in Section 4.2. The new idea of the proof of Theorem
1.1 consists of using two versions of Triebel-Lizorkin spaces (heat and Lipschitz) that are denoted
by F s,L

p,q and F s
p,q, and defined similarly to the above two versions of Besov spaces (see (2.4)-(2.4a)

and (2.6)-(2.6a)). We first consider the endpoint case s = 1 when it is well-known that

F1
p,2(Rn) = W1,p(Rn) and F1,L

p,2 = domp[L1/2],

where F1
p,2(Rn) is the classical Triebel-Lizorkin space on Rn, which is a suitable substitute of F1

p,2
when the smoothness parameter s = 1 (see Remark 2.3). By the result of [4, Chapter 4] (see also
[5]) solving the Lp-Kato square root problem, we have

W1,p(Rn) = domp[L1/2]

for all p ∈ (1, σ), where σ is as above, which yields the identity

F1
p,2(Rn) = F1,L

p,2

for all p ∈ (1, σ). Then we prove the identity

F s
p,q = F s,L

p,q

for all s ∈ (0, Θ) and arbitrary p, q, which is the most technical part of the proof. By using
Hardy-Littlewood-Sobolev-Kato estimates similar to [4], we extend the range of parameters p
and s to P(Θ, σ) as on Figure 2. In the last step in the proof we transfer the above identity of
Triebel-Lizorkin spaces to Besov spaces, by using real interpolation.

In order to prove the sharpness of the range of p and s (Theorem 1.2), we use a counterexample
from [5, p. 120] (see Lemma 4.5 below), where the authors proved that inf σ = 2 over all L ∈
E (Rn). Let us emphasize that under higher regularity of the coefficients one can extend the identity
(1.13) also to s ≥ 1 (see Section 5).

As illustrated above, the idea used to prove Theorems 1.1 and 1.2 depends heavily on the
Euclidean structure of the underlying space. It is natural to ask if similar results can be extended
to the setting of a general metric measure space. We consider this question in a forthcoming paper
[10], where it is proved that (1.10) holds for parameters lie in a proper subset of (1.12) by applying
some new methods that are different to the present paper.

This paper is organized as follows. Sections 2 and 3 are preparations. In Section 2 we review
some basic notions and properties of the function spaces associated with L which include three
versions of Besov and Triebel-Lizorkin spaces: heat, Lipschitz and spectral. Then in Section 3,
we prove the identity of the spectral and Lipschitz versions of Triebel-Lizorkin spaces for any
s ∈ (0, Θ). In Section 4 we prove Theorems 1.1 and 1.2. Finally, in Section 5, we extend the
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above considerations to the case s ∈ (0, µ) for some µ > 1, by adding higher order regularity
assumption on the heat kernel.

Notation. Let N := {1, 2, . . .} and Z+ := N∪ {0}. For any subset E ⊂ Rn, 1E denotes its character-
istic function. We use C to denote a positive constant that is independent of the main parameters
involved, whose value may differ from line to line. Constants with subscripts, such as C1, do
not change in different occurrences. For any function f on Rn, letM( f ) be its Hardy-Littlewood
maximal function defined by setting for any x ∈ Rn,

M( f )(x) := sup
B3x

1
|B|

∫
B
| f (y)| dy, (1.14)

where the supremum is taken over all balls in Rn containing x. For any ξ ∈ Rn, let

f̂ (ξ) :=
∫
Rn

f (x)e−ix·ξ dx (1.15)

be the Fourier transform of f . For any qualities f , g and h, if f ≤ Cg, we write f . g and, if
f . g . f , we then write f ' g. We also use the following convention: if f ≤ Cg and g = h or
g ≤ h, we then write f . g ' h or f . g . h, rather than f . g = h or f . g ≤ h. Finally, for
any s ∈ R, we use [s] to denote the largest integer not greater than s and {s} to denote the number
s − [s] ∈ [0, 1).

2 Function spaces associated with L

In this section, we provide the preliminaries on the function spaces associated with the sec-
ond order divergence form elliptic operator L. We review some basic notions and properties of
the Besov and Triebel-Lizorkin spaces from three different point of views: heat, Lipschitz and
spectral, which are introduced respectively in Sections 2.1, 2.2 and 2.3. The reader may skip this
section and go directly to Section 3 if she or he is familiar with these notions and properties. We
also refer the reader to [56, 8, 28, 35, 26, 32, 37, 38, 22, 9, 7] and their references for a complete
description of this topic.

2.1 The heat Besov and Triebel-Lizorkin spaces

Let p, q ∈ (1, ∞) and s ∈ [0, ∞). Recall that the heat Besov space Bs,L
p,q is defined by setting

Bs,L
p,q :=

{
f ∈ Lp(Rn) : ‖ f ‖Bs,L

p,q
:= ‖ f ‖Lp(Rn) + ‖ f ‖Ḃs,L

p,q
< ∞

}
, (2.1)

where

‖ f ‖Ḃs,L
p,q

:=
{∫ ∞

0

[
t−s/2

∥∥∥(tL)k e−tL f
∥∥∥

Lp(Rn)

]q dt
t

}1/q

(2.1a)

with k ∈ Z+ ∩ (s/2, ∞).
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Remark 2.1. (i) The norms ‖·‖Bs,L
p,q

in (2.1) are equivalent for different choices of k ∈ Z+∩(s/2, ∞)
(see [35, Theorem 6.1] or [26, Proposition 2.9]).

(ii) By the bounded functional calculus in Lp(Rn), we known that for any t ∈ (0, ∞) and
f ∈ Lp(Rn), ‖(tL)ke−tL f ‖Lp(Rn) . ‖ f ‖Lp(Rn), which then implies that for any k ∈ Z+ ∩ (s/2, ∞) and
f ∈ Lp(Rn),

‖ f ‖Bs,L
p,q
' ‖ f ‖Lp(Rn) +

(∫ 1

0

[
t−s/2

∥∥∥(tL)k e−tL f
∥∥∥

Lp(Rn)

]q dt
t

)1/q

. (2.2)

(iii) The spaces Bs,L
p,q belong to a more general family of Komatsu type spaces (or McIntosh-

Yagi spaces) Xs
p,q, which arise to characterize the immediate spaces of real interpolation of the

domains of the fractional powers of sectorial operators in Banach spaces (see [36, 54, 28]).

The following real interpolation result on the heat Besov spaces Bs,L
p,q is essentially established

in [28, Chapter 6].

Proposition 2.2 ([28]). Let p, q ∈ (1, ∞) and s ∈ (0, ∞). Then

(i) for any θ ∈ (0, 1), (
Lp(Rn), domp[Ls/2]

)
θ,q

= Bsθ,L
p,q ,

where for any p ∈ (1, ∞) and s ∈ (0, ∞), domp[Ls/2] denotes the domain of the fractional
power Ls/2 of L in Lp(Rn), endowed with the norm

‖ f ‖domp[Ls/2] := ‖ f ‖Lp(Rn) +
∥∥∥Ls/2 f

∥∥∥
Lp(Rn) '

∥∥∥(1 +L)s/2 f
∥∥∥

Lp(Rn) ; (2.3)

(ii) for any θ ∈ (0, 1), q0, q1 ∈ (1, ∞) and s0, s1 ∈ (0, ∞),(
Bs0,L

p,q0 , Bs1,L
p,q1

)
θ,q

= Bs,L
p,q ,

where s ∈ (0, ∞) satisfies s = s0(1 − θ) + s1θ.

Similar to the heat Besov space, one can also define the heat Triebel-Lizorkin space F s,L
p,q with

p, q ∈ (1, ∞) and s ∈ [0, ∞) by setting

F s,L
p,q :=

{
f ∈ Lp(Rn) : ‖ f ‖F s,L

p,q
:= ‖ f ‖Lp(Rn) + ‖ f ‖Ḟ s,L

p,q
< ∞

}
, (2.4)

where

‖ f ‖Ḟ s,L
p,q

:=

∥∥∥∥∥∥∥
(∫ ∞

0

∣∣∣t−s/2 (tL)k e−tL f
∣∣∣q dt

t

)1/q
∥∥∥∥∥∥∥

Lp(Rn)

(2.4a)

with k ∈ Z+ ∩ (s/2, ∞). The heat Triebel-Lizorkin space F s,L
p,q satisfies properties similar to those

of Bs,L
p,q (see [37, 35] and their references for more related properties). Here, we only note the

following identity on the space F s,L
p,q that for any p ∈ (1, ∞),

F0,L
p,2 = Lp(Rn),

which can be derived from the L-adapted square function characterization of the space Lp(Rn)
(see [4, Theorem 6.1]).
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2.2 The Lipschitz Besov and Triebel-Lizorkin spaces

Let p, q ∈ (1, ∞) and s ∈ (0, ∞). Recall that the Lipschitz Besov space Bs
p,q is defined by

Bs
p,q :=

{
f ∈ Lp(Rn) : ‖ f ‖Bs

p,q := ‖ f ‖Lp(Rn) + ‖ f ‖Ḃs
p,q
< ∞

}
, (2.5)

where

‖ f ‖Ḃs
p,q

:=


∫ ∞

0

["
|x−y|<r

| f (x) − f (y)|p

rn+sp dy dx
]q/p dr

r


1/q

. (2.5a)

Similarly, the Lipschitz Triebel-Lizorkin space F s
p,q with p, q ∈ (1, ∞) and s ∈ (0, ∞) is defined

by

F s
p,q :=

{
f ∈ Lp(Rn) : ‖ f ‖F s

p,q := ‖ f ‖Lp(Rn) + ‖ f ‖Ḟ s
p,q
< ∞

}
, (2.6)

where

‖ f ‖Ḟ s
p,q

:=

∥∥∥∥∥∥∥
[∫ ∞

0

(∫
B(·,r)

| f (·) − f (y)|
rn+s dy

)q dr
r

]1/q
∥∥∥∥∥∥∥

Lp(Rn)

. (2.6a)

Remark 2.3. (i) Observe in (2.5)-(2.5a) and (2.6)-(2.6a), the spaces Bs
p,q and F s

p,q don’t depend
on the operator L. Moreover, from their definitions, it is easy to see Bs

p,q and F s
p,q are consistent

with the classical Besov spaces Bs
p,q(Rn) and Triebel-Lizorkin spaces F s

p,q(Rn) on Rn for any p,
q ∈ (1, ∞) and s ∈ (0, 1) (see [51, 52]).

(ii) For s ≥ 1, as the walk dimension of Rn is 2, the above Lipschitz Besov and Triebel-
Lizorkin spaces may degenerate to {0} (see, for example, [34, 24, 26]). To obtain non-trivial and
more suitable function spaces, we need to replace the first order difference in (2.5)-(2.5a) and
(2.6)-(2.6a) by higher order differences (see [52, Chapter 1] for a more detailed explanation and
Section 5.2 below).

We end this subsection with the following characterizations of the norm of the space F s
p,q.

Lemma 2.4. Let p, q ∈ (1, ∞) and s ∈ (0, ∞). Assume that f ∈ Lp(Rn). Then the following two
assertions hold.

(i) ‖ f ‖F s
p,q ' ‖ f ‖F̃ s

p,q
:= ‖ f ‖Lp(Rn) + ‖ f ‖˜̇F s

p,q
, where

‖ f ‖˜̇F s
p,q

:=

∥∥∥∥∥∥∥
[∫ 1

0

(∫
B(·,r)

| f (·) − f (y)|
rn+s dy

)q dr
r

]1/q
∥∥∥∥∥∥∥

Lp(Rn)

(2.7)

and the implicit constants are independent of f .

(ii) ‖ f ‖F s
p,q ' ‖ f ‖˜̃F s

p,q
:= ‖ f ‖Lp(Rn) + ‖ f ‖ ˜̇̃

F s
p,q

, where

‖ f ‖ ˜̇̃
F s

p,q

:=

∥∥∥∥∥∥∥∥
 ∞∑

j=0

(
2 j(s+n)

∫
B(·,2− j)

| f (·) − f (y)| dy
)q


1/q∥∥∥∥∥∥∥∥

Lp(Rn)

(2.8)

and the implicit constants are independent of f .
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Proof. We first prove (i). By (2.6), (2.6a) and (2.7), we only need to show that

A :=

∥∥∥∥∥∥∥
[∫ ∞

1

(∫
B(·,r)

| f (·) − f (y)|
rn+s dy

)q dr
r

]1/q
∥∥∥∥∥∥∥

Lp(Rn)

. ‖ f ‖Lp(Rn). (2.9)

To this end, we write

A ≤


∫
Rn

[∫ ∞

1

(∫
B(x,r)

| f (x)| + | f (y)|
rn+s dy

)q dr
r

]p/q

dx


1/p

=: A1 + A2. (2.10)

As sq > 0, we have

A1 . ‖ f ‖Lp(Rn)

[∫ ∞

1
r−sq dr

r

]
. ‖ f ‖Lp(Rn). (2.11)

For A2, by the boundedness of the Hardy-Littlewood maximal functionM defined as in (1.14) on
Lp(Rn) and an argument similar to (2.11), we find

A2 .

∥∥∥∥∥∥∥
[∫ ∞

1
r−sq (M( f )(·))q dr

r

]1/q
∥∥∥∥∥∥∥

Lp(Rn)

. ‖ f ‖Lp(Rn),

which combined with (2.10) and (2.11) shows (2.9) holds true. This proves (i).
We now turn to the proof of (ii). By (2.7) and (2.8), we have that

‖ f ‖˜̇F s
p,q
'

∥∥∥∥∥∥∥∥
 ∞∑

j=0

∫ 2− j

2− j−1

(
2 j(s+n)

∫
B(·,r)
| f (·) − f (y)| dy

)q dr
r


1/q∥∥∥∥∥∥∥∥

Lp(Rn)

(2.12)

.

∥∥∥∥∥∥∥∥
 ∞∑

j=0

(
2 j(s+n)

∫
B(·,2− j)

| f (·) − f (y)| dy
)q


1/q∥∥∥∥∥∥∥∥

Lp(Rn)

' ‖ f ‖ ˜̇̃
F s

p,q

.

On the other hand, by using an argument similar to (2.12), we obtain

‖ f ‖˜̇F s
p,q
&

∥∥∥∥∥∥∥∥
 ∞∑

j=0

(
2 j(s+n)

∫
B(·,2− j−1)

| f (·) − f (y)| dy
)q


1/q∥∥∥∥∥∥∥∥

Lp(Rn)

'

∥∥∥∥∥∥∥∥∥
 ∞∑

j̃=1

(
2 j̃(s+n)

∫
B(·,2− j̃)

| f (·) − f (y)| dy
)q


1/q

∥∥∥∥∥∥∥∥∥
Lp(Rn)

,

which together with (2.8) and the fact that ‖
∫

B(·,1) | f (·) − f (y)| dy‖Lp(Rn) . ‖ f ‖Lp(Rn) immediately
implies

‖ f ‖F̃ s
p,q
& ‖ f ‖˜̃F s

p,q
. (2.13)

Altogether (2.12), (2.13) and (i), we conclude that (ii) holds true. This finishes the proof of
Lemma 2.4.

�
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2.3 The spectral Besov and Triebel-Lizorkin spaces

The spectral Besov and Triebel-Lizorkin spaces are defined via the Littlewood-Paley decompo-
sition adapted to L. To this end, we need introduce a resolution of unity. Recall that a couple of
functions (Φ0, Φ) in C∞c ([0, ∞)) is said to satisfy the unity resolution condition (UR), if

(i) supp Φ0 ⊂ [0, 2], Φ
(2v+1)
0 (0) ≡ 0 for any v ∈ Z+, |Φ0(λ)| ≥ c for any λ ∈ [0, 2−3/4] and some

c > 0;

(ii) supp Φ ⊂ [1/2, 2] and |Φ(λ)| ≥ c for any λ ∈ [2−3/4, 23/4] and some c > 0.

We refer the reader to [11, p. 1043] for a construction of such couple of functions.
Now, let (Φ0, Φ) be a couple of functions satisfies the condition (UR). For any p, q ∈ (1, ∞)

and s ∈ [0, ∞), the spectral Besov space B̃s,L
p,q is defined to be

B̃s,L
p,q :=

{
f ∈ Lp(Rn) : ‖ f ‖B̃s,L

p,q
< ∞

}
, (2.14)

where

‖ f ‖B̃s,L
p,q

:=


∞∑
j=0

[
2 js

∥∥∥∥Φ j(
√
L) f

∥∥∥∥
Lp(Rn)

]q


1/q

(2.14a)

with Φ j defined by

Φ j(λ) := Φ
(
2− jλ

)
(2.15)

for any j ∈ N and λ ∈ [0, ∞).
Similarly, the spectral Triebel-Lizorkin space F̃ s,L

p,q with p, q ∈ (1, ∞) and s ∈ [0, ∞) is defined
to be

F̃ s,L
p,q :=

{
f ∈ Lp(Rn) : ‖ f ‖F̃ s,L

p,q
< ∞

}
, (2.16)

where

‖ f ‖F̃ s,L
p,q

:=

∥∥∥∥∥∥∥∥∥

∞∑
j=0

[
2 js

∣∣∣∣Φ j(
√
L) f

∣∣∣∣]q


1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

. (2.16a)

Remark 2.5. (i) The spectral spaces in (2.14)-(2.14a) and (2.16)-(2.16a) are identical for different
choices of couples (Φ0, Φ) satisfying (UR) (see [35, 32, 38, 7]). A classical example of functions
satisfying (UR) is as follows. Let ϕ0 ∈ C∞c ([0, ∞)) satisfy suppϕ0 ⊂ [0, 2], 0 ≤ ϕ0 ≤ 1 and
ϕ0 ≡ 1 on [0, 1]. Let ϕ(·) := ϕ0(·) − ϕ0(2·) and for any j ∈ N and λ ∈ [0, ∞), ϕ j(λ) := ϕ

(
2− jλ

)
. It

is easy to see that the couple (ϕ0, ϕ) of functions satisfies the condition (UR). Moreover, we have
that for any λ ∈ [0, ∞),

∑∞
j=0 ϕ j(λ) ≡ 1, which further implies the following Calderón reproducing

formula that for any p ∈ (1, ∞) and f ∈ Lp(Rn),

f =

∞∑
j=0

ϕ j(
√
L) f
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in Lp(Rn) (see, for example, [35, Proposition 5.5]). In the general case of (Φ0, Φ) in C∞c ([0, ∞))
satisfying (UR). By applying a corresponding scalar identity (see [20, Lemma 6.9] or [6, (3.20)]),
we still have the following Calderón reproducing formula that for any p ∈ (1, ∞) and f ∈ Lp(Rn),

f =

∞∑
j=0

Ψ j(
√
L)Φ j(

√
L) f =

∞∑
j=0

Φ j(
√
L)Ψ j(

√
L) f (2.17)

in Lp(Rn) (see also [38, (2.17)]), where for any j ∈ N, Φ j and Ψ j are defined as in (2.15). More-
over, (Ψ0, Ψ) are in C∞c ([0, ∞)) and also satisfy the condition (UR).

(ii) For any p ∈ (1, ∞) and s ∈ [0, ∞), let Hs,L
p (Rn) be the Bessel potential space associated

with L with the norm defined by

‖ f ‖Hs,L
p (Rn) := ‖ (I +L)s/2 f ‖Lp(Rn).

By (2.3), we know that for any p ∈ (1, ∞) and s ∈ [0, ∞),

Hs,L
p (Rn) = domp[Ls/2].

In particular, if s = 0 the space H0,L
p (Rn) coincides with the Lebesgue space Lp(Rn). Moreover,

by [35, Theorem 7.8], we know that for any p ∈ (1, ∞) and s ∈ [0, ∞),

F̃ s,L
p,2 = Hs,L

p (Rn). (2.18)

(iii) The spectral spaces B̃s,L
p,q and F̃ s,L

p,q satisfy the following lifting property for Bessel potential.
Let p, q ∈ (1, ∞), 0 ≤ δ ≤ s < ∞ and f ∈ Ãs,L

p,q with A being the B-space or F-space. Then
(1 +L)δ/2 f ∈ Ãs−δ,L

p,q and ∥∥∥(I +L)δ/2 f
∥∥∥

Ãs−δ,L
p,q
' ‖ f ‖Ãs,L

p,q
,

where the implicit constants are independent of f (see [7, Theorem 7.1] for a detailed argument in
the homogeneous case).

Remark 2.6. Let S ([0, ∞)) be the Schwartz class of all functions f ∈ C∞((0, ∞)) ∩ C([0, ∞))
such that for any k ∈ N, f (k) decays rapidly at infinity and the limit limλ→0+ f (k)(λ) exists. A couple
(φ0, φ) of functions in S ([0, ∞)) is said to satisfy the admission condition if there exist R > 0 and
M ∈ Z+ such that: i) for any λ ∈ [0, 2R), |ϕ0(λ)| > 0; ii) for any λ ∈ (R/2, 2R), |ϕ(λ)| > 0;
iii) λ−Mϕ(λ) ∈ S ([0, ∞)). In [32], Hu proved that the spectral function spaces in (2.14)-(2.14a)
and (2.16)-(2.16a) are invariant if we use the couple (φ0, φ) satisfying the admission condition to
replace the couple (Φ0, Φ) satisfying (UR) in their definitions.

One example of functions satisfying the admission condition is as follows. Let θ ∈ C∞c (R) be
even and satisfy supp θ ⊂ (−1, 1),

∫
R
θ(λ) dλ = 1. Let η(ξ) := θ̂(ξ) be the Fourier transform of θ

defined as in (1.15) which is also even in R. For any M ∈ Z+ and λ ∈ [0, ∞), letφ0(λ) := η(λ),
φ(λ) := λ2Mη(λ).
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Then the couple (φ0, φ) of functions satisfies the admission condition (see [32, Lemma 4.7]).
The advantage of the couple (φ0, φ) of functions satisfying the admission condition is that it

admits the operator φ(
√
L) (also for φ0(

√
L)) has compact supported integral kernel. Indeed, by

using the finite speed propagation property (see, for example, [30, Lemma 3.5] or [35, Proposition
2.8]), we know that for any j ∈ Z+ and l ∈ Z+ ,

supp
(
2− j
√
L
)l
φ
(
2− j
√
L
)

(·, ·) ⊂
{
(x, y) ∈ Rn × Rn : |x − y| < 2− j

}
, (2.19)

where (2− j
√
L)lφ(2− j

√
L)(·, ·) denotes the integral kernel of the operator (2− j

√
L)lφ(2− j

√
L).

Similarly, the same estimates holds for the operator (2− j
√
L)lφ0(2− j

√
L). Note that the property

(2.19) plays an important role in the atomic characterization of spectral function spaces (see [30,
32, 7] and their references).

We end this subsection with the following proposition from [35, 38], which establishes the
identification of the function spaces defined via heat semigroup and spectrum.

Proposition 2.7 ([35, 38]). Let p, q ∈ (1, ∞) and s ∈ [0, ∞). Then

(i) Bs,L
p,q = B̃s,L

p,q ;

(ii) F s,L
p,q = F̃ s,L

p,q .

3 Identification of spectral and Lipschitz Triebel-Lizorkin spaces for
s ∈ (0, Θ)

In this section, we establish the identity of the spectral and Lipschitz versions of Triebel-
Lizorkin spaces for any p, q ∈ (1, ∞) and s ∈ (0, Θ) with Θ as in (1.3). The main result of
this section is the following Theorem 3.1.

Theorem 3.1. Let p, q ∈ (1, ∞) and s ∈ (0, Θ(L)). Then

F̃ s,L
p,q = F s

p,q

with equivalent norms.

The proof of Theorem 3.1 will be split into two steps: i) F s
p,q ⊂ F̃ s,L

p,q and ii) F̃ s,L
p,q ⊂ F s

p,q. We
first prove i), namely, F s

p,q ⊂ F̃ s,L
p,q . To this end, we need the following result from [35, Theorem

3.1], which is of fundamental importance in the smooth functional calculus associated with L.

Lemma 3.2 ([35]). Let k ∈ N satisfy k ≥ n+1. Assume that ϕ ∈ Ck([0, ∞)) satisfies ϕ(2ν+1)(0) = 0
for any 0 ≤ ν ≤ (k − 1)/2 and suppϕ ⊂ [0, R] for some R ≥ 1. Then for any δ ∈ (0, 1], the
operator ϕ(δ

√
L) has an integral kernel ϕ(δ

√
L)(·, ·) on Rn ×Rn. Moreover, for any x, y, y′ ∈ Rn,

(i)
∣∣∣ϕ(δ
√
L)(x, y)

∣∣∣ ≤ C(k)Dδ,k(x, y), where

Dδ,k(x, y) :=
1
δn

(
1 +
|x − y|
δ

)−k

(3.1)
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and

C(k) := Rn
[
(C1k)k‖ϕ‖L∞([0,∞)) + (C2R)k

∥∥∥ϕ(k)
∥∥∥

L∞([0,∞))

]
with constants C1, C2 being positive and depend only on n and Λ as in (1.1);

(ii) if furhter |y − y|′ ≤ δ, then∣∣∣∣ϕ(δ
√
L)(x, y) − ϕ(δ

√
L)(x, y′)

∣∣∣∣ ≤ C′(k)
(
|y − y|
δ

)Θ

Dδ,k(x, y),

where Θ ∈ (0, 1) denotes the Hölder exponent as in (1.3) and

C′(k) := C3C(k)RΘ

with constant C3 being positive and depend only on n and k;

(iii)
∫
Rn ϕ(δ

√
L)(x, y) dy ≡ ϕ(0).

With the help of Lemma 3.2, we now turn to the proof of the inclusion F s
p,q ⊂ F̃ s,L

p,q .

Proof of the inclusion F s
p,q ⊂ F̃ s,L

p,q . To begin with, note that in this part of proof, we only need
s ∈ (0, 1) and are not restricted by the Hölder exponent Θ in (1.3). Let f ∈ F s

p,q. By (2.16a), we
have that

‖ f ‖F̃ s,L
p,q
'

∥∥∥∥∥∥∥∥∥

∞∑
j=0

[
2 js

∣∣∣∣ϕ j(
√
L) f

∣∣∣∣]q


1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

, (3.2)

where (ϕ0, ϕ) in C∞c ([0, ∞)) is a particular choice of functions satisfying the unity resolution con-
dition (UR) as in Remark 2.5(i). By the bounded functional calculus in Lp(Rn) for any p ∈ (1, ∞)
and the fact ‖ϕ0‖L∞([0,∞)) = 1, we find that for any p ∈ (1, ∞),

∥∥∥∥ϕ0(
√
L) f

∥∥∥∥
Lp(Rn)

. ‖ f ‖Lp(Rn). (3.3)

For j ≥ 1, by (2.15) and the fact ϕ j(λ) = ϕ0(2− jλ) − ϕ0(21− jλ), we derive from Lemma 3.2(iii)
that for any j ∈ N and x ∈ Rn,∫

Rn
ϕ j(
√
L)(x, y) dy =

∫
Rn
ϕ0(2− j

√
L)(x, y) dy −

∫
Rn
ϕ0(21− j

√
L)(x, y) dy = 0,

which combined with Lemma 3.2(i) (with δ = 2− j and k = τ for some τ ∈ ((s + n)q, ∞) ) further
implies that for any x ∈ Rn,

∣∣∣∣ϕ j(
√
L) f (x)

∣∣∣∣ ≤ ∫
Rn

∣∣∣∣ϕ j(
√
L)(x, y)

∣∣∣∣ | f (x) − f (y)| dy (3.4)
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.

∫
Rn

2 jn
(
1 + 2 j|x − y|

)−τ
| f (x) − f (y)| dy

.
∞∑

k=0

∫
S k− j(x)

2 jn−kτ | f (x) − f (y)| dy,

where for any k ∈ N, S k− j(x) := B(x, 2k− j) \ B(x, 2k− j−1) and S − j(x) := B(x, 2− j).
Thus, by (3.4) and Hölder’s inequality, we write∥∥∥∥∥∥∥∥

 ∞∑
j=1

(
2 js

∣∣∣∣ϕ j(
√
L) f

∣∣∣∣)q

1/q∥∥∥∥∥∥∥∥

Lp(Rn)

(3.5)

.


∫
Rn

 ∞∑
j=1

2 j(s+n)
∞∑

k=0

2−kτ
∫

B(x,2k− j)
| f (y) − f (x)| dy

q
p/q

dx


1/p

.


∫
Rn

 ∞∑
k=0

2−kτ
∞∑
j=1

2 j(s+n)q
(∫

B(x,2k− j)
| f (y) − f (x)| dy

)q


p/q

dx


1/p

'


∫
Rn

 ∞∑
k=0

2−k(τ−sq−nq)
∞∑

j̃=1−k

2 j̃(s+n)q
(∫

B(x,2− j̃)
| f (y) − f (x)| dy

)q


p/q

dx


1/p

'


∫
Rn

 ∞∑
k=0

2−k(τ−sq−nq)

 0∑
j̃=1−k

+

∞∑
j̃=1

 · · ·


p/q

dx


1/p

=: A1 + A2.

We first estimate A1, which is trivial when k = 0. As j̃ ∈ {1 − k, . . . , 0}, we have B(x, 2− j̃) ⊂
B(x, 1). By this and the fact τ > sq + nq, we obtain

A1 .


∫
Rn

 ∞∑
k=0

k2−k(τ−sq−nq)
(∫

B(x,1)
| f (y) − f (x)| dy

)q
p/q

dx


1/p

(3.6)

. ‖M( f )‖Lp(Rn) + ‖ f ‖Lp(Rn) . ‖ f ‖Lp(Rn),

whereM( f ) denotes of Hardy-Littlewood maximal function of f as in (1.14).
For A2, by Hölder’s inequality, the fact τ > (s + n)q again and Lemma 2.4(ii), we find

A2 .


∫
Rn

 ∞∑
k=0

2−k(τ−sq−nq)
∞∑
j̃=1

(
2 j̃(s+n)

∫
B(x,2− j̃)

| f (y) − f (x)| dy
)q


p/q

dx


1/p

. ‖ f ‖F s
p,q
. (3.7)

Altogether (3.2) through (3.7), we conclude that for any f ∈ F s
p,q, ‖ f ‖F̃ s,L

p,q
. ‖ f ‖F s

p,q , which

completes the proof of the inclusion F s
p,q ⊂ F̃ s,L

p,q .
�
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The inclusion F s
p,q ⊂ F̃ s,L

p,q for any s ∈ (0, 1) implies the following reverse inequality of the frac-
tional order local Riesz transform (I +∆)s/2(I +L)−s/2 on Lp(Rn), which extends the corresponding
result for s = 1 in [5, p. 115, Theorem 3].

Corollary 3.3. Let p ∈ (1, ∞) and s ∈ (0, 1]. Then there exists a positive constant C such that for
any f ∈ Hs

p(Rn) in the classical Bessel potential space,∥∥∥(I +L)s/2 f
∥∥∥

Lp(Rn) ≤ C
∥∥∥(I + ∆)s/2 f

∥∥∥
Lp(Rn) .

Proof. As the case s = 1 was already proved in [5, p. 115, Theorem 3], we only need to consider
the case s ∈ (0, 1). By (2.18), we have that for any p ∈ (1, ∞) and s ∈ [0, ∞),

F̃ s,L
p,2 = Hs,L

p (Rn). (3.8)

On the other hand, as pointed out in Remark 2.3(i), we know that for any p, q ∈ (1, ∞) and
s ∈ (0, 1), F s

p,q = F s
p,q(Rn) is the classical Triebel-Lizorkin space. This then implies that for any

p ∈ (1, ∞) and s ∈ (0, 1),
F s

p,2 = Hs
p(Rn),

where the later denotes the classical Bessel potential space. By this, (3.8) and the inclusion F s
p,2 ⊂

F̃ s,L
p,2 for any s ∈ (0, 1), we immediately conclude the inclusion that Hs

p(Rn) ⊂ Hs,L
p (Rn) and for

any f ∈ Hs
p(Rn),

‖ f ‖Hs,L
p (Rn) . ‖ f ‖Hs

p(Rn),

which completes the proof of Corollary 3.3.
�

We now turn to the proof of the converse inclusion F̃ s,L
p,q ⊂ F s

p,q. To this end, we need some
technical lemmata.

Lemma 3.4. Let p, q ∈ (1, ∞) and s ∈ (0, ∞). Then the following embedding holds

F̃ s,L
p,q ⊂ Lp(Rn).

Proof. To prove this lemma, we first claim that for any p, q ∈ (1, ∞) and s ∈ (0, ∞),

F̃ s,L
p,q ⊂ F̃0,L

p,2 . (3.9)

Indeed, for any f ∈ F̃ s,L
p,q , by (2.16a), we have

‖ f ‖F̃ s,L
p,q

:=

∥∥∥∥∥∥∥∥∥

∞∑
j=0

[
2 js

∣∣∣∣Φ j(
√
L) f

∣∣∣∣]q


1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

. (3.10)

If q ≥ 2, then by Hölder’s inequality and the fact s > 0, we see
∞∑
j=0

[∣∣∣∣Φ j(
√
L) f

∣∣∣∣]2


1/2

=


∞∑
j=0

[
2 js

∣∣∣∣Φ j(
√
L) f

∣∣∣∣]2
2−2 js


1/2

.


∞∑
j=0

[
2 js

∣∣∣∣Φ j(
√
L) f

∣∣∣∣]q


1/q

,
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which together with (3.10) shows that (3.9) holds true.
If q < 2, then using the decreasing property of the `q norm in q and the fact s > 0, we find

∞∑
j=0

[∣∣∣∣Φ j(
√
L) f

∣∣∣∣]2


1/2

≤


∞∑
j=0

[∣∣∣∣Φ j(
√
L) f

∣∣∣∣]q


1/q

≤


∞∑
j=0

[
2 js

∣∣∣∣Φ j(
√
L) f

∣∣∣∣]q


1/q

.

By this and (3.10), we also see (3.9) is valid in the case q < 2. Altogether the above two cases, we
conclude that the claim (3.9) holds true.

On the other hand, by Remark 2.5(ii), we know that for any p ∈ (1, ∞),

F̃0,L
p,2 = Lp(Rn),

which together with (3.9) implies the inclusion F̃ s,L
p,q ⊂ Lp(Rn). This finishes the proof of Lemma

3.4.
�

We also need the following discrete Calderón reproducing formula from [38, Theorem 6.1]. To
this end, for any j ∈ Z+ letD j be the set of all dyadic cubes in Rn with side length 2− j and {Qτ}τ∈I

be the set of all dyadic cubes inD j+ j0 , where j0 ∈ N is a sufficiently large number depending only
on n that is fixed from now on (see [38, (8.1), (8.2) and (8.20)] for a precise requirement of j0).

Lemma 3.5 ([38]). Let (Φ0,Φ) in C∞c ([0, ∞)) satisfy the unity resolution condition (UR). There
exist a family {Ψ j(

√
L)} j∈Z+

of operators with integral kernels such that the followings hold.

(i) For any p ∈ (1, ∞), f ∈ Lp(Rn) and a.e. x ∈ Rn,

f (x) =

∞∑
j=0

∑
τ∈I

2− jn
(
Φ j(
√
L) f

)
(ξτ)Ψ j(

√
L)(ξτ, x),

where for any τ ∈ I, ξτ can be chosen as any point in Qτ ∈ D j+ j0 .

(ii) For any γ ∈ (2n, ∞), there exists a positive constant C(γ) such that for any j ∈ Z+ and x,
y ∈ Rn, ∣∣∣∣Ψ j(

√
L)(x, y)

∣∣∣∣ ≤ C(γ)D2− j,γ(x, y),

where D2− j,γ(x, y) is as in (3.1) with δ = 2− j and k = γ.

(iii) For any γ ∈ (2n, ∞), there exists a positive constant C′(γ) such that for any j ∈ Z+ and x,
y, y′ ∈ Rn satisfying |y − y′| ≤ 2− j,∣∣∣∣Ψ j(

√
L)(x, y) − Ψ j(

√
L)(x, y′)

∣∣∣∣ ≤ C′(γ)
(
2 j|y − y′|

)Θ
D2− j,γ(x, y),

where Θ ∈ (0, 1) denotes the Hölder exponent as in (1.3) and D2− j,γ(x, y) is as in (3.1) with
δ = 2− j and k = γ.
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The following technical lemma is on the estimates for Hardy-Littlewood maximal functionM
in (1.14), whose proof can be fund in [18, 23] and [19, Theorems A.1 and A.2].

Lemma 3.6 ([18, 19, 23]). (i) Let p, q ∈ (1,∞). Then for any sequence of functions { f j} j∈Z+

on Rn, it holds ∥∥∥∥∥∥∥∥
 ∞∑

j=0

(
M( f j)

)q


1/q∥∥∥∥∥∥∥∥

Lp(Rn)

≤ C(p, q)

∥∥∥∥∥∥∥∥
 ∞∑

j=0

∣∣∣ f j
∣∣∣q

1/q∥∥∥∥∥∥∥∥
Lp(Rn)

,

where the constant C(p, q) depends only on p and q.

(ii) Let k ∈ Z+ and {Qτ}τ∈I ⊂ Dk be a sequence of dyadic cubes of the same level. Then for any
ξτ ∈ Qτ, {cτ}τ∈I ⊂ R and x ∈ Rn, it holds

∑
τ∈I

|cτ|
(
1 + 2k|x − ξτ|

)−γ
≤ C(n, γ)M

∑
τ∈I

|cτ|1Qτ

 (x),

where γ > n and the constant C(n, γ) depends only on n and γ.

With the helps of Lemmas 3.4, 3.5 and 3.6, we now turn to the proof of the inclusion F̃ s,L
p,q ⊂

F s
p,q, which combined with the inclusion F s

p,q ⊂ F̃ s,L
p,q completes the proof of Theorem 3.1.

Proof of the inclusion F̃ s,L
p,q ⊂ F s

p,q. In this part of proof, we need the restriction s ∈ (0, Θ). For
any p, q ∈ (1, ∞) and s ∈ (0, Θ), let f ∈ F̃ s,L

p,q . Using Lemma 2.4(ii), we find

‖ f ‖F s
p,q
' ‖ f ‖Lp(Rn) +

∥∥∥∥∥∥∥∥
 ∞∑

k=0

(
2k(s+n)

∫
B(·,2−k)

| f (·) − f (y)| dy
)q

1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

. (3.11)

By Lemma 3.4, we immediately obtain

‖ f ‖Lp(Rn) . ‖ f ‖F̃ s,L
p,q
. (3.12)

We now deal with the second term in (3.11). For any k ∈ Z+, using Lemma 3.5, we can write
for a.e. x, y ∈ Rn satisfying |x − y| < 2−k,

2k(s+n) | f (y) − f (x)| (3.13)

≤

∞∑
j=0

∑
τ∈I

2k(s+n)2− jn
∣∣∣∣(Φ j(

√
L) f

)
(ξτ)

∣∣∣∣ ∣∣∣∣Ψ j(
√
L)(ξτ, y) − Ψ j(

√
L)(ξτ, x)

∣∣∣∣
=

 k∑
j=0

+

∞∑
j=k+1

∑
τ∈I

2k(s+n)2− jn
∣∣∣∣(Φ j(

√
L) f

)
(ξτ)

∣∣∣∣ ∣∣∣∣Ψ j(
√
L)(ξτ, y) − Ψ j(

√
L)(ξτ, x)

∣∣∣∣
=: I1(x, y) + I2(x, y).
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For I1(x, y), since j ≤ k, we have 2−k ≤ 2− j. Thus, for any x, y ∈ Rn satisfying |x − y| < 2−k ≤

2− j, by Lemma 3.5(iii), we know

I1(x, y) .
k∑

j=0

∑
τ∈I

2k(s+n)2− jn
∣∣∣∣(Φ j(

√
L) f

)
(ξτ)

∣∣∣∣ (2 j|x − y|
)Θ

D2− j,γ(ξτ, x) (3.14)

'

k∑
j=0

∑
τ∈I

2k(s+n−Θ)2 jΘ
(
1 + 2 j |x − ξτ|

)−γ ∣∣∣∣(Φ j(
√
L) f

)
(ξτ)

∣∣∣∣
'

k∑
j=0

2k(s+n−Θ)2 j(Θ−s)

∑
τ∈I

(
1 + 2 j |x − ξτ|

)−γ
2 js

∣∣∣∣(Φ j(
√
L) f

)
(ξτ)

∣∣∣∣
.

k∑
j=0

2 j(Θ−s)2k(s+n−Θ)M

∑
τ∈I

2 js
∣∣∣∣(Φ j(

√
L) f

)
(ξτ)

∣∣∣∣ 1Qτ

 (x),

whereM denotes the Hardy-Littlewood maximal function as in (1.14), and in the last inequality,
we have used Lemma 3.6(ii).

Now, let

F j :=
∑
τ∈I

2 js
∣∣∣∣(Φ j(

√
L) f

)
(ξτ)

∣∣∣∣ 1Qτ . (3.15)

By Hölder’s inequality, (3.14) and Lemma 3.6(i), we derive from s < Θ that

J1 :=


∫
Rn

 ∞∑
k=0

(∫
B(x,2−k)

|I1(x, y)| dy
)q

p/q

dx


1/p

(3.16)

.


∫
Rn

 ∞∑
k=0

 k∑
j=0

2( j−k)(Θ−s)2kn
∫

B(x,2−k)
M

(
F j

)
(x) dy


q

p/q

dx


1/p

'


∫
Rn

 ∞∑
k=0

 k∑
j=0

2( j−k)(Θ−s)M
(
F j

)
(x)


q

p/q

dx


1/p

.


∫
Rn

 ∞∑
k=0

k∑
j=0

2( j−k)(Θ−s)
(
M

(
F j

)
(x)

)q


p/q

dx


1/p

.


∫
Rn

 ∞∑
j=0

(
M

(
F j

)
(x)

)q


p/q

dx


1/p

.


∫
Rn

 ∞∑
j=0

∣∣∣F j(x)
∣∣∣q

p/q

dx


1/p

.

As the dyadic cubes {Qτ}τ are disjoint and ∪τ∈IQτ = Rn, we derive from (3.15) and the arbitrari-
ness of ξτ in Qτ that

∞∑
j=0

∣∣∣F j(x)
∣∣∣q =

∞∑
j=0

∣∣∣∣∣∣∣∑
τ∈I

2 js
∣∣∣∣Φ j(
√
L) f (ξτ)

∣∣∣∣ 1Qτ(x)

∣∣∣∣∣∣∣
q

(3.17)
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=

∞∑
j=0

∑
τ∈I

2 jsq
∣∣∣∣Φ j(
√
L) f (ξτ)

∣∣∣∣q 1Qτ(x) ≤
∞∑
j=0

2 jsq
∣∣∣∣Φ j(
√
L) f (x)

∣∣∣∣q .
Combined (3.16), (3.17) and (2.16a), we conclude that

J1 .

∥∥∥∥∥∥∥∥∥

∞∑
j=0

[
2 js

∣∣∣∣Φ j(
√
L) f

∣∣∣∣]q


1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

' ‖ f ‖F̃ s,L
p,q
. (3.18)

We now estimate I2(x, y). To this end, we first write

I2(x, y) .
∞∑

j=k+1

∑
τ∈I

2k(s+n)2− jn
∣∣∣∣(Φ j(

√
L) f

)
(ξτ)

∣∣∣∣ [∣∣∣∣Ψ j(
√
L)(ξτ, y)

∣∣∣∣ +
∣∣∣∣Ψ j(
√
L)(ξτ, x)

∣∣∣∣] (3.19)

=: I2,1(y) + I2,2(x).

Without loss of generality, we may only estimate I2,1(y). The estimates for I2,2(x) are similar and
even easier. To estimate I2,1(y), using Lemma 3.5(ii) and an argument similar to (3.16), we have

I2,1(y) .
∞∑

j=k+1

∑
τ∈I

2k(s+n)
(
1 + 2 j |y − ξτ|

)−γ ∣∣∣∣(Φ j(
√
L) f

)
(ξτ)

∣∣∣∣ (3.20)

'

∞∑
j=k+1

2k(s+n)2− js

∑
τ∈I

(
1 + 2 j |y − ξτ|

)−γ
2 js

∣∣∣∣(Φ j(
√
L) f

)
(ξτ)

∣∣∣∣
.

∞∑
j=k+1

2− js2k(s+n)M
(
F j

)
(y),

where F j is the same as in (3.15). Thus from (3.20), the fact j > k, Hölder’s inequality and using
the Lemma 3.6(i) twice, it follows

J2 :=


∫
Rn

 ∞∑
k=0

(∫
B(x,2−k)

∣∣∣I2,1(y)
∣∣∣ dy

)q
p/q

dx


1/p

(3.21)

.


∫
Rn

 ∞∑
k=0

 ∞∑
j=k+1

2(k− j)s2kn
∫

B(x,2−k)
M

(
F j

)
(y) dy


q

p/q

dx


1/p

.


∫
Rn

 ∞∑
k=0

 ∞∑
j=k+1

2(k− j)sM◦M
(
F j

)
(x)


q

p/q

dx


1/p

.


∫
Rn

 ∞∑
k=0

∞∑
j=k+1

2(k− j)s
(
M◦M

(
F j

)
(x)

)q


p/q

dx


1/p

.


∫
Rn

 ∞∑
j=0

(
M◦M

(
F j

)
(x)

)q


p/q

dx


1/p

.


∫
Rn

 ∞∑
j=0

∣∣∣F j(x)
∣∣∣q

p/q

dx


1/p

,
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which combined with (3.17) and (2.16a) implies

J2 .

∥∥∥∥∥∥∥∥∥

∞∑
j=0

[
2 js

∣∣∣∣Φ j(
√
L) f

∣∣∣∣]q


1/q
∥∥∥∥∥∥∥∥∥

Lp(Rn)

' ‖ f ‖F̃ s,L
p,q
. (3.22)

Altogether the estimates (3.11) through (3.13), (3.16) and (3.18) through (3.22), we conclude
that for any f ∈ F̃ s,L

p,q with p, q ∈ (1, ∞) and s ∈ (0, Θ),

‖ f ‖F s
p,q
. ‖ f ‖F̃ s,L

p,q
.

This finishes the proof of the inclusion F̃ s,L
p,q ⊂ F s

p,q.
�

The inclusion F̃ s,L
p,q ⊂ F s

p,q for any s ∈ (0, Θ) implies the following Corollary 3.7 on the
boundedness of the fractional order local Riesz transform (I + ∆)s/2(I + L)−s/2 on Lp(Rn) for
any p ∈ (1, ∞) and s ∈ (0, Θ). As its proof is similar to that of Corollary 3.3, we omit the details.

Corollary 3.7. Let p ∈ (1, ∞) and s ∈ (0, Θ). Then there exists a positive constant C such that
for any f ∈ Hs,L

p (Rn) in the Bessel potential space associated with L,∥∥∥(I + ∆)s/2 f
∥∥∥

Lp(Rn) ≤ C
∥∥∥(I +L)s/2 f

∥∥∥
Lp(Rn) .

4 Identification of heat and Lipschitz Besov spaces for s ∈ (0, 1)

In this section, we prove the main results of this paper. To be precise, we show the identity of
heat and Lipschitz versions of Besov spaces with parameters in a Hardy-Littlewood-Sobolev-Kato
diagram P(Θ, σ) (Theorem 1.1), and then show that this diagram is sharp (Theorem 1.2). To begin
with, we need to establish the Hardy-Littlewood-Sobolev-Kato estimates in P(Θ, σ).

4.1 The Hardy-Littlewood-Sobolev-Kato estimates

Let σ ∈ (2, ∞) be as in (1.11). Recall [5] that σ = 2 + ε for some ε ∈ (0, ∞), which may be as
small as possible.

Now, let p ∈ (1, ∞) and s ∈ [0, 1]. Consider the Hardy-Littlewood-Sobolev-Kato diagram
P̃(σ) involving the parameters p and s in the {(1/p, s)}-plane defined by

P̃(σ) :=
{(

1
p
, s

)
∈ (0, 1) × [0, 1] :

1
p
∈

( s
σ
, 1

)}
, (4.1)

as illustrated in the following Figure 3.
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1/p

s

P̃(σ)

Figure 3: the Hardy-Littlewood-Sobolev-Kato diagram P̃(σ)

O = (0, 0) C = (1,0)

A = (1/σ, 1) B = (1,1)

The following theorem was first established in [4, Theorem 5.4]. See also [31, Theorem 8.54]
for a similar result.

Proposition 4.1 ([4]). Let M := (1/p, s), N := (1/q, r) ∈ P̃(σ) as in (4.1) with p ≤ q. Assume
µ ∈ (0, π) and ϕ ∈ E (Σµ) is in the extended Dunford-Riesz class as in (1.6) and satisfies the
following estimate ∥∥∥zα(M,N)ϕ

∥∥∥
L∞(Σµ) < ∞,

where

α(M,N) :=
r − s

2
+

n
2

(
1
p
−

1
q

)
. (4.2)

Then there exists a positive constant C such that for any f ∈ Ḣs
p(Rn) in the classical Riesz potential

space,

‖ϕ(L)( f )‖Ḣr
q(Rn) ≤ C

∥∥∥zα(M,N)ϕ
∥∥∥

L∞(Σµ) ‖ f ‖Ḣs
p(Rn).

Proposition 4.1 indicates the reason why we call P̃(σ) the Hardy-Littlewood-Sobolev-Kato
diagram, as we can do the Hardy-Littlewood-Sobolev-Kato estimates associated with L with pa-
rameters p and s in P̃(σ). More precisely, Proposition 4.1 implies that the domain domp[L1/2] of
the square root of L in Lp(Rn) satisfies

domp[L1/2] = H1
p(Rn), (4.3)

for any p ∈ (1, σ). Moreover, we can obtain the following Hardy-Littlewood-Sobolev inequality
by letting M := (1/p, 0), N := (1/q, 0) and ϕ(z) := (1 + z)−α/2 with α = n( 1

p −
1
q ).

Corollary 4.2. Let 1 < p ≤ q < ∞ and α = n( 1
p −

1
q ). Then there exists a positive constant C such

that for any f ∈ Lp(Rn), ∥∥∥(I +L)−α/2( f )
∥∥∥

Lq(Rn) ≤ C ‖ f ‖Lp(Rn) .
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Motivated by Proposition 4.1 and based on Theorem 3.1, we introduce the following Hardy-
Littlewood-Sobolev-Kato diagram P(Θ, σ) in the (1/p, s)-plane defined by

P(Θ, σ) :=


(

1
p
, s

)
∈ (0, 1) × [0, 1] :

1
p
∈

(0, 1), s ∈ [0, Θ),
( s−Θ

(1−Θ)σ , 1), s ∈ [Θ, 1]

 (4.4)

as illustrated in the following Figure 4.

1/p

s

M = (1/p, s)

N = (1/q, r)

Figure 4: the Hardy-Littlewood-Sobolev-Kato diagram P(Θ, σ)

O = (0, 0) C = (1,0)

D= (0,Θ)

A = (1/σ, 1) B = (1,1)

The following theorem is an inhomogeneous version of Proposition 4.1, with parameters in the
new Hardy-Littlewood-Sobolev-Kato diagram P(Θ, σ) as in Figure 4, which plays an essential
role in the proof of Theorem 1.1.

Theorem 4.3. Let M := (1/p, s), N := (1/q, r) ∈ P(Θ, σ) be as in (4.4) with p ≤ q. Assume
µ ∈ (0, π) and ϕ ∈ E (Σµ) is in the extended Dunford-Riesz class as in (1.6) and satisfies the
following estimate ∥∥∥(1 + z)α(M,N)ϕ

∥∥∥
L∞(Σµ) < ∞,

where α(M,N) is as in (4.2). Then there exists a positive constant C such that for any f ∈ Hs
p(Rn)

in the Bessel potential space,

‖ϕ(L)( f )‖Hr
q(Rn) ≤ C

∥∥∥(1 + z)α(M,N)ϕ
∥∥∥

L∞(Σµ) ‖ f ‖Hs
p(Rn). (4.5)

Proof. Let m(
−−−→
MN) be the slope of the vector

−−−→
MN. We consider the following three cases based

on the size of |m(
−−−→
MN)|: i) |m(

−−−→
MN)| = 0; ii) |m(

−−−→
MN)| = ∞; iii) |m(

−−−→
MN)| ∈ (0, ∞). See Figure 4 for

the general position of the points M and N in P(Θ, σ).
Case i): |m(

−−−→
MN)| = 0. In this case, MN is a horizontal segment. We split this case into three

subcases: a) M, N are in the segment OC (see Figure 3); b) M, N are in the segment AB; c) M,
N < AB or M, N < OC.

In case a), (4.5) is equivalent to the assertion that for any 1 < p ≤ q < ∞ and f ∈ Lp(Rn),

‖ϕ(L)( f )‖Lq(Rn) .
∥∥∥∥(1 + z)

n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

‖ f ‖Lp(Rn). (4.6)
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Indeed, by the bounded functional calculus in Lq(Rn) and Corollary 4.2, we have

‖ϕ(L)( f )‖Lq(Rn) =
∥∥∥∥ϕ(L) (I +L)

n
2 ( 1

p−
1
q ) (I +L)−

n
2 ( 1

p−
1
q ) f

∥∥∥∥
Lq(Rn)

.
∥∥∥∥(1 + z)

n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

∥∥∥∥(I +L)−
n
2 ( 1

p−
1
q ) f

∥∥∥∥
Lq(Rn)

.
∥∥∥∥(1 + z)

n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

‖ f ‖Lp(Rn) ,

which implies (4.6).
In case b), (4.5) is equivalent to the assertion that for any 1 < p ≤ q < σ and f ∈ Lp(Rn),

‖ϕ(L)( f )‖H1
q (Rn) .

∥∥∥∥(1 + z)
n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

‖ f ‖H1
p(Rn). (4.7)

Using again the bounded functional calculus in Lq(Rn), Corollaries 4.2 and 3.3 and the fact that
1 < p ≤ q < σ, we know

‖ϕ(L)( f )‖H1
q (Rn) '

∥∥∥(I + ∆)1/2 ϕ(L)( f )
∥∥∥

Lq(Rn) .
∥∥∥(I +L)1/2 ϕ(L)( f )

∥∥∥
Lq(Rn)

.
∥∥∥∥(1 + z)

n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

∥∥∥∥(I +L)−
n
2 ( 1

p−
1
q )+ 1

2 f
∥∥∥∥

Lq(Rn)

.
∥∥∥∥(1 + z)

n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

∥∥∥(I +L)1/2 f
∥∥∥

Lp(Rn)

.
∥∥∥∥(1 + z)

n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

∥∥∥(I + ∆)1/2 f
∥∥∥

Lp(Rn) ,

which shows that (4.7) holds true.
For the case c), to prove (4.5), we need to show that for any 0 < s < 1, 1 < p ≤ q < ps(L) with

ps(L) :=

∞, s ∈ (0, Θ),
s−Θ

(1−Θ)σ , s ∈ [Θ, 1)
(4.8)

and any f ∈ Hs
p(Rn),

‖ϕ(L)( f )‖Hs
q(Rn) .

∥∥∥∥(1 + z)
n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

‖ f ‖Hs
p(Rn) . (4.9)

If s ∈ (0, Θ), by Corollaries 3.3, 3.7 and Theorem 3.1, we find that

‖ϕ(L)( f )‖Hs
q(Rn) .

∥∥∥∥(1 + z)
n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

∥∥∥∥(I +L)−
n
2 ( 1

p−
1
q )+ s

2 f
∥∥∥∥

Lq(Rn)
(4.10)

.
∥∥∥∥(1 + z)

n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

∥∥∥(I +L)s/2 f
∥∥∥

Lp(Rn)

.
∥∥∥∥(1 + z)

n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

‖ f ‖Hs
p(Rn) ,

which yields that (4.9) holds true.
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If s ∈ [Θ, 1) and 1
q ≥

1
2 , or s ∈ [Θ, 1) and 1

p ≤
1
2 , then by (4.8), we have ps(L) = s−Θ

(1−Θ)σ .
Mereover, there exist s0 ∈ (0, Θ), p0, q0 ∈ (1, ∞), p1, q1 ∈ (1, σ) and θ ∈ (0, 1) satisfying

s = (1 − θ)s0 + θ
1
p = 1−θ

p0
+ θ

p1
1
q = 1−θ

q0
+ θ

q1

and
1
p1
−

1
q1

=
1
p
−

1
q

=
1
p0
−

1
q0
. (4.11)

Let E := ( 1
p0
, s0), F := ( 1

q0
, s0), G := ( 1

p1
, 1) and H := ( 1

q1
, 1). Note that (4.11) is possible due

to the convexity of the diagram P(Θ, σ) in Figure 4. Indeed, in the case s ∈ [Θ, 1) and 1
q ≥

1
2 , we

may let p0 = p1 = p and q0 = q1 = q. In the case s ∈ [Θ, 1) and 1
p ≤

1
2 , we may let EFHG be the

parallelogram satisfying that the side FH is paralle to DA and the side EF is paralle to MN.
As
−−→
EF belongs to the case c) with s ∈ (0, Θ) and

−−→
GH belongs to the case b), we know

‖ϕ(L)( f )‖Hs0
q0 (Rn) .

∥∥∥∥∥(1 + z)
n
2 ( 1

p0
− 1

q0
)
ϕ

∥∥∥∥∥
L∞(Σµ)

‖ f ‖Hs0
p0 (Rn) (4.12)

and

‖ϕ(L)( f )‖H1
q1 (Rn) .

∥∥∥∥∥(1 + z)
n
2 ( 1

p1
− 1

q1
)
ϕ

∥∥∥∥∥
L∞(Σµ)

‖ f ‖H1
p1 (Rn) . (4.13)

Moreover, by (4.11) and the complex interpolation of classical Bessel potential space Hs
p(Rn) (see

[51, 54]), we have[
Hs0

p0(Rn), H1
p1

(Rn)
]
θ

= Hs
p(Rn) and

[
Hs0

q0(Rn), H1
q1

(Rn)
]
θ

= Hs
q(Rn),

which combined with (4.12), (4.13) and (4.11) again implies that for any such s ∈ [Θ, 1),

‖ϕ(L)( f )‖Hs
q(Rn) .

∥∥∥∥(1 + z)
n
2 ( 1

p−
1
q )ϕ

∥∥∥∥
L∞(Σµ)

‖ f ‖Hs
p(Rn) . (4.14)

By this and (4.10), we conclude that (4.9) holds in the cases s ∈ [Θ, 1) and 1
q ≥

1
2 , or s ∈ [Θ, 1)

and 1
p ≤

1
2 .

If s ∈ [Θ, 1) and 1
q <

1
2 <

1
p , then we split the vector

−−−→
MN into two parts as

−−−→
MN =

−−→
ME ∪

−−→
EN

with E := ( 1
2 , s). As the cases

−−→
ME and

−−→
EN respectively belongs to the cases s ∈ [Θ, 1), 1

q ≥
1
2 and

s ∈ [Θ, 1), 1
p ≤

1
2 , we have

‖ϕ(L)( f )‖Hs
q(Rn) .

∥∥∥∥(1 + z)θ0
n
2 ( 1

p−
1
q )ϕθ0

∥∥∥∥
L∞(Σµ)

∥∥∥ϕ1−θ0 f
∥∥∥

Hs
2(Rn)

.
∥∥∥∥(1 + z)

n
2 ( 1

p−
1
q )ϕ

∥∥∥∥θ0

L∞(Σµ)

∥∥∥∥(1 + z)(1−θ0) n
2 ( 1

p−
1
q )ϕ1−θ0

∥∥∥∥
L∞(Σµ)

‖ f ‖Hs
p(Rn) ,

where θ0 := ( 1
2 −

1
q )/( 1

p −
1
q ) ∈ (0, 1). By this and (4.14), we see (4.9) holds true in case c).
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Combined the above three subcases a), b) and c), we conclude that (4.6) holds true in Case i).
Case ii): |m(

−−−→
MN)| = ∞. In this case, we need to show that for any f ∈ Hs

p(Rn),

‖ϕ(L)( f )‖Hr
p(Rn) .

∥∥∥∥(1 + z)
1
2 (r−s)ϕ

∥∥∥∥
L∞(Σµ)

‖ f ‖Hs
p(Rn). (4.15)

To this end, we also consider three subcases: case a) 1
p ∈ ( 1

σ , 1); case b) 1
p ∈ (0, 1

σ ] and max{s, r} <
Θ; case c) 1

p ∈ (0, 1
σ ] and max{s, r} ≥ Θ.

For case a), recall the following complex interpolation of the domain domp[Ls/2] of the frac-
tional power Ls/2 of L with s ∈ (0, 1] that for any θ ∈ (0, 1) and p ∈ (1, ∞) (see, for example,
[36] or [28, Theorem 6.6.8]),[

Lp(Rn), domp[Ls/2]
]
θ

= domp[Lsθ/2],

which combined with (4.3) and Corollary 3.3 and p ∈ (1, σ) shows that

‖ϕ(L)( f )‖Hr
p(Rn) '

∥∥∥(I +L)r/2 ϕ(L)( f )
∥∥∥

Lp(Rn) .
∥∥∥∥(1 + z)

1
2 (r−s)ϕ

∥∥∥∥
L∞(Σµ)

∥∥∥(I +L)s/2 f
∥∥∥

Lp(Rn)

.
∥∥∥∥(1 + z)

1
2 (r−s)ϕ

∥∥∥∥
L∞(Σµ)

‖ f ‖Hs
p(Rn) .

This implies that (4.15) holds true.
For case b), by Theorem 3.1, we have

‖ϕ(L)( f )‖Hr
p(Rn) '

∥∥∥(I +L)r/2 ϕ(L)( f )
∥∥∥

Lp(Rn) .
∥∥∥∥(1 + z)

1
2 (r−s)ϕ(z)

∥∥∥∥
L∞(Σµ)

‖ f ‖Hs
p(Rn) , (4.16)

which implies that (4.15) also holds true.
For case c), we split the vector

−−−→
MN equally into n0 parts as

−−−→
MN =

−−−−−→
M0M1 ∪ · · · ∪

−−−−−−−−→
Mn0−1Mn0 (4.17)

with M0 := ( 1
p , s0) = M, Mn0 := ( 1

p , sn0) = N and Mi := ( 1
p , si) for any i ∈ {1, . . . , n0 − 1} and

satisfying that

si − si−1 =
1
n0

(r − s) < Θ. (4.18)

Here we can choose n0 ∈ N as large as possible to make si − si−1 sufficiently small.
If
−−−−−−→
Mi−1Mi belongs to case b), then by (4.16) and (4.18), we know that∥∥∥(ϕ(L))1/n0( f )

∥∥∥
Hsi

p (Rn) .
∥∥∥∥(1 + z)

1
2 (si−si−1)|ϕ(z)|1/n0

∥∥∥∥
L∞(Σµ)

‖ f ‖Hsi−1
p (Rn) (4.19)

'

∥∥∥∥(1 + z)
1
2 (r−s)ϕ(z)

∥∥∥∥1/n0

L∞(Σµ)
‖ f ‖Hsi−1

p (Rn) .

If
−−−−−−→
Mi−1Mi doesn’t belong to case b), then by taking n0 sufficiently large, there exist Ei :=

( 1
p̃i
, s̃i), Fi := ( 1

p̃i
, r̃i), Gi := ( 1˜̃pi

, ˜̃si), Hi := ( 1˜̃pi
, ˜̃ri) ∈ P(Θ, σ) with

−−−→
EiFi belong to the case a),

−−−→
GiHi
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belong to the case b) and satisfying 
si = (1 − θ)̃ri + θ̃̃ri,

si−1 = (1 − θ)s̃i + θ̃ s̃i,
1
pi

= 1−θ
p̃i

+ θ˜̃pi
,

which together with the cases a), b) and a complex interpolation argument implies also∥∥∥(ϕ(L))1/n0( f )
∥∥∥

Hsi
p (Rn) .

∥∥∥∥(1 + z)
1
2 (r−s)ϕ

∥∥∥∥1/n0

L∞(Σµ)
‖ f ‖Hsi−1

p (Rn) . (4.20)

Combined (4.17), (4.19) and (4.20), we conclude that

‖ϕ(L)( f )‖Hr
p(Rn) .

∥∥∥∥(1 + z)
1
2 (r−s)ϕ

∥∥∥∥1/n0

L∞(Σµ)

∥∥∥ϕ(L)(n0−1)/n0 f
∥∥∥

H
sn0−1
p (Rn)

.
∥∥∥∥(1 + z)

1
2 (r−s)ϕ

∥∥∥∥
L∞(Σµ)

‖ f ‖Hs
p(Rn),

which implies that (4.15) holds true.
Case iii): |m(

−−−→
MN)| ∈ (0, ∞). In this case, we let E := ( 1

q , s). Then
−−→
ME belongs to Case i) and

−−→
EN belongs to Case ii). This implies that

‖ϕ(L)( f )‖Hr
q(Rn) =

∥∥∥∥(I +L)
n
2 ( 1

p−
1
q ) (I +L)−

n
2 ( 1

p−
1
q ) ϕ(L)( f )

∥∥∥∥
Hr

q(Rn)

.
∥∥∥∥(1 + z)

1
2 (r−s)+ n

2 ( 1
p−

1
q ) ϕ

∥∥∥∥
L∞(Σµ)

∥∥∥∥(I +L)−
n
2 ( 1

p−
1
q ) ( f )

∥∥∥∥
Hs

q(Rn)

.
∥∥∥∥(1 + z)

1
2 (r−s)+ n

2 ( 1
p−

1
q ) ϕ

∥∥∥∥
L∞(Σµ)

‖ f ‖Hs
p(Rn) ,

which immediately shows (4.5) and hence completes the proof of Theorem 4.3.
�

Theorem 4.3 implies the following fractional Kato estimates, which when s = 1 reduces to the
Kato square root estimates established in [5, 4].

Corollary 4.4. Let ( 1
p , s) ∈ P(Θ, σ) be as in (4.4). Then there exist positive constants C4 and C5

such that for any f ∈ Lp(Rn),

C4
∥∥∥(I + ∆)s/2 f

∥∥∥
Lp(Rn) ≤

∥∥∥(I +L)s/2 f
∥∥∥

Lp(Rn) ≤ C5
∥∥∥(I + ∆)s/2 f

∥∥∥
Lp(Rn)

Proof. Corollary 4.4 follows immediate from Theorem 4.3 by taking respectively M := ( 1
p , 0),

N := ( 1
p , s), ϕ(z) := (1 + z)−s/2 and M := ( 1

p , s), N := ( 1
p , 0), ϕ(z) := (1 + z)s/2. �

4.2 Proofs of Theorems 1.1 and 1.2

In this subsection, we prove Theorems 1.1 and 1.2, which are the main results of this paper.
We first turn to the proof of Theorem 1.1, based on the Hardy-Littlewood-Sobolev-Kato estimates
established in Section 4.1.
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Proof of Theorem 1.1. By Corollary 4.4, we see for any (1/p, s) ∈ P(Θ, σ) as in Figure 4 and
f ∈ Lp(Rn), ∥∥∥(I + ∆)s/2

∥∥∥
Lp(Rn) '

∥∥∥(I +L)s/2
∥∥∥

Lp(Rn) ,

which immediately implies that for any ( 1
p , s) ∈ P(Θ, σ) in Figure 4,

Hs
p(Rn) = domp[Ls/2]. (4.21)

On the other hand, recall the following real interpolation of the classical Bessel potential space
Hs

p(Rn) that for any p, q ∈ (1, ∞), s ∈ (0, ∞) and θ ∈ (0, 1),(
Lp(Rn), Hs

p(Rn)
)
θ,q

= Bsθ
p,q(Rn) (4.22)

(see for example, [52, Theorem 1.6.7]), which combined with Remark 2.3(ii) implies that for any
p, q ∈ (1, ∞), s ∈ (0, 1] and θ ∈ (0, 1),(

Lp(Rn), Hs
p(Rn)

)
θ,q

= Bsθ
p,q. (4.23)

On the other hand, by Proposition 2.2, we know that for any p, q ∈ (1, ∞), s ∈ (0, ∞) and
θ ∈ (0, 1), (

Lp(Rn), domp[Ls/2]
)
θ,q

= Bsθ,L
p,q ,

which together with (4.21) and (4.23) immediately implies that (1.13) holds true for any ( 1
p , s) ∈

P(Θ, σ) as in Figure 2. This finishes the proof of Theorem 1.1. �

We now consider the sharpness of the parameters p ∈ (1, ∞) and s ∈ (0, 1) in the above identity.
The sharpness we considered here is in the sense of the whole class E (Rn), which consists of all
the second order divergence form elliptic operators L with real symmetric coefficients satisfying
(1.1). To be precise, we want to find a range of p and s such that for any p ∈ (1, ∞) and s ∈ (0, 1)
not belong to this range, there exists a second order divergence form elliptic operator L ∈ E (Rn)
and q ∈ (1, ∞), Bs,L

p,q , Bs
p,q.

Note the following two facts on the sharpness of the parameters s and p.

(i) For any s ∈ (0, 1), there exists L ∈ E (Rn) such that Θ < s (see [55, 46]). This implies that
inf Θ = 0 over all L in E (Rn).

(ii) For any p ∈ (2, ∞), there exists L ∈ E (Rn) such that σ < p (see [5]). This implies that
inf σ = 2 over all L in E (Rn).

Based on the above two observations, we introduce the following sharp Hardy-Littlewood-
Sobolev-Kato diagram P

P :=
⋂

Θ∈(0, 1)
σ∈(2,∞)

P(Θ, σ) =

{(
1
p
, s

)
∈ (0, 1) × (0, 1) :

1
p
∈

[ s
2
, 1

)}
, (4.24)
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as illustrated in the following Figure 5.

1/p

s

P

Figure 5: the sharp Hardy-Littlewood-Sobolev-Kato diagram P
O = (0, 0) C = (1,0)

A = (1/2, 1) B = (1,1)

We now prove Theorem 1.2 for parameters in P. To this end, we need the following key
lemma, which provides the desired counterexample to consider the sharpness. Recall that this
counterexample is also used in [5, p. 120] to show that inf σ = 2 over all L in E (Rn).

Lemma 4.5. There exist two families {Lβ}β∈(−1,∞) ⊂ E (R2) and {uβ}β∈(−1,∞) of functions on R2\{0}
such that

(i) for any β ∈ (−1,∞) and p ∈ (1, ∞), uβ ∈ Lp(R2) ;

(ii) for any s ∈ (0, 1) and p ∈ ( 2
s , ∞), there exists β ∈ (−1, s

2−s − 1) such that ∆s/2uβ < Lp(R2);

(iii) for any s ∈ (0, 1), β ∈ (−1,∞) and p ∈ ( 2
s , ∞), Ls/2

β uβ ∈ Lp(R2).

Proof. Be begin with, we first recall the following example of divergence form elliptic operators
in E (R2) from [5]. For any s ∈ (0, 1), β ∈ (−1, ∞) and x ∈ R2 \ {0}, let

Aβ(x) := I +
β(β + 2)
|x|2

(
x2

2, −x1x2
−x1x2, x2

1

)
(4.25)

be a 2 × 2 nonnegative symmetric real matrix on R2. It is easy to see that Aβ satisfies the uniform
ellipticity condition (1.1), due to the fact that for any x ∈ R2 \ {0},

min
{
1, (1 + β)2

}
I ≤ Aβ(x) ≤ max

{
1, (1 + β)2

}
I.

Let Lβ := −div(Aβ∇) ∈ E (R2) be the second order divergence form elliptic operator associated
with Aβ as in (4.25). Let uβ := vβφ with φ ∈ C∞c (R2) satisfying supp φ ⊂ B(0, 1), 0 ≤ φ ≤ 1, φ ≡ 1
on B(0, 1/2) and

vβ(x) := x1|x|β (4.26)

for any x := (x1, x2) ∈ R2 \ {0}. Then, by an elementary calculation, we know that the function vβ
defined as in (4.26) is a classical strong solution to the equation

Lβv = 0 (4.27)

on R2 \ {0} and also a weak solution to (4.27) on R2 (see also [5, p. 120]).
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We now first prove (i). Indeed, by the properties of φ, the fact that β > −1 and using the polar
coordinate, we have

‖uβ‖
p
Lp(Rn) '

∫ 1

0
r(1+β)p+1 dr < ∞,

which immediately implies that (i) holds true.
To prove (ii), we first observe from (4.26) that for any β ∈ (−1,∞) and x ∈ R2 \ {0},

∇vβ(x) =
(
|x|β + βx2

1|x|
β−2, βx1x2|x|β−2

)
(4.28)

and

∆vβ(x) = 4βx1|x|β−2 + β(β − 2)(x3
1 + x1x2

2)|x|β−4. (4.29)

If further β ∈ (−1, s
2−s − 1), we know that there exist ε ∈ (0, 1) and σ ∈ (0, s) such that

−1 + ε < β <
σ

2 − s
− 1. (4.30)

Now let δ := 2
2−ε − 1 ∈ (0, 1) and p1 := 1 + δ. By (4.30), it is easy to see (β − 1)p1 + 1 > −1,

which together with (4.29) implies that∥∥∥φ∆vβ
∥∥∥p1

Lp1 (Rn) '

∫ 1

0
r(β−1)p1+1 dr < ∞.

This together with the properties of φ and (4.28) implies that∥∥∥∆uβ
∥∥∥

Lp1 (Rn) .
∥∥∥φ∆vβ

∥∥∥
Lp1 (Rn) +

∥∥∥vβ∆φ
∥∥∥

Lp1 (Rn) +
∥∥∥|∇φ| |∇vβ|

∥∥∥
Lp1 (Rn) < ∞. (4.31)

Moreover, let

p0 :=
2(2 − s)(1 + δ)

(s − σ)(1 + δ) + 2(1 − s)
(4.32)

withσ as in (4.30). From (4.30), it follows β < σ
2−s−1+

2(1−s)δ
2−s , which is equivalent to βp0+1 < −1.

By this and (4.28), we know ∥∥∥φ∇vβ
∥∥∥p0

Lp0 (Rn) '

∫ 1

0
rβp0+1 dr = ∞.

Using the properties of φ again, we find∥∥∥∇uβ
∥∥∥

Lp0 (Rn) &
∥∥∥φ∇vβ

∥∥∥
Lp0 (Rn) −

∥∥∥vβ∇φ
∥∥∥

Lp0 (Rn) = ∞. (4.33)

We now continue the proof of (ii). For any p ∈ ( 2
s , ∞), let σ̃ ∈ (0, s) such that p = 2

s−σ̃ .
Moreover, it is easy to see that there exists β ∈ (−1, s

2−s − 1) satisfies (4.30) with σ = σ̃. By this
and (4.32), we have 1 = s(1 − θ) + 2θ

1
p0

= 1−θ
p + θ

p1
,
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where θ := 1−s
2−s ∈ (0, 1).

For β fixed as above, if we assume that ∆s/2uβ ∈ Lp(R2), then by (4.31) and the following
interpolation inequality for functions in Riesz potential space∥∥∥∇uβ

∥∥∥
Lp0 (Rn) ≤

∥∥∥∆s/2uβ
∥∥∥1−θ

Lp(Rn)

∥∥∥∆uβ
∥∥∥θ

Lp1 (Rn) ,

we obtain ∇uβ ∈ Lp0(Rn), which is contract with (4.33). Thus the assumption ∆s/2uβ ∈ Lp(R2)
doesn’t hold. This proves (ii).

To prove (iii), we first claim that for any β ∈ (−1, ∞) and p ∈ (1, ∞),

L
s/2
β uβ = L

−(2−s)/2
β ◦ Lβuβ (4.34)

in Lp(Rn). Indeed, let f := Luβ. Using the fact that vβ is a solution to (4.27) and uβ = vβφ, we find

f = Lβuβ = 2Aβ∇φ · ∇vβ + vβLβφ,

which together with the properties of φ shows that Lβuβ = f ∈ C∞c (B(0, 1) \ B(0, 1/2)) ⊂ Lp(Rn).
By this and (i), we conclude that uβ ∈ domp[Lβ] for any p ∈ (1, ∞), which implies (4.34) holds
true.

Now by (4.34) and the bounded functional calculus in Lp(Rn), we write for any p ∈ (1, ∞),

L
s/2
β uβ = L

−(2−s)/2
β f =

1
Γ((2 − s)/2)

∫ ∞

0
t−s/2e−tLβ f dt (4.35)

in Lp(Rn). As e−tLβ has heat kernel satisfying (1.2), we know that the Lβ-adapted Riesz potential
L
−(2−s)/2
β also has an integral kernel L−(2−s)/2

β (x, y), which satisfies that for any (x, y) ∈ (R2 ×R2) \
{(0, 0)}, ∣∣∣∣L−(2−s)/2

β (x, y)
∣∣∣∣ . ∫ ∞

0
t−s/2−1 exp

{
−c1
|x − y|2

t

}
dt .

1
|x − y|s

'
1

|x − y|2−(2−s) ,

where the last term is exactly the integral kernel of the classical Riesz potential ∆−(2−s)/2 on R2.
Thus by (4.35), the fact f ∈ Lq(Rn) for any q ∈ (1, ∞) and the boundedness of Riesz potential
∆−(2−s)/2 from Lq(Rn) to Lp(Rn) for any 1 < q ≤ p < ∞ satisfying

1
q
−

1
p

=
2 − s

2
,

we know that Ls/2
β uβ ∈ Lp(Rn) for any p ∈ ( 2

s , ∞). This implies (iii) and hence finishes the proof
of Lemma 4.5.

�

Remark 4.6. (i) Lemma 4.5 shows the sharpness of the boundedness of the fractional Riesz trans-
form ∆s/2L−s/2 on Lp(Rn) for any s ∈ (0, 1) and p ∈ (1, 2

s ]. Here the sharpness is also understand
in the sense of the whole class E (Rn).

(ii) Recall that in our counterexample in (4.26), the function vβ belongs to the Hölder class
C1+β(R2). As β < s

2−s − 1, we have 1 + β < s
2−s < s. This shows that s < (0, Θ(Lβ)) for Lβ

associated with the coefficient matrix Aβ as in (4.25). Thus we cannot use Theorem 3.1 in this
case.
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With the help of Lemma 4.5, we now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. We first claim that if there exists E := ( 1
p0
, s0) ∈ (0, 1) × (0, 1) \ P, q0 ∈

(1, ∞) and L ∈ E (Rn) satisfying

Bs0,L
p0,q0 = Bs0

p0,q0 , (4.36)

then this identity can pass from E to another point, which is very close to the boundary of P.
To be precise, we will show that for any ε ∈ (0, 1) sufficiently small, there exists F := ( 1

p , s) ∈
(0, 1) × (0, 1) \ P satisfying ∣∣∣∣∣1p − s

2

∣∣∣∣∣ < ε (4.37)

such that for any q ∈ (1, ∞),

Bs,L
p,q = Bs

p,q. (4.38)

Indeed, let p := p0 and s < s0 such that the point F = ( 1
p0
, s) ∈ (0, 1)× (0, 1) \P sufficiently close

to the segment OA (see Figure 5 for the existence of the point F), then we know ( 1
p0
, s) satisfying

(4.37). Moreover, let G := ( 1
p0
, s1) ∈ P with s1 < s. Then by Theorem 1.1, we have for any

q ∈ (1, ∞),

Bs1,L
p0,q = Bs1

p0,q.

Note that there exists θ ∈ (0, 1) such that s = s0(1− θ) + s1θ. Thus, by Proposition 2.2(ii), the real
interpolation of the classical Besov space Bs

p,q(Rn) and Remark 2.3(i), we conclude that for any
q ∈ (1, ∞),

Bs,L
p0,q = Bs

p0,q.

This verifies the claim (4.38). Note that the above claim enables us only need to consider points
( 1

p , s) ∈ (0, 1)× (0, 1) \P satisfying (4.37) for any q ∈ (1, ∞), as other cases can be passed to this
case by this claim.

Now let F := ( 1
p , s) ∈ (0, 1) × (0, 1) \ P satisfying (4.37). If for any such p, s, any q ∈ (1, ∞)

and any L ∈ E (Rn),

Bs,L
p,q = Bs

p,q, (4.39)

then by the lifting properties of the Bessel potentials in the corresponding Besov spaces (see Re-
mark 2.5(iii)), Proposition 2.7 and Remark 2.3(i), we have that for any δ ∈ (0, s) small enough
(see (4.43) below for the precise requirement) and f ∈ Lp(Rn),∥∥∥(I + ∆)(s−δ)/2 f

∥∥∥
Bδp,p(Rn) '

∥∥∥(I +L)s/2 f
∥∥∥

B0,L
p,p
'

∥∥∥(I +L)s/2 f
∥∥∥

B̃0,L
p,p
. (4.40)

As F = ( 1
p , s) ∈ (0, 1) × (0, 1) \ P, we know that p > 2, thus by the embedding properties of the

spectral Besov and Triebel-Lizorkin spaces (see Remark 2.5(i), (2.14a), (2.16a) and an elementary
calculation), we know

Lp(Rn) = F̃0,L
p,2 ⊂ F̃0,L

p,p = B̃0,L
p,p ,
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which immediately shows that when n = 2∥∥∥(I +L)s/2 f
∥∥∥

B̃0,L
p,p
.

∥∥∥(I +L)s/2 f
∥∥∥

Lp(R2) . (4.41)

On the other hand, since Bδp,p(Rn) = Fδ
p,p(Rn) ⊂ Lp(Rn) for any n ∈ N (see [51, 52] and also

Lemma 3.4), we have that for any f ∈ Lp(R2),∥∥∥(I + ∆)(s−δ)/2 f
∥∥∥

Lp(R2) .
∥∥∥(I + ∆)(s−δ)/2 f

∥∥∥
Bδp,p(R2) . (4.42)

Now, using (4.37), we know that there exist σ, δ ∈ (0, s) sufficiently small such that

p =
2

s − δ − σ
>

2
s − δ

>
2
s
. (4.43)

By Lemma 4.5(i) and (ii), there exist β ∈ (−1, s−δ
2−s+δ − 1), Lβ ∈ E (R2) and uβ ∈ Lp(R2) such that∥∥∥(I + ∆)(s−δ)/2uβ

∥∥∥
Lp(R2) = ∞, (4.44)

which combined with (4.40) (4.41) and (4.42) implies that∥∥∥(I +Lβ)s/2uβ
∥∥∥

Lp(R2) = ∞.

However, by Lemma 4.5(iii), we know that the same function uβ in (4.44) satisfies∥∥∥(I +Lβ)s/2uβ
∥∥∥

Lp(R2) < ∞.

This is a contradiction. Thus, the assumption (4.39) doesn’t hold true. This finishes the proof of
Theorem 1.2.

�

5 Extension to the case s ≥ 1

In this section, we extend the above considerations from s ∈ (0, 1) to the case s ≥ 1 by adding
higher regularity assumption on the heat kernel. This higher regularity is introduced in Section 5.1,
where the associated smooth functional calculus is also established. In Section 5.2, we introduce
the function spaces of higher smoothness defined via the higher order difference and then derive
the embedding relations between this version of function spaces and the function spaces defined
via the heat semigroup.

5.1 Heat kernels with higher order regularity

Let µ := [µ] + {µ} ∈ [1, ∞) with [µ] ∈ Z+ and {µ} ∈ [0, 1). For simplicity, we may assume
that {µ} ∈ (0, 1) throughout this paper, that is, µ ∈ (1, ∞) \N. Assume that the heat kernel {Pt}t>0
satisfies the following local higher order regularity estimates Gloc(µ) that
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(i) for any k ∈ {1, . . . , [µ]} and α ∈ Zn
+ satisfying |α| = k, there exist positive constants c4 and

α4 such that for any t ∈ (0, 1] and x, y ∈ Rn,∣∣∣Dα
x Pt(x, y)

∣∣∣ ≤ c4

t(n+k)/2 exp
{
−
α4|x − y|2

t

}
; (5.1)

(ii) for any α ∈ Zn
+ satisfying |α| = [µ], there exist positive constants c5 and α5 such that for any

t ∈ (0, 1] and x, x′, y ∈ Rn satisfying |x − x′| ≤
√

t,∣∣∣∣D[µ]
x Pt(x, y) − D[µ]

x Pt(x′, y)
∣∣∣∣ ≤ c5

(
|x − x′|
√

t

){µ} 1
t(n+[µ])/2 exp

{
−
α5|x − y|2

t

}
. (5.2)

Remark 5.1. Let L = −div(A∇) be the second order divergence form elliptic operator on Rn with
real symmetry coefficient entries {ai, j} ⊂ C

µ+ε−1(Rn) in the Hölder space for any ε > 0 (see (5.16)
below). Then the property Gloc(µ) holds true (see [17, Theorems 1.1 and 1.5 III]).

The property Gloc(µ) can be extended to the half complex plane C+ := {z ∈ C : Re z > 0} as
follows.

Lemma 5.2. Let µ ∈ (1, ∞) \ N. Assume that the heat kernel {Pt}t>0 satisfies Gloc(µ). Then

(i) for any k ∈ {1, . . . , [µ]} and α ∈ Zn
+ satisfying |α| = k, there exist positive constants c6 and

α6 such that for any z ∈ C+ satisfying Re z ∈ (0, 1] and x, y ∈ Rn,∣∣∣Dα
x Pz(x, y)

∣∣∣ ≤ c6

|Re z|(n+k)/2 exp
{
−
α6|x − y|2

|z|

}
; (5.3)

(ii) for any α ∈ Zn
+ satisfying |α| = [µ], there exist positive constants c7 and α7 such that for any

z ∈ C+ satisfying Re z ∈ (0, 1] and x, x′, y ∈ Rn satisfying |x − x′| ≤
√

Re z,

∣∣∣Dα
x Pz(x, y) − Dα

x Pz(x′, y)
∣∣∣ ≤ c7

(
|x − x′|
√
|Re z|

){µ} 1
|Re z|(n+[µ])/2 exp

{
−
α7|x − y|2

|z|

}
. (5.4)

Proof. As the semigroup {e−tL}t>0 extends to a bounded holomorphic semigroup {e−zL}z∈C+
on

Lp(Rn), we write for any z := t + is ∈ C+ with t ∈ (0, 1],

e−zL = e−(t/2)Le−(t/2+is)L.

This immediately implies that for any such z and x, y ∈ Rn,

Pz(x, y) =

∫
Rn

P t
2
(x, u)P t

2 +is(u, y) du,

which combined with (5.1), (5.2) and (1.7) implies that (5.3) and (5.4) hold true. This finishes the
proof of Lemma 5.2. �

Based on Gloc(µ), we have the following higher order smooth functional calculus, which is an
extension of Lemma 3.2.
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Proposition 5.3. Assume that the heat kernel {Pt}t>0 satisfies Gloc(µ) with µ ∈ (1, ∞) \ N. Let
ϕ ∈ C2l+4([0, ∞)) with l > 2n and ϕ(2ν+1)(0) = 0 for any ν ∈ {0, . . . , l + 1}.

(i) If suppϕ ⊂ [0, R] for some R ≥ 1, then for any k ∈ {1, . . . , [µ]} and α ∈ Zn
+ satisfying

|α| = k, δ ∈ (0, 1] and x, y ∈ Rn,∣∣∣∣Dα
xϕ(δ

√
L)(x, y)

∣∣∣∣ ≤ C(l,R)Dδ,l,k(x, y), (5.5)

where

Dδ,l,k(x, y) :=
1
δn+k

(
1 +
|x − y|
δ

)−l

(5.6)

and the positive constant C(l,R) depends only on l and R.

(ii) If suppϕ ⊂ [0, R] for some R ≥ 1, then for any α ∈ Zn
+ satisfying |α| = [µ], there exists

a positive constant C′(l,R), depending on l and R, such that for any δ ∈ (0, 1] and x, x′,
y ∈ Rn satisfying |x′ − x| ≤ δ,∣∣∣∣Dα

xϕ(δ
√
L)(x, y) − Dα

xϕ(δ
√
L)(x′, y)

∣∣∣∣ ≤ C′(l,R)
(
|x − x′|
δ

){µ}
Dδ,l,k(x, y). (5.7)

(iii) If there exist positive constant C(l) > 0 and r ∈ (n + [µ] + 2l + 5, ∞) such that for any
k ∈ {0, . . . , 2l + 4} and λ ∈ (0, ∞),∣∣∣ϕ(k)(λ)

∣∣∣ ≤ C(l) (1 + λ)−r , (5.8)

then (5.5) and (5.7) still hold true. Moreover, for any δ ∈ (0, 1] and x ∈ Rn,∫
Rn
ϕ(δ
√
L)(x, y) dy ≡ ϕ(0).

To prove Proposition 5.3, we need the following technical lemma from [11, Theorems 3.1 and
3.4] and [35, Theorem 3.4].

Lemma 5.4 ([11, 35]). (i) Let ϕ ∈ C2l+4([0, ∞)) be as in the statement of Proposition 5.3 with
l > 2n and suppϕ ⊂ [0, R] for some R ≥ 1. Then there exist g0, g1 : R → C satisfying for
i ∈ {0, 1},

‖gi‖∗,l :=
∫
Rn

∣∣∣̂gi(ξ)
∣∣∣ (1 + |ξ|)l dξ < ∞

such that for any λ ∈ [0, ∞),

ϕ(λ) = g0(λ2)e−λ
2

+ g1(λ2)e−λ
2
,

where for i ∈ {0, 1}, ĝi denotes the Fourier transform of gi as in (1.15). Moreover, there exists a
positive constant C(l) such that for i ∈ {0, 1},

‖gi‖∗,l ≤ C(l)R2l+n+4
(
‖ϕ‖L∞ +

∥∥∥ϕ(2l+4)
∥∥∥

L∞ + max
0≤ν≤2l+4

{∣∣∣ϕ(ν)(0)
∣∣∣}) . (5.9)
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(ii) Let g : R → C satisfy ‖g‖∗,l < ∞ with l > 2n. Then for any δ ∈ (0, 1] and x, y ∈ Rn, the
integral kernel g(δ2L)e−δ

2L(x, y) of the operator g(δ2L)e−δ
2L satisfies

g
(
δ2L

)
e−δ

2L(x, y) =
1

2π

∫
R

ĝ(ξ)Pδ2(1−iξ)(x, y) dξ.

(iii) Let ϕ ∈ C2l+4([0, ∞)) be as in the statement of Proposition 5.3 with l > 2n and satisfy (5.8)
with r ∈ (n + [µ] + 2l + 5, ∞) for some [µ] > 0. Then there exists a family {h j} j∈Z+

of functions on
[0, ∞) with h j satisfying the assumptions in (i) with R ≡ 2 such that for any λ ∈ [0, ∞),

ϕ(λ) =

∞∑
j=0

h j(2− jλ).

Moreover, h0(0) = f (0), h j(0) ≡ 0 for any j ∈ N and for any j ∈ Z+,

‖h j‖L∞ +
∥∥∥∥h(2l+4)

j

∥∥∥∥
L∞

+ max
0≤ν≤2l+4

{∣∣∣∣h(ν)
j (0)

∣∣∣∣} . 2− j(n+[µ]+1), (5.10)

where the implicit constant is independent of j.

Based on Lemma 5.4, we now turn to the proof of Proposition 5.3.

Proof of Proposition 5.3. We first prove (i) and (ii). By Lemma 5.4(i), we know that there exist
g0, g1 : R→ C satisfying for i ∈ {0, 1}, ‖gi‖∗,l < ∞ such that for any λ ∈ [0, ∞),

ϕ(λ) = g0(λ2)e−λ
2

+ g1(λ2)e−λ
2
.

Thus, to finish the proofs of (i) and (ii), we only need to verify that for i ∈ {0, 1}, the integral
kernel Gi(x, y) := gi(δ2L)e−δ

2L(x, y) of the operator gi(δ2L)e−δ
2L satisfies (5.5) and (5.7).

Using Lemma 5.4(ii), we have for i ∈ {0, 1},

Gi(x, y) =
1

2π

∫
R

ĝi(ξ)Pδ2−δ2ξi(x, y) dξ.

This combined with Lemma 5.2(i) shows that for any k ∈ {0, . . . , [µ]}, α ∈ Zn
+ with |α| = k and x,

y ∈ Rn,∣∣∣Dα
xGi(x, y)

∣∣∣ ≤ 1
2π

∫
R

∣∣∣̂gi(ξ)
∣∣∣ ∣∣∣Dα

x Pδ2−δ2ξi(x, y)
∣∣∣ dξ (5.11)

.
1

2π

∫
R

∣∣∣̂gi(ξ)
∣∣∣ 1
δk+n exp

{
−

c|x − y|2

δ2(1 + ξ2)

}
dξ

.
1

2π

∫
R

∣∣∣̂gi(ξ)
∣∣∣ 1
δk+n (1 + |ξ|)l

(
1 +
|x − y|
δ

)−l

dξ .
‖g‖∗,l
δk+n

(
1 +
|x − y|
δ

)−l

,

which combined with (5.9) implies that Gi(x, y) satisfies (5.5).
On the other hand, using Lemma 5.2(ii), we have that for any α ∈ Zn

+ satisfying |α| = [µ] and x,
x′, y ∈ Rn satisfying |x′ − x| ≤ δ,∣∣∣Dα

xGi(x, y) − Dα
xGi(x′, y)

∣∣∣ ≤ 1
2π

∫
R

∣∣∣̂gi(ξ)
∣∣∣ ∣∣∣Dα

x Pδ2−δ2ξi(x, y) − Dα
x Pδ2−δ2ξi(x′, y)

∣∣∣ dξ (5.12)
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.
1

2π

∫
R

∣∣∣̂gi(ξ)
∣∣∣ ( |x − x′|

δ

){µ} 1
δ[µ]+n exp

{
−

c|x − y|2

δ2(1 + ξ2)

}
dξ

.
‖g‖∗,l
δk+n

(
|x − x′|
δ

){µ} (
1 +
|x − y|
δ

)−l

,

which combined with (5.9) implies that Gi(x, y) satisfies (5.7). Combined (5.11) and (5.12), we
finish the proofs of (i) and (ii).

To prove (iii), by Lemma 5.4(iii), we know that for any δ ∈ (0, 1], p ∈ (1, ∞) and g ∈ Lp(Rn),

ϕ(δ
√
L)g =

∞∑
j=0

h j(2− jδ
√
L)g (5.13)

in Lp(Rn). This together with (5.5), (5.6), (5.9) and (5.10) implies the integral kernel ϕ(δ
√
L)(·, ·)

of ϕ(δ
√
L) satisfies that for any k ∈ {1, . . . , [µ]}, α ∈ Zn

+ satisfying |α| = k and x, y ∈ Rn,∣∣∣∣Dα
xϕ(δ

√
L)(x, y)

∣∣∣∣ . ∞∑
j=0

∣∣∣∣Dα
x h j(δ2− j

√
L)(x, y)

∣∣∣∣
.
∞∑
j=0

2− j

δn+k

(
1 +
|x − y|
2− jδ

)−l

. Dδ,l,k(x, y),

which implies that (5.5) holds true in this case. The proof of (5.7) is similar, the details being
omitted.

Finally, by (5.13), Lemma 3.2(iii) and the facts h0(0) = ϕ(0), h j(0) ≡ 0 for any j ∈ N, we
conclude that∫

Rn
ϕ(δ
√
L)(x, y) dy =

∞∑
j=0

∫
Rn

h j(δ2− j
√
L)(x, y) dy =

∫
Rn

h0(δ
√
L)(x, y) dy = h0(0) = ϕ(0),

which shows that (iii) holds true and hence completes the proof of Proposition 5.3. �

5.2 Function spaces with higher order smoothness

We first recall the definitions of function spaces defined via the higher order difference. Let
M ∈ N, h ∈ Rn and f be a function on Rn. Recall the following definition of the M-order
difference ∆M

h ( f ) of f with step h by setting for any x ∈ Rn,

∆M
h f (x) :=

M∑
j=0

(−1)M− j f (x + jh). (5.14)

Note that if M = 1, then ∆1
h f (x) = ∆h f (x) = f (x + h) − f (x) is the usual first order difference, and

for any M ≥ 2, ∆M
h f (x) = ∆M−1

h (∆1
h f )(x).

Let p, q ∈ (1, ∞) and s ∈ (0, ∞), define the Lipschitz Besov space Bs,D
p,q by

Bs,D
p,q :=

{
f ∈ Lp(Rn) : ‖ f ‖Bs,D

p,q
:= ‖ f ‖Lp(Rn) + ‖ f ‖Ḃs,D

p,q
< ∞

}
, (5.15)
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where

‖ f ‖Ḃs,D
p,q

:=


∫ ∞

0

∫
Rn

∫
B(x,r)

∣∣∣∆M
h f (x)

∣∣∣p
rn+sp dh dx

q/p
dr
r


1/q

,

where ∆M
h f (x) is defined as in (5.14) with M > s.

Similarly, the Lipschitz Triebel-Lizorkin space F s,D
p,q with p, q ∈ (1, ∞) and s ∈ (0, ∞) is defined

to be

F s,D
p,q :=

{
f ∈ Lp(Rn) : ‖ f ‖F s,D

p,q
:= ‖ f ‖Lp(Rn) + ‖ f ‖Ḟ s,D

p,q
< ∞

}
,

where

‖ f ‖Ḟ s,D
p,q

:=

∥∥∥∥∥∥∥∥
∫ ∞

0

∫
B(·,r)

∣∣∣∆M
h f (·)

∣∣∣
rn+s dh

q
dr
r

1/q
∥∥∥∥∥∥∥∥

Lp(Rn)

,

where ∆M
h f (x) is defined as in (5.14) with M > s.

Remark 5.5. From [52, Chapter 3.5.3], we deduce that for any p, q ∈ (1, ∞), s ∈ (0, ∞) and
M ∈ N satisfying M > s, the spaces Bs,D

p,q and F s,D
p,q are consistent with the classical Besov spaces

Bs
p,q(Rn) and Triebel-Lizorkin spaces F s

p,q(Rn). In particular, Bs,D
p,q and F s,D

p,q are invariant for dif-
ferent choices of M ∈ N satisfying M > s. Thus, we don’t write the parameter M in the notation
of Bs,D

p,q and F s,D
p,q .

The following result gives the embedding relation between the spectral and Lipschitz Triebel-
Lizorkin spaces with higher order smoothness.

Theorem 5.6. Assume that the heat kernel {Pt}t>0 satisfies the property Gloc(µ) for some µ ∈
(1, ∞) \ N. Then for any p, q ∈ (1, ∞) and s ∈ (0, µ),

F s,L
p,q ⊂ F s,D

p,q .

We prove Theorem 5.6 by making use of the non-smooth atomic characterization of the classi-
cal Triebel-Lizorkin spaces from [53, Chapter 1.5.2]. Recall that for any j ∈ Z+, D j denotes the
set of all dyadic cubes in Rn with side length 2− j.

Definition 5.7. (a) Let α ∈ (0, ∞) \ N. A function a : Rn → C is called a 1α-atom associated
with the dyadic cube Q ∈ D0 if there exists a positive constant c > 1 such that

(i) supp a ⊂ cQ;

(ii) ‖a‖Cα(Rn) ≤ 1, where for α := [α] + {α} ∈ (0, ∞) with [α] ∈ Z+ and {α} ∈ (0, 1),

‖a‖Cα(Rn) := sup
0≤|β|≤[α]

∥∥∥Dβa
∥∥∥

L∞(Rn) +
∑
|β|=[σ]

sup
x,y

|Dβa(x) − Dβa(y)|
|x − y|{α}

. (5.16)
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(b) Let s ∈ (0, ∞), α ∈ (0, ∞) \ N and p ∈ (1, ∞). A function a : Rn → C is called a (s, p)α-
atom associated with the dyadic cube Q ∈ D j for some j ∈ N if there exists a positive constant
c > 1 such that

(i) supp a ⊂ cQ;

(ii) ‖a(2− j·)‖Cα(Rn) ≤ 2− j(s−n/p), where the norm ‖ · ‖Cα(Rn) is as in (5.16);

(iii)
∫
Rn a(x) dx = 0.

(c) For any p, q ∈ (1, ∞) and ~λ :=
{
λ j,m ∈ C : j ∈ Z+,m ∈ Zn

}
, let fp,q := {~λ : ‖~λ‖ fp,q < ∞}

with

‖~λ‖ fp,q :=

∥∥∥∥∥∥∥∥
 ∞∑

j=0

∑
m∈Zn

∣∣∣λ j,m2 jn/p1Q j,m(·)
∣∣∣q

1/q∥∥∥∥∥∥∥∥
Lp(Rn)

.

The following non-smooth atomic characterization of F s
p,q(Rn) was established by Triebel (see,

for example, [53, Corollary 1.23]).

Lemma 5.8 ([53]). Let p, q ∈ (1, ∞), s ∈ (0, ∞) and α ∈ (s, ∞) \ N. Then for any f ∈ Lp(Rn),
f ∈ F s

p,q(Rn) if and only if it can be represented as

f =

∞∑
j=0

∑
m∈Zn

λ j,ma j,m (5.17)

in sense of Schwartz distribution S′(Rn), where a0,m are 1α-atoms, a j,m for j ≥ 1 are (s, p)α-atoms
and ~λ := {λ j,m} ∈ fp,q. Furthermore,

‖ f ‖F s
p,q(Rn) ' inf

{
| f ‖ fp,q

}
,

where the infimum is taken over all admissible representation (5.17) and the implicit constants are
independent of f .

We also need the following discrete Calderón reproducing formula from [32, Lemmas 3.6 and
3.7], which is a generalization of (2.17).

Lemma 5.9 ([32]). Let (φ0, φ) in S ([0, ∞)) satisfy the admission condition as in Remark 2.6.
Then there exist another couple (ψ0, ψ) of functions in S ([0, ∞)) satisfying the admission condi-
tion such that for any p ∈ (1,∞) and f ∈ Lp(Rn),

f =

∞∑
j=0

φ j(
√
L)ψ j(

√
L) f

in Lp(Rn).

With the helps of Lemmas 5.8 and 5.9, we now turn to the proof of Theorem 5.6.
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Proof of Theorem 5.6. Let (φ0, φ) in S ([0, ∞)) satisfy the admission condition and (2.19) (see
Remark 2.6 for the existence of such couple of functions). Then by Lemma 5.9, we know that
there exist (ψ0, ψ) in S ([0, ∞)) such that for any f ∈ Lp(Rn),

f =

∞∑
j=0

∑
m∈Zn

(
2−2 jL

)M
φ j(
√
L)

(
1Q j,m

(
2−2 jL

)−M
ψ j(
√
L) f

)
(5.18)

=

∞∑
j=0

∑
m∈Zn

∫
Q j,m

(
2−2 jL

)M
φ j(
√
L)(·, y)

(
ψ j,M(

√
L) f

)
(y) dy,

where for any j ∈ Z+, m ∈ Zn, Q j,m denotes the dyadic cube inD j and for any j ∈ Z+, M ∈ N,

ψ j,M(
√
L) :=

((
2−2 jL

)−M
ψ j(
√
L)

)
with the modification M = 0 when j = 0. Let us emphasize that the equalities in (5.18) hold in
Lp(Rn).

Now, for any j ∈ Z+ and m ∈ Zn, let

λ j,m := c2 j(s−n/p) sup
y∈Q j,m

∣∣∣∣(ψ j,M(
√
L) f

)
(y)

∣∣∣∣ (5.19)

and

a j,m :=
1
λ j,m

∫
Q j,m

(
2−2 jL

)M
φ j(
√
L)(·, y)

(
ψ j,M(

√
L) f

)
(y) dy, (5.20)

where the positive constant c will be determined later. Thus, by (5.18) through (5.20), we obtain
the following decomposition

f =

∞∑
j=0

∑
m∈Zn

λ j,ma j,m

in Lp(Rn) and hence in the sense of S′(Rn).
We now show that a j,m are the atoms in Definition 5.7. Indeed, by (2.19), we find that for any

j ∈ Z+, m ∈ Zn, x ∈ Rn satisfying dist (x, Q j,m) > 2− j and any y ∈ Q j,m,(
2−2 jL

)M
φ j(
√
L)(x, y) ≡ 0,

which together with the fact that y ∈ Q j,m implies that

supp a j,m ⊂ 4Q j,m. (5.21)

On the other hand, for any λ ∈ [0, ∞), let

φ̃(λ) := λ2Mφ(λ).

Since φ ∈ S([0, ∞)), we know that φ̃(λ) ∈ S([0, ∞)). Moreover, as φ0 and φ can be extended to
even functions in S(R) (see Remark 2.6), we further conclude that for any ν ∈ N, φ(2ν+1)

0 (0) = 0



Heat Kernels and Besov Spaces Associated with Elliptic Operators 41

and φ̃(2ν+1)(0) = 0. Thus, φ0, φ̃ ∈ S([0, ∞)) and satisfy the assumptions of Proposition 5.3(iii).
Using (5.20) and Proposition 5.3(iii), we know that for any j ∈ N,∫

Rn
a j,m(x) dx =

1
λ j,m

∫
Rn

∫
Q j,m

φ̃ j(
√
L)(x, y)ψ j,M(

√
L)(y) dy

 dx (5.22)

=
1
λ j,m

∫
Q j,m

ψ j,M(
√
L)(y)

[∫
Rn
φ̃ j(
√
L)(x, y) dx

]
dy = 0.

Moreover, for any k ∈ {0, . . . , [µ]} and β ∈ Zn
+ satisfying |β| = k, by (5.20) and Proposition

5.3(iii), we know for any j ∈ Z+ and l ∈ N ∩ (2n, ∞),

∣∣∣∣Dβ
xa j,m(x)

∣∣∣∣ . 2− j(s−n/p)

 sup
y∈Q j,m

∣∣∣∣(ψ j,M(
√
L)

)
(y)

∣∣∣∣−1 ∫
Q j,m

∣∣∣∣Dβ
x

[
φ̃ j

(√
L
)]

(x, y)
∣∣∣∣

×

∣∣∣∣(ψ j,M(
√
L) f

)
(y)

∣∣∣∣ dy

. 2− j(s−n/p)
∫

Q j,m

2 j(n+k)
(
1 + 2 j|x − y|

)−l
dy . 2− j(s−n/p)2 jk,

which together with (5.16) implies that for any j ∈ Z+, k ∈ {0, . . . , [µ]} and β ∈ Zn
+ satisfying

|β| = k, ∥∥∥Dβa j,m(2− j·)
∥∥∥

L∞(Rn) . 2− j(s−n/p). (5.23)

Moreover, using Proposition 5.3 again, we find that for any β ∈ Zn
+ satisfying |β| = [µ], l ∈

N ∩ (2n, ∞) and x, x′ ∈ supp a j,m, namely, |x − x′| ≤ 4
√

n2− j,∣∣∣∣Dβ
xa j,m(x) − Dβ

xa j,m(x′)
∣∣∣∣ . 2− j(s−n/p)

(
2 j|x − x′|

){µ} ∫
Q j,m

2 j(n+[µ])
(
1 + 2 j|x − y|

)−l
dy

. 2− j(s−n/p)2 jµ|x − x′|{µ},

which together with (5.16) again implies that for any j ∈ Z+,∥∥∥∥Dβ
xa j,m(2− j·)

∥∥∥∥
C{µ}(Rn)

. 2− j(s−n/p).

By this and (5.23), we see for any j ∈ Z+,∥∥∥a j,m(2− j·)
∥∥∥
Cµ(Rn) . 2− j(s−n/p),

which combined with (5.21) and (5.22) indicates that a j,m is a 1µ-atom when j = 0 and a (s, p)µ-
atom when j ∈ N, by normalizing the constant c in (5.19) properly.

We now consider the ‖ · ‖ fp,q norm generated by the coefficients {λ j,m} j,m. By (5.19), we have
that for any j ∈ Z+ and m ∈ Zn,

λ j,m2 jn/p1Q j,m = 2 js sup
y∈Q j,m

∣∣∣∣ψ j,M(
√
L) f (y)

∣∣∣∣ 1Q j,m
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with the modifications that M = 0 when j = 0. This implies that for any j ∈ Z+,

∑
m∈Zn

∣∣∣λ j,n2 jn/p1Q j,m

∣∣∣q . ∑
m∈Zn

2 js sup
y∈Q j,m

∣∣∣∣ψ j,M(
√
L) f (y)

∣∣∣∣ 1Q j,m

q

.

Note that for any φ ∈ S([0, ∞)), there exists γ ∈ (2n, ∞) such that for any x ∈ Rn,

sup
y∈Q j,m

∣∣∣∣φ(
√
L) f (y)

∣∣∣∣ 1Q j,m(x) . sup
y∈Rn

∣∣∣φ(
√
L) f (y)

∣∣∣
(1 + 2 j|x − y|)γ

,

where the later term belongs to the system {(φ∗j f )γ(x)} j∈Z+
of Peetre maximal function of f asso-

ciated with φ. Then by the Peetre maximal function characterization of the space F̃ s,L
p,q (see [32,

Theorem 3.4]), we conclude that

∥∥∥{λ j,m} j,m
∥∥∥

fp,q
∼

∥∥∥∥∥∥∥∥
 ∞∑

j=0

∑
m∈Zn

∣∣∣λ j,m2( j−n)/p1Q j,m

∣∣∣q
1/q∥∥∥∥∥∥∥∥

Lp(Rn)

.

∥∥∥∥∥∥∥∥∥

∞∑
j=0

[
2 js(φ∗j f )γ

]q


1/q

∥∥∥∥∥∥∥∥∥
Lp(Rn)

. ‖ f ‖F̃ s,L
p,q
.

By this and Proposition 5.8, we conclude that f ∈ F s
p,q(Rn) with ‖ f ‖F s

p,q(Rn) . ‖ f ‖F̃ s,L
p,q

. This
combined with Remark 5.5 finishes the proof of Theorem 5.6.

�

Based on Theorem 5.6, we have the following corollary on the embedding relation between
the Besov spaces defined via the heat semigroup and the higher order difference, which extends
Theorem 1.1 to the case s ∈ (0, µ) for µ ∈ (1, ∞) \ N.

Corollary 5.10. Assume that the heat kernel {Pt}t>0 satisfies the property Gloc(µ) for some µ ∈
(1, ∞) \ N. Then for any p, q ∈ (1, ∞) and s ∈ (0, µ),

Bs,L
p,q ⊂ Bs,D

p,q ,

where Bs,D
p,q is defined as in (5.15).

Proof. By Theorem 5.6 with p ∈ (1, ∞), q = 2 and s ∈ (0, µ), we have that

F̃ s,L
p,2 ⊂ F s,D

p,2 ,

which combined with (2.18) and Remark 5.5 implies that for any p ∈ (1, ∞) and s ∈ (0, µ)

domp[Ls/2] ⊂ Hs
p(Rn).

By this, Propositions 2.2, 2.7 and (4.22) implies that Bs,L
p,q ⊂ Bs,D

p,q , which completes the proof of
Corollary 5.10.

�
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Remark 5.11. (i) Let s0 ∈ (Θ, ∞). If for any p ∈ (1, σ̃) with some σ̃ > 1, the identity

domp[Ls0/2] = Hs0
p (Rn) (5.24)

holds true, then by using the same argument as in the proof of Corollary 5.10 (see also the proof of
Theorem 1.1), we conclude that for any ( 1

p , s) in some Hardy-Littlewood-Sobolev-Kato diagram
defined in a way similar to Figure 2 (with 1 and σ therein replaced respectively by s0 and σ̃) and
for any q ∈ (1, ∞),

Bs,L
p,q = Bs,D

p,q .

(ii) If the coefficient matrix A satisfies some regularity conditions, then the identity (5.24) is
true with s0 and σ̃ taking different values. For example, if the entries ai, j ∈ VMO (Rn), Shen
[47, Theorem C] proved that (5.24) holds with s0 = 1 and σ̃ > 3. Moreover, ter Elst et al. [17,
Theorems 1.3] proved that if ai, j ∈ C

µ(Rn) for some µ ∈ (0, 1), then (5.24) is true with s0 = 1 and
σ̃ = ∞. See also [17, Theorems 1.5 II] for a further discuss in the case µ ≥ 1 and s0 ∈ N.

Acknowledgement. The first author would like to thank the Universität Bielefeld for the hospi-
tality that he received while visiting there in 2017-2019.
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[52] H. Triebel, Theory of Function Spaces. II, Monogr. Math. 84, Birkhäuser-Verlag, Basel,
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