Heat Kernels and Besov Spaces Associated with Second Order
Divergence Form Elliptic Operators

Jun Cao* and Alexander Grigor’yan

Abstract Let £ = —div(AV) be a uniformly elliptic operator in R" with real, symmetric,
measurable coefficients. We study the identity of two families of Besov spaces Bf;,f]: and By, ,

where the former one is defined using the heat semigroup of £, while the latter one is defined in
a classical way, using the metric structure of R”. A sharp range of parameters p, g, s ensuring

the identity B;’ﬁ = By, , is given by a Hardy-Littlewood-Sobolev-Kato diagram.
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1 Introduction

Let A := (a; ;) be an n X n real-valued matrix function defined on the Euclidean space R", which
is symmetric (namely, a;; = aj;) and satisfies the uniform ellipticity condition that there exists
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A > 0 such that for any £ € R” and a.e. x € R”",

AP < ) a0 & < AP (1.1)

ij=1

Define the bilinear form & associated with A by setting for any f, g € dom [£],
- 9 9
&t 0= [ 2, g W

where the domain dom [E] := W 2(R") denotes the usual first order Sobolev space on R".

It is well-known that the bilinear form & is symmetric, closed and Markovian in L? (R™), namely,
& is a Dirichlet form. Thus, by the classical theory of Dirichlet forms [21], there exists a correspon-
dence between & and its associated operator £, which is nonngegative and self-adjoint in L>(R").
We call the operator £, written formally £ := —div(AV), the second order divergence form el-
liptic operator with the domain dom [£] consisting of all f € dom [&] satisfying the following
condition: there exists g := Lf € L*(R") such that for any & € dom [E],

E(f, h) = (8 Mpgn)s

where (-, -);2n) denotes the L*(R") inner product.

The second order divergence form elliptic operator L generates a strongly continuous contrac-
tive Markovian semigroup {¢"£},59 on L?(R"). The regularity theory of the associated parabolic
problems (see [2, 3, 14, 27, 40, 41] and their references) asserts that ¢ 'L has the integral kernel
P/(x, y) (called also heat kernel) that is defined on R, X R" X R”", is symmetric in x, y, and satisfies
the following properties:

(a) Gaussian upper and lower bounds: for any ¢ € (0, o) and x, y € R”,

co aolx — y? c1 alx -y
e exp {—f < Pix, y) < 2 exp [ (1.2)

(b) Holder continuity: V ¢ € (0, o), P,(x, y) is jointly continuous in (x, y) and, for any x,
y, ¥ € R" satisfying [y — y'| < W,

1\ @ 2
, y=y1)" 1 azlx -yl
|P(x, y) = Pi(x, )| < 2 (7 ik e (1.3)

where all constants O, cg, ci, ¢z, @g, @1, @y are positive and depend only on n and A; besides
®e(,1).

The properties (a) and (b) will be denoted shortly by G(®). Let us emphasize that the value of
® can be arbitrary small (see [55, 46]).

It is also known that the semigroup {e7£} -0 is conservative (see, for example, [4, Chapter 2.5]),
that is, e£1 = 1, which implies that for any ¢ € (0, co) and x € R”,

f” Pi(x, y)dy = 1. (1.4)

Let us also mention the following further properties of operator £ in the Lebesgue space L”(R"),
p € (1, o0), that follow from G(®) (except for (i) that follows from (1.4)).
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®

(i)

(iii)

(iv)

Extrapolation of semigroup to L”(R"): the semigroup {7}~ = {e=£},50 on L2(R") can be
extrapolated to a strongly continuous contractive semigroup on LP(R") for any p € (1, o0),
which is consistent with the original semigroup {e7L}50 in L2A(R") N LP(R™) (see [13, 48]
and their references). We use the same notation {7}~¢ for all the semigroups on L”(R").

Independence of spectrum in LP(R"): let p € (1, o) and £, be the generator of the
semigroup {7};>0 on LP(R"). The Gaussian estimates (1.2) imply that the spectrum o (L)) C
[0, o0) is independent of p € (1, o) (see [1, 15]). We use the same notation £ to denote all
the generators £, in LP(R"), and {e7"£} 0 to denote the associated semigroup on LP(R").

Functional calculus of £ in L”(R"): for any p € (1, o), the operator L satisfies the
bounded H™ functional calculus in LP(R") (see [5, 16]). More precisely, for any u € (0, x),
letX, := {z € C\ {0} : |argz| < u} be an open sector in the complex plane C and H*(Z,)
the space of all bounded holomorphic functions in Z,,. Then there exists a positive constant
C such that for any ¢ € H*(X,) and f € LP(R"),

(D flr@ny < Clielz=EllfllLe @, (1.5)

where ¢ — (L) is a bounded homomorphism from the Banach algebra H*(X,) into the
Banach algebra Z(LP(R")) of all bounded linear operators on L”(R"). The H* functional
calculus is consistent with the functional calculus of L2-spectral theory and can be extended
from H*(X,) to the following extended Dunford-Riesz class &(Z,), which is defined for
some fixed ¢, s, " > 0 as follows:

&(Z,) = {f is holomorphic in T, : for any £ € X, If(&) < cmax {lgl, |1™}}.  (1.6)

As the functions in &(Z,) may be unbounded, this extension may allow us to define some
unbounded operators such as the fractional power L* of L for any s € C, (namely, s € C
with Res > 0). See [39, 12, 28] for more systematic descriptions on the H® functional
calculus.

Holomorphic semigroup of £ on LP(R"): By the uniform ellipticity condition (1.1), we
know that L is a O-sectorial operator in L2(R") (see, for example, [28, Chapter 2] for the
definition of the sectorial operator). This immediately implies that £ generates a bounded
holomorphic semigroup {e=*£} on L2(R") for any z € C, (see [28]). This bounded holomor-
phic semigroup {¢~*£} can be extrapolated from L*>(R") to LP(R") for any p € (1, c0), due
to the property G(®) (see [42, 29]). Moreover, it was proved in [13, 43] that ¢~*£ has an
integral kernel P, satisfying the following estimate:

|P-(x, y)I <

)
az|x —yl } 1.7

i €X
(Rez)"/? P |2

for any z € C; and x, y € R", where c3 and a3 are positive constants.

The aforementioned analytical properties of £ form basis for us to construct function spaces
related to smoothness properties of L. For example, let us introduce the following heat Besov
space B;ﬁ for any p, g € (1, o) and s € [0, o) by

ByE = {f € LP®) : Wfllys = Wfllrgor + Ifle < oo}, (1.8)
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where

) g dt 1/q
I llgse = {fo [/ |eL)* e_mf”mm] 7} (1.8a)

with k € Z, N (s/2, 00). Clearly, Bf;ﬁ is a Banach space. Moreover, as pointed out in [35,
Theorem 6.1] or [26, Proposition 2.9], the norms ||| gs.c in (1.8) are equivalent for different choices
2

of k € Z, N (s/2, ), so that B;é does not depend on k.

In the case L = —A, where A is the Laplacian, this family of Besov spaces was first introduced
by Taibleson [49] to characterize the classical Besov spaces via temperatures (Gaussian kernel) and
harmonic functions (Poisson kernel) by using the Littlewood-Paley method (see [49, 50, 51, 20]
and their references). Triebel [54] introduced a certain family of Besov spaces in a more general
set up, using instead of {e7£},50 an abstract semigroup {7};~0. Haase [28] proved that if {T}};¢ is
generated by a sectorial operator £, the Besov spaces of Triebel coincide with those defined as in
(1.8)-(1.8a). In the setting of metric measure space, the heat Besov spaces were introduced by Hu
and Zihle [33]. See also [8, 35, 26, 38, 7] for recent developments of this topic.

On the other hand, it is known that one of the main motivations for O. V. Besov to introduce
his notion of Besov spaces was to provide a unified scale of function spaces that contain both the
Sobolev and Holder spaces (see [52] for an excellent historical review). As both of those spaces
are defined via the difference, it is natural to define the Besov spaces in the same way. To be
precise, for any p, g € (1, o) and s € (0, o), define the Lipschitz Besov space Bz,q by

B, = {f € PR I|fllsy, = Il + I1flliy, < o). (1.9)

a/p 1/q
Ifllgs = V= TOW 4y g 421 (1.92)
P |x—yl<r resp r

Let us emphasize that this definition does not depend on the operator L.

It is known that for any s € (0, 1) and p € (1, o), the space By, , equals to the fractional
order Sobolev space W*P(R") defined via the Gagliardo norm. Also, for any s € (0, 1), with the
usual modification in (1.9)-(1.9a) when p = g = oo, the space B, , coincides with the Holder
space C*(R") (see [51, 19, 20, 52]). In the general setting of metric measure space, the Lipschitz
Besov space also plays an important role in the geometric analysis of the underlying space (see
[34, 44, 24, 56, 25, 45, 27]).

Returning to our setting, we have now two families of Besov spaces B‘ £ and B, ;. In 2010,
Pietruska-Patuba [44] raised a question on the relationships between these two famlhes of Besov
spaces. The following is the main problem considered in this paper.

where

Main problem: when the spaces B[s,’ﬁ and B), , are identical?

If £ = —A, then the identity

BSE =B, (1.10)
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is known to be true for the full range of all p, g € (1, o) and s € (0, 1) (see [51, 52]). For general
L as above, the situation is more complicated. Hu and Zahle [33] first showed that (1.10) holds
for p = ¢ = 2 and any s € (0, 1). Later, Grigor’yan and Liu [26] proved that (1.10) holds for
any p,q € (1, o) and any s € (0, ®), where ® denotes the Holder exponent as in (1.3) (see also
[56] for some similar results in the setting of RD-spaces). Figure 1 below shows the range of
parameters p and s in the (1/p, s)-plane, where (1.10) was known before.

S S

A" =(1/2,1) A=(/a,1) B=(l,1)

e '~/ ]l @eeecccccm—————
> .
/ 1
4 1
/ :
:
D i (0,0 ’ — (1 = (0,0) 1
00| Bt I
] > 1
= :
] 1
= :
! 1

0L (0.0) E=L(12,0 ciao /P 0k (0.0) crLao /P

Figure 1: previously known range for p and s Figure 2: new range for p and s

Our main result says that this range can be extended as on Figure 2. More precisely, let
o€ (2, ) (1.11)

be the upper limit of the numbers p € (1, o) satisfying that the Riesz transform V L™'/? is bounded
in LP(R™). For ® and o respectively as in (1.3) and (1.11), let P(0®, o) be the Hardy-Littlewood-
Sobolev-Kato diagram in the (1/p, s)-plane defined by

PO, ) = (1, s)e(o, Hx@ 1: el s€@O.1 1y
p P (s D s€l0, 1)

Our result is stated in the next theorem.

Theorem 1.1. Let P(O, o) be the open range of (1/p, s) as on Figure 2 (see also (1.12)). Then for
any (1/p,s) €e P(®,0) and g € (1, o),

Byt =B, (1.13)

The range P(0, o) of parameter (1/p, s) is optimal in the entire class & (R") of all operators £
as above. Indeed, denote by % the intersection of all £(®, o) for any ® € (0, 1) and o > 2 (see
Figure 5 and (4.24)).

Theorem 1.2. Forany (1/p, s) € (0, 1) X (0, 1)\ P with P as on Figure 5 (see also (4.24)), there
exists L € &R™) such that for any q € (1, o),

s,L s
Bp,q * Bp’q.
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From Theorems 1.1 and 1.2, it seems that the parameter ¢ is irrelevant to the identity (1.13).
Also, as it follows from the proof of Theorem 1.1, the inclusion B;,,q C Bf;ﬁ is in fact true for the
entire range (1/p, s) € (0, 1) X (0, 1). Let us emphasize that under some additional assumptions on
L, the parameters ® and o may reach their boundary values. For example, if the coefficients of
the matrix A belong to the Holder space CY(R") for some y € (0, 1), then by [17, Theorem 1.3],
we have that o = oo, which implies that P(®, o) = (0, 1) X (0, 1) so that the identity (1.13) holds
for the full range of all p, g € (1, o) and s € (0, 1) (see Remark 5.11).

Both Theorems 1.1 and 1.2 are proved in Section 4.2. The new idea of the proof of Theorem
1.1 consists of using two versions of Triebel-Lizorkin spaces (heat and Lipschitz) that are denoted
by F), s L and F, § ., and defined similarly to the above two versions of Besov spaces (see (2.4)-(2.4a)
and (2 6)-(2. 6a)) We first consider the endpoint case s = 1 when it is well-known that

F117’2(Rn) = WLP(R") and Fll;:é: — domp[Ll/Z],

where F 11) (R™) is the classical Triebel-Lizorkin space on R”, which is a suitable substitute of F !
when the smoothness parameter s = 1 (see Remark 2.3). By the result of [4, Chapter 4] (see also
[5]) solving the L”-Kato square root problem, we have

W'PR") = dom, [ L!?]
for all p € (1, o), where o is as above, which yields the identity
1 ny _ pl,L
F R =F
for all p € (1, o). Then we prove the identity
s _ pst
Fra=Fpy

for all s € (0, ®) and arbitrary p, g, which is the most technical part of the proof. By using
Hardy-Littlewood-Sobolev-Kato estimates similar to [4], we extend the range of parameters p
and s to P(0O, o) as on Figure 2. In the last step in the proof we transfer the above identity of
Triebel-Lizorkin spaces to Besov spaces, by using real interpolation.

In order to prove the sharpness of the range of p and s (Theorem 1.2), we use a counterexample
from [5, p. 120] (see Lemma 4.5 below), where the authors proved that inf o = 2 over all £ €
&(R™). Let us emphasize that under higher regularity of the coeflicients one can extend the identity
(1.13) also to s > 1 (see Section 5).

As illustrated above, the idea used to prove Theorems 1.1 and 1.2 depends heavily on the
Euclidean structure of the underlying space. It is natural to ask if similar results can be extended
to the setting of a general metric measure space. We consider this question in a forthcoming paper
[10], where it is proved that (1.10) holds for parameters lie in a proper subset of (1.12) by applying
some new methods that are different to the present paper.

This paper is organized as follows. Sections 2 and 3 are preparations. In Section 2 we review
some basic notions and properties of the function spaces associated with £ which include three
versions of Besov and Triebel-Lizorkin spaces: heat, Lipschitz and spectral. Then in Section 3,
we prove the identity of the spectral and Lipschitz versions of Triebel-Lizorkin spaces for any
s € (0, ®). In Section 4 we prove Theorems 1.1 and 1.2. Finally, in Section 5, we extend the
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above considerations to the case s € (0,u) for some u > 1, by adding higher order regularity
assumption on the heat kernel.

Notation. Let N := {1,2,...} and Z, := NU{0}. For any subset E C R", 1g denotes its character-
istic function. We use C to denote a positive constant that is independent of the main parameters
involved, whose value may differ from line to line. Constants with subscripts, such as Cy, do
not change in different occurrences. For any function f on R”, let M(f) be its Hardy-Littlewood
maximal function defined by setting for any x € R”,

1
M) = sup fB Ol dy, (1.14)

B>x |B|

where the supremum is taken over all balls in R” containing x. For any & € R”, let

f@) = N F0e ™ dx (1.15)

be the Fourier transform of f. For any qualities f, g and &, if f < Cg, we write f < g and, if
f < g < f, we then write f ~ g. We also use the following convention: if f < Cg and g = h or
g < h,wethenwrite f S g=~horf <g<h,ratherthan f < g = hor f < g < h. Finally, for
any s € R, we use [s] to denote the largest integer not greater than s and {s} to denote the number
s—1[s]1€[0, 1).

2 Function spaces associated with £

In this section, we provide the preliminaries on the function spaces associated with the sec-
ond order divergence form elliptic operator £. We review some basic notions and properties of
the Besov and Triebel-Lizorkin spaces from three different point of views: heat, Lipschitz and
spectral, which are introduced respectively in Sections 2.1, 2.2 and 2.3. The reader may skip this
section and go directly to Section 3 if she or he is familiar with these notions and properties. We
also refer the reader to [56, 8, 28, 35, 26, 32, 37, 38, 22, 9, 7] and their references for a complete
description of this topic.

2.1 The heat Besov and Triebel-Lizorkin spaces

Let p, g € (1, o0) and s € [0, o0). Recall that the heat Besov space Bf;,g is defined by setting

Byt = {1 € L7 1 Wl 1=l + Wfllge < o), 2.1

where

0o q dt 1/q
”f”B;‘;ﬁ = {j(; [;—S/2 “(tL)k e_mf”U’(Rn)] 7} (2.1a)

with k € Z, N (s/2, o).
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Remark 2.1. (i) The norms ||-|| s.c in (2.1) are equivalent for different choices of k € Z, N(s/2, o)
P

(see [35, Theorem 6.1] or [26, Prbposition 2.9)).

(i) By the bounded functional calculus in L?(R"), we known that for any r € (0, co) and
f e LP(R"), ||(t_£)ke_t'£f”Lp(Rn) < I fllz»@m), which then implies that for any k € Z, N (s/2, c0) and
f e LP(RY),

2.2)

1
g dt /q
; .

1
Uy = S lncery + ( fo [ D e ] e |

(iii) The spaces Bf;ﬁ belong to a more general family of Komatsu type spaces (or Mclntosh-

Yagi spaces) X, ., which arise to characterize the immediate spaces of real interpolation of the

domains of the fractional powers of sectorial operators in Banach spaces (see [36, 54, 28]).

The following real interpolation result on the heat Besov spaces Bf;ﬁ is essentially established
in [28, Chapter 6].
Proposition 2.2 ([28]). Let p, g € (1, o) and s € (0, 00). Then
@) forany 6 € (0, 1),
(LP@"). dom,[L2]), = By,

where for any p € (1, o) and s € (0, o), domp[Ls/ 2] denotes the domain of the fractional
power L2 of L in LP(R"), endowed with the norm

1 aomy 52y = Ifloceny + | L2 ]| gy = 1+ L32 ]| 5 (2.3)
(ii) forany 6 € (0, 1), qo, g1 € (1, o0) and sg, 51 € (0, 00),
(BSO"C le,L) — BS,.E
0.9

p.q0° = p,q1 p.q°

where s € (0, o) satisfies s = so(1 — 6) + 510.

Similar to the heat Besov space, one can also define the heat Triebel-Lizorkin space F ls,f with
D, q € (1, o) and s € [0, o0) by setting

Fog o= {1 € L7t Wfllpys = Il + Ly < o0l (24)
where

™ 1/q
( fo |2 Lk e o ?) (2.42)

with k € Z, N (s/2, 00). The heat Triebel-Lizorkin space F ;’ﬁ satisfies properties similar to those

fll sz = ‘

LP(R™)

of Bf,’,é (see [37, 35] and their references for more related properties). Here, we only note the
following identity on the space F ]S;L

-7 that for any p € (1, o),

0.L _
Fo¥ = IPR"),

which can be derived from the L-adapted square function characterization of the space LP(R")
(see [4, Theorem 6.1]).
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2.2 The Lipschitz Besov and Triebel-Lizorkin spaces
Let p, g € (1, o) and s € (0, o). Recall that the Lipschitz Besov space B;f,,q is defined by

By, = f € LP®) : Ifllsy, = Iflloesy + IIfllgy, < ool 2.5)

q/p 1/q
Il = UG LS PO I O (2.52)
& boyl<r TP r

Similarly, the Lipschitz Triebel-Lizorkin space F, , with p, g € (1, co) and s € (0, o) is defined
by

where

F3y = {f € L@ ¢ Iflley, 1= 1l + 1l < o). (2.6)

[ f‘” ( f fO-fON )q dr]”‘f
n+s y -
0 B(-r) r r L@

Remark 2.3. (i) Observe in (2.5)-(2.5a) and (2.6)-(2.6a), the spaces B‘[‘;,q and F ;’q don’t depend
on the operator L. Moreover, from their definitions, it is easy to see By, , and F, , are consistent
with the classical Besov spaces B;’q(R”) and Triebel-Lizorkin spaces F ;,q(Rn) on R” for any p,
g€ (1, )and s € (0, 1) (see [51, 52]).

(i) For s > 1, as the walk dimension of R" is 2, the above Lipschitz Besov and Triebel-
Lizorkin spaces may degenerate to {0} (see, for example, [34, 24, 26]). To obtain non-trivial and
more suitable function spaces, we need to replace the first order difference in (2.5)-(2.5a) and
(2.6)-(2.6a) by higher order differences (see [52, Chapter 1] for a more detailed explanation and
Section 5.2 below).

where

WAllgs, =

pq

(2.6a)

We end this subsection with the following characterizations of the norm of the space F

Lemma 2.4. Let p, g € (1, o) and s € (0, o). Assume that f € LP(R"). Then the following two
assertions hold.

@ Wlle, =Mz, = Wl + 1llg where

1 q 1/q
lF¢) = sl dr
Ifll = o= f ( f %dy) —] @)
Pq 0 B(-r) r r Lr®n)
and the implicit constants are independent of f.
G WAlr, = Al = = fllr@n +1fll =, where
Pq prq
0o q 1/q

Ifll= = Z(zf“*”) f N —f(v)ldy) (2.8)

F, = B(-27)

LP(R")

and the implicit constants are independent of f.
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Proof. We first prove (i). By (2.6), (2.6a) and (2.7), we only need to show that

. £ = fO) "g]”‘f
Hfl (fB(-,r) s dy) r

0 q plq 1/p
fl (fB( )W@) d_} d’“} = At Ag. (2.10)

A= < [1fllzo . (2.9)

LP(R")

To this end, we write

i

As sq > 0, we have

< dr
A1 < I fllzprny [f r— 7] S N llze ey (2.1D)
1

For A,, by the boundedness of the Hardy-Littlewood maximal function M defined as in (1.14) on
LP(R") and an argument similar to (2.11), we find

) 1/q
[ e 2|

which combined with (2.10) and (2.11) shows (2.9) holds true. This proves (i).
We now turn to the proof of (ii). By (2.7) and (2.8), we have that

Ay < < N llze ey,

LP(R™)

[ D-J q dr 1/q
iz~ [ (21“*") | If(-)—f(y)ldy) & @.12)
12 = 2-j-1 B(-r) r L@
M oo q 1/q
< Z(zf“*") [ ,If(-)—f(y)ldy) ~Ifll =
j=0 B(-.277) Frg
L LP(R™)

On the other hand, by using an argument similar to (2.12), we obtain

i 1/q
Il 2 Z(zﬂm f | If(-)—f(y)ldy)
| P B2 Lr@)
1/q
: Z(zf(“") f ] If(-)—f(v)ldy) :
= B(-,277)
Lj=1 LP(R™)

which together with (2.8) and the fact that || fB(' n IfC) = fOldyllr@®ey < IfllLpr» immediately
implies ’

IIfII;.,;q 2 ||f||;T~ ) (2.13)

pq

Altogether (2.12), (2.13) and (i), we conclude that (ii) holds true. This finishes the proof of
Lemma 2.4.
O
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2.3 The spectral Besov and Triebel-Lizorkin spaces

The spectral Besov and Triebel-Lizorkin spaces are defined via the Littlewood-Paley decompo-
sition adapted to L. To this end, we need introduce a resolution of unity. Recall that a couple of
functions (Pg, @) in C.°([0, o)) is said to satisfy the unity resolution condition (UR), if

(i) supp P c [0, 2], (Déz"“)(O) =0 forany v e Z,, |®y(1)| > c for any 4 € [0, 273/41 and some
c>0;

(i) supp® c [1/2, 2] and |®(1)| > ¢ for any A € [273/, 23/4] and some ¢ > 0.

We refer the reader to [11, p. 1043] for a construction of such couple of functions.
Now, let (@9, @) be a couple of functions satisfies the condition (UR). For any p, g € (1, o)
and s € [0, o), the spectral Besov space B;;f]: is defined to be

E;”*g = {f e LP(RY) : ||f||§;,§ < oo}, (2.14)
where
00 1/q
; q
= Js ||\
1 ligs. - {j_o [2 (VL) f LP(RH)] } (2.14a)
with ®; defined by
D;() =P (2‘j/l) (2.15)

for any j € N and A € [0, o0). _
Similarly, the spectral Triebel-Lizorkin space FZ’j with p, g € (1, o) and s € [0, oo) is defined
to be

Fol.= {f € LPR") ¢ IIfllpse < oo}, (2.16)

where

Il = {i |2#

l/q
q

o \/Z)f” } . (2.16a)
j:0 LP(R™)
Remark 2.5. (i) The spectral spaces in (2.14)-(2.14a) and (2.16)-(2.16a) are identical for different
choices of couples (@, ®) satisfying (UR) (see [35, 32, 38, 7]). A classical example of functions
satisfying (UR) is as follows. Let g9 € C°([0, o0)) satisfy suppeo C [0, 2], 0 < ¢p < 1 and
@o =1 on [0, 1]. Let o(-) := go() — ¢0(2-) and for any j € N and 1 € [0, o), ¢;(A) := ¢ (27/2). It
is easy to see that the couple (¢g, ¢) of functions satisfies the condition (UR). Moreover, we have
that for any A € [0, 00), Z‘;O ¢;(4) = 1, which further implies the following Calder6n reproducing
formula that for any p € (1, o0) and f € LP(R"),

F=> e/NDf
=0
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in LP(R") (see, for example, [35, Proposition 5.5]). In the general case of (©g, @) in C°([0, o))
satisfying (UR). By applying a corresponding scalar identity (see [20, Lemma 6.9] or [6, (3.20)]),
we still have the following Calderén reproducing formula that for any p € (1, o0) and f € LP(R"),

f= Y WVDO(VDf = Y 0 V¥ (VDS 2.17)
j=0 Jj=0

in LP(R") (see also [38, (2.17)]), where for any j € N, ®; and ¥; are defined as in (2.15). More-
over, (Wo, V) are in C.°([0, o0)) and also satisfy the condition (UR).

(i1) For any p € (1, o0) and s € [0, o0), let HZ’L(R”) be the Bessel potential space associated
with L with the norm defined by

sy = N+ L fllioeey.
By (2.3), we know that for any p € (1, o) and s € [0, o0),
H5E(®R™) = dom,[L7].

In particular, if s = O the space Hg’L(R”) coincides with the Lebesgue space LP(R"). Moreover,
by [35, Theorem 7.8], we know that for any p € (1, co) and s € [0, c0),

Frl = HYy ®"). (2.18)

(iii) The spectral spaces Els,’ﬁ and F’ IS,’;’I: satisfy ihe following lifting property for Bessel potential.
Letp,g€ (1,0),0<6< s <oand f € A;ﬁ with A being the B-space or F-space. Then

(1+ LY f e A5 and

|+ L7 f

’;;:qé.L = ||f||g;5 s

where the implicit constants are independent of f (see [7, Theorem 7.1] for a detailed argument in
the homogeneous case).

Remark 2.6. Let S ([0, o)) be the Schwartz class of all functions f € C*((0, o0)) N C([0, ))
such that for any k € N, f® decays rapidly at infinity and the limit lim,_,o+ f® (1) exists. A couple
(¢0, ¢) of functions in S ([0, o)) is said to satisfy the admission condition if there exist R > 0 and
M € Z. such that: i) for any A € [0, 2R), |po(2)| > 0; ii) for any 4 € (R/2, 2R), |p(1)| > 0;
iii) A7 p(1) € S([0, 0)). In [32], Hu proved that the spectral function spaces in (2.14)-(2.14a)
and (2.16)-(2.16a) are invariant if we use the couple (¢g, ¢) satisfying the admission condition to
replace the couple (@y, ®) satisfying (UR) in their definitions.

One example of functions satisfying the admission condition is as follows. Let 8 € CZ°(R) be
even and satisfy suppé c (-1, 1), JJ;Q () dA = 1. Let n(¢) := /0\(5) be the Fourier transform of 6
defined as in (1.15) which is also even in R. For any M € Z, and A € [0, o0), let

$o(D) = n(d),
¢ = M),
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Then the couple (¢g, ¢) of functions satisfies the admission condition (see [32, Lemma 4.7]).

The advantage of the couple (¢o, ¢) of functions satisfying the admission condition is that it
admits the operator ¢( VL) (also for ¢o( VL)) has compact supported integral kernel. Indeed, by
using the finite speed propagation property (see, for example, [30, Lemma 3.5] or [35, Proposition
2.8]), we know that for any j € Z, and [l € Z, ,

supp (277 \/Z)l $(27 VL) (. ) c{x ) e R XR" 1 Jx—y| <277}, (2.19)

where (277 \/Z)l¢(2‘f VL)(, -) denotes the integral kernel of the operator (27/ \/Z)l¢(2‘j VL).
Similarly, the same estimates holds for the operator (277 V.£)!¢o(277 V' £). Note that the property
(2.19) plays an important role in the atomic characterization of spectral function spaces (see [30,
32, 7] and their references).

We end this subsection with the following proposition from [35, 38], which establishes the
identification of the function spaces defined via heat semigroup and spectrum.

Proposition 2.7 ([35, 38]). Let p, g € (1, o) and s € [0, o). Then

. s, L _ ps,L.
M Byy = Bpy;

(i) Fyy = Fpy.

3 Identification of spectral and Lipschitz Triebel-Lizorkin spaces for
s € (0, ®)

In this section, we establish the identity of the spectral and Lipschitz versions of Triebel-
Lizorkin spaces for any p, ¢ € (1, ) and s € (0, ®) with ® as in (1.3). The main result of
this section is the following Theorem 3.1.

Theorem 3.1. Let p, g € (1, 00) and s € (0, O(L)). Then
L _
Py =Fpg
with equivalent norms.
The proof of Theorem 3.1 will be split into two steps: 1) F, , C F;f and ii) Fz’é CF,, We

first prove i), namely, F), , C Fz’f . To this end, we need the following result from [35, Theorem
3.1], which is of fundamental importance in the smooth functional calculus associated with L.

Lemma 3.2 ([35]). Let k € N satisfy k > n+ 1. Assume that ¢ € C*([0, o)) satisfies o +D(0) = 0
forany 0 < v < (k—1)/2 and suppy C [0, R] for some R > 1. Then for any 6 € (0, 1], the
operator (6 VL) has an integral kernel (6 VL)(-, -) on R" x R". Moreover, for any x, y, y’ € R",

() |e(6 VL)(x, y)| < C(k)Dsp(x,y), where

1 e—yl\ "
Dsi(x,y) := 5 (1 + Ty) (3.1)
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and
CH) = R [(C1R llgllz=qo.con + (C2R [6® o0, o]
with constants C1, C being positive and depend only on n and A as in (1.1);

(ii) if furhter |y — y|" < 6, then

ly =l

|6 VD, 3) - 66 VDI(x, ) 220

®
SC’(k)( ) Dsi(x ),

where © € (0, 1) denotes the Holder exponent as in (1.3) and
C’(k) := C3C(k)R®
with constant Cz being positive and depend only on n and k;
(iii) [, o VL)(x, y)dy = (0).
With the help of Lemma 3.2, we now turn to the proof of the inclusion F ls,’q CF Is,f

Proof of the inclusion F, , C F. ;’j. To begin with, note that in this part of proof, we only need
s € (0, 1) and are not restricted by the Holder exponent ® in (1.3). Let f € F ;,’q. By (2.16a), we
have that

. 1/q
e, (NDf ” } , (3.2)

LP(R")

Il = {i |2

J=0

where (¢, ¢) in C2°([0, o)) is a particular choice of functions satisfying the unity resolution con-
dition (UR) as in Remark 2.5(i). By the bounded functional calculus in L”(R") for any p € (1, o)
and the fact [|¢ollz~(0,0)) = 1, we find that for any p € (1, o0),

H<ﬁo( VL) f

< ~ .
@ S A llr ey (3.3)

For j > 1, by (2.15) and the fact ¢;(1) = ¢o(27/1) — ©0(2'772), we derive from Lemma 3.2(iii)
that for any j € N and x € R",

f @i(VD)(x, y)dy = fR @@V L, y)dy - fR oIV D), y)dy =0,

which combined with Lemma 3.2(i) (with § = 27/ and k = 7 for some 7 € ((s + n)g, ) ) further
implies that for any x € R”",

e/ (VD) < fR e VD |10 - Fool dy (3.4)
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< [ 2 (re 2w - ol dy

sy [ 2w - sy
=0 Y Sk-j(x)

where for any k € N, S_;(x) := B(x,2577) \ B(x,2¥/71) and S _;(x) := B(x,27).
Thus, by (3.4) and Holder’s inequality, we write

o 1/q
; q
[Z (21s o, \/Z)f]) (3.5)
Jj=1 .
& > q1pla 1/p
: o p 2 f ) = FQ0 dy] dx
{ R /Zl:( ; B(x.2k))
& S 4171 1/p
< f Z n—kt 0 J(s+n)q (f lf) = f(x)] dy) dx
= j=1 B(x,2k-J)
& > g plq 1/p
~ f Zz—k(‘r—sq—nq) Z 2 J(s+m)q ( f _ ) = fl dy) dx
¥ k=0 1k B(x27))
[ > 0 00 rlq 1/p
~ f Z 2—k(r—sq—nq){ Z + Z] .. dx = A+ Ay,
R ngO Tk 721

We first estimate A, which is trivial when k = 0. As 7€ {1 -k, ..., 0}, we have B(x, 2‘7) C
B(x, 1). By this and the fact T > sq + ng, we obtain

o q1Ple I/p
A | D ket fO) = f@ldy| | dx (3.6)
n B(x,1)
k=0 ’

S MM p@ny + 1 llr@ny S IfllLr@es

where M(f) denotes of Hardy-Littlewood maximal function of f as in (1.14).
For A,, by Hélder’s inequality, the fact T > (s + n)q again and Lemma 2.4(ii), we find

Azsf

Altogether (3.2) through (3.7), we conclude that for any f € F} . ||Ifllz< < || fIIF;q, which
Pq 7

rlq 1/p

dxt  <Iflley, . G7)

(9]
=1

- N q
pT— (zﬂﬁm IfO) - f@ld )
D B

(x,277)

J

P
completes the proof of the inclusion F), , C F ;,5

O
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The inclusion F, , C ff,f for any s € (0, 1) implies the following reverse inequality of the frac-

tional order local Riesz transform (I+A)*/?(I+£)~*/? on LP(R"), which extends the corresponding
result for s = 1 in [5, p. 115, Theorem 3].

Corollary 3.3. Let p € (1, o0) and s € (0, 1]. Then there exists a positive constant C such that for
any f € H,(R") in the classical Bessel potential space,

|+ D2 gy < €T+ 8 f]] gy -

Proof. As the case s = 1 was already proved in [5, p. 115, Theorem 3], we only need to consider
the case s € (0, 1). By (2.18), we have that for any p € (1, o) and s € [0, o0),

Fyl = Hyt®"). (3.8)

On the other hand, as pointed out in Remark 2.3(i), we know that for any p, ¢ € (1, o) and
s€(0,1),F ;’q =F ;,q(R”) is the classical Triebel-Lizorkin space. This then implies that for any
pe(l,o)and s € (0, 1),

Fyo = H)®"),
where the later denotes the classical Bessel potential space. By this, (3.8) and the inclusion F ; , C

f;f for any s € (0, 1), we immediately conclude the inclusion that H;,(R”) - HIS;L(R") and for
any f € H(R"),
Hf”H;’L(R") < “f”H;,(R")’

which completes the proof of Corollary 3.3.
O

We now turn to the proof of the converse inclusion ff,f c F;,. To this end, we need some
technical lemmata.

Lemma 3.4. Let p, g € (1, o) and s € (0, 00). Then the following embedding holds
~r
Fyy < LP(R").

Proof. To prove this lemma, we first claim that for any p, g € (1, o) and s € (0, 00),

FyicF)y. (3.9)
Indeed, for any f € f;,’j, by (2.16a), we have
0o 1/q
Il == {; [2fs (VL f ”q} . (3.10)

LP(R?)

If g > 2, then by Holder’s inequality and the fact s > 0, we see

{2 ¢ x/Z>f|]2}l/2 - { i 2

Jj=0

, 12 . . 1/q
@1(\/2)f|] 2_sz} s{Z[zjs|cp,~<«/2)f|]} ,

J=0
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which together with (3.10) shows that (3.9) holds true.
If ¢ < 2, then using the decreasing property of the ¢ norm in ¢ and the fact s > 0, we find

{2 [0 x/Z)fHZ}Uz < {,io [|<1>,-(w/2)f|]q}l/q < {i 2

J=0

1/q
®;( x@f”q} .

By this and (3.10), we also see (3.9) is valid in the case g < 2. Altogether the above two cases, we
conclude that the claim (3.9) holds true.
On the other hand, by Remark 2.5(ii), we know that for any p € (1, o0),

Foy = L/,

which together with (3.9) implies the inclusion F ;f]: C LP(R™). This finishes the proof of Lemma
3.4.
m]

We also need the following discrete Calderdn reproducing formula from [38, Theorem 6.1]. To
this end, for any j € Z, let D; be the set of all dyadic cubes in R" with side length 277 and {Qr}rer
be the set of all dyadic cubes in D, j,, where jo € N is a sufficiently large number depending only
on n that is fixed from now on (see [38, (8.1), (8.2) and (8.20)] for a precise requirement of jp).

Lemma 3.5 ([38]). Let (Pg, @) in C7([0, o)) satisfy the unity resolution condition (UR). There
exist a family {¥ ;( VL)) jez, of operators with integral kernels such that the followings hold.

(i) Forany p € (1, ), f € LP(R") and a.e. x € R",
f) = > 27 (VD) €W (VD &, ),
=0 rel
where for any T € 1, & can be chosen as any point in Qr € D j,.

(ii) For any y € (2n, 00), there exists a positive constant C(y) such that for any j € Z, and x,
ye R

%/ (VD)(x, )| < CONDas (1),

where D,-j ,(x, y) is as in (3.1) with 6 = 27V and k = V.

(iii) For any y € (2n, o), there exists a positive constant C’'(y) such that for any j € Z,. and x,
y, Y € R" satisfying |y — y'| <27/,

[, (VDx. ) VD )| £ € ) (2l = 1) Doy ).

where © € (0, 1) denotes the Holder exponent as in (1.3) and D,-j ,(x, y) is as in (3.1) with
§=27andk =1y.
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The following technical lemma is on the estimates for Hardy-Littlewood maximal function M
in (1.14), whose proof can be fund in [18, 23] and [19, Theorems A.1 and A.2].

Lemma 3.6 ([18, 19, 23]). (i) Let p, g € (1,00). Then for any sequence of functions {f;} ez,
on R" it holds

’

LP(R")

<C(p,q)
LP(R™)

iw}w

J=0

0o 1/q
o]
j=0

where the constant C(p, q) depends only on p and q.

(i) Letk € Zy and {Q+}rer C Dy be a sequence of dyadic cubes of the same level. Then for any
&€ Oy {crlrer CRand x € RY, it holds

Dled(1+2x = &) < CopM (Z |cT|1Q,] (),
el el

where 'y > n and the constant C(n,7y) depends only on n and vy.

With the helps of Lemmas 3.4, 3.5 and 3.6, we now turn to the proof of the inclusion F: ;’j -

F, ;- which combined with the inclusion F, , C F ;5 completes the proof of Theorem 3.1.

s
pq’

Proof of the inclusion F ;”5 C F}, ;- In this part of proof, we need the restriction s € (0, ©). For
any p,q € (1, co) and s € (0, ©®), let f € F;,f]: Using Lemma 2.4(ii), we find

00 1/q
q
AW, = Wfllzrn + | D (2"“+”> f O = fO dy) } (3.11)
k=0 B(-27%) @)
By Lemma 3.4, we immediately obtain
1Al < 1l (3.12)

We now deal with the second term in (3.11). For any k € Z,, using Lemma 3.5, we can write
for a.e. x, y € R” satisfying |x — y| < 27%,

2 £ (y) = F(0) (3.13)

< i Z 2k(s+n)2—jn

j=0 el

k 00

Z+ Z sz(s+n)2—jn
Jj=0  j=k+1]rel
tLi(xy) + L(x, ).

¥i(VD(Er y) = P H(VDEr )|

(@AVD)f) &)

(@,(VD£) @)|[# ) (VD& » - ¥ VD, )|
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For I (x, ), since j < k, we have 27% < 27/, Thus, for any x, y € R” satisfying |x — y| < 27% <
27/, by Lemma 3.5(iii), we know

I1(x,y) $ zk(; z; 246 (@ (VL) £) (€0 (271x = 1) Doy s 1) (3.14)
j— T€E
~ Z Z k(s+n— @)2]@ 1+2/|x - fr) |(q) (‘/_)f) (&)
Jj=0 1l
~ Z 202009 | N (14 27 x - £1) T 27 [(@(VD)F) €0 }
tel
i 2J(@=5)9k(s+n=-0) A1 [Z s ((Dj( ‘/Z)f) (&) lQT] (x),
j=0 tel

where M denotes the Hardy-Littlewood maximal function as in (1.14), and in the last inequality,
we have used Lemma 3.6(ii).
Now, let

=) 2"

tel

(@YD) @) 1g,- (3.15)

By Holder’s inequality, (3.14) and Lemma 3.6(i), we derive from s < ® that

[ oo q1Ple I/p
I = Li(x, v d d 3.16
| { f ,, % ( fB e, M y) x} (3.16)

k plq 1p
dx}

M o q
(J=k)(@=s)»kn .
AL[E[Eem L meros]

=0 \j=0

x apla P
Z 20065 71 () (x)] dx}

J=0

r
=~

N
T
»Mg‘

Il
(=]

k 1P/ 1p
Z 2(=k)(©- V) )(x)) dx}

Jj=0
plq I/p
dx < f
Rn j_o

o rlq /p
s{ L2 () oy 2 Fi dx} -

As the dyadic cubes {Q;}; are disjoint and U,y O = R", we derive from (3.15) and the arbitrari-
ness of &; in Q that

IS

=0 /=0

A
T
Mgv

r

>~
I

(=]

.Mg‘

Il
(=)

LJ

q
10.(%) (3.17)

(VL&)

e

1el
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= Z 3254 |o(VD fE)| 10,00 < Z 25| 0,(VI £
j=0 tel
Combined (3.16), (3.17) and (2.16a), we conclude that
o . 1/q
I s {Z |2 o,V } = Ifll7z (3.18)
j=0

LP(R™)

We now estimate I,(x, y). To this end, we first write

Jj=k+1 1el
=L (y) + 2(%).

(@ (VD)f) &)

[/ (VD& v|+ VD 0| 319)

Without loss of generality, we may only estimate I, 1(y). The estimates for I 2(x) are similar and
even easier. To estimate I ; (), using Lemma 3.5(ii) and an argument similar to (3.16), we have

[

big) s Y. > 20 (1427 y— &) 7 |(@,(VD)f) &) (3.20)
Jj=k+1 tel
= ) okempoh [2(1 +20 |y - &) 727 (0,(VL)f) (&)]
j=k+1 Tel

S i 271K M(F ) (),

Jj=k+1

where F; is the same as in (3.15). Thus from (3.20), the fact j > k, Holder’s inequality and using
the Lemma 3.6(1) twice, it follows
rlq 1/p
dx} (3.21)

. q
Jr = : )
2 {fn ; (‘fl;(x,zk) | 2’1(Y)| y)

0o o qpla 1/p
< f Z Z 2(k=pspkn f M(F;) ) dy dx
R =0 j=+1 B(x.27%)

T
Me

r

~
Il

(=]

o qrle 1/p
Z 26D Mo M(F)) (x)] dx}

Jj=k+1

oo 1°/4q 1/p
Z 2005 (Mo M(F}) ()" a’x}

T
oMgv

| k=0 j=k+1 |
R rla P o plg A UP
s f ,Z:(;(MOM(FJ') (x))q dx} S {‘[R JZ(; |Fi0| dx} ,
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which combined with (3.17) and (2.16a) implies

1/q
@ ‘/Z)fﬂq} = Il (3.22)

LP(R™)

= i

j=0

Altogether thg estimates (3.11) through (3.13), (3.16) and (3.18) through (3.22), we conclude
that for any f € Fy& with p, g € (1, c0) and s € (0, ©),

Ifllry, < 1 1Fe.

This finishes the proof of the inclusion F: ;5 CFp,
O

The inclusion f;’j c F,, for any s € (0, ®) implies the following Corollary 3.7 on the
boundedness of the fractional order local Riesz transform (I + A)*?(I + £)™*/> on LP(R") for
any p € (1, o0) and s € (0, ®). As its proof is similar to that of Corollary 3.3, we omit the details.

Corollary 3.7. Let p € (1, ) and s € (0, ®). Then there exists a positive constant C such that
forany f € H;,’L(R”) in the Bessel potential space associated with L,

[+ 2)°2 < Clla+op”?

f“LP(R” f”LP(R”) ’

4 Identification of heat and Lipschitz Besov spaces for s € (0, 1)

In this section, we prove the main results of this paper. To be precise, we show the identity of
heat and Lipschitz versions of Besov spaces with parameters in a Hardy-Littlewood-Sobolev-Kato
diagram P(®, o) (Theorem 1.1), and then show that this diagram is sharp (Theorem 1.2). To begin
with, we need to establish the Hardy-Littlewood-Sobolev-Kato estimates in P(0, o).

4.1 The Hardy-Littlewood-Sobolev-Kato estimates

Let o € (2, o) be as in (1.11). Recall [5] that o = 2 + € for some € € (0, o), which may be as
small as possible.
~_ Now, let p € (1, o) and s € [0, 1]. Consider the Hardy-Littlewood-Sobolev-Kato diagram
P(0) involving the parameters p and s in the {(1/p, s)}-plane defined by

P(or) = {(1 s) €0 )x[0.1]: e (i, 1)} 4.1)
p p \o

as illustrated in the following Figure 3.
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o]
—
—_
:—
-

1/p

1
A
05(0,0) : Ci(l,O) >

Figure 3: the Hardy-Littlewood-Sobolev-Kato diagram P(0)

The following theorem was first established in [4, Theorem 5.4]. See also [31, Theorem 8.54]

for a similar result.
Proposition 4.1 ([4]). Let M := (1/p,s), N := (1/q,r) € 55(0') as in (4.1) with p < q. Assume
1 € (0, m) and ¢ € &(X,) is in the extended Dunford-Riesz class as in (1.6) and satisfies the

following estimate

(M,N)
= ‘P“Lw(zﬂ) <%,
where
- 1 1
@(M,N) = - . S+ g(]—) - ;1). 4.2)

Then there exists a positive constant C such that for any f € H »(R") in the classical Riesz potential

space,
MN
(LYl ey < € ”ZQ( )‘P”Lw@) 1 W i3 -

Proposition 4.1 indicates the reason why we call P(0) the Hardy-Littlewood-Sobolev-Kato

diagram, as we can do the Hardy-Littlewood-Sobolev-Kato estimates associated with £ with pa-
rameters p and s in P(07). More precisely, Proposition 4.1 implies that the domain dom,, (L2 of

the square root of L in LP(R") satisfies

dom,[£'*] = H)(R™), (4.3)

for any p € (1, o). Moreover, we can obtain the following Hardy-Littlewood-Sobolev inequality
1_ 1
L_ 1y

by letting M := (1/p,0), N := (1/¢,0) and ¢(z) := (1 +2)%? with @ = n(p g
L _ 1y Then there exists a positive constant C such

Corollary 4.2. Letl < p<g<ooanda = n(p 7
that for any f € LP(R"),
2+ 272D oy < €I Nloan) -
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Motivated by Proposition 4.1 and based on Theorem 3.1, we introduce the following Hardy-
Littlewood-Sobolev-Kato diagram P(0O, o) in the (1/p, s)-plane defined by

o, 1), s €0, @),}

(i D, s€lo, 1]

P(O,0) := {(l, s) €0, 1)x[0, 1]: 1 € { 4.4)
p p

as illustrated in the following Figure 4.
S

A= (/o 1) B =(1,1)
[ 'Y
1 ]
[ ]
/N =(/q,1 1
1 ]
H !
£0,0) ]
]
]
]
]
:
M = (1 ]

0k (0,0) P9 10y Up
: *—>»

Figure 4: the Hardy-Littlewood-Sobolev-Kato diagram P(©, o)

The following theorem is an inhomogeneous version of Proposition 4.1, with parameters in the
new Hardy-Littlewood-Sobolev-Kato diagram $(0, o) as in Figure 4, which plays an essential
role in the proof of Theorem 1.1.

Theorem 4.3. Let M := (1/p,s), N := (1/q,r) € 5(@, o) be as in (4.4) with p < q. Assume
1 € (0, m) and ¢ € &) is in the extended Dunford-Riesz class as in (1.6) and satisfies the
following estimate

”(1 " Z)a(M,N)(p”LM(E#) < 00,

where a(M, N) is as in (4.2). Then there exists a positive constant C such that for any f € H ;(R”)
in the Bessel potential space,

ke (LY Ngggany < C |1+ 2 M Vug]| oIl (4.5)

Proof. Let m(MN) be the slope of the vector MN. We consider the following three cases based
on the size of |m(MN)|: 1) [m(MN)| = 0; i1) Im(_MN)l = o0; iii) [m(MN)| € (0, o). See Figure 4 for
the general position of the points M and N in (0, o).

Case i): Im(M—>N)| = 0. In this case, MN is a horizontal segment. We split this case into three
subcases: a) M, N are in the segment oC (see Figure 3); b) M, N are in the segment AB; o) M,
N ¢ ABor M,N ¢ OC.

In case a), (4.5) is equivalent to the assertion that for any 1 < p < g < oo and f € LP(R"),

(D Plzaqen < [[(1+ 2257

1) 1l ). (4.6)
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Indeed, by the bounded functional calculus in L9(R") and Corollary 4.2, we have

(LY Dllagen = oLy U+ DI 1+ £ 8670 1

n

U+ L7260y

L4(R")

S ”(1 + z)5(7’7 90”

LX) La®™)

nel 1
s|a+2iey| .
( ) ¥ Lo, ||f||Lp(R )

which implies (4.6).
In case b), (4.5) is equivalent to the assertion that forany 1 < p < g < o and f € LP(R"),

”f”H,l,(Rn)- (4'7)

oDy s (1 +22670g

L*(Z)

Using again the bounded functional calculus in L7(R"), Corollaries 4.2 and 3.3 and the fact that
1 < p<g<o,weknow

(LY Pl ey = |7+ )72 go(L)(f)HW <[4+ D2 (D gz
“3Gr £
Iz + DY e

|+ !>

s|a+2i670

L=(Z,) LaR™)

1+¢ 3G3
<faro'o ..,

sfa+2i60%

Le(Zy) f”U’(R") ’

which shows that (4.7) holds true.
For the case c), to prove (4.5), we need to show that forany 0 < s < 1, 1 < p < g < py(L) with

o [ s€(0, ©), “45)
e T s€l0,1) '

and any f € H,(R"),

IO Pl < |0+ 2257 0]| Al - 4.9)

L>(Z,)

If s € (0, ®), by Corollaries 3.3, 3.7 and Theorem 3.1, we find that

](1 + 0 G (4.10)

oD Pl < 1+ 225 |

L(Z,) ’ La(Rn)

s|a+oiog + D fl| o,

L=(Z, )

slla+22070g|| L WAl

L=(Z,)

which yields that (4.9) holds true.
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Ifs €[O 1)and ; > 5,0rs € [0, 1) and 5 < 3, then by (4.8), we have py(£) = 7555

Mereover, there exist sg € (0, ®), po, qo € (1, o), p1, g1 € (1, o) and 6 € (0, 1) satisfying

s=(1-0)sg+6 | | R .
1_196,6 and ——— == - (4.11)
1o b pro@i P 4 P q
9" @ a1
Let E := (i, s0), F := (i 50), G 1= (i 1) and H := (l 1). Note that (4.11) is possible due
to the convexity of the dlagram 7’(@) o) in Figure 4. Indeed, in the case s € [O, 1) and > 2, we
may let po = p;y = pand go = g1 = g. Inthe case s € [@, 1) and < 2, we may let EFHG be the
parallelogram satisfying that the side FH is paralle to DA and the side EF is paralle to MN.
As ﬁ? belongs to the case c) with s € (0, ®) and (ﬁ)l belongs to the case b), we know
, Fa—L)
||‘10(-£)(f)||H;8(Rn) ~ ’(1 + Z)z 040 @ ’L‘”(Zﬂ Hf”H;%(R” (412)
and
nel _ 1
||(,0(-£)(f)”H(} (R") < ‘ (1 + Z)Z(pl q )90‘ “f”Hl (R - (413)
1 Loo(z/l) Pl

Moreover, by (4.11) and the complex interpolation of classical Bessel potential space H),(R") (see
[51, 54]), we have

| @®™Y, Hy (R")], = Hy®R") and  [H(RY), Hy (R")|, = H)R"),

which combined with (4.12), (4.13) and (4.11) again implies that for any such s € [®, 1),

ﬂ(l_l)
e ey < 1+ 285 Wl (4.14)
By this and (4.10), we conclude that (4.9) holds in the cases s € [O, 1) and ,ors € [O,1)
1
and <3
—
If s€[®, 1)and é < % < ]—17, then we split the vector M N into two parts as

—_— — =
MN = MEUEN

with E := (2, s). As the cases ME and EN respectively belongs to the cases s € [, 1), él] % and

s€O, 1), 1 < 2,Wehave
f 1-6
(LN gy < H(l +2) P35 ")90 0 Lo ”‘P 0f| H3(R™)
S 1o05,) Loy W H®D >

where 6 := (% - gl;)/(% - (1;) € (0, 1). By this and (4.14), we see (4.9) holds true in case c).
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Combined the above three subcases a), b) and ¢), we conclude that (4.6) holds true in Case 1).
—
Case ii): [m(MN)| = co. In this case, we need to show that for any f € H;(R“),

oD lgqan < |4+ 22| U lgcem. (.15)

L2y

To this end, we also consider three subcases: case a) % € (é, 1); case b) % € (0, }T] and max{s, r} <
®; case ¢) % € (0, i] and max{s, r} > ©.

For case a), recall the following complex interpolation of the domain dom,, [£5/?] of the frac-
tional power L5/% of £ with s € (0, 1] that for any 6 € (0, 1) and p € (1, o) (see, for example,
[36] or [28, Theorem 6.6.8]),

L@, dom, [.£21]], = dom, [L2],
which combined with (4.3) and Corollary 3.3 and p € (1, o) shows that
el LYy = 10+ L7 @y 5 1+ 22
A& ¢ Lr(R?) ~ ¥

S “(1 +2)10 g

a0 27

1o A s ey -

This implies that (4.15) holds true.

For case b), by Theorem 3.1, we have

IOl = 4+ Lo DD ey < [+ 276 Wy, 416)

L2(Z)
which implies that (4.15) also holds true.
For case ¢), we split the vector ]\7\7 equally into ng parts as
_— —— e —
MN = MoM U ---U M, _ 1My, 4.17)

with My := (%, s0) = M, My, := (
satisfying that

]—17, Spy) = N and M; := (zlﬂ’ s;) foranyi e {1, ..., ng— 1} and

1
si—S8i-1=—((r—1s5)<0. (4.18)
no

Here we can choose ng € N as large as possible to make s; — s;_; sufficiently small.
If M;_; M; belongs to case b), then by (4.16) and (4.18), we know that

||(90(-£) < ||(1 + Z)%(Si_Si71)|¢(Z)|1/nO

L(,) Hf”[.[;i—l (R™) (4 19)

= [+ 22 @ Wl -

L=(Z)

If M;_1M; doesn’t belong to case b), then by taking ng sufficiently large, there exist E
(F" ), Fi= (17 ), G = (~ , ,) H; = ( ! r,) € P(@ o) w1thﬁ) belong to the case a), G H;
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belong to the case b) and satisfying

si= (1 - 0)F; + 0r,

si1 = (1-0)3; + 65,
1_16,0

Di Di 7.’

which together with the cases a), b) and a complex interpolation argument implies also

e Pl seny 0+ 22 WAl o (4.20)

L=(Zy)

Combined (4.17), (4.19) and (4.20), we conclude that

Sno 1

|¢(£)(n0 1)/n0f’

(LM ey < H(l + Z)%(r—s) H

s[la+220

L>(Z,) | R™)

W s ey

|L°°(Z“)
which implies that (4.15) holds true.
eee —_ . 1 — .
Case iii): [m(MN)| € (0, o). In this case, we let E := (6_1’ s). Then ME belongs to Case i) and
EN belongs to Case ii). This implies that

(D Pligez = || + 1:)2<p D1+ L3 so(ll)(f)|

H (R"

<ot

I+ L7370 ()

L>(Zy) H(R™)

1 n
< |l + 229569 || .
S “( 2) ¢ Lo, ”f”Hp(R )

which immediately shows (4.5) and hence completes the proof of Theorem 4.3.
O

Theorem 4.3 implies the following fractional Kato estimates, which when s = 1 reduces to the
Kato square root estimates established in [5, 4].

Corollary 4.4. Let (%, s) € SB(G), o) be as in (4.4). Then there exist positive constants C4 and Cs
such that for any f € LP(R"),

Cy ”(1 +48)"? f”LP(R") s ”(1 + L) f”U(R") <GCs ”(I +48)"? f”LP(R")

Proof. Corollary 4.4 follows immediate from Theorem 4.3 by taking respectively M := (%, 0),
N := (5, 8), 9(2) = (1 + 27 and M := (5, 9), N 1= (5, 0), (2) := (1 +2)*/%. O

4.2 Proofs of Theorems 1.1 and 1.2

In this subsection, we prove Theorems 1.1 and 1.2, which are the main results of this paper.
We first turn to the proof of Theorem 1.1, based on the Hardy-Littlewood-Sobolev-Kato estimates
established in Section 4.1.
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Proof of Theorem 1.1. By Corollary 4.4, we see for any (1/p, s) € P(O,0) as in Figure 4 and
f e LP(RY),

e

~ 2
LPRY) — ”(1 + L’ ”LI’(R”)’
which immediately implies that for any (Ilj, 5) € P(®,0) in Figure 4,
H3(R") = dom,[L*/?]. (4.21)

On the other hand, recall the following real interpolation of the classical Bessel potential space
H;,(R”) that for any p, g € (1, ), s € (0, c0) and 6 € (0, 1),
(LP®™Y, HY®RY), = By (R") (4.22)

0.9 q

(see for example, [52, Theorem 1.6.7]), which combined with Remark 2.3(ii) implies that for any
pP>q€(l, 00),5€(0,1]and 6 € (0, 1),

(Lr@n, HY®D), =By, (4.23)
On the other hand, by Proposition 2.2, we know that for any p, g € (1, o), s € (0, o) and
6 e, 1),

(L7 @), dom,[L7%), = By,

which together with (4.21) and (4.23) immediately implies that (1.13) holds true for any (%, s) €
P(0, o) as in Figure 2. This finishes the proof of Theorem 1.1. O

We now consider the sharpness of the parameters p € (1, o) and s € (0, 1) in the above identity.
The sharpness we considered here is in the sense of the whole class &(R"), which consists of all
the second order divergence form elliptic operators £ with real symmetric coefficients satisfying
(1.1). To be precise, we want to find a range of p and s such that for any p € (1, oo) and s € (0, 1)
not belong to this range, there exists a second order divergence form elliptic operator £ € &(R")
and g € (1, o), BYS # B, .

Note the following two facts on the sharpness of the parameters s and p.

(i) For any s € (0, 1), there exists £ € &(R") such that ® < s (see [55, 46]). This implies that
inf ® = 0 over all L in &(R").

(ii) For any p € (2, o), there exists £ € &(R") such that o < p (see [5]). This implies that
inf oo = 2 over all £ in &(R").

Based on the above two observations, we introduce the following sharp Hardy-Littlewood-
Sobolev-Kato diagram P

1 1 s

P = PO,0) =4|—, 0,1 0,1): —€|=, 1), 4.24

[ re {(p s)e( X O.1: el3 )} (424
0€(2,0)
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as illustrated in the following Figure 5.

A=(1/2,1) BedD

®

0 = (0,0 Cz (1,0 I/p
Figure 5: the sharp Hardy-Littlewood-Sobolev-Kato diagram #

We now prove Theorem 1.2 for parameters in £. To this end, we need the following key
lemma, which provides the desired counterexample to consider the sharpness. Recall that this
counterexample is also used in [5, p. 120] to show that inf o = 2 over all £ in &(R").

Lemma 4.5. There exist two families { Lg}ge(—1,00) C &R?) and {ug}ge(~1,00) Of functions on RZ\ {0}
such that
(1) forany B € (=1,00)and p € (1, ), ug € LP(R?) ;

(ii) forany s € (0, 1) and p € (3, o), there exists B € (=1, 3= — 1) such that A**ug ¢ LP(R?);

(iii) for any s € (0, 1), B € (=1,00) and p € (2, ), Lg/zuﬂ € LP(R2).

Proof. Be begin with, we first recall the following example of divergence form elliptic operators
in &(R?) from [5]. For any s € (0, 1), 8 € (=1, o) and x € R? \ {0}, let

/3’(/3+2)( X3, —xlxz)

A =1
p00) =1+ K2 \-xix, X2

(4.25)

be a 2 X 2 nonnegative symmetric real matrix on R%. It is easy to see that Ag satisfies the uniform
ellipticity condition (1.1), due to the fact that for any x € RZ\ {0},

min {1, (1 + B8} < Ag(x) < max {1, (1 + B} 1.

Let L3 := —div(AgV) € & (R?) be the second order divergence form elliptic operator associated
with Ag as in (4.25). Let ug := vg¢ with ¢ € C>(R?) satisfying suppe € B, 1),0<¢p < 1,4 =1
on B(0, 1/2) and

vp(x) := xp|xff (4.26)

for any x := (x|, x2) € R?\ {0}. Then, by an elementary calculation, we know that the function Vg
defined as in (4.26) is a classical strong solution to the equation

Ly =0 4.27)

on R? \ {0} and also a weak solution to (4.27) on R? (see also [5, p. 120]).
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We now first prove (i). Indeed, by the properties of ¢, the fact that 8 > —1 and using the polar
coordinate, we have

1
1 1
||”B||Z:(Rn) ~ f AIPPHL g < oo,
0

which immediately implies that (i) holds true.
To prove (ii), we first observe from (4.26) that for any 8 € (—1, ) and x € RZ\ {0},

Vip(x) = (Ixf + B a2, Brixalef2) (4.28)
and
Avg(x) = 4Bx11xP72 + BB — 2)(x) + x5 (4.29)

If further 8 € (-1, z—fs — 1), we know that there exist € € (0, 1) and o € (0, 5) such that

—1+6<B<2O- -1 (4.30)

-8

Now let ¢ := ﬁ —-1e€(0,1)and p; :=1+06. By (4.30), itis easy tosee (8 — I)p; + 1 > —1,
which together with (4.29) implies that

1
”¢AV/3|Z’|(R@ :f FBDPHL g oo
0

This together with the properties of ¢ and (4.28) implies that

”A“ﬁ“m & S ||¢Avﬁ“m @)t ||VﬁA¢”U’|(Rn) + |||V¢| |Vvﬁ|||m ®n) < (4.31)

Moreover, let

22 - 5)(1+6)
po -

T G- +o+20—y3) (4.32)

with o as in (4.30). From (4.30), it follows 8 < 52 —1+20=22 which is equivalent to Spo+1 < —1.
By this and (4.28), we know

1
ool > [t ar =

Using the properties of ¢ again, we find
”V”ﬁ”U’o(Rn) 2 “¢VV:8”LI’0(R") B ||V5V¢”LP0(R'1) = 0. (4.33)

We now continue the proof of (ii). For any p € (%, o), let o € (0, s) such that p = %
Moreover, it is easy to see that there exists § € (=1, 3= — 1) satisfies (4.30) with o = 0. By this
and (4.32), we have

L1, 6

{1=s(1—0)+26

Do p p’
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where 0 := 1= € (0, 1).
For B fixed as above, if we assume that A%/ 2uﬁ e LP(R?), then by (4.31) and the following

interpolation inequality for functions in Riesz potential space

1-6

”V”ﬁ’ LP(RY)

AP ug|

Lo®n) S ” A”ﬂ”im ®R")?

we obtain Vug € LP°(R"), which is contract with (4.33). Thus the assumption AY/ zuﬁ e LP(R?)
doesn’t hold. This proves (ii).
To prove (iii), we first claim that for any 5 € (-1, oo) and p € (1, o),

£up = L% 0 Lpug (4.34)
in LP(R"). Indeed, let f := Lug. Using the fact that vz is a solution to (4.27) and ug = vgé, we find
f= Lﬁuﬁ = 2ABV¢ : VVB + Vﬁ£ﬁ¢,

which together with the properties of ¢ shows that Lgug = f € C°(B(0, 1)\ B(0, 1/2)) C LP(R").
By this and (i), we conclude that ug € dom,[.L] for any p € (1, o0), which implies (4.34) holds
true.

Now by (4.34) and the bounded functional calculus in LP(R"), we write for any p € (1, o),

s/2 _ -(2-5)/2 _ -s/2 ~tLg
Lﬁ ug Lﬁ f —F((z—s)/z)fo e B dt (4.35)

in LP(R"). As e~"£# has heat kernel satisfying (1.2), we know that the Lg-adapted Riesz potential

L;(Z_S)/ 2 also has an integral kernel L;(Z_S)/ *(x, y), which satisfies that for any (x,y) € (R xR?)\
{(0, 0)},
oo 2
-(2-5)/2 < £8/21 N b dt < L . 1
-Eﬁ (x’ y)’ ~ f(; exp{ C] t ~ Ix — yIS |x — y|2_(2_s) ’

where the last term is exactly the integral kernel of the classical Riesz potential A=?~%/2 on R?.
Thus by (4.35), the fact f € LI(R") for any g € (1, o) and the boundedness of Riesz potential
A~C=9/2 from L4(R") to LP(R") for any 1 < g < p < oo satisfying

1 1 2-5

g p 2

’

we know that Lg/ 214,3 € LP(R") for any p € (%, o0). This implies (iii) and hence finishes the proof
of Lemma 4.5.
O

Remark 4.6. (i) Lemma 4.5 shows the sharpness of the boundedness of the fractional Riesz trans-
form A*? L5/ on LP(R") for any s € (0, 1) and p € (1, %]. Here the sharpness is also understand
in the sense of the whole class & (R").

(i1) Recall that in our counterexample in (4.26), the function vg belongs to the Holder class
C'"P(R?). As B < 3=~ — 1, we have 1 + B < 5= < s. This shows that s ¢ (0, ©(Lp)) for Ls
associated with the coefficient matrix Ag as in (4.25). Thus we cannot use Theorem 3.1 in this
case.
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With the help of Lemma 4.5, we now turn to the proof of Theorem 1.2.

Proof of Theorem 1.2. We first claim that if there exists £ := (pio, s0) € (0, Hx (0, H\ P, g0 €
(1, o0) and £ € &R") satisfying

BSO,L — BSO

Po-490 Po-q0° (4'36)

then this identity can pass from E to another point, which is very close to the boundary of .
To be precise, we will show that for any € € (0, 1) sufficiently small, there exists F := (1—17, s) €
0, 1) x (0, 1) \ P satisfying

1
‘— ~2l<e (4.37)
p 2
such that for any g € (1, o),
,"L _ o
By =By (4.38)

Indeed, let p := pg and s < s¢ such that the point F' = (pio, s) € (0, 1)x (0, 1)\ P sufficiently close
to the segment OA (see Figure 5 for the existence of the point F), then we know (plo, s) satisfying
(4.37). Moreover, let G := (pio, s1) € P with s; < s. Then by Theorem 1.1, we have for any
q € (1, o),

s1,L _ psi
Bpo,q - Bpo,q‘

Note that there exists 8 € (0, 1) such that s = sg(1 — 60) + s;6. Thus, by Proposition 2.2(ii), the real
interpolation of the classical Besov space B;’q(R") and Remark 2.3(i), we conclude that for any
g € (1, ),

s,L _ ps
Bpo,q - Bpo,q‘

This verifies the claim (4.38). Note that the above claim enables us only need to consider points
(%, s) € (0, 1) x (0, 1)\ P satistying (4.37) for any g € (1, o), as other cases can be passed to this
case by this claim.

Now let F := (1—17, s) € (0, 1) x (0, 1) \ P satisfying (4.37). If for any such p, s, any g € (1, o0)
and any L € &R"),

Byg =B} (4.39)

then by the lifting properties of the Bessel potentials in the corresponding Besov spaces (see Re-
mark 2.5(iii)), Proposition 2.7 and Remark 2.3(i), we have that for any § € (0, s) small enough
(see (4.43) below for the precise requirement) and f € LP(R"),

7+ &2 gy ey = M7+ L3P Al = 17+ £ e (4.40)

As F = (1%, s) € (0, 1) x (0, 1) \ P, we know that p > 2, thus by the embedding properties of the
spectral Besov and Triebel-Lizorkin spaces (see Remark 2.5(i), (2.14a), (2.16a) and an elementary
calculation), we know

pmny — 0.L 0,L _ [R0,L
LP(R") = FP72 C Fp’p = Bp’p,
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which immediately shows that when n = 2
|0+ 0 e < 10+ L ]| ey (4.41)

On the other hand, since B‘Sp,p(R”) = Fg’p(R") c LP(R") for any n € N (see [51, 52] and also
Lemma 3.4), we have that for any f € L? (R?),

(s—0)/2 (s—0)/2
”(1 +A)° f| LP(R2) S ”(1 +A)" f”Bgyp(Rz) : (4.42)
Now, using (4.37), we know that there exist o, ¢ € (0, s) sufficiently small such that
2 2 2
= > > —. 4.43
p s—0—0 §—0 S ( )

By Lemma 4.5(i) and (ii), there exist 8 € (-1, 2:55,5 -1),Lge &R?) and ug € LP(R?) such that

|+ )0/ (4.44)

”ﬁHLP(RZ) =%
which combined with (4.40) (4.41) and (4.42) implies that

= 00.

[+ Lp)*?ug|

LP(R2)

However, by Lemma 4.5(iii), we know that the same function ug in (4.44) satisfies
”(1 + 'Lﬁ)S/zuﬁ“Lﬁ(Rz) < .

This is a contradiction. Thus, the assumption (4.39) doesn’t hold true. This finishes the proof of
Theorem 1.2.
O

5 Extension to the case s > 1

In this section, we extend the above considerations from s € (0, 1) to the case s > 1 by adding
higher regularity assumption on the heat kernel. This higher regularity is introduced in Section 5.1,
where the associated smooth functional calculus is also established. In Section 5.2, we introduce
the function spaces of higher smoothness defined via the higher order difference and then derive
the embedding relations between this version of function spaces and the function spaces defined
via the heat semigroup.

5.1 Heat kernels with higher order regularity

Let y := [u] + {u} € [1, o) with [u] € Z; and {u} € [0, 1). For simplicity, we may assume
that {u} € (0, 1) throughout this paper, that is, u € (1, o) \ N. Assume that the heat kernel {P;};~o
satisfies the following local higher order regularity estimates Gioc(1t) that
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(i) forany k € {1, ..., [1]} and @ € Z] satisfying |a| = k, there exist positive constants ¢4 and
a4 such that for any # € (0, 1] and x, y € R”",

a C4 aalx =y |
|Dth(x9 }’)' < t(”+k)/2 eXp {_f 5 (51)

(ii) for any a € Z satisfying |a| = [u], there exist positive constants ¢s and as such that for any
t€ (0, 1]and x, x’, y € R” satisfying |x — x| < V1,

21\ 1} 2
(1] il p lx — x| 1 _aslx -yl
Dy Pi(x, y) — Dy Py(x', Y)’ < Cs( N ) i P ; . (5.2)

Remark 5.1. Let £ = —div(AV) be the second order divergence form elliptic operator on R” with
real symmetry coefficient entries {a; ;} C CHre~1(R™) in the Holder space for any € > 0 (see (5.16)
below). Then the property Gioc(1) holds true (see [17, Theorems 1.1 and 1.5 III]).

The property Gioc(1t) can be extended to the half complex plane C, := {z € C: Rez > 0} as
follows.

Lemma 5.2. Let u € (1, o0) \ N. Assume that the heat kernel {P;};~¢ satisfies Gioc(ut). Then

@) forany k e {1, ..., [ul} and a € Z]} satisfying |a| = k, there exist positive constants ce and
ag such that for any z € C,. satisfying Rez € (0, 1] and x, y € R",

2
« C6 _aglx— 7| |
|DxPz(x, y)| < Ro 1072 exp{ = }, (5.3)

(ii) for any a € Z} satisfying |a| = [u], there exist positive constants c7 and a7 such that for any
z € C, satisfying Rez € (0, 1] and x, x’, y € R" satisfying |x — x'| < VRez,

-\ aglx =y
DYP.(x, y) — D*P.(x, <c expy——— ;. 5.4
[DYP(x, y) = DYPL(X, )| 7( Req) [Regorin P a (5.4)

Proof. As the semigroup {e7£},-0 extends to a bounded holomorphic semigroup {e‘ZL}ZGC+ on
LP(R™), we write for any z := t + is € C, with ¢t € (0, 1],
oL = UDL,t/24+iL

This immediately implies that for any such z and x, y € R",

PZ(x9 y) = f P%(xv M)P%ﬂ's(u’ y) du’
R~

which combined with (5.1), (5.2) and (1.7) implies that (5.3) and (5.4) hold true. This finishes the
proof of Lemma 5.2. O

Based on Gyc(u), we have the following higher order smooth functional calculus, which is an
extension of Lemma 3.2.
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Proposition 5.3. Assume that the heat kernel {P,;}~o satisfies Gioc(ut) with u € (1, c0) \ N. Let
@ € C?4([0, 00)) with I > 2n and ¢®*V(0) = 0 for any v € {0, ..., 1 + 1}.

(1) If suppe C [0, R] for some R > 1, then for any k € {1, ..., [ul} and a € Z satisfying
lal =k, 6 € (0, 1] and x, y € R,

DEp@E VD, y)| < CU RIDs x(x, 3), (5.5)
where
1 e —yl\”
Dsk(x, y) = e 1+ 5 5.6)

and the positive constant C(l, R) depends only on [ and R.

(ii) If suppy C [0, R] for some R > 1, then for any @ € Z satisfying |a| = [ul, there exists
a positive constant C'(1, R), depending on | and R, such that for any 6 € (0, 1] and x, x’,
y € R" satisfying |x’ — x| < 6,

lx — x|

0

{1}
DG VL) (x, y)—Diso(é\/Z)(X’,y)|SC’(LR)( ) Dsix(x, ). (5.7)

(iii) If there exist positive constant C(I) > 0 and r € (n + [u] + 21 + 5, 00) such that for any
kel0,...,2l+4}and A € (0, ),
le®| <coa+a, (5.8)

then (5.5) and (5.7) still hold true. Moreover, for any 6 € (0, 1] and x € R”,
f @6 VL)(x, y) dy = ¢(0).

To prove Proposition 5.3, we need the following technical lemma from [11, Theorems 3.1 and
3.4] and [35, Theorem 3.4].

Lemma 5.4 ([11, 35]). (i) Let ¢ € C2+4([0, o)) be as in the statement of Proposition 5.3 with
[ > 2n and suppe C [0, R] for some R > 1. Then there exist go, g1 : R — C satisfying for
1 €40, 1},

el = [ ] +1e)’ de <o
such that for any A € [0, c0),

_2 32
@) = go()e™ + g1(1D)e™,

where for i € {0, 1}, g; denotes the Fourier transform of g; as in (1.15). Moreover, there exists a
positive constant C(I) such that for i € {0, 1},

iy < COR™ (gl + @)+ max {|£”O}). (5.9)
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(ii) Let g : R — C satisfy |Igll«; < oo with | > 2n. Then for any ¢ € (0, 1] and x, y € R", the
integral kernel g((52£)e_52£(x, y) of the operator g(éZL)e_52£ satisfies

2 1 —
8(52£) e t(x, y) = o Lg(f)P52(1—i§)(xa y) dé.

(iii) Let ¢ € C2+4([0, o)) be as in the statement of Proposition 5.3 with | > 2n and satisfy (5.8)
withr € (n+ [u] + 21+ 5, o) for some [u] > 0. Then there exists a family {h;} jcz, of functions on
[0, o) with hj satisfying the assumptions in (i) with R = 2 such that for any A € [0, o),

p() = > hi27 Q).

J=0

Moreover, ho(0) = f(0), hj(0) = 0 for any j € N and for any j € Z,,

21+4
Wl + [

+ max {th)(0)|}sz—f<"+M“>, (5.10)

’L"" 0<v<2l+4

where the implicit constant is independent of J.

Based on Lemma 5.4, we now turn to the proof of Proposition 5.3.

Proof of Proposition 5.3. We first prove (i) and (ii). By Lemma 5.4(i), we know that there exist
80> &1 : R — Csatisfying for i € {0, 1}, [|gill..; < oo such that for any A € [0, o),

o) = go(De™ + g1 (AD)e .

Thus, to finish the proofs of (i) and (ii), we only need to verify that for i € {0, 1}, the integral
kernel Gi(x, y) := gi(6>L)e™"L(x, y) of the operator g;(62L)e~""L satisfies (5.5) and (5.7).
Using Lemma 5.4(ii), we have for i € {0, 1},

1 -
Gitx, ) = o- fR GHOPp_glx, y) de.

This combined with Lemma 5.2(i) shows that for any k € {0, ..., [u]}, @ € Z" with || = k and x,
yeRY,
1
DG )] < 5 [ 8@ [DEPe . ) de 5.11)
R
1 1 clx =y
< — ; ——— 1 d.
~ 2ﬂfR|§’(§:)| 5k+n exp{ 52(1 +§2) f

1 1 oy =y gl (=l
S§L@(6>|W<1+|§|>(l+ 5 ) dé <~ |\t —5—|

which combined with (5.9) implies that G;(x, y) satisfies (5.5).
On the other hand, using Lemma 5.2(ii), we have that for any o € Z} satisfying |a| = [u] and x,
X',y € R" satisfying [x" — x| < 6,

’ 1 ’
DGk, 1) - DIGH, )] < o f [G&)| DS P, ¥) — DY Py, )| dE (5.12)
R
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1 =\ clx = yP?
< — ; =2 by
S on fR |§(§)|( 5 ) i P\ T ey “
o\ _ -l
< lIgll.; (1x = x| 1+ lx =yl ’
(5k+n ) P
which combined with (5.9) implies that G;(x, y) satisfies (5.7). Combined (5.11) and (5.12), we

finish the proofs of (i) and (ii).
To prove (iii), by Lemma 5.4(iii), we know that for any ¢ € (0, 1], p € (1, o) and g € LP(R"),

w6VL)g =) h2 5 VL) (5.13)
7=0
in LP(R™). This together with (5.5), (5 6), (5.9) and (5.10) implies the integral kernel ¢(6 VL)(-, -)
of (6 VL) satisfies that for any k € { , [ul}, @ € Z satisfying |a| = k and x, y € R”,
DYpE VL), y)] Jpeh@ VD y)\

[
SZ

which implies that (5.5) holds true in this case. The proof of (5.7) is similar, the details being
omitted.

Finally, by (5.13), Lemma 3.2(iii) and the facts ho(0) = ¢(0), h;j(0) = O for any j € N, we
conclude that

fR COVD(x, dy= ) fR hj(627 N D(x, y)dy = fR ho(6VL)(x, y)dy = ho(0) = ¢(0),
n ]:0 n n

lx =y}
( s S Ds(x, y),

which shows that (iii) holds true and hence completes the proof of Proposition 5.3. O

5.2 Function spaces with higher order smoothness

We first recall the definitions of function spaces defined via the higher order difference. Let
M € N, h € R" and f be a function on R”. Recall the following definition of the M-order
difference Az” (f) of f with step h by setting for any x € R”",

M

AP0 = D (=DM fx + ). (5.14)

=

Note that if M = 1, then A} f(x) = A f(x) = f(x + h) — f(x) is the usual first order difference, and
for any M > 2, Ay f(x) = A1 (A, ().
Let p, g € (1, o) and s € (0, c0), define the Lipschitz Besov space Bf,’fq) by

D . _ . —
By = {f € LP®") : Wfllyp = Wfllrer + Mfl < oo, (5.15)
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where

M /p /g
« |A f(x)|p P ar
h
gs.D 1= —————dh — ,
HfIIBbZ {j(; lfﬂ L(x,r) e dhdx r

where A}’t” f(x) is defined as in (5.14) with M > s.
Similarly, the Lipschitz Triebel-Lizorkin space F ;’5 with p, g € (1, o) and s € (0, o0) is defined
to be

Fib = {£ € L7t Wfllpyp = Il + Il pgo < o0l

where

B

(sl Y ar]”
= (1, B ¢
P 0 B¢ T F

where AhM f(x) is defined as in (5.14) with M > s.

LP(R")

Remark 5.5. From [52, Chapter 3.5.3], we deduce that for any p, g € (1, ), s € (0, 00) and
M € N satisfying M > s, the spaces Bf;g and Ff,’f; are consistent with the classical Besov spaces
B}‘Lq(R") and Triebel-Lizorkin spaces F ;’Q(R”). In particular, B‘I‘;’,lq) and F ;”I; are invariant for dif-
ferent choices of M € N satisfying M > s. Thus, we don’t write the parameter M in the notation
of Bf,’g and F ;’5 )

The following result gives the embedding relation between the spectral and Lipschitz Triebel-
Lizorkin spaces with higher order smoothness.

Theorem 5.6. Assume that the heat kernel {P,}~o satisfies the property Gioc() for some pu €
(1, 00) \ N. Then for any p, g € (1, o) and s € (0, p),

s,L s,D
Fog CFpy.
We prove Theorem 5.6 by making use of the non-smooth atomic characterization of the classi-

cal Triebel-Lizorkin spaces from [53, Chapter 1.5.2]. Recall that for any j € Z,, D; denotes the
set of all dyadic cubes in R” with side length 27/.

Definition 5.7. (a) Let @ € (0, o0) \ N. A function a : R" — C is called a 1,-atom associated
with the dyadic cube Q € Dy if there exists a positive constant ¢ > 1 such that

(i) suppa C cQ;

(i1) llallcewm < 1, where for a := [a] + {a} € (0, c0) with [e] € Z, and {a} € (0, 1),

> sup D a(x) — Doa(y)| (5.16)

a(RN) «= DB
lallcocen ofw‘fﬁa]“ | gy + x — [

T
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(b) Let s € (0, ), @ € (0, o0) \ N and p € (1, o0). A function a : R" — Cis called a (s, p)q-
atom associated with the dyadic cube Q € D; for some j € N if there exists a positive constant
¢ > 1 such that

(1) suppa C cQ;
(i) lla27/)llcaqrny < 27757/P) where the norm || - [lcerey is as in (5.16);
(iii) [, a(x)dx =0.
(c) Forany p, g € (1, 00) and 1 := {4jm €C: j€Z;,me z"}, let fpq = {4 : Iy, < oo}

with

Al =

0o 1/q
5,5 o]

Jj=0 mez"

LP(RM)

The following non-smooth atomic characterization of F ls,’q(R”) was established by Triebel (see,
for example, [53, Corollary 1.23]).

Lemma 5.8 ([53]). Let p, g € (1, ), s € (0, 00) and a € (s, ) \ N. Then for any f € LP(R"),
[ € Fp,,(R") if and only if it can be represented as

f= i > Aimjm (5.17)
j=0 meZzZ"

in sense of Schwartz distribution S'(R"), where ay ,, are 1,-atoms, a;,, for j > 1 are (s, p),-atoms
-
and A := {Aj;n} € fp 4. Furthermore,

A1l ey = inf{|f||fp,q} ’

where the infimum is taken over all admissible representation (5.17) and the implicit constants are
independent of f.

We also need the following discrete Calderén reproducing formula from [32, Lemmas 3.6 and
3.7], which is a generalization of (2.17).

Lemma 5.9 ([32]). Let (¢, ¢) in S([0, 00)) satisfy the admission condition as in Remark 2.6.
Then there exist another couple (Yo, ¥) of functions in S ([0, o)) satisfying the admission condi-
tion such that for any p € (1,00) and f € LP(R"),

£=) 6/ (NDy;(VD)f
j=0

in LP(R").

With the helps of Lemmas 5.8 and 5.9, we now turn to the proof of Theorem 5.6.
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Proof of Theorem 5.6. Let (¢, ¢) in S ([0, o)) satisfy the admission condition and (2.19) (see
Remark 2.6 for the existence of such couple of functions). Then by Lemma 5.9, we know that
there exist (Yo, ¥) in S ([0, o)) such that for any f € LP(R"),

=303 0) 6VD (10, (2 2) ™ VD) (5.18)
j=0 meZ"
—Z 2, f 221 2)" 4, ») (i (VD) 0y,
j=0 meZ"

where for any j € Z,, m € Z", Q;,, denotes the dyadic cube in D; and for any j € Z,, M € N,

wim(ND) = (222 vy (VD))

with the modification M = 0 when j = 0. Let us emphasize that the equalities in (5.18) hold in
LP(R™).
Now, for any j € Z, and m € Z", let

A 2= 227 sup [(4u (VD)) (5.19
YELjm
and
1 .
aim = 7 fQ (22.2)" $,(ND ) (i (VD) 0y, (5.20)
Jm Jm

where the positive constant ¢ will be determined later. Thus, by (5.18) through (5.20), we obtain
the following decomposition

(o]
£=27 2, Aimtti
Jj=0 mezZ"

in L”(R") and hence in the sense of S’(R").
We now show that a,, are the atoms in Definition 5.7. Indeed, by (2.19), we find that for any
J€Zy,meZ", x € R" satisfying dist(x, Q) > 27/ and any y € Qjm,

(2‘2<’£)M ¢ (VL)(x, y) =0
which together with the fact that y € Q;,, implies that
SUpp djm © 4Qjm- (5.21)
On the other hand, for any A € [0, o), let
A = ().

Since ¢ € S([0, =)), we know that 5(/1) € §([0, =)). Moreover, as ¢g and ¢ can be extended to
even functions in S(R) (see Remark 2.6), we further conclude that for any v € N, ¢(2V+1)(0) =0
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and ¢@*D(0) = 0. Thus, ¢o, ¢ € S([0, o)) and satisfy the assumptions of Proposition 5.3(iii).
Using (5.20) and Proposition 5.3(iii), we know that for any j € N,

1 ~
f @jn(x) dx = — fR [ fQ (VL. y)wj,M<\/Z><y>dy] dx (5.22)
n Jom n i
1 ~
=T w,-,M(«/Z’Xy)[ f ¢/ (VI)(x, y)dx] dy = 0.
Jm Qj,m R”

Moreover, for any k € {0, ..., [u]} and B € Z satisfying |G| = k, by (5.20) and Proposition
5.3(iii), we know for any j € Z, and [ € NN (2n, o),

-1
Dfa,-,m(x)|gz—f<s-"/m(sup |(vim(VD) (y>|) fQ PR (V)] )

YEQjm

% |(win(VDF) ) ay

< 2-JGnlp) f 21008 (1 4 21— yl) " dy 27K I,
Qj,m

which together with (5.16) implies that for any j € Z;, k € {0, ..., [¢]} and B € Z" satisfying

1Bl = k,

|DPa;m2 ) 2 Js=n/p), (5.23)

_j')HLw(Rn

Moreover, using Proposition 5.3 again, we find that for any § € Z! satisfying |5| = [u], [ €
NN (2n, o0) and x, x" € supp a;,,, namely, [x — x'| < 4 \/ﬁZ‘j,

. ‘ . ‘ -1
Dl jn(x) = Dhaj()] 275607 (21 - x]) " f 200D (14201 = y1) ™ dy
Qj,m

< 2—j(S—n/p)2jM|x _ x’I{“},

which together with (5.16) again implies that for any j € Z,,

By this and (5.23), we see for any j € Z,,

< o-Jts=n/p).

~

Diajn27)

cl (R

”"Jlm(z_j')”c;l(Rn) < 270,

which combined with (5.21) and (5.22) indicates that a,, is a 1,-atom when j = 0 and a (s, p),-
atom when j € N, by normalizing the constant ¢ in (5.19) properly.

We now consider the || - ||z, , norm generated by the coefficients {4;u};n. By (5.19), we have
that for any j € Z, and m € Z",

/lj,mzjn/plgj,m = 2]5 Slép ’%%,M( VZ)f(y)‘ le,m
S Jom
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with the modifications that M = 0 when j = 0. This implies that for any j € Z,,,

q
Z |/1j,n2jn/p1ijm|‘1 < Z (2/5 sup ‘lﬁj,M( ‘/Z)f()’)’ 1Q_/,m] .
mezZn mezZn YEQjm
Note that for any ¢ € S([0, o)), there exists y € (2n, oo) such that for any x € R”,
d(NLf(y)
WVWEMWMMsm| |

yEQj,m }’ER" (1 + 2]|_x - yl)y ’

where the later term belongs to the system {(qﬁ;‘. )y} jez, of Peetre maximal function of f asso-

ciated with ¢. Then by the Peetre maximal function characterization of the space F f,f (see [32,
Theorem 3.4]), we conclude that

i~ 1/q
(O p
' j=0 mezZn Loy

) 1/q
{wam$} <l

J=0 LP(R™)

12\

By this and Proposition 5.8, we conclude that f € FIS7 q(R”) with ||f||F;q(]Rn) < fllzsc. This
’ ’ pq
combined with Remark 5.5 finishes the proof of Theorem 5.6.
m]

Based on Theorem 5.6, we have the following corollary on the embedding relation between
the Besov spaces defined via the heat semigroup and the higher order difference, which extends
Theorem 1.1 to the case s € (0, ) for u € (1, co) \ N.

Corollary 5.10. Assume that the heat kernel {P,}~q satisfies the property Gioc(ut) for some u €
(1, 00) \ N. Then for any p, g € (1, o0) and s € (0, p),

L ,D
Byy < By

where Bf,’g is defined as in (5.15).
Proof. By Theorem 5.6 with p € (1, ), g = 2 and s € (0, u), we have that

—s,.L s,D
Fp’2 C Fp’2 s

which combined with (2.18) and Remark 5.5 implies that for any p € (1, o0) and s € (0, u)
dom,[ L] ¢ H}(R").

By this, Propositions 2.2, 2.7 and (4.22) implies that B;;j;: c B;;f; , which completes the proof of
Corollary 5.10.
O
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Remark 5.11. (i) Let sg € (@, o). If for any p € (1, o) with some o > 1, the identity
dom,[L%/?] = H)*(R") (5.24)

holds true, then by using the same argument as in the proof of Corollary 5.10 (see also the proof of
Theorem 1.1), we conclude that for any (%, s) in some Hardy-Littlewood-Sobolev-Kato diagram
defined in a way similar to Figure 2 (with 1 and o therein replaced respectively by s¢ and o) and
for any g € (1, o),

s,L _ ps.D
Bpsq - Bps‘]'

(i1) If the coefficient matrix A satisfies some regularity conditions, then the identity (5.24) is
true with so and o taking different values. For example, if the entries ¢;; € VMO (R"), Shen
[47, Theorem C] proved that (5.24) holds with so = 1 and o > 3. Moreover, ter Elst et al. [17,
Theorems 1.3] proved that if a; ; € CH(R") for some u € (0, 1), then (5.24) is true with 5o = 1 and
o = o0. See also [17, Theorems 1.5 II] for a further discuss in the case ¢ > 1 and sg € N.

Acknowledgement. The first author would like to thank the Universitit Bielefeld for the hospi-
tality that he received while visiting there in 2017-2019.
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