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1 Introduction and main results

By classical results of G.C. Evans and G. Choquet on “good kernels G in potential
theory”, for every polar Kσ-set P , there exists a finite measure µ on P such that
Gµ =∞ on P , and a set P admits a finite measure µ on P such that {Gµ =∞} = P
if and only if P is a polar Gδ-set.

We recall that Evans’ theorem yields the solutions of the generalized Dirichlet
problem for open sets by the Perron-Wiener-Brelot method using only harmonic
upper and lower functions (see [7] and Corollary 4.3).

In this paper we intend to show that such results can be obtained, by elementary
“metric” considerations and without using any potential theory, for general kernelsG
locally satisfying

G(x, z) ∧G(y, z) ≤ CG(x, y).1

The particular case G(x, y) = |x−y|α−N on RN , 2 < α < N , solves an open problem
(see [16, p. 407, III.1.1]).

ASSUMPTION. Let X be a locally compact space with countable base and
let G : X ×X → [0,∞] be Borel measurable, G > 0, such that the following holds:

(1) For every x ∈ X, limy→xG(x, y) = G(x, x) =∞ and G(x, ·) is bounded outside
every neighborhood of x.

(2) G has the local triangle property.

We recall that G is said to have the triangle property if, for some C > 0,

(1.1) G(x, z) ∧G(y, z) ≤ CG(x, y) for all x, y, z ∈ X,

and that G has the local triangle property if every point in X admits an open
neighborhood U such that G|U×U has the triangle property.

It is well known that G has the triangle property if and only if there exist
a metric d on X and γ, C ∈ (0,∞) such that, for all x, y ∈ X,

(1.2) C−1d(x, y)−γ ≤ G(x, y) ≤ Cd(x, y)−γ,

where, by assumption (1), every such metric yields the initial topology on X.

∗Supported by CRC 1283 of the German Research Council (DFG). We thank our colleague
A. Grigor’yan for helping us with useful illustrations.

1We write a ∧ b for the minimum and a ∨ b for the maximum of a and b.
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To be more explicit we observe that (1.1) means that G̃(x, y) := G(y, x) ≤
CG(x, y) (take z = x) and that ρ := G−1 + G̃−1 is a quasi-metric on X, that is,
for some C > 0, ρ(x, y) ≤ C(ρ(x, z) + ρ(y, z)) for all x, y, z ∈ X. A metric d
satisfying (1.2) is then obtained fixing γ ≥ 2 log2C and defining

d(x, y) := inf{
∑

0<j<n
ρ(zj, zj+1)

1/γ : n ≥ 2, z1 = x, zn = y, zj ∈ X}

(see [15, Proposition 14.5]). Conversely, every G satisfying (1.2) has the triangle
property, since d(x, z) ∨ d(y, z) ≥ d(x, y)/2. More generally, (1.1) holds if

g ◦ d0 ≤ G ≤ cg ◦ d0

for some metric d0 for X and a decreasing function g on [0, sup{d0(x, y) : x, y ∈ X}]
satisfying 0 < g(r/2) ≤ cg(r) <∞ for r > 0 and limr→0 g(r) = g(0) =∞.

In particular, the local triangle property holds for the classical Green function
not only for domains in RN , N ≥ 3, but also on domains X in R2 such that R2 \X
is not polar (log(2/r) ≤ 2 log(1/r) for 0 < r ≤ 1/2) and as well for Green functions
associated with very general Lévy processes (see [12]).

For every Borel set B in X, letM(B) denote the set of all finite positive Radon
measures µ on X such that µ(X \ B) = 0, and let Mη(B), η > 0, be the set of all
measures µ ∈M(B) such that the total mass ‖µ‖ := µ(B) is at most η. Let

Gµ(x) :=

∫
G(x, y) dµ(y), µ ∈M(X), x ∈ X.

By assumption (1), for every µ ∈M(X),

(1.3) Gµ <∞ on X \ supp(µ).

For every A ⊂ X, let

c∗(A) := inf{‖µ‖ : µ ∈M(X), Gµ ≥ 1 on A}.

We observe that c∗(A) = 0 if and only if there exists µ ∈M(X) such that Gµ =∞
on A. Indeed, if there are µn ∈ M(X), n ∈ N, such that ‖µn‖ < 2−n and Gµn ≥ 1
on A, then obviously µ :=

∑
n∈N µn ∈ M1(X) and Gµ = ∞ on A. Conversely,

if µ ∈ M(X) with Gµ = ∞ on A, then νn := (1/n)µ satisfies Gνn = ∞ ≥ 1 on A
and limn→∞ ‖νn‖ = 0, hence c∗(A) = 0.

As already indicated, the main results of this paper are the next two theorems
obtained by G.C. Evans [9] in the classical case (where c∗(P ) is the outer capacity
of P , and P is polar if and only if c∗(P ) = 0, cf. [1, Corollary 5.5.7]) and G. Choquet
for “good kernels in potential theory” [4, 5].

THEOREM 1.1. Let P be an Fσ-set in X, P =
⋃
m∈NAm with closed sets Am.

Then c∗(P ) = 0 if and only if there is a measure µ ∈M(P ) with Gµ =∞ on P .

COROLLARY 1.2. Let P be an Fσ-set in X with c∗(P ) = 0. Let P0 ⊂ P be
countable and Am, m ∈ N, be closed sets such that

⋃
m∈NAm = P and every

intersection P0 ∩ Am is dense in Am.
Then there is a measure µ ∈M(P0) such that Gµ =∞ on P .
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THEOREM 1.3. Let P ⊂ X and let P0 be a countable dense set in P . The
following are equivalent:

(i) P is a Gδ-set and c∗(P ) = 0.

(ii) There exists µ ∈M(P ) such that {Gµ =∞} = P .

(iii) There exists µ ∈M(P0) such that {Gµ =∞} = P .

REMARK 1.4. Let us note that J. Deny [8] had made a step in the direction of
Choquet’s result in proving that, for every Gδ-set P in RN which is polar (with
respect to classical potential theory), there exists a measure µ on RN such that
{Gµ =∞} = P .

2 Case, where G has the triangle property on X

Let us consider first the case, where G has the triangle property on X, and therefore
C−1d−γ ≤ G ≤ Cd−γ for some metric d for X and γ, C ∈ (0,∞). Defining G̃ := d−γ

we then have C−1G̃µ ≤ Gµ ≤ CG̃µ, and hence {G̃µ = ∞} = {Gµ = ∞} for
every µ ∈ M(X). So the implications of Theorems 1.1 and Theorem 1.3 follow
immediately if they hold for G̃. Thus we may and shall assume in this section
without loss of generality that

G(x, y) = d(x, y)−γ, x, y ∈ X.

Then, for every µ ∈ M(X), the “potential” Gµ is lower semicontinuous on X and
continuous outside the support of µ. Moreover, if A and B are Borel sets in X such
that d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B} > 0, then

Gµ(x) ≤ d(A,B)−γ‖µ‖ for all x ∈ A and µ ∈M(B).

The key for Theorems 1.1 and 1.3 in our setting will be Lemmas 2.1, 2.5 and 2.4.

2.1 Proof of Theorem 1.1

LEMMA 2.1. Let ∅ 6= A ⊂ X be closed, let A0 ⊂ A be a Borel set which is dense
in A, and let µ ∈M(X).

(a) If µ(A) = 0, there exists ν ∈M(A0) such that

(2.1) ‖ν‖ = ‖µ‖ and Gν ≥ 3−γGµ on A.

(b) There exists ν ∈M(A) such that (2.1) holds.

Proof. (a) Assuming µ(A) = 0, we consider “shells” S(A, r) around A defined by

S(A, r) := {y ∈ X : 3r ≤ d(A, {y}) < 4r}, r > 0.

Since X\A is obviously covered by the “shells” S(A, (4/3)k), k ∈ Z, we may suppose
without loss of generality that µ is supported by some S(A, r), r > 0.
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For x ∈ X and R > 0, let B(x,R) := {y ∈ X : d(y, x) < R}. There is a se-
quence (xn) in A0 such that A is covered by the open balls B(xn, r), n ∈ N, and
hence S(A, r) is the union of the sets

An := S(A, r) ∩B(xn, 5r).

So there exist µn ∈M(An), n ∈ N, such that
∑

n∈N µn = µ.
For the moment, let us fix n ∈ N and x ∈ A. If y ∈ An, then d(y, xn) < 5r and

3r ≤ d(x, y), hence d(x, xn) ≤ d(x, y) + d(y, xn) < 3d(x, y).

Figure 1. “Sweeping” of µn from An to xn

So d(x, xn)−γ > 3−γd(x, y)−γ. Integrating with respect to µn ∈M(An) we see that

‖µn‖G(x, xn) ≥ 3−γGµn(x).

Clearly, ν :=
∑

n∈N ‖µn‖ δxn ∈M(A0) (where δxn denotes Dirac measure at xn) and
the measure ν satisfies (2.1).

(b) Let µ′ := 1Acµ and µ′′ := 1Aµ. By (a), there exists ν ′ ∈ M(A) such
that ‖ν ′‖ = ‖µ′‖ and Gν ′ ≥ 3−γGµ′ on A. Since µ = µ′ + µ′′, we obtain that
ν := ν ′ + µ′′ ∈M(A) and (2.1) holds.

REMARK 2.2. It is easily seen that, for every ε > 0, we can get (a) in Lemma 2.1
with (2 + ε)−γ in place of 3−γ replacing 3r and 4r in the definition of S(A, r) by Mr
and (M + 1)r, M sufficiently large.

Proof of Theorem 1.1. Let µ ∈ M1(X), Gµ = ∞ on P . By Lemma 2.1, there are
νm ∈ M1(Am) with Gνm = ∞ on Am, m ∈ N. Then ν :=

∑
m∈N 2−mνm ∈ M1(P )

and Gν =∞ on P .

We might note that until now we did not use local compactness of X.

2.2 Proof of Corollary 1.2

We shall need a lemma which follows from the weak∗-lower semicontinuity of the
mappings ν 7→ Gν(x) = supm∈N(G ∧m)ν(x), x ∈ X, and the lower semicontinuity
of the functions Gν (see [3, p. 26] or [5, Lemme 1]).
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LEMMA 2.3. Let K,L be compacts in X, L ⊂ K. Let µ ∈ M(K) and ϕ be
a continuous function on L such that Gµ > ϕ on L. Then there exists a weak∗-
neighborhood N of µ in M(K) such that, for every ν ∈ N , Gν > ϕ on L.

Given a compact K 6= ∅ in X, a measure µ ∈ M(K) and a dense set A0 in K,
we construct approximating measures

(2.2) µ(n) =
∑

1≤j≤Mn

αnjδxnj
, αnj ≥ 0, xnj ∈ A0, n ∈ N,

in the following way: Having fixed n ∈ N, we take x1, . . . , xM ∈ A0 such that the
balls Bj := B(xj, 1/n) cover K, choose µj ∈ M(Bj) with µ =

∑
1≤j≤M µj, and

define µ(n) :=
∑

1≤j≤M ‖µj‖δxj . Of course, ‖µ(n)‖ = ‖µ‖.
Clearly, the sequence (µ(n)) is weak∗-convergent to µ, and, for every open neigh-

borhood W of K, the sequence (Gµ(n)) converges to Gµ uniformly on W c, since the
functions y 7→ d(x, y)−γ, x ∈ W c, are equicontinuous on K.

Proof of Corollary 1.2. We may assume without loss of generality that (Am) is an
increasing sequence of compacts. Given m ∈ N, there exists µm ∈ M(Am) such
that Gµm = ∞ on Am, by Theorem 1.1. By Lemma 2.3 and using approximating
discrete measures, we obtain νm ∈ M1(P0 ∩ Am) such that Gνm > 2m on Am.
Then ν :=

∑
m∈N 2−mνm ∈M1(P0) and Gν =∞ on P .

2.3 Proof of Choquet’s theorem

The implication (iii)⇒ (ii) holds trivially. Since, for every µ ∈ M(X), the func-
tion Gµ is lower semicontinuous, and therefore {Gµ = ∞} =

⋂
n∈N{Gµ > n} is

a Gδ-set, we also know that (ii) implies (i).
Based on Lemma 2.1, the next two lemmas are the additional ingredients for

the proof of the implication (i)⇒ (iii) in our setting. They replace the potential-
theoretic Lemme 3 in [5]. The other steps can, more or less, be taken as in [5].

A sequence (Un) of open sets in X with
⋃
n∈N Un = U will be called exhaustion

of U provided, for every n ∈ N, the closure Un is a compact subset of Un+1.

LEMMA 2.4. Let V ⊂ X be open, ν0 ∈M(V ), and M > 0. There exists ν ∈M(V )
such that ν ≤ ν0, Gν <∞ on V c and Gν > M on {Gν0 > M + 1} ∩ V .

Proof. Let us choose exhaustions (Vn) and (Wn) of V and W := {Gν0 > M + 1},
respectively. We claim that there are measures ν0 ≥ ν1 ≥ ν2 ≥ . . . such that

(2.3) Gνn > M + 2−n on W, G(νn−1 − νn) < 2−n on Vn.

Let us fix n ∈ N and suppose that we have νn−1 ≤ ν0 such that Gνn−1 > M+2−(n−1)

on W (which holds if n = 1). Since Vm ↑ V and therefore G(1Vmνn−1) ↑ Gνn−1
as m→∞, there exists m > n such that

Bn := Wn ∩ (V \ Vm) ⊂ Wn \ Vn+1 and νn := 1V \Bnνn−1

(see Figure 2) satisfy

(2.4) ν0(Bn) < 2−nd(Wn \ Vn+1,W
c
n+1 ∪ Vn)γ and Gνn > M + 2−n on W n+1.
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Figure 2. The choice of Bn

Then G(νn−1 − νn) ≤ G(1Bnν0) < 2−n on W c
n+1 ∪ Vn. In particular,

Gνn ≥ Gνn−1 − 2−n > M + 2−(n−1) − 2−n = M + 2−n on W \Wn+1.

Having the second inequality in (2.4) we conclude that (2.3) holds.
The sequence (νn) is decreasing to a measure ν such that, for every n ∈ N,

G(νn − ν) =
∑∞

j=n
G(νj − νj+1) <

∑∞

j=n
2−(j+1) = 2−n on Vn,

and hence Gν > M on W ∩ Vn, by (2.3). So Gν > M on W ∩ V .
Of course, Gν < ∞ on V

c ∪ W c. By our construction, for every n ∈ N, the
support of νn does not intersect Wn ∩ ∂V , and hence Gν ≤ Gνn <∞ on Wn ∩ ∂V .
Therefore Gν <∞ on W ∩ ∂V , and we finally obtain that Gν <∞ on V c.

LEMMA 2.5. Let U be a relatively compact open set in X, let P be a subset of U
with c∗(P ) = 0, and let ε > 0. Then there exist an open neighborhood V of P in U
and µ ∈Mε(P ∩ V ) such that Gµ <∞ on V c and Gµ > 2 on P ∩ V .

Proof. Let ν0 ∈ Mε(X) with Gν0 = ∞ on P . Since G(1Ucν0) < ∞ on U , by (1.3),
we may assume that ν0 is supported by U . Of course,

P ⊂ V := {x ∈ U : Gν0(x) > 9γ+1 + 1} ⊂ U.

By Lemma 2.4, there exists ν ∈ Mε(U) with Gν <∞ on U c and Gν > 9γ+1 on V .
Let ν1 := 1V ν, ν2 := 1U\V ν and σ := 1U∩∂V ν so that ν = ν1 + ν2 + σ.

Figure 3. Decomposition of ν

By Lemma 2.1,(a), applied to U , A := V ∩ U , A0 := V , there exists ν̃2 ∈M(V )
such that

‖ν̃2‖ = ‖ν2‖ and Gν̃2 ≥ 3−γGν2 on V ∩ U.
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Of course, Gσ <∞ outside the boundary ∂V supporting σ. Further, Gσ ≤ Gν <∞
on U c and, by definition of V , on U \V . So Gσ <∞ on X. By Lusin’s theorem and
a version of the continuity principle of Evans-Vasilesco (see [14, pp. 97–98]), there
are σn ∈M(X) such that each Gσn is continuous on X and σ =

∑
n∈N σn.

Using (2.2) and Lemma 2.3 with K = L = V , we get σ̃n ∈M(V ) with

‖σ̃n‖ = ‖σn‖ and Gσ̃n > Gσn − 2−n on V .

We define σ̃ =
∑

n∈N σ̃n and ν̃ := ν1 + ν̃2 + σ̃. Then

ν̃ ∈Mε(V ) and Gν̃ ≥ 3−γGν − 1 > 3γ+2 − 1 > 3γ+1 on V.

Applying Lemma 2.1,(b) to V , we get µ0 ∈M(P ∩V ) with ‖µ0‖ = ‖ν̃‖ ≤ ε and
Gµ0 ≥ 3−γGν̃ > 3 on P ∩ V . Finally, by Lemma 2.4, we obtain a measure µ ≤ µ0

such that Gµ <∞ on V c and Gµ > 2 on P ∩ V .

LEMMA 2.6. Let P ⊂ X such that c∗(P ) = 0, U be an open neighborhood of P
and 0 < ε ≤ 1. There are an open neighborhood V of P in U and µ ∈ Mε(P ∩ V )
such that Gµ > 2 on P ∩ V , Gµ <∞ on V c, and Gµ < ε on U c.

Proof. Let (Wn) be an exhaustion of U . Let n ∈ N,

Un := Wn+1 \W n−1, Pn := P ∩ Un, εn := 2−nε (1 ∧ d(Un,Wn−2 ∪W c
n+2)

γ)

(with W−1 = W0 = ∅). By Lemma 2.5, there exist an open neighborhood Vn of Pn
in Un and µn ∈Mεn(P ∩ Vn) such that Gµn > 2 on P ∩ Vn and Gµn <∞ on V c

n .

Figure 4. Choice of Vn

By our choice of εn, Gµn ≤ 2−nε on Wn−2 ∪ W c
n+2. It is immediately verified

that µ :=
∑

n∈N µn and V :=
⋃
n∈N Vn have the desired properties.

We may now continue similarly as in [5], but in a slightly simpler way using
approximating sequences instead of weak∗-neighborhoods.

LEMMA 2.7. Let P ⊂ X with c∗(P ) = 0 and P0 be a countable, dense set in P .
Let U be an open neighborhood of P and ε > 0. There exists ν ∈Mε(P0) such that

Gν > 1 on P , Gν <∞ on X \ P0 and Gν < ε on U c.

Proof (cf. the proof of [5, Lemme 2]). Let δ := 1∧(ε/2). By Lemma 2.6, there exist
an open neighborhood V of P in U and µ ∈Mδ(P ∩ V ) such that

(2.5) Gµ > 2 on P ∩ V, Gµ <∞ on V c and Gµ < δ on U c.

Let (Vk) be an exhaustion of V . For k ∈ N, we define (taking V−1 = V0 := ∅)

Pk := P0 ∩ (Vk \ Vk−1) and Wk := Vk+1 \ V k−2

so that Wk is an open neighborhood of P k, see Figure 5.
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Figure 5. The open neighborhood Wk of P k

Clearly, every point in P ∩ (Vk \Vk−1) is contained in the closure of Pk−1∪Pk. Hence
we have

⋃
k∈N P k = P ∩ V .

We choose µk ∈M(P k) with µ =
∑

k∈N µk and approximating sequences (µ
(n)
k )n∈N

for µk in M(Pk), see (2.2). So, for every k ∈ N, the sequence (µ
(n)
k ) is weak∗-

convergent to µk and the sequence (Gµ
(n)
k ) converges to Gµk uniformly on W c

k .
For the moment, we fix k ∈ N. There exists lk ∈ N such that, for all n ≥ lk,

(2.6) |Gµ(n)
k −Gµk| < 2−kδ on W c

k .

Let τk :=
∑
|m−k|>1 µm. Then Gτk is continuous on P k and, by (2.5),

G(µk−1 + µk + µk+1) > 2−Gτk on P k.
2

By Lemma 2.3 (applied with K := P k−1 ∪ P k ∪ P k+1 and L := P k), there exists
mk ≥ lk such that, for all n ≥ mk,

(2.7) G(µ
(n)
k−1 + µ

(n)
k + µ

(n)
k+1) > 2−Gτk on P k.

We now define

nk := mk−1 ∨mk ∨mk+1, νk := µ
(nk)
k and ν :=

∑
k∈N

νk.

Then ν ∈ M(P0), ‖ν‖ = ‖µ‖ ≤ δ, and Gν <∞ on V \ P0, since ν is supported by
a subset of P0 having no accumulation points in V . By (2.6),

Gν ≤ Gµ+
∑

k∈N
|Gνk −Gµk| < Gµ+ δ on V c.

So, by (2.5), Gν <∞ on V c and Gν < 2δ ≤ ε on U c. By (2.7), for every k ∈ N,

Gν ≥ G(νk−1 + νk + νk+1 + τk)−
∑

|m−k|>1
|Gνm −Gµm| > 2− δ ≥ 1

on P k. Thus Gν > 1 on the set P ∩ V containing P .

Proof of (i)⇒ (iii) in Theorem 1.3. Let (Um) be a decreasing sequence of open sets
in X such that P =

⋂
m∈N Um. By Lemma 2.7, there are νm ∈M(P0), m ∈ N, such

that ‖νm‖ ≤ 2−m, Gνm > 1 on P , Gνm <∞ on X \ P0 and Gνm < 2−m on X \Um.
Obviously, ν :=

∑
m∈N νm ∈M(P0) and {Gν =∞} = P .

2To be formally correct we have to omit, here and below, the term with subscript k−1 if k = 1.
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3 The general case

Assuming that G has the local triangle property there is a locally finite covering
of X by relatively compact open sets Un such that, for each n ∈ N, the restriction
of G on Un × Un has the triangle property.

Let us consider P ⊂ X, a countable dense set P0 in P , and µ ∈ M1(X) such
that Gµ =∞ on P . For n ∈ N, we introduce

Pn := P ∩ Un and µn := 1Unµ ∈M1(Un).

By (1.3), G(1Uc
n
µ) <∞ on Un, and hence

(3.1) Gµn =∞ on Pn.

a) If P is an Fσ-set, then every Pn is an Fσ-set, and applying Theorem 1.1
to Un and G|Un×Un , we obtain νn ∈ M1(Pn) such that Gνn = ∞ on Pn. Then
clearly ν :=

∑
n∈N 2−nνn ∈ M1(P ) and Gν = ∞ on P completing the proof of

Theorem 1.1. A straightforward modification yields Corollary 1.2.
b) Let us next suppose that P is a Gδ-set and let n ∈ N. Then Pn is a Gδ-set

and an application of Theorem 1.3 to Un and G|Un×Un yields νn ∈M1(P0∩Un) such
that {x ∈ Un : Gνn(x) =∞} = Pn. By (1.3), Gνn <∞ on U c

n, and therefore

(3.2) {x ∈ X : Gνn(x) =∞} = Pn.

Obviously,

ν :=
∑

n∈N
2−nνn ∈M1(P0) and Gν =∞ on P.

To show that Gν <∞ outside P , we fix n ∈ N and note that the set In of all k ∈ N
such that Uk ∩Un 6= ∅ is finite. Defining ρn :=

∑
k∈Icn

2−kνk we know that Gρn <∞
on Un, by (1.3). Hence, using (3.2),

Gν = Gρn +
∑

k∈In
2−nGνk <∞ on Un \ P.

Thus {Gν =∞} = P .
c) To complete the proof of Theorem 1.3 we suppose that {Gµ = ∞} = P and

have to show that P is a Gδ-set. Let n ∈ N. By (3.1), {x ∈ Un : Gµn(x) =∞} = Pn.
By Theorem 1.3, applied to Un and G|Un×Un , we obtain that Pn is a Gδ-set. So
there exist open neighborhoods Wnm, m ∈ N, of Pn in Un such that Wnm ↓ Pn
as m→∞. Since In is finite, we then easily see that Wm :=

⋃
n∈NWnm is decreasing

to
⋃
n∈N Pn = P as m→∞. Thus P is a Gδ-set, and we are done.

4 Appendix: Application to the PWB-method

In this section we shall recall the solution to the generalized Dirichlet problem for
balayage spaces by the Perron-Wiener-Brelot method and how (a generalization of)
Evans theorem enables us to use only harmonic upper and lower functions.

So let (X,W) be a balayage space (where the assumption in Section 1 may be
satisfied or not). Let B(X), C(X) denote the set of all Borel measurable numerical
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functions on X, continuous real functions on X, respectively. Let P be the set of
all continuous real potentials for (X,W), that is

P := {p ∈ W ∩ C(X) : ∃ q ∈ W ∩ C(X), q > 0, p/q → 0 at infinity},

see [2, 11] for a thorough treatment and, for example, [13, 10] for an introduction
to balayage spaces.

We recall that, for all open sets V in X and x ∈ X, we have positive Radon
measures εV

c

x on X, supported by V c and characterized by∫
p dεV

c

x = RV c

p (x) := inf{w(x) : w ∈ W , w ≥ p on V c}, p ∈ P ,

so that, obviously, εV
c

x = δx if x ∈ V c. They lead to harmonic kernels HV on X:

HV f(x) :=

∫
f dεV

c

x , f ∈ B+(X), x ∈ X.

Let us now fix an open set U in X for which we shall consider the generalized
Dirichlet problem (see [2, Chapter VII]). Let V(U) denote the set of all open sets V
such that V is compact in U , and let ∗H(U) be the set of all functions u ∈ B(X)
which are hyperharmonic on U , that is, are lower semicontinuous on U and satisfy

−∞ < HV u(x) ≤ u(x) for all x ∈ V ∈ V(U).

Then H(U) := ∗H(U)∩ (−∗H(U)) is the set of functions which are harmonic on U ,

H(U) = {h ∈ B(X) : h|U ∈ C(U), HV h(x) = h(x) for all x ∈ V ∈ V(U)}.

A function f : X → R is called lower P-bounded, P-bounded if there is some
p ∈ P such that f ≥ −p, |f | ≤ p, respectively. For every numerical function f
on X, we have the set of all upper functions

UUf := {u ∈ ∗H(U) : u ≥ f on U c, u lower P-bounded and l.s.c. on X},

the set LUf := −UU−f of all lower functions for f with respect to U , and the definitions

H
U

f := inf Uf , HU
f := sup LUf .

For every p ∈ P , there exists q ∈ P , q > 0, such that p/q → 0 at infinity. Hence
we may replace UUf by the smaller set of upper functions, which are positive outside
a compact in X, without changing the infimum (if f ≥ −p consider f + εq, ε > 0).

To avoid technicalities we state the resolutivity result (see [2, VIII.2.12]) only for
P-bounded functions:

THEOREM 4.1. For every P-bounded f ∈ B(X),

HUf = H
U

f = HU
f ∈ H(U).
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REMARK 4.2. Let us indicate how the general approach above yields the solution
to the generalized Dirichlet problem for harmonic spaces in the way the reader may
be more familiar with.

So let us assume for a moment that the harmonic measures εV
c

x , x ∈ V , for
our balayage space are supported by ∂V so that (hyper)harmonicity on U does not
depend on values on U c, and let us identify functions on U with functions on X
vanishing outside U .

Let f be a Borel measurable function on ∂U which is P-bounded (amounting
to boundedness if U is relatively compact) and let ŨUf be the set of all functions u
on U which are hyperharmonic on U and satisfy

(4.1) lim infx∈U, x→z u(x) ≥ f(z) for every z ∈ ∂U.

If u ∈ UUf , then ũ := 1Uu is hyperharmonic on U and lim infx→z ũ(x) ≥ u(z) ≥ f(z)

for every z ∈ ∂U , hence ũ ∈ ŨUf . If, conversely, ũ is a function in ŨUf then, extending

it to X by lim infx→z u(z) for z ∈ ∂U and ∞ on X \ U , we get a function u ∈ UUf .
Therefore Theorem 4.1 yields that h : x 7→ εU

c

x (f), x ∈ U , is harmonic on U and

h(x) = inf ŨUf (x) = sup L̃Uf (x) for every x ∈ U.

Let ∂regU denote the set of regular boundary points z of U , that is, z ∈ ∂U such
that limx→zHUf(x) = f(z) for all P-bounded f ∈ C(X), and let ∂irrU be the set of
irregular boundary points of U , ∂irrU := ∂U \ ∂regU .

COROLLARY 4.3. Suppose that there is a lower semicontinuous function h0 ≥ 0
on X which is harmonic on U and satisfies h =∞ on ∂irrU . Then

HUf = inf UUf ∩H(U) = sup LUf ∩H(U) for every P-bounded f ∈ B(X).

Proof. a) Let g be P-bounded and lower semicontinuous on X. Then there exist
P-bounded ϕn in C(X), n ∈ N, such that ϕn ↑ g. For all z ∈ ∂regU and n ∈ N,

lim infx→zHUg(x) ≥ lim infx→zHUϕn(x) = ϕn(z),

and hence lim infx→zHUg(x) ≥ g(z). Clearly,

hn := HUg + (1/n)h0 ∈ H(U)

satisfies limx→z hn(x) = ∞ for all z ∈ ∂irrU , and hn is lower semicontinuous on X.
Thus hn ∈ UUf ∩H(U).

b) Let f ∈ B(X) be P-bounded, x ∈ X. There exists a decreasing sequence (gn)
of P-bounded lower semicontinuous functions on X such that gn ≥ f for every n ∈ N
and ∫

f dεU
c

x = infn∈N

∫
gn dε

Uc

x ,

that is, HUf(x) = infn∈NHUgn(x). Hence

HUf(x) = infn∈N(HUgn + (1/n)h0)(x),

where HUgn + (1/n)h0 ∈ UUf ∩H(U), by (a). Thus HUf = inf UUf ∩H(U).
c) Further, HUf = −HU(−f) = − inf UU−f ∩H(U) = supLUf ∩H(U).
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REMARKS 4.4. 1. For harmonic spaces, the result in Corollary 4.3 has been
proven in [7], where the solution to the generalized Dirichlet problem is obtained
using controlled convergence.

2. In general, the set ∂irrU is a semipolar Fσ-set. Of course, if (X,W) satisfies
Hunt’s hypothesis (H), that is, if every semipolar set is polar, then ∂irrU is polar
for every U . Let us note that (H) holds if X is an abelian group such that W is
invariant under translations and (X,W) admits a Green function having the local
triangle property (see [14]).

By Theorem 1.1, we obtain that in this situation (which covers the classical
case, many translation-invariant second order PDO’s as well as Riesz potentials,
that is, α-stable processes, and many more general Lévy processes) the assumption
of Corollary 4.3 holds.
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[5] G. Choquet. Sur les Gδ de capacité nulle. Ann. Inst. Fourier , 9: 103–109,
1959.

[6] A. Cornea. Résolution du probème de Dirichlet et comportement des solutions
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