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Abstract

Recently, the Transformer architecture has achieved state-of-the-art performance in many natural language
processing tasks. One key component in the Transformer architecture is the attention layer, which captures
the relation between tokens. In this paper, we show that the weight of the attention layer has scale-invariant
property, i.e. the output is invariant to a rescaling of weights. However, optimization algorithms in the vector
space of weight such as SGD are not scaling invariant. This mismatch will potentially hurt the optimization
process. To solve the mismatch, we seek a new parameter space for attention layer that is both scale-invariant
and can sufficiently represent the output of attention, so that we can employ optimization algorithms in
the scale-invariant parameter space. To achieve this goal, we first show that the output of the attention
layer can be represented using scale-invariant variables, which is called paths. Then, we define basis paths
which are an independent subset of all paths and are sufficient to represent all other paths. We prove that
the Scale-Invariant (SI) space for the attention layer is composed of the basis path. Finally, we design an
Attention Basis Path Identification(ABPI) Method to identify the basis paths and propose optimizing the
attention layer directly in its SI space. Several experiments on benchmark datasets show that we can obtain
more effective neural networks with the attention layer by optimizing the attention layer directly in its SI
space.
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1. Introduction

Transformer architecture has been proposed recently and becomes one of the most commonly used
neural network architectures in natural language processing. It has achieved state-of-the-art performance in
many tasks such as machine translation and language modeling[1, 2, 3, 4, 5]. One key component in the
Transformer architectures is the attention layer which can potentially capture the relation between tokens.
The Transformer neural network is usually trained with variants of Stochastic Gradient Descent(SGD) which
updates the neural network by following the negative direction of the gradient w.r.t. weight. Different from the
traditional neural networks such as Multilayer Perception(MLP) and Convolutional Neural Network(CNN),
there are attention layers in the Transformer[1]. The attention layer models the relation between the different
elements in a sequence, called tokens, in a non-linear way and can potentially capture the relation between
tokens.

In this paper, we show that the attention layer has scale-invariant property, i.e., the output is invariant to
a rescaling transformation of weights. Specifically, if some weights in attention layers are multiplied by a non-
zero constant and other weights are divided by this constant, the output will not change for any given input.
It means that the output is scale-invariant while the weights are not. Therefore, the traditional Stochastic
Gradient Descent (SGD) optimization algorithms and its variants are not scale-invariant, which means two
neural networks are equivalent to each other, but the behavior of optimization algorithms are different. This
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mismatch may potentially hurt the optimization process and make the optimization performance sensitive
to the weight initialization and hyper-parameter choosing [6]. Recently, some theoretical studies on the
Multilayer Perception(MLP) and Convolutional Neural Network (CNN) with ReLU activations show that
these networks are invariant to a positively rescaling of their weights which we called Positively Scale-Invariant
(PSI) property[6, 7, 8, 9]. Specifically, PSI property means that if the incoming weights of a hidden node(or
a feature map for CNN) are multiplied by a positive constant c, and the outgoing weights of this hidden
node(or the feature map for CNN) are divided by c, the output for the arbitrary input will keep the same.
To solve the above problems, the path representation of MLP and CNN with ReLU activations have been
proposed. A path is defined as the multiplication of weights along with a given permutation of hidden nodes
from bottom to top layers, which is invariant to the positively rescaling transformation of weights. Previous
work [6] shows that the paths can sufficiently represent the output of MLP or CNN and doing optimization
directly in the parameter space (i.e., the path space) can help us find the more effective neural network.

Motivated by recent studies on positively scale-invariant parameter space investigated for MLP and CNN
with ReLU activations, one natural question is that whether we can seek a parameter space for attention
layer that is both scale-invariant and can sufficiently represent the output of attention so that we can employ
optimization algorithm in the scale-invariant parameter space? Since the attention layer differs from MLP
which simply stacked linear kernels with non-linear activations, the definition of the path in MLP cannot be
applied in the attention layer directly.

In this paper, we answer the above questions positively and investigate the invariant property of the
attention layer. Specifically, we first prove that the attention layer is invariant to a rescaling of weights
and thus show the existence of the Scale-Invariant (SI) property of the attention layer. Second, we define
the scale-invariant variable which we called path of the attention layer and show that the output of the
attention layer can be represented by the path. However, the number of paths is too much to handle and
paths are correlated with each other. Therefore, we formally investigate the path representation of the
attention layer and define the basis paths which is a subset of all paths and is sufficient to represent all other
paths. Leveraging the definition of basis path, we design an Attention Basis Path Identify(ABPI) Method to
identify the basis paths. Third, by using the basis path, we construct the SI space for the attention layer
which is invariant to the rescaling of weights. Finally, we propose to optimize the attention layer directly in
its SI space and conduct several experiments on benchmark datasets to show it can help to obtain the more
effective neural networks with the attention layer.

2. Related Work

Attention mechanism has been proposed in many previous works in the area such as computer vision and
natural language processing[10, 11, 4, 3, 1, 5]. The intuition behind the attention mechanisms is that we
need to weight the relevance of any region of the input and take such a weight into account while extract
information from it for a specific task. Attention mechanisms provide an automatic way for us to calculate
the relevance of the input. The work [10] uses attention structure to help generate the image by dynamically
determining the input region observed by the encoder and the output region modified by the decoder. In
[11], the authors design local and global attention machines for neural machine translation. Both models
yield large gains in the translation results. Also, self-attention has been used successfully in a variety of tasks
including reading comprehension[12], abstractive summarization[13] and learning task-independent sentence
representations[14, 3, 15]. In the work [1], the authors show the power of the attention mechanisms by
defining and using attention layer to achieve state-of-the-art performance in many tasks of natural language
processing. They formally design attention layers. Specifically, it calculates the unnormalized attention
probability which measures the relevance of any tokens of the input sequence and then uses the probability
to combine the information in the input. Many follow-up works[4, 3] also demonstrate the effectiveness of
the attention mechanisms and the attention layer. All of these papers optimize the attention structure using
traditional optimization algorithms in the weight space and ignore the Scale-Invariant (SI) property.

Recently, many works study the scale-invariant property of the weight space in the optimization for
the neural networks with ReLU activations[16, 17, 6, 9, 18]. It is well known that the neural network with
ReLU activations has the Positively Scale-Invariant property. However, the output is scale-invariant while
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the weights are not. This mismatch will make some optimization algorithms in the original weight space
perform badly in some cases. [16] proposes to adjust the optimization algorithm to be scale-invariant in
Multi-Layer Perception (MLP) by adding a path-norm regularizer term. [17] does a similar thing in the
recurrent neural network(RNN). In the work [6], the authors investigate the Positively Scale-Invariant space
for the Multi-Layer Perception(MLP) and Convolutional Neural Networks (CNN). It identifies the PSI space
for the MLP and CNN and proposes to optimize the neural networks in its PSI space. Based on the previous
work of PSI space, in [9], the authors design a path norm in the PSI space of MLP and CNN and prove its
relation with the generalization error. However, to the best of our knowledge, there is no work to study the
scale-invariant property of attention layers.

Some other previous works consider the scale-invariant property regarding the input features rather than
the weights of the neural network such as CNN and attention structure [19, 20, 21, 22]. For example, [19, 20]
mentioned that even though CNN has achieved amazing performance in various computer vision tasks, it has
limited ability to tolerate scale variations of the input image. [21] discusses that the attention layer can be
better suited to handle the scale-invariance problem, the distance between arguments, in NLP compared to
CNN. However, the scale-invariant property investigated in this paper is about the weight of the attention
layer, which means that, no matter what the input looks like, we can apply a certain rescaling transformation
on weights of the attention layer and the output of attention layer will keep the same. Therefore, this
scale-invariant is mostly related to the NN structure and the optimization procedures. It is irrelevant to the
inputs. Although the scale-invariant property with respect to the input feature is an interesting direction, it
is out of the scope of this paper.

3. Preliminary

In this section, we introduce the background of the transformer architecture, the attention layer, and
G-SGD for MLP.

3.1. Introduction to Transformer Architecture
The Transformer architecture is usually developed by stacking the Transformer block[1]. The transformer

block consists of a self-attention sub-layer, an encoder-decoder-attention sub-layer(in the decoder of the
translation task) and a fully connected sub-layer. An illustration is shown in Figure 1.

The self-attention sub-layer is usually formulated as querying a dictionary with key-value pairs[23, 1]. Q
(Query), K (Key), V (Value) are specified as the hidden representations of the previous layer. Using the
notation, the output of self-attention sub-layer for given input x can be expressed as follows:

Attention(Q,K, V )(x) = softmax(
QK>√
dk

)V (3.1)

Q = x ·WQ (3.2)
K = x ·WK (3.3)

Note that QK> can be viewed as the unnormalized distribution matrix which we called unnormalized
attention probability. One example of the unnormalized attention probability part is shown in Fig 3 The
relative magnitude of each element on the i-th row of QK> measures the contribution of each row in the V
matrix with respect to the i-th row output matrix. dk is the dimension of the keys(K).

The encoder-decoder-attention sub-layer is similar to the self-attention sub-layer. The only difference is
that the Q (Query), K (Key) are calculated by using the output of the encoder and V (Value) is calculated
by using the output of the previous layer in the encoder-decoder-attention.

After the attention sub-layer, there is a fully connected sub-layer. It can be expressed by

FFN(x) = W2max(W1x+ b1, 0) + b2 (3.4)

3



Figure 1: An illustration of Transformer architecture.

There are layer normalization[24] and residual connection[25] after the attention sub-layer and the fully
connected sub-layer.

In the following context, we use the following notations in Table 1:

Table 1: Notation

notation meaning
s sequence length
d1 input embedding dimension
d2 hidden dimension

Thus, the dimension of input data x is s × d1. The dimensions of weight for both Q and K matrix
WQ,WK are d1 × d2. We use the subscript to denote the index of the element in the matrix. For example
xac denote the element in the row a and column c in the input x which is the element in the sequence a and
dimension c of input x.

3.2. Path Space of MLP with ReLU Activations and G-SGD
According to the previous work[16, 6], MLP can be represented by a directed acyclic graph G(V,E). A

path of MLP is defined as a series of edges that connect one input node and one output node. Specifically, if we
use notation Oli to denote the i-th node in the layer l, then we can denote the path as (O0

i0
→ O1

i1
· · · → OLiL).

There are edges between the nodes and the value of path is defined as the product of the weights(the value
of edges) along the path.

vp = Πw∈pw (3.5)

The activation status of one path can be calculated as :

ap = Πoj∈pI(oj > 0), (3.6)
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where oj represent the node which is passed by the path. I is the indicative function.
The output can be computed by using the value of paths, activation status, and the inputs as follows:

Nw(x) =
∑
p

vp · ap · xp (3.7)

Previous works[6] demonstrate that there exists a minimum subset of path, called basis paths, that is sufficient
to represent other paths and independent with each other. We can optimize the MLP by optimizing the value
of basis paths. The general framework to do the optimization in the new parameter space can be formulated
as 4 steps: Back-Propagation, Inverse-Chain-Rule, Path-Value-Update, and Weight-Allocation. Specifically,

(1. Back-Propagation) We first calculate the gradient of weights ∂L
∂w by using traditional BP method.

(2. Inverse-Chain-Rule)Then, considering the value of path is the production of weights, the relation
between the gradient of weights and the gradient of path is clear and we can easily obtain the gradient of
basis path ∂L

∂vp
. Formally, we can solve the following equation to get the gradient of path.

∂L

∂w
=

∂L

∂vp
· ∂vp
∂w

(3.8)

(3. Path-Value-Update)After that, we update the value of basis path by following the negative direction
of the gradient w.r.t. path. Formally,

vt+1
p = vtp − ηt

∂L

∂vp
(3.9)

(4. Weight-Allocation)Finally, since the value of path is the production of weights, we allocate the value
of basis path into the weights for the convenience of the next iteration. Formally, since we already know
wt, vtp, v

t+1
p from the previous calculation, we can get the updated weights wt+1 by solving the following

equation:

Πw∈pw
t+1

Πw∈pwt
=
vt+1
p

vtp
= 1− ηt

∂L

∂vtp
/vtp (3.10)

The optimization process is showing in Figure 2. We detailed introduce the algorithm in Section 5
including the algorithm procedure, the derivation of the algorithm and a simple case illustration.

Figure 2: Framework to do optimization in path space

4. Scale-Invariant Space for Attention Layer

In this section, we investigate the invariant property of the attention layer. Firstly, we prove the existence
of the Scale-Invariant(SI for short) property of the attention layer. The results show that the output of the
attention layer can be calculated by the paths rather than the weight. Secondly, we construct the SI space
of the attention layer by finding the basis path which is the maximal independent path that is enough to
represent other paths.

Firstly, we introduce the Scale-Invariant transformation for the attention layer.
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Definition 1. Assume that Q,K in attention layer is calculated as Q = WQ · x and K = WK · x.
Suppose c1, · · · , cd2 6= 0. We define the rescaling transformation Tc1,··· ,cd2 (WQ,WK) of attention as
Tc1,··· ,cd2 (WQ,WK) = (W ′Q,W

′
K), where WQ′i,·

= WQi,· ◦ [c1, · · · , cd2 ] and WK′i,·
= Wki,· ◦ [1/c1, · · · , 1/cd2 ],

where ◦ is element wise production which is called Hadamard product. WQi,· is the i-th row vector in matrix
WQ.

Proposition 1. The output of the attention layer is invariant under the rescaling transformation
Tc1,··· ,cd2 (WQ,WK).

4.1. Path Representation of Attention Layer
In this section, we will show that the output of the unnormalized attention probability part QK> can

be represented by the path that is invariant to the Scale-Invariant transformation. One illustration of the
unnormalized attention probability part QK> in attention layer is shown in Figure 3.

Figure 3: An Example of Unnormalized Attention Probability Part of Attention Layer

Now, we give an example of the representation of the output of the unnormalized attention probability.

oab =
∑
c

QacK
>
cb (4.1)

=
∑
c

QacKbc (4.2)

=
∑
c

(∑
e

xaeWQec ·
∑
e′

xbe′WKe′c

)
(4.3)

=
∑
c,e,e′

WQecWKe′c︸ ︷︷ ︸
paths

xaexbe′ (4.4)

(4.5)

where a, b ∈ {1, · · · , s}, c ∈ {1, · · · , d2}, e, e′ ∈ {1, · · · , d1}.
We can see that the output of the attention layer is invariant under the rescaling transformation

Tc1,··· ,cd2 (WQ,WK) for any c1, · · · , cd2 .

Definition 2. We define one input node Oin as the quadratic term constructed by multiplying two elements
in the input data. Define one output node Oout as one element in the unnormalized attention probability part.
A path in the attention layer is the production of the weights that connect one input node and one output
node.
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As an example, in Figure 3, the input data x has shape 3 × 4 with sequence length 3 and dimension
4. {x31x31, x31x32, x31x33, x31x34, · · · } are some input node and {o31, o33, · · · } are some output node. The
production of the left red weight in WQ and the left red weight in WK connect the input node x31x31 and
the output node o33 and thus is a path.

Until now, we have shown that the attention layer does have SI property and the output of the attention
layer can be expressed by the path rather than the weights of Q and K. Obviously, the number of paths is
much more than the number of weights and are correlated with each other.

The next proposition shows the number of paths.

Proposition 2. Recall the notations in Table 1 in preliminary section. The number of paths is #(paths) =
s× s× d1 × d1 × d2 and the number of weights is #(weights) = 2× d1 × d2.

From the above proposition, we know that there are a large number of paths and one natural question is
whether these paths are independent with each other. If the answer is no, can we use much less number of
path to express these correlated paths? We will discuss this topic in the following.

4.2. Basis Path of Attention Layer
The following examples show that the paths are not independent with each other. Some paths can be

calculated by other paths. Moreover, the number of paths is related not only to the network structure but
also to the data.

Example 1. For example, consider the case that the sequence length is 2, the embedding dimension is 2 and
the attention hidden size is 1. There are 16 input nodes:

x11x11, x11x12, x11x21, x11x22, · · · , x22x11, x22x12, x22x21, x22x22.

There are 4 weights: 2 in WQ and 2 in WK . The size of WQ and WK are both 2× 1. The number of paths is
4. They are

p1 = WK11
WQ11

, (4.6)
p2 = WK11

WQ21
, (4.7)

p3 = WK21
WQ11

, (4.8)
p4 = WK21

WQ21
. (4.9)

The size of output is 2× 2, we can calculate the output by using the paths and the inputs. It is easy to verify
that p4 = p2∗p3

p1
.

As we can show, paths are correlated with each other, and their number is even related to the data.
So, optimizing all the paths directly is incorrect. To leverage the benefit of the SI property of the path
representation and optimize the attention layer in its SI space directly, we need to investigate the correlation
among the value of paths and find the basis path. The basis path is a set of paths that is independent with
each other and is sufficient to represent other paths.

To formally describe the basis path, we introduce the definition of structure vectors and structure matrix
which are motivated by Meng et al.[6].

Definition 3. Structure vector of a path p is a vector Cp = (c1p, · · · , cmp ), where cmp is 1 if the path p passes
the weight m and otherwise 0. m is the number of parameters in WQ and WK . Structure matrix is defined
as the concatenation of all the structure vectors(column vectors). The size of the structure matrix is m times
the number of paths.

Using the definition of structure vectors and structure matrix, we can now define the basis path.

Definition 4 (Basis Paths in Attention Layer). A set of paths Pb in the attention layer are called basis
paths if their corresponding structure vectors compose the maximal linear independent group of the column
vectors in the structure matrix.
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In Example 1, if we arrange the order of weights in the expression of structure vector as
WK11 ,WK12 ,WQ11 ,WQ21 , the structure vectors of {p1, p2, p3, p4} can be listed as

Cp1 = (1, 0, 1, 0)

Cp2 = (1, 0, 0, 1)

Cp3 = (0, 1, 1, 0)

Cp4 = (0, 1, 0, 1).

The basis path can be selected as {p1, p2, p3} since the structure vectors Cp1 , Cp2 , Cp3 compose the maximal
linear independent group of the four structure vectors.

The next proposition shows that the basis paths have some nice properties. Specifically, the basis paths
are the smallest subset of all paths that can represent all paths. Through the theorem, we know that we can
directly optimize the basis path without losing any information.

Proposition 3. (1)Any path p ∈ P can be represent by the basis paths in Pb with non-all-zero coefficients
α = (α1, α2, · · · , αz) as p = Πjp

αj

j , where z is the number of the basis path. (2) Any basis path in Pb cannot
be represented by other other basis paths. In other words, for ∀i ∈ {1, · · · , z} there are no non-all-zero
coefficients α = (α1, · · · , αi−1, αi+1, · · · , αz) that pi = Πj 6=ip

αj

j .

4.3. Attention Basis Path Identify(ABPI) Method
In this section, we design an efficient method called Attention Basis Path Identify(ABPI) Method(Algorithm

1) to identify the basis paths.
In general, the method selects the basis path according to the following principle.
(1) For the attention layer, we first select the skeleton weights. For each column in WQ and WK weight

matrix, we choose one element as the skeleton weights. All other weights are non-skeleton weights.
(2) The path containing at most one non-skeleton weights is the basis path.
As illustrated in Figure 3, the red line is the skeleton weights. The next theorem shows the correctness of

the proposed ABPI algorithm.

Algorithm 1: Attention Basis Path Identification Method
Input: initial WQ,WK , the dimension of weight matrix d1 × d2 , the basis path buffer Pb

1 for t = 1, . . . , d2 do
2 select the element in the t mod d1 row and t columns as the skeleton weights.

WQt mod d1,t
,WKt mod d1,t

;
3 add the path WQt mod d1,t

·WKt mod d1,t
into Pb ;

4 for s = 1, . . . , d1 do
5 if WQs,t is not skeleton weight then
6 add the path WQs,t ·WKt mod d1,t

into Pb
7 end
8 if WKs,t is not skeleton weight then
9 add the path WQt mod d1,t

·WKs,t
into Pb

10 end
11 end
12 end

Output: Pb

Theorem 1. The set of path selected by the ABPI Method are basis paths.

Proof of Theorem 1. According to the ABPI Method, there are some of the basis path that composed of
all skeleton weights(Line 3 in Algorithm 1) and others include one non-skeleton weights (Line 6 and 9 in
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Algorithm 1). So the counting vector of the paths in Pb can be listed as column vectors and expressed by the
form

S =

(
A B
0 C

)
.

For the submatrix A, the rows of A represent the skeleton weight and the columns of A represent the paths
in Pb that composed of all skeleton weights. For the submatrix C, the rows of C represent the non-skeleton
weight and the columns of C represent the path in Pb that includes one non-skeleton weight.

Through the ABPI Method, we know that every non-skeleton weight can only appear on one basis path.
So, C is an identity matrix I. The rank of identity matrix I is the number of the non-skeleton weights.
Therefore, through the row transformation of the matrix, B can be transformed into a zero matrix.

Next, we will show that the rank of matrix A is the number of its columns. According to the ABPI
Method, all skeleton weights will only appear in one of the paths that composed of all skeleton weights.

Until now, we have proved the independent of the columns of the structure vectors for the paths selected
by the ABPI Method. The remaining issue is to prove that other paths can be represented by the path in
Pb. For arbitrary path p that composed of two non-skeleton weights, denote as p = w1

nsw
2
ns. We choose

three paths in Pb denote as p1, p2, p3. p1 and p2 contain one non-skeleton weight w1
ns, w

2
ns of p respectively.

Specifically, denote p1 = w1
nsw

1
s , p2 = w2

nsw
2
s . p3 is the all-skeleton weight path that contain the skeleton

weight in p1 and p2. Specifically, denote p3 = w1
sw

2
s . So path p = w1

nsw
2
ns = p1p2

p3
. Since the path p is

arbitrarily selected, we prove that other paths can be represent by the path in Pb .
Thus, we have shown the independent and maximal property of the path in Pb.

Now, we can identify the basis path efficiently by using the ABPI method. Using the basis path, we can
construct the SI space for the attention layer.

Definition 5. If { p1 · · · , pz } are basis paths, the SI space of the attention layer is the vector space

V := {v = (p1, ·, pz)|v ∈ (R\0)z} (4.10)

The next theorem shows the dimension of the SI space.

Theorem 2. The dimension of the SI space is m-H, where m is the number of parameters in WQ and WK

and H is the number of attention hidden size.

Proof. By definition of the new space is equal to the number of the basis path. According to the proof of the
Theorem 1, we can see that the number of the basis path is the number of the columns of S. The number of
columns of A is the hidden size of the attention layer H. The number of the columns of C is the number of
non-skeleton weights. Note there are 2H skeleton weights in weight matrix Q and K. Therefor, the number
of non-skeleton weights is m− 2H. So the number of basis paths is m−H in total.

5. Experiments

In this section, we conduct experiments to verify our theoretical analysis and show the effectiveness of the
proposed SI space. First, we introduce the optimization algorithms in SI space and present the derivation
method in detail. Second, we show our experiment results together with the experiment settings.

5.1. Optimization algorithms in SI Space – SI-SGD
We leverage the optimization algorithms in SI space proposed in [6], which update the model by doing

Stochastic Gradient Decent according to the gradient value of the basis path in the SI space. After we
identify the basis path using the ABPI method, we can leverage the algorithm to optimize the attention
layer in SI space and we call is SI-SGD.

vt+1
i = vti − ηt

∂L(v)

∂vi
(5.1)
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As showing in Fig 2, we leverage several steps such as Inverse-Chain-Rule and Weight-Allocation proposed
in [6] to do the optimization in the SI-space. The end-to-end update rule is shown in the Algorithm 2.

Please note that SI-SGD only needs a little extra computation cost compared with SGD in weight space.
In the realistic experiment, the extra training time of optimization algorithms in SI space is less than 10%
compare with the traditional optimization algorithms in weight space.

We denote the skeleton weights in weight matrix WQ as wQj
and the non-skeleton weights as wQi

. Denote
the skeleton weights in weight matrix WK as wKj and the non-skeleton weights as wKi . GWQ

and GWK
are

the gradient of weights WQ and WK respectively. ηt is the learning rate at time-step t. {wQi:Kj} is the set
of of non-skeleton weight in WQ that is connected with the skeleton weight wKj

. Also, we denote the basis
path that composed of all skeleton weights as ps(Line 3 in Algorithm 1). We denote the rest basis path in
Line 6 and 9 of Algorithm 1 as pQns

and pKns
respectively ( Subscript Q or K is according to the location of

the non-skeleton weight of this basis).

Algorithm 2: SI-SGD for attention layer
Input: weights of attention layer WQ,WK , data X,Y , loss function loss, learning rate η

1 for i = 1 · · · d2 do
2 For WQ, select the element in the i mod d1 row and t columns (WQi mod d1,i

) as the skeleton
weights.

3 For WK , select the element in the i mod d1 row and t columns (WKi mod d1,i
) as the skeleton

weights.
4 Initialize all the skeleton weight as 1.
5 end
6 t = 0;
7 repeat
8 t = t +1 ;
9 Sample a batch of data (x, y), compute the loss function l = loss(F (x,WQ,WK), y) ;

10 Using Backpropagation to calculate the gradient w.r.t the weight: GWQ
, GWK

= BP (l,WQ,Wk) ;
11 ## Calculate the gradient w.r.t. basis path by using Inverse-Chain-Rule :

Gps = Gwt
Qj
−
∑
wKi

:Qj

Gwt
Ki

·wt
Ki

wt
Qj

;

12 GpQns
= GwQi

;
13 GpKns

= GwKi
/wQj :Ki ;

14 ## Calculate the Update Ratio :
15 R(ps) = 1− ηtGps/wQj

16 ## Weight-Allocation and update weight matrices as :
17 wt+1

Qj
= wtQj

·R(ps)

18 wt+1
Qi

= wtQi
− ηtGwQi

19 wt+1
Kj

= wtKj

20 wt+1
Ki

=
wt

Ki
−ηtGpKns

R(ps)

21 until stopping criterion is satisfied ;
Output: Weights of Attention Layers WQ,WK

Here, we review the derivation of the Inverse-Chain-Rule and Weight-Allocation which are previously
designed in the work [6]. Before we fall into the detailed math, we first illustrate the algorithms in a simple
case.

Consider a simple attention layer with d1 = 2 and d2 = 1. Then the shapes of weight matrix WQ and
WK are both 2× 1. See the Figure 4 for an example.

According to the Line 1 - 4 in the algorithms 2, we select the WQ11 ,WK11 as the skeleton weights.

10



Figure 4: An example of attention layer

According to the Theorem 2, there are 4− 1 = 3 basis paths :

pb1 = ps = WQ11 ×WK11 (5.2)
pb2 = pKns = WQ11 ×WK12 (5.3)
pb3 = pQns = WQ12 ×WK11 (5.4)

(5.5)

Assume the gradients of each weight are GQ11 , GQ12 , GK11 , GQ12 Execute the Algorithm 2 into line 11,
we can get the gradient for the basis paths.

Gps = GQ11 −
GK12 ×WK12

WQ11

(5.6)

GpKns
= GK12

/WQ11
(5.7)

GpQns
= GQ12

(5.8)

Execute the Algorithm 2 into line 13, we can get the update ratio for the skeleton basis paths.

R(ps) = 1− ηtGps/WQ11 (5.9)

Execute the Algorithm 2 from line 15 to line 18, we can get the update rule for all weights relatively.

WQ11
= WQ11

×R(ps) (5.10)
WQ12

= WQ12
− ηtGQ12

(5.11)
WK11

= WK11
(5.12)

WK12 =
WK12−ηtGkns

R(ps)
(5.13)

Until now, we have finished one round of optimization. And the next step is to do forward and backward
pass to get the new gradient of weights and repeat the above procedure.

In the following, we formally show the derivation of the Inverse-Chain-Rule and the Weight-Allocation
method.

Inverse-Chain-Rule calculates the gradient of the basis path by using the gradients of wights.

(
∂L

∂w1
, · · · , ∂L

∂wm

)
=

(
∂L

∂vp1
· · · ∂L

∂vpm−H

)
·


∂vp1
∂w1

· · · ∂vp1
∂wm

...
. . .

...
∂vpm−H

∂w1
· · · ∂vpm−H

∂wm

 (5.14)
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Solving this equation, the gradients w.r.t basis paths can be derived as:

Gps = Gwt
Qj
−

∑
wKi

:Qj

Gwt
Ki
· wtKi

wtQj

(5.15)

GpQns
= GwQi

(5.16)

GpKns
= GwKi

/wQj :Ki
(5.17)

Weight-Allocation project the update on basis paths back to the updates of weight.

pts − η ∂L∂pts
pts

=

(
pt+1
s

pts
, R(ps)

)
=
wt+1
Qj
· wt+1

Kj

wtQj
· wtKj

(5.18)

ptKns
− η ∂L

∂ptKns

ptKns

=

(
pt+1
Kns

ptKns

, R(pKns)

)
=
wt+1
Qi
· wt+1

Kj

wtQi
· wtKj

(5.19)

ptQns
− η ∂L

∂ptQns

ptQns

=

(
pt+1
Qns

ptQns

, R(pQns
)

)
=
wt+1
Qj
· wt+1

Ki

wtQj
· wtKi

(5.20)

Solving this equation, the update rule for weight can be derived as:

wt+1
Qj

= wtQj
·R(ps) (5.21)

wt+1
Qi

= wtQi
− ηtGwQi

(5.22)

wt+1
Kj

= wtKj
(5.23)

wt+1
Ki

=
wtKi
− ηtGpKns

R(ps)
(5.24)

5.2. Language Modeling
In this section, we optimize the Transformer model for the language modeling tasks. Language modeling

task[26, 27] aims to construct a probability model that approximates the joint probability of sequences of
words in a language. Specifically, given a corpus of tokens(a sentence) x = (x1, x2, · · · , xT ), we need to
estimate the joint probability P (x) = ΠT

t=1p(xt|x<t). Language model has many successful applications such
as natural language generation[28, 29] and unsupervised pretraining [30, 3]. In this experiments, we use the
Transformer model with attention layers to approximate the joint probability.

We consider three datasets: word-level Penn Treebank dataset(PTB)[31], Wikitext-2 datasets[32],
character-level Penn Treebank dataset(PTBc). The first two datasets are word level. The PTB dataset
consists of 929K training words, 73K validation words, and 82K test words. It has 10k words in its vocabulary.
Wikitext-2 is roughly twice the size of PTB dataset, with 2 million training words, 218k validation words,
245k test words and a vocab size of 33k. The last dataset is character level. The PTBc dataset consists
of 5017k training character, 393k validation character, and 442k test character. It has 50 alphabets in its
vocabulary.

For all tasks, we train an n(n ∈ {1, 3, 6}) layer Transformer model with attention embedding size 256 and
MLP layer embedding size 512. The attention heads are 4. The sequence length is 1024 tokens. we apply
the dropout trick with probability 0.1. We train each model 250 epochs. We decay the learning rate at 100
and 200 epochs by factor 0.1. We construct SI space for the model and optimize the model in its SI space
directly. We choose SGD in weight space as a baseline. We search the learning rate from { 5 4, 3, 2, 1, 0.75,
0.5, 0.25, 0.1 } for both baseline and our method.
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We use the Perplexity(PPL) as the evaluation metric for word-level datasets(PTB and Wikitext-2) and
use bits-per-character(BPC), which is log2 of the Perplexity, of the character-level datasets(PTBc).

We run every experiment for 4 times with different random seeds. The mean values and the standard
deviation values are shown in Table 2 before and after symbol ±. The lower number means better performance.
As we can see, our method performs better compared with the baseline in about all tasks in all settings
which demonstrate that optimize the attention layer in its SI space is better than in weight space.

Table 2: Performance of Language Modeling Tasks

SGD SI-SGD

Wikitext-2
1 123.23±0.36 121.85±0.46
3 112.82±1.18 109.65±2.07
6 103.33±1.11 100.28±0.80

PTB
1 138.54±0.77 137.20±0.73
3 123.22±1.22 121.30±0.71
6 123.45±1.74 121.13±0.48

PTBc
1 2.22±0.002 2.17±0.02
3 1.88±0.01 1.87±0.01
6 1.80±0.01 1.75±0.01

Considering the variance of the experiments, we also implement the 2-sample T-test[33, 34] to verify the
significance of our results by giving a quantitative measure1. The alternative hypothesis is that our result is
significantly better than the baseline method(PPL/PBC is significantly less than the baseline method). We
show P-values in the Table 3. As shown in the table, almost all the P-values are less than significant level
0.05 which means we can accept the alternative hypothesis and our improvement are statistically significant.

Table 3: Performance of Language Modeling Tasks

P-Values

Wikitext-2
1 0.003
3 0.036
6 0.005

PTB
1 0.035
3 0.034
6 0.050

PTBc
1 0.009
3 0.226
6 0.005

5.3. Machine Translation
In this section, we demonstrate the effectiveness of our method on four datasets with different scale:

German to English, Spanish to English, Hebrew to English in IWSLT2014 and English to German in
WMT2014.

Machine Translation task aims to seek a target language translation y′ given source sentence x. Specifically,
the data is sentences pairs (x, y) from two different languages and we need to estimate a probabilistic model
G(y|s) so that we can sample the translation result y′ ∼ G(·|x) from the model. In this experiment, we use
Transformer models with attention layers to model the probabilistic model.

1T-test is most commonly used to determine if the means of two sets of data are significantly different(greater or less) from
each other. We set the null hypothesis as the means are not significantly different from each other and then calculate the
P-value. The P-value is the probability of obtaining the test result assuming that the null hypothesis. If the P-value is less than
a significant level(0.05 is commonly used), we can reject the null hypothesis and accept the alternative hypothesis.
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German to English. There are 160k and 7k sentence pairs in the training and validation datasets. We
follow the same setup in [35] to combine tst2010, tst2011, tst2012, dev2010 and dev 2012 to be our test
data. As a vocabulary, we use a joint source and target vocabulary with 10k sub-word types based on
byte-pair-encoding (BPE)[36].
Spanish to English There are 181k parallel sentence pairs in the training data. tst2013 is used as the
validation data and tst2014 is used as the test data. The vocabulary is the same as the previous one.
Hebrew to English There are 181k parallel sentence pairs in the training data. tst2013 is used as the
validation data and tst2014 is used as the test data. The vocabulary is the same as the previous one.
English to German The training data contains 4.5M sentences pairs. We combine newstest2012 and
newstest2013 as the validation data and combine newstest2014 as test data. We use 40k sub-word types
based on BPE.

For the former three IWSLT2014 datasets, we use the Transformer architecture with 6 layers for both
encoder and decoder. The hidden size of attention and MLP layer is 512 and 1024 respectively. The head
for the multi-head attention is 4. For the last WMT2014 datasets, we use the default transformer_big
configuration with 6 layers for both encoder and decoder. the hidden size of attention and MLP layer is 1024
and 4096 respectively. The evaluation metric is BLEU score [37].

We choose commonly used Adam optimizer in these tasks as our baseline[38, 1]. To accelerate training,
we heuristically modify our optimization algorithm in SI space into the Adam-like algorithms(Denoted
as SI-ADAM). Specifically, we accumulate the gradient of basis path in the SI space and apply Adam
formulations in the SI space when updating the basis path value.

We apply our SI-ADAM method on the attention layer in encoder, decoder and both encoder-decoder.
The result is shown in Table 4.

Table 4: BLEU score of machine translation tasks

IWSLT WMT
de → en es → en he → en en → de

Adam 34.79 41.58 33.64 28.40
SI-ADAM(decoder-attention) 35.33±0.12 41.84±0.12 34.21±0.37 29.05±0.11
SI-ADAM(encoder-attention) 34.28 40.96 33.30 26.55

SI-ADAM(all-attention) 34.73 41.05 33.41 26.86

The baseline we list in the Table 4(results of Adam method in the first line) is from the previous paper
[39, 1]. We can observe in the Table 4, optimize the decoder of the Transformer model in the SI space can
achieve better performance compared to traditional optimization algorithms in all datasets. Specifically, in
large size WMT datasets, we improve the BLEU score by 0.65 points on average. In middle size IWSLT
datasets, we improve the BLEU score by 0.57, 0.26, 0.54 points on average respectively. Note that optimizing
the encoder of the Transformer model will not lead to a good result. This may because the SI-ADAM
algorithm is just heuristic, a more appropriate ADAM-like algorithm in SI space is needed for better
performance. Since this work is focused on the SI space for the attention layer rather than designing the
optimization algorithms in SI space, we leave it for future work.

To verify the significance of our improvements, we repeat the SI-ADAM algorithms for 4 times to calculate
the variance of the experiment results. The standard deviation is also shown in the table after the ± symbol.

Besides, we apply the one-sample T-test[33, 34] to give a quantitative measure of how our improvement
is significant. The alternative hypothesis is our improvement is significantly larger than 0. P-Values is shown
in the table 5. We can see that all the P-Values are less than 0.05 which means we can accept the alternative
hypothesis. In other words, our results are statistically significant.

6. Conclusion

In this paper, we investigate the scale-invariant property of the attention layer and demonstrate the
advantage of optimizing the attention layer in the new space. First, we prove that there exists the Scale
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Table 5: P-value of machine translation tasks

IWSLT WMT
de → en es → en he → en en → de

P-Value 0.003 0.018 0.038 0.0009

Invariant (SI for short) property in the attention layer. Then, we introduce the path representation for
the attention layer and formally investigate the path representation. After that, we define the basis path
and propose an efficient Attention Basis Path Identification Method to identify the basis path. Using the
definition of basis path, we construct the SI space for the attention layer. Finally, we propose to optimize
the attention layer in the SI space by using the SI-SGD algorithms and conduct several experiments on
benchmark datasets. The results demonstrate the correctness of the proposed SI space and the effectiveness
of optimizing the attention layer in its SI space. In the feature, we plan to investigate other properties of the
attention layer by using the path view such as the interpretability of the attention layer.
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7. Appendix

7.1. Proof of Proposition 3
Proof. We denote the structure vectors of basis paths as Cp1 , · · ·Cpz . Note that these vectors compose the
maximal linear independent group of the structure matrix according to the definition. Now, we need to verify
the two conclusions.

(1) For arbitrary path p ∈ P it has the corresponding counting vecctor Cp. Cp can be represented by the
maximal linear independent group vector as Cp =

∑z
i=1 αiCpi . So the path can be represented by the basis

path as

p = Πm
j=1w

Cp,j
j (7.1)

= Πm
j=1w

∑z
i=1 αiCpi,j

j (7.2)

= Πz
i=1

(
Πm
j=1w

Cpi,j

j

)αi

(7.3)

= Πz
i=1p

αi
i (7.4)

(2) We proof by contradiction. Without loss of generality, we consider the path p1 and its counting vector
Cp1 . Assume there exist non-all-zero coefficients {α2 · · ·αz} that can represent p1 as p1 = Πz

i=2p
αi
i . We can

get that

left = p1 = Πm
j=1w

Cp1,j

j (7.5)

right = Πz
i=2p

αi
i = Πz

i=2(Πm
j=1w

Cpi,j

j )αi = Πm
j=1w

∑z
i=2 αiCpi,j

j (7.6)

Therefore, we can get Cp1,j =
∑z
i=2 αiCpi,j . it is opposite to the assumption that the set of structure vectors

compose the maximal linear independent group of the structure matrix.
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