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Abstract

Reinforcement Learning (RL) technologies are powerful to learn how to interact with environments and have been
successfully applied to various important applications. Q-learning is one of the most popular methods in RL, which
leverages the Bellman equation to update the Q-function. Considering that data collection in RL is both time and cost
consuming and Q-learning converges slowly, different kinds of transfer RL algorithms are designed to improve the
sample complexity of the new tasks1. However, most of the previous transfer RL algorithms are similar to the transfer
learning methods in deep learning and are heuristic with no theoretical guarantee of the convergence rate. Therefore,
it is important for us to clearly understand how and when will transfer learning help RL method and provide the
theoretical guarantee for the improvement of the sample complexity. In this paper, we rethink the transfer Rl problems
in the RL perspective and propose to transfer the Q-function learned in the old task to the target Q-function in the
Q-learning of the new task. We call this new transfer Q-learning method target transfer Q-Learning (abbrev. TTQL).
The transfer process is controlled by the error condition which can help to avoid the harm to the new tasks brought
by the transferred target. We design the error condition in TTQL as whether the Bellman error of the transferred
target Q-function is less than the current Q-function. We show that TTQL with the error condition will achieve a
faster convergence rate than Q-learning. Our experiments are consistent with our theoretical results and verify the
effectiveness of our proposed target transfer Q-learning method.
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1. Introduction

Reinforcement Learning (RL) [1] technologies are powerful to learn how to interact with environments and have
been successfully applied to variants of important applications, such as robotics, computer games and so on [2, 3, 4, 5].

Q-learning [6] is one of the most popular RL algorithms that uses temporal difference method to update the Q-
function. To be specific, Q-learning uses the Bellman equation to update the Q-function where the temporal difference
is calculated using the current Q-function and the Q-function obtained by Bellman operator. Since Bellman operator
is a contractive mapping, Q-learning will converge to the optimal Q-function [7]. Comparing to supervised learning
algorithms, Q-learning converges much slower due to interactions with the environment. At the same time, the data
collection is both very time and cost consuming in RL. Thus, it is crucial for us to utilize available information to save
the sample complexity of Q-Learning.

Transfer learning aims to improve the learning performance on a new task by using knowledge/model learned
from old tasks. Transfer learning has a long history in supervised learning [8, 9, 10]. Recently, by leveraging the
experiences from supervised transfer learning, researchers developed different kinds of transfer learning methods for
RL, which can be categorized into three classes: (1) instance transfer in which old data will be reused in the new task

1In order to avoid confusion, we use "old/new tasks" instead of "source/target tasks" in this paper.
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[11, 12]; (2) representation transfer such as reward shaping and basis function extraction [13]; (3) parameter transfer
[14] in which the parameters of the old task will be partially merged into the model of the new task. While supervised
learning is a pure optimization problem, reinforcement learning is a more complex control problem. To the best of our
knowledge, most of the existing transfer reinforcement learning algorithms follow the similar schema of the traditional
transfer learning in deep learning and are heuristic with no theoretical guarantee of the convergence rate [15, 16, 17].
As mentioned by [18], the transfer learning method potentially does not work or even harm the new tasks and we do
not know the reason since the absence of the theory. Therefore, it is very important for us to clearly understand how
and when transfer learning will help reinforcement learning save sample complexity.

In this paper, we design a novel transfer learning method for Q-learning from the RL perspective rather than just
borrow the methods from transitional transfer learning in deep learning. In addition, we provide theoretical guarantees
for the novel transfer Q-learning method. Different from the existing transfer RL algorithms, we propose to transfer
the Q-function learned in the old task as the temporal difference update target of the new task. The transfer process
is controlled by the error condition. We call this new transfer Q-learning method target transfer Q-learning. The
intuition is that when the two RL tasks are similar to each other, their optimal Q-function will be similar which means
the transferred target is better (more close to the optimal Q-function than the current Q-function). Combining it with
that a better target Q-function in Q-learning will help to accelerate the convergence, we may expect that the target
transfer Q-learning method will outperform the Q-learning. Intuitively, how larger improvement of target transfer
Q-learning with error condition can be achieved depends on the MDPs of the two tasks. However, the intuition cannot
tell us more about when to implement the transferred Q-function and how will target transfer Q-learning achieve faster
convergence rate compared with Q-learning.

To answer these questions, we analyze the convergence of target transfer Q-learning and prove its convergence
rate. Specifically, we prove that the error of target transfer Q-learning consists of two parts: the initialization error and
the sampling error. For a new task with fixed discounted factor γ, both of the errors are increasing with the relative
Q-function error ratio β (error ratio for simplicity) which reflects whether the target Q-function is closer to the optimal
Q-function in the new task or not compared with the current Q-function. The smaller the error ratio is, the closer target
Q-function is to the optimal Q-function, and the faster the convergence rate is. Furthermore, if the error ratio is smaller
than 1 in each update step, the target transfer Q-learning will converge faster than Q-learning.

Based on the convergence rate analysis, we design error condition for target transfer Q-learning as whether the
error ratio is smaller than 1. Specifically, in each step, we transfer old task learned Q-function as the target if it will
lead the error ratio β smaller than 1. If not, we clip the error ratio β to be 1 by still using the current Q-function as the
target. Because the optimal Q-function in the error ratio cannot be obtained, we estimate the error ratio using the ratio
of the Bellman error, which is a standard way in Q-learning.

Our experiments on different kinds of tasks fully support our convergence analysis and verify the effectiveness of
our proposed target transfer Q-Learning with error condition.

The paper is organized as follows: In Section 2, we discuss the related works and review the background of
Q-learning. In section 3, we present the Target Transfer Q-Learning ( TTQL ) intuitively and show the intuition
behind the proposed method. In Section 4, we theoretically analyze the TTQL. We show the influence factor of the
convergence rate of the TTQL and design error condition which is one of the key components of the TTQL method
from the theoretical view. In section 5, we discuss the practical designing of the error condition. In section 6, we show
the experiment results to verify the theoretical results and the effectiveness of our proposed algorithms. Finally, we
conclude this paper in Section 7.

2. Preliminary

2.1. Related works
Transfer Learning in RL [16, 17] aims to improve learning in the new MDP task by borrowing knowledge from

a related but different learned MDP task. In paper [19], the authors propose to use instance transfer in the Transfer
Reinforcement Learning with Shared Dynamics (TRLSD) setting in which only the reward function is different between
MDPs. In paper [20], the authors propose to use the representation transfer to learn the invariant feature space. The
papers [21, 14] propose to use the parameter transfer to guide the exploration or to initialize the Q-function of the new
task directly. In paper [22], the authors propose to use the meta-learning method to do transfer learning in RL. All
these works are empirically evaluated and have no theoretical analysis for the convergence rate.
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There are few works that have the convergence analysis. In paper [13], the authors use the representation transfer
but only consider the special TRLSD setting. [12] proposes a transfer method based on instance transfer. They give
the theoretical analysis of the asymptotic convergence without a finite sample performance guarantee. [23] proposes
to transfer the Q-function learned from the old tasks directly to the new tasks using the variational method under the
Bayesian setting. All these transfer reinforcement learning methods are similar to the transfer learning methods in deep
learning and less involve the reinforcement learning algorithms such as Temporal-Difference update.

The proposed TTQL method can be naturally applied to the single agent reinforcement learning domains such as
computer games[3], robotics[24], decision support system[25] and so on. Furthermore, recently, there have been many
works that extend the traditional RL problems and methods to the multi-agent systems[26, 27, 28, 29]. Multi-agent
systems are widely used in several domains, including robotics teams, distributed optimal control, multi-player games
and so on [30, 31, 32, 33]. Transfer learning problems in multi-agent systems can be divided into two categories. Our
method can be extended to multi-agent systems for the first type of problems that reusing the knowledge learned from
the previous tasks. Another interesting problem of transfer learning in the multi-agent system is how one agent transfers
the learned knowledge to another agent[34]. It is non-trivial and left for future work.

2.2. Q-Learning Background

Consider the reinforcement learning problem with Markov decision process (MDP) M , (S,A, P, r, γ). S is the
state space, A is the action space, P = {P as,s′ ; s, s′ ∈ S, a ∈ A} is the transition matrix and P as,s′ is the transition
probability from state s to state s′ after taking action a, r = {r(s, a); s ∈ S, a ∈ A} is the reward function and r(s, a)
is the reward received at state s if taking action a. γ ∈ (0, 1) is the discount factor. We use π : A × S → [0, 1] to
denote the policy which is the probability to take each action at each state. Value function for policy π is defined
as: V π(s) , E [

∑∞
t=0 γ

tr(st, at)|s0 = s, π]. Action value function is also called Q-function which is defined as:
Qπ(s, a) , E [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a, π] . The optimal policy is denoted as π∗ and its corresponding value
function and Q-function are denoted as V ∗M (s) and Q∗M (s, a) respectively.

As we know, the Q-function in RL satisfies the following Bellman equation:

Qπ(s, a) = r(s, a) + γE ã∼π(a|s)
s′∼P (s′|s,a)

[Qπ(s′, ã)|st = s]

We denote the right hand side(RHS) of the above equation as TπQπ(s, a) and Tπ is called Bellman operator for
policy π. Similarly, consider the optimal Bellman equation:

Q∗(s, a) = r(s, a) + γE ã∼π(a|s)
s′∼P (s′|s,a)

[Q∗(s′, ã)|st = s] (2.1)

The RHS of the equation has been denoted as TπQπ(s, a) and T ∗ is called optimal Bellman operator. It can be
proved that the optimal Bellman operator is a contraction mapping for the Q-function. We know that there is a unique
fix point which is optimal Q-function by contraction mapping theorem. Q-learning algorithm is designed by the above
theory. Watkins introduced the Q-learning algorithm to estimate the value of state-action pairs in discounted MDPs [6]
using the following update rule:

Qt+1(s, a) = (1− αt)Qt(s, a) + αt

(
rt(s, a) + γmax

ã
Qt(s

′, ã)
)

In the following, we will use Q to denote Q(s, a) if omit (s, a) will not cause misunderstanding.
Similar to many previous work[35, 36], we use ‖Q−Q∗‖∞ to measure the quality of Q-function and denote it as

MNE: MNE(Q) = ‖Q−Q∗‖∞ = maxs,a |Q(s, a)−Q∗(s, a)|.

3. Target Transfer Q-Learning

First of all, we formalize transfer learning in the RL problem. Secondly, we propose our new transfer Q-learning
method Target Transfer Q-Learning (TTQL) and introduce the intuition.
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Transfer Learning in RL[16, 17] aims to improve learning in the new MDP task by borrowing knowledge from a
related but different learned MDP task.

According to the definition of MDPs: M , (S,A, P, r, γ), we consider the situation that two MDPs are different
in the transition probability P , the reward function r and the discount factor γ. The assumptions we used in our paper
are standard assumptions to analyze theory in transfer RL, which are also widely used in other related works in transfer
RL on both experimental and theoretical point of view [19, 13, 37].

Assume there are two MDPs: old MDP M1 = (S,A, P1, r1, γ1) and new MDP M2 = (S,A, P2, r2, γ2) and Q∗1
and Q∗2 are the corresponding optimal Q-functions. Let M1 be the old MDP and we have already learned the Q∗1.
The goal of transfer in RL considered in this work is how we can use the information of M1 and Q∗1 to achieve an
improvement of learning speed in M2.

To solve the problem mentioned above, we propose to use TTQL method. TTQL uses the Q-function learned from
the old task as the target Q-function (refer to Algorithm 1) in the new task with error conditions. The error condition
ensures that the transferred target only appears if it can help to accelerate the training. Otherwise, we will replace it with
the current Q-function in the learning process of the new MDP. We describe the TTQL in Algorithm 1. The designing
of error-condition is analyzed in Section 5 and the conclusion is shown in the Theorem 4. Detailed discussion is put
in Section 6.

Algorithm 1 Target Transfer Q Learning

Input: initial Q-function Q0 , old task learned Q-learning Q∗old, total step n
1: for t = 1, . . . , n do
2: αt = 1

t
3: flag = error-condition(Q∗old, Qt−1(·, ·))
4: if flag = True then
5: Qtarget = Q∗old
6: else
7: Qtarget = Qt−1
8: end if
9: for s ∈ S, a ∈ A do

10: Qt(s, a) = (1− αt)Qt−1(s, a) + αt (r(s, a) + γmaxãQtarget(s
′, ã))

11: end for
12: end for
Output: Qt

The intuitive motivation is that when the two RL tasks are similar to each other, their optimal Q-function will be
similar. Thus the transferred target is better ( the max norm error is smaller than the current Q-function ) and the better
target can help to accelerate the convergence.

We define the distance between two MDPs as ∆(M1,M2)

∆(M1,M2) = max
s,a
|Q∗1(s, a)−Q∗2(s, a)|.

The following Proposition 1 shows the relation between the distance of two MDPs and the components of two
MDPs

Proposition 1. Suppose that there are two MDPs, M1 = (S,A, P1, r1, γ1) and M2 = (S,A, P2, r2, γ2), Let the
corresponding optimal Q-functions be Q∗1 and Q∗2, then we have

∆(M1,M2) = ‖Q∗1 −Q∗2‖∞ ≤ ∆̃(M1,M2) (3.1)

,
‖r1 − r2‖∞

1− γ′
+
γ′′‖r′‖∞
(1− γ′′)2

‖P1 − P2‖∞ +
|γ1 − γ2|

(1− γ1)(1− γ2)
‖r′′‖∞.
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for ∀(γ′, γ′′, r′, r′′) ∈ Ω, where Ω is the set of available combination of the (γ1, γ2, r1, r2).

Proof. Without loss of generality, we assume γ1 ≤ γ2, ‖r2‖∞ ≤ ‖r1‖∞. We will show that other cases can be proved
similarly. We define the following auxiliary MDPs: M̂3 = (S,A, P1, r2, γ1), M̂4 = (S,A, P2, r2, γ1), and let the
corresponding optimal Q-functions be Q∗3 and Q∗4. We have

‖Q∗1 −Q∗2‖∞ (3.2)
= ‖Q∗1 −Q∗3 +Q∗3 −Q∗4 +Q∗4 −Q∗2‖∞ (3.3)
≤ ‖Q∗1 −Q∗3‖∞ + ‖Q∗3 −Q∗4‖∞ + ‖Q∗4 −Q∗2‖∞. (3.4)

Notice that in each term, two MDPs are only different in one component. Using the results of [38], we have that
‖Q∗1 −Q∗3‖∞ ≤

‖r1−r2‖∞
1−γ1 , ‖Q∗3 −Q∗4‖∞ ≤

γ1‖r2‖∞
(1−γ1)2 ‖P1 −P2‖∞, ‖Q∗4 −Q∗2‖∞ ≤

|γ1−γ2|
(1−γ1)(1−γ2)‖r2‖∞. Combining

the above upper bound and set γ′ = γ1, γ
′′ = γ1, r

′ = r2, r
′′ = r2, we can get the in-equation (3.1).

In other situation, we can construct auxiliary MDPs like above and use the similar procedure to prove the theorem.
After traversing all the available combinations of the (γ1, γ2, γ1, γ2), we can prove the Proposition 1

By the Proposition 1, we can conclude that if the two RL tasks are similar, in the sense that the components of two
MDPs are similar, the learned Q-function in the old task will be close to the optimal Q in the new task. A question is
that when to transfer the target will have a performance guarantee. Here, we need error conditions that help to avoid
harm to the new tasks and thus ensure the convergence of the algorithm. We can now heuristically relate it to the
distance between two MDPs and the current learning quality. The concrete definition of the error condition needs to be
further investigated through quantified theoretical analysis, and we present these results in the following section.

4. Convergence Rate of TTQL

In this section, we present the analysis of the convergence rate of the Target Transfer Q-Learning (TTQL) and make
discussions on the key factors that influence the convergence. Theorem 1 shows the convergence of the target transfer
method. Theorem 2 and 3 show two key factors of the convergence rate. Theorem 4 summarizes the convergence
rate for the TTQL. Through the theorem, we can conclude that (1) The distance between two MDPs influences that
convergence rate. (2) TTQL method does converge with the error condition. (3) TTQL method converges faster than
traditional Q-learning.

First of all, We analyze the convergence rate for the target transfer method which is

Qn+1(s, a) = (1− 1

n
)Qn(s, a) +

1

n

(
r(s, a) + γmax

ã
Qtarget(s

′, ã)
)
.

We denote the error ratio βn =
MNE(Qtarget)

En
.For simplicity, we sometimes use β to denote the error ratio if we do not

specify the learning steps n and denote En = MNE(Qn). Without loss of generality, we assume that all the rewards
lie between 0 and 1. All the results in the paper holds for bounded rewards only with minor modifications.

Theorem 1. The Q-function is update by the above update role. Then if 0 ≤ βn ≤ 1, with probability 1− δ we have

En ≤ αnE1︸ ︷︷ ︸
initialization error

+

√
ln 1/δ

∑n−1
k=0 w

2
k(βn−k:n)

2︸ ︷︷ ︸
sampling error

.

where wk(βn−k:n) =
∏n−1
i=n−k(i+γβi)∏n

i=n−k i
, αn =

∏n−1
i=1 (i+γβi)∏n

i=2 i
.

Before showing the proof of Theorem 1, we first introduce a modified Hoeffding inequality which bounds the
distance between the weighted sum of the bounded random variables and its expectation.
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Lemma 1. Let a < xi < b in probability 1 , Sn =
∑n
i=1 wixi, then with probability at least 1− δ we have

Sn − E[Sn] ≤

√√√√1

2
log

1

δ

n∑
k=1

w2
k(b− a)2. (4.1)

Proof. We first prove the inequality P (Sn − E[Sn] ≥ ε) ≤ exp
(
− 2ε2∑n

k=1 w
2
k(b−a)2

)
For s, ε ≥ 0, Markov’s inequality and the independence of xi implies

P (Sn − E [Sn] ≥ ε) (4.2)

= P
(
es(Sn−E[Sn]) ≥ esε

)
(4.3)

≤ e−sεE
[
es(Sn−E[Sn])

]
(4.4)

= e−sεE
[
es(

∑n
i=1 wixi−E[

∑n
i=1 wixi])

]
(4.5)

= e−sε
n∏
i=1

E
[
eswi(xi−E[xi])

]
(4.6)

≤ e−sε
n∏
i=1

e
s2w2

i (b−a)
2

8 (4.7)

= exp

(
−sε+ 1

8s
2(b− a)2

n∑
i=1

w2
i

)
. (4.8)

Now we consider the minimum of the right hand side of the last inequality as a function of s, and denote

g(s) = −sε+ 1
8s

2(b− a)2
n∑
i=1

w2
i

Note that g is a quadratic function and achieves its minimum at s = 4ε
(b−a)2

∑n
i=1 w

2
i

, Thus we get

P (Sn − E [Sn] ≥ ε) ≤ exp
(
− 2ε2∑n

k=1 w
2
k(b− a)2

)
(4.9)

We can easily obtain the second part of the Lemma 1 by inverse the inequality.

Proof of Theorem 1. Our analysis are derived based on the following synchronous generalized Q-learning setting.
Comparing with the traditional synchronous Q-learning 2, we replace the target Q-function by the independent
Q-function Q′(s, a) rather than the current one Qn(s, a).

∀s, a : Q0(s, a) = q(s, a)

∀s, a : Qn(s, a) =

(
n− 1

n
)Qn−1(s, a) +

1

n

(
r(s, a) + γmax

ã
Q′n−1(s′, ã)

)
(4.10)

2It is the same as the commonly used setting or more general( [39, 35, 40, 41]).
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Let Q′n(s, a) satisfy the following condition ,

0 ≤ maxs,a (Q′n(s, a)−Q∗(s, a))

maxs,a (Qn(s, a)−Q∗(s, a))
≤ 1. (4.11)

Note that if we set Q′n(s, a) = Q∗source, we can verify 0 ≤ βn ≤ 1 according to inequality (4.11).
First of all, we decompose the update role as

Qn(s, a)

=
n− 1

n
Qn−1(s, a) +

1

n

[
r(s, a) + γmax

ã
Q′n−1(s′, ã)

]
=
n− 1

n
Qn−1(s, a) +

1

n

[
r(s, a) + γmax

ã
Q∗(s′, ã)

+γmax
ã

Q′n−1(s′, ã)− γmax
ã

Q∗(s′, ã)
]
.

If we denote εn(s, a) = Qn(s, a)−Q∗(s, a), x(s′) = γmaxãQ
∗(s′, ã) and recall the definition of βn, we can have

εn(s, a)

≤n− 1

n
εn−1(s, a) +

1

n
[x(s′)− Es′x(s′)] +

1

n
γβnεn−1(s′, ã)

≤n− 1

n
εn−1(s, a) +

1

n
[x(s′)− Es′x(s′)] +

1

n
γβnEn−1.

The last step in the above inequality is right because εn(s, a) ≤ En for ∀s, a. Taking maximization of the both sides of
the inequality and using recursion of E, we have

En ≤
n− 1 + γβn

n
En−1 +

1

n
[x(s′)− Es′x(s′)]

≤

n−1∏
i=1

(i+ γβi)

n∏
i=2

i
E1 +

n−1∑
k=1

n−1∏
i=n−k

(i+ γβi)

n∏
i=n−k

i
[x(s′k)− Es′x(s′)]

= αnE1 +

n−1∑
k=1

wk(β)[x(s′k)− Es′x(s′)]

According to Lemma 1(weighted Hoeffding inequality), with probability 1-δ, we can prove the Theorem 1

En ≤αnE1 +

√
ln 1/δ

∑n−1
k=0 w

2
k(βn−k:n)

2
. (4.12)

The convergence result reveals how the error ratio β influence the convergence rate. In short, if we can find a better
target Q-function, the learning process will be faster.

From Theorem 1, we can see that there are two key factors that influence the convergence rate. One is the

initialization error αnE1, the other one is the sampling error
√

ln 1/δ
∑n−1
k=0 w

2
k(βn−k,n)

2 . To make it clear, we analyze
the order of these two terms in Theorem 2 and Theorem 3 respectively.
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Theorem 2. Denote wk(βn−k:n) =
∏n−1
i=n−k(i+γβi)∏n

i=n−k i
, and βi ≤ β∗ for ∀i ≤ n. We have

n−1∑
k=0

(wk(βn−k,n))
2 ≤


e2γβ

∗

n2−2γβ∗

(
n1−2γβ∗

1−2γβ∗ −
1

1−2γβ∗ + 1
)
,

γβ∗ 6= 0.5
(n−2)2γβ

∗

n2 e2γβ
∗
(1 + ln(n)),

γβ∗ = 0.5

.

Based on the results of Theorem 2, we have

Corollary 1. The order of
∑n−1
k=0 (wk(βn−k:n))

2 is:
O( 1

n ), if γβ∗ < 0.5,.
O( 1

n2−2γβ∗ ), if 0.5 < γβ∗ < 1.
O( 1

n2−2γβ∗ ln(n)), if γβ∗ = 0.5.
The sufficient condition for limn→∞

∑n−1
k=0 (wk(β∗))

2
= 0 is γβ∗ < 1 .

Before showing the proof of Theorem 2, we first introduce a Lemma which will be used.

Lemma 2. If a < b,
∑b
i=a

1
i ≤

1
a + ln(b)− ln(a).

Proof.

b∑
i=a

1

i
≤ 1

a
+

b∑
i=a+1

1

i
≤ 1

a
+

b∑
i=a+1

∫ i

k=i−1

1

k
dk

≤ 1

a
+

∫ b

k=a

1

k
dk ≤ 1

a
+ ln(b)− ln(a)

Proof of Theorem 2.

n−1∑
k=0

(wk(βn−k:n))
2 ≤

n−1∑
k=0

(∏n−1
i=n−k(i+ γβ∗)∏n

i=n−k i

)2

=︸︷︷︸
(a)

n−1∑
k=0

exp

{
2

[
n−1∑
i=n−k

ln(i+ γβ∗)−
n∑

i=n−k

ln i

]}

=︸︷︷︸
(b)

1

n2

n−1∑
k=0

exp

{
2

n−1∑
i=n−k

[ln(i+ γβ∗)− ln i]

}

≤︸︷︷︸
(c)

1

n2

n−1∑
k=0

exp

{
2

n−1∑
i=n−k

γβ∗

i

}

≤︸︷︷︸
(d)

1

n2

n−1∑
k=0

exp {2γβ∗ [ln(n− 2)− ln(n− k) + 1]}

=
(n− 2)2γβ

∗

n2
e2γβ

∗
n∑
t=1

1

t2γβ∗
(4.13)
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We rewrite the product term into the summarization term in Equation (a). Then we drop one term outside of the
summarization to sum the index i from n− k to n− 1 in Equation (b). Inequality (c) follows the concave property of
the ln function. Inequality (d) follows the relationship between summarization and integral as shown in Lemma 2.

If γβ∗ = 0.5, 2γβ∗ = 1,

n−1∑
k=0

(wk(βn−k:n))
2 ≤ 1

n2−2γβ∗
e

2γβ∗
n−1 (1 + ln(n))

If γβ∗ 6= 0.5,

n−1∑
k=0

(wk(β∗))
2 ≤ 1

n2−2γβ∗︸ ︷︷ ︸
(e)

e2γβ
∗︸ ︷︷ ︸

(f)

 n1−2γβ
∗

1− 2γβ∗︸ ︷︷ ︸
(g)

− 1

1− 2γβ∗
+ 1︸ ︷︷ ︸

(h)


Note that term (f) is a constant.
If γβ∗ < 0.5, term(g) will dominate the order,

∑n−1
k=0 (wk(βn−k:n))

2 will be O( 1
n ).

If γβ∗ > 0.5, term(h) will dominate the order,
∑n−1
k=0 (wk(βn−k:n))

2 will be O( 1
n2−2γβ∗ ).

If γβ∗ = 0.5,
∑n−1
k=0 (wk(βn−k:n))

2 will be O( 1
n2−2γβ∗ ln(n)).

In all cases,
∑n−1
k=0 (wk(βn−k,n))

2 will converge to 0 as n will go to∞.

The next theorem shows the upper bound of the coefficient αn in initialization error.

Theorem 3. Denote αn =
∏n−1
i=1 (i+γβi)∏n

i=2 i
, and βi ≤ β∗ for ∀i ≤ n, We can bound αn as:

αn ≤
(n− 1)γβ

∗

n
(1 + γβ∗)e(0.5−ln 2)γβ∗ =

C1
γ,β∗

n1−γβ∗
. (4.14)

where C1
γ,β∗ = (1 + γβ∗)e(0.5−ln 2)γβ∗ is a constant.

Proof of Theorem 3.

αn ≤
∏n−1
i=1 (i+ γβ∗)∏n

i=2 i
(4.15)

= exp

{
n−1∑
i=1

ln(i+ γβ∗)−
n∑
i=2

ln i

}
(4.16)

= (1 + γβ∗) exp

{
n−1∑
i=2

(ln(i+ γβ∗)− ln i)− lnn

}
(4.17)

≤ (1 + γβ∗) exp

{
n−1∑
i=2

(
γβ∗

i

)
− lnn

}
(4.18)

≤ (1 + γβ∗) exp {γβ∗(0.5 + ln(n− 1)− ln 2)− lnn} (4.19)

≤ (n− 1)γβ
∗

n
(1 + γβ∗)e(0.5−ln 2)γβ∗ (4.20)

We rewrite the product term in the second equation into the summarization term. The third equation rearranges the
terms. The first inequality follows the concave property of ln function. The second inequality follows the relation
between summarization and integral(Lemma 2).

We rewrite the product term in the second equation into the summarization term. The third equation rearranges
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the terms. The first inequality follows the concave property of ln function. The second inequality follows the relation
between summarization and integral(Lemma 2).

Let us consider the case if γβ∗ < 1. The theorem 3 shows, αn converge to 0 and the convergence rate is in order
O( 1

n1−γβ∗ ).
Combining Theorem 1, 2 and 3, we have the following Theorem:

Theorem 4. The TTQL will converge if we set the error condition as whether

β̂n ,
∆(M1,M2)

En
≤ 1.

And the convergence rate is:

En ≤


O( 1

n1−γβE1 +
√

1
n ), if γβ < 0.5

O( 1
n1−γβE1 + 1

n1−γβ

√
lnn), if γβ = 0.5

O( 1
n1−γβE1 + 1

n1−γβ ), if 0.5 < γβ < 1

. (4.21)

We would like to make the following discussions:
(1) The distance between two MDPs influence the convergence rate. According to the Proposition 1, if two

MPDs have the similar components(P , r, γ), the optimal Q-function of these two MDPs will be closed. The discounted
error ratio γβn will be relatively small in this situation and the convergence rate will be improved.

(2) The TTQL method does converge. As shown in Theorem 4, the TTQL method will converge. And the
convergence rate changes under different discounted error ratios γβ. The smaller γβ will lead to a quicker convergence
rate. Intuitively, smaller β means that Q′ provides more information about the optimal Q-function. Besides, the
discount factor γ can be viewed as the "horizon" of the infinite MDPs. Smaller γ means that the expected long-term
return is less influenced by the future information and the immediate reward is assigned larger weights.

(3) Error condition matters. As mentioned above, the error condition is defined as whether β̂n ≤ 1. If the error
condition is true, we set Qtarget = Q∗source and γβn = γβ̂n ≤ γ < 1. If error condition is false, we set Qtarget = Qn
and γβn = γ < 1. So with the error condition, TTQL algorithms do converge at any situation. At the beginning of the
new task training, due to the large error of the current Q-function, βn = β̂n will be relatively small and the transfer
learning will be greatly helpful. Speedup would come down as the error of current Q-function becomes smaller. Finally,
when β is equal to or larger than one, we need to remove the transfer Q target which means to set β = 1 to avoid the
harm brought by the transfer learning.

(4) Q-learning is the special case. Please note that the traditional Q-learning is a special case for target transfer
Q-learning with Qtarget = Qn−1. Thus, the error ratio is a constant and βn = 1. Our results are reduced to the
traditional Q-learning. [42]. It shows that if β < 1 in TTQL, the TTQL converge faster than traditional Q-learning.

5. Discussion for Error Condition

Until now, we can conclude that TTQL will converge. TTQL method needs the error condition to guarantee the
convergence. In this section, We discuss the error conditions.

In the beginning, our proposed error condition can guarantee the convergence of the algorithms generally. Heuristi-
cally, the error condition is related to the distance between two MDPs and the quality of the current value function.
Then according to the Theorem 4, we know that the error condition is whether β̂n ≤ 1. Under the transfer learning in
RL setting, it means that the distance between two MDPs needs to be smaller than the error of the current Q-function.

If the two RL tasks are similar, the learned Q-function in the old task will be close to the optimal Q-function. Thus,
the error ratio will be small (especially for the early learning stage) when we transfer the learned Q-function from the
old task to the target of the new task. Specifically, in the early stage of the training, the Q-function in the new task is
not fully trained, the learned Q-function in the old task is a better choice with a smaller error ratio. With the updating
of the Q-function in the new task, its error ratio becomes larger. When its error ratio is close to or larger than 1, the
error condition will change to false, and we will stop transferring the target to avoid the harm brought by the transfer
learning.
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In the real algorithms, it is impossible to calculate the error of the current Q-function MNE(Qn) and the
distance between two MDPs precisely. However it is easy to calculate the bellman error MNBE(Q(s, a)) =
maxs,a |Q(s, a)− (r(s, a) + γEs′ maxã(Q(s′, ã)))|. We can prove that these two metrics follow the relationship as:

MNE(Q) ≤ MNBE(Q)

1− γ
.

Following the standard way in Q-learning, we estimate the error ratio about the error of the Q-function w.r.t the optimal
Q-function by the Bellman error.

Algorithm 2 Error Condition

Input: leared Q∗1 , current Q-function Qn
1: if MNBE(Q∗1) ≤MNBE(Qn) then
2: flag = True
3: else
4: flag = False
5: end if

Output: flag

Proof of the relation between MNE and MNBE. Denote BQ(s, a) = r(s, a) − γEs′ maxãQ(s′, ã) as bellman
operator.

MNE(Q)

≤‖Q(s, a)− BQ∗(s, a)‖∞ + ‖BQ∗(s, a)−Q∗(s, a)‖∞
≤MNBE(Q) + ‖γEs′ max

ã
Q(s′, ã)− γEs′ max

ã
Q∗(s′, ã)‖

≤MNBE(Q) + γMNE(Q)

So we get

MNE(Q) ≤ MNBE(Q)

1− γ
.

6. Experiment

In this section, we conduct experiments to support our convergence analysis and verify the effectiveness of our
proposed target transfer Q-Learning with error condition. Experiments are conducted on the simulation environments
and a classical control problem. Firstly, our experiments on simulated MDPs verify our theoretical results. Secondly,
we do realistic experiments on CartPole which are also used in many other transfer RL works. Considering that it is
hard to implement the transfer setting in commonly used large scale RL environments, to the best of our knowledge,
many transfer RL works still benchmark on these synthetic but standard environments([43, 19, 13, 37]).

First of all, we consider the general MDP setting. We construct the random MDP by generating the transition
probability P as,s′ , reward function r(s, a) and discount factor γ and fixing the state and action space size as 50. We
generate 9 different MDPs (M11,M12,M13,M21,M22,M23,M31,M32,M33) as old tasks and then generate the new
MDP M0 to be our new tasks. These 9 MDPs are in 3 groups and MDPs in the same groups are different in only one
factor. Specifically, let M11,M12,M13 be different from M0 only in discount factor γ. The order of their distances
to M0is d(M11,M0) < d(M12,M0) < d(M13,M0). Similarly, MDPs M21,M22,M23 are different from M0 only in
reward function r, and MDPs M31,M32,M33 are different from M0 only in transition probability P . The specific
MDP parameters is listed in the appendix. We present the value of γ, r, P of each MDPs in the Table 1 of appendix.
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(a) (b) (c)

(d) (e) (f)

(h) (i) (g)

Figure 1: Above three figures are the learning max norm errors w.r.t the three types of different MDPs ( Be different in γ, r, P respectively ). Middle
three figures are the learning error w.r.t the three different distance transfer task and both training with/without the error condition. Below three
figures are three experiments results on CartPole environments. C1, C2, C3, C4 are 4 different MDPs(CartPole environments)

Then we run our algorithm to transfer the Q-function learned on these 9 source MPDs to the new MDP M0. In this
experiment, the Q function is represented by the look-up table. The result is shown in Figure1 (a), (b) and (c). Note
that the dashed line is the result of the Q-learning algorithm without transfer learning, and the solid line with various
markers are the TTQL algorithms.

Secondly, we design three MDPs M4,M5,M6 similarly as above and leverage them as old task MDPs. They are
different with the new tasksM0 in all three factors and the order of their distances toM0is d(M4,M0) < d(M5,M0) <
d(M6,M0). Then we use TTQL to transfer the Q-function learned from them to new MDP M0 with and without the
error condition. In this experiment, the Q function is represented by the look-up table. The results are shown in Figure1
(d), (e) and (f). We use "W-EC" and "WO-EC" to denote experiments that are run with and without error condition,
respectively.

Thirdly, we conduct experiments on a classical control task: Cartpole. CartPole problem is a standard benchmark
on control tasks[44]. As shown in Figure 2a, A pole is attached by an un-actuated joint to a cart, which moves along a
frictionless track. we need to control the cart to prevent the pole from falling over(Figure 2b). We change the physical
parameters (cart mass, pole mass, pole length) to get different but similar CartPole environments. Here we generate 4
CartPole environments denoted as C1, C2, C3, C4 respectively. We let one of the environments(C1) as the old MDP and
solve it by using Q-learning algorithms. Then we use TTQL to transfer the Q-function learned from the old MDP to a
new MDP. The order of their distances to C1is d(C2, C1) < d(C3, C1) < d(C4, C1). The specific CartPole configures
are listed in the appendix. We present the value of cart mass, pole mass and pole length of each CartPole tasks in Table
2 of appendix.
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In the CartPole experiments, we follow the experiment settings of DQN[3]. Specifically, the Q-function is
approximated by a 3 layer fully connected neural network. Specifically, we use the experience replay and freeze target
network tricks as introduce by the DQN paper. The detailed explanation for the DQN method is shown in the last of
the Appendix. The hyper-parameters of CartPole experiments are listed in the Table3 in Appendix. We evaluate the
agent every 200 learning steps. The evaluation runs 10 episodes and the average return is reported. Since the realistic
CartPole environments have a large variance, we run each experiment for 20 times and calculate the mean and standard
deviation of the performances under each setting. The results are shown in Figure1.

(a) (b)

Figure 2: CartPole Environment

More experiments including the Atari games and the combination between our method with commonly used transfer
learning method is shown in the Section 8.2 of Appendix.

We have the following observations. (1) TTQL method outperforms Q-learning in all experiments. (2) Running
TTQL between the more similar MDPs will lead to a faster convergence rate. (3) The error condition is important to
ensure the convergence of the algorithms in various situations. All these observations are consistent with our theoretical
findings.

7. Conclusion and Future Work

In this paper, we have proposed a new transfer learning method in RL named target transfer Q-learning (TTQL).
The method transfers the Q-function learned in the old task to the target of Q-learning in the new task and uses a
theoretically designed error condition to control the transfer process. We have proved the TTQL method does converge
with the error condition and the convergence rate is influenced by the distance of two MDPs. The theoretical analysis
helps us to design error conditions that are important to guarantee the convergence of the transfer algorithms. The
theoretical results have been verified by the experiments. In the future, we will apply the TTQL to more complex tasks
and study convergence rate for the TTQL with complex function approximation such as the neural network.
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8. Appendix

8.1. Hyper-parameters
The parameters that we use to generate the random MDPs are listed in Table 1. The value in column γ means that

we set the γ as that value. The range in column r means that we generate the reward function uniformly randomly in
the range. The value in column P means that we multiply the diagonal elements of the transition probability matrix by
that value and then renormalizes the matrix to a transition probability matrix.

MDPs γ r P
M0 0.8 [3,5] 1

M11 0.79 [3,5] 1
M12 0.76 [3,5] 1
M13 0.75 [3,5] 1
M21 0.8 [3.5,4.5] 1
M22 0.8 [5,6] 1
M23 0.8 [0.52,0.47] 1
M31 0.8 [3,5] 1.02
M32 0.8 [3,5] 2
M33 0.8 [3,5] 10
M1 0.8 [3,5] 1
M2 0.8 [3.5,4.5] 1
M3 0.78 [7,8] 1
M4 0.75 [8,9] 1

Table 1: Parameters used to generate the random MDPs

The physical parameters for the 4 CartPole environments are listed in Table 3:

cart mass pole mass pole length
C1 1 0.1 0.2
C2 1 0.3 0.2
C3 1 1 0.2
C4 1 1 0.8

Table 2: Parameters used to generate the CartPole environments

The extra hyper-parameters for the CartPole experiments are listed in Table 3.

Hyperparameter Value
MDP γ 0.99

Learning rate 0.01
Optimizer Adam
Batch size 64
Buffer size 10000

Target network update frequency 50
NN hidden size 64

Table 3: Hyperparameters for the learning algorithms in CartPole environments

8.2. Experiments for Atari Games
We conduct our experiments on 2 Atari games: Pong and Qbert. The state space is the raw image of the game.

Follow the setting in the paper [3] and most of the commonly used code base[45, 46], we preprocess the state image
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from the 210× 160× 3 RGB color image to the 84× 84 gray image. The action space is 6 for all 3 games. According
to the previous paper and the commonly used code base[45, 46], we usually apply the frame-skip wrapper into the
environment. The frame-skip wrapper simulates the human performance that we usually press the button for a short
time such as 4 frames rather than just one frame of the image. In other words, when the agent takes an action, the
environment will execute the same action 4 times continuously. In the Atari games experiments, to construct the related
but different environments, we set the number of skip frames into different values. The 4 skip-frame games are viewed
as the old tasks and the 2 and 3 skip-frame games are viewed ad the new tasks. We transfer the knowledge learned from
the old tasks into the new tasks.

(a) Pong (b) Qbert

Figure 3: Illustration of two Atari games.

The hyper-parameters for the DQN model and training process are listed in the following table. Most of the
hyper-parameter is the same as the original DQN paper. The training details are explained in the last of the Appendix.

Hyperparameter Value
MDP γ 0.99

Learning rate 0.00005
Optimizer Adam
Batch size 32
Buffer size 1000000

Target network update frequency 10000
NN structure Input - Conv2d(4, 32) - Conv2d(32,64) - Conv2d(64,64) - FC(3136,6) - Output

Table 4: Hyperparameters for Atari Games

We first run the DQN in the old tasks with 4 skip-frame for 60 million steps and then save the agent parameters.
Then, we use our Target Transfer Q-learning method to train the agent in the new tasks with 2 and 3 skip-frame. The
results are shown in Figure 4. We can see that Target Transfer Q learning can efficiently accelerate the learning process.

Additionally, we conduct experiments to further show that our transfer method can combine with other transfer
learning methods proposed before. FT is a commonly used transfer learning method. For example, the model trained in
the well known ImageNet dataset is always transferred to other computer vision tasks using fine-tune method[47] and
the famous Bert model is always transferred to other neural language processing tasks using fine-tune method[48]. We
compare plain no-transfer Q-learning algorithm(Q for short), vanilla transfer learning method(fine-tune-parameters, or
FT for short) and TTQL combined fine-tune-parameters(TTQL-FT for short).

Specifically, the first experiment setting, plain no-transfer Q-learning algorithm, is the same as the algorithm
proposed in DQN paper and we describe it detailedly above. The second experiment setting is fine-tune-parameters.
In our experiments, we initialize the new agent parameters in the new games(2,3,5,6 skip-games) by using the agent
parameters learned from the old tasks(4-skip games). Then we use the plain Q-learning algorithms to fine-tune the agent
parameters. The third experiment setting is the TTQL combined fine-tune-parameters. The initialization procedure of
TTQL-FT is the same as FT. And we then use TTQL to learning the agent parameters rather than the plain Q-learning.

The results are shown in Figure 5. We can see that the FT can outperform than Q-learning method since FT can
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transfer the knowledge from related but different tasks. Furthermore, TTQL-FT can further improve the FT method
which demonstrates that TTQL method can also combine with and improve the traditional transfer learning method.

(a) (b)

(c) (d)

Figure 4: Results of Atari Games. x axis is the training steps and y axis is the expected return of on episode(Higher is better). Blue line( TTQL ) is
our method. Origin line( Q ) is Q learning method.

8.3. DQN Background

Recall the main paper, MDP is defined as a five-tuple M , (S,A, P, r, γ). Action value function is also called
Q-function which is defined as: Qπ(s, a) , E [

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a, π] . The optimal policy is denoted
as π∗ and its corresponding Q-function are denoted as Q∗M (s, a) . Optimal Q-function satisfy the optimal bellman
equation. Traditional Q-learning find the optimal agent by minimize the discrepancy between the two side of the
equation.

Q∗(s, a) = r(s, a) + γE ã∼π(a|s)
s′∼P (s′|s,a)

[Q∗(s′, ã)|st = s] (8.1)

In [3], the author first apply the Q-learning algorithms in to the human level computer games and achieve a super
success. The proposed agent is called deepQ-network(DQN for short). It is because we use a deep neural networks to
approximate the Q-function defined above. Similar to the raw definition of the Q-function, the input of the DQN is the
raw image of the computer games and the agent is the action value of each action.

The algorithm modifies standard online Q-learning in two ways to make it suitable for training large neural networks
without diverging. The first one is the experience replay buffer in which the algorithm stores the agent’s experience at
each time-step. The learning algorithm then sample the data from the buffer to update the parameters in the deep neural
networks. The second one is a separate network for the target Q function. We keep the separate target Q network fixed
for a certain steps and then update it rather than update it every step.

DQN update the parameters in the deep neural networks at iteration t uses the following loss function:
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(a) (b)

(c) (d)

Figure 5: Results of Atari Games. x axis is the training steps and y axis is the expected return of one episode(Higher is better). Green line(FT-TTQL)
is our method. Blue line(Q) is Q-learning method without any transfer learning. Origin line(FT-Q) is Q-learning method with Fine-Tune-Parameters
method.

L(θt) = E(s,a,r,s′)∼Buffer(D)

[(
r + γmax

a′
Q(s′, a′; θ−t )−Q(s, a; θt)

)2]
, (8.2)

where θt is the parameter in the Q network at t iteration, θ−t is the parameter in the separate target Q network at t
iteration, Buffer(D) is the experience buffer, γ is the discount factor.
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