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Abstract

In this paper, we study the reflected backward stochastic differential equations driven by G-
Brownian motion with two reflecting obstacles, which means that the solution lies between two
prescribed processes. A new kind of approximate Skorohod condition is proposed to derive the
uniqueness and existence of the solutions. The uniqueness can be proved by a priori estimates
and the existence is obtained via a penalization method.
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1 Introduction

Given a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ), Pardoux and Peng [21] first introduced the
following type of nonlinear backward stochastic differential equations (BSDEs for short):

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs,

where the generator f(·, y, z) is progressively measurable and Lipschitz continuous with respect to
(y, z), ξ is an FT -measurable and square integrable terminal value. They proved that there exists a
unique pair of progressively measurable processes (Y, Z) satisfying this equation. The BSDE theory
attracts a great deal of attention due to its wide applications in mathematical finance, stochastic
control and quasilinear partial differential equations (see [9], [22], etc).

One of the most important extensions is the reflected BSDE initiated by El Karoui, Kapoudjian,
Pardoux, Peng and Quenez [7]. In addition to the generator f and the terminal value ξ, there is
an additional continuous process S, called the obstacle, prescribed in this problem. The reflection
means that the solution is forced to be above this given process S. More precisely, the solution of the
reflected BSDE with parameters (ξ, f, S) is a triple of processes (Y, Z, L) such that

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+ LT − Lt −
∫ T

t

ZsdBs,

Yt ≥ St, t ∈ [0, T ], and

∫ T

0

(Ys − Ss)dLs = 0, P -a.s.,
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where L is an increasing process to push the solution upwards. Besides, it should behave in a minimal
way, which means that L only acts when the solution Y reaches the obstacle S. This requirement

corresponds to the mathematical expression
∫ T
0

(Ys − Ss)dLs = 0, called Skorohod condition. The
reflected BSDE is a useful tool to study problems of pricing American options, the obstacle problem
for quasilinear PDEs as well as the variational inequalities (see [1], [7], [8]).

Building upon these results, Cvitanic and Karaztas [3] studied BSDEs with two reflecting obstacles,
which means that the solution Y is forced to stay between a lower obstacle L and an upper obstacle
U . This can be achieved by the combined actions of two increasing processes: one is to push the
solution upwards, the other is to push it downwards and both of them act in a minimal way when
Y tries to cross the obstacles. They also established the relation between the solution of the doubly
reflected BSDE and the value function of Dynkin game. For more details about this topic, we refer
to the papers [2, 6, 10, 11, 12, 26].

Note that the classical BSDE and reflected BSDE theory can only deal with financial problems
under mean uncertainty, not volatility uncertainty, and can give probabilistic interpretations for quasi
linear PDEs, not fully nonlinear ones. Motivated by these facts, Peng ([23], [24]) systematically
established the G-expectation theory. A new type of Brownian motion B, called G-Brownian motion,
whose increments are stationary and independent, was constructed. Different from the classical case,
the quadratic variation process 〈B〉 is not deterministic. The basic notions and tools, such as the
stochastic integral with respect to G-Brownian motion B and G-Itô’s formula, were also established.

A few years later, Hu, Ji, Peng and Song [13] established the well-posedness of BSDEs driven by
G-Brownian motion (G-BSDEs for short) as the following:

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)d〈B〉s −
∫ T

t

ZsdBs − (KT −Kt),

where the generators f , g are Lipschitz continuous with respect to (Y, Z). Under conditions similar
to the classical case, applying the Galerkin approximation technique and the PDE approach, they
proved that there exists a unique solution (Y,Z,K) to this equation, where K is a decreasing G-
martingale. Besides, in the accompanying paper [14], they also obtained the comparison theorem,
Girsanov transformation and the nonlinear Feynman-Kac formula.

Li, Peng and Soumana Hima [16] first studied the reflected G-BSDE with a lower obstacle. Due
to the appearance of the decreasing G-martingale, the Skorohod condition was replaced by a mar-
tingale condition in order to get the uniqueness of the solutions. The existence was proved by the
approximation method via penalization. Li and Peng [15] also considered the upper obstacle case.
However, in order to pull the solution down below the upper obstacle, one needs to add a decreasing
process L in the G-BSDE. Hence, the main difficulty is that the process L−K is not monotonic as in
the lower obstacle case. Although they did not obtain the uniqueness, they showed that the solution
constructed by a penalization method is a maximal one by a variant comparison theorem.

In this paper, we investigate the doubly reflected BSDE driven by G-Brownian motion with two
obstacles (L,U). As in the classical case, there should be two increasing processes A+, A−: one aims
to push the solution upward while the other is to pull the solution downward, and both processes
behave in a minimal way such that they satisfy the Skorohod condition. Besides, there will also be a
decreasing G-martingale K as in the G-BSDE, which exhibits the uncertainty of the model. Therefore,
it is natural to conjecture that a solution to this doubly reflected G-BSDE should be a 5-tuples of
processes (Y, Z,K,A+, A−) with Lt ≤ Yt ≤ Ut satisfying

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs − (KT −Kt) + (A+
T −A

+
t )− (A−T −A

−
t ),∫ T

0

(Ys − Ls)dA+
s =

∫ T

0

(Us − Ys)dA−s = 0.
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However, the processes A+, A− and K here are mixed together, and the above Skorohod condition is
not applicable. In this paper, we write A for A+ −A− −K and replace the Skorohod condition by a
new kind of Approximate Skorohod Condition, which turns into the martingale condition when there
is only one obstacle.

The uniqueness of the solutions is obtained by a priori estimates requiring some delicate analysis.
In order to prove the existence, we consider the following G-BSDEs parameterized by n = 1, 2, · · · ,

Y nt = ξ +

∫ T

t

f(s, Y ns , Z
n
s )ds−

∫ T

t

Zns dBs − (Kn
T −Kn

t ) + (An,+T −An,+t )− (An,−T −An,−t ),

where An,+t =
∫ t
0
n(Y ns − Ls)−ds, A

n,−
t =

∫ t
0
n(Y ns − Us)+ds.

The objective, similar to the classical case studied by Cvitanic and Karaztas [3], is to show that the
sequence (Y n, Zn, An), where An = An,+−An,−−Kn, converges to a triple of processes (Y,Z,A), and
that (Y, Z,A) is a solution to the doubly reflected G-BSDE. To this end, the dominated convergence
theorem and the property of weakly compactness played crucial role in Cvitanic and Karaztas [3].
However, these tools are not available under the G-expectation framework.

Our proof is divided into two stages.
Stage 1. We establish the uniform estimates for Y n under the norm ‖ · ‖SαG , and prove that

(Y n−U)+ and (Y n−L)− converge to 0 under the norm ‖ · ‖SαG . These properties hold true under the

assumption that the upper and lower obstacles belong to the space SβG(0, T ) and they are separated by
some generalized G-Itô process (see (A3’). The latter implies that the limit Y (if exists) lies between
the upper and lower obstacles.

Stage 2. We show that the sequences An,+T , An,−T , Kn
T (resp. Zn) are uniformly bounded under

the norm ‖ · ‖LαG (resp. ‖ · ‖HαG). For this purpose, we prove that (Y n − U)+ converges to 0 with the

explicit rate 1
n , which requires that the upper obstacle is a generalized G-Itô process.

Based on the above analysis, we obtain the convergence of (Y n, Zn, An), and consequently the
existence of the doubly reflected G-BSDE.

Recall that, the G-expectation can be represented as the supremum of the linear expectation under
the probability P over all P ∈ P, where P is a collection of mutually singular martingale measures.
Therefore, the G-expectation theory shares many similarities with the quasi-sure analysis by Denis
and Martini [5] and the second order BSDEs by Soner, Touzi and Zhang [28] and Matoussi, Possamäı
and Zhou [18]. Compared with these works, one advantage of the G-expectation framework is that the
solution to the G-BSDEs is a (generalized) G-Itô process, and that the decomposition of (generalized)
G-Itô processes is unique. This amounts to say that the derivatives ∂tu, ∂xu and the second order
derivative ∂2xu of a function u(t, x) are all well defined in the G-expectation space, which is crucial
to give the probabilistic representations for (path dependent) fully nonlinear PDEs. In other words,
the solutions of G-BSDEs have strong regularity and can be universally defined in the spaces of the
G-framework, which enhances the results in [28] and [18].

The problem considered in this paper is closely related to Matoussi, Piozin and Possamäı [17], which
studied the second order BSDEs with general reflections, but it is formulated in a quite different way.

1) The solution (Y, Z,A) to the doubly reflected G-BSDE is defined in the G-framework, in which
the processes have strong regularity and remarkable properties. As is mentioned above, in the G-
framework, the unique decomposition of Itô processes implies that the derivative ∂2xu is well defined,
which embodies the advantages of the G-expectation compared to the linear expectations.

2) In [17] and the corrigendum [19], the process V (corresponding to the process A in this paper) is
defined and characterized by the Skorohod condition individually for each probability P in P. In this
paper, the process A and the corresponding approximate Skorohod condition are given universally
with respect to all probabilities P in P.

This paper is organized as follows. In Section 2, we present some notions and results on G-
expectation and G-BSDEs as preliminaries. In Section 3, we first state the definition of solution
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to doubly reflected G-BSDE and establish some a priori estimates from which we can derive the
uniqueness of the solution. We then introduce the penalization method to prove the existence of the
solution in Section 4.

2 Preliminaries

In this section, we review notations and results in the G-expectation framework, which are concerned
with the G-Itô calculus and BSDE driven by G-Brownian motion. For simplicity, we only consider
the one-dimensional case. For more details, we refer to the papers [13], [14], [23], [24], [25].

Let Ω = C0([0,∞);R), the space of real-valued continuous functions starting from the origin, be
endowed with following norm,

ρ(ω1, ω2) :=

∞∑
i=1

2−i[( max
t∈[0,i]

|ω1
t − ω2

t |) ∧ 1], for ω1, ω2 ∈ Ω.

Let B be the canonical process on Ω. Set

Lip(Ω) := {ϕ(Bt1 , ..., Btn) : n ∈ N, t1, · · · , tn ∈ [0,∞), ϕ ∈ Cb,Lip(Rn)},

where Cb,Lip(Rn) denotes the set of bounded Lipschitz functions on Rn. Let (Ω, Lip(Ω), Ê) be the
G-expectation space, where the function G : R→ R is defined by

G(a) :=
1

2
Ê[aB2

1 ] =
1

2
(σ̄2a+ − σ2a−).

In this paper, we always assume that G is non-degenerate, i.e., σ2 > 0. In fact, the (conditional)
G-expectation for ξ ∈ Lip(Ω) can be calculated as follows. Assume that ξ can be represented as

ξ = ϕ(Bt1 , Bt2 , · · · , Btn).

Then, for t ∈ [tk−1, tk), k = 1, · · · , n,

Êt[ϕ(Bt1 , Bt2 , · · · , Btn)] = uk(t, Bt;Bt1 , · · · , Btk−1
),

where, for any k = 1, · · · , n, uk(t, x;x1, · · · , xk−1) is a function of (t, x) parameterized by (x1, · · · , xk−1)
such that it solves the following fully nonlinear PDE defined on [tk−1, tk)× R:

∂tuk +G(∂2xuk) = 0

with terminal conditions

uk(tk, x;x1, · · · , xk−1) = uk+1(tk, x;x1, · · · , xk−1, x), k < n

and un(tn, x;x1, · · · , xn−1) = ϕ(x1, · · · , xn−1, x). Hence, the G-expectation of ξ is Ê0[ξ].

For each p ≥ 1, the completion of Lip(Ω) under the norm ‖ξ‖LpG := (Ê[|ξ|p])1/p is denoted by

LpG(Ω). The conditional G-expectation Êt[·] can be extended continuously to the completion LpG(Ω).
The canonical process B is the 1-dimensional G-Brownian motion in this space.

For each fixed T ≥ 0, set ΩT = {ω·∧T : ω ∈ Ω}. We may define Lip(ΩT ) and LpG(ΩT ) similarly.
Besides, Denis, Hu and Peng [4] proved that the G-expectation has the following representation.

Theorem 2.1 ([4]) There exists a weakly compact set P of probability measures on (Ω,B(Ω)), such
that

Ê[ξ] = sup
P∈P

EP [ξ] for all ξ ∈ L1
G(Ω).

P is called a set that represents Ê.
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Let P be a weakly compact set that represents Ê. For this P, we define the capacity

c(A) := sup
P∈P

P (A), A ∈ B(Ω).

A set A ∈ B(ΩT ) is called polar if c(A) = 0. A property holds “quasi-surely” (q.s.) if it holds outside
a polar set. In the following, we do not distinguish the two random variables X and Y if X = Y , q.s.

For ξ ∈ Lip(ΩT ), let E(ξ) = Ê[supt∈[0,T ] Êt[ξ]] and E is called the G-evaluation. For p ≥ 1 and

ξ ∈ Lip(ΩT ), define ‖ξ‖p,E = [E(|ξ|p)]1/p and denote by LpE(ΩT ) the completion of Lip(ΩT ) under
‖ · ‖p,E . The following theorem can be regarded as Doob’s maximal inequality under G-expectation.

Theorem 2.2 ([29]) For any α ≥ 1 and δ > 0, Lα+δG (ΩT ) ⊂ LαE (ΩT ). More precisely, for any
1 < γ < β := (α+ δ)/α, γ ≤ 2, we have

‖ξ‖αα,E ≤ γ∗{‖ξ‖αLα+δ
G

+ 141/γCβ/γ‖ξ‖
(α+δ)/γ

Lα+δ
G

}, ∀ξ ∈ Lip(ΩT ),

where Cβ/γ =
∑∞
i=1 i

−β/γ , γ∗ = γ/(γ − 1).

For T > 0 and p ≥ 1, the following spaces will be frequently used in this paper.

• M0
G(0, T ) := {η : ηt(ω) =

∑N−1
j=0 ξj(ω)1[tj ,tj+1)(t), where ξj ∈ Lip(Ωtj ), t0 ≤ · · · ≤ tN is a

partition of [0, T ]};

• Mp
G(0, T ) is the completion of M0

G(0, T ) under the norm ‖η‖Mp
G

:= (Ê[
∫ T
0
|ηs|pds])1/p;

• Hp
G(0, T ) is the completion of M0

G(0, T ) under the norm‖η‖HpG := {Ê[(
∫ T
0
|ηs|2ds)p/2]}1/p;

• S0
G(0, T ) = {h(t, Bt1∧t, . . . , Btn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ Cb,Lip(Rn+1)};

• SpG(0, T ) is the completion of S0
G(0, T ) under the norm ‖η‖SpG = {Ê[supt∈[0,T ] |ηt|p]}1/p.

We denote by 〈B〉 the quadratic variation process of the G-Brownian motion B. For two processes
η ∈Mp

G(0, T ) and ζ ∈ Hp
G(0, T ), Peng established the G-Itô integrals

∫ ·
0
ηsd〈B〉s and

∫ ·
0
ζsdBs. Similar

to the classical Burkholder–Davis–Gundy inequality, the following property holds.

Proposition 2.3 ([14]) If η ∈ Hα
G(0, T ) with α ≥ 1 and p ∈ (0, α], then supu∈[t,T ] |

∫ u
t
ηsdBs|p ∈

L1
G(ΩT ) and

σpcpÊt[(
∫ T

t

|ηs|2ds)p/2] ≤ Êt[ sup
u∈[t,T ]

|
∫ u

t

ηsdBs|p] ≤ σ̄pCpÊt[(
∫ T

t

|ηs|2ds)p/2],

where 0 < cp < Cp <∞ are constants.

We now introduce some basic results of G-BSDEs. Consider the following type of G-BSDE

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds+

∫ T

t

g(s, Ys, Zs)d〈B〉s −
∫ T

t

ZsdBs − (KT −Kt), (2.1)

where
f(t, ω, y, z), g(t, ω, y, z) : [0, T ]× ΩT × R× R→ R

satisfy the following properties:

(H1) There exists some β > 1 such that for any y, z ∈ R, f(·, ·, y, z), g(·, ·, y, z) ∈Mβ
G(0, T );
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(H2) There exists some L > 0 such that

|f(t, y, z)− f(t, y′, z′)|+ |g(t, y, z)− g(t, y′, z′)| ≤ L(|y − y′|+ |z − z′|).

For simplicity, we denote by Sα
G(0, T ) the collection of processes (Y, Z,K) such that Y ∈ SαG(0, T ),

Z ∈ Hα
G(0, T ), and K is a decreasing G-martingale with K0 = 0 and KT ∈ LαG(ΩT ). Hu et al [13, 14]

established the existence and uniqueness result for Equation (2.1) as well as the comparison theorem.

Theorem 2.4 ([13]) Assume that ξ ∈ LβG(ΩT ) and f, gij satisfy (H1) and (H2) for some β > 1.
Then, for any 1 < α < β, Equation (2.1) has a unique solution (Y, Z,K) ∈ Sα

G(0, T ). Moreover, we
have

|Yt|α ≤ CÊt[|ξ|α +

∫ T

t

|f(s, 0, 0)|α +

d∑
i,j=1

|gij(s, 0, 0)|αds],

where the constant C depends on α, T , σ and L.

Below is a generalization of Proposition 3.5 in [13].

Theorem 2.5 Let f satisfy (H1) and (H2) for some β > 1. Assume

Yt = ξ +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs − (KT −Kt) + (AT −At),

where Y ∈ SαG(0, T ), Z ∈ Hα
G(0, T ), K,A are both decreasing process with A0 = K0 = 0 and AT ,KT ∈

LαG(ΩT ) for some β ≥ α > 1. Then there exists a constant Cα := C(α, T, σ, L) > 0 such that

Ê[(

∫ T

0

|Zs|2ds)
α
2 ] ≤ Cα

{
Ê[ sup
t∈[0,T ]

|Yt|α] +

(
Ê[ sup
t∈[0,T ]

|Yt|α]

) 1
2
((

Ê[(

∫ T

0

f0s ds)
α]
) 1

2 +
(
mA,K
α

)1/2)}
,

where f0s = |f(s, 0, 0)|, mA,K
α = min{Ê[|AT |α], Ê[|KT |α]}.

Proof. Applying Itô’s formula to |Yt|2, we have

|Y0|2 +

∫ T

0

|Zs|2d〈B〉s = |ξ|2 +

∫ T

0

2Ysf(s)ds−
∫ T

0

2YsZsdBs −
∫ T

0

2Ys(dKs − dAs),

where f(s) = f(s, Ys, Zs). Then

(

∫ T

0

|Zs|2d〈B〉s)
α
2 ≤ Cα

{
|ξ|α+ |

∫ T

0

Ysf(s)ds|α2 + |
∫ T

0

YsZsdBs|
α
2 + |

∫ T

0

YsdKs|
α
2 + |

∫ T

0

YsdAs|
α
2

}
.

By simple calculation, we can obtain

Ê[(

∫ T

0

|Zs|2ds)
α
2 ] ≤ Cα

{
‖Y ‖αSαG + ‖Y ‖

α
2

SαG

[
(Ê[|KT |α])

1
2 + (Ê[|AT |α])

1
2 + (Ê[(

∫ T

0

f0s ds)
α])

1
2

]}
. (2.2)

On the other hand, noting that

KT = ξ − Y0 +

∫ T

0

f(s)ds−
∫ T

0

ZsdBs +AT ,

we get

Ê[|KT |α] ≤ Cα
{
‖Y ‖αSαG + Ê[(

∫ T

0

|Zs|2ds)α/2] + Ê[(

∫ T

0

f0s ds)
α] + Ê[|AT |α]

}
. (2.3)
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Suppose that Ê[|KT |α] ≥ Ê[|AT |α]. By (2.2) and (2.3), we have

Ê[(

∫ T

0

|Zs|2ds)
α
2 ] ≤ Cα

{
Ê[ sup
t∈[0,T ]

|Yt|α] +

(
Ê[ sup
t∈[0,T ]

|Yt|α]

) 1
2
((

Ê[(

∫ T

0

f0s ds)
α]
) 1

2 +
(
Ê[|AT |α]

)1/2)}
.

By symmetry of K and A, we get the desired result.

Theorem 2.6 ([14]) Let (Y lt , Z
l
t,K

l
t)t≤T , l = 1, 2, be the solutions of the following G-BSDEs:

Y lt = ξl +

∫ T

t

f l(s, Y ls , Z
l
s)ds+

∫ T

t

glij(s, Y
l
s , Z

l
s)d〈Bi, Bj〉s + V lT − V lt −

∫ T

t

ZlsdBs − (Kl
T −Kl

t),

where processes {V lt }0≤t≤T are assumed to be right-continuous with left limits (RCLL), q.s., such that

Ê[supt∈[0,T ] |V lt |β ] <∞, f l, glij satisfy (H1) and (H2), ξl ∈ LβG(ΩT ) with β > 1. If ξ1 ≥ ξ2, f1 ≥ f2,

g1ij ≥ g2ij, for i, j = 1, · · · , d and V 1
t − V 2

t is an increasing process, then Y 1
t ≥ Y 2

t .

Compared to the classical BSDE, there appears, in the BSDE driven by G-Brownian motion, an
additional nonincreasing G-martingale K, which exhibits the uncertainty of the model. The difficulty
in the analysis of G-BSDE mainly lies in the appearance of this component. Song [30] proved that, the

nonincreasing G-martingale could not be form of {
∫ t
0
ηsdt} or {

∫ t
0
γsd〈B〉s}, where η, γ ∈ M1

G(0, T ).
More generally, he proved the following result.

Theorem 2.7 ([30]) Assume that for t ∈ [0, T ],
∫ t
0
ζsdBs +

∫ t
0
ηsds+Kt = Lt, where ζ ∈ H1

G(0, T ),

η ∈ M1
G(0, T ) and K,L are nonincreasing G-martingales. Then we have

∫ t
0
ζsdBs = 0,

∫ t
0
ηsds = 0

and Kt = Lt.

Remark 2.8 A process of the following form is called a generalized G-Itô process:

ut = u0 +

∫ t

0

ηsds+

∫ t

0

ζsdBs +Kt,

where η ∈M1
G(0, T ), ζ ∈ H1

G(0, T ) and K is a non-increasing G-martingale. Theorem 2.7 shows that
the decomposition for generalized G-Itô processes is unique.

3 G-BSDE with two reflection barriers

In this section, we give the formulation of the doubly reflected BSDE driven by G-Brownian motion.
Particularly, the approximate Skorohod condition is introduced to guarantee the uniqueness of the
solutions, which will be proved via some a priori estimates given later.

3.1 Formulation of doubly reflected BSDE driven by G-Brownian motion

We formulate the doubly reflected BSDE driven by G-Brownian motion in details. For simplicity, we
only consider the case of 1-dimensional G-Brownian motion. But our results and methods still hold
for the case d > 1. We are given the following data: the generators f and g, the lower obstacle process
{Lt}t∈[0,T ], the upper obstacle process {Ut}t∈[0,T ] and the terminal value ξ.

Here f and g are maps

f(t, ω, y, z), g(t, ω, y, z) : [0, T ]× ΩT × R2 → R.

Below, we list the assumptions on the data of the doubly reflected G-BSDEs.
There exists some β > 2 such that
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(A1) for any y, z, f(·, ·, y, z), g(·, ·, y, z) ∈ SβG(0, T );

(A2) |f(t, ω, y, z)− f(t, ω, y′, z′)|+ |g(t, ω, y, z)− g(t, ω, y′, z′)| ≤ κ(|y− y′|+ |z− z′|) for some κ > 0;

(A3) {Lt}t∈[0,T ], {Ut}t∈[0,T ] ∈ SβG(0, T ), Lt ≤ Ut, t ∈ [0, T ], q.s. and the upper obstacle is a general-
ized G-Itô process of the following form

Ut = U0 +

∫ t

0

b(s)ds+

∫ t

0

σ(s)dBs +Kt,

where {b(t)}t∈[0,T ], {σ(t)}t∈[0,T ] ∈ SβG(0, T ), K ∈ SβG(0, T ) is a non-increasing G-martingale;

(A4) ξ ∈ LβG(ΩT ) and LT ≤ ξ ≤ UT , q.s.

Remark 3.1 Notice that the Assumptions (A1)-(A4) are quite similar to the ones in [3] since the
non-increasing G-martingale K is equal to 0 when G reduces to a linear function.

We call a triple of processes (Y,Z,A) with Y,A ∈ SαG(0, T ), Z ∈ Hα
G(0, T ), for some 2 ≤ α ≤ β, a

solution to the doubly reflected G-BSDE with the data (ξ, f, g, L, U) if the following properties hold:

(S1) Lt ≤ Yt ≤ Ut, t ∈ [0, T ];

(S2) Yt = ξ +
∫ T
t
f(s, Ys, Zs)ds+

∫ T
t
g(s, Ys, Zs)d〈B〉s −

∫ T
t
ZsdBs + (AT −At);

(S3) (Y,A) satisfies Approximate Skorohod Condition with order α (ASCα).

Condition (ASCα): We say a pair of processes (Y,A) with Y,A ∈ SαG(0, T ) satisfies the approximate
Skorohod condition with order α (with respect to the obstacles L,U) if there exist non-decreasing
processes {An,+}n∈N, {An,−}n∈N and non-increasing G-martingales {Kn}n∈N, such that

• Ê[|An,+T |α + |An,−T |α + |Kn
T |α] ≤ C, where C is independent of n;

• Ê[ sup
t∈[0,T ]

|At − (An,+t −An,−t −Kn
t )|α]→ 0, as n→∞;

• lim
n→∞

Ê[|
∫ T
0

(Ys − Ls)dAn,+s |α/2] = 0;

• lim
n→∞

Ê[|
∫ T
0

(Us − Ys)dAn,−s |α/2] = 0.

Below is the main result of this paper, which gives the wellposedness of the doubly reflected
G-BSDE.

Theorem 3.2 Suppose that ξ, f , g, L and U satisfy (A1)-(A4). Then the reflected G-BSDE with data
(ξ, f, g, L, U) has a unique solution (Y,Z,A). Moreover, for any 2 ≤ α < β we have Y ∈ SαG(0, T ),
Z ∈ Hα

G(0, T ) and A ∈ SαG(0, T ).

Remark 3.3 Recall that, in the classical case (see [3]), the Skorohod condition below is required
to guarantee the uniqueness of the solution (Y,Z,A) to the doubly reflected BSDE with parameters

(ξ, f, L, U):
∫ T
0

(Ys−Ls)dA+
s =

∫ T
0

(Us−Ys)dA−s = 0, where A+, A− are two non-decreasing processes
and A = A+ −A−.

Therefore, a more natural definition of the solution to the G-RBSDE (ξ, f, g, L, U) is a triple of
processes (Y,Z,A) satisfying (Si), (Sii) and the following Skorohod condition.
Condition (SC): The process A is decomposed as A = Ã −K with Ã a finite variation process and
K a non-increasing G-martingale, such that
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∫ T

0

(Ys − Ls)dÃ+
s =

∫ T

0

(Us − Ys)dÃ−s = 0,

where Ã+, Ã− are two non-decreasing processes and A = A+ −A−.

Since the Skorohod condition is stronger than the approximate Skorohod condition, it follows from
Theorem 3.2 that the solution satisfying Condition (SC) is unique. The existence of the solutions
satisfying Condition (SC) is equivalent to prove the decomposition of the process A in Theorem 3.2 :

A = Ã−K, where Ã a finite variation process satisfying the Skorohod condition and
K a non-increasing G-martingale.

The existence and uniqueness of this decomposition are both interesting problems, which will be
considered in future.

Remark 3.4 Suppose that U ≡ ∞, i.e., the doubly reflected G-BSDE is reduced to the reflected G-
BSDE with a lower obstacle. We can show that A ∈ SαG(0, T ) is non-decreasing and satisfies the

martingale condition, that is, {−
∫ t
0
(Ys − Ls)dAs}t∈[0,T ] is a non-increasing G-martingale, which is

the definition of solution to reflected G-BSDE with a lower obstacle (see [16]).
In fact, let {An,+}n∈N, {An,−}n∈N and {Kn}n∈N be the approximation sequences for A. It is clear

that An,− ≡ 0 for any n ∈ N. Note that {An,+ −Kn} is non-decreasing and

lim
n→∞

Ê[ sup
t∈[0,T ]

|At − (An,+t −Kn
t )|α] = 0,

then A is non-decreasing. Since Y ≤ L and Kn is a non-increasing G-martingale, it follows that
{−
∫ t
0
(Ys − Ls)dKn

s }t∈[0,T ] is a non-increasing G-martingale for any n ∈ N. It suffices to show that

lim
n→∞

Ê[ sup
t∈[0,T ]

| −
∫ t

0

(Ys − Ls)dAs −
∫ T

0

(Ys − Ls)dKn
s |] = 0.

It is easy to check that

Ê[ sup
t∈[0,T ]

| −
∫ t

0

(Ys − Ls)dAs −
∫ T

0

(Ys − Ls)dKn
s |]

≤Ê[ sup
t∈[0,T ]

|
∫ t

0

(Ys − Ls)d(As − Ãns )|] + Ê[ sup
t∈[0,T ]

|
∫ t

0

(Ys − Ls)dAn,+s |],

where Ãn = An,+ −Kn. Applying Lemma 3.7 below yields the desired result.
By a similar analysis as above, if L ≡ −∞, the definition of solution to doubly reflected G-BSDE

can be reduced to the one of the upper obstacle case studied in [15].

Remark 3.5 For some results, we will replace the Assumptions (A1), (A3) by the following weaker
ones.

(A1’) For any y, z, f(·, ·, y, z), g(·, ·, y, z) ∈Mβ
G(0, T );

(A3’) {Lt}t∈[0,T ], {Ut}t∈[0,T ] ∈ SβG(0, T ), Lt ≤ Ut, t ∈ [0, T ], q.s. and there exists a generalized G-Itô
process I such that L ≤ I ≤ U , where

It = I0 +

∫ t

0

bI(s)ds+

∫ t

0

σI(s)dBs +KI
t ,

with bI ∈Mβ
G(0, T ), σI ∈ Hβ

G(0, T ), KI
0 = 0 and KI ∈ SβG(0, T ) a non-increasing G-martingale.

Remark 3.6 Since the generator g plays the same role as f , in the following of this paper, we only
consider the case that g = 0.
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3.2 Some a priori estimates

In this subsetion, we give a priori estimate for the solution of the reflected G-BSDE, which implies
the uniqueness of the solution to doubly reflected G-BSDE. In the following of this paper, we denote
by C a constant depending on α, T, κ, σ, but not on n, which may vary from line to line.

Let us denote by V arT0 (A) the total variation of a process A on [0, T ]. We first introduce the
following lemma.

Lemma 3.7 For α > 1, let A, {An}n∈N ⊂ SαG(0, T ) be processes such that Ê[|V arT0 (An)|α] ≤ C and

lim
n→∞

Ê[ sup
t∈[0,T ]

|At −Ant |α] = 0,

where C is independent of n. Then, we have Ê[|V arT0 (A)|α] ≤ C. Moreover, if Y ∈ SpG(0, T ), with
p = α

α−1 , we have

lim
n→∞

Ê[ sup
t∈[0,T ]

|
∫ t

0

Ysd(As −Ans )|] = 0.

Proof. We first show that A is a finite variation process. Let

A = {
n−1∑
i=1

aiI(ti,ti+1](s)||ai| = 1, 0 ≤ t0 < · · · < tn = T, n ∈ N}.

Since supt∈[0,T ] |At − Ant | converges to 0 under the norm ‖ · ‖L1
G

, we may choose a subsequence, still

denoted by An, such that supt∈[0,T ] |At −Ant | converges to 0, q.s. It follows that, for any a ∈ A

lim
n→∞

∫ T

0

a(s)dAns =

∫ T

0

a(s)dAs.

Then we have

V arT0 (A) = sup
a∈A

∫ T

0

a(s)dAs = sup
a∈A

lim inf
n

∫ T

0

a(s)dAns

≤ lim inf
n

sup
a∈A

∫ T

0

a(s)dAns = lim inf
n

V arT0 (An).

Hence, it follows from the assumption that Ê[|V arT0 (A)|α] ≤ C. It remains to prove that for any
Y ∈ SpG(0, T ), with p = α

α−1 , we have

lim
n→∞

Ê[ sup
t∈[0,T ]

|
∫ t

0

Ysd(As −Ans )|] = 0.

In fact, for each m ∈ N, let Ỹ mt =
∑m−1
i=0 Ytmi I[tmi ,tmi+1

(t), where tmi = iT
m , i = 0, 1, · · · ,m. Set

I = sup
t∈[0,T ]

|
∫ t

0

Ỹ ms d(As −Ans )|, II = sup
t∈[0,T ]

|
∫ t

0

(Ys − Ỹ ns )d(As −Ans )|.
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By simple calculation, we have

Ê[I] ≤
m−1∑
i=0

Ê[ sup
s∈[0,T ]

|Ys|(|Antmi+1
−Atmi+1

|+ |Antmi −Atmi |)]

≤(Ê[ sup
s∈[0,T ]

|Ys|p])1/p
m−1∑
i=0

{(Ê[|Antmi+1
−Atmi+1

|α])1/α + (Ê[|Antmi −Atmi |
α])1/α},

Ê[II] ≤(Ê[ sup
s∈[0,T ]

|Ys − Ỹ ms |p])1/p{(Ê[|V arT0 (An)|α])1/α + (Ê[|V arT0 (A)|α])1/α}.

Letting n tend to infinity yields that Ê[I]→ 0, for any m ∈ N. Then, letting m approach to infinity,

we obtain that Ê[II]→ 0 by Lemma 3.2 in [13]. The proof is complete.

Proposition 3.8 Let (ξ1, f1, L, U) and (ξ2, f2, L, U) be two sets of data each one satisfying all the
assumptions (A1)-(A4). Let (Y i, Zi, Ai) be a solution of the reflected G-BSDE with data (ξi, f i, L, U),

i = 1, 2, respectively. Set Ŷt = Y 1
t −Y 2

t , ξ̂ = ξ1−ξ2. Then there exists a constant C := C(α, T, κ, σ) > 0
such that

|Ŷt|α ≤ CÊt[|ξ̂|α +

∫ T

t

|λ̂s|αds],

where λ̂s = |f1(s, Y 2
s , Z

2
s )− f2(s, Y 2

s , Z
2
s )|.

Proof. Set Ẑt = Z1
t − Z2

t , Ât = A1
t −A2

t . By the G-Itô formula, we have

d|Ŷt|2 = −2Ŷt(f
1(t, Y 1

t , Z
1
t )− f2(t, Y 2

t , Z
2
t ))dt+ 2ŶtẐtdBt + Ẑ2

t d〈B〉t − 2ŶtdÂt.

For any r > 0, applying G-Itô’s formula to H
α/2
t ert = (|Ŷt|2)α/2ert, we have

H
α/2
t ert +

∫ T

t

rersHα/2
s ds+

∫ T

t

α

2
ersHα/2−1

s (Ẑs)
2d〈B〉s

= |ξ̂|αerT + α(1− α

2
)

∫ T

t

ersHα/2−2
s (Ŷs)

2(Ẑs)
2d〈B〉s −

∫ T

t

αersHα/2−1
s ŶsẐsdBs

+

∫ T

t

αersHα/2−1
s Ŷs(f

1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s ))ds+

∫ T

t

αersHα/2−1
s ŶsdÂs.

(3.1)

From the assumption of f1, we have∫ T

t

αersHα/2−1
s Ŷs(f

1(s, Y 1
s , Z

1
s )− f2(s, Y 2

s , Z
2
s ))ds

≤
∫ T

t

αersH
α−1
2

s {|f1(s, Y 1
s , Z

1
s )− f1(s, Y 2

s , Z
2
s )|+ λ̂s}ds

≤
∫ T

t

αersH
α−1
2

s {κ(|Ŷs|+ |Ẑs|) + λ̂s}ds

≤r̃
∫ T

t

ersHα/2
s ds+

α(α− 1)

4

∫ T

t

ersHα/2−1
s (Ẑs)

2d〈B〉s

+

∫ T

t

αersHα/2−1/2
s |λ̂s|ds,
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where r̃ = ακ+ ακ2

σ2(α−1) . Then by Young’s inequality, we obtain∫ T

t

αersHα/2−1/2
s |λ̂s|ds ≤ (α− 1)

∫ T

t

ersHα/2
s ds+

∫ T

t

ers|λ̂s|αds.

Let {Ai,n,+}n∈N, {Ai,n,−}n∈N and {Ki,n}n∈N be the approximation sequences for Ai, i = 1, 2. Set
Ai,n = Ai,n,+ −Ai,n,− −Ki,n, i = 1, 2. It is easy to check that∫ T

t

αersHα/2−1
s ŶsdA

1
s =

∫ T

t

αersHα/2−1
s Ŷsd(A1

s −A1,n
s ) +

∫ T

t

αersHα/2−1
s ŶsdA

1,n
s

≤|
∫ T

t

αersHα/2−1
s Ŷsd(A1

s −A1,n
s )|+

∫ T

t

αersHα/2−1
s (Ŷs)

+dA1,n,+
s

+

∫ T

t

αersHα/2−1
s (Ŷs)

−dA1,n,−
s −

∫ T

t

αersHα/2−1
s (Ŷs)

+dK1,n
s .

By Lemma 3.7, we have for any t ∈ [0, T ]

lim
n→∞

Ê[|
∫ T

t

αersHα/2−1
s Ŷsd(A1

s −A1,n
s )|] = 0.

Note that Y is ≥ Ls, for any s ∈ [0, T ] and i = 1, 2, which implies that Ŷs ≤ Y 1
s − Ls. Hence, we have

(Ŷs)
+ ≤ Y 1

s − Ls. By simple calculation, we obtain that

Ê[

∫ T

t

αersHα/2−1
s (Ŷs)

+dA1,n,+
s ] ≤ CÊ[ sup

t∈[0,T ]

(|Y 1
t |+ |Y 2

t |)α−2
∫ T

t

(Ŷs)
+dA1,n,+

s ]

≤ C(Ê[ sup
t∈[0,T ]

(|Y 1
t |α + |Y 2

t |α)])
α−2
α (Ê[|

∫ T

t

(Ŷs)
+dA1,n,+

s |α2 ])
2
α .

Recalling the definition of approximate Skorohod condition, we have

lim
n→∞

Ê[|
∫ T

t

αersHα/2−1
s (Ŷs)

+dA1,n,+
s |] = 0.

Similar analysis as above yields that

lim
n→∞

Ê[|
∫ T

t

αersHα/2−1
s (Ŷs)

−dA1,n,−
s |] = 0,

lim
n→∞

Ê[|
∫ T

t

αersHα/2−1
s (Ŷs)

+dA2,n,−
s |] = 0,

lim
n→∞

Ê[|
∫ T

t

αersHα/2−1
s (Ŷs)

−dA2,n,+
s |] = 0.

Set Mn
t =

∫ t
0
αersH

α/2−1
s (ŶsẐsdBs + (Ŷs)

+dK1,n
s + (Ŷs)

−dK2,n
s ), n ≥ 1. By Lemma 3.4 in [13],

Mn is a G-martingale. Let r = r̃ + α. Combining the above inequalities, we get

H
α/2
t ert + (Mn

T −Mn
t )

≤|ξ̂|αerT +

∫ T

t

ers|λ̂s|αds+

2∑
i=1

|
∫ T

t

αersHα/2−1
s Ŷsd(Ais −Ai,ns )|

+

∫ T

t

αersHα/2−1
s (Ŷs)

+d(A1,n,+
s +A2,n,−

s ) +

∫ T

t

αersHα/2−1
s (Ŷs)

−d(A1,n,−
s +A2,n,+

s )
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Taking conditional expectations on both sides and letting n → ∞, there exists a constant C :=
C(α, T, L, σ) > 0 such that

|Ŷt|α ≤ CÊt[|ξ̂|α +

∫ T

t

|λ̂s|αds].

The proof is complete.

4 Proof of the main result

In this section, we will focus on the penalization method in order to get the existence of solutions to
doubly reflected G-BSDEs. For n ∈ N, consider the following family of G-BSDEs

Y nt = ξ+

∫ T

t

f(s, Y ns , Z
n
s )ds+n

∫ T

t

(Y ns −Ls)−ds−n
∫ T

t

(Y ns −Us)+ds−
∫ T

t

Zns dBs−(Kn
T−Kn

t ). (4.1)

Now let An,−t = n
∫ t
0
(Y ns −Us)+ds, A

n,+
t = n

∫ t
0
(Y ns −Ls)−ds. Then {An,±t }t∈[0,T ] are nondecreas-

ing processes. We can rewrite G-BSDE (4.1) as

Y nt = ξ +

∫ T

t

f(s, Y ns , Z
n
s )ds−

∫ T

t

Zns dBs − (Kn
T −Kn

t ) + (An,+T −An,+t )− (An,−T −An,−t ). (4.2)

4.1 Uniform estimates of Y n

Under the weaker Assumptions (A1’), (A2), (A3’), (A4), we show that {Y n}∞n=1 are uniformly bounded
under the norm ‖ · ‖SαG .

Lemma 4.1 For 2 ≤ α < β, there exists a constant C independent of n, such that

Ê[ sup
t∈[0,T ]

|Y nt |α] ≤ C.

Proof. Let It = I0 +
∫ t
0
bI(s)ds +

∫ t
0
σI(s)dBs + KI

t be the generalized G-Itô process such that
L ≤ I ≤ U . Set Ȳ nt = Y nt − It, Z̄nt = Znt − σI(t), Ht = (Ȳ nt )2, Ūt = Ut − It, L̄t = Lt − It, and
f̄t = f(t, Y nt , Z

n
t ) + bI(t). G-BSDE (4.1) can be rewritten as

Ȳ nt =ξ − IT +

∫ T

t

f̄(s)ds+ n

∫ T

t

(Ȳ ns − L̄s)−ds− n
∫ T

t

(Ȳ ns − Ūs)+ds

−
∫ T

t

Z̄ns dBs − (Kn
T −Kn

t ) + (KI
T −KI

t ).

For any r > 0, applying Itô’s formula to H
α/2
t ert, we get

H
α/2
t ert +

∫ T

t

rersHα/2
s ds+

∫ T

t

α

2
ersHα/2−1

s (Z̄ns )2d〈B〉s

= |ξ − IT |αerT + α(1− α

2
)

∫ T

t

ersHα/2−2
s (Ȳ ns )2(Z̄ns )2d〈B〉s

−
∫ T

t

αersHα/2−1
s nȲ ns (Ȳ ns − Ūs)+ds+

∫ T

t

αersHα/2−1
s nȲ ns (Ȳ ns − L̄s)−ds

+

∫ T

t

αersHα/2−1
s Ȳ ns f̄sds−

∫ T

t

αersHα/2−1
s (Ȳ ns Z̄

n
s dBs + Ȳ ns dK

n
s − Ȳ ns dKI

s ).
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Noting that −Ȳ ns (Ȳ ns − Ūs)+ ≤ 0 and Ȳ ns (Ȳ ns − L̄s)− ≤ 0, we get

H
α/2
t ert +

∫ T

t

rersHα/2
s ds+

∫ T

t

α

2
ersHα/2−1

s (Z̄ns )2d〈B〉s

≤ |ξ − IT |αerT + α(1− α

2
)

∫ T

t

ersHα/2−2
s (Ȳ ns )2(Z̄ns )2d〈B〉s

+

∫ T

t

αersHα/2−1/2
s |f̄s|ds− (MT −Mt),

where

Mt =

∫ t

0

αersHα/2−1
s (Ȳ ns Z̄sdBs + (Ȳ ns )+dKn

s + (Ȳ ns )−dKI
s )

is a G-martingale. From the assumption of f , we have∫ T

t

αersHα/2−1/2
s |f̄s|ds

≤
∫ T

t

αersHα/2−1/2
s {|f(s, 0, 0)|+ |bI(s)|+ κ[|Ȳ ns |+ |Z̄ns |+ |Is|+ |σI(s)|]}ds

≤(ακ+
ακ2

σ2(α− 1)
)

∫ T

t

ersHα/2
s ds+

α(α− 1)

4

∫ T

t

ersHα/2−1
s (Z̄ns )2d〈B〉s

+

∫ T

t

αersHα/2−1/2
s [|f(s, 0, 0)|+ |bI(s)|+ κ(|Is|+ |σI(s)|)]ds.

By Young’s inequality, we obtain∫ T

t

αersHα/2−1/2
s [|f(s, 0, 0)|+ |bI(s)|+ κ(|Us|+ |σI(s)|)]ds

≤4(α− 1)

∫ T

t

ersHα/2
s ds+

∫ T

t

ers[|f(s, 0, 0)|α + |bI(s)|α + κα|Is|α + κα|σI(s)|α]ds.

Combining the above inequalities, we get

H
α/2
t ert +

∫ T

t

(r − α̃)ersHα/2
s ds+

∫ T

t

α(α− 1)

4
ersHα/2−1

s (Z̄ns )2d〈B〉s + (MT −Mt)

≤|ξ − IT |αerT +

∫ T

t

ers[|f(s, 0, 0)|α + |bI(s)|α + κα|Is|α + κα|σI(s)|α]ds,

where α̃ = 4(α − 1) + ακ + ακ2

σ2(α−1) . Setting r = α̃ + 1 and taking conditional expectations on both

sides, we derive that

H
α/2
t ert ≤ Êt[|ξ − IT |αerT +

∫ T

t

ers[|f(s, 0, 0)|α + |bI(s)|α + κα|Is|α + κα|σI(s)|α]ds].

Then, there exists a constant C independent of n such that

|Ȳ nt |α ≤ CÊt[|ξ − IT |α +

∫ T

t

[|f(s, 0, 0)|α + |bI(s)|α + |σI(s)|α + |Is|α]ds].

Noting that |Y nt |α ≤ C(|Ȳ nt |α + |It|α) and applying Theorem 2.2, we finally get the desired result.
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4.2 Convergence of (Y n − U)+ and (Y n − L)−

Under the Assumptions (A1’), (A2), (A3’), (A4), we show that (Y n − U)+ and (Y n − L)− converge
to 0 under the norm ‖ · ‖SαG . First, we prove a simple lemma.

Lemma 4.2 For S ∈ SβG(0, T ) with β > 1, define
∫ t
s
e−nudSu := e−ntSt − e−nsSs +

∫ t
s
nSue

−nudu,

and set in(t) = Êt[|
∫ T
t
e−n(s−t)dSs|α] for some 1 ≤ α < β. Then, as n→∞, we have,

Ê[ sup
t∈[0,T ]

|in(t)|]→ 0.

Proof. Notice that the mappings Dn : SβG(0, T )→ S1
G(0, T ) by Dn(S) = in are uniformly continuous

with respect to n, i.e.,

‖Dn(S)−Dn(S′)‖S1
G
≤ 3ααÊ[ sup

t∈[0,T ]

Êt[ sup
s∈[0,T ]

|Ss − S′s| sup
s∈[0,T ]

|Sθs |α−1]]

≤ 3αα

(
Ê
[

sup
t∈[0,T ]

Êt[ sup
s∈[0,T ]

|Ss − S′s|α]

]) 1
α
(
Ê
[

sup
t∈[0,T ]

Êt[ sup
s∈[0,T ]

|Sθs |α]

])α−1
α

.

where Sθ = θS + (1 − θ)S′ for some θ ∈ [0, 1]. By Theorem 2.2, it suffices to prove this lemma for

a dense subset of SβG(0, T ). For a G-Itô process St = S0 +
∫ t
0
bS(s)ds +

∫ t
0
σS(s)dBs +

∫ t
0
cS(s)d〈B〉s

with bS , cS , σS ∈M0
G(0, T ), we have

|in(t)| ≤ Cα
(
Êt
[∣∣ ∫ T

t

e−n(s−t)(|bS(s)|+ |cS(s)|)ds
∣∣α]+ Êt

[∣∣ ∫ T

t

e−n(s−t)σS(s)dBs
∣∣α])

≤ Cα
(

1

n

)α
Êt
[

sup
s∈[0,T ]

(|bS(s)|+ |cS(s)|)α
]

+ Cα

(
1

n

)α
2

Êt
[

sup
s∈[0,T ]

|σS(s)|α
]
.

So, we get Ê[supt∈[0,T ] |in(t)|α]→ 0 as n goes to ∞.

Lemma 4.3 Let Ỹ n, M̃n ∈ SαG(0, T ) and f̃n ∈Mα
G(0, T ) for some 1 < α ≤ β satisfy

Ỹ nt = ξ +

∫ T

t

f̃n(s)ds+ n

∫ T

t

(Ỹ ns − Ls)−ds− n
∫ T

t

(Ỹ ns − Us)+ds− (M̃n
T − M̃n

t ).

Assuming that M̃n is a martingale under a time-consistent sublinear expectation Ẽ, we have

(Ỹ nt − Ut)+ ≤
∣∣∣∣Ẽt[∫ T

t

e−n(s−t)f̃n(s)ds+

∫ T

t

e−n(s−t)dUs]

∣∣∣∣, (4.3)

(Ỹ nt − Lt)− ≤
∣∣∣∣Ẽt[∫ T

t

e−n(s−t)f̃n(s)ds+

∫ T

t

e−n(s−t)dLs]

∣∣∣∣. (4.4)

Proof. For S ∈ SβG(0, T ), setting Ȳ nt = Ỹ nt − St, Ūt = Ut − St and L̄t = Lt − St, we have

e−ntȲ nt +

∫ T

t

e−nsdM̃n
s

=e−nT (ξ − ST ) +

∫ T

t

ne−ns
(
Ȳ ns − (Ȳ ns − Ūs)+ + (Ȳ ns − L̄s)−

)
ds

+

∫ T

t

e−nsf̃n(s)ds+

∫ T

t

e−nsdSs.
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(1) If St = Ut, we have ξ − ST = ξ − UT ≤ 0, and

Ȳ ns − (Ȳ ns − Ūs)+ + (Ȳ ns − L̄s)− = −(Ỹ ns − Us)− + (Ỹ ns − Ls)− ≤ 0.

So, we have

(Ỹ nt − Ut)+ ≤
∣∣∣∣Ẽt[∫ T

t

e−n(s−t)f̃n(s)ds+

∫ T

t

e−n(s−t)dUs]

∣∣∣∣.
(2) If St = Lt, we have ξ − ST = ξ − LT ≥ 0, and

Ȳ ns − (Ȳ ns − Ūs)+ + (Ȳ ns − L̄s)− = (Ỹ ns − Ls)+ − (Ỹ ns − Us)− ≥ 0.

So, we have

(Ỹ nt − Lt)− ≤
∣∣∣∣Ẽt[∫ T

t

e−n(s−t)f̃n(s)ds+

∫ T

t

e−n(s−t)dLs]

∣∣∣∣.
Lemma 4.4 Assume that (A1’), (A2), (A3’) and (A4) hold. As n goes to ∞, for any 2 ≤ α < β, we
have

Ê[ sup
t∈[0,T ]

|(Y nt − Ut)+|α]→ 0, Ê[ sup
t∈[0,T ]

|(Y nt − Lt)−|α]→ 0. (4.5)

Proof. For each given ε > 0, we can choose a Lipschitz function l(·) such that I[−ε,ε] ≤ l(x) ≤ I[−2ε,2ε].
Thus we have

f(s, Y ns , Z
n
s )− f(s, Y ns , 0) = (f(s, Y ns , Z

n
s )− f(s, Y ns , 0))l(Zns ) + aε,ns Zns =: mε,n

s + aε,ns Zns ,

where aε,ns = (1− l(Zns ))(f(s, Y ns , Z
n
s )− f(s, Y ns , 0))(Zns )−1 ∈ M2

G(0, T ) with |aε,ns | ≤ κ. It is easy to
check that |mε,n

s | ≤ 2κε. Then we can get

f(s, Y ns , Z
n
s ) = f(s, Y ns , 0) + aε,ns Zns +mε,n

s .

Now we consider the following G-BSDE:

Y ε,nt = ξ +

∫ T

t

aε,ns Zε,ns ds−
∫ T

t

Zε,ns dBs − (Kε,n
T −Kε,n

t ).

For each ξ ∈ LpG(ΩT ) with p > 1, define

Ẽε,nt [ξ] := Y ε,nt ,

which is a time-consistent sublinear expectation. Set B̃ε,nt = Bt −
∫ t
0
aε,ns ds. By Theorem 5.2 in [14],

{B̃ε,nt } is a G-Brownian motion under Ẽε,n[·].
We rewrite G-BSDE (4.1) as the following

Y nt =ξ +

∫ T

t

fε,n(s)ds−
∫ T

t

n(Y ns − Us)+ds+

∫ T

t

n(Y ns − Ls)−ds

−
∫ T

t

Zns dB̃
ε,n
s − (Kn

T −Kn
t ),

(4.6)
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where fε,n(s) = f(s, Y ns , 0) +mε,n
s . Since Kn is a martingale under Ẽε,n[·] by Theorem 5.1 in [14], it

follows from (4.3) in Lemma 4.3 that

(Y nt − Ut)+ ≤
∣∣∣∣Ẽε,nt [

∫ T

t

e−n(s−t)fε,n(s)ds+

∫ T

t

e−n(s−t)dUs]

∣∣∣∣.
By Theorem 2.4, for 2 ≤ α < β, it follows that

Ê[ sup
t∈[0,T ]

|(Y nt − Ut)+|α] ≤Ê
[

sup
t∈[0,T ]

∣∣∣∣Ẽε,nt [

∫ T

t

e−n(s−t)fε,n(s)ds+

∫ T

t

e−n(s−t)dUs]

∣∣∣∣α]
≤CαÊ

[
sup
t∈[0,T ]

Êt[
∣∣∣∣ ∫ T

t

e−n(s−t)fε,n(s)ds+

∫ T

t

e−n(s−t)dUs

∣∣∣∣α]

]
,

(4.7)

which converges to 0 as n goes to ∞ by Lemma 4.2. Similarly, we can prove

lim
n→∞

Ê[ sup
t∈[0,T ]

|(Y nt − Lt)−|α] = 0.

4.3 Uniform estimates of Zn, Kn, An,− and An,+

In this subsection, we give the uniform estimates for Zn, Kn, An,+ and An,− under the Assumptions
(A1)-(A4). To this end, we prove that (Y n − U)+ converges to 0 with the explicit rate 1

n , which
requires that the upper obstacle to be a generalized G-Itô process.

Lemma 4.5 For 2 ≤ α < β, there exists a constant C independent of n, such that

Ê[ sup
t∈[0,T ]

|(Y nt − Ut)+|α] ≤ C

nα
.

Proof. Now Ut = U0 +
∫ t
0
b(s)ds +

∫ t
0
σ(s)dBs + Kt with b, σ ∈ SβG(0, T ), and K ∈ SβG(0, T ) a

non-increasing G-martingale. Below, we employ the notations in the proof of Lemma 4.4.
We rewrite Ut as

Ut = U0 +

∫ t

0

bε,n(s)ds+

∫ t

0

σ(s)dB̃ε,ns +Kt, (4.8)

where bε,n(s) = b(s) + aε,ns σ(s). By (4.7), we have, for 2 ≤ α < β,

Ê[ sup
t∈[0,T ]

|(Y nt − Ut)+|α] ≤Ê
[

sup
t∈[0,T ]

∣∣∣∣Ẽε,nt [

∫ T

t

e−n(s−t)fε,n(s)ds+

∫ T

t

e−n(s−t)dUs]

∣∣∣∣α]
≤Ê
[

sup
t∈[0,T ]

∣∣∣∣Ẽε,nt [

∫ T

t

e−n(s−t)(|fε,n(s)|+ |bε,n(s)|)ds]
∣∣∣∣α].

By Theorem 2.4, it follows that

Ê[ sup
t∈[0,T ]

|(Y nt − Ut)+|α] ≤ 1

nα
Ê
[

sup
t∈[0,T ]

∣∣∣∣Ẽε,nt [ sup
s∈[0,T ]

|fε,n(s) + bε,n(s)|]
∣∣∣∣α]

≤Cα
1

nα
Ê
[

sup
t∈[0,T ]

Êt[ sup
s∈[0,T ]

|fε,n(s) + bε,n(s)|α]

]
.

Since Ê
[

supt∈[0,T ] Êt[sups∈[0,T ] |fε,n(s)+bε,n(s)|α]

]
are uniformly bounded, we get the desired result.
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Lemma 4.6 For 2 ≤ α < β, there exists a constant C independent of n, such that

Ê[|Kn
T |α] ≤ C, Ê[|An,−T |α] ≤ C, Ê[|An,+T |α] ≤ C, and Ê[(

∫ T

0

|Zns |2ds)
α
2 ] ≤ C.

Proof. By Lemma 4.5, there exists a constant C independent of n such that

Ê[|An,−T |α] = nαÊ[(

∫ T

0

(Y ns − Us)+ds)α] ≤ C.

Then, it follows from Theorem 2.5 that Ê[(
∫ T
0
|Zns |2ds)

α
2 ] are uniformly bounded. Noting that

Kn
T −A

n,+
T = ξ − Y n0 +

∫ T

0

f(s, Y ns , Z
n
s )ds−

∫ T

0

Zns dBs +An,−T ,

we conclude that Ê[|Kn
T −A

n,+
T |α] are uniformly bounded. Since Kn

T and −An,+T are non-positive, the
proof is complete.

4.4 Proof of Theorem 3.2

In this subsection, we prove that Y n, Zn, and An = An,+ −Kn −An,−, n ≥ 1 are Cauchy sequences
with respect to the norms ‖ · ‖SαG , ‖ · ‖HαG and ‖ · ‖SαG , respectively, and that their limits are a solution
to the doubly reflected G-BSDE.

Lemma 4.7 For 2 ≤ α < β, we have

lim
n,m→∞

Ê[ sup
t∈[0,T ]

|Y nt −Y mt |α] = 0, lim
n,m→∞

Ê[(

∫ T

0

|Zns −Zms |2ds)
α
2 ] = 0, lim

n,m→∞
Ê[ sup
t∈[0,T ]

|Ant −Amt |α] = 0.

Proof. For any r > 0, and n,m ∈ N, set

Ŷt = Y nt − Y mt , Ẑt = Znt − Zmt , K̂t = Kn
t −Km

t ,

Â+
t = An,+t −Am,+t , Â−t = An,−t −Am,−t , f̂t = f(t, Y nt , Z

n
t )− f(t, Y mt , Zmt ).

Denote Ht = |Ŷt|2. Applying Itô’s formula to H
α/2
t ert, we get

H
α/2
t ert +

∫ T

t

rersHα/2
s ds+

∫ T

t

α

2
ersHα/2−1

s (Ẑs)
2d〈B〉s

= α(1− α

2
)

∫ T

t

ersHα/2−2
s (Ŷs)

2(Ẑs)
2d〈B〉s +

∫ T

t

αersHα/2−1
s Ŷsd(Â+

s − Â−s )

+

∫ T

t

αersHα/2−1
s Ŷsf̂sds−

∫ T

t

αersHα/2−1
s (ŶsẐsdBs + ŶsdK̂s).
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Noting that An,−t = n
∫ t
0
(Y ns − Us)+ds, A

n,+
t = n

∫ t
0
(Y ns − Ls)−ds, we have∫ T

t

αersHα/2−1
s Ŷsd(Â+

s − Â−s )

=

∫ T

t

αersHα/2−1
s

[
(Y ns − Ls)− (Y ms − Ls)

]
(dAn,+s − dAm,+s )

−
∫ T

t

αersHα/2−1
s

[
(Y ns − Us)− (Y ms − Us)

]
(dAn,−s − dAm,−s )

≤
∫ T

t

αersHα/2−1
s

[
(Y ns − Ls)−dAm,+s + (Y ms − Ls)−dAn,+s

]
+

∫ T

t

αersHα/2−1
s

[
(Y ns − Us)+dAm,−s + (Y ms − Us)+dAn,−s

]
=:

∫ T

t

∆sds.

Therefore,

H
α/2
t ert +

∫ T

t

rersHα/2
s ds+

∫ T

t

α

2
ersHα/2−1

s (Ẑs)
2d〈B〉s

≤ α(1− α

2
)

∫ T

t

ersHα/2−2
s (Ŷs)

2(Ẑs)
2d〈B〉s +

∫ T

t

αersHα/2−1
s Ŷsf̂sds

+

∫ T

t

∆sds− (MT −Mt),

where Mt =
∫ t
0
αersH

α/2−1
s (ŶsẐsdBs + (Ŷs)

+dKm
s + (Ŷs)

−dKn
s ) is a G-martingale. Applying the

Hölder inequality, we have∫ T

t

αersH
α−1
2

s |f̂s|ds ≤ (ακ+
ακ2

σ2(α− 1)
)

∫ T

t

ersHα/2
s ds+

α(α− 1)

4

∫ T

t

ersHα/2−1
s (Ẑs)

2d〈B〉s.

Letting r = 1 + ακ+ ακ2

σ2(α−1) , we have

H
α/2
t ert + (MT −Mt) ≤

∫ T

t

∆sds.

Taking conditional expectation on both sides of the above inequality, it follows that

H
α/2
t ert ≤ Êt[

∫ T

t

∆sds].

Consequently, we have

Ê[ sup
t∈[0,T ]

|Ŷt|α] ≤ Ê[ sup
t∈[0,T ]

Êt[
∫ T

0

∆sds]]. (4.9)

By symmetry and Theorem 2.2, it suffices to prove that there exists some γ > 1, such that

lim
n,m→∞

Ê[(

∫ T

0

Hα/2−1
s (Y ns − Ls)−dAm,+s )γ ] = 0. (4.10)
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For 1 < γ < β/α,

Ê[(

∫ T

0

Hα/2−1
s (Y ns − Ls)−dAm,+s )γ ]

≤Ê[ sup
s∈[0,T ]

|Ŷs|(α−2)γ sup
s∈[0,T ]

(
(Y ns − Ls)−

)γ(
Am,+T

)γ
]

≤
(
Ê[ sup
s∈[0,T ]

|Ŷs|αγ ]

) α
α−2
(
Ê[ sup
s∈[0,T ]

(
(Y ns − Ls)−

)αγ
]

) 1
α

Ê[
(
Am,+T

)αγ
]
1
α ,

which converges to 0 as n goes to ∞ by Lemma 4.1, Lemma 4.4 and Lemma 4.6.
By a similar analysis as in the proof of Theorem 5.1 in [16], for some 2 ≤ α < β, we get that

Ê[(

∫ T

0

|Ẑt|2dt)
α
2 ] ≤ C{Ê[ sup

t∈[0,T ]

|Ŷt|α] + (Ê[ sup
t∈[0,T ]

|Ŷt|α])1/2},

Ê[ sup
t∈[0,T ]

|Ât|α] ≤ C{Ê[ sup
t∈[0,T ]

|Ŷt|α] + Ê[(

∫ T

0

|Ẑt|2dt)
α
2 ]}.

The proof is complete.
Now, we prove our main result.

Proof of Theorem 3.2.
First we prove the uniqueness. Suppose that (Y i, Zi, Ai), i = 1, 2 are solutions of the reflected

G-BSDE with data (ξ, f, , L, U). Proposition 3.8 yields that Y 1 ≡ Y 2. Applying G-Itô’s formula to
(Y 1
t − Y 2

t )2 ≡ 0 and taking expectation (we may refer to Equation (3.1)), we get

Ê[(

∫ T

0

|Z1
s − Z2

s |2d〈B〉s)α/2] = 0.

It follows that Z1 ≡ Z2. Then it is easy to check A1 ≡ A2.
Now we are in a position to show the existence. By Lemma 4.7, there exist Y ∈ SαG(0, T ),

Z ∈ Hα
G(0, T ) and a finite variation process A ∈ SαG(0, T ) such that

Ê[ sup
t∈[0,T ]

|Y nt − Yt|α]→ 0, Ê[(

∫ T

0

|Znt − Zt|2ds)
α
2 ]→ 0, Ê[ sup

t∈[0,T ]

|Ant −At|α]→ 0, as n→∞,

where Ant = An,+t −Kn
t − A

n,−
t . By Lemma 4.4 , we derive that Lt ≤ Yt ≤ Ut, for any t ∈ [0, T ]. It

remains to show that A satisfies the approximate Skorohod condition with order α. We claim that
{An,+}n∈N, {An,−}n∈N and {Kn}n∈N are the approximation sequences. It is sufficent to prove that

lim
n→∞

Ê[|
∫ T

0

(Ys − Ls)dAn,+s |α/2] = 0.

In fact, it is easy to check that∫ T

0

(Ys − Ls)dAn,+s =

∫ T

0

(Ys − Y ns )dAn,+s +

∫ T

0

(Y ns − Ls)n(Y ns − Ls)−ds ≤ sup
t∈[0,T ]

|Ys − Y ns |A
n,+
T .

It follows that

Ê[|
∫ T

0

(Ys − Ls)dAn,+s |α/2] ≤ (Ê[ sup
t∈[0,T ]

|Yt − Y nt |α])1/2(Ê[|An,+T |])1/2.

Hence, the claim holds. The proof is complete.
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Remark 4.8 The analysis for the penalization method above can also be used for the single obstacle
case, which will extend the results in [16] and [15] to a more general setting. More precisely, suppose

that L ∈ SβG(0, T ) is bounded from above by some generalized G-Itô process I satisfying (A3’). Then
the reflected G-BSDE with a lower obstacle whose parameters are given by (ξ, f, g, L) admits a unique

solution, where (f, g) satisfies (A1’), (A2) and ξ ∈ LβG(ΩT ) such that ξ ≥ LT . The reflected G-BSDE
with an upper obstacle whose parameters are given by (ξ, f, g, U) admits a unique solution, where

(f, g, U) satisfies (A1)-(A3) and ξ ∈ LβG(ΩT ) with ξ ≤ UT .

By the construction via penalization, we obtain the following comparison theorem for doubly
reflected G-BSDEs.

Theorem 4.9 Let (ξi, f i, Li, U i) be two sets of data satisfying (A1)-(A4), i = 1, 2. We furthermore
assume the following:

(i) ξ1 ≤ ξ2, q.s.;

(ii) f1(t, y, z) ≤ f2(t, y, z), ∀(y, z) ∈ R2;

(iii) L1
t ≤ L2

t , U
1
t ≤ U2

t , 0 ≤ t ≤ T , q.s.

Let (Y i, Zi, Ai) be the solutions of the doubly reflected G-BSDE with data (ξi, f i, Li, U i), i = 1, 2,
respectively. Then

Y 1
t ≤ Y 2

t , 0 ≤ t ≤ T q.s.

Proof. For i = 1, 2, consider the following G-BSDEs parameterized by n = 1, 2, · · · ,

Y i,nt =ξi,n +

∫ T

t

f i(s, Y i,ns , Zi,ns )ds− n
∫ T

t

(Y i,ns − U is)+ds+

∫ T

t

n(Y i,ns − Lis)−ds

−
∫ T

t

Zi,ns dBs − (Ki,n
T −K

i,n
t ).

By Theorem 2.6, for any t ∈ [0, T ] and n = 1, 2, · · · , we have Y 1,n
t ≤ Y 2,n

t . Letting n go to infinity,
we get the desired result.
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[27] Possamäı D, Tan X, Zhou C. Stochastic control for a class of nonlinear kernels and applications.
The Annals of Probability, 2018, 46(1): 551-603

[28] Soner M., Touzi N, Zhang J. Wellposedness of second order backward SDEs. Probab. Theory
Relat. Fields., 2012, 153(1-2): 149-190

[29] Song Y. Some properties on G-evaluation and its applications to G-martingale decomposition.
Science China Mathematics, 2011, 54: 287-300

[30] Song Y. Properties of G-martingales with finite variation and the application to G-Sobolev spaces.
Stochastic Processes and their Applications, 2018, 1-20

23


	Introduction
	Preliminaries
	G-BSDE with two reflection barriers
	Formulation of doubly reflected BSDE driven by G-Brownian motion
	Some a priori estimates

	 Proof of the main result
	Uniform estimates of Yn
	Convergence of (Yn-U)+ and (Yn-L)-
	Uniform estimates of Zn, Kn, An,- and An,+
	Proof of Theorem 3.2


