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Abstract
In this paper, we consider a stochastic optimal control problem, in which the cost
function is defined through a reflected backward stochastic differential equation in
sublinear expectation framework.Besides,we study the regularity of the value function
and establish the dynamic programming principle. Moreover, we prove that the value
function is the unique viscosity solution of the related Hamilton–Jacobi–Bellman–
Isaac equation.

Keywords Sublinear expectation · Reflected backward stochastic differential
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1 Introduction

The present paper introduces a new class of stochastic optimal control problem with
obstacle constraints under model uncertainty, which involves a class of non-dominated
probability measures. Specifically, we shall consider a minimum cost problem of
an agent, where the cost is defined by the solution of reflected backward stochastic
differential equation (BSDE) in sublinear expectation framework.

The sublinear expectation theory, formulated by Peng [1], is a useful tool for the
study of model uncertainty, which is also called G-expectation. For example, Epstein
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and Ji [2,3] appliedG-expectation to tackle a recursive utility problem under volatility
uncertainty. Actually, the G-expectation can be represented as an upper expectation
over a non-dominated set of probability measures.

Under G-expectation framework, a new kind of Brownian motion, called G-
Brownian motion, was constructed and the associated stochastic calculus was also
established. Moreover, Hu et al. [4,5] studied the well-posedness of BSDE driven by
G-Brownian motion (G-BSDE). In a different setting, Soner et al. [6] established the
so-called 2BSDEs theory, which shares many similarities with G-BSDEs.

Thanks to the development of G-BSDE theory, Hu and Ji [7] discussed a stochas-
tic recursive optimal control problem under volatility uncertainty, in which the cost
function is defined by the solution of G-BSDE. Note that the stochastic control prob-
lem in G-framework is essentially an “inf sup problem,” which can be seen as a
robust optimal control problem. For more results concerning this topic, we refer to
[8–10].

It is well known that the solution of reflected BSDE can be regarded as the
payoff process of American option; see [11]. The reflection means that the solu-
tion is forced to be above a prescribed stochastic process, which is called obstacle.
Then, Li et al. [12] study the reflected BSDE in the G-expectation framework,
called reflected G-BSDE. For the completeness of the G-stochastic control the-
ory, this paper is devoted to extending the results in [7] to the obstacle constraint
case.

The contribution of this paper is threefold: The stochastic optimal control problem
with model uncertainty is formulated; the cost function can be required to be bigger
than a typical function; the G-stochastic representation for a class of HJBI equations
is obtained. Indeed, compared with [13], our problem is essentially an “inf sup prob-
lem” involving a family of non-dominated probability measures, which makes it more
delicate and challenging. The cost function is measured by the solution of a reflected
G-BSDE. Moreover, our result provides a stochastic control approach for the study
of a class of HJBI equations with obstacle constraints, which is easier than the game
problem.

The paper is organized as follows. In Sect. 2, we introduce the stochastic recursive
optimal control problem. We then establish the dynamic programming principle in
Sect. 3. In Sect. 4, it is shown that the value function is the unique viscosity solution
of the corresponding HJBI equations.

2 Formulation of the Problem

Let ΩT = Cd
0 ([0, T ]) be the space of all Rd -valued continuous paths (ωt )0≤t≤T

starting from the origin and Bt (ω) = ωt be the canonical mapping equipped with the
supremum norm.
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2.1 The Probabilistic Setup

Given a fixed monotonic and sublinear function G : S(d) → R, where S(d) denotes
the space of all d × d symmetric matrices. For each 0 ≤ t ≤ T , set

Lip(Ωt ) := {ϕ(Bt1, . . . , Btk ) : k ∈ N, t1, . . . , tk ∈ [0, t], ϕ ∈ Cb.Lip(R
k×d)},

where Cb.Lip(R
k×d) denotes the space of bounded and Lipschitz functions on R

k×d .
Then, Peng [14] established theG-expectation Ê[·] on (ΩT , Lip(ΩT )). The canonical
process B, called G-Brownian motion, has stationary and independent increment.

Theorem 2.1 ([15]) There exists aweakly compact setP of non-dominated probability
measures on (ΩT ,B(ΩT )), such that

Ê[ξ ] = sup
P∈P

EP [ξ ] for all ξ ∈ Lip(ΩT ).

Based on the above set P , it is natural to introduce the following capacity

c(A) := sup
P∈P

P(A), A ∈ B(ΩT ).

A set A ∈ B(ΩT ) is polar, if c(A) = 0. A property holds quasi-surely (q.s.), if it holds
outside a polar set. From now on, we do not distinguish between two random variables
X and Y , if X = Y q.s.

In the rest of this paper, we shall make use of the following spaces: for each 0 ≤
t ≤ s ≤ T , p ≥ 1 and a compact subset U of Rm ,

• Lip(Ω
t
s ) := {ϕ(Bt

t1 , . . . , B
t
tn ) : n ≥ 1, t1, . . . tn ∈ [t, s], ϕ ∈ Cb.Lip(R

n×d)},
• L p

G(Ω t
s ) := {the completion of Lip(Ω

t
s ) under ‖ξ‖L p

G
:= Ê[|ξ |p] 1

p },

• M0,t
G (t, T ) := {ηs = ∑N−1

i=0 ξi I[ti ,ti+1)(s) : t < t1 < · · · < T , ξi ∈ Lip(Ω
t
ti )},

• Mp,t
G (t, T ) := {the completion of M0,t

G (t, T ) under the norm ‖ · ‖Mp
G
},

• H p,t
G (t, T ) := {the completion of M0,t

G (t, T ) under the norm ‖ · ‖H p
G
},

• S0,tG (t, T ) = {h(s, Bt1∧s, · · ·, Btn∧s) : t1, . . . , tn ∈ [t, T ], h ∈ Cb,Lip(R
1+n×d)},

• S p,t
G (t, T ) := {the completion of S0,tG (t, T ) under the norm ‖ · ‖S p

G
},

• U t [t, T ] := {u : u ∈ M2,t
G (t, T ) with values in U },

• U[t, T ] := {u = ∑n
i=1 IAi u

i : n ≥ 1, ui ∈ U t [t, T ], IAi ∈ L2
G(Ω0

t ), (Ai )
n
i=1 is a

partition of ΩT },
where Bt

s = Bs − Bt and the definition of the above norms can be found in [4].

For convenience, we set L p
G(Ωs) := L p

G(Ω0
s ) and Ξ

p
G(0, T ) := Ξ

p,0
G (0, T ), for

Ξ = M, H , S.
For each 1 ≤ i, j ≤ d, denote by 〈Bi , B j 〉 the cross-variation process. Then, for

two processes η ∈ M2
G(0, T ) and ξ ∈ M1

G(0, T ), the G-Itô integrals
∫

ηsdBi
s and

∫
ξsd〈Bi , B j 〉s are well defined; see Peng [14].
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2.2 The Problem of Stochastic Control with Obstacle Constraints

Definition 2.1 For each given t ≥ 0, u : [t, T ]×ΩT → U is said to be an admissible
control on [t, T ], if u ∈ M2

G(t, T ). The set of admissible controls on [t, T ] is denoted
by U[t, T ].

For each t ≥ 0 and ξ ∈ L p
G(Ωt ) with p > 2, assume that the agent can choose an

admissible control u ∈ U[t, T ] to obtain the following G-SDEs:

Xt,ξ,u
s = ξ +

∫ s

t
b(r , Xt,ξ,u

r , ur )dr +
∫ s

t
σ(r , Xt,ξ,u

r , ur )dBr , (1)

where b : [0, T ] ×R
n ×U → R

n and σ : [0, T ] ×R
n ×U → R

n×d are continuous
in t and Lipschitz continuous in (x, u), with Lipschitz constant L .

Then, recalling Chapter V of Peng [14], the G-SDE (1) admits a unique solution
Xt,ξ,u ∈ M2

G(t, T ).

Lemma 2.1 For each ξ, ξ ′ ∈ L p
G(Ωt ) with p > 2, and δ ∈ [0, T − t], we have

(i) Êt [ sup
s∈[t,t+δ]

|Xt,ξ,u
s − Xt,ξ ′,u′

s |p] ≤ CT (|ξ − ξ ′|p + Êt [
∫ t+δ

t |us − u′
s |pds]);

(ii) Êt [ sup
s∈[t,T ]

|Xt,ξ,u
s |p] ≤ CT (1 + |ξ |p);

(iii) Êt [ sup
s∈[t,t+δ]

|Xt,ξ,u
s − ξ |p] ≤ CT (1 + |ξ |p)δ p/2,

where the constant CT depends on G, L, p, n, U and T .

Example 2.1 Consider a production planning problem of a factory. Assume that the
inventory process is described by G-SDE (1) with an initial inventory x and a pro-
duction plan u ∈ M2

G(t, T ), which can be chosen by the production management, for
example the production rate.

Suppose the cost per unit time is f (x, u). Denote Φ(x) and a constant λ > 0
by the cost of retaining the leftover inventory x at time T and the discounted rate,
respectively. Then, the expected discounted cost at time t is given by

J̄ (t, x, u) = Êt

[

e−λ(T−t)Φ(Xt,x,u
T ) +

∫ T

t
e−λ(s−t) f (Xt,x,u

s , us)ds

]

,

which can be regarded as the Ȳ t,x,u
t term of the solution of the following G-BSDE:

Ȳ t,x,u
s = Φ(Xt,x,u

T ) +
∫ T

s
( f (Xt,x,u

r , ur ) − λȲ t,x,u
r )dr −

∫ T

s
Z̄ t,x,u
r dBr

− (K̄ t,x,u
T − K̄ t,x,u

s ).

In [7], the authors study the minimal cost V̄ (t, x) over the set of production plans.
However, taking into account the occurrence of unexpected events, such as power

cutoff or misoperation, the expected discounted cost function may be required to
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be bigger than one specific function l(t, x) at time t . In this case, one can measure
the expected discounted cost J (t, x, u) by the following G-BSDE with reflection
formulated by [12], i.e., J (t, x, u) := Y t,x,u

t ,

(i) Y t,x,u
s = Φ(Xt,x,u

T ) + ∫ T
s ( f (Xt,x,u

r , ur ) − λY t,x,u
r )dr − ∫ T

s Z t,x,u
r dBr + (At,x,u

T
− At,x,u

s ),
(ii) Y t,x,u

s ≥ l(s, Xt,x,u
s ), ∀t ≤ s ≤ T ,

(iii) {∫ st (l(s, Xt,x,u
r ) − Y t,x,u

r )dAt,x,u
r }s∈[t,T ] is a non-increasing G-martingale.

Note that the cost process Y t,x,u satisfies the management constraint at each time; see
condition (ii), called obstacle constraints. The above condition (iii) is called “martin-
gale condition” to ensure the minimality of solution Y t,x,u .

In this typical case, our stochastic optimal control problem with the obstacle con-
straints is to find a production plan u to “minimize” the solution Y 0,x,u

0 .

Remark 2.1 In Example 2.1, we use G-expectation to measure the expected cost due
to the volatility uncertainty. More precisely, the volatility uncertainty is parametrized
by a set of non-dominated probability measures; see Theorem 2.1. In the case without
volatility uncertainty, the G-expectation and the reflected G-BSDE reduce to a linear
expectation and a standard reflected BSDE, respectively.

Now, we assume that the cost function of the agent is defined by the solution of a
G-BSDE with obstacle constraint associated with the controlled G-diffusion process
(1). Specifically, for each t ≥ 0, u ∈ U[t, T ] and ξ ∈ L p

G(Ωt ) with p > 2, the cost

function Y t,ξ,u
t satisfies the following equation:

(i) Y t,ξ,u
s = Φ(Xt,ξ,u

T ) +
∫ T

s
f
(
r , Xt,ξ,u

r ,Y t,ξ,u
r , Zt,ξ,u

r , ur
)
dr

−
∫ T

s
Z t,ξ,u
r dBr + (At,ξ,u

T − At,ξ,u
s );

(ii) Y t,ξ,u
s ≥ l

(
s, Xt,ξ,u

s

)
, ∀s ∈ [t, T ];

(iii){
∫ s

t

(
l(s, Xt,x,u

r ) − Y t,x,u
r

)
dAt,x,u

r }s∈[t,T ] is a non-increasing G-martingale,

(2)

where Φ : Rn → R, f : [0, T ] × R
n × R × R

d ×U → R and l : [0, T ] × R
n → R

are deterministic continuous functions satisfying the following conditions:

(A1) f is uniformly Lipschitz in (x, y, z, u), Φ, l are uniformly Lipschitz in x , with
Lipschitz constant L ,

(A2) there is a constant c such that l ≤ c and l(T , x) ≤ Φ(x) for any x ∈ R
n ,

(A2’) l belongs to C1,2
Lip([0, T ] × R

n) and l(T , x) ≤ Φ(x) for each x ∈ R
n . Here,

C1,2
Lip([0, T ] ×R

n) is the set of all functions of class C1,2([0, T ] ×R
n) whose

partial derivatives of order less than or equal to 2 and itself are Lipschtiz con-
tinuous functions with respect to x .

It follows from Lemma A.1 that the reflected G-BSDE (2) has a unique solution
(Y t,ξ,u, Zt,ξ,u, At,ξ,u) under conditions (A1), (A2) or (A2’). For convenience, for each
(x, u) ∈ R

n × U[0, T ], set
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(Xx,u,Y x,u, Zx,u, Ax,u) = (X0,x,u,Y 0,x,u, Z0,x,u, A0,x,u).

Then, the objective of the agent is to find some u ∈ U[0, T ] so as to minimize the
cost function Y x,u

0 for each x ∈ R
n . For this purpose, it is necessary to introduce

the definition of essential infimum of {Y t,ξ,u
t | u ∈ U[t, T ]} in the G-expectation

framework.

Definition 2.2 For each ξ ∈ L p
G(Ωt ) with p > 2, the essential infimum of {Y t,ξ,u

t :
u ∈ U[t, T ]}, denoted by ess inf

u(·)∈U [t,T ]
Y t,ξ,u
t , is an element ς ∈ L2

G(Ωt ) satisfying:

(i) ∀u ∈ U[t, T ], ς ≤ Y t,ξ,u
t q.s.;

(ii) if η is a random variable satisfying η ≤ Y t,ξ,u
t q.s. for any u ∈ U[t, T ], then ς ≥ η

q.s.

Remark 2.2 To our best knowledge, Cohen [16] first introduced the essential supre-
mum in the quasi-surely sense. He showed that, if the family of probability measures
satisfies the Hahn property, the essential supremum exists. However, the resulting
essential supremummay not be quasi-continuous, which cannot be applied directly to
our case.

We can now define our stochastic optimal control problem with the obstacle con-
straints precisely as the following.

Definition 2.3 For each t ∈ [0, T ] and x ∈ R
n , the value function is defined as the

following:

V (t, x) := ess inf
u∈U [t,T ]

Y t,x,u
t for (t, x) ∈ [0, T ] × R

n, (3)

where Y t,x,u is the solution to Eq. (2)

Remark 2.3 In the linear case, Wu and Yu [13] consider a maximum utility problem,
where the utility is defined by the solution of classical reflected BSDEs. We refer the
readers to [17–19] for a closest related approach on this research.

3 Regularity of the Value Function

Theorem 3.1 Assume (A1), (A2) or (A2’) hold. Then, the value function V (t, x) is a
deterministic function and

V (t, x) = inf
u∈U t [t,T ]

Y t,x,u
t = ess inf

u∈U[t,T ]
Y t,x,u
t .

In order to prove the above theorem, we need to state some useful lemmas.
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Lemma 3.1 ([7]) Let u ∈ U[t, T ] be given. Then, for each p ≥ 2, there exists a
sequence (uk)k≥1 in U[t, T ] such that

lim
k→∞ Ê

[∫ T

t
|us − uks |pds

]

= 0.

Lemma 3.2 Assume that ξ, ξ ′ ∈ L p
G(Ωt ;Rn) with p > 3 and u, u′ ∈ U[t, T ]. Let

conditions (A1)–(A2) hold. Then, there exists a constant Ĉ1 depending on T , G, n, c
and L such that

(i) |Y t,ξ,u
t | ≤ Ĉ1(1 + |ξ |),

(ii) |Y t,ξ,u
t − Y t,ξ ′,u′

t |2 ≤ Ĉ1

{

|ξ̂ |2 + Êt

[∫ T

t
|ûs |2ds

]

+(1 + |ξ | 32 + |ξ ′| 32 )(|ξ̂ |2 + Êt

[∫ T

t
|ûs |2ds

]

)
1
2

}

,

where ûs = us − u′
s and ξ̂ = ξ − ξ ′.

Lemma 3.3 Assume that ξ, ξ ′ ∈ L p
G(Ωt ;Rn) with p > 8 and u, u′ ∈ U[t, T ]. Let

conditions (A1) and (A2’) hold. Then, there exists a constant C̄1 depending on T , G,
n and L such that

(i) |Y t,ξ,u
t | ≤ C̄1(1 + |ξ |3),

(ii) |Y t,ξ,u
t − Y t,ξ ′,u′

t |2 ≤ C̄1(1 + |ξ |4 + |ξ ′|4)
⎛

⎝|ξ̂ |2 + Êt

[∫ T

t
|ûs |4ds

] 1
2

⎞

⎠ ,

where ûs = us − u′
s and ξ̂ = ξ − ξ ′.

The proof of Lemmas 3.2 and 3.3 will be stated in “Appendix B.” Now, we are
ready to give the proof of Theorem 3.1.

Proof It suffices to prove the case where (A1)–(A2) hold, since the other case can
be proved in a similar way. Note that for each u ∈ U t [t, T ], the G-diffusion process
Xt,x,u ∈ M2,t

G (t, T ). Then, it follows from Lemma A.1 that Y t,x,u ∈ S2,tG (t, T ) (see
also [12]). In particular, Y t,x,u

t ∈ L2
G(Ω t

t ) is a constant.

From Lemma 3.1, we could find a sequence uk = ∑Nk
i=1 IAk

i
ui,k ∈ U[t, T ],

k = 1, 2, . . . , so that lim
k→∞ Êt [

∫ T
t |us − uks |2ds] = 0 for each given u ∈ U[t, T ].

By the uniqueness of reflected G-BSDE, we have that
∑Nk

i=1 IAk
i
Y t,x,ui,k
t = Y t,x,uk

t ,

which together with Lemma 3.2 indicates that
∑Nk

i=1 IAk
i
Y t,x,ui,k
t converges to Y t,x,u

t .

Therefore, one can easily get that Y t,x,u
t ≥ infv∈U t [t,T ] Y t,x,v

t .
Consequently, in spirit of the fact that U t [t, T ] ⊂ U[t, T ], we derive that

ess inf
u∈U [t,T ]

Y t,x,u
t = infu∈U t [t,T ] Y t,x,u

t , which completes the proof. ��
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Lemma 3.4 For any x, y ∈ R
n, we have the following:

(i) Assume (A1)–(A2) hold. Then, |V (t, x)| ≤ Ĉ1(1 + |x |) and

|V (t, x) − V (t, y)| ≤ Ĉ1|x − y| + Ĉ1(1 + |x | 34 + |y| 34 )|x − y| 12 .

(ii) Assume (A1) and (A2’) hold. Then, |V (t, x)| ≤ C̄1(1 + |x |3) and

|V (t, x) − V (t, y)| ≤ C̄1(1 + |x |2 + |y|2)|x − y|.

Proof The proof follows from Theorem 3.1, Lemmas 3.2 and 3.3. ��
Theorem 3.2 Assume that (A1), (A2) or (A2’) are satisfied. Then, for any ξ ∈
L p
G(Ωt ;Rn) with p > 8, we have

V (t, ξ) = ess inf
u∈U [t,T ]

Y t,ξ,u
t .

Proof The proof is similar to the one of Theorem 20 in [7] and we omit it. ��
In the rest of this section, we shall discuss the dynamic programming principle for

our stochastic optimal control problem. Firstly, we introduce a family of backward
semigroups, established by Peng [20]. For a given initial data (t, x), a positive real
number δ ≤ T − t , u ∈ U[t, t + δ] and η ∈ L p

G(Ωt+δ) with p > 8, we define

G
t,x,u
t,t+δ[η] := Y t,t+δ,x,u

t ,

where (Y t,t+δ,x,u
s , Zt,t+δ,x,u

s , At,t+δ,x,u
s )t≤s≤t+δ is the solution of the following

reflected G-BSDE with obstacle process l(s, Xt,x,u
s ):

Y t,t+δ,x,u
s = η +

∫ t+δ

s
f
(
r , Xt,x,u

r ,Y t,t+δ,x,u
r , Zt,t+δ,x,u

r , ur
)
dr

−
∫ t+δ

s
Z t,t+δ,x,u
r dBr + (

At,t+δ,x,u
t+δ − At,t+δ,x,u

s

)
.

Then, we have the following dynamic programming principle.

Theorem 3.3 Suppose that (A1), (A2) or (A2’) hold. Then, for each s ∈ [t, T ] and
x ∈ R

n, we have

V (t, x) = ess inf
u∈U [t,s]

G
t,x,u
t,s [V (s, Xt,x,u

s )] = inf
u∈U t [t,s]

G
t,x,u
t,s [V (s, Xt,x,u

s )]. (4)

Proof Note that Xt,x,u
s ∈ L p

G(Ωs) for any p ≥ 2 by Lemma 2.1. Then, with the help of

Theorem 3.2, we conclude that Y s,Xt,x,u
s ,u

s ≥ V (s, Xt,x,u
s ), where Y s,Xt,x,u

s ,u
s = Y t,x,u

s
due to the uniqueness of solution to reflected G-BSDE. Consequently, it follows from
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the comparison theorem of reflected G-BSDE (Theorem 5.3 in [12]) that Y t,x,u
t ≥

G
t,x,u
t,s [V (s, Xt,x,u

s )]. Therefore, we get that V (t, x) ≥ ess inf
u∈U [t,s]

G
t,x,u
t,s [V (s, Xt,x,u

s )].
By a similar analysis as in Lemma 22 in [7] or Lemma 5.2 in [21] , we can obtain

that

V (t, x) ≤ inf
u∈U t [t,s]

G
t,x,u
t,s [V (s, Xt,x,u

s )] = ess inf
u∈U [t,s]

G
t,x,u
t,s [V (s, Xt,x,u

s )],

which completes the proof. ��
Finally, we shall prove the continuity property of V (t, x) with respect to t .

Lemma 3.5 Assume (A1), (A2) or (A2’) hold. Then, the value function V is continuous
in t .

Proof We shall only prove the case where (A1)–(A2) hold as above. For each x ∈ R
n ,

0 ≤ t1 ≤ t2 ≤ T , applying Theorem 3.3 yields that

|V (t1, x) − V (t2, x)| ≤ sup
u∈U t1 [t1,t2]

|Gt1,x,u
t1,t2 [V (t2, X

t1,x,u
t2 )] − V (t2, x)|.

On the other hand, it is easy to check that V (t2, x) ≥ l(t2, x). Thus, we can get that
(V (t2, x), 0, 0) is the solution to reflected G-BSDE with data (V (t2, x), 0, l(t2, x))
in the interval [t1, t2]. Therefore, applying Lemmas A.2, 3.4 and B.1 and by a simple
calculation, we obtain that for each u ∈ U t1[t1, t2],

|Gt1,x,u
t1,t2 [V (t2, X

t1,x,u
t2 )] − V (t2, x)|2 ≤ C2(1 + |x | 52 )(|t2 − t1| 12

+ sup
t1≤s≤t2

|l(s, x) − l(t2, x)|),

which implies the desired result. ��

4 Stochastic Representation for HJBI Equations

In this section, we shall show that the value function V (t, x) is the viscosity solution
to the related HJBI equation. In the sequel, we always assume (A1), (A2) or (A2’)
hold.

Consider the following HJBI equation:

min{V (t, x) − l(t, x), −∂t V − inf
u∈U H(t, x, V , ∂x V , ∂2xx V , u)} = 0,

V (T , x) = Φ(x), x ∈ R
n, (5)

where function H is given by
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H(t, x, v, p, A, u) = G(σ�Aσ(t, x, u)) + 〈p, b(t, x, u)〉
+ f (t, x, v, σ�(t, x, u)p, u).

Firstly, we state the main result of this section.

Theorem 4.1 The value function V defined by Eq. (3) is the unique viscosity solution
to Hamilton–Jacobi–Bellman–Isaac Eq. (5).

In order to prove Theorem 4.1, we need to introduce an auxiliary stochastic optimal
control problem without obstacle constraints. Indeed, for any positive integer N , the
following standard G-BSDE in time interval [t, T ]

Y N ,t,x,u
s = Φ(Xt,x,u

T ) +
∫ T

s
f N
(
r , Xt,x,u

r ,Y N ,t,x,u
r , ZN ,t,x,u

r

)
dr

−
∫ T

s
Z N ,t,x,u
r dBr − (

K N ,t,x,u
T − K N ,t,x,u

s

)

admits a unique solution (Y N ,t,x,u, ZN ,t,x,u, K N ,t,x,u), where

f N (t, x, y, z) = f (t, x, y, z, ut ) + N (y − l(t, x))−.

Furthermore, we have Y N ,t,x,u
s ↑ Y t,x,u

s .
Next, we consider a stochastic optimal control problem, in which the cost function

is defined by Y N ,t,x,u , i.e., the value function V N (t, x) is given by ess inf
u∈U [t,T ]

Y N ,t,x,u
t .

It follows from [7] that V N is the viscosity solution of the following fully nonlinear
partial differential equations (PDEs):

−∂t V
N − inf

u∈U HN (t, x, V N , ∂x V
N , ∂2xx V

N , u) = 0,

V N (T , x) = Φ(x), x ∈ R
n, (6)

where HN (t, x, v, p, A, u) = H(t, x, v, p, A, u) + N (v − l(t, x))−. Then, we have
the following relation between V and V N .

Lemma 4.1 For any (t, x) ∈ [0, T ] × R
n, V N (t, x) ↑ V (t, x).

Proof It follows from the monotonicity of Y N ,t,x,u
t that V N (t, x) ↑ V̄ (t, x). Thus, we

only need to prove V̄ (t, x) ≥ V (t, x).
We claim that

lim
N ,M→∞ sup

u∈U t [t,T ]
Ê

[

sup
s∈[t,T ]

|Y N ,t,x,u
s − Y M,t,x,u

s |2
]

= 0, (7)

whose proof will be given in “Appendix B.” Therefore, for each ε > 0, we can find
some N1 so that Y

t,x,u
t ≤ Y N1,t,x,u

t + ε
2 , for any u ∈ U t [t, T ]. Recalling Theorem 17
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in [7], there exists a uN1 ∈ U t [t, T ] such that

Y N1,t,x,uN1
t ≤ V N1(t, x) + ε

2
,

which implies that V (t, x) ≤ Y t,x,uN1
t ≤ V N1(t, x) + ε ≤ V̄ (t, x) + ε. Letting ε

converge to 0, we can get the desired result. ��
Now, we are in a position to complete the proof of Theorem 4.1.

Proof In spirit of the fact that G is sublinear function, the PDE (5) can be seen as a
special case of Equation (4.2) in [22]. Thus, we can get the uniqueness by Theorem
5.1 and Remark 5.1 of [22]. In the following, we only prove that V is the viscosity
subsolution, since the other case can be proved similarly.

Given (t, x) ∈]0, T [×R
n and (a, p, X) ∈ P2,+V (t, x). Without loss of gener-

ality, we assume that V (t, x) > l(t, x). Then, from Lemma 6.1 in [23], there exist
sequences N j → ∞, (t j , x j ) → (t, x) and (a j , p j , X j ) ∈ P2,+V N j (t j , x j ), such
that (a j , p j , X j ) → (a, p, X). Since V N is the viscosity solution to Eq. (6), we derive
that

−a j − inf
u∈U HN j (t j , x j , V

N j (t j , x j ), p j , X j , u) ≤ 0,

Note that V (t, x) > l(t, x) and V N uniformly converges to V on each compact subset.
Then, it is easy to check that V N j (t j , x j ) > l(t j , x j ) for j large enough. Therefore,
we get that for j large enough

−a j − inf
u∈U H(t j , x j , V

N j (t j , x j ), p j , X j , u) ≤ 0.

By a similar analysis as in [13], we derive that

lim
j→∞ inf

u∈U H(t j , x j , V
N j (t j , x j ), p j , X j , u)

= inf
u∈U lim

j→∞ H(t j , x j , V
N j (t j , x j ), p j , X j , u).

Combining the above two equations, we could obtain the desired result. ��

5 Conclusions

In this article, we investigate the stochastic optimal control problem with obstacle
constraints in G-framework. This problem arises in minimizing the cost of an agent
subject to some constraints under volatility uncertainty. In order to solve this prob-
lem, we first show that the value function is a deterministic continuous function by
the approximation method for admissible controls. Then, we establish the dynamic
programming principle for the value function via the “implied partition” approach.
Finally, we show that the value function is the unique viscosity solution of the associ-
ated HJBI equation.
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Appendix A: ReflectedG-BSDE

The definition of reflected G-BSDEs Given an obstacle process {St }t∈[0,T ], a terminal
value ζ ∈ Lβ

G(ΩT ) with ζ ≥ ST for β > 2 and generator f (t, ω, y, z) : [0, T ] ×
Ω ×R×R

d → R, a triple of processes (Y , Z , A) ∈ S2
G(0, T ) is called a solution of

reflected G-BSDE with data (ζ, f , S) if the following properties hold:

(i) Yt = ζ + ∫ T
t f (s,Ys, Zs)ds − ∫ T

t ZsdBs + (AT − At );
(ii) Yt ≥ St , and {− ∫ t0 (Ys − Ss)dAs}t∈[0,T ] is a non-increasing G-martingale,

where S2
G(0, T ) is the collection of processes (Y , Z , A) such that Y ∈ S2G(0, T ),

Z ∈ M2
G(0, T ) and A ∈ S2G(0, T ) is a continuous non-decreasing process starting

from origin.
The well-posedness of reflected G-BSDEs Consider the following assumption:

(H1) there exists a constant β > 2 such that for any y, z, f (·, ·, y, z) ∈ Mβ
G(0, T );

(H2) there exists a constant L1 > 0 such that | f (t, y, z) − f (t, y′, z′)| ≤ L1(|y −
y′| + |z − z′|);

(H3) there exists a constant c such that {St }t∈[0,T ] ∈ Sβ
G(0, T ) and St ≤ c for each

t ∈ [0, T ];
(H3’) {St }t∈[0,T ] has the following form:

St = S0 +
∫ t

0
bsds +

d∑

i, j=1

∫ t

0
γ
i j
s d〈Bi , B j 〉s +

d∑

j=1

∫ t

0
κ
j
s dB

j
s ,

where the processes bs, γ
i j
s = γ

j i
s ∈ Mβ

G(0, T ) and κ
j
s ∈ Hβ

G(0, T ),
1 ≤ i, j ≤ d.

Lemma A.1 ([12]) Assume that f satisfies (H1)-(H2) for some β > 2 and let (H3) or
(H3’) hold. Then, the reflected G-BSDE has a unique solution (Y , Z , K ) ∈ S2

G(0, T ).

Lemma A.2 ([12]) Let ζ ν ∈ Lβ
G(ΩT ), ν = 1, 2 and f ν , Sν satisfy (H1)-(H3) for

some β > 2. Assume that (Y ν, Zν, K ν) ∈ S2
G(0, T ), ν = 1, 2 are the solutions of the

reflected G-BSDE corresponding to data (ζ ν , f ν , Sν). Set Ŷt = Y 1
t −Y 2

t , Ŝt = S1t −S2t
and ζ̂ = ζ 1 − ζ 2. Then, there exists a constant Ĉ depending on T , G, β, c and L1
such that

|Y ν
t |2 ≤ ĈÊt

[

1 + |ζ ν |2 +
∫ T

t
|λν,0

s |2ds
]

,
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|Ŷt |2 ≤ Ĉ

⎧
⎨

⎩
Êt

[

|ζ̂ |2 +
∫ T

t
| f 1(s,Y 2

s , Z2
s ) − f 2(s,Y 2

s , Z2
s )|2ds

]

+Êt

[

sup
s∈[t,T ]

|Ŝs |2
]1/2

Ψ
1/2
t,T

⎫
⎬

⎭
,

where Ψt,T = ∑2
ν=1 Êt [sups∈[t,T ] Ês[1 + |ζ ν |2 + ∫ T

t | f ν(r , 0, 0)|2dr ]].

Lemma A.3 ([12]) Let ζ ν ∈ Lβ
G(ΩT ), ν = 1, 2 and f ν , Sν satisfy (H1), (H2), (H3’)

for some β > 2. Assume that (Y ν, Zν, K ν) ∈ S2
G(0, T ), ν = 1, 2 are the solutions

of the reflected G-BSDE with data (ζ ν , f ν , Sν). Set Ȳt = (Y 1
t − S1t ) − (Y 2

t − S2t ) and
Ŝt = S1t − S2t . Then, there exists a constant C̄ depending on T , G, β and L1 such that

|Y ν
t |2 ≤ C̄Êt

[

|ζ ν |2 + sup
s∈[t,T ]

|Sν
s |2 +

∫ T

t
|λ̄ν,0

s |2ds
]

,

|Ȳt |2 ≤ C̄

{

Êt

[

|ζ 1 − S1T − ζ 2 + S2T |2 +
∫ T

t
(|λ̂s |2 + |ρ̂s |2 + |Ŝs |2)ds

]}

,

where λ̂s = | f 1(s,Y 2
s , Z2

s ) − f 2(s,Y 2
s , Z2

s )|, λ̄
ν,0
s = | f ν(s, 0, 0)| + |bν

s | +
∑d

i, j=1 |γ ν,i j
s | + ∑d

j=1 |κν, j
s | and ρ̂s = |b1s − b2s | + ∑d

i, j=1 |γ 1,i j
s − γ

2,i j
s | +

∑d
j=1 |κ1, j

s − κ
2, j
s |.

Appendix B: The Complement Proofs

The following maximal inequality for G-martingale has been firstly established by
Song [24].

Lemma B.1 Assume α ≥ 1 and δ > 0. Set

CG = 2 inf

{
γ

γ − 1

(

1 + 14
∞∑

i=1

i−
α+δ
γ

)

: 1 < γ < α + δ, γ ≤ 2

}

.

Then, we have

Êt

[

sup
s∈[t,T ]

Ês[|ξ |α]
]

≤ CG{(Êt [|ξ |α+δ])α/(α+δ) + Êt [|ξ |α+δ]}.

Proof The proof is immediate from the definition of conditional G-expectation and
Theorem 3.4 in [24]. ��

Now, we are going to state the proof of Lemmas 3.2 and 3.3.
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Proof It is sufficient to prove the second inequalities in both cases, since the first ones
can be proved similarly. For convenience, we omit superscripts t .We fist prove the sec-

ond inequality in Lemma 3.2. Set X̂s = X ξ,u
s −X ξ ′,u′

s , Φ̂(XT ) = Φ(X ξ,u
T )−Φ(X ξ ′,u′

T )

and λ̂s = f (s, X ξ ′,u′
s ,Y ξ ′,u′

s , Z ξ ′,u′
s , u′

s) − f (s, X ξ,u
s ,Y ξ ′,u′

s , Z ξ ′,u′
s , us). Applying

Lemma A.2 and Lemma B.1 yields that

|Ŷt |2 ≤ C2

⎧
⎨

⎩
Êt

[

|X̂T |2 +
∫ T

t
(|X̂s |2 + |ûs |2)ds

]

+ Êt

[

sup
s∈[t,T ]

|X̂s |2
]1/2

Ψt,T

⎫
⎬

⎭
,

where C2 is a generic constant depending on T ,G, c, L and n (may vary from line to
line), and Ψ 2

t,T ≤ C2(1 + |ξ |3 + |ξ ′|3). From Lemma 2.1, we could get the desired
result.

Then, we prove the second inequality in Lemma 3.3. ApplyingG-Itô’s formula (see
Theorem 6.5 of Chap. III in [14]) to l(s, X ξ,u

s ) yields that

l(s, X ξ,u
s ) = l(t, ξ) +

∫ s

t
bξ,u
r dr +

∫ s

t
γ

ξ,u,i j
r d〈Bi , B j 〉r +

∫ s

t
κ

ξ,u, j
r dB j

r ,

where bξ,u, γ ξ,u and κξ,u are given by

bξ,u
s = ∂sl(s, X

ξ,u
s ) + 〈∂x l(s, X ξ,u

s ), b(s, X ξ,u
s , us)〉,

γ
ξ,u,i j
s = 〈∂x l(s, X ξ,u

s ), hi j (s, X
ξ,u
s , us)〉

+ 1

2
(σ�(s, X ξ,u

s , us)∂
2
xx l(s, X

ξ,u
s )σ (s, X ξ,u

s , us))i j ,

κ
ξ,u, j
s = 〈∂x l(s, X ξ,u

s ), σ�
j (s, Xt,ξ,u

s , us)〉, σ�
j is the j-th row of σ�.

Denote by C3 a generic constant depending on T , G, n and L , which may vary
from line to line. Then, recalling Lemma A.3, we deduce that

|Ȳt |2 ≤ C3

{

Êt

[

|ξ̄ |2 +
∫ T

t
(|λ̂s |2 + |ρ̂s |2 + |Ŝs |2)ds

]}

,

where

Ȳt = (Y ξ,u
t − l(t, ξ)) − (Y ξ ′,u′

t − l(t, ξ ′)), Ŝs = l(s, X ξ,u
s ) − l(s, X ξ ′,u′

s ),

ξ̄ = Φ(X ξ,u
T ) − l(T , X ξ,u

T ) − Φ(X ξ ′,u′
T ) + l(T , X ξ ′,u′

T ),

λ̂s = | f (s, X ξ ′,u′
s ,Y ξ ′,u′

s , Z ξ ′,u′
s , u′

s) − f (s, X ξ,u
s ,Y ξ ′,u′

s , Z ξ ′,u′
s , us)|,

ρ̂s = |bξ,u
s − bξ ′,u′

s | +
d∑

i, j=1

|γ ξ,u,i j
s − γ

ξ ′,u′,i j
s | +

d∑

j=1

|κξ,u, j
s − κ

ξ ′,u′, j
s |.
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Set Ψ̄t,T = sup
s∈[t,T ]

(1+|X ξ,u
s |+|X ξ ′,u′

s |+|X ξ,u
s |2+|X ξ ′,u′

s |2) and X̂s = X ξ,u
s − X ξ ′,u′

s .

Then, recalling assumptions (A1), (A2′) and Lemma B.1, we derive that

|Ȳt |2 ≤ C3

{

Êt

[

|X̂T |2 +
∫ T

t
(|X̂s |2 + |ûs |2)ds

]

+ Êt [Ψ̄ 4
t,T ] 12 Êt

[∫ T

t
(|X̂s |4

+|ûs |4)ds
] 1
2
}

.

Consequently, in spirit of Lemma 2.1, we get

|Ȳt |2 ≤ C3(1 + |ξ |4 + |ξ ′|4)
⎛

⎝|ξ − ξ ′|2 + Êt

[∫ T

t
|us − u′

s |4ds
] 1

2

⎞

⎠ ,

which, together with |Y ξ,u
t − Y ξ ′,u′

t |2 ≤ 2(|l(t, ξ) − l(t, ξ ′)|2 + |Ȳt |2), implies the
inequality (ii). The proof is complete. ��

Finally, we are ready to state the proof of Eq. (7).

Proof For readers’ convenience, we shall give the sketch of the proof. For simplicity,
we omit the superscripts (t, x).

From the proof of Lemma 4.4 in [12], it suffices to prove that

lim
N→∞ sup

u∈U t [t,T ]
Ê

[

sup
s∈[t,T ]

|(Y N ,u
s − l(s, Xu

s ))
−|2
]

= 0.

For simplicity, set Θ
N ,u
r = (Xu

r ,Y N ,u
r , ZN ,u

r ). Now, recalling Lemma 4.3 in [12],
we derive that for each (t, x) ∈ [0, T ] × R

n and u ∈ U t [t, T ],

(Y N ,u
s − l(s, Xu

s ))
− ≤ Ês

[

|S̃N ,u
s | + |

∫ T

s
eN (s−r) f (r ,ΘN ,u

r , ur )dr |
]

,

where S̃N ,u
s = eN (s−T )(Φ(Xu

T ) − l(s, Xu
s )) + ∫ T

s NeN (s−r)(l(r , Xu
r ) − l(s, Xu

s ))dr .
In spirit of Lemma B.1 and using a similar analysis as Equation (4.3) in [12], we

conclude that

lim
N→∞ sup

u∈U t [t,T ]
Ê

[

sup
s∈[t,T ]

Ês

[

|
∫ T

s
eN (s−r) f (r ,ΘN ,u

r , ur )dr |
]2]

= 0. (8)

Next, we shall deal with the term S̃N ,u
s . LetC5 > 0 be a generic constant. It follows

from Equation (4.4) in [12] that for each fixed ε, δ > 0 and β > 2,

lim
N→∞ sup

u∈U t [t,T ]
Ê

[

sup
s∈[t,T−δ]

|S̃N ,u
s |β

]
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≤C5 sup
u∈U t [t,T ]

{

Ê

[

sup
s∈[t,T ]

sup
r∈[s,s+ε]

|l(r , Xu
s ) − l(s, Xu

s )|β
]

+Ê

[

sup
s∈[t,T ]

sup
r∈[s,s+ε]

|Xu
r − Xu

s |β
]}

.

Noting that for each u ∈ U t [t, T ] and any integer ρ > 0, we have

Ê

[

sup
s∈[t,T ]

sup
r∈[s,s+ε]

|l(r , Xu
s ) − l(s, Xu

s )|β
]

≤ Ê

[

sup
s∈[t,T ]

sup
r∈[s,s+ε]

|l(r , Xu
s ) − l(s, Xu

s )|β IA
]

+ C5

ρ
Ê

[

sup
s∈[t,T ]

|Xu
s | + sup

s∈[t,T ]
|Xu

s |1+β

]

≤ sup
s∈[t,T ],|x |≤ρ

sup
r∈[s,s+ε]

|l(r , x) − l(s, x)|β + C5

ρ
.

where A = { sup
s∈[t,T ]

|Xu
s | ≤ ρ}. Denote tρi = i

ρ
(T − t), i = 0, . . . , ρ. Then, we deduce

that, for each ε ≤ T−t
ρ

,

Ê

[

sup
s∈[t,T ]

sup
r∈[s,s+ε]

|Xu
r − Xu

s |β
]

≤ C5

ρ−1∑

i=0

Ê

⎡

⎣ sup
s∈[tρi ,tρi+1]

|Xu
tρi

− Xu
s |β
⎤

⎦ ≤ C5ρ
1− β

2 .

Consequently, letting ε → 0 and sending ρ → ∞ we obtain that

lim
N→∞ sup

u∈U t [t,T ]
Ê

[

sup
t∈[0,T−δ]

|S̃N ,u
s |β

]

= 0,

which, together with Eq. (8) and (4.5) in [12], implies that for each t < δ < T

lim
N→∞ sup

u∈U t [t,T ]
Ê

[

sup
s∈[t,T ]

|(Y N ,u
s − l(s, Xu

s ))
−|2
]

≤ sup
u∈U t [t,T ]

Ê

[

sup
s∈[T−δ,T ]

|(Y 1,u
s − l(s, Xu

s ))
−|2
]

.

By the definition of Y 1,u , we have

Y 1,u
s = Ês

[

Φ(Xu
T ) +

∫ T

s
f (r ,Θ1,u

r , ur )dr +
∫ T

s
(Y 1,u

r − l(r , Xu
r ))−dr

]

.
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It is easy to check that for some β > 2,

lim
δ→0

sup
u∈U t [t,T ]

Ê

[

sup
s∈[T−δ,T ]

∫ T

s
{| f (r ,Θ1,u

r , ur )|β + |Y 1,u
r − l(r , Xu

r )|β}dr
]

= 0.

By Lemma B.1, it follows that

lim
δ→0

sup
u∈U t [t,T ]

Ê

[

sup
s∈[T−δ,T ]

Ês

[∫ T

s
| f (r ,Θ1,u

r , ur )| + |Y 1,u
r − l(r , Xu

r )|dr
]2]

= 0.

Note that (Y 1,u
T − l(T , Xu

T ))− = 0. Then, it holds that

(Y 1,u
s − l(s, Xu

s ))
− ≤ |Y 1,u

s − Φ(Xu
T )| + |l(s, Xu

s ) − l(T , Xu
T )|.

Thus, by a similar analysis as the above we derive that for each integer ρ > 0,

Ê[ sup
s∈[T−δ,T ]

|(Y 1,u
s − l(s, Xu

s ))
−|2] ≤ C5

{

Ê

[

sup
s∈[T−δ,T ]

|Ês[Φ(Xu
T )] − Φ(Xu

T )|2
]

+ sup
s∈[T−δ,T ],|x |≤ρ

|l(s, x) − l(T , x)|2

+C5

ρ
+ m(δ)

}

,

where m(·) is a nonnegative continuous function satisfying limδ→0 m(δ) = 0.
On the other hand, it follows from Lemmas 2.1 and B.1 that

lim
δ→0

sup
u∈U t [t,T ]

Ê

[

sup
s∈[T−δ,T ]

|Ês[Φ(Xu
T )] − Φ(Xu

T )|2
]

= 0.

Therefore, by the above analysis, it holds that for each integer ρ > 0

lim
N→∞ sup

u∈U t [t,T ]
Ê

[

sup
s∈[t,T ]

|(Y N ,u
s − l(s, Xu

s ))
−|2
]

≤ C5

(

sup
s∈[T−δ,T ],|x |≤ρ

|l(s, x) − l(T , x)|2 + 1

ρ
+ m(δ)

)

.

Sending δ → 0 and then ρ → ∞ yields the desired result. ��
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