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Abstract

We analyze the role of product liability for the emergence and development of smart products such as

autonomous vehicles (AVs). We develop, and calibrate to the U.S. car market, a dynamic model where

a (monopolistic) innovator chooses safety stock investments, the timing of market introduction, and the

product price. Inducing higher long-term product safety through a strict (partial) liability rule reduces

short-term safety investments and slows down AV market penetration. By contrast, negligence-based

liability fosters initial investments without hampering long-term product safety. However, too stringent

liability might forestall investments in the development of AVs and their market introduction.
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1 Introduction

Motivation The advent of digitization has already changed our everyday lives in many fundamental ways,

and it is widely expected that this development will continue in the future at an even accelerated speed.

As a consequence, we will move more and more towards a digital economy, with far-reaching consequences

for many areas such as workplace relationships, product markets, international trade or mobility. These

developments also constitute major policy challenges, for example with respect to infrastructure investments,

standardization, regulation, and legislation.1

From a technological point of view, the key drivers for these developments are recent advances in areas

such as robotics, artificial intelligence (AI), cloud computing, or big data analytics (see e.g. UN Conference

on Trade and Development, 2017), which enable the development of so-called smart products. According to

Porter and Heppelmann (2015), the capabilities of smart products can be grouped in four areas: monitoring,

control, optimization, and autonomy. This article focusses on autonomy. Products exhibiting autonomy

rely less and less on human decision-making, and major decisions are instead being taken by the product’s

operating system, based on algorithms. One example of particular topicality are Autonomous Vehicles

(AVs), which is the prime application in this article, but similar developments are also observed for other

smart products ranging from household appliances to heavy military weapons.2

One alleged major benefit of AVs is that in the long run, when fully matured, they are potentially

much safer than conventional vehicles in terms of their accident rate.3 The main reason is that computer-

ized decision-making based on AI algorithms is potentially less error-prone than decision-making by human

drivers, who are often impaired by poor sight and slow reactions times, for example due to fatigue, dis-

traction, alcohol or drug consumption. While (conventional) cars have become considerably safer over the

last decades, car crashes are still a significant problem and create a huge social cost, so that any significant

reduction in accident risks would generate potentially large social benefits.4

However, these long-run benefits of AVs cannot be expected to be reaped immediately upon their market

introduction. In the meantime, as long as the technology is not yet fully matured, AVs are likely to be

involved in crashes in the same way as conventional cars are, potentially at even a higher rate. This is
1For an overview over some of these policy challenges, see e.g. OECD (2017); UN Conference on Trade and Development

(2017).
2See Schellekens (2015, p.507) for a more detailed classification of different degrees of automation for vehicles. Sassone et al.

(2016) provide a survey of different areas where smart products are expected to be available in the near and intermediate future.
3Apart from a lower accident rate, AVs are expected to give rise to further benefits such as reducing traffic congestion or

improving mobility of the elderly (see e.g. Douma and Palodichuk, 2012).
4For example, according to a recent report by the U.S. National Highway Traffic Safety Adminstration (Blincoe et al., 2015),

in 2010 there were 32,999 people killed in car crashes in the U.S., and 3.9 million were injured. Moreover, for that year the total
social costs due to car accidents is estimated to be $ 836 billion.
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highlighted by the recent fatal crashes caused by AVs of Uber and Tesla during test drives, triggering

considerable public attention.5

Under the assumption that the safety of AVs increases over time as the technology improves, this raises

the question of when and with which safety level AVs should be brought to the market. For example, it is

argued that upon introduction, AVs should be at least as safe as conventional cars, if not much safer (see

e.g. Schellekens, 2015, p. 510). In a similar vein, in a recent panel discussion Dieter Zetsche, then CEO of

Daimler (one of the world’s major car manufacturers), argued that even if AVs caused only a tenth of the

number of fatalities as conventional cars, this would still not be tolerated by the public. As a result, ”they

will have to be a hundred times better, but then it gets really difficult from a technological point of view”.6

The possibility of accidents caused by AVs which are controlled by non-human drivers raises interesting

and novel aspects with respect to the issue of product liability. In particular, unlike other and less significant

product innovations, in the case AVs a new type of injurer emerges: the AV’s operating system.7 As computer

systems cannot be held legally responsible, however, the question arises who should be liable for the harm

arising from accidents caused by AVs? As one main feature (and alleged benefit) of AVs is that its driver

retains less control and hence becomes more like a passenger rather than the operator of the car, many argue

that there should be less scope for legal responsibility of drivers, and more scope for car manufacturers and

automotive software developers.8 Despite the current legal uncertainty to which extent producers of AVs

and their operating systems will ultimately be held liable, they are expected to face substantially higher

liability costs than they currently do with conventional cars.9

One crucial question is to which degree these higher liability risks affect firms’ innovation activities and

other business policies, such as R&D investments (e.g. to improve the safety of AVs), the timing of market
5See e.g. https://www.nytimes.com/2018/03/31/business/tesla-crash-autopilot-musk.html and https://www.

nytimes.com/2018/03/19/technology/uber-driverless-fatality.html.
6See https://www.faz.net/-ijt-9gpve.
7Marchant and Lindor (2012, p.1325) discuss autopilots in airplanes as one example with similar features.
8Galasso and Luo (2018a) discuss some general legal challenges for tort law in the age of AI. Moreover, Douma and Palodichuk

(2012), Colonna (2012), Marchant and Lindor (2012), Schellekens (2015) and Gless, Silverman, and Weigend (2016) provide
legal discussions in the context of AVs in the United States. Moreover, the European Parliament has adopted a resolution
containing suggestions how to establish legal rules for tort cases with AI tortfeasors (European Parliament, 2017). Finally,
Germany’s “Ethics Commission for Autonomous and Connected Driving” recommends that apart from car owners, also the
producers and operators of autonomous cars and its supportive technological systems should be considered as potentially liable
parties (Federal Ministry of Transport and Digital Infrastructure, 2017).

9Currently (i.e. without AVs on the streets), in the vast majority of accidents the damage is apportioned between the involved
drivers and/or their insurance companies. For example, according to the 2008 National Motor Vehicle Crash Causation Survey
(NHTSA), more than 93 percent of the analyzed crashes were classified as being caused by erroneous behavior of the respective
drivers, and only the remaining 7 percent were due to vehicle problems or adverse weather conditions. Car manufacturers
currently face a risk of product liability, which might apply when a car model exhibits systematic technical defects. Moreover,
Viscusi (2012) argues that there is a tendency of courts and juries to be tougher on injurers in liability cases where “novel risks”
are involved. Given the high degree of product novelty of AVs compared to conventional cars, this could further contribute to
the expected liability cost of firms engaged in the development and production of AVs.

2

https://www.nytimes.com/2018/03/31/business/tesla-crash-autopilot-musk.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.nytimes.com/2018/03/19/technology/uber-driverless-fatality.html
https://www.faz.net/-ijt-9gpve


introduction of AVs and pricing. Together these decisions determine (i) when AVs are eventually launched

(if at all) and with which safety level, (ii) how quickly they penetrate the market, and (iii) how long it

takes until the long-term benefit of a higher safety of AVs compared to conventional cars can be expected

to materialize. For example, legal scholars such as Marchant and Lindor (2012, pp. 1336), Colonna (2012,

p.84) and Schellekens (2015) argue that too stringent liability for producers of AVs might considerably delay

these processes.

More generally, from a theoretical perspective, the effect of stringent liability on the incentives to innovate

seems ambiguous: one the one hand, it might increase the incentive to develop innovations which improve

product safety. But on the other hand, it might have a “chilling effect” on innovative activities, for example

in the form of choosing to not develop new products (Viscusi, 1991; Parchomovsky and Stein, 2008; Viscusi,

2012), even if they are potentially superior than existing ones.10 From an empirical point of view, both

effects seem relevant (see e.g. McGuire, 1988; Viscusi and Moore, 1993; Galasso and Luo, 2017, 2018b).

Hence, in the light of the potentially large benefits from AVs in the long-term, the stringency of liability

for firms involved in the development, production and operation of AVs and other smart products seems a

highly relevant policy issue.

Framework and results We consider a dynamic model of product innovation, where there already exists

a market for an established product (the old product), and where a monopolistic innovator can introduce a

new one (the smart product). Consumers differ with respect to their valuation for the smart product. Both

products are prone to accidents, which are socially harmful. At each point in time, the innovator decides

on (i) how much to invest into the safety level of the smart product which reduces its accident rate, and (ii)

the price at which it is sold, once it has been launched.

We analyze how the dynamically optimal decisions and the resulting state dynamics depend on the

liability regime, which apportions the damage accruing from accidents with the smart product between the

innovator and the consumers. More precisely, we are interested in how liability affects (i) the safety level

of the smart product in the long run (steady state), (ii) the optimal dynamic paths for safety investments

as well as output and pricing choices, thereby also determining when and with which safety level the smart

product is launched, (iii) the development of the smart product’s safety level after market introduction and

(iv) overall welfare. In the main part of this article, we examine these issues in a framework of strict (partial)

liability for the innovator. The stringency of liability is determined by the fraction of the damage from AV

accidents accruing to the innovator.
10This was also a crucial argument in the decision of the U.S. Supreme Court in Riegel vs. Meditronic in 2008.

3



We first provide an analytical characterization of the effect of the stringency of liability on the steady

states of the model. The dynamic properties of the optimal paths are then examined using numerical

methods, where we calibrate the model using data from the US automobile market. Considering the impact

of liability on the optimal behavior of the innovator, our analysis reveals two basic trade-offs for policy

makers and legislators: The first trade-off concerns the existence and optimality of an active steady state,

in which the innovator indeed accumulates a safety stock for the smart product, and eventually introduces

it to the market: As liability becomes more stringent, the safety level of the smart product in an active

steady state increases. However, too stringent liability might forestall the development of the smart product

altogether. In particular, the innovator might prefer to induce a passive steady state, in which there is no

investment into the safety stock of the smart product, and where it is never launched. Overall, these results

are consistent with empirical findings that the effect of liability on innovation activities is ex ante unclear

and might go in either direction (Viscusi and Moore, 1991, 1993; Galasso and Luo, 2017, 2018b).

The second trade-off concerns the short- and long term effects of liability: More stringent liability has

the long-run benefit of inducing a higher steady state safety level of the smart product. However, the

analysis of the investment dynamics reveals that it also leads to a delay in the accumulation of the safety

stock in early periods. Intuitively, under more stringent liability it takes longer until the smart product is

launched, quantities are smaller, and hence the market penetration occurs more slowly. This reduces the

innovator’s incentives for safety investments. As a result, the units brought to the market in the short-

and intermediate term exhibit a lower safety level compared to those that would have been produced under

less stringent liability. For the context of AVs, our analysis suggests that these short-term costs outweigh

the long-term benefit from more stringent liability. As a result, under strict (partial) liability it would be

socially optimal to not impose additional liability costs on the producers of AVs, compared to the status

quo with conventional cars only.

We also analyze two alternative liability rules: First, we consider residual manufacturer liability as

analyzed by Hay and Spier (2005), and our findings are qualitatively very similar to the baseline setting.

Second, we analyze negligence-based liability, where the innovator is only liable if the AV’s safety level

is below a given negligence standard. We find that such a liability rule ameliorates the issue of delay

in safety stock accumulation, and thereby also reduces quantity distortions relative to the social optimum.

Consequently, from a welfare perspective, an appropriately designed negligence-based rule might outperform

a rule with strict (partial) liability. Finally, we also consider a policy of direct safety regulation of AVs in the

sense that they can only be launched once they satisfy a given minimum safety standard. We show that the

induced investment patterns and market dynamics are very similar to the case of negligence-based liability.
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Relation to literature Our article is related to a sizeable literature in law & economics on how (product)

liability affects the incentive of firms to improve the safety of their products, either by making existing

products safer or by developing new products which exhibit higher safety levels. For example, in the survey

by McGuire (1988) conducted among firms, about a third of respondents answered that the threat of liability

has led them to improve the safety of their products, but an equal number of respondents said that it has lead

them to not introduce new products. In their rather critical general discussion of product liability, Polinsky

and Shavell (2010) argue that incentives to invest into product safety can also be stipulated through other

(and arguably less expensive) channels, such as market forces (as consumers anticipate that they will have

to bear the consequences of the accident risk, which reduces their willingness to pay for the product) or

direct safety regulation. These arguments are supported by our analysis in the sense that the consumer side

is indeed an important driver of investments into the safety of AVs, even when product liability is weak.

As for the impact of liability on innovation incentives, the evidence is mixed. For example, in their

seminal empirical study in the U.S. manufacturing sector Viscusi and Moore (1993) find that the relationship

between liability and the intensity of firms’ innovative activities is positive (negative) when the stringency

of liability is high (low), with the average effect being positive.11 More recently, Galasso and Luo (2017)

empirically analyze the impact of tort reforms in the health sector, which have reduced the stringency of

liability. They find that this has led to a decrease of innovative activities of upstream suppliers. By contrast,

Galasso and Luo (2018b) consider vertical relationships in the medical implant industry. They find a strong

negative effect of higher liability of upstream suppliers on their innovative activities in that sector. Overall,

the existing empirical evidence suggests that whether or not liability has a chilling effect on innovation

activities crucially depends on the industry under consideration and how stringent product liability actually

is. This view is supported also in our analysis using a calibration based on the U.S. automobile market.

Viscusi and Moore (1993), Galasso and Luo (2017) and Galasso and Luo (2018b) also develop static models

in which they capture the main effects of the empirical analysis. By contrast, our dynamic framework allows

for a more detailed analysis of the interplay of the various effects in the short- und long-term, and of the

timing of innovations.

Daughety and Reinganum (1995) consider a setting of incomplete information, where a monopolistic

firm may use the product price as a signaling device for product safety (which is unobserved by consumers).

They analyze the impact of liability on the equilibrium properties. Their model is static, but the timing

of events is similar in the sense that safety investments have an impact on subsequent market decisions.

In addition, their finding that direct safety regulation might outperform liability rules in terms of social
11See also Viscusi (1991), Viscusi and Moore (1991), and Viscusi (2012).
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welfare, also occurs in our framework, although the underlying mechanisms differ.

In addition, two recent articles have addressed the issue of liability in the specific context of AVs: Shavell

(2019) analyzes optimal liability rules in a static setting with AVs only. Our approach can hence be seen

as complementary, as we focus on the dynamic process of development and market penetration of AVs, and

the (potentially long) transition period in which autonomous and conventional vehicles coexist. A hybrid

setting with both types of vehicles is also considered in Friedman and Talley (2019). In a static model

with multilateral care, in which not only producers can contribute to the reduction of accident risks, they

analyze the efficiency properties of several negligence-based rules. However, they do not consider investment

or innovation incentives, which are crucial aspects of our framework.

A further related strand of literature are dynamic models of innovation. As the safety standard of an

AV is a key quality parameter, the innovator’s investment in building up the safety stock is closely related

to (quality-enhancing) product innovation investments. Although dynamic models of optimal innovation

investments have mainly focused on process innovations, several contributions (e.g. Lambertini and Manto-

vani, 2009; Dawid et al., 2015) have characterized optimal product innovation investments of monopolists in

different market settings. With respect to the explicit consideration of the interplay between innovation in-

vestments and the timing of market introduction, our article is related to Hinloopen, Smrkolj, and Wagener

(2013), where the focus is, however, on process innovation. Moreover, none of these articles considers the im-

pact of liability. Our numerical analysis uses collocation methods for solving the Hamilton-Jacobi-Bellman

equation characterizing the optimal investment behavior of the innovator. In that respect our article is re-

lated to contributions such as Doraszelski (2003), Dawid et al. (2015) and Dawid, Keoula, and Kort (2017)

where such methods have been employed for the numerical analysis of dynamic investment problems.

Last, but not least, we contribute to a current academic and non-academic legal debate about how

existing laws and other legal procedures need to be adapted in response to the new legal challenges arising

in the digital economy, in particular in the context of AVs (see e.g. Marchant and Lindor, 2012; Colonna,

2012; Douma and Palodichuk, 2012; Schellekens, 2015; Smith, 2017; Wagner, 2018). To the best of our

knowledge, our article is the first one to analyze these issues from a theoretical perspective in a dynamic

model framework.

The remainder of the article is organized as follows: Section 2 lays out the model framework. Section 3

analyzes the different steady states of the model, and how the steady state optimally induced by the innovator

depends on the stringency of product liability. Section 4 analyzes in more detail how product liability

affects the dynamic paths leading into the respective steady state. In doing so, we proceed numerically and

calibrate the model to the US automobile market. In Section 5 we consider negligence-based liability rules
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and direct safety regulation. Section 6 explores the policy implications of our findings and discusses further

model extensions. The Appendix contains all proofs, details about our numerical method, and additional

numerical results.

2 Model

We consider a continuous-time framework in which a monopolistic firm (the “innovator”) can introduce a

smart product to the market. At each point in time t, there is a unit mass of consumers. Each consumer i

has unit demand and is characterized by her gross valuation vi obtained from the smart product in every

period in which it is functional. The valuations vi are distributed uniformly on [v, v̄] with v, v̄ > 0, so that

the resulting cumulative distribution function is F (vi) = vi−v
v̄−v . Alternatively, consumers can purchase a

standard or “old” product which yields the same value vo to each consumer in every period in which it is

functional, where v < vo < v̄. The unit cost of production of both the old and the smart product is c ≥ 0

(there are no fixed costs of production).12 The old product is sold at a competitive market at price po = c

in all periods, whereas the price of the smart product in period t is denoted by p(t).

The lifetime of both products is distributed exponentially with a constant failure rate ρ > 0. In the

course of a product’s lifetime accidents may occur, each causing a damage D > 0. For the old product, an

accident occurs at a given constant rate αo > 0. The accident rate for the smart productis α(S), where

S is the innovator’s knowledge stock determining the safety of the smart product at the time when it is

sold (explained in more detail below). We assume that a higher safety stock reduces the accident rate

α(S) of the smart product, with a decreasing marginal effect (i.e. α′(S) < 0 and α′′(S) > 0). Moreover

limS→∞ α(S) is denoted by αmin ∈ [0, αo), i.e. AVs can become safer than conventional cars if the innovator

builds up a sufficiently high safety stock, but accidents might not be fully avoided even under enormous

safety investments.

As discussed in the Introduction, the scope of product liability is expected to increase upon the intro-

duction of smart products. Consequently, in our model, producers are not liable for accidents with the old

product, and all liability risk is borne by the consumers. By contrast, for accidents with a smart product,

a fraction β · D is borne by the innovator, so that the parameter β ∈ [0, 1] measures the strength of the

liability risk for producers of smart products.13 We refer to this form of liability as strict (partial) liability.
12As the focus of our analysis is on the accident rate of the smart product and the induced liability risk (compared to the old

product), we abstract from differences in production costs between the two products.
13Of course, also the producers of conventional cars are currently facing product liability (at least in the U.S.). As our focus

is on the effect of additional liability risks due to accidents being caused by the operating system of AVs, we implicitly subsume
all other liability risks (e.g. design defects of the brake system or the gas tank) in the production costs of firms. Accordingly,
we associate a legal regime where the innovator faces the same liability risk as the producers of the conventional car with β = 0.
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In our model, we capture the empirical fact that, at the margin, consumers often do not fully internalize

their liability share, for example, due to insurance policies with deductibles, or under-insurance (or even no

insurance at all) in combination with wealth constraints.14 Formally, denoting by y the damage not borne

by the producers (that is, y = D for accidents with the old and y = (1 − β) · D for accidents with the

smart product), we assume that consumers cover k(y) where k(·) satisfies k′ > 0, k′′ < 0, k(0) = 0, and

k′(0) = 1.15 Intuitively, whereas consumers strongly (or even fully) internalize small damages, the degree of

internalization decreases as the damage becomes larger. As a result, the expected liability of each consumer

per unit of time is αo · k(D) and α(S) · k((1− β)D) for the old and smart product, respectively. Hence, for

either product only a part of the total damage is internalized by the producers and consumers. This gives

rise to a negative externality for each unit sold, which in case of the smart product is decreasing in β.

For a given price p for the smart product in a given period, consumer i’s expected discounted value from

purchasing the old respectively the smart product is

Uo =
∫ ∞

0
e−(r+ρ)t [vo − αok(D)] dt− c

= vo − αok(D)− (r + ρ)c
r + ρ

(1)

U(p, S; vi) =
∫ ∞

0
e−(r+ρ)t [vi − α(S)k((1− β)D)] dt− p

= vi − α(S)k((1− β)D)− (r + ρ)p
r + ρ

, (2)

where r > 0 denotes the common discount rate of all market participants. We assume vo > αok(D)+(r+ρ)c

and hence Uo > 0, so that all consumers purchase either one of the two products. Consumer i with valuation

vi prefers the smart product if and only if U(p, S; vi) ≥ Uo. The innovator has an incentive to sell positive

All qualitative findings of our analysis would remain unchanged when considering instead a strictly positive (but not too large)
lower bound on β.

14Uninsured driving is an empirically relevant phenomenon. For example, whereas there is mandatory insurance in the
virtually all states of the U.S., a recent study of the Insurance Research Institute (IRC) estimates that in 2015, 13 percent of
all motorists were uninsured (https://www.insurance-research.org/sites/default/files/downloads/UMNR1005.pdf). The
high empirical relevance of judgement-proofness in tort cases is extensively discussed by Gilles (2006). As a result, the personal
liability of many individuals is often much smaller than the damage caused in the course of their negligent behavior. For
example, when the consumer has an insurance contract with a deductible, her marginal liability effect is one for damages below
the amount of the deductible, and zero above it. Whereas larger damages might result in higher insurance premiums, all we
need is that the expected liability cost faced by consumers increases under-proportionally in the underlying (remaining) damage
amount.

15As will become clear below, when the residual damage not covered by the innovator is completely borne by consumers (i.e.
k((1 − β)D) = (1 − β)D), then under linear demand, any shift of liability between the innovator and the consumers would be
offset one-to-one by a respective price change. This feature also arises, for example, in the setting of Daughety and Reinganum
(1995) with complete information, where the firm’s profit depends only on the total social damage from an accident, but not
on how it is divided between the firm and the consumers.
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quantities of the smart product if and only if there are some consumers who would purchase it when it

is priced at marginal costs. This corresponds to the condition U
(
c+ βα(S)D

r+ρ , S; v̄
)
≥ Uo. We denote the

lowest safety stock at which this condition holds by S(β). The corresponding accident rate is denoted

by α(β) = α(S(β)). The value of α(β) is determined by U
(
c+ βαD

r+ρ , S; v̄
)

= Uo and therefore S(β) is

characterized by

α(S(β)) = v̄ − vo + αok(D)
βD + k((1− β)D) > 0, (3)

where we assume α(0) > α(β) > αmin for all β ∈ [0, 1].16 Hence, the innovator sells positive quantities of

the smart product whenever S > S(β). In this case demand is determined by the mass of consumers whose

valuation for the smart product is above that of the indifferent consumer with valuation vind(p, S). The

(linear) demand function q(p, S) for the smart product can be derived from q(p, S) = 1− F (vind(p, S)) as

q(p, S) = min
[
1, 1
v̄ − v

(
A− (r + ρ)(p− c)− α(S)k((1− β)D)

)]
, (4)

where A = v̄− vo +αok(D). The second term in (4) gives the (flow utility equivalent of the) price difference

between the two products, and the last term captures the effect of consumers’ liability risk from the smart

product.

At each point in time t, the innovator chooses an investment level x(t) ≥ 0 which improves the safety

stock of the smart product. This safety stock evolves according to

Ṡ(t) = x(t)− δS(t) (5)

where δ > 0 measures the stock depreciation.17 As we are interested in the innovator’s ex ante decision

whether or not to invest in a wholly new technology (the smart product), we assume S(0) = 0. As is common

in dynamic investment models, the cost of investment is quadratic and given by h(x) = θx
(
1 + η

2x
)
, where

θ > 0 measures the marginal costs at x = 0, and η > 0 is a parameter capturing convexity.

The innovator chooses the trajectories p(t) and x(t) to maximize its expected discounted profit, which

is given by

Π̃ =
∫ ∞

0
e−rt

[
q(p(t), S(t)) ·

(
p(t)− c−

∫ ∞
t

e−(r+ρ)(τ−t)α(S(t))βD dτ

)
− h(x(t))

]
dt (6)

subject to the state dynamics of the safety stock as described in (5). Thereby, the second integral term in
16Due to the strict monotonicity of the function α(S), this implies that (3) has a unique strictly positive (and finite) solution

S(β) > 0.
17That a positive investment is needed to maintain the stock can be interpreted as a reduced-form modeling of the fact that

the complexity of the smart product increases over time.
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(6) denotes the expected (discounted) liability cost generated by each unit of the AV sold at date t.

As the price choice has no intertemporal effect, in each point in time t, it can be determined by standard

monopoly pricing.18 This leads to the following expressions for the monopoly price and quantity for S >

S(β):

p∗(S) = c+ 1
2

[
A+ α(S) · (βD − k((1− β)D)

r + ρ

]
, (7)

q∗(S) = A− α(S)(βD + k((1− β)D))
2(v̄ − v) . (8)

Note that whereas the impact of the safety stock S on the monopoly quantity is clearly positive (i.e. q∗ is

increasing and concave in S), the effect on the price depends on the sign of the expression βD−k((1−β)D)

and is hence ambiguous: Intuitively, a safer product increases the consumers’ willingness to pay (demand

effect), and it also lowers the innovator’s cost for each unit of the smart product sold (liability effect). If

the innovator’s share of liability is high (i.e. for β large), the liability effects dominates, so that p∗(S) is

decreasing in S. By contrast, for β sufficiently low, the demand effect is stronger than the liability effect

and p∗(S) is increasing in S.19 Finally, when product liability becomes more stringent, this leads to a higher

price of the smart product and to a lower quantity. Intuitively, a higher β reduces the amount of non-

internalized accident costs by the innovator and consumers. For further reference we denote the valuation

of the indifferent consumer under optimal pricing as v∗(S) = vind(p∗(S), S).

Substituting the optimal price p∗(S) and the optimal quantity q∗(S) into (6) yields the reduced-form

objective function

Π =
∫ ∞

0
e−rt [π∗(S)− h(x)] dt (9)

where π∗(S) = q∗(S) ·
(
p∗(S)− c− α(S)βD

r+ρ

)
denotes the expected instantaneous profit which is generated

by the (optimal) sales in a given period for a given safety stock S. The intertemporal optimization problem

for the innovator is then to maximize (9) w.r.t x(·) under the state dynamics (5) and the constraint x(t) ≥ 0

for all t. We denote by V (S̃) the value function of the problem, which corresponds to the value of (9) for

the initial safety stock S(0) = S̃ under the optimal investment behavior of the innovator. As π∗(S)− h(x)

does not explicitly depend on time and there is an infinite time horizon, also for any t > 0 with S(t) = S̃

the future discounted profit of the innovator under optimal behavior is V (S̃), i.e. the value function is

stationary.
18Note, however, that the optimal (monopoly) price is not uniform, but will differ across periods, as the safety stock S

also varies over time. We abstract from learning effects of the form that the marginal cost of production in a given period is
decreasing in the cumulative output in earlier periods, see the discussion in Section 6.

19Similarly, such an ambiguous relationship between the optimal price and accident risk also arises in Daughety and Reinganum
(1995) for the case of complete information.
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3 Optimal safety stock accumulation: active and passive steady states

In this section we characterize the intertemporally optimal investment path of the innovator, combining

Optimal Control and Dynamic Programming methods. Using the Maximum Principle (see e.g. Grass et al.,

2008) we directly obtain the following necessary optimality conditions:

Lemma 1. Let x∗(t) be a solution of the innovator’s intertemporal optimization problem and S∗(t) the

corresponding state trajectory. Then there exists a piece-wise differentiable costate trajectory λ(t) such that

x∗(t) = max
[
λ(t)− θ
θη

, 0
]
, (10)

S∗(t) evolves according to the state equation given in (5), and λ(t) satisfies the costate equation

λ̇(t) = (r + δ)λ(t) + α′(S∗(t)) · q∗(S∗(t))βD + k((1− β)D)
r + ρ

. (11)

Furthermore, the following transversality condition holds:

lim
t→∞

e−rt [π∗(S∗(t))− h(x∗(t)) + λ(t)(x∗(t)− δS∗(t))] = 0

The optimal investment path x∗ is the typical one for a dynamic investment problem with quadratic

investment costs. The innovator only invests if the value of the co-state λ is larger than the marginal

investment costs at x = 0, where h′(0) = θ. Above that level, investment grows linearly with λ. As the

co-state λ corresponds to the derivative of the innovator’s value function with respect to the safety stock S

(see e.g. Grass et al., 2008), this investment rule reflects the trade-off between the marginal return and the

marginal cost of investment. The level of investment decreases as the cost function becomes more convex

(i.e. as θη increases). For a given initial condition S(0) the optimal investment path can be written as

x∗(t) = φ∗(S∗(t)), where φ∗(.) is the inter-temporally optimal investment strategy.

In a next step, we characterize potential steady states of the system under optimal investment. We refer

to a safety stock Sss as a steady state if it is a fixed point of the state dynamics (5) under the investment

strategy x = φ∗(S).20 In our analysis we use the following terminology throughout:

Definition 1.

i) A steady state is called active if it exhibits strictly positive levels of both safety stock and production of

the smart product (i.e. Sss > 0 and q∗(Sss) > 0).
20Note that not all fixed points of the canonical system (5) and (11) correspond to steady states in that sense. However, for

every steady state there exists a suitable co-state such that the state/co-state tuple is a fixed point of the canonical system.
Hence, the set of fixed points of the canonical system provides candidates for steady states.
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Figure 1: Isoclines of the canonical system for different values of θ.
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(b) θ high

ii) A steady state is called passive if these two levels are zero (i.e. Sss = q∗(Sss) = 0).

We only consider these two types of potential steady states, because the two other cases Sss > 0, q∗(Sss) =

0 or Sss = 0, q∗(Sss) > 0 are irrelevant: The former case can never be optimal because the firm does not gain

from a positive safety stock if it does not produce the smart product at all. The latter case is ruled out by

the strictly positive minimum safety stock S(β) > 0 required for production to take place, i.e. q∗(Sss) = 0

must hold whenever Sss = 0.

The candidates for a steady state of the problem can be identified by considering the intersection of the

two isoclines gλ(S) and gS(S) of the canonical system (5) and (11), i.e. setting λ̇ = 0 and Ṡ = 0:

gλ(S) := −K1α
′(S)q∗(S), (12)

gS(S) :=
{
θηδS + θ for S > 0
[0, θ] for S = 0,

(13)

where K1 = βD+k((1−β)D)
(r+ρ)(r+δ) .

First, as a strictly positive safety stock S(β) > 0 is required before the smart product is launched, we

have q∗(0) = 0, and hence gλ(0) = 0. This implies that the two isoclines intersect at S = 0. Hence, the point

S = 0 is always a candidate for a (passive) steady state in the sense that under the expectation that S = 0

prevails in the long run, it is indeed optimal for the innovator to invest x = 0 (and to produce q = 0) in any

point in time. Clearly, this does not necessarily imply that staying at S = 0 is the globally optimal trajectory

for the innovator. Furthermore, for S > S(β) we have gλ(S) > 0, as q∗(S) > 0, where limS→∞ gλ(S) = 0.21

Taking into account that gλ(S) is independent from θ and that limθ→0 gS(S) = 0 for all S > 0, it follows
21The last equality follows because due to α′(S) < 0 and α(S) ≥ αmin for all S > S(β) we must have limS→∞ α

′(S) = 0.
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that for sufficiently small values of θ there also exist (at least two) candidates for a steady state with S > 0.

In Figure 1 we illustrate this observation by showing the isoclines of the canonical system for two values

of θ. Whereas for a large θ the only candidate for a steady state is the one with Sss = 0, for small θ two

additional fixed points of the canonical system with positive safety stock exist. This implies that an active

steady state can only exist if θ is not too large.

Before continuing with the analysis of steady states, we first establish that under optimal investment

the safety stock evolves in a monotonous way:

Lemma 2. Every optimal path of the innovator’s intertemporal optimization problem converges in a (weakly)

monotone way to a finite steady state. There exists a finite upper bound S̄(θ) with S̄′(θ) ≤ 0 such that any

steady state is in [0, S̄(θ)] for all β ∈ [0, 1].

In light of our assumption that the initial safety stock is given by S(0) = 0, in what follows we focus on

the innovator’s optimal behavior under these initial conditions. The following proposition characterizes the

conditions for the existence of active and passive steady states and their properties:

Proposition 1. Assume S(0) = 0. There exist thresholds θ < θ̄ with the following properties.

(i) For θ ≤ θ the optimal trajectory converges to an active steady state with Sss(β; θ) > S(β) where the

innovator produces q∗(Sss) > 0 for all β ∈ [0, 1].

(ii) For θ ≥ θ̄ the innovator implements a passive steady state by optimally choosing x∗(t) = 0 and

q∗(0) = 0 for all t and for all β ∈ [0, 1].

(iii) For θ ∈ (θ, θ̄) there exists a threshold β̂(θ) ∈ (0, 1) such that for β > β̂ the innovator implements

the passive steady state by optimally choosing x∗(t) = 0 for all t. For β < β̂ the optimal trajectory

converges to an active steady state with Sss(β; θ) > 0 where the innovator produces q∗(Sss) > 0. For

β = β̂ the innovator is indifferent between the optimal path leading to the active steady state with

Sss(β̂; θ), and staying at the passive one.

The first two parts of the proposition show that for sufficiently high or low values of the cost parameter

θ, whether an active or a passive steady state is reached is independent of the innovator’s liability share

(β). For S sufficiently large, the innovator’s profit from the smart product is always positive. Hence, in the

absence of any investment costs, the firm would always invest in building up a safety stock, independent of

the liability regime. By continuity, there exists a threshold θ such that this also holds for sufficiently small

values of θ ≤ θ. Furthermore, as discussed above, a sufficiently large value of the cost parameter θ implies

13



that S = 0 is the only candidate for a steady state for all β ∈ [0, 1]. Hence, for θ ≥ θ̄ it is not optimal for

the firm to invest in the smart product.

The most interesting scenario occurs for intermediate values of θ, as described in part (iii): In the absence

of liability (i.e. β = 0), the active steady state is stable and the path leading from S(0) = 0 to this stable

steady state generates a strictly positive discounted payoff stream. This is larger than the payoff of zero

generated at the passive steady state Sss = 0. As β increases, the value of the path leading to the active

steady state becomes smaller. Hence, for θ ∈ (θ, θ̄) there exists a threshold β̂ ∈ (0, 1) such that for this

value the optimal path leading from S(0) = 0 to the active steady state yields a discounted payoff stream

of zero. Therefore, only for β ≤ β̂ is it optimal for the innovator to pursue the path to the active steady

state.22 By contrast, for all β > β̂, the expected liability cost is excessively high such that the innovator

optimally forgoes the development of the smart product.

4 Dynamic patterns of product safety and market evolution: The coun-
tervailing effects of liability

In Proposition 1, we have characterized the steady state properties of our model (i.e. the long run attractor

from S(0) = 0), and the impact of the stringency of liability. In this section, we focus on several crucial

aspects of the emerging dynamics. Due to the non-linear nature of the firm’s investment problem, it is

infeasible to obtain a closed-form solution for the optimal investment strategy. Consequently, we perform a

numerical analysis of a calibrated version of the model. After explaining our calibration approach (Section

4.1), we show how the innovator’s liability share β affects the active steady state (Section 4.2). We then

discuss the dynamic patterns of optimal investment and the corresponding market dynamics (Section 4.3),

and how β affects the timing of AV market introduction and the evolution of AV safety (Section 4.4). Finally,

we study welfare implications (Section 4.5).

4.1 Calibration for US automobile market

To obtain an empirically meaningful parametrization of the model, we focus on the US automobile mar-

ket and consider the development of Autonomous Vehicles (AV, the smart product) as an alternative to
22Considering the problem from the perspective of the state space, for any θ ∈ (θ, θ̄) and β > β̂ there is a positive threshold

SSK > 0 such that the optimal trajectory for any S(0) < SSK leads to the passive steady state Sss = 0, whereas for S(0) > SSK

the optimal path leads to the active steady state Sss. Such a threshold SSK is referred to as a Skiba point (see e.g. Skiba,
1978; Hinloopen, Smrkolj, and Wagener, 2013). In this interpretation the value β̂ is defined as the point where the Skiba point
coincides with S = 0.
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conventional cars (the old product).23 For most of our model parameters we were able to obtain appropri-

ate empirical targets (reference year 2017). For the remaining parameters, where such targets cannot be

obtained, we have chosen values leading to reasonable outcomes for the timing of AV market introduction.

As for the discount rate, we follow Blincoe et al. (2015) and use r = .03. Moreover, Bento, Roth, and

Zuo (2018) find a current average lifetime of cars in the US of 15.6 years, leading to a failure rate ρ = .065,

which we assume to apply for both types of car.

As for accident rates, for conventional cars we set αo = .074. This is obtained from US data from the

Insurance Information Institute, reporting a total of 7.4 claims per year per 100 insured cars.24 For the

AV, we use the functional form α(S) = ᾱ/(m + S), which satisfies all properties for α(S) as assumed in

Section 2, and where we set ᾱ = 0.12 and m = 0.05.

For the damage in the course of an accident, we use D = 39.2 which is calculated as follows. According

to a report by the U.S. National Highway Traffic Safety Adminstration (Blincoe et al., 2015), the total social

costs due to car accidents in 2010 were $836 billion with a total of 24 million damaged vehicles. Taking

also into account price inflation between 2010 and 2017 (12.4 % in total), we estimate the average damage

per damaged vehicle per accident in 2017 as (836.000 · 1.124)/24 = 39.152. As for the share of the expected

damage borne by the consumers, we use k(z) = τ ·z
τ+z which satisfies all the properties as assumed in Section 2,

where we set τ = 50.000.

According to data from Kelley Blue Book, the average transaction price for cars in 2017 was 34.782$

and, hence, po = 34.8 = c.25 As for consumer valuations, we could not find any direct evidence for the

US market. Instead, we use data reported by Brenkers and Verboven (2006) in their empirical study of

several EU automobile markets, and we find that for the case of Germany, on average the consumer surplus

equals the price of the car.26 In the numerical analysis, we assume that the same property also holds for

the US. Based on this, the consumer surplus can be derived as the difference between the willingness to pay

(per period of usage) net of expected liability costs and the sales price (i.e. vo−αok(D)
r+ρ − po), which leads

23Empirical studies of the automobile markets in the U.S. and in Europe have been carried out for example by Goldberg and
Verboven (2001), Brenkers and Verboven (2006) and Kagawa, Tasaki, and Moriguchi (2006).

24See https://www.iii.org/fact-statistic/facts-statistics-auto-insurance.
25Kelley Blue Book is a leading source of price information for the US car market. They issue monthly press releases with

information on transaction prices for the different manufacturers and models. Our value of 34.782$ is obtained from taking the
average of the prices reported for the 12 months of the year 2017. That also c = 34.8 holds follows from our model assumption
that conventional cars are sold at marginal costs.

26Brenkers and Verboven (2006) report that a loss in consumer surplus of 444 Mio Euro corresponds to 1.7% of the average
annual consumer surplus generated in the market for new cars in Germany between 1970-1999 (see their Table 6). Hence, the
average annual consumer surplus during that time period can be calculated as 26.1 Billion Euro. Dividing this number by the
average annual car sales in Germany of 2.48 Mio during that period (obtained from their Table 1), we obtain a consumer surplus
per sold car of 10.531 Euro. This number almost coincides with the average sales price of 10.520 Euro in Germany during the
same period (also obtained from their Table 1).
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to vo = 8.2. With respect to consumer valuations for the AV, we do not consider those consumers, whose

expected discounted value derived from an AV is negative even if the AV had an accident rate of zero and

would be sold at the price of the conventional car. This implies v = po(r + ρ) = 3.3. To approximate the

market size for AVs, we follow the seminal work on the diffusion of innovations by Rogers (2003), who argues

that 16% of the consumers can be classified as either innovators or early adopters, which are the most eager

ones to switch to a new product. Hence, in our numerical analysis, we assume that 16% of the mass of the

(uniform) distribution of valuations on the interval [v, v̄] is above vo(= 8.2). This leads to v̄ = 9.2.

Finally, with respect to the safety stock S of the AV, we assume that it depreciates with a rate δ = 0.07.

Moreover, as for the cost of investment into that stock, h(x) = θx(1 + η
2x), we use θ = 2.2 and η = 3. This

parameter choice ensures that there indeed exist a liability parameter β̂ ∈ (0, 1), such that the innovator

prefers the optimal path leading to the active steady state for β ≤ β̂, and staying at the passive steady state

for β > β̂.27

In order to determine the optimal paths for our calibrated model, we numerically determine the value

generated by the optimal path from S(0) = 0 leading to the candidate for an active steady state (if it exists),

and compare it to the value of zero from staying at the passive steady state. The optimal path leading to

the candidate for the active steady state and the associated value are calculated by solving the Hamilton-

Jacobi-Bellman (HJB) equation of a variation of the innovator’s dynamic optimization problem, in which the

additional constraint is added that the state converges to the active steady state. The function Ṽ (S) solving

this HJB equation is evaluated at the initial state S(0) = 0 and we obtain the value V (0) = max[0, Ṽ (0)]

at this state. The scenarios for which positive investment and convergence to an active steady state are

optimal for the innovator are therefore characterized by the condition Ṽ (0) ≥ 0. As an analytical solution for

the HJB equation is not available, we obtain an (approximate) solution to the equation using a collocation

method. The formulation of the HJB equation and a short description of our method is given in Appendix

B.

4.2 Active and passive steady states of safety stock accumulation

We start with analyzing the impact of the stringency of product liability (β) on the existence and properties

of active and passive steady states as characterized in Proposition 1 above. As illustrated in Figure 2, when

the innovator’s liability share (β) is sufficiently low (i.e. when β ≤ β̂), an active steady state emerges in

which the innovator accumulates a positive safety stock Sss(β) > 0. Moreover, the steady state level of the
27Put differently, our specification ensures that the isoclines (12) and (13) intersect twice as in panel (a) of Figure 1, and that

we are in part (iii) of Proposition 1.
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Figure 2: AV safety stock in active and passive steady states under strict (partial) liability
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safety stock is increasing in β. By contrast, for high values of β > β̂, the passive steady states emerges,

where the innovator (with a starting point of S = 0) will optimally not accumulate any safety stock over time

(i.e. Sss(β) ≡ 0 for all β > β̂). For our calibration, the critical value above which the active steady state

ceases to be optimal is β̂ = 0.29. Hence, this property illustrates one trade-off when shifting more liability

to the producers of smart products: Given that these products will eventually be launched at all, more

liability indeed increases the level of product safety in the long-run, but it might also discourage the activity

altogether. Overall, these results show that the relationship between liability and product innovation can

in principle be positive or negative, and that it depends (among others) on the characteristics of industry

under consideration and the level of liability actually chosen. This is in line with the empirical findings of

McGuire (1988); Viscusi and Moore (1993); Galasso and Luo (2017, 2018b) as discussed above.

4.3 Optimal dynamics

From now on, we focus on liability regimes β ≤ β̂, such that optimal investment by the innovator leads to

convergence to the active steady state. In the following, we analyze in more detail the dynamic properties of

the key variables of interest, and how these trajectories are affected by the stringency of liability. The results

are illustrated in Figure 3, where we depict trajectories for β = 0, β = 0.15 and β = β̂ = 0.29. Lemma

2 directly implies that the safety stock grows monotonously over time under any optimal investment path

leading to an active steady state. Hence, understanding how the key variables depend on S also allows to

understand their behavior over time.
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Figure 3: AV market dynamics under optimal investment under strict (partial) liability
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The solid lines of different colors show the optimal paths for different values of firm liability: β = 0 (black), β = 0.15
(blue), β = 0.29 (red). For the threshold value β̂ = 0.29 both the path converging to the active steady state (solid
red line) and the one staying in the passive steady state (dashed red line) are optimal. In panel (b), the three
depicted paths show the optimal price for the AV starting from the respective period for which the optimal quantity
q∗(S) becomes strictly positive. The horizontal black line indicates the price of the conventional car (po = 34.8).
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4.3.1 AV production quantities and prices

Production quantities As can be seen from Figure 3 (a), the AV is not immediately launched. Rather,

there is an initial time interval, during which the innovator does not produce and only invests to improve

the AVs’ safety (this issue will be discussed on more detail in Section 4.4 below). Once production does take

place, the (instantaneous) quantity is indeed increasing and concave over time for all three depicted liability

regimes (see the discussion of Eqn. (8) above). Intuitively, as the safety stock increases over time (see

panel (e)), the AV becomes safer which, ceteris paribus, decreases the innovator’s unit costs and increases

consumers’ net benefit from it. Both effects lead to higher sales. Moreover, more stringent liability does

not affect the dynamics of output decisions qualitatively. It does, however, induce a later date of market

introduction of the AV and lower production quantities afterwards, and hence a slower market penetration.

Prices Figure 3(b) shows that the price for the AV optimally chosen by the innovator increases over time

as the safety stock increases. Recall from the discussion of Eqn. (7) above, that the effect of S on the

optimal price of the AV p∗(S) is a priori ambiguous, and that it is increasing in S for β sufficiently small,

in which case the demand effect dominates the liability effect. In our calibration, it turns out that this is

indeed the case in the relevant parameter range β ∈ [0, β̂] where the innovator optimally induces the active

steady state. Moreover, as product liability become more stringent, this leads to higher prices.

4.3.2 Investment pattern and accumulation of safety stock

Figure 3(c) reveals a hump-shaped investment pattern over time. Again, this process is affected by the

stringency of liability: For low values of β, initial investments are high, with a peak being reached already in

early periods, and then exhibiting a relatively strong decline. By contrast, for larger values of β, the initial

investment outlays are lower, the peak is reached at a later date, and the decline is less severe. As a result,

the more stringent liability, the lower (higher) the investment incentives in the short-run (intermediate and

long run). In the remainder of this subsection, we investigate the drivers for these results in more detail.

Basic effects determining optimal investment Several effects are at work which jointly determine

the dynamic investment pattern. To gain an intuition, recall from Lemma 1 that the optimal investment

is linearly increasing with the co-state λ (see Eq. (10)). To illustrate these effects, in what follows we

approximate the co-state by the derivative of the innovator’s (discounted future) market profits with respect

to the safety stock S. Formally, we define Π̃∗(S̃) =
∫∞

0 e−rtπ∗(S(t))dt with S(t) following the path induced
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by optimal investment from S(0) = S̃ and approximate λ(t) by dΠ̃∗(S̃(t))
dS̃

.28 Using this approximation,

the optimal investment level is linearly increasing in the term dΠ̃∗
dS̃

, and we consider this term to gain an

understanding of the factors determining optimal investment. Taking into account the envelope theorem, it

can be written as follows:

dΠ̃∗(S̃)
dS̃

=
∫ ∞

0
e−rt

[
βD

r + ρ
q∗(S(t)) +

(
p∗(S(t))− c− αβD

r + ρ

)
k((1− β)D)

v̄ − v

]
·
∣∣∣∣∂α(S(t))

∂S̃

∣∣∣∣ dt
≈
[ βD

r + ρ
Q∗(S̃)︸ ︷︷ ︸

Profit Margin Effect
(PME)

+
(
P ∗(S̃)− c

r + δ

)
k((1− β)D)

v̄ − v︸ ︷︷ ︸
Quantity Effect

(QE)

]
·
∣∣∣∣∣∂α(S̃)
∂S̃

∣∣∣∣∣︸ ︷︷ ︸
Safety Effect

(SE)

, (14)

where Q∗(S̃) =
∫∞

0 e−(r+δ)tq∗(S(t))dt and P ∗(S̃) =
∫∞
0 e−(r+δ)t

(
p∗(S(t))− α(S(t))βD

r+ρ

)
dt denote aggregated

discounted future sales quantities and net prices (i.e. prices minus liability costs) for an initial safety stock

S̃. Note that to obtain the second line we have used the approximation ∂α(S(t))
∂S̃

≈ e−δt ∂α(S̃)
∂S̃

based on the

fact that the safety stock depreciates at a rate of δ.

Intuitively, the multiplicative third term captures the direct effect of an increase S, namely a reduction

in the accident rate of the AV (SE). The first two terms capture the effect of a decrease in the accident

rate on the profit margin (PME) and the quantity of AV sold (QE), respectively: As for the PME, for a

given aggregate quantity Q∗, a lower α(S) increases the profit margin of the innovator for each unit sold

now and in the future, as it leads to a decrease of liability costs. As for the QE, the demand function (4)

shifts upwards by k((1−β)D)
v̄−v as α decreases. To obtain the total marginal profit of this quantity increase, it

is multiplied with the discounted sum of the marginal profits over time.29

Investment incentives over time To understand the dynamics of the optimal investment over time,

we analyze how the different effects in Eq. (14) vary in S (i.e. we now look at ∂2Π̃∗
∂S̃2 ). The following three

(countervailing) channels drive the optimal investment pattern for the time after the AV has been launched

(i.e. when q∗ > 0). First, the PME becomes stronger because the discounted sum of future sales, Q∗(S̃),

increases with S̃. Hence, this channel leads to an increasing investment incentive over time. Second, also the
28To clarify our approximation, recall first that the co-state λ corresponds to the derivative of the value function with respect

to S. The value function is given by V (S̃) =
∫∞

0 e−rt(π∗(S(t)− h(x∗(t))dt with S(t) following the path induced by the optimal
investment x∗(t)) from S(0) = S̃. Hence, our approximation λ = ∂V (S̃)

∂S̃
≈ ∂Π∗(S̃)

∂S̃
holds under the simplifying assumption that

∂
∂S̃

∫∞
0 e−rth(x∗(t))dt ≈ 0, i.e. when abstracting from the fact that an increase of S might also have an impact on the future

investment paths and the associated discounted costs.
29The change of the optimal price induced by an decrease in α and the resulting quantity change do not affect the maximized

profit because of the envelope theorem.
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QE becomes stronger, because an increase in S leads to both a higher price (see Figure 3(b)) and a lower

(expected) liability cost per unit sold (as α decreases with S) in all future periods. Hence the term P ∗(S̃)

increases over time and also this channel generates growing investment incentives. Third, the SE generates

a decreasing investment incentive over time, because the marginal effect of a higher safety stock on the

accident rate decreases over time (recall that α′(S) < 0 and α′′(S) > 0). This term is multiplicative such

that it scales the size of the two previous channels. For the time period before the market introduction of the

AV (i.e. when q∗ = 0), a fourth channel is at work. During this time, the innovator seeks to accumulate, at

minimum cost, the level of safety stock S(β) with which the AV is launched. Note that the discounted profit

generated after the introduction of the AV does not depend directly on the time of the market introduction,

but only on the value of S. For a given date of market introduction, in the absence of discounting it would

be optimal to spread the investment outlays evenly over the time period before the AV is launched (this due

to the convexity of the investment cost function h(x)). However, with discounting, the value of this fixed

future profit becomes larger as the date of market introduction comes closer. This explains the initially

increasing part of the investment trajectories before the AV is launched. The interplay of these four effects

generates the observed hump-shaped pattern.

Impact of liability on investment pattern Equation (14) is also useful to develop an intuition of how

the optimal investment trajectories are affected by the stringency of liability (β). Note first that, ceteris

paribus, an increase in β does not affect the SE. With respect to the PME and QE, we obtain the following

derivative with respect to β:

∂[PME +QE])
∂β

= D

r + ρ
Q∗(S̃)︸ ︷︷ ︸
>0

+ βD

r + ρ

∂Q∗(S̃)
∂β︸ ︷︷ ︸

<0

+ ∂P ∗(S̃)
∂β

k((1− β)D)
v̄ − v︸ ︷︷ ︸

<0

+
(
P ∗(S̃)− c

r + δ

) −Dk′((1− β)D)
v̄ − v︸ ︷︷ ︸

<0

. (15)

Intuitively, the first of the four terms captures that a higher β fortifies the impact of changes in α on the

profit margin (i.e. the coefficient of Q∗ increases with β). This leads the innovator to respond with higher

investment, and the effect is proportional to quantity. As for the second term, in light of (8), there is a direct

negative effect of β on the accumulated discounted future quantities (∂Q
∗(S̃)
∂β < 0). This reduces the size of

the PME and dampens investment incentives. Note that this argument abstracts from the indirect effect

that a change in β also affects the optimal path of S(t), which also influences the accumulated discounted

quantities and prices. Similarly, with respect to the third term, abstracting from this indirect effect and
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using (7) we obtain
∂P ∗(S̃)
∂β

= D(k′((1− β)D)− 1)
2(r + ρ)

∫ ∞
0

e−(r+δ)tα(S(t))dt < 0. (16)

This expression is negative as a higher β leads to higher unit costs, which is not fully offset by the increase

in demand resulting from the lower remaining liability share (1 − β)D borne by consumers (this is due to

k′(·) < 1). As a result, an increase in β induces a lower profit margin (price minus liability costs) for the

innovator, which lowers investment incentives. Finally, as for the last term in (15), shifting liability from

the consumers to the innovator, makes demand react less strongly to an increase of the safety stock, thereby

reducing investment incentives.

The interplay of these four effects as captured in (15) explains why the qualitative implications of a

more stringent product liability differs between the short-term and the long-term (see panel (c) of Figure

3). Note that only the first term in (15) generates a positive effect of β on investment incentives, which is

proportional to the discounted stream of future sales (Q∗). In early periods, Q∗ is small and therefore this

positive effect is dominated by the three negative effects. This explains why initially investments are lower

for larger values of β. Eventually, in later periods Q∗ becomes sufficiently large such that the first positive

effect dominates, and we obtain a positive relationship between β and safety stock investment.

Finally, it is noteworthy that in the absence of liability (β = 0), the innovator’s investment incentives are

not zero, even in the short-run. The reason is that in this case, a substantial liability risk would be borne

by the consumers. This would lower their willingness to pay for AVs, thereby shrinking the market for these

vehicles. To countervail this effect, the innovator does optimally invest in product safety, even when she

does not face a direct liability risk. These are exactly the “market forces” stressed by Polinsky and Shavell

(2010) in their critical discussion of product liability.

Accumulation of safety stock The dynamic patterns of investment incentives determine how the strin-

gency of product liability affects the process of safety stock accumulation. In line with our observation that

in the long run an increase of β induces higher investment, Figure 3(d) shows that the safety stock ultimately

reached in the active state steady is increasing in the innovator’s liability share β. However, panel (e) also

conveys that, as β increases, the accumulation of the safety stock occurs more slowly in early periods, due to

the lower initial investment incentives. For example, during the first 8 years, S is largest for β = 0 followed

by β = 0.15 and β = 0.29 and it takes 20 years until the safety stock is highest under the most stringent

form of liability. This effect is illustrated in more detail in Figure 4. It shows that the time elapsing until

the AV eventually reaches the same safety standard (accident rate) as the conventional car, is increasing

and convex in the stringency of liability. That is, as long as β is relatively small, making the liability more

22



Figure 4: Delay in AV safety stock accumulation under strict (partial) liability

β

o
tα̂

β̂
The vertical axis measures the time (t̂αo ) until the accident rate of the
AV equals that of the conventional car, i.e. α(S(t̂αo )) = αo = 0.074.

stringent only causes a moderate delay in the accumulation process compared to the benchmark β = 0. But

the delay becomes considerable as β moves closer towards the threshold level β = 0.29, for which the active

steady state ceases to be optimal for the innovator.

In summary, even when confining attention to liability regimes which are not too stringent in the sense

of preventing the introduction of the smart product altogether, our analysis points to a second trade-off

associated with shifting more liability to the producers of smart products: One the one hand, this leads to

a higher safety level of these products in the long run. But on the other hand, it delays the process of safety

stock accumulation, so that it takes longer until a given safety standard is reached. As a result, under more

stringent liability, the units being sold in the short- and intermediate run are less safe than they would have

been under a less stringent regime.

4.4 Timing of AV market introduction, and safety level of first generation

In this section we investigate in more detail the impact of liability on the date of market introduction of the

AV (denoted by ten) and the corresponding safety level S(ten) of this first AV generation. Recall that the

innovator will optimally launch the AV when it has just reached the minimum safety standard such that

demand becomes positive, i.e. when S(ten) = S(β) holds (see Eq. (3) above). Moreover, a more stringent

liability leads to a higher the safety stock of the first generation (i.e. S′(β) > 0, which follows from α′ < 0

and the properties of k(·)). Furthermore, as discussed in the previous section, in early periods an increase
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Figure 5: Date of AV market introduction and corresponding safety standard
ent
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(a) Date of AV market introduction
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(b) AV accident rate
Panel (a): ten(β) indicates the point in time at which the AV is launched (i.e. where the optimal instantaneous
quantity becomes strictly positive) for a given β. Panel (b): accident rate of AV i) in the first generation (α(S(ten)) =
α(β)), ii) at a given point in time t̃ (α(S(t̃))) and iii) in the active steady state (αss(β)). The dotted line shows the
accident rate of the conventional car (αo = 0.074).

of β has a negative effect on investment such that it takes longer until any given level of safety stock S is

reached. Due to these two effects, more stringent liability leads to a later market introduction of the AV

(see Figure 5(a)).

Figure 5(b) shows that, whereas β has a beneficial effect on the AV accident rate at the time of market

introduction and in the long run (steady-state), there is also a negative effect in the short run. If we

consider a given point in time t = t̃ not too far in the future, then the accident rate at t̃ is increasing in

β.30 Intuitively, when β is low, the AV is launched earlier and the innovator’s investment incentives increase

once it sells positive quantities. In particular, the difference between α(S(ten)) and α(S(t̃)) shows by how

much the accident rate is reduced due to the earlier market introduction for a low β compared to the case of

β = β̂. Put differently, if a policy maker aims at maximizing AV safety at a given point in time not too far

in the future, then lenient product liability (β = 0) is optimal. However, the policy maker should be aware

that under such a regime, AVs are introduced to the market early and the first product generations exhibit

a safety level that is substantially lower than first generation AVs under more stringent liability. Figure 5(b)

also reveals that for a large range of β the accident rate at t = t̃, is already below that of the conventional

car. Last, but not least, the figure also illustrates that for our calibration, the long run AV accident rate

(αss(β)) is below that of the conventional car (αo) for all β. This is consistent with the alleged long-term

benefit of AVs compared to conventional cars.
30For the purpose of illustrating this effect, in the figure we have set t̃ = 7.29, which is the date of market introduction of the

AV for β = β̂.
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4.5 Welfare

Having studied the implications of an increase in β on the timing of market introduction of AVs and the

evolution of the safety level, we now consider the total welfare effects of product liability. The welfare

generated by each vehicle is given by the expected lifetime utility for the buyer minus the sum of production

costs and total expected damages.31 As we are interested in the welfare implications of AVs, in what follows

we consider the additional welfare generated by their introduction relative to the status quo where they are

not available.32 This leads the following measure ∆W for the (instantaneous) welfare effect of AVs:

∆W =
∫ v̄

v∗(S)

(
v − α(S)D − (vo − αoD)

r + ρ

) 1
v̄ − v

dv − h(x), (17)

where the first term measures the additional welfare generated by those consumers who prefer to purchase

the AV instead of the conventional car. Recall that the threshold v∗(S) = v̄ − q∗(S)(v̄ − v) is determined

by the valuation of the consumer who is just indifferent between purchasing either type of car, where q∗(S)

is the optimal quantity of the innovator as given in (8) above.

From a social welfare perspective, a consumer should purchase the AV whenever this generates a positive

net effect on welfare. This leads to a valuation threshold vFB(S) = vo − αoD + α(S)D and hence to the

first-best quantity

qFB(S) = 1− F (vFB(S)) = v̄ − vo + (αo − α(S))D
v̄ − v

. (18)

Taking the difference yields

qFB(S)− q∗(S) = v̄ − vo + (αo − α(S))D
2(v̄ − v)︸ ︷︷ ︸

monopoly distortion

+ αo(D − k(D))− α(S) ((1− β)D − k((1− β)D))
2(v̄ − v)︸ ︷︷ ︸

externality distortion

. (19)

This reveals that at a given point in time t, there are two sources which distort the quantity of AVs sold

relative to the efficiency benchmark: First, there is the standard downwards distortion due to the monopoly

power of the innovator (monopoly distortion). This distortion is independent of the liability parameter β.

Second, as discussed in Section 2, both the AV and the conventional car generate externalities which

are due to the incomplete internalization of the damage from accidents (externality distortion). Depending

on which of these two externalities is larger, this creates an upwards or downwards distortion of the AV
31As for the damage resulting from accidents, note that simply adding up the liability shares of the respective consumer and

the innovator (i.e. βD + k((1 − β)D)) would leave unaccounted for the remaining share, which has to be borne by a third
party such as, for example, another driver involved in the accident or an insurance company. To avoid this, our welfare measure
captures the total social damage D.

32Hence, we consider the difference in welfare between the cases with and without AVs, respectively. As in the latter case,
the resulting welfare is independent of S and β, this does not have any qualitative effect on the results.
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quantity relative to the first best. In particular, when all liability costs of AVs are borne by the innovator (i.e.

β = 1, so that the last term in (19) is zero), the externality distortion only arises through the conventional

car. In this case, both the monopoly and the externality distortion go in the same direction, and the AV

optimal quantity q∗(S) is inefficiently small. By contrast, when consumers are liable for all AV accidents

(β = 0), then the externality distortion becomes negative if AVs are less safe than conventional cars (i.e. if

α(S) > αo). If this effect outweighs the (positive) monopoly distortion, then q∗(S) is too high compared

to the efficiency benchmark, i.e. v∗(S) < vFB(S). In such a case launching the AV might have negative

welfare implications even if S is sufficiently large such that vFB(S) ≤ v̄. In particular, AV consumers with

v ∈ [v∗(S), vFB(S)) reduce welfare, whereas those with v ∈ (vFB(S), v̄] increase it. We define Swel as the

minimal level of the safety stock such that, from a static perspective, the provision of AVs enhances welfare

(i.e. ∆W as given in (17), net of investment costs is non-negative). For our parameterization, we obtain

Swel = 1.19 and α(Swel) = 0.096. These values will be a useful benchmark for the analysis of negligence

standards in Section 5 below.

An overall assessment of the welfare effects of product liability also needs to take into account the

dynamic aspects arising through the induced investment incentives into product safety. To analyze these

dynamic aspects, we proceed in two steps: First, we compare the optimal investment path of the innovator

with the welfare-maximizing path for a given level of β.33 Second, we consider the welfare effect of a change

of β under the innovator’s optimal path. Throughout, we fix the AV quantity at q∗(S) which allows for a

clean comparison of the individually and socially optimal investment paths.

Figure 6: Socially optimal investment and quantity paths
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Dynamics of investment (panel (a)) and quantity (panel (b)) under the welfare maximizing path (solid line) and the
optimal path of the innovator (dashed line) under strict (partial) liability for β = 0.

33Formally, we consider the objective function
∫∞

0 e−rt∆W (S(t), x(t))dt subject to the state dynamics (5), where
∆W (S(t), x(t)) is given by (17).
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Figure 7: The welfare effect of liability in the active steady state
W∆
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(a) Welfare dynamics
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(b) Total welfare effect

Panel (a): Dynamics of instantaneous welfare effect for β = 0 (black), β = 0.15 (blue) and β = β̂ = 0.29 (red).
Panel (b): Total discounted welfare effect ∆W tot for β < β̂.

As for the first step, Figure 6 illustrates that the socially optimal path exhibits substantially larger safety

stock investments compared to the innovator’s optimal path under β = 0. As the safety stock at market

introduction is S(0) under both paths, the higher investment leads to earlier market introduction of AVs

under the socially optimal path. Furthermore, at each point in time after market introduction, the quantity

is higher under the socially optimal investment level. Overall, this comparison suggests that from a welfare

perspective, it is desirable to speed up investments into the safety stock of AVs and to increase their sales

volume.

As for the second step, the results for the dynamic analysis are illustrated in Figure 7. Panel (a) shows

that instantaneous welfare exhibits a U-shaped pattern over time. Intuitively, it is initially negative due

to the investment outlays before the AV is launched, and then eventually becomes positive afterwards.

Moreover, more stringent liability leads to a more balanced pattern (i.e. to lower initial welfare losses,

but for a longer period of time, and lower gains in later periods). In particular, the long-run welfare level

decreases with β, although a higher value of β has the beneficial effect of inducing a lower long-run accident

rate. Intuitively, an increase of β leads to lower AV sales in the long-run, and the resulting welfare loss

dominates the positive welfare effect of a better safety.

Figure 7(b) depicts the difference in total discounted welfare ∆W tot as a function of the stringency of

liability. As long as the active steady state is induced at all (i.e. for β ≤ β̂ = 0.29), the resulting welfare

difference is positive, and decreasing in β. Intuitively, the initially high welfare losses induced by higher

investment under a low value of β are outweighed by the intermediate and long term gains due to earlier

market introduction and a larger sales volume of AVs. Our finding of an overall negative net effect of an
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increase of β on welfare suggests that under rule of strict (partial) liability, producers of AVs should not be

held more liable than producers of conventional cars.

To check the robustness of this result, we have also considered residual manufacturer liability, an al-

ternative form of product liability as analyzed by Hay and Spier (2005). Under this rule consumers are

always liable up to their available funds, whereas the manufacturers cover (a fraction of) the remainder.

Hay and Spier (2005) show that residual manufacturer liability can be optimal from a welfare perspective

in situations where consumers cannot cover the entire damage. In our framework, residual manufacturer

liability can be captured by assuming that in case of an accident, a consumer pays k(D) and the innovator

pays β(D − k(D)). Carrying out an analysis analogous to the one presented above, we find that setting

β = 0 is socially optimal also under residual manufacturer liability.34

In summary, one main conclusion that can be drawn from our analysis is that, even if producers of AVs

are not directly liable for accidental harm caused by these vehicles, substantial investment incentives are

generated by the fact that low product safety reduces demand. In this sense our findings corroborate the

argument put forward by Polinsky and Shavell (2010), that safety investments can be stipulated by market

forces even in the absence of liability.

5 Negligence-based liability

In this section, we consider a model variant where the liability of the innovator is negligence-based. More

precisely, we assume that a policy maker sets a safety standard (or due care level) Sneg such that the

innovator faces no (full) liability if the safety stock of a sold AV satisfies (does not satisfy) this standard.

Formally, for every accident of an AV with safety level S, the liability cost of the innovator is 0 for S ≥ Sneg

and D for S < Sneg. The safety level at which it is optimal for the innovator to launch the AV, depending

on the negligence standard Sneg, is then given by

Sneg =


S(0) if Sneg < S(0),

Sneg if S(0) ≤ Sneg ≤ S(1),

S(1) if S(1) < Sneg,

(20)

where S(β) is given by Eq. (3). Intuitively, in the first case of (20) the negligence standard is so lenient that

the innovator has no incentive to introduce the AV with a safety stock violating the negligence standard,

even when not facing liability at all. Hence, such a standard does not influence the innovator’s behavior.
34Also the dynamic patterns of investment, quantities and AV safety under residual manufacturer liability are qualitatively

identical to those obtained for the baseline setting. The details of the analysis are available from the authors upon request.
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This scenario corresponds to the case β = 0 in our analysis of Section 4.

In the second case of (20), the negligence standard induces the innovator to delay the market introduction

of the AV as long as it would be fully liable, but starts to produce once the standard is met. This is optimal

for the innovator as for any S(t) < Sneg ≤ S(1) it faces full liability (β = 1), and by the definition of S(1),

selling AVs with such a safety level would generate a negative expected profit. Furthermore, for S(t) ≥ Sneg

the innovator faces no liability and due to S(0) ≤ Sneg the resulting profit is non-negative. Hence, it is

optimal to introduce the AV exactly when its safety level S(t) reaches the negligence standard Sneg.

Finally, in the third case of (20) the negligence-standard is so high, that it is optimal for the innovator

to launch the AV even before the negligence standard is reached, i.e. the innovator is prepared assume full

liability in case of accidents.

Figure 8 illustrates the impact of Sneg on the dynamic patterns of the two optimal controls (i.e.

investment in safety stock and output) in our calibrated model. With respect to optimal investment,

consider first the black line in panel (a) which corresponds to the case of a lenient negligence standard

(Sneg ≤ S(0) = 0.95). As this type of liability rule effectively does not constrain the innovator, the invest-

ment pattern is the same as in the analysis of strict (partial) liability in Section 4 for β = 0 (see Figure 3(c)

above).

As the negligence standard becomes stricter (i.e. as Sneg increases such that we have Sneg > S(0)), the

optimal dynamic investment pattern changes and exhibits a jump.35 Intuitively, this jump occurs at the

point in time at which the negligence standard Sneg is reached. From that point onwards, the investment

pattern closely resembles the one characterized in Section 4 for β = 0.36 By contrast, before the threshold

Sneg is reached, negligence-based liability gives rise to a prolonged period of increasing investment compared

to the case without negligence above (see Figure 3(d) above), and this period lasts the longer, the stricter

the standard. The reason is that the innovator has an incentive to reach the negligence standard Sneg “as

soon as possible” as this leads to a downward jump in its liability costs. Hence, one advantage of introducing

negligence-based liability compared to t strict (partial) liability is that it accelerates the process of safety

stock accumulation, rather than slowing it down.

With respect to optimal output choices illustrated in Figure 8(b), by the same argument as above, there is

no effect when the negligence standard is sufficiently weak such that it does not affect behavior. Furthermore,

after the negligence standard has been reached, the output pattern is determined by the optimal quantity

choice for β = 0. However, for negligence standards Sneg > S(0) the market introduction of the AV is
35As detailed at the end of Appendix B, the possibility of such jumps require slight modifications of the numerical methods

used.
36Note that the actual investment dynamics depends on the level of the safety stock Sneg, which varies with Sneg.
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Figure 8: Impact of negligence-based liability on optimal dynamic AV investment and output patterns

(a) Investment (b) Quantity

The lines of different colors show the optimal paths for different values of the negligence standards: Sneg = S(0) =
0.95 (black), Sneg = 1.57 (blue), Sneg = 1.94 (red) and Sneg = 2.61 (green), giving rise to AV accident rates of
α(0.95) = 0.12, α(1.57) = αo = 0.074, α(1.94) = 0.06 and α(2.6) = 0.045.

delayed. For Sneg ∈ (S(0), S(1)) the innovator waits with launching the AV until Sneg is reached, so that

is exempt from liability. In this case the quantity directly jumps to a strictly positive value at the time of

market introduction. Under our parametrization, S(1) = 1.73 and therefore the blue line (Sneg = 1.57) in

Figure 8(b) corresponds to this scenario. Alternatively, if Sneg > S(1) the innovator launches the AV with a

continuously increasing quantity before the negligence standard is met, thereby accepting full liability. The

quantity then again exhibits an upward jump as S(t) reaches Sneg. In Figure 8(b), this case is illustrated

by the red and green lines (Sneg = 1.94 and Sneg = 2.61, respectively).

Next, consider the effect of negligence-based liability on the date of market introduction of AVs and

accident rates as depicted the upper part of Figure 9. Panel (a) reveals that a stricter negligence standard

leads to later market introduction of AVs, which is similar to the effect of an increase of β under strict

liability(compare Figure 5 (a)).

Moreover, in Figure 9(b) we observe that regardless of the negligence standard Sneg, the active steady

state is given by Sss(0) and hence the long-run accident rate is αss(0). This is due to the fact that Sneg no

longer has any impact once the safety stock S(t) ≥ Sneg holds.37 Hence, tightening the negligence standard

has no positive long-run effect on AV safety, which is qualitatively different from the effect of an increase

in β under strict (partial) liability (see Section 4 above). However, the accident rate in the short- and

intermediate term (as captured by α(S(t̃)) at a given time t̃) becomes lower as the negligence standard

becomes stricter. Again, this is qualitatively different compared to strict liability. This can be seen by
37Of course, this no longer holds for negligence standard Sneg > Sss(0). As in our setting β̂ < 1, it follows that Sss(1) can

never be an active steady state. Therefore, for Sneg > Sss(0) the only candidate for an active steady state has a long-run safety
stock equal to Sneg.
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Figure 9: Negligence-based liability: Timing of AV market introduction, speed of safety stock accumulation
and welfare
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(c) Welfare
In panel (a), ten(β) indicates the point in time at which the AV is launched. Panel (b) shows the accident rate
of AVs i) in the first generation (α(S(ten))), ii) at a given point in time t̃ (α(S(t̃))) and iii) in the active steady
state, which for all considered values of Sneg is given by αss(0). The dotted line shows the accident rate of the
conventional car (αo = 0.074). Panel (c) indicates the total discounted welfare effect of negligence-based liability.
In all panels, the horizontal axis measures the difference between the negligence standard Sneg and the safety stock
upon market introduction in the absence of liability (S(0) = 0.95).
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comparing the function α(S(t̃)) which is increasing in Figure 5(b), whereas it is decreasing in Figure 9(b).

Intuitively, this is due to our finding that a tighter negligence standard boosts investment before market

introduction. By contrast, as shown in Section 4, increasing β under strict liability has exactly the opposite

effect and dampens investments.

From a welfare perspective tightening the negligence standard has two countervailing effects. On the

positive side, investments become higher in early periods and hence get closer to the socially optimal level.

This leads to a faster accumulation of the safety stock. On the negative side, a higher negligence standard

induces a later market introduction of AVs and thereby, at least for large values of Sneg, prevents firms

from selling AVs when this would be socially beneficial. In our calibrated model the positive effect prevails

if Sneg is chosen appropriately. As can be seen in Figure 9(c), the (total discounted) welfare effect of

AVs exhibits a hump-shaped pattern as the negligence standard becomes stricter, and it is maximized for

Sneg = 1.356. This value is not only above the safety standard S(0) = 0.95, at which the innovator would

introduce the AVs without any liability, but also above Swel = 1.192 at which AVs should be introduced

from a static welfare perspective (see Section 4.5). This observation has two implications. First, a properly

designed negligence-based liability rule can be welfare-enhancing compared to the optimal strict (partial)

liability rule (i.e. setting β = 0). Comparing Figure 9(c) with Figure 7(b) shows that a negligence rule

has quite different properties. Second, due to the intertemporal implications, the negligence standard which

maximizes total discounted welfare is higher than the one for which AV should be launched from a static

point of view.

Direct safety regulation An alternative instrument for inducing high safety standards at market intro-

duction of AVs is direct safety regulation, where the regulator imposes a minimum safety standard which

a new product must fulfill before it can be launched. The implications of such regulation closely resemble

those of the negligence rule considered above. In particular, as shown in Appendix C, all findings obtained

for the negligence rule qualitatively carry over to a scenario with direct safety regulation, apart from the

obvious observation that under safety regulation the quantity has to be zero as long as the safety standard

is not met. In particular, we find that tightening the safety standard increases early safety investments, and

that combining direct safety regulation with the optimal strict (partial) liability (β = 0) outperforms the

sole use of such a liability rule in terms of total discounted welfare.38

38Daughety and Reinganum (1995) highlight a different channel through which safety regulation might be welfare improving
compared to the sole use of liability. In their signaling framework the price set by the firm serves as a signaling device for
unobserved product safety. They argue that, by credibly excluding low realizations from the set of relevant safety levels, such
regulation can improve overall efficiency attained in equilibrium. Our results also complement the findings from previous studies
analyzing the joint use of safety regulation and liability rules (see e.g. Shavell, 1984a,b; Kolstad, Ulen, and Johnson, 1990;
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6 Discussion

In this paper, we set up a dynamic model of product innovation and product safety to analyze the short-

and long-term effects of product liability on the market evolution and safety features of smart products,

in particular autonomous vehicles (AVs). Because of non-human tortfeasors (i.e. the product’s operating

system, which is based on algorithms), this issue constitutes novel challenges for liability law.

Our analysis informs legislators and policy makers about crucial trade-offs associated with product

liability in the context of such innovations. In particular, under strict (partial) liability there is a long-

term benefit, in the form a higher steady-state product safety, of shifting more liability to producers of

smart products. However, such a shift also bears the risk of either leading to a slower accumulation of

product safety, later market introduction and slower market penetration of smart products, or foregoing

such innovations altogether. In our model calibration for the U.S. automobile market we find that these

downsides are so significant that extending the scope of producer liabilitycompared to the status quo with

conventional cars only, would lead to welfare losses. Instead, an appropriately designed negligence-based

liability can actually speed up the development of safe smart products and hence be welfare-improving.

Similar results are obtained for direct safety regulation.

Our model exhibits a number of simplifying features, which were helpful in fleshing out the main trade-

offs. In future work our framework could also be extended in number of further directions. First, in

our calibration negligence-based liability outperforms strict liability by strengthening safety investments in

early stages. This suggests that complementing liability rules with policies that foster investments more

directly, e.g. through subsidies, could lead to even more efficient outcomes. Such subsidies would reduce the

innovator’s marginal investment cost (θ), and would ceteris paribus lead to higher levels of investment in

each period. However, as such subsidies will have to be financed by the consumers (e.g. through taxation),

this might lower their demand for consumption goods. It would be interesting to explore the overall effects

of such a subsidy scheme in our model framework.

Second, our model does not yet capture a potential externalities which seems particularly relevant in the

context of smart products such as AVs. It arises from the fact that the accident rate of an AV might not only

depend on its own safety stock S, but also on the number of AVs on the streets. As AVs can communicate

with other AVs but not with conventional cars, a higher share of AVs improves the overall “connectedness”

among vehicles, which could lead to fewer accidents.

Third, there might exist learning effects on the production side implying that the marginal cost of

Schmitz, 2000). This literature shows that combining the two instruments in an optimal way can lead to strictly higher welfare
compared to relying on one instrument only.
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production in a given period decrease in the total output produced prior to this period. This would give

the innovator an incentive to depart from monopoly pricing in each period. From a technical point of view,

it would make the analysis of the model more challenging, as this would add a second state variable to the

dynamic framework.
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Appendix (For Online Publication)

A Proofs

A.1 Proof of Lemma 1

We define the current-value Hamiltonian function

H(x, S, λ) = [π∗(S)− h(x)] + λ(x− δS), (21)

where λ is the costate for the safety stock S. Applying Pontryagin’s maximum principle (see e.g. Grass

et al., 2008), we derive the optimal control from the first order condition dH
dx = 0. Taking into account the

non-negativity constraint of the control, this yields (10). The costate equation follows from

λ̇ = rλ− ∂H

∂S

= rλ− ∂π

∂q∗
· ∂q

∗

∂S
− ∂π

∂S
+ δλ

= (r + δ)λ− ∂π

∂S

where π =
[
q∗(S) ·

(
p(q∗(S), S)− c− α(S)βD

r+ρ

)
− h(x)

]
is the integrand of (9). With respect to the term

∂π
∂S , it follows from the envelope theorem that ∂π

∂q∗ = 0, so that only the direct effect of S on π needs to be

considered. That is, we have ∂π
∂S = q∗(S) ·

(
∂p(q,S)
∂S − α′(S)·βD

r+ρ

)
, where p(q, S) is the demand function derived

from (4) and given by

p(q, S) = c+ A− (v̄ − v) · q − α(S) · k((1− β)D)
r + ρ

.

Taking this into account when calculating the derivate of π(s) with respect to S yields the expression in the

lemma. The transversality condition follows from Michel (1982). �

A.2 Proof of Lemma 2

As this is a time-autonomous infinite horizon optimization problem with a one-dimensional state space,

standard results (see e.g. Hartl, 1987) imply that every optimal trajectory has to be (weakly) monotone.

To see that no optimal path can induce divergence of S to infinity, note that π∗(S) is bounded from above.

For any monotonously increasing path we must have x > δS. Furthermore there exists a lower bound

S̃(β, θ) such that h(δS) > π∗(S) for all S > S̃. As h(δS) is shifted upwards for increasing θ, whereas π∗(S)

is independent of θ, if follows that ∂S̃
∂θ ≤ 0 for all β. Defining S̄(θ) = maxβ∈[0,1] S̃(β, θ), we obtain that

S̄′ ≤ 0. Therefore for any path diverging to infinity there is a T > 0 such that S(t) > S̄(θ) for t > T . Hence,

1



π∗(S(t)) − h(x(t)) < 0 for all t > T , which implies that such a path can never be optimal. Together these

insights imply that every optimal path monotonously converges to some steady state in [0, S̄(θ)]. �

A.3 Proof of Proposition 1

(i): In order to prove this claim, we show that for any β it holds that limθ→∞ V (0;β, θ) = 0. Considering

the canonical system derived from the Maximum Principle, any steady state Sss > 0 has to satisfy gλ(Sss) =

gS(Sss), where gλ and gS are given by (12) and (13). The function gλ is finite, continuous in S and does

not depend on θ. Fix some small but positive θmin. The function gS(S) increases monotonously in θ

for all S ∈ [0, S̄(θmin)] with limθ→∞ gS(S) = ∞. Therefore for any given β ∈ [0, 1] there exists a finite

θmax(β) = inf
{
θ ≥ θmin | gS(S) > gλ(S) ∀S ∈ [0, S̄(θmin)]

}
. By definition for each θ > θmax(β) ≥ θmin we

have gS(S) > gλ(S) for all S ∈ [0, S̄(θ)]. Hence, there is no candidate for a steady state in (0, S̄(θ)]. As

shown in Lemma 2, any optimal path entering (0, S̄(θ)] must monotonously converge to a steady state in

this interval. This implies that the optimal path starting from S(0) = 0 cannot leave this state and therefore

V (0;β, θ) = 0 holds for sufficiently large θ.

Turning to the main claim of part (i) of the proposition, consider some β ∈ [0, 1] and denote by ε < δS(β)

a small positive number. Then consider the intertemporal optimization problem of the innovator with the

additional constraint x(t) ≥ ε ∀t ≥ 0. We denote this as the ε−constrained problem of the innovator.

Standard arguments show that the problem has an optimal solution and we denote by Vε(0;β, θ) the value

function of this problem for the initial state S(0) = 0. A decrease in θ shifts the function h(x) downwards,

and as investment is positive along the optimal path in the ε−constrained problem, it follows that Vε(0;β, θ)

is a strictly decreasing function of θ. Furthermore, we show that Vε(0;β, θ) > 0 for sufficiently small θ. To

see this, note that limS→∞ π
∗(S) > 0 and hence π∗(Ŝ) > 0 for sufficiently large Ŝ. Now consider a path

{x̂(t)} with the properties that the induced state dynamics S(t) reaches Ŝ for t = T and x̂(t) = δŜ ∀t ≥ T .

For the discounted net present value of this path, V̂ , we obtain

V̂ ≥ −
∫ T

0
e−rth(x̂(t))dt+ e−rT

r

(
π∗(Ŝ)− h(δŜ)

)
= −θ

[∫ T

0
e−rt

(
x̂(t) + η

2 x̂(t)2
)
dt+ e−rT

r

(
δŜ + η

2(δŜ)2
)]

+ e−rT

r
π∗(Ŝ)

The square bracket does not depend on θ and therefore the negative term goes to zero for θ → 0. More-

over, π∗(Ŝ) > 0, which implies that V̂ > 0 for sufficiently small θ. As Vε(0;β, θ) ≥ V̂ , we obtain

limθ→0 Vε(0;β, θ) > 0. Considering now large values of θ, as shown above limθ→∞ V (0;β, θ) = 0, which

implies limθ→∞ Vε(0;β, θ) ≤ limθ→∞ V (0;β, θ) = 0. Taking into account the monotonicity and using the

2



intermediate value theorem we obtain that there exists a unique θ̂ε(β) such that Vε(0;β, θ̂ε(β)) = 0. Clearly

any optimal path giving rise to this value must converge monotonously to some steady state and as π∗(S) = 0

for all S ≤ S(β) and h(x(t)) > 0 along any path in the ε−constrained problem, this steady-state, which

we denote by Sssε (β), must satisfy Sssε (β) > S(β) for all ε > 0. Taking the limit ε → 0 it follows that

for θ = θ̂(β) := limε→0 θ̂ε(β) the value of the unconstrained problem of the innovator is zero and that this

value can be obtained both by the path x(t) = 0 ∀t and by a path with positive investment, which induces

convergence of the state S to the steady state Sss(β) = limε→∞ S
ss
ε (β) > S(β).39

Furthermore, we show that θ̂(β) is strictly decreasing with respect to β. Consider an arbitrary β ∈ (0, 1).

The value function of the problem for θ = θ̂(β) by definition is V (0;β, θ̂(β)) = 0. As shown above, this value

is generated by an optimal path for which we have q(t) > 0, ∀t > T for some large T . Using the envelope

theorem, we obtain from (9)
∂π∗(S(t))

∂β
= −q∗(S(t))α(S(t))D

r + ρ
< 0

for all t where q(S(t)) > 0 and zero otherwise. Hence, V (0; β̃, θ̂(β)) > 0 for all β̃ < β. Similar arguments as

used above show that V (0;β, θ) is a strictly decreasing function of θ if the optimal path induces q(S(t)) > 0

in a time interval with positive measure. It follows that θ̂(β̃) > θ̂(β), which establishes the strict mono-

tonicity of θ̂(β) with respect to β. Defining θ = minβ∈[0,1] θ̂(β) we immediately obtain the claim of (i) with

θ = θ̂(1).

(ii): Defining θ̄ = θ̂(0), it follows from the arguments given in part (i) that for θ = θ̄ and β = 0 the

innovator has two optimal paths giving the value V (0; 0, θ̄) = 0, one of them converging to a positive steady

state and one staying at S = 0. For any positive β only the path S(t) = 0, ∀t is optimal. This implies

directly that for any θ > θ̄ any path from S(0) = 0 which converges to a positive steady state generates a

negative value regardless of β ∈ [0, 1].

(iii): Follows directly from the strict monotonicity of θ̂(β) with respect to β and the definitions θ = θ̂(1)

and θ̄ = θ̂(0). �

39It should be noted that by the same arguments as used above, the value of any path monotonously converging from S(0) = 0
to a steady state at S(β) has to be negative. Therefore Sss(β) > S(β) must hold.
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B Details of the Numerical Method

In this section, we briefly outline the numerical method used in the analysis.

Main analysis To determine the innovator’s optimal investment path from the initial condition S(0) = 0

we first check whether for a given parameter setting there is a candidate for an active steady state. If this

is the case, we then rely on the HJB equation associated to the innovator’s dynamic optimization problem

in order to determine the optimal path leading to this candidate and the associated value of the innovator’s

objective function (9).40

To identify candidates for an active steady state we numerically solve the equation gλ(S) = gS(S) with

gλ and gS given by (12) and (13). As discussed in Section 3, this equation (apart from the non-generic

case of tangency between the two isoclines) has at least two solutions if it has any. The smallest solution is

always repelling in the state/co-state space and therefore we always consider the second smallest solution of

this equation as the location of the candidate for an active steady state.41 We denote this candidate by S̃ss.

The value of an optimal path to S̃ss is determined using the HJB equation. As the problem is time-

autonomous and has an infinite horizon, we can consider stationary investment and value functions, which

do not explicitly depend on time. Denoting by Ṽ (S) the value function associated to the optimal path

leading to S̃ss, the HJB equation is given by

rṼ (S) =


maxx≥0

[
−h(x) + ∂Ṽ (S)

∂S (x− δS)
]

S ∈ [0, S(β)),

maxx≥0
[
q∗(S) ·

(
p∗(S)− c− α(S)βD

r+ρ

)
− h(x) + ∂Ṽ (S)

∂S (x− δS)
]

S ≥ S(β).
(22)

Maximization of the right hand side of the HJB equation yields (see also (10))

x∗(S) = max
[

1
θη

∂Ṽ (S)
∂S

− 1
η
, 0
]
, (23)

and inserting this expression into (22) yields a non-linear first order differential equation in Ṽ . The fact the

we consider paths (at least locally) leading to S̃ss is incorporated by the condition

Ṽ (S̃ss) = 1
r

(
q∗(S̃ss) ·

(
p∗(S̃ss)− c− α(S̃ss)βD

r + ρ

)
− h

(
δS̃ss

))
. (24)

We numerically solve the HJB equation on the state space [0, S̄] with S̄ > S̃ss relying on a collocation

method using Chebychev polynomials. To this end we generate a set of n Chebychev nodes N in [0, S̄] (see
40See also Miranda and Fackler (2002) or Dawid et al. (2015) for more details of the application of collocation for the solution

of HJB equations.
41In all scenarios covered in this article the equation gλ(S) = gS(S) has at most two solutions.
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e.g. Judd (1998) for the definition of Chebychev nodes and Chebychev polynomials).

Our goal is to calculate a polynomial approximation of Ṽ (S) which (approximately) satisfies (22) on the

set of interpolation nodes N . The set of basis functions for the polynomial approximation is determined as

B = {Bj(S), j = 1, .., n} with

Bj(S) = Tj−1

(
−1 + 2S

S̄

)
,

where Tj(x) denotes the j-the Chebychev polynomial. As Chebychev polynomials are defined on [−1, 1], the

state variables have to be transformed accordingly.

For a given value of β the function Ṽ is then approximated by

Ṽ (S) ≈ V̂ (S;β) =
n∑
j=1

Cj(β)Bj(S), S ∈ [0, S̄], (25)

where C(β) = {Cj(β)} with j = 1, · · · , n is the set of n coefficients to be determined. To calculate these

coefficients we set up a system of non-linear equations derived from the condition that V̂ satisfies the HJB

equation (22) on the set of interpolation nodes N . This system consists of n equations with n unknowns (i.e.

the coefficients Cj(β)) and is solved by a standard numerical procedure for solving systems of non-linear

equations.

Once a solution vector C(β) ∈ Rn is obtained the accuracy of the solution is checked in two ways. First,

the absolute difference between the left hand side and right hand side of (22) for Ṽ (S) = V̂ (S;β) relative to

the value of V̂ (S) is calculated on the state space [0, S̄]. In all numerical results presented in the article this

difference value is below 2 ·10−3, which shows that V̂ (S;β) almost exactly solves the HJB equation, not only

on N but on the entire state space. Second, the value V̂ (0;β) has been verified by calculating a discrete

time approximation (for small time steps) of the optimal investment path and state dynamics derived from

V̂ and explicitly calculating the corresponding value of (9). For our numerical results also this test confirms

that the obtained value functions and optimal investments obtained from inserting V̂ (S;β) into (23) are

very close approximations of the actual optimal values.

The condition (24) is enforced by initially determining the coefficient vector C(β) for β = 0 and verifying

that with this coefficient vector S̃ss is indeed the fixed point of the state dynamics induced by the feedback

function (23) if Ṽ = V̂ , which implies by the HJB equation that (24) holds. Furthermore for β = 0 we

have V̂ (0; 0) > 0 and therefore the path leading to S̃ss is optimal from the initial condition S = 0. The

parameter β is then increased stepwise with a small step-size ε and the coefficient vector C(β − ε) is used

as the initial guess in the iterative algorithm solving (22) on N for β. This continuous adjustment of the

value function implies that there is always a positive steady state of the dynamics induced by V̂ and the
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function V̂ captures the value of the optimal paths converging to this positive steady state. As β increases

the value of V̂ (0;β) declines and the value of the threshold β̂ is determined by the condition that it is the

smallest value of β such that V̂ (0;β + ε) < 0.

Adjustments for case of negligence-based liability In order to determine the value function and the

optimal feedback function for the case of negligence-based liability discussed in Section 5, we have to slightly

adjust the numerical algorithm. The reason is that under this liability rule the value of β jumps from β = 1

to β = 0 once the safety stock S crosses the negligence standard Sneg. As such a jump in the instantaneous

objective function of the innovator implies a kink in the value function and such a kink cannot be captured

by a polynomial approximation, we have to solve the HJB equation separately on the intervals [0, Sneg]

and [Sneg, S̄]. As β = 0 holds on [Sneg, S̄] and we only consider scenarios where the negligence standard is

below the steady state without liability, i.e. Sneg < Sss(0), the value function on the interval [Sneg, S̄] does

not depend on Sneg. Actually, V̂ on this interval coincides with the value function we have calculated in

Section 4 for β = 0, i.e. V̂ (S; 0). To determine the value function Ṽ on [0, Sneg] for a given Sneg we use the

collocation method for this reduced state space to solve the HJB equation (22) for β = 1 and the boundary

condition Ṽ (Sneg) = V̂ (Sneg; 0).

C Safety regulation

In this section we consider the case of direct safety regulation. In particular, the regulator imposes a

minimum safety stock Smin which a new product must fulfill before it can be launched. A high (low)

value of Smin indicates a strict (weak) regulation. The numerical procedure for solving the model under

safety regulation is analogous to that under negligence-based liability in the sense that the HJB equation is

solved separately on the intervals S ∈ [0, Smin)] and [Smin, S̄]. Figure 10 shows the dynamics of investment

and quantity under different levels of minimum safety standard. Comparing with Figure 8 obtained under

negligence-based liability shows that the dynamic patterns are indeed very similar apart from the obvious

observation that under safety regulation the quantity has to be zero as long as S < Smin. Also with

respect to the date of AV market introduction, the speed of safety stock accumulation and total discounted

welfare an increase in Smin has qualitatively very similar effects as increasing the negligence standard Sneg.

This can be seen by comparing Figure 11 with Figure 9. In particular, the welfare maximizing minimum

safety standard is above both S(0) and Swel. Hence, safety regulation can increase welfare relative to the

benchmark of no regulation and β = 0.
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Figure 10: Impact of direct AV safety regulation on optimal dynamic investment and output patterns
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The lines of different colors show the optimal paths for different values of the maximum accident rate αmax for the
AV: αmax = 0.12 (black), αmax = 0.09 (blue), αmax = α0 = 0.074 (red), αmax = 0.06 (green).

Figure 11: Impact of direct AV safety regulation on timing of market introduction, speed of safety stock
accumulation and welfare
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Panel (a): ten(β) indicates the point in time at which the AV is launched (i.e. where the required safety stock Smin
is reached. Panel (b): accident rate of AV i) in the first generation (α(S(ten)) = α(Smin)), ii) at a given point in
time t̃ (α(S(t̃))) and iii) in the active steady state (αss). The dotted line shows the accident rate of the conventional
car (αo = 0.074). Panel (c): the total discounted welfare effect of safety regulation. All panels are drawn for β = 0
and the horizontal axis measures the difference between the minimum safety stock Smin and the safety stock upon
market introduction in the absence of liability (S(0) = 0.95).

7


	Introduction
	Model
	Optimal safety stock accumulation: active and passive steady states 
	Dynamic patterns of product safety and market evolution: The countervailing effects of liability
	Calibration for US automobile market
	Active and passive steady states of safety stock accumulation
	Optimal dynamics
	AV production quantities and prices
	Investment pattern and accumulation of safety stock

	Timing of AV market introduction, and safety level of first generation 
	Welfare

	Negligence-based liability
	Discussion
	Proofs
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Proposition 1

	Details of the Numerical Method
	Safety regulation

