
The Market Price of Risk for Delivery Periods:

Pricing Swaps and Options in Electricity Markets∗

ANNIKA KEMPER
annika.kemper@uni-bielefeld.de
Center for Mathematical Economics
Bielefeld University
PO Box 100131
33501 Bielefeld, Germany

MAREN D. SCHMECK
maren.schmeck@uni-bielefeld.de
Center for Mathematical Economics
Bielefeld University
PO Box 100131
33501 Bielefeld, Germany

ANNA KH. BALCI
akhripun@math.uni-bielefeld.de
Institute of Mathematics
Bielefeld University
PO Box 100131
33501 Bielefeld, Germany

22nd April 2020

Abstract

In electricity markets, futures contracts typically function as a swap since they deliver the
underlying over a period of time. In this paper, we introduce a market price for the delivery periods
of electricity swaps, thereby opening an arbitrage-free pricing framework for derivatives based on
these contracts. Furthermore, we use a weighted geometric averaging of an artificial geometric futures
price over the corresponding delivery period. Without any need for approximations, this averaging
results in geometric swap price dynamics. Our framework allows for including typical features as
the Samuelson effect, seasonalities, and stochastic volatility. In particular, we investigate the pricing
procedures for electricity swaps and options in line with Arismendi et al. (2016), Schneider and Tavin
(2018), and Fanelli and Schmeck (2019). A numerical study highlights the differences between these
models depending on the delivery period.
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1. Introduction

Futures contracts are the most important derivatives in electricity- and commodity markets. Due
to the non-storability of electricity, the underlying is typically delivered over a period, and the contract
is therefore referred to as a swap. In electricity markets, the delivery period has an influence on price
dynamics, and Fanelli and Schmeck (2019) have provided empirical evidence indicating that implied
volatilities of electricity options are seasonal with respect to the delivery period. In other words, the
distributional features – or the pricing measure – depend on the delivery period of the contract. In
this paper, we introduce an arbitrage-free pricing framework that takes dependencies on the delivery
into account. The core of our approach is the so-called market price of delivery risk, which reflects
expectations about variations in volatility weighted over the delivery period and arises through a
geometric average approach similar to that used by Kemna and Vorst (1990).

In fact, the delivery period is one of the features that distinguishes electricity markets from other
commodity markets such as oil, gas, or corn. An easy way to acknowledge its existence is to use
futures price dynamics with a delivery time that represents the midpoint of the delivery period. This
approach has been followed, for example, by Schmeck (2016), and is advantageous as it captures the
typically observed behavior that the futures prices do not converge against the electricity spot price if
time approaches the beginning of the delivery. A possible way to model the delivery period explicitly is
to average the spot price or an artificial futures price over the entire delivery time. Typically, arithmetic

averaging is used, which is the standard approach in electricity price modeling and works especially
well for arithmetic price dynamics (see, e.g., Benth et al. (2008), and Benth et al. (2019)). However,
if the underlying electricity futures are of the geometric type, the resulting dynamics are neither
geometric nor Markovian. In that case, the dynamics are approximated in line with Bjerksund et al.
(2010) (see also Benth et al. (2008)).
A typical feature of electricity markets is the seasonal behavior of prices. The effect is enforced through
the rise of renewable energy, which is highly dependent on weather conditions. At present, there is
a growing worldwide trend to acknowledge the need for sustainable energy production, which also
raises the expectations of a further increasing impact of seasonal effect. Among others, Arismendi
et al. (2016), Borovkova and Schmeck (2017), and Fanelli and Schmeck (2019) have addressed and
modeled seasonality in either commodity- or energy markets. Typically, a deterministic seasonal price
level is added to the price dynamics, but the dynamics can also exhibit seasonal behavior. Fanelli and
Schmeck (2019) distinguish between seasonalities in the trading day and seasonalities in the delivery

period. Arismendi et al. (2016) suggest the use of a seasonal stochastic volatility model for commodity
futures. As in the Heston model, stochastic volatility follows a square-root process, but with a seasonal
mean-reversion level. Indeed, a volatility smile can also be observed in electricity option markets (see
Figure 1) such that a stochastic volatility model seems appropriate.
Finally, a well-known feature in electricity- and commodity markets is the Samuelson effect (see
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Figure 1 The implied non-accumulated volatility surface with respect to strikes from 18 to 38 over
the last trading month in September 2016 for a European option on the Phelix DE/AU Baseload
Month futures at the European Energy Exchange (EEX) delivering in October 2016.

Samuelson (1965)), which implies that futures close to delivery are much more volatile than are those
whose expiration date lies far off. This effect can be observed in the implied volatility of electricity
options, especially far out and in the money (see also Figure 1 and Kiesel et al. (2009) ). The effect
is typically included in any electricity futures price dynamics. Schneider and Tavin (2018) include
such a term-structure effect within the framework of stochastic volatility modeling. Schmeck (2016)
investigates analytically the impact of the Samuelson effect on option pricing.

In this paper, we suggest modeling the delivery period explicitly through a geometric averaging

approach for electricity futures prices of the geometric type, in line with Kemna and Vorst (1990)
and Bjerksund et al. (2010). This approach leads directly to Markovian and geometric swap price
dynamics. Indeed, the geometric averaging of futures prices coincides with the arithmetic procedure
applied to logarithmic futures prices. In line with the literature, we base the averaging procedure on
an artificial futures contract that is a martingale under a pricing measure Q. In our framework, the
resulting swap price dynamics are not a martingale under Q due to a drift term in the dynamics that
is characterized by the variance of the weighted delivery and is used to define the market price of
delivery risk and an equivalent martingale measure Q̃ for the swap price. Q̃ can thus be used as a
pricing measure for derivatives on the swap. We characterize the market price of delivery risk for the
Samuelson effect, and for seasonalities in the trading day and in the delivery period following Schneider
and Tavin (2018), Arismendi et al. (2016), and Fanelli and Schmeck (2019), respectively.

3



For option pricing, we consider a general stochastic volatility model that is inter alia feasible for
mean-reverting square-root volatility processes in line with the models used by Arismendi et al. (2016)
and Schneider and Tavin (2018). The volatility structure is rich enough to include the categories of
seasonalities and the Samuelson effect. Both models share the feature that their commodity futures
prices are based on an affine stochastic volatility structure. Indeed, the averaging procedure of the
futures price model as well as the change of measure preserve the affine model structure of the artificial
futures price dynamics.
In this paper, we focus on the pricing of a single swap contract. As mentioned above, the pricing
measure depends on this particular contract, and it thus cannot be used for pricing derivatives on
another swap contract with a different delivery period. Nevertheless, several swap contracts are usually
also tradable, such that arbitrage possibilities must be excluded. Furthermore, overlapping delivery
periods are tradable as a quarter and the corresponding three months. We address how to tackle these
issues in Chapter 4.

The paper is organized as follows: Chapter 2 presents the geometric averaging approach and
introduces the market price of delivery based on a general stochastic volatility model. In order to
illustrate the averaging procedure, we discuss the method based on the models created by Arismendi et
al. (2016), Schneider and Tavin (2018), and Fanelli and Schmeck (2019) in Chapter 3. In Chapter 4,
we address how to exclude arbitrage opportunities that might appear when there are several, possibly
overlapping swap contracts traded on the market. Option pricing is discussed in Chapter 5. In addition,
all adjusted commodity market models are investigated numerically. Finally, Chapter 6 presents our
conclusions.

2. Averaging of Futures Contracts

We consider a swap contract delivering a flow of 1 Mwh electricity during the delivery period
(τ1, τ2]. At a trading day t ≤ τ1, the swap price is denoted by F (t, τ1, τ2) and settled such that the
contract is entered at no cost. It can be interpreted as an average price of instantaneous delivery.
Motivated by this interpretation, we consider an artificial futures contract with price F (t, τ) that
stands for instantaneous delivery at time τ ∈ (τ1, τ2]. Note that such a contract does not exist on the
market, but turns out to be useful for modeling purposes when considering delivery periods (see for
example Benth et al. (2019)).

Consider a filtered probability space (Ω,F , (Ft)t∈[0,τ ],Q), where the filtration satisfies the usual
conditions. At time t ≤ τ , the price of the futures contract follows a geometric diffusion process
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evolving as

dF (t, τ) = σ(t, τ)F (t, τ)dW F (t) , (2.1)

dσ2(t, τ) = a(t, τ, σ)dt+ c(t, τ, σ)dW σ(t) , (2.2)

with initial conditions F (0, τ) = F0 > 0 and σ2(0, τ) = σ2
0 > 0, and whereW F andW σ are correlated

standard Brownian motions under Q. Thus, W σ = ρW F +
√

1− ρ2W for a Brownian motion W
independent of W F and ρ ∈ (−1, 1). We assume that both, the futures price volatility σ(t, τ) and
the futures price F (t, τ), are Ft-adapted for t ∈ [0, τ ], and that they satisfy suitable integrability and
measurability conditions to ensure that (2.1) is a Q-martingale, and the solution given by

F (t, τ) = F (0, τ)e
∫ t
0 σ(s,τ)dWF (s)− 1

2

∫ t
0 σ

2(s,τ)ds (2.3)

exists (see Appendix A for details). As σ(t, τ) depends on both time t and delivery time τ , we allow
for volatility structures as the Samuelson effect, seasonalities in the trading day, or seasonalities
in the delivery time. In this framework, we would like to mention the models of Arismendi et al.
(2016), Schneider and Tavin (2018), as well as of Fanelli and Schmeck (2019), which are addressed in
the next chapter.

Following the Heath-Jarrow-Morton approach to price futures and swaps in electricity markets,
the swap price is usually defined as the arithmetric average of futures prices (see, e.g., Benth et al.
(2008), Bjerksund et al. (2010), and Benth et al. (2019)):

F a(t, τ1, τ2) =

∫ τ2

τ1

w(u, τ1, τ2)F (t, u)du , (2.4)

for a general weight function

w(u, τ1, τ2) :=
ŵ(u)∫ τ2

τ1
ŵ(v)dv

, for u ∈ (τ1, τ2] . (2.5)

The most popular example is given by ŵ(u) = 1, such that w(u, τ1, τ2) = 1
τ2−τ1 . This corresponds to a

one-time settlement. A continuous settlement over the time interval (τ1, τ2] is covered by ŵ(u) = e−ru,
where r ≥ 0 is the constant interest rate (see, e.g., Benth et al. (2008)). The arithmetric average of the
futures price as in (2.4) leads to tractable dynamics for the swap as long as one assumes an arithmetric
structure of the futures prices as well. This is based on the fact that arithmetic averaging is tailor-made
for absolute growth rate models. Nevertheless, if one defines the futures price as a geometric process
as in (2.1), one can show that the dynamics of the swap defined through (2.4) is given by

dF a(t, τ1, τ2) = σ(t, τ2)F a(t, τ1, τ2)dW F (t)−
∫ τ2

τ1

∂σ

∂u
(t, u)

w(τ, τ1, τ2)

w(τ, τ1, u)
F a(t, τ1, u)du dW F (t) ,
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for any τ ∈ (τ1, τ2] (see Benth et al. (2008); Chapter 6.3.1). Thus, the dynamics of the swap price is
neither a geometric process nor Markovian, which makes it unhandy for further analysis. Bjerksund et
al. (2010) suggest an approximation given by

dF a(t, τ1, τ2) = F a(t, τ1, τ2)Σ(t, τ1, τ2)dW F (t) , (2.6)

where F a(0, τ1, τ2) = F0 and an weighted average volatility

Σ(t, τ1, τ2) :=

∫ τ2

τ1

w(u, τ1, τ2)σ(t, u)du . (2.7)

Instead of averaging absolut price trends as in (2.4), we here suggest to focus on the averaging
procedure of relative price trends, i.e. growth rates or logarithmic prices. This leads to a geometric

averaging procedure in continuous time. In fact, the connection between exponential models and
geometric averaging seems natural: the geometric averaging of a geometric price process corresponds
to an arithmetic average of logarithmic prices. Note that this approach is in line with Kemna and Vorst
(1990) for pricing average asset value options on equities and also with Bjerksund et al. (2010). The
difference of Bjerksund et al. (2010) and our approach is, that Bjerksund et al. (2010) approximate
the geometric average to receive a martingale dynamics, while we will make a change of measure.
Note that the choice of pricing measures in electricity markets allows for more freedom as in other
markets, as electricity itself is not storable, and thus no-arbitrage considerations for the spot itself are
not applicable (see Benth and Schmeck (2014)).

We define the swap price as

F (t, τ1, τ2) := exp

(∫ τ2

τ1

w(u, τ1, τ2) log(F (t, u))du

)
. (2.8)

Assume that the volatility satisfies further integrability conditions (see Appendix A). It turns out,
that the resulting swap price dynamics is a geometric process with stochastic swap price volatility
Σ(t, τ1, τ2):
Lemma 1. The dynamics of the swap price defined in (2.8) under Q is given by

dF (t, τ1, τ2)

F (t, τ1, τ2)
=

1

2

(
Σ2(t, τ1, τ2)−

∫ τ2

τ1

w(u, τ1, τ2)σ2(t, u)du

)
dt+ Σ(t, τ1, τ2) dW F (t) . (2.9)

Proof. Plugging (2.3) into (2.8) and using the stochastic Fubini Theorem (see Protter (2005); Theo-
rem 65) leads to

F (t, τ1, τ2) = F (0, τ1, τ2)e
− 1

2

∫ t
0

∫ τ2
τ1

w(u,τ1,τ2)σ2(s,u)du ds+
∫ t
0 Σ(s,τ1,τ2) dWF (s)

. (2.10)

Then, (2.9) follows using Itô’s formula.
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Although the futures price F (t, τ) is a martingale under the pricing measure Q, the swap price
F (t, τ1, τ2) is not a Q-martingale anymore: the swap price under Q has a drift term, given by the
difference between the swap price’s variance and the weighted average of the futures price variance.
We thus define a market price of risk at time t ∈ [0, τ1] associated to the delivery period (τ1, τ2] as

b1(t, τ1, τ2) :=
1

2

∫ τ2
τ1
w(u, τ1, τ2)σ2(t, u)du− Σ2(t, τ1, τ2)

Σ(t, τ1, τ2)
, (2.11)

where b1(t, τ1, τ2) is measurable and Ft-adapted as σ(t, u) and Σ(t, τ1, τ2) are. It can be interpreted as
the trade-off between the weighted average variance of a stream of futures on the one hand and the
variance of the swap on the other hand. Since we have two independent Brownian motions, W F and
W , we have a two-dimensional market price of risk b(t, τ1, τ2) = (b1(t, τ1, τ2), b2)ᵀ, where we choose
b2 = 0. The market price b1(·, τ1, τ2) will enter also the dynamics of the volatility, which is driven by
the Brownian motion W σ = ρW F +

√
1− ρ2W .

Remark 1. For a random variable U with density w(u, τ1, τ2), we can write

Σ(t, τ1, τ2) = EU [σ(t, U)] ,

b1(t, τ1, τ2) =
1

2

VU [σ(t, U)]

EU [σ(t, U)]
,

where EU and VU denote the expectation and variance only with respect to the random variable U .

Note that σ(t, U) identifies the futures price volatility for a random time of delivery. Hence, the market

price of delivery risk is the variance per unit of expectation of σ(t, U). This is very similar to the

well-known coefficient of variation
√

VU [σ(t,U)]

EU [σ(t,U)]
.

We define a new pricing measure Q̃, such that F (·, τ1, τ2) is a martingale. Define the Radon-
Nikodym density through

Z(t, τ1, τ2) := exp

{
−
∫ t

0

b1(s, τ1, τ2)dW F (s)− 1

2

∫ t

0

b2
1(s, τ1, τ2)ds

}
.

Assume that

EQ [Z(τ1, τ1, τ2)] = 1 , (2.12)

which means Z(·, τ1, τ2) is indeed a martingale for the entire trading time. We will show later that
Novikov’s condition (see, e.g., Karatzas and Shreve (1991)) is fullfilled for suitable models, such that
(2.12) holds true. We then define the new measure Q̃ through the Radon Nikodym density

dQ̃
dQ

:= Z(τ1, τ1, τ2) ,
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which clearly depends on the delivery period (τ1, τ2]. Girsanov’s theorem states that

W̃ F (t) =W F (t) +

∫ t

0

b1(s, τ1, τ2)ds , (2.13)

W̃ (t) =W (t) , (2.14)

are standard Brownian motions under Q̃ (see, e.g., Shreve (2004)). The Brownian motion of the
stochastic volatility is also affected due to the correlation structure:

W̃ σ(t) = W σ(t) +

∫ t

0

ρb1(s, τ1, τ2)ds . (2.15)

A straight forward valuation leads to the following result:
Proposition 1. The swap price F (t, τ1, τ2) defined in (2.8) is a martingale under Q̃. The swap price

and volatility dynamics are given by

dF (t, τ1, τ2)

F (t, τ1, τ2)
=Σ(t, τ1, τ2) dW̃ F (t) , (2.16)

dσ2(t, τ) = (a(t, τ, σ)− ρb1(t, τ1, τ2)c(t, τ, σ)) dt+ c(t, τ, σ)dW̃ σ(t) , (2.17)

where Σ(t, τ1, τ2) is defined in (2.7).

Note that the stochastic volatility process σ2(t, τ) also depends on the delivery interval, which we
drop for notational convenience. As the swap price F (t, τ1, τ2) is a martingale under the equivalent
measure Q̃, we can use it to price options on the swap. Nevertheless, Q̃ depends on the particular
delivery period of the swap and cannot be used to price options on swaps on other delivery periods.
We address this issue in Chapter 4.1.

We would like to compare the approximated swap price F a(t, τ1, τ2) under Q following Bjerksund
et al. (2010) with the swap price F (t, τ1, τ2) under Q̃ as defined in (2.8) assuming that both have a
stochastic volatility based on (2.2). The swap price dynamics have the same form, the difference is in
the drift term of the stochastic volatility. If the volatility is deterministic as in the setting of Bjerksund
et al. (2010), the distribution of F a(t, τ1, τ2) under Q and the distribution of F (t, τ1, τ2) under Q̃ are
the same. For the swap prices both under the same measure we have the following result.
Lemma 2. For the swap prices F a(t, τ1, τ2) and F (t, τ1, τ2), both under Q, it holds that

F (t, τ1, τ2)− F a(t, τ1, τ2) =F a(t, τ1, τ2)
[
e

1
2

∫ t
0 VU [σ(s,U)]ds − 1

]
≥ 0 .

Proof. From (2.6), we know that

F a(t, τ1, τ2) = F0e
− 1

2

∫ t
0 Σ2(s,τ1,τ2)ds+

∫ t
0 Σ(s,τ1,τ2)dWF (s) .
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Using equation (2.10) and the notation from Remark 1, we find

F a(t, τ1, τ2) = F (t, τ1, τ2)e−
1
2

∫ t
0 VU [σ(s,U)]ds (2.18)

and the result follows. The expression in squared brackets is strictly positive as it is the case for the
variance.

Note that in (2.18) VU [σ(s, U)] can be interpreted as discount rate.

3. Electricity Swap Price Models

In this chapter, we transform three commodity market models from the recent literature into
electricity swap models using the geometric averaging procedure presented in Chapter 2. That is,
we examine the influence of seasonality in the mean-reversion level of the (stochastic) volatility
following Arismendi et al. (2016), the impact of the Samuelson effect in line with Schneider and Tavin
(2018), as well as the seasonal dependence on the delivery time following Fanelli and Schmeck (2019).
Moreover, we investigate the corresponding swap and market prices numerically. In Chapter 5, we
then adress option pricing for these three models.

3.1. Seasonal Dependence on the Trading Day

Arismendi et al. (2016) consider a generalized Heston model, where the mean-reversion rate of
the stochastic volatility is seasonal. That is, they suggest a futures price dynamics of the form

dF (t, τ) =
√
ν(t)F (t, τ)dW F (t) , (3.1)

dν(t) =κ (θ(t)− ν(t)) dt+ σ
√
ν(t)dW σ(t) , (3.2)

where W σ and W F are defined as before under Q. The stochastic volatility ν(t) is given by a Cox-
Ingersoll-Ross process with a time-dependent level. The Feller condition 2κθmin > σ2 needs to
be satisfied with θmin := mint∈[0,τ ] θ(t) in order to receive a strictly positive solution. If the mean-
reversion level θ(t) is in particular of exponential sinusoidal form, that is θ(t) = αeβ sin(2π(t+γ)), for
α, β > 0, γ ∈ [0, 1), then θmin = αe−β. In the framework of Chapter 2, the futures price volatility is
given by σ(t, τ) =

√
ν(t). The corresponding swap price dynamics under the Q evolve as

dF (t, τ1, τ2) =
√
ν(t)F (t, τ1, τ2)dW F (t) , (3.3)

dν(t) =κ(θ(t)− ν(t))dt+ σ
√
ν(t)dW σ(t) . (3.4)
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Figure 2 Stochastic volatility for different choices of mean-reversion speed and the corresponding
mean-reversion level (left). Swap prices based on the stochastic volatilities (right). For the choice of
parameters, see Table 2 in Chapter 3.4.

Typical trajectories of the volatility and swap prices are illustrated in Figure 2. As the futures price
volatility does not depend on the delivery time τ , the resulting volatility of the swap is given by the
futures price volatility

Σ(t, τ1, τ2) =
√
ν(t) , (3.5)

for all choices of weight functions w(·, τ1, τ2). Then, the market price of the delivery period is also
zero, that is

b1(t, τ1, τ2) = 0 , (3.6)

for all t ∈ [0, τ1] and we arrive directly at swap price dynamics of martingale form. Since the model
is not linked to the delivery time, the pricing measures for the futures and swap contract coincide, as
the dynamics do. In Figure 2, we illustate the model for different speed of mean-reversion parameters
of the volatility process. The higher the parameter κ, the closer the seasonal mean-reversion level is
reached by the stochastic volatility, and the higher the stochastic volatility oscillates. This affects the
swap price evolution as well.

3.2. Samuelson Effect

Schneider and Tavin (2018) include the so-called Samuelson effect within the framework of
a futures price model under stochastic volatility. The Samuelson effect describes the empirical
observation that the variations of futures increase the closer the expiration date is reached (see
also Samuelson (1965)). Typically this is captured with an exponential alteration in the volatility of the
form e−λ(τ−t), for λ > 0. For t→ τ , the term converges to 1 and the full volatility enters the dynamics.
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If the time to maturity increases, that is for τ − t→∞, the volatility decreases. While Schneider and
Tavin (2018) base their model on a multi-dimensional setting, we here focus on the one-dimensional
case following

dF (t, τ) =e−λ(τ−t)
√
ν(t)F (t, τ)dW F (t) , (3.7)

dν(t) =κ(θ − ν(t))dt+ σ
√
ν(t)dW σ(t) . (3.8)

This approach includes a term-structure in the volatiliy process of the form σ(t, τ) = e−λ(τ−t)
√
ν(t).

Applying the geometric averaging method as in (2.8) with weight function ŵ(u) = 1, the volatility of
the swap is

Σ(t, τ1, τ2) = d1(τ2 − τ1)e−λ(τ1−t)
√
ν(t) , (3.9)

and the new swap martingale measure Q̃ is defined via the market price of risk

b1(t, τ1, τ2) = d2(τ2 − τ1)e−λ(τ1−t)
√
ν(t) , (3.10)

where

d1(x) =
1− e−λx

λx
and d2(x) =

1

2

(
1

2
(1 + e−λx)− d1(x)

)
. (3.11)

The volatility and the market price of risk factorize into three parts: a constant d2(τ2 − τ1) depending
only on the length of the delivery period, the Samuelson effect counting the time to maturity at τ1, and
the stochastic volatility

√
ν(t). The Samuelson effect enters both swap price dynamics and market

price of risk through the term e−λ(τ1−t). Σ and b1 become small if we are far away from maturity, and
increases exponentially if we approach the maturity of the option. The swap price dynamics under Q̃
are given by

dF (t, τ1, τ2) =Σ(t, τ1, τ2)F (t, τ1, τ2)dW̃ F (t) , (3.12)

dν(t) =
(
κθ −

[
κ+ ρσd2(τ2 − τ1)e−λ(τ1−t)

]
ν(t)

)
dt+ σ

√
ν(t)dW̃ σ(t) . (3.13)

We observe that the drift of the dynamics of ν(t) is now altered by the market price of risk, which
again depends on the delivery period. The speed of mean reversion is now given by

κ+ ρσd2(τ2 − τ1)e−λ(τ1−t)

≥ κ , if ρ ≥ 0 ,

< κ , if ρ < 0 .
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Figure 3 Market prices of delivery risk (left) and swap prices under Q̃ (right) both for different
values for λ.

The mean reversion level is given by

κ

κ+ ρσd2(τ2 − τ1)e−λ(τ1−t)
θ

≤ θ , if ρ ≥ 0 ,

> θ , if ρ < 0 .

For a positive correlation between swap price- and volatility dynamcis, the speed of mean reversion
increases and the level of mean reversion decreases and vice versa for a negative correlation. If
8κ2 > σ2 max{1; 1

λ2(τ2−τ1)2
}, Novikov’s condition is satisfied such that the measure change is well

defined and F (t, τ1, τ2) is indeed a true martingale under Q̃ (see Appendix B). Using the notation of
Remark 1, we can write

Σ(t, τ1, τ2) = E[e−λ(U−τ1)]e−λ(τ1−t)
√
ν(t) ,

b1(t, τ1, τ2) =
1

2

V[e−λ(U−τ1)]

E[e−λ(U−τ1)]
e−λ(τ1−t)

√
ν(t) ,

for a random variable U ∼ U [τ1, τ2]. The impact of the Samuelson effect on the market price of risk as
well as the swap price dynamics is illustrated in Figure 3. The parameters are chosen as in Table 2 (see
Chapter 5.2.4).The exponential behavior of the market price becomes more pronounced the higher
the Samuelson parameter λ. At terminal time, it is equal to d2( 1

12
), which depends by definition on λ

(see Equation (3.11) and Table 1). Moreover, we clearly observe the Samuelson effect within the swap
price evolution. The higher the Samuelson parameter, the smaller the variance of the Samuelson effect
(see Table 1), and thus the smaller the swap’s variance (see Figure 3). However, the closer we reach
the expiration date, the higher the swap price volatility.
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Table 1 Expectation, variance and market price of delivery risk for different Samuelson parameters.

d1( 1
12

) = E
[
e−λ(U−τ1)

]
V
[
e−λ(U−τ1)

]
d2( 1

12
)

λ = 1.5 0.9400 0.0012 0.0006

λ = 3.5 0.8674 0.0053 0.0031

λ = 5.5 0.8022 0.0112 0.0070

3.3. Delivery-Dependent Seasonality

Fanelli and Schmeck (2019) show that the implied volatilities of electricity options depend on
the delivery period in a seasonal fashion. Incorporating this idea into a stochastic volatility framework,
we start with the following futures price dynamics under Q:

dF (t, τ) = s(τ)
√
ν(t)F (t, τ)dW F (t) , (3.14)

dv(t) = κ(θ − ν(t))dt+ σ
√
ν(t)dW σ(t) . (3.15)

Here, s(τ) models the seasonal dependence on the delivery in τ . Deriving the swap price model as in
Chapter 2, again with the choice of ŵ(u) = 1, the swap price volatility is given by

Σ(t, τ1, τ2) = S1(τ1, τ2)
√
ν(t) . (3.16)

Moreover, the swap’s pricing measure Q̃ is defined via the market price of risk

b1(t, τ1, τ2) = S2(τ1, τ2)
√
ν(t) , (3.17)

where

S1(τ1, τ2) =
1

τ2 − τ1

∫ τ2

τ1

s(u)du (3.18)

and

S2(τ1, τ2) =
1

2

(
1

τ2−τ1

∫ τ2
τ1
s2(u)du− S1(τ1, τ2)2

S1(τ1, τ2)

)
. (3.19)

Here, S1(τ1, τ2) describes the average seasonality in the volatility during the delivery period, and
S2(τ1, τ2) the relative trade-off between the average squared seasonaltity (resulting from the average
variance of a stream of futures) and the squared average seasonality (e.g. the variance part of the

13
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Figure 4 s(τ) and S1(τ1, τ2) for different delivery periods over one year (left). S2(τ1, τ2) and the
variance of s(τ) with respect to the delivery time (right).

average seasonality). The swap price dynamics under Q̃ then follow

dF (t, τ1, τ2) =S1(τ1, τ2)
√
ν(t)F (t, τ1, τ2)dW̃ F (t) , (3.20)

dν(t) = (κθ − [κ+ σρS2(τ1, τ2)]ν(t)) + σ
√
ν(t)dW̃ σ(t) . (3.21)

A possible choice for the seasonality function is s(τ) = a+ b cos(2π(τ + c)), where a > b > 0 and
c ∈ [0, 1) to ensure that the volatility stays positive. In this case, Novikov’s condition is satisfied if
κ2 > α2σ2, such that the measure change is well defined and F is indeed a true martingale under Q̃
(see Appendix B). In the setting of Remark 1, we have

Σ(t, τ1, τ2) = E[s(U)]
√
ν(t) ,

b1(t, τ1, τ2) =
1

2

V[s(U)]

E[s(U)]

√
ν(t) ,

for a uniformly distributed random variable U ∼ U [τ1, τ2]. Having option pricing in view, we would
like to mention that we again preserve the affine structure of the model, that is as (log(F (t, τ)), ν(t)) is
affine in the volatility, so is (log(F (t, τ1, τ2)), ν(t)) after applying the averaging procedure of Chapter
2.

In Figure 4 the deterministic part of the swaps volatility S1(t, τ1, τ2) is plotted as well as the
deterministic part of the market price of risk S2(t, τ1, τ2). The parameters can be found in Table 2.
While S1(t, τ1, τ2) is the hightest in the winter and the lowest in the summer, S2(t, τ1, τ2) has two
peaks in spring and autumn when the changes in s(u) are the biggest.
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Table 2 Parameters for the simulations.

Joint Parameters

F0 ν0 τ1 τ2 ρ r κ σ θ

30 0.6 0.75 0.83 −0.3 0.01 3 0.4 0.6
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α β γ λ a b c
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Figure 5 The swap price volatility Σ(t, τ1, τ2) for each example (left) and swap prices F (t, τ1, τ2)
for each example (right). The trajectories are based on the parameters in Table 2.

3.4. Comparison of the Models

For our simulation study, we applied the Euler-Maruyama procedure to the swap process and
the drift-implicit Milstein procedure to the volatility process. The parameters used in this chapter are
summarized in Table 2. For each model, they fulfill the Feller-condition to ensure that the stochastic
volatility stays strictly positive as well as the Novikov condition such that the measure change is well
defined (see Chapter 3.1–3.3 for details). Note that the initial swap price volatility Σ(0, τ1, τ2) might
be different for each model even if the initial value ν0 of the Cox-Ingersoll-Ross process is always the
same. For the parameters in Table 2, the initial swap price volatilities of the two seasonality models
are equal since S1( 9

12
, 10

12
) ≈ 1 (see Figure 4).

In Figure 5, we have plotted the evolution of the stochastic volatility as well as the swap prices
of all three considered models both under the measure Q̃. For better comparison, we use the same
Brownian increments for each model. Our time scale reflects 9 month starting from January with
delivery in October. In the red trajectory, we can clearly observe the Samuelson effect, which diminishes
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the volatility at the beginning and pushes in the end towards d1( 1
12

)
√
ν(τ1). Moreover, the swap price

volatility with seasonality in the delivery time is oscillating around the swap price volatility of the first
example. This is caused by the choice of parameters since S1(τ1, τ2) ≈ 1 and can be observed both in
the swap price volatility and in the swap price trajectory.

4. Further Arbitrage Considerations

So far, we have considered a market with one swap contract. Nevertheless, in electricity markets,
typically more than one swap is traded at the same time. For example, at the EEX, the next 9 months,
11 quarters and 6 years are available. In Chapter 4.1, we address the issue of arbitrage in a market
consisting of N monthly delivering swaps and then discuss a market with overlapping delivery periods
in Chapter 4.2.

4.1. Absence of Arbitrage in a Market with N Swaps

In this chapter, we consider a market with N swap contracts having subsequent monthly delivery
periods (τm, τm+1] for m = 1, . . . , N . According to the First Fundamental Theorem of Asset Pricing,
the market is arbitrage-free if there exists a measure Q̃ under which all swap contracts are martingales.
In a market with N assets, N Brownian motions are needed such that a market price of risk exists (see,
e.g., Shreve (2004)). Therefore, we add another factor for each contract and the underlying futures
price dynamics are given by

dF (t, τ) = F (t, τ)
N∑
j=1

σj(t, τ)dW F
j (t) , F (0, τ) = F0 > 0 , (4.1)

where W F
j , for j = 1, . . . , N , are independent standard Brownian motions under Q. As in Chapter 2,

we define the swap price with delivery period (τm, τm+1], for m = 1, . . . , N via geometric averaging

F (t, τm, τm+1) := exp

(∫ τm+1

τm

w(u, τm, τm+1) log(F (t, u))du

)
.

The resulting swap price dynamics for the monthly delivery period (τm, τm+1], m = 1, . . . , N are
given by

dF (t, τm, τm+1)

F (t, τm, τm+1)
=

1

2

N∑
j=1

(
Σ2
j(t, τm, τm+1)−

∫ τm+1

τm

w(u, τm, τm+1)σ2
j (t, u)du

)
dt

+
N∑
j=1

∫ τm+1

τm

w(u, τm, τm+1)σj(s, u)du dW F
j (t) .

(4.2)
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Figure 6 The cascading procedure of overlapping electricity swap contracts.

Then the standard theory for multidimensional markets (see, e.g., Shreve (2004)) leads to the market
price of risk equations and a risk-neutral probability measure.

4.2. Absence of Arbitrage in a Market with Overlapping Swaps

In electricity markets, it is possible to trade into overlapping delivery periods. For example, the
swap contract on the next quarter of the year is available as well as the three swaps on the corresponding
months. Also here, arbitrage has to be excluded: It should not matter if the electricity is bought via a
quarterly contract or the corresponding three underlying monthly contracts.

One has to find a pricing measure under which all contracts, the monthly and the quarterly ones,
are martingales. If we would price an overlapping contract using the geometric averaging procedure,
we would have that

F overl(t, τ1, τN+1) = e
∫ τN+1
τ1

w(u,τ1,τN+1) log(F (t,u))du
=

N∏
m=1

F (t, τm, τm+1)wm ,

where wm =
∫ τm+1
τm

ŵ(u)du∫ τN+1
τ1

ŵ(u)du
. The price of the quarterly swap would be the product of the monthly

contracts. This might create arbitrage opportunities: In general, the product of martingales is not a
martingale anymore. In this framework, the so-called cascading process of overlapping contracts offers
a solution. The cascading process describes the division of an overlapping contract into its building
blocks. A swap contract delivering over a quarter is transformed into its corresponding monthly swap
contracts at its maturity (see Figure 6). Analogously, the price of a yearly swap contract is converted
into the first 3 monthly contracts and the subsequent 3 quarterly contracts. Each quarterly contract will
be cascaded later. The monthly contracts thus play the role of building blocks for overlapping contracts
and are also called atomic contracts. Consequently, the quarterly and yearly swap contracts can be
seen derivatives on the monthly contracts, and we propose to price them as such. If we have found a
pricing measure under which all atomic swap prices are martingales, then F overl is also a martingale
since the sum of Q̃-martingales stays a martingale under Q̃.
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5. Electricity Options

We consider a European call option with strike price K > 0 and exercise time T < τ1 written
on an electricity swap contract delivering in (τ1, τ2]. In Chapter 2, we have determined an equivalent
measure Q̃, such that the swap price F (·, τ1, τ2) is a martingale. Hence, Q̃ can be used as pricing
measure for derivatives on the swap. In general, Q̃ depends on τ1 and τ2 since it includes a risk
premium for the delivery period as discussed in Remark 1. Hence, the pricing measure is tailor-made
for this particular contract.

5.1. An Application of the Heston-Methodology

Motivated by the market models considered in Chapter 3, we stick to a general factorizing
volatility structure Σ(t, τ1, τ2) = S(t, τ1, τ2)

√
ν(t), where

S(t, τ1, τ2) = E [s(t, U)] (5.1)

identifies averaged seasonalities and term-structure effects for a random variable U with density
w(u, τ1, τ2) (see also Remark 1). We assume that s(t, u) is positive and bounded by R, so that the
swap price model

dF (t, τ1, τ2) =S(t, τ1, τ2)
√
ν(t)F (t, τ1, τ2)dW̃ F (t) , (5.2)

dν(t) = (κθ(t)− (κ+ σρξ(t, τ1, τ2))ν(t)) dt+ σ
√
ν(t)dW̃ σ(t) . (5.3)

is a Q̃-martingale if 2κ2 > σ2R2 (see Appendix B). The market price of delivery risk is given by
b1(t, τ1, τ2) = ξ(t, τ1, τ2)

√
ν(t), where

ξ(t, τ1, τ2) =
1

2

V [s(t, U)]

E [s(t, U)]
. (5.4)

The price of the corresponding electricity call option at time t ∈ [0, T ] is given by the risk-neutral
valuation formula

C(t, τ1, τ2) = EQ̃
[
e−r(T−t) (F (T, τ1, τ2)−K)+ |Ft

]
, (5.5)

see, e.g., Shreve (2004). The dynamics of the logarithmic swap price X(t) := log(F (t, τ1, τ2)) are
given by

dX(t) = −1

2
S2(t, τ1, τ2)ν(t)dt+ S(t, τ1, τ2)

√
ν(t)dW̃ F (t) . (5.6)
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We skip the dependencies on the delivery period for notational convenience. We thus have the following
result:
Theorem 1. The electricity option price at time t ≤ T with strike price K > 0 is given by

C(t, τ1, τ2) = e−r(T−t) (ex (1−Q1(t, x, ν; log(K)))−K (1−Q2(t, x, ν; log(K)))) , (5.7)

where the probabilities of exercising the option are given by

1−Qk(t, x, ν; log(K)) =
1

2
+

1

π

∫ ∞
0

Re

(
e−iφ log(K)Q̂k(t, x, ν;φ)

iφ

)
dφ , k = 1, 2 . (5.8)

The characteristic functions Q̂k(t, x, ν;φ) are given by

Q̂k(t, x, ν;φ) = eΨ0k(t,T,φ)+νΨ1k(t,T,φ)+iφx , k = 1, 2 , (5.9)

where Ψ0k(t, T, φ) and Ψ1k(t, T, φ) solve the following system of differential equations

∂Ψ1k

∂t
=− 1

2
σ2Ψ2

1k + (βk(t, τ1, τ2)− ρσS(t, τ1, τ2)iφ) Ψ1k +

(
1

2
φ2 − αkiφ

)
S2(t, τ1, τ2) , (5.10)

∂Ψ0k

∂t
=−Ψ1kκθ(t) , (5.11)

for α1 = 1
2
, α2 = −1

2
, β1(t, τ1, τ2) = κ+σρ(ξ(t, τ1, τ2)−S(t, τ1, τ2)), β2(t, τ1, τ2) = κ+σρξ(t, τ1, τ2).

The proof follows the Heston procedure and can be found in Appendix C. There exists a unique
solution to each Riccati equation (see Appendix D) and thus also for Ψ01 and Ψ02. Then, the character-
istic functions in (5.9) are uniquely determined. The related put option price can be determined by the
Put-Call-Parity.

The value of this result depends strongly on the tractability of the Riccati equations (5.10). In
the classical Heston model, all coefficients of the Riccati equations (5.10) are constant, so that one
can find an analytical solution. For time-dependent coefficients, it is not clear that an analytical
solution or closed-form expression exists. In Arismendi et al. (2016), the mean reversion level θ(t)
of the stochastic volatility process is seasonal, but as θ(t) does not appear in the Riccati equation,
an analytical solution exists. Schneider and Tavin (2018) include the Samuelson effect such that the
futures price dynamics have time-dependent coefficients. Nevertheless, the volatility process has
constant coefficients. The Samuelson term appears in the Riccati equations and Schneider and Tavin
(2018) are able to give a solution depending on Kummer functions. In our framework, the Samuelson
effect appears in the drift of the stochastic volatility via the market price of delivery risk, making the
Riccati equations more complicated (see Chapter 5.2.2).
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5.2. The Effect of Seasonalities and Samuelson on the Swaps’ Riccati Equation

In this chapter, we state the differential equations (5.10) and (5.11) for each model, and discuss
how to solve them. Furthermore, we compare the corresponding option prices numerically. Let us
mention, that for the classical Riccati equation setting, which corresponds to the Heston model with
constant coefficients, the exact formula for the solution can be found easily. In general, the equation
has to be solved numerically. We discuss this situation in the subsequent sections.

5.2.1. Seasonal Dependence on the Trading Day

In the setting of (3.3) and (3.4), option pricing has been treated by Arismendi et al. (2016). Recall,
that Ψ0k(t, T, φ) and Ψ1k(t, T, φ) solve the following system of differential equations

dΨ1k

dt
(t, T, φ) =− 1

2
σ2Ψ2

1k(t, T, φ) + (βk − ρσiφ) Ψ1k(t, T, φ) +
1

2
φ2 − αkiφ ,

dΨ0k

dt
(t, T, φ) =− κθ(t)Ψ0k(t, T, φ) ,

for α1 = 1
2
, α2 = −1

2
, β1 = κ− σρ, and β2 = κ. Since all coefficients of the Riccati equations (the

first equation of the system) are constant, the solutions can be calculated by

Ψ1k(t, T, φ) =
1

σ2
(βk − σρφi− δk)

1− e−δk(T−t)

1− gke−δk(T−t) , k = 1, 2 ,

where

δk :=

√
(βk − σρφi)2 + 2σ2(

1

2
φ2 − αkφi) ,

gk :=
βk − σρφi− δk
βk − σρφi+ δk

.

Finally, numerical integration leads to the solution of Ψ01(t, T, φ) and Ψ02(t, T, φ) (see Chapter 5.2.4).

In Figure 7, we illustrate the option prices for different speed of mean-reversion parameters
(κ = 0.6, κ = 3, and κ = 10) over the entire time horizon based on the parameters in Table 2 and 3.
The calculations are conducted by using the analytical solution for the Riccati equations. The solutions
for Ψ0k are attained using the Runge-Kutta method. We here require a relative and absolute tolerance
of 1e− 8. As proposed by Arismendi et al. (2016), we apply a trapezoidal integration scheme to obtain
the integral values for each strike which are mandatory to determine the corresponding probabilities
1−Q1 and 1−Q2 as in (5.8) and thus the related option price for the considered strike at a specific
point in time (see (5.7)). As a result, we can observe decreasing call option prices over time. Moreover,
the lower the speed of mean-reversion, the higher is the option price except for the first trading days.
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Figure 7 Option prices with seasonality in the trading day over the whole time horizon for a fixed
strike K = 28.

The closer we reach the expiration date, the smaller is the difference between each option price for a
fixed strike price.

5.2.2. Samuelson Effect

In the setting of Chapter 3.2, the resulting dynamics under Q̃ are given by (3.12) and (3.13).
Under the measure Q̃, the Samuelson effect appears in the drift term of the stochastic volatility.

Ψ0k(t, T, φ) and Ψ1k(t, T, φ) for k = 1, 2 solve the following two systems of differential equa-
tions:

dΨ11

dt
(t, T, φ) =− 1

2
σ2Ψ2

11(t, T, φ)+(
κ+ σρ

[
d2(τ2 − τ1)− d1(τ2 − τ1)(1 + iφ)

]
e−λ(τ1−t)

)
Ψ11(t, T, φ)

+
1

2
d1(τ2 − τ1)2(φ2 − iφ)e−2λ(τ1−t) ,

dΨ01

dt
(t, T, φ) =− κθΨ11(t, T, φ) ,

and

dΨ12

dt
(t, T, φ) =− 1

2
σ2Ψ2

12(t, T, φ)

+
(
κ+ σρ

[
d2(τ2 − τ1)− iφd1(τ2 − τ1)

]
e−λ(τ1−t)

)
Ψ12(t, T, φ)

+
1

2
d1(τ2 − τ1)2(φ2 + iφ)e−2λ(τ1−t) ,

dΨ02

dt
(t, T, φ) =− κθΨ12(t, T, φ) ,

where d1(x) and d2(x) are defined in (3.11). Compared to Schneider and Tavin (2018), the Samuelson
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effect appears additionally in front of Ψ11 and Ψ12. This leads to the setting of time-dependent
coefficients in the Riccati-type equations. The explicit solution is expressed in terms of hypergeometric
expressions.

Figure 8 illustrates option prices with respect to seven strike prices based on the default parameters
introduced in Table 2 and 3. We use the Runge-Kutta method with adaptive step size to solve both
systems of differential equations. The trapezoidal integration of the integrands with respect to φ leads
to the cumulative distributions Q1 and Q2 for each strike price K. An application of Equation (5.7)
gives the corresponding option prices for each strike. In fact, we approximate the analytic expressions
for Ψ11, Ψ12, Ψ01, and Ψ02 since two coefficients in the Riccati equation include the Samuelson effect.

For models with time-dependent θ, σ, and ρ, the method by Benhamou et al. (2010) can be applied
with the help of a volatility of variance expansion using the Lewis representation. For time-dependent
coefficients of piece-wise constant structure, one can also use the model of Mikhailov and Nögel
(2004). However, in general, the solution has to be found numerically. Most of them concern the
one dimensional case, for example, standard second order finite difference methods, see Tavella and
Randall (2000). More recently, results include stochastic volatility with high-order compact finite
difference schemes such as Crank–Nicolson scheme, see Düring et al (2014).

In order to investigate the impact of the Samuelson effect, we set the parameter λ to 1.5, 3.5,
and 5.5. As a result, we observe higher option prices for smaller Samuelson parameters, which are
decreasing in increasing strike prices. The differences are especially large for at the money strikes.
With increasing time to maturity, these differences become even larger. To add, the option prices
become more affeced the closer we reach the expiration date (see Figure 8 (right)).
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Figure 8 Option prices with Samuelson effect 10 days before maturity (left) and over the entire time
horizon for a fixed strike K = 28 (right).
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5.2.3. Delivery-Dependent Seasonality

Finally, we consider the resulting option prices corresponding to Chapter 3.3. Ψ0k(t, T, φ) and
Ψ1k(t, T, φ) for k = 1, 2 solve the following two systems of differential equations:

dΨ11

dt
(t, T, φ) =− 1

2
σ2Ψ2

11(t, T, φ) +
(
κ+ σρ

[
S2(τ1, τ2)− S1(τ1, τ2)(1 + iφ)

])
Ψ11(t, T, φ)

+
1

2
S1(τ1, τ2)2(φ2 − iφ) ,

dΨ01

dt
(t, T, φ) =− κθΨ11(t, T, φ) ,

and

dΨ12

dt
(t, T, φ) =− 1

2
σ2Ψ2

12(t, T, φ) +
(
κ+ σρ

[
S2(τ1, τ2)− iφS1(τ1, τ2)

])
Ψ12(t, T, φ)

+
1

2
S1(τ1, τ2)2(φ2 + iφ) ,

dΨ02

dt
(t, T, φ) =− κθΨ12(t, T, φ) .

The differential equations can be solved analytically, while all coefficients are constant. The solutions
are given by

Ψ1k(t, T, φ) =
1

σ2
(βk(τ1, τ2)− σρφi− δk(τ1, τ2))

1− e−δk(τ1,τ2)(T−t)

1− gk(τ1, τ2)e−δk(τ1,τ2)(T−t) , (5.12)

where

β1(τ1, τ2) =κ+ σρ(S2(τ1, τ2)− S1(τ1, τ2)) ,

β2(τ1, τ2) =κ+ σρS2(τ1, τ2) ,

δk(τ1, τ2) :=

√
(βk(τ1, τ2)− σρφi)2 + 2σ2(

1

2
φ2 − αkφi) ,

gk(τ1, τ2) :=
βk(τ1, τ2)− σρφi− δk(τ1, τ2)

βk(τ1, τ2)− σρφi+ δk(τ1, τ2)
,

and

Ψ0k(t, T, φ) = −κθ
σ2

[(
βk(τ1, τ2)− σρφi− δk(τ1, τ2)

)
(T − t)

− 2 log

(
1− gk(τ1, τ2)e−δk(τ1,τ2)(T−t)

1− gk

)]
.

The delivery dependent seasonality model is able to incorporate delivery dependent effects, while
being highly tractable and fast to implement. In Figure 9, we visualize the option prices over the last
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Figure 9 Option prices with seasonality in the delivery over the last trading month for fixed strikes.

Table 3 Parameters for pricing options.

Parameters

T K Iterations φmin φmax n

0.75 27, . . . , 33 100 0.0000001 75 1.000.000

trading month based on the parameters in Table 2 and 3. For the calculations, we use the analytical
solutions for Ψ01,Ψ02,Ψ11, and Ψ12. As before, numerical integration leads to the desired option price
for each considered strike.

As a result, the option prices are decreasing with an increasing strike price. Furthermore, the
option prices are decreasing over time for all strikes.

5.2.4. Numerical Comparison of the Effects

In this chapter, we focus on concrete numerical examples based on the transformed models in
Chapter 3 and Chapter 5.2. We consider the integrands for each model as well as the resulting call
option prices. For comparative reasons, we have chosen the same parameters for all examples (see
Table 2 and 3). In order to determine both integrands for each model, we calculate the solution to the
system of ordinary differential equations as in Chapter 5.2.1–5.2.2. We used the analytical solution
of the Riccati equations with seasonality in the trading day and in the delivery time. We get a certain
integrand depending on φ for each strike price. The possible oscillation of the integrand can have a
negative influence on the numerical procedure since the standard quadrature can fail, see Rouah (2013).
We can observe that both integrands are relatively smooth for each model and converge to zero around
φ ≈ 50 (see Figure 10). For the integration, we apply the standard trapezoidal rule. To be precise, we
fix the upper boundary for the integrands with φmax = 100 due to the converting behavior and truncate
the lower boundary at φmin = 0.0000001. Plugging the integral value into (5.8) leads to the option
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Figure 10 Integrands for each model and for all strikes K = 27, . . . , 33.
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Figure 11 Option prices for each model 10 days before maturity (left) and over the last trading
month for a fixed strike K = 28 (right). The parameters are based on Table 2 and 3.

prices (5.7) (see Figure 11 (left)). To compare the resulting prices, we also conduct a simulation study
based on the parameters in Table 3 starting 20 days before the swap contract expires. The results can
be found in Figure 11 (right). In all examples, we observe decreasing option prices for increasing
strikes. An application of the Samuelson effect leads to smaller option prices than in the first example
with seasonality in the trading time. Seasonality in the delivery leads to higher option prices for out of
the money strikes than in the case of the first example. Only for far in the money strikes, the option
prices are even smaller than the ones resulting from the Samuelson effect. Having the last trading
month in view, the option prices are decreasing in time. For the fixed strike K = 28, the option prices
for the Samuelson effect the smallest. In contrast, seasonalities in the delivery affect the option prices
at most so that they show the highest option prices over the last trading month.
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6. Conclusion

We suggest the use of a pricing framework for swaps and options in electricity markets. Moreover,
we introduced an equivalent martingale measure for the swap that explicitly depends on its delivery
period and can be used to price electricity options. Geometric averaging on the delivery period is the
key element here. The market price of delivery risk for an individual contract is specified by the trade-
off between the variance of the swap on the one hand and the weighted average variance of a stream of
futures on the other hand. We considered futures price models from the recent literature and provide
the corresponding swap price models. Moreover, we investigated the effect of seasonal dependence
on the trading day, the Samuelson effect, and delivery-dependent seasonality in line with Arismendi
et al. (2016), Schneider and Tavin (2018), and Fanelli and Schmeck (2019), respectively. Whenever
the futures and thus the swap price volatility are independent of the delivery time, the market price of
delivery risk is zero. On the other hand, typically observed characteristics of the electricity market,
such as seasonalities in the delivery and term-structure effects, instead impact the market price of the
delivery risk.

Moreover, we provided an outlook of our model in the case of several atomic and overlapping
contracts. For each additional atomic contract, new uncertainty occurs, and a further Brownian motion
is thus needed within the futures price. The pricing procedure can be applied as before. Overlapping
contracts are treated as derivatives of the underlying atomic swap contracts, which is justified by the
cascading process (see Figure 6).

All examples are characterized by a volatility structure in the spirit of the Heston model. The
affine model structure of the futures is inherited by the swaps, thereby leading us to follow the Heston
methodology for option pricing. We investigated the option price for seasonal dependence on the
trading day, the Samuelson effect, and delivery-dependent seasonality. Whenever the deterministic
volatility part is independent of the trading time, the corresponding Riccati equations can be solved
analytically. For the Samuelson effect, the deterministic part of the volatility is time-dependent, and
we showed that a unique solution exists. Furthermore, we provided a numerical method to solve the
Riccati equations.

In conclusion, this paper treats each electricity swap as a proper contract on the market and
suggests a pricing measure that is tailor-made for this particular contract, which includes acknowledging
the existence of the delivery period. Our pricing framework allows for the evaluation of option prices
in line with the Heston method.
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Appendix

A. Technical Requirements

1. For the model (2.1) and (2.2), we make the following assumtions:

(a) The conditions by Yamada and Watanabe need to be satisfied (see also Karatzas and Shreve
(1991); Proposition 2.13). In particular, we assume

a(t, τ, σ) : [0, τ1]× (τ1, τ2]× R+ → R ,

c(t, τ, σ) : [0, τ1]× (τ1, τ2]× R+ → R ,

are Borel-measurable functions and σ2 = {σ2(t, τ) | 0 ≤ t ≤ τ ≤ τ2} is a stochastic
process with continuous sample paths. Further, we assume

• |a(t, τ, x)− a(t, τ, y)| ≤ K|x− y| for some positive constant K > 0 with x, y ∈ R+,

• |c(t, τ, x)− c(t, τ, y)| ≤ H(|x− y|) for x, y ∈ R+ where H : [0,∞)→ [0,∞) is an
increasing function with H(0) = 0 and

∫
(0,ε)

H−2(u)du =∞, ∀ε > 0,

which guarantees that there exists a unique strong solution for (2.2). In particular, σ2(t, τ)

is adapted to the filtration Ft.

(b) Next, we assume that F = {F (t, τ) | 0 ≤ t ≤ τ ≤ τ2} is a stochastic process with
continous sample paths. It directly follows that σ(t, τ)F (t, τ) is process Lipschitz and
thus functional Lipschitz. Then, by Protter (2005) (see Theorem 7; p. 253) Equation (2.1)
admits a unique strong solution.

(c) In order to attain that (2.1) is a Q-martingale, we assume that the Novikov condition (see,
e.g., Karatzas and Shreve (1991); Proposition 5.12) is satisfied, that is

EQ

[
e

1
2

∫ τ
0 σ2(t,τ)dt

]
<∞ . (A.1)

2. For the geometric weightening approach (2.8) we need to apply the stochastic Fubini Theorem
(see Protter (2005); Theorem 65; Chapter IV. 6). Therefore, we assume that

• (t, u, ω)→ w(u, τ1, τ2)σ(t, u) is jointly progressivly measurable,

• EQ

[∫ τ1
0

∫ τ2
τ1
w2(u, τ1, τ2)σ2(t, u)du dt

]
<∞ .
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B. An Application of Girsanov’s Theorem for the Examples

We want to check if Novikov’s condition is satisfied, that is EQ

[
e

1
2

∫ τ1
0 b21(t,τ1,τ2)dt

]
< ∞ (see,

e.g., Karatzas and Shreve (1991)).

In the case of Schneider and Tavin (2018), we can find specific upper and lower boundaries for
the deterministic part since e−λ(τ1−t) ∈ [0, 1] and d2(τ2 − τ1) ∈ [−1

2
1

λ(τ2−τ1)
, 1

2
]. Hence,

EQ

[
e

1
2

∫ τ1
0 b21(t,τ1,τ2)dt

]
= EQ

[
e

1
2

∫ τ1
0 d2(τ2−τ1)2e−2λ(τ1−t)ν(t)dt

]
≤ EQ

[
e−ũ

∫ τ1
0 ν(t)dt

]
, (B.1)

where ũ := −1
8

max{1; 1
λ2(τ2−τ1)2

}. Following Cont and Tankov (2004) (see Chapter 15.1.2) there
exists an explicit, finite expression for the last expectation if κ2 + 2σ2ũ > 0.

In the case of Fanelli and Schmeck (2019), we can again find specific upper and lower boundaries
for (3.17) since s(u) = a + b cos(2π(c + u)) ∈ [0, 2a] for a > b > 0 and thus s2(u) ≤ 2a s(u). In
particular, S2(τ1, τ2) ∈ [−a, a]. Hence,

EQ

[
e

1
2

∫ τ1
0 b21(t,τ1,τ2)dt

]
= EQ

[
e

1
2

∫ τ1
0 S2(τ1,τ2)2ν(t)dt

]
≤ EQ

[
e−ũ

∫ τ1
0 ν(t)dt

]
, (B.2)

where ũ := −1
2
a2. As before, the last expectation is limited if κ2 + 2σ2ũ > 0, i.e. κ2 > a2σ2.

In the general case of Chapter 5, we assume that s(t, u) is positive and bounded. As s(t, u) ∈
[0, R], ξ(t, τ1, τ2) ∈ [−1

2
R, 1

2
R]. Hence,

EQ

[
e

1
2

∫ τ1
0 b21(t,τ1,τ2)dt

]
= EQ

[
e

1
2

∫ τ1
0 ξ(t,τ1,τ2)2ν(t)dt

]
≤ EQ

[
e−ũ

∫ τ1
0 ν(t)dt

]
, (B.3)

where ũ := −1
4
R2. As before, if κ2 + 2σ2ũ > 0, that is if 2κ2 > R2

2σ
2, then Novikov’s condition is

satisfied.

C. Proof of Theorem 1

Proof. We can write

C(t, τ1, τ2, ) = e−r(T−t)EQ̃

[
eXt1XT≥log(K)|Ft

]
− e−r(T−t)K EQ̃

[
1XT≥log(K)|Ft

]
. (C.1)

Due to the Markovian structure, an application of the Independence Lemma (see, e.g., Shreve (2004);
cf. Lemma 2.3.4) leads to

C(t, τ1, τ2) = c1(t,X(t), ν(t))− c2(t,X(t), ν(t)) ,
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where

c1(t, x, ν) =e−r(T−t)ex (1−Q1(t, x, ν; log(K))) , (C.2)

c2(t, x, ν) =e−r(T−t)K (1−Q2(t, x, ν; log(K))) , (C.3)

and

Q1(t, x, ν; log(K)) := ˜̃Q
[
X t,x,ν(T ) ≤ log(K)

]
,

Q2(t, x, ν; log(K)) :=Q̃
[
X t,x,ν(T ) ≤ log(K)

]
,

where the probability measure ˜̃Q is defined by d
˜̃Q
dQ̃

= e−
1
2

∫ T
0 S2(u,τ1,τ2)ν(u)du+

∫ T
0 S(u,τ1,τ2)

√
ν(u)dWF (u).

For k = 1, 2, e−rtck(t,X(t), ν(t)) are martingales under Q̃. Hence, ck(t, x, ν) solves

∂ck(t, x, ν)

∂t
+ (Atck)(t, x, ν) = rck(t, x, ν), for k = 1, 2, (C.4)

subject to the terminal conditions c1(T, x, ν) = ex1x≥log(K) and c2(T, x, ν) = K1x≥log(K), by an
application of the discounted Feynman Kac Theorem (see, e.g., Shreve (2004); cf. Theorem 6.4.3 and
Ch. 6.6). For a function f depending on x and ν, the generator of (X, ν) is given by

(Atf)(x, ν) =− 1

2

∂f

∂x
S2(t, τ1, τ2)ν +

∂f

∂ν
[κθ(t)− (κ+ σρξ(t, τ1, τ2))ν]

+
1

2

∂2f

(∂x)2
S2(t, τ1, τ2)ν +

1

2

∂2f

(∂ν)2
σ2ν +

∂2f

∂x∂ν
ρσS(t, τ1, τ2)ν .

(C.5)

If we plug (C.2) and (C.3) inside the partial differential equation (PDE) (C.4), we end up with

∂Qk

∂t
+ αkS

2(t, τ1, τ2)ν
∂Qk

∂x
+ (κθ(t)− βk(t, τ1, τ2)ν)

∂Qk

∂ν

+
1

2
S2(t, τ1, τ2)ν

∂2Qk

(∂x)2
+

1

2
σ2ν

∂2Qk

(∂ν)2
+ ρσνS(t, τ1, τ2)

∂2Qk

∂x∂ν
= 0 ,

(C.6)

for α1 = 1
2
, α2 = −1

2
, β1(t, τ1, τ2) = κ + σρ(ξ(t, τ1, τ2) − S(t, τ1, τ2)), and β2(t, τ1, τ2) = κ +

σρξ(t, τ1, τ2). This PDE can be solved by a martingale depending on the solutions of the dynamics

dXk(t) = αkS
2(t, τ1, τ2)νk(t)dt+ S(t, τ1, τ2)

√
νk(t)dW̃

F (t) ,

dνk(t) = (κθ(t)− βk(t, τ1, τ2)νk(t)) dt+ σ
√
νk(t)dW̃

σ(t) .

Following Heston, the corresponding characteristic function solves (C.6) as well. Note, that the
underlying model structure is of affine type since the PDE is linear in ν. The characteristic function is
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thus of exponential affine form (see Duffie (2010)):

Q̂k(t, x, ν;φ) = EQk
[
eiφX

t,x,ν
k (T )

]
= eΨ0k(t,T,φ)+νΨ1k(t,T,φ)+iφx , k = 1, 2 , (C.7)

for φ ∈ R, where Ψ0k : [0, T ]× [0, τ1)×R→ C and Ψ1k : [0, T ]× [0, τ1)×R→ C are time-dependent
functions satisfying Ψ0k(T, T, φ) = 0 and Ψ1k(T, T, φ) = 0 at terminal time T . The last term in (C.7)
is added in order to ensure the terminal condition

Q̂k(T, x, ν;φ) = eiφx . (C.8)

For notational convenience, we drop the time and space indices such that Ψ0k := Ψ0k(t, T, φ),
Ψ1k := Ψ1k(t, T, φ), and Q̂k := Q̂k(t, x, ν;φ). Plugging (C.7) into the PDEs of (C.6) for k = 1, 2 and
rearranging terms yields

Q̂k

[
ν
[∂Ψ1k

∂t
+ αkS

2(t, τ1, τ2)iφ−Ψ1kβk(t, τ1, τ2)− 1

2
S2(t, τ1, τ2)φ2 +

1

2
σ2Ψ2

1k

+ ρσS(t, τ1, τ2)iφΨ1k

]
+
∂Ψ0k

∂t
+ Ψ1kκθ(t)

]
= 0 .

Since Q̂k > 0 for k = 1, 2 and ν > 0 by definition, we apply the separation of variables argument

(see Duffie (2010); cf. p. 150) to achieve the following differential equations

∂Ψ1k

∂t
= −1

2
σ2Ψ2

1k + (βk(t, τ1, τ2)− ρσS(t, τ1, τ2)iφ) Ψ1k +

(
1

2
φ2 − αkiφ

)
S2(t, τ1, τ2) (C.9)

of Riccati-type and

∂Ψ0k

∂t
= −Ψ1kκθ(t) , (C.10)

subject to Ψ0k(T, T, φ) = 0 and Ψ1k(T, T, φ) = 0 for k = 1, 2.

An application of the Fourier inversion technique (see Gil-Pelaez (1951)) to (C.7) leads to the
cumulative distribution functions Q1 and Q2 given by

Qk(t, x, ν; log(K)) =
1

2
− 1

π

∫ ∞
0

Re

(
e−iφ log(K)Q̂k(t, x, ν;φ)

iφ

)
dφ , k = 1, 2 . (C.11)
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D. On the Solutions of the Differential Equations

To show that there exists a unique solution for the Riccati equations Ψ1k(t, T, φ) for k = 1, 2,
transfer them to a homogenoeus second order linear differential equation using the substitution
Ψ1k(t, T, φ) =

z′k(t,T )
1
2
σ2 zk(t,T )

(see, e.g., Poljanin and Zajcev (2018)). Rewrite the resulting differential
equation as a system of first order equations in line with Walter (1996)(cf. p. 103f.). Then, Theorem
VI (see Walter (1996)) ensures that there exists a unique solution to the differential system and thus
to the second order equation since all matrix elements have continuous real and imaginary parts in
trading time t ∈ [0, τ1]. Finally resubstitution leads to a unique solution to the Riccati-type equation.
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