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Abstract. We consider a standard Brownian motion whose drift can be increased or decreased
in a possibly singular manner. The objective is to minimize an expected functional involving the
time-integral of a running cost and the proportional costs of adjusting the drift. The resulting
two-dimensional degenerate singular stochastic control problem is solved by combining techniques of
viscosity theory and free boundary problems. We provide a detailed description of the problem’s value
function and of the geometry of the state space, which is split into three regions by two monotone
curves. Our main result shows that those curves are continuously differentiable with locally Lipschitz
derivative and solve a system of nonlinear ordinary differential equations.
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1. Introduction

Consider a system whose position or level is subject to random fluctuations and can be corrected
by acting on its drift. The latter can be increased or decreased, and the actions affecting the drift’s
dynamics do not need to be performed at rates; also impulses or singularly continuous forces can be
applied. The objective of the decision maker is to minimize a total expected functional consisting of
the time-integral of a running cost and of the proportional costs of adjusting the drift.

We model this problem as a two-dimensional singular stochastic control problem (see, e.g., [20],
[24], [25], and [39] as classical contributions to the theory of singular stochastic control). The system’s
position/level X evolves as

(1.1) Xt = x+ α

∫ t

0
Ys ds+ ηWt, x ∈ R,

for some positive constants α, η and for a given standard Brownian motion W , and the drift Y is
such that

(1.2) Yt = y + ξ+
t − ξ

−
t , y ∈ R.

Here, ξ+
t (respectively, ξ−t ) are the cumulative increase (respectively, decrease) of the drift up to time

t ≥ 0 and, as such, ξ+ and ξ− are nondecreasing processes, and ξ := ξ+ − ξ− has finite variation.
The process X might be thought of as a random demand/level of sales whose instantaneous trend
Y can be affected via production, according to supply and demand rules, or through an inventory
management policy (see, e.g., the review [38]). Alternatively, X could be the position of a satellite
which is subject to random disturbances and can be adjusted by properly acting on its velocity. The
decision maker aims at picking a control rule ξ that minimizes an expected cost functional. This
consists of a term measuring the total cost of acting on the system, which is proportional to the
total variation of ξ, and of a term involving a running convex cost function f of the current values
(Xt, Yt). For example, if X is a satellite position and Y its velocity, the decision maker might want
to keep the satellite as close as possible to a given target level, say 0, while minimizing the system’s
kinetic energy; in such a case a possible choice of f might therefore be f(x, y) = x2 + y2.
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Our problem might be seen as a generalization of the bounded-velocity control of a scalar Brownian
motion introduced by V.E. Beneš in 1974 [2], which has stimulated a subsequent large literature
allowing for different specifications of the performance criterion and incorporating also other features
like discretionary stopping and partial observation (see [1], [3], [21], [22], [23], [28], among many
others). However, while in the previous papers the decision maker tracks the position of the Brownian
system by choosing the value of its drift within a bounded set (hence the term bounded-velocity
control), in our problem the Brownian motion is only indirectly affected by the controller’s actions
that, in fact, can unlimitedly increase and decrease the Brownian’s drift at proportional costs. As a
result, in our case the optimal control rule is expected to be of singular type (see Section 6.1 below),
rather than of so-called bang-bang type (cf. [2], [21], [22], [23], among others).

In [37] the optimal correction problem of a damped random oscillator is studied. Differently to us,
in that paper the velocity is subject to random disturbances and it is linearly controlled via a process
of bounded variation, while the oscillator’s position is not affected by noise. The authors formulate
the problem as a (cheap) degenerate two-dimensional singular stochastic control problem and a
thorough study of the related dynamic programming equation is performed via analytic methods. In
[11], it is provided a numerical analysis of the non-cheap linear version of the control problem of [37].

The two papers that are perhaps closest to ours are [26] and [18]. In [26] a singular stochastic
control problem with monotone controls and with finite-fuel constraint is considered. The problem is
motivated by the issue of irreversible installation of solar panels, where the price of solar electricity is
mean-reverting, with drift affected by the cumulative amount of installed solar panels. The authors
solve the problem via a guess-and-verify approach and characterize the free boundary as the unique
solution to a first-order ordinary differential equation (ODE) complemented by a boundary condition
directly implied by the finite-fuel constraint. In [18], it is studied a two-dimensional singular stochas-
tic control problem with controls of bounded-variation and interconnected dynamics. The problem’s
characteristic is that the mean-reversion level of the diffusive component of the state process is an
affine function of the purely controlled second component.

As in [18], the full degeneracy of our setting where the drift component is purely controlled, allows
us to provide a detailed study of the value function and of the geometry of the problem’s state space.
In particular, we argue as in [18], and following a direct approach employing techniques from viscosity
theory and free-boundary problems we show that: (i) the value function V is differentiable with first
derivatives that are (locally) Lipschitz, and its y-derivative identifies with the value of an optimal
stopping game (see also [9]); (ii) the state space is split into three connected regions (continuation and
action regions) by two monotone curves (free boundaries); (iii) the expression of the value function
in each of those regions is provided; (iii) the second order derivative Vyx is continuous in the whole
space (second-order smooth-fit); (iv) the free boundaries solve a system of integral equations.

Furthermore, because the uncontrolled process is a Brownian motion (rather than a more complex
Ornstein-Uhlenbeck process as in [18]) here we are able to push the analysis of [18] much further (see
Sections 5 and 6 below). As a matter of fact, we can show that the limit of the third derivative Vyxx
at the free boundaries along any sequence of points belonging to the (interior of the) continuation
region exists and is nonzero. This allows us to suitably apply the implicit function theorem and to
show that the free boundaries are locally Lipschitz functions of the y coordinate. Then, by exploiting
such a property and differentiating the integral equations solved by the free boundaries, we can prove
that the latter satisfy a system of (explicitly computable) first-order ODEs. The regularity of the
forcing term appearing in the ODEs finally implies that the free boundaries are actually continuously
differentiable with locally Lipschitz derivative (see Theorem 6.3). To the best of our knowledge, in the
context of a fully degenerate two-dimensional singular stochastic control problem with interconnected
dynamics, a similar result appears here for the first time.

Unfortunately, providing boundary conditions complementing the ODEs still remains an open
problem. Indeed, it seems hard to identify a relevant value of y for which the values of the free
boundaries can be determined, as well as some kind of asymptotic growth that might restrict the
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functional class where to look for uniqueness of the ODEs’ system. However, in Section 6.1 we
propose a conjecture about the derivation of a Cauchy problem involving the first derivatives of
the free boundaries with respect to the parameter α (cf. (1.1)), rather than y. A discussion on the
structure of the optimal control is also presented in Section 6.1.

The rest of the paper is organized as follows. Problem formulation and preliminary results are
provided in Section 2, while preliminary properties of the free boundaries in Section 3. Section 4
contains the structure of the value function and the second-order smooth-fit property, and most of the
results of this section follow from them in [18]. Further important properties of the free boundaries
- as their (locally) Lipschitz continuity - are proved in Section 5, while the system of ODEs for the
free boundaries is finally obtained in Section 6.

1.1. Notation. In the rest of this paper, we adopt the following notation and functional spaces. We
will use | · | for the Euclidean norm on any finite-dimensional space, without indicating the dimension
each time for simplicity of exposition.

Given a smooth function h : R → R, we shall write h′, h′′, etc. to denote its derivatives. If the
function h admits k continuous derivatives, k ≥ 1, we shall write h ∈ Ck(R;R), while h ∈ C(R;R) if
such a function is only continuous.

For a smooth function h : R2 → R, we denote by hx, hy, hxx, hyy, etc. its partial derivatives. Given

k, j ∈ N, we let Ck,j(R2;R) be the class of functions h : R2 → R which are k-times continuously
differentiable with respect to the first variable and j-times continuously differentiable with respect
to the second variable. If k = j, we shall simply write Ck(R2;R). Moreover, for a domain O ⊆ Rd,
d ∈ {1, 2}, we shall work with the space Ck,Lip

loc (O;R), k ≥ 1, which consists of all the functions
h : O → R that are k times continuously differentiable, with locally-Lipschitz kth-derivative(s).

Also, for p ≥ 1 we shall denote by Lp(O;R) (resp. Lploc(O;R)) the space of real-valued functions
h : O → R such that |h|p is integrable with respect to the Lebesgue measure on O (resp. locally

integrable on O). Finally, for k ≥ 1, we shall make use of the space W k,p(O;R) (resp. W k,p
loc (O;R)),

which is the space of all the functions h : O → R that admit kth-order weak derivative(s) in Lp(O;R)
(resp. Lploc(O;R))).

2. Problem Formulation and Preliminary Results

Let (Ω,F ,F := (Ft)t≥0,P) be a complete filtered probability space rich enough to accommodate
an F-Brownian motion W := (Wt)t≥0. We assume that the filtration F satisfies the usual conditions.

We introduce the (nonempty) set

A := {ξ : Ω× R+ → R : (ξt)t≥0 is F-adapted and such that t 7→ ξt is a.s.

càdlàg and (locally) of finite variation},(2.1)

and for any ξ ∈ A we denote by ξ+ and ξ− the two nondecreasing F-adapted càdlàg processes
providing the minimal decomposition of ξ; that is, such that ξ = ξ+ − ξ− and the (random) Borel-
measures induced on [0,∞) by ξ+ and ξ− have disjoint supports. In the following, for any ξ ∈ A, we
set ξ±

0− = 0 a.s. and we denote by |ξ|t := ξ+
t + ξ−t , t ≥ 0, its total variation.

For ξ ∈ A, (x, y) ∈ R2, and α > 0, we then consider the purely controlled dynamics

(2.2) Y y,ξ
t = y + ξ+

t − ξ
−
t , t ≥ 0, Y y,ξ

0− = y,

as well as the diffusive

(2.3)

{
dXx,y,ξ

t = αY y,ξ
t dt+ ηdWt, t > 0,

Xx,y,ξ
0 = x.

The unique strong solution to (2.3) is given by

(2.4) Xx,y,ξ
t = x+ α

∫ t

0
Y y,ξ
s ds+ ηWt, ∀ξ ∈ A, t ≥ 0.
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The parameter α measures the strength of the interaction between the processes X and Y . Clearly,
for α = 0 the two dynamics are decoupled and X is a Brownian motion with volatility η > 0.

Remark 2.1. It is worth noticing that the restriction α > 0 is not necessary for the subsequent
analysis; in fact, all the results of this paper (up to obvious modifications) can be still deduced with
the same techniques also in the case α < 0. We have decided to consider only the case α > 0 just in
order to simplify the exposition.

Controlling the dynamics (X,Y ) gives rise to an instantaneous cost that is proportional – with
marginal constant cost K > 0 – to the total variation of the exerted control. Moreover, the controller
faces also a running cost depending on the current levels (Xt, Yt). The aim is therefore to choose a
control ξ ∈ A such that, for any (x, y) ∈ R2, and for a given ρ > 0, the cost functional

(2.5) J (x, y; ξ) := E

[ ∫ ∞
0

e−ρtf(Xx,y,ξ
t , Y y,ξ

t )dt+

∫ ∞
0

e−ρtK d|ξ|t
]

is minimized; that is, to solve

V (x, y) := inf
ξ∈A
J (x, y; ξ), (x, y) ∈ R2.(2.6)

In (2.5) and in the following, the integrals with respect to d|ξ| and dξ± are intended in the
Lebesgue-Stieltjes’ sense; in particular, for ζ ∈ {|ξ|, ξ+, ξ−}, we set

∫ s
0 ( · )dζt :=

∫
[0,s]( · )dζt in order

to take into account a possible mass at time zero of the Borel (random) measure dζ. The function
f : R2 → R+ satisfies the following standing assumption.

Assumption 2.2. There exists constants p > 1, and C0, C1, C2 > 0 such that the following hold
true:

(i) 0 ≤ f(z) ≤ C0

(
1 + |z|

)p
, for every z = (x, y) ∈ R2;

(ii) for every z = (x, y), z′ = (x′, y′) ∈ R2,

|f(z)− f(z′)| ≤ C1

(
1 + f(z) + f(z′)

)1− 1
p |z − z′|;

(iii) for every z = (x, y), z′ = (x′, y′) ∈ R2 and λ ∈ (0, 1),

0 ≤ λf(z) + (1− λ)f(z′)− f(λz + (1− λ)z′) ≤ C2λ(1− λ)(1 + f(z) + f(z′))

(
1− 2

p

)+

|z − z′|2;

(iv) x 7→ fy(x, y) is nondecreasing for any y ∈ R.

Remark 2.3. (i) By Assumption 2.2-(iii), f is convex and locally semiconcave; then, by [7,
Cor. 3.3.8],

f ∈ C1,Lip
loc (R2;R) = W 2,∞

loc (R2;R).

(ii) A function f satisfying Assumption 2.2 is, for example,

f(x, y) = |x− x̂|p + |y − ŷ|p,

with p ≥ 2 ad for some x̂, ŷ ∈ R.

We now provide some preliminary properties of the value function, whose classical proof exploits
the linear structure of the state equations.

Proposition 2.4. Let Assumption 2.2 hold and let p > 1 be the constant appearing in such assump-

tion. There exist constants Ĉ0, Ĉ1, Ĉ2 > 0 such that the following hold:

(i) 0 ≤ V (z) ≤ Ĉ0

(
1 + |z|p

)
, for every z = (x, y) ∈ R2;

(ii) for every z = (x, y), z′ = (x′, y′) ∈ R2,

|V (z)− V (z′)| ≤ Ĉ1

(
1 + |z|+ |z′|

)p−1|z − z′|;
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(iii) for every z = (x, y), z′ = (x′, y′) ∈ R2 and λ ∈ (0, 1),

0 ≤ λV (z) + (1− λ)V (z′)− V (λz + (1− λ)z′) ≤ Ĉ2λ(1− λ)(1 + |z|+ |z′|)(p−2)+ |z − z′|2.

In particular, by (iii), V is convex and locally semiconcave, hence, by Corollary 3.3.8 in [7],

V ∈ C1,Lip
loc (R2;R) = W 2,∞

loc (R2;R).

Proof. Due to (2.2) and (2.3), the properties of f required in (ii) and (iii) of Assumption 2.2 are
straightly inherited by V (see, e.g., the proof of Theorem 1 of [10], that can easily adapted to our
infinite time-horizon setting, or that of Theorem 2.1 in [8]). �

3. The Dynkin Game and Preliminary Properties of the Free Boundaries

In this section we show that Vy identifies with the value function of a suitable Dynkin game (a
zero-sum game of optimal stopping), and we derive preliminary properties of the two curves (free
boundaries) that delineate the region of the space where the |Vy| < K. In order to simplify the
notation, in the following we write Xx,y, instead of Xx,y,0, to identify the solution to (2.3) for ξ ≡ 0.
Most of the results of this section are close to those in Section 3 of [18], and their proof will be
therefore omitted for the sake of brevity.

Theorem 3.1. Let (x, y) ∈ R2. Denote by T the set of all F-stopping times, and for (σ, τ) ∈ T × T
consider the stopping functional

Ψ(σ, τ ;x, y) := E

[ ∫ τ∧σ

0
e−ρt

(
fy(X

x,y
t , y) + αVx(Xx,y

t , y)
)

dt

− e−ρτK1{τ<σ} + e−ρσK1{τ>σ}

]
,(3.1)

where Vx is the partial derivative of V with respect to x (which exists continuous by Proposition 2.4).
One has that the game has a value, i.e.

inf
σ∈T

sup
τ∈T

Ψ(σ, τ ;x, y) = sup
τ∈T

inf
σ∈T

Ψ(σ, τ ;x, y),

and such a value is given by

(3.2) Vy(x, y) = inf
σ∈T

sup
τ∈T

Ψ(σ, τ ;x, y) = sup
τ∈T

inf
σ∈T

Ψ(σ, τ ;x, y).

Moreover, the couple of F-stopping times (τ?(x, y), σ?(x, y)) := (τ?, σ?) such that

(3.3) σ? := inf
{
t ≥ 0 : Vy(X

x,y
t , y) ≥ K

}
, τ? := inf

{
t ≥ 0 : Vy(X

x,y
t , y) ≤ −K

}
(with the usual convention inf ∅ = +∞) form a saddle-point; that is,

∀τ ∈ T Ψ(σ?, τ ;x, y) ≤ Vy(x, y) = Ψ(σ?, τ?;x, y) ≤ Ψ(σ, τ?;x, y) ∀σ ∈ T .

The proof of Theorem 3.1 can be obtained by arguing as in the proof of Theorem 3.1 of [18]
(see Appendix A therein). In particular, it follows from Theorems 3.11 and 3.13 in [9], through
a suitable (and not immediate) approximation procedure needed to accommodate our degenerate
setting. Details are omitted.

From (3.2) it readily follows that −K ≤ Vy(x, y) ≤ K for any (x, y) ∈ R2. Hence, defining

(3.4)


I :=

{
(x, y) ∈ R2 : Vy(x, y) = −K

}
,

C :=
{

(x, y) ∈ R2 : −K < Vy(x, y) < K
}
,

D :=
{

(x, y) ∈ R2 : Vy(x, y) = K
}
,

we have that those regions provide a partition of R2.
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By continuity of Vy (cf. Proposition 2.4), C is an open set, while I and D are closed sets. Moreover,
convexity of V provides the representation

C = {(x, y) ∈ R2 : b1(x) < y < b2(x)},

I = {(x, y) ∈ R2 : y ≤ b1(x)}, D = {(x, y) ∈ R2 : y ≥ b2(x)},
where the functions b1 : R→ R and b2 : R→ R are defined as

(3.5) b1(x) := inf{y ∈ R | Vy(x, y) > −K} = sup{y ∈ R | Vy(x, y) = −K}, x ∈ R,

(3.6) b2(x) := sup{y ∈ R | Vy(x, y) < K} = inf{y ∈ R | Vy(x, y) = K}, x ∈ R,
(with the usual conventions inf ∅ =∞, inf R = −∞, sup ∅ = −∞, supR =∞).

Equation (3.2), together with the fact that x 7→ Vx(x, y) is nondecreasing for any y ∈ R by
convexity of V (cf. Proposition 2.4) and x 7→ fy(x, y) is nondecreasing by Assumption 2.2-(iv), easily
imply the following result.

Lemma 3.2. Vy(·, y) is nondecreasing for all y ∈ R.

We now move on by obtaining preliminary properties of b1 and b2. Its proof can be obtained by
exploiting the continuity and the monotonicity of Vy, and easily adjusting the arguments of the proof
of Proposition 3.3 of [18] to the present setting in which Vy(·, y) is nondecreasing.

Proposition 3.3. The following hold:

(i) b1 : R→ R ∪ {−∞}, b2 : R→ R ∪ {∞};
(ii) b1 and b2 are nonincreasing;

(iii) b1(x) < b2(x) for all x ∈ R;
(iv) b1 is left-continuous and b2 is right-continuous.

Let us now define

(3.7) b̄1 := sup
x∈R

b1(x), b1 := inf
x∈R

b1(x), b̄2 := sup
x∈R

b2(x), b2 := inf
x∈R

b2(x),

together with the pseudo-inverses of b1 and b2 by

(3.8) g1(y) := sup{x ∈ R : b1(x) ≥ y}, g2(y) := inf{x ∈ R : b2(x) ≤ y}
(again, with the usual conventions inf ∅ =∞, inf R = −∞, sup ∅ = −∞, supR =∞).

Also the next proposition can be proved by easily adapting to our setting the proof of Proposition
3.4 in [18].

Proposition 3.4. The following holds:

(i) g1(y) = inf{x ∈ R : Vy(x, y) > −K}, g2(y) = sup{x ∈ R : Vy(x, y) < K};
(ii) the functions g1, g2 are nonincreasing and g1(y) < g2(y) for any y ∈ R;

(iii) If b̄2 <∞, then g2(y) = −∞ for all y ≥ b̄2 and if b1 > −∞, then g1(r) =∞ for all y ≤ b1.

4. The Structure of the Value Function and the Second-Order Smooth Fit

In this section, we exploit the results of the previous section in order to determine the structure
of the value function V , and to show that Vyx is continuous on the whole state space (second-order
smooth-fit property).

For any given and fixed y ∈ R, denote by Ly the infinitesimal generator associated to the uncon-
trolled process Xx,y. Acting on g ∈ C2(R;R) it yields(

Lyg
)
(x) :=

η2

2
g′′(x) + αyg′(x), x ∈ R.

Any solution β(·, y) to the second-order ordinary differential equation (ODE)(
Lyβ(·, y)

)
(x)− ρβ(x, y) = 0, x ∈ R,
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can be written as

β(x, y) = A(y)ψ(x, αy) +B(y)ϕ(x, αy), x ∈ R,
where the strictly positive functions ψ and ϕ are given, for any z ∈ R, by

(4.1) ψ(x, z) := er1(z)x ϕ(x, z) := er2(z)x,

with

(4.2) r1(z) :=
−z +

√
z2 + 2ρη2

η2
> 0,

(4.3) r2(z) :=
−z −

√
z2 + 2ρη2

η2
< 0.

Notice that ψ(·, z) is strictly increasing while ϕ(·, z) is strictly decreasing for any z ∈ R.
By the dynamic programming principle, we expect that V identifies with a suitable solution to

the following variational inequality

(4.4) max

{
− vy(x, r)−K, vy(x, r)−K, [(ρ− Ly)v(·, y)](x)− f(x, y)

}
= 0, (x, y) ∈ R2.

We now show that V is a viscosity solution to (4.4). Later, this will enable us to determine the
structure of V (see Theorem 4.5 below) and then to upgrade its regularity (cf. Theorem 4.7) in order
to derive necessary optimality conditions for the boundaries splitting the state space (cf. Theorem
6.1).

Definition 4.1.
(i) A function v ∈ C0(R2;R) is called a viscosity subsolution to (4.4) if, for every (x, y) ∈ R2

and every β ∈ C2,1(R2;R) such that v − β attains a local maximum at (x, y), it holds

max

{
− βy(x, y)−K, βy(x, y)−K, ρβ(x, y)− [Lyβ(·, y)](x)− f(x, y)

}
≤ 0.

(ii) A function v ∈ C0(R2;R) is called a viscosity supersolution to (4.4) if, for every (x, y) ∈ R2

and every β ∈ C2,1(R2;R) such that v − β attains a local minimum at (x, y), it holds

max

{
− βy(x, y)−K, βy(x, y)−K, ρβ(x, y)− [Lyβ(·, y)](x)− f(x, y)

}
≥ 0.

(iii) A function v ∈ C0(R2;R) is called a viscosity solution to (4.4) if it is both a viscosity subso-
lution and supersolution.

Following the arguments developed in Theorem 5.1 in Section VIII.5 of [19], one can show the
following result (see also Proposition 4.2 in [18])

Proposition 4.2. The value function V is a viscosity solution to (4.4).

Remark 4.3. Recall that by Proposition 2.4-(iii) our value function V lies in the class W 2,∞
loc (R2;R).

Hence, by Lemma 5.4 in Chapter 4 of [40] it is also a strong solution to (4.4) (in the sense, e.g.,
of [5]; see the same reference also for relations between these notions of solutions); that is, it solves
(4.4) in the pointwise sense almost everywhere.

We have decided to employ the concept of viscosity solution since our analysis will later make use
of the variational inequality (4.4) on sets of null Lebesgue measure (regular lines) (see Proposition
4.4 and Proposition 4.7 below). Because the viscosity property holds for all (and not merely for a.e.)
points of the state space R2, the concept of viscosity solution is still able to provide information on
V on regular lines.
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For later use, notice that the function

(4.5) V̂ (x, y) := J (x, y, 0) = E

[ ∫ ∞
0

e−ρtf(Xx,y
t , y) dt

]
, (x, y) ∈ R2,

is finite by Assumption 2.2-(i) and standard estimates, and continuously differentiable with respect
to y and x, given the assumed regularity of fx and fy in Assumption 2.2-(iii). Moreover, for any
given and fixed y ∈ R, we introduce the scale function density of the process Xx,y

(4.6) Sx(x, z) := exp

{
−2zx

η2

}
, x ∈ R,

the density of the speed measure

(4.7) mx(x, z) :=
2

η2Sx(x, z)
, x ∈ R,

as well as the positive constant (normalized) Wronskian between ψ and ϕ

(4.8) W :=
ψx(x, z)ϕ(x, z)− ϕx(x, z)ψ(x, z)

Sx(x, z)
, (x, z) ∈ R2.

Then, letting

(4.9) G(x, z, u) := W−1 ·

{
ψ(x, u)ϕ(z, u), x ≤ z,
ϕ(x, u)ψ(z, u), x ≥ z,

be the Green function, we have that V̂ admits the representation (cf., e.g., Ch. 2 of [4])

(4.10) V̂ (x, y) =

∫ +∞

−∞
f(z, y)G(x, z, αy)mx(z, αy)dz, (x, y) ∈ R2;

that is, using (4.1) and (4.7),

(4.11) V̂ (x, y) =
2

η2W

[
er1(αy)x

∫ ∞
x

e−r1(αy)zf(z, y)dz + er2(αy)x

∫ x

−∞
e−r2(αy)zf(z, y)dz

]
.

By direct calculations, it thus follows from (4.11) that V̂ identifies with a classical particular solution
to the inhomogeneous linear ODE

(4.12) [(Ly − ρ)β(·, y)](x) + f(x, y) = 0, x ∈ R.

Recall now the regions C, I and D from (3.4), and that Vy = −K on I, while Vy = K on D. The
next proposition provides the structure of V inside C. Its proof can be obtained by arguing exactly
as in the proof of Proposition 4.4 of [18] (see also Remarks 4.3 and 4.5 therein), and it is therefore
omitted.

Proposition 4.4. Recall (3.7) and let yo ∈ (b1, b̄2).

(i) The function V (·, yo) is a viscosity solution to

(4.13) ρβ(x, yo)− [Lyoβ(·, yo)](x)− f(x, yo) = 0, x ∈ (g1(yo), g2(yo)).

(ii) V (·, yo) ∈ C3,Lip
loc ((g1(yo), g2(yo));R).

(iii) There exist constants A(yo) and B(yo) such that for all x ∈ (g1(yo), g2(yo))

V (x, yo) = A(yo)ψ(x, αyo) +B(yo)ϕ(x, αyo) + V̂ (x, yo),

where the functions ψ and ϕ have been defined in (4.1) and V̂ is as in (4.5).

We can now determine the structure of the value function V . The proof of the next proposition
is completely analogous to that of Theorem 4.6 in [18]; however, we provide it here since it will be
useful in the proof of a subsequent result (cf. Proposition 5.8).
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Proposition 4.5. Define the sets

(4.14) O1 := {x ∈ R : b1(x) > −∞} O2 := {x ∈ R : b2(x) <∞}.

There exist functions

A,B ∈W 2,∞
loc ((b1, b̄2);R) = C1,Lip

loc ((b1, b̄2);R), z1,2 : O1,2 → R

such that the value function defined in (2.6) can be written as

(4.15) V (x, y) =


A(y)ψ(x, αy) +B(y)ϕ(x, αy) + V̂ (x, y) on C̄,
z1(x)−Ky on I,
z2(x) +Ky on D,

where C̄ denotes the closure of C,

(4.16) z1(x) := V (x, b1(x)) +Kb1(x), x ∈ O1

and

(4.17) z2(x) := V (x, b2(x))−Kb2(x), x ∈ O2.

Proof. We start by deriving the structure of V within C. Using Lemma 4.4, we already know the
existence of functions A,B : (b1, b̄2)→ R such that

(4.18) V (x, y) = A(y)ψ(x, αy) +B(y)ϕ(x, αy) + V̂ (x, y), (x, y) ∈ C.

Take now yo ∈ (b1, b̄2). Since g1(y) < g2(y) for any y ∈ R (cf. Proposition 3.4-(ii)), we can find x
and x̃, x 6= x̃, such that (x, y), (x̃, y) ∈ C for any given y ∈ (yo− ε, yo + ε), for a suitably small ε > 0.
Now, by evaluating (4.18) at the points (x, y) and (x̃, y), we obtain a linear algebraic system that we
can solve with respect to A(y) and B(y) so to obtain

(4.19) A(y) =
(V (x, y)− V̂ (x, y))ϕ(x̃, αy)− (V (x̃, y)− V̂ (x̃, y)ϕ(x, αy)

ψ(x, αy)ϕ(x̃, αy)− ψ(x̃, αy)ϕ(x, αy)
,

(4.20) B(y) =
(V (x̃, y)− V̂ (x̃, y)ψ(x, αy)− (V (x, y)− V̂ (x, y))ψ(x̃, αy)

ψ(x, αy)ϕ(x̃, αy)− ψ(x̃, αy)ϕ(x, αy)
.

The denominators of the last two expressions do not vanish due to the strict monotonicity of ψ and

ϕ, and to the fact that x 6= x̃. Since yo was arbitrary and V , V̂ , Vy, and V̂y are continuous with

respect to y, we therefore obtain that A and B belong to W 2,∞
loc ((b1, b̄2);R) = C1,Lip

loc ((b1, b̄2);R). The

structure of V in the closure of C, denoted by C, is then obtained by Proposition 4.4 and by recalling

that V is continuous on R2 and that A, B, and V̂ are also continuous.
Given the definition of z1 and z2, the structure of V inside the regions I and D follow by (3.4)

and the continuity of V . �

Remark 4.6. Actually, by (4.19) and (4.20) one has that A and B belong to W 2,∞ up to b1 (resp.
b̄2) if b1 (resp. b̄2) is finite (cf. also Remark 4.7 in [18]).

Notice that

Vyx(x, y) = 0 ∀(x, y) ∈ R2 \ C.

The next result shows that one actually has continuity of Vyx on the whole R2. Its proof can be
obtained by following that of Theorem 5.1 in [18] (see also Proposition 5.3 in [17]), upon recalling
that in our setting Vy(·, y) is nondecreasing (cf. Lemma 3.2).



10 FEDERICO, FERRARI, AND SCHUHMANN

Proposition 4.7. One has that

(4.21) lim
(x,y)→ (xo,yo)

(x,y)∈C

Vyx(x, y) = 0 ∀(xo, yo) ∈ ∂C.

Hence, Vyx ∈ C(R2;R).

Lemma 4.8. It holds Vyxx ∈ L∞loc(R× (b1, b̄2);R).

Proof. Notice that by (4.1) one has ψxx(x, αy) = r2
1(αy)ψ(x, αy), ϕxx(x, αy) = r2

2(αy)ϕ(x, αy),

and ψzxx(x, αy) = xr′1(αy)r2
1(αy)ψ(x, αy), ϕzxx(x, αy) = xr′2(αy)r2

2(αy)ϕ(x, αy). Moreover, V̂yxx ∈
L∞loc(R2) by direct calculations on (4.11), and Ay, By ∈W 1,∞

loc ((b1, b̄2);R) by Proposition 4.5. Hence,
Vyxx ∈ L∞loc(R× (b1, b̄2);R) by (4.15). �

5. Further Properties of the Free Boundaries

In this section we move on by proving further properties of the free boundaries under additional
mild requirements on f .

Assumption 5.1.
(i) limx→±∞ fx(x, y) = ±∞.
(ii) fyx exists continuous.
(iii) One of the following holds true:

(a) x 7→ fy(x, y) is strictly increasing for any y ∈ R;
(b) fyx ≡ 0 and f(·, y) is strictly convex for any y ∈ R.

Remark 5.2. The functions f discussed in Remark 2.3 satisfy the previous assumptions.

Under these assumptions, we will show that gi, i = 1, 2 are locally Lipschitz functions (cf. Propo-
sition 5.8 below). We start by studying the limiting behavior of the functions bi and some natural
bounds for gi.

Proposition 5.3.
(i) Let Assumption 5.1-(i) hold. Then

b̄1 = lim
x↓−∞

b1(x) =∞, b2 = lim
x↑∞

b2(x) = −∞;

hence, by Proposition 3.3-(iii), one also has b1 = −∞ and b̄2 =∞.
(ii) Define

ζ1(y) := sup{x ∈ R : −αVx(x, y)− fy(x, y)− ρK ≥ 0}, y ∈ R,
ζ2(y) := inf{x ∈ R : −αVx(x, y)− fy(x, y) + ρK ≤ 0}, y ∈ R.

Then, for any y ∈ R, we have

g1(y) < ζ1(y) < ζ2(y) < g2(y).

Proof. Proof of (i). Here we show that limx↓−∞ b1(x) =∞. The fact that limx↑∞ b2(x) = −∞ can be
proved by similar arguments. We argue by contradiction assuming b̄1 := limx↓−∞ b1(x) < ∞. Take
yo > b̄1, so that τ? = τ?(x, yo) =∞ for all x ∈ R, the latter being the stopping time defined in (3.3).
Then, take xo < g2(yo) such that (xo, yo) ∈ C. Clearly, every x < xo belongs to C, and therefore, by
the representation (4.15), we obtain that it must be B(yo) = 0; indeed, otherwise, by taking limits
as x→ −∞ and using (4.1), we would contradict Proposition 2.4. Moreover, since for any y ∈ R one
has ψx(x, αy)→ 0 when x→ −∞ (cf. (4.1)), we then have by dominated convergence

(5.1) lim
x→−∞

Vx(x, y0) = lim
x→−∞

V̂x(x, yo) = lim
x→−∞

E

[∫ ∞
0

e−ρtfx(Xx,yo
t , yo)dt

]
= −∞.

Now, setting
σ̂x := inf{t ≥ 0 : Xx,yo

t ≥ xo},
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for x < xo, we have by monotonicity of fy(·, y) (cf. Assumption 2.2-(iv))

−K < Vy(x, yo) = inf
σ∈T

E

[ ∫ σ

0
e−ρt

(
αVx(Xx,yo

t , yo) + fy(X
x,yo
t , yo)

)
dt+ e−ρσK

]
≤ E

[ ∫ σ̂x

0
e−ρt

(
αVx(Xx,yo

t , yo) + fy(xo, yo)
)

dt+K

]
.(5.2)

The latter implies

2K +
|fy(xo, yo)|

ρ
≥ −αE

[ ∫ σ̂x

0
e−ρtVx(Xx,yo

t , yo) dt

]
= −αE

[ ∫ σ̂x

0
e−ρtVx(x+ αyot+ ηWt, yo) dt

]
.

Hence, letting x ↓ −∞, using (5.1), and invoking the dominated convergence theorem we get a
contradiction.

Proof of (ii). The fact that for any y ∈ R we have g1(y) ≤ ζ1(y) and g2(y) ≥ ζ2(y) can be obtained
as in the proof of item (ii) of Proposition 6.1 in [18], by employing the proved regularity of Vy(·, y)
and the semiharmonic characterization of [32] (see equations (2.27)–(2.29) therein, suitably adjusted
to take care of the integral term appearing in (3.2)). Moreover, ζ1(y) < ζ2(y) for any y ∈ R by
definition. It thus remains to show that one actually has g1(y) < ζ1(y) and g2(y) > ζ2(y) for any
y ∈ R.

We only prove that g2(y) > ζ2(y) for any y ∈ R, as the other case can be treated similarly.
Suppose that there exists some yo such that g2(yo) = ζ2(yo). Then Vy(ζ2(yo), yo) = K. Let now
τ? := τ?(ζ2(yo), yo) be the optimal stopping time for the sup player when the Dynkin game (3.2)
starts at time zero from the point (ζ2(yo), yo), and for ε > 0 define

qε := qε(ζ2(yo), yo) := inf{t ≥ 0 : X
ζ2(yo),yo
t ≥ ζ2(yo) + ε}.

Then by using that fy(·, yo) + αVx(·, yo) is nondecreasing and locally Lipschitz by Assumption
2.2-(iii) and Proposition 2.4(iii), we have from (3.2) for some constant C(yo) > 0

K = Vy(ζ2(yo), yo) ≤ E

[ ∫ τ?∧qε

0
e−ρt

(
fy + αVx

)
(Xζ2(yo),yo

s , yo)ds

]
+ E

[
Ke−ρqε1{τ?>qε} −Ke

−ρτ?1{τ?<qε}

]
≤
(
fy + αVx

)
(ζ2(yo) + ε, yo)

1

ρ
E
[
1− e−ρ(τ?∧qε)

]
+ E

[
Ke−ρqε1{τ?>qε} −Ke

−ρτ?1{τ?<qε}

]
(5.3)

≤ 1

ρ

[(
fy + αVx

)
(ζ2(yo), yo) + εC(yo)

]
E
[
1− e−ρ(τ?∧qε)

]
+ E

[
Ke−ρqε1{τ?>qε} −Ke

−ρτ?1{τ?<qε}

]
.

Using now that, by definition of ζ2, it must be
(
fy + αVx

)
(ζ2(yo), yo) = ρK, and rearranging terms,

we get that

0 ≤εC(yo)

ρ
E
[
1− e−ρ(τ?∧qε)

]
− 2KE

[
e−ρτ

?
1{τ?<qε}

]
.(5.4)

Notice now that (cf. eq. (4.3) in [13], among others)

E
[
e−ρτ

?
1{τ?<qε}

]
=
ψ(ζ2(yo), αyo)ϕ(ζ2(yo) + ε, αyo)− ψ(ζ2(yo) + ε, αyo)ϕ(ζ2(yo), αyo)

ψ(g1(yo), αyo)ϕ(ζ2(yo) + ε, αyo)− ψ(ζ2(yo) + ε, αyo)ϕ(g1(yo), αyo)

and

E
[
e−ρqε1{τ?>qε}

]
=

ψ(g1(yo), αyo)ϕ(ζ2(yo), αyo)− ψ(ζ2(yo), αyo)ϕ(g1(yo), αyo)

ψ(g1(yo), αyo)ϕ(ζ2(yo) + ε, αyo)− ψ(ζ2(yo) + ε, αyo)ϕ(g1(yo), αyo)
.
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Then, because
1− e−ρ(τ?∧qε) = 1− e−ρτ∗1{τ?<qε} − e

−ρqε1{τ?>qε},

using the last two formulas in (5.4) and performing a first-order Taylor’s expansion around ε = 0
of the terms on the right-hand side of (5.4), one finds that the first term on the right-hand side
of (5.4) is positive and converges to zero as ε ↓ 0 with order ε2, while the second term is negative
and converges to zero with order ε. We thus reach a contradiction in (5.4) for ε small enough, and
therefore it cannot exist yo at which g2(yo) = ζ2(yo). �

The next result readily follows from Proposition 5.3-(i).

Corollary 5.4. Let Assumption 5.1-(i) hold. Then the functions g1, g2 defined in (3.8) are finite.

Proposition 5.5. Let Assumption 5.1 hold. Then the functions b1, b2 are strictly decreasing.

Proof. We prove the claim only for b1, since analogous arguments apply to prove it for b2.

Case (a). We assume here that item (a) of Assumption 5.1-(iii) holds, i.e. that x 7→ fy(x, y) is
strictly increasing for any y ∈ R. By Proposition 4.5, we can differentiate the first line of (4.15) with
respect to y and get by Proposition 4.4-(i) that Vy solves inside C the equation

(5.5)
1

2
η2Vyxx(x, y) + αyVyx(x, y)− ρVy(x, y) = −fy(x, y)− αVx(x, y).

By continuity, (5.5) also holds on C, i.e.

(5.6)
1

2
η2Vyxx(x, y) + αyVyx(x, y)− ρVy(x, y) = −fy(x, y)− αVx(x, y), ∀(x, y) ∈ C.

In particular it holds on ∂1C := C ∩ I. Assume now, by contradiction, that the boundary b1 is
constant on (xo, xo + ε), for some xo ∈ R and some ε > 0. Then, setting yo := b1(xo), we will have
Vyxx(·, yo) = Vyx(·, yo) = 0 and Vy(·, yo) = −K on (xo, xo + ε). Hence, we obtain from (5.5) that

(5.7) − ρK = fy(x, yo) + αVx(x, yo), ∀x ∈ (xo, xo + ε),

and thus

(5.8) − fyx(x, yo) = αVxx(x, yo), ∀x ∈ (xo, xo + ε).

But now αVxx(x, yo) ≥ 0 for any x ∈ (xo, xo + ε) by convexity of V (·, yo), while, by assumption,
fyx must be strictly positive on a subset of (xo, xo + ε) with positive measure. Hence a contradiction
is reached.

Case (b). We assume here that item (b) of Assumption 5.1-(iii) holds, i.e. that fyx ≡ 0 and that
f(·, y) is strictly convex for any y ∈ R. In such a case the claim can be proved by employing the
same arguments of the proof of Proposition 6.3 in [18]. �

From the result above, it immediately follows the following corollary.

Corollary 5.6. Let Assumption 5.1 hold. Then the functions g1, g2 defined in (3.8) are continuous.

The next result will be of fundamental importance to show the locally Lipschitz property of gi,
i = 1, 2 and, in the next section, to determine a system of differential equations for those curves.

Proposition 5.7. Let Assumption 5.1 hold. Then

(5.9) ∃ lim
(x,y)→ (xo,yo)

(x,y)∈C

Vyxx(x, y) 6= 0 ∀ (xo, yo) ∈ ∂C.

Proof. We provide the proof only for any (xo, yo) ∈ ∂2C := C ∩ D, as the other case can be treated
similarly.

First of all, we notice that the limit in (5.9) exists since, by Proposition 4.5, the function V : C → R
can be differentiated twice with respect to x and once with respect to y with continuity up to the
boundary ∂C.
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Case (a). We assume here that item (a) of Assumption 5.1-(iii) holds, i.e. that x 7→ fy(x, y) is
strictly increasing for any y ∈ R. Suppose, by contradiction, that for some yo ∈ R one has

(5.10) lim
(x,y)→ (g2(yo),yo)

(x,y)∈C

Vyxx(x, y) = 0.

Then taking limits as (x, y)→ (g2(yo), yo) for (x, y) ∈ C in (4.13) we find, using that Vyx(g2(yo), yo) =
0 by Proposition 4.7 and that Vy(g2(yo), yo) = K,

(5.11) − ρK + fy(g2(yo), yo) = −αVx(g2(yo), yo).

Since g2(yo) > ζ2(yo) by Proposition 5.3, and by definition of ζ2, it must be

−ρK + fy(x, yo) = −αVx(x, yo) ∀ x ∈ (ζ2(yo), g2(yo)),

which also implies that −αVxx(x, yo) = fyx(x, yo) for any x ∈ (ζ2(yo), g2(yo)). We then conclude as
in Step 1 of the proof of Proposition 5.5.

Case (b). We assume here that item (b) of Assumption 5.1-(iii) holds, which implies that there
exists q such that fy(x, y) = q(y) for any (x, y) ∈ R2. Suppose again, with the aim of reaching a
contradiction, that for some yo ∈ R one has (5.10). Then taking limits as (x, y) → (g2(yo), yo) for
(x, y) ∈ C in (4.13) we find, using that Vyx(g2(yo), yo) = 0 by Proposition 4.7 and that Vy(g2(yo), yo) =
K,

−ρK + q(yo) = −αVx(g2(yo), yo).

As before, because g2(yo) > ζ2(yo) by Proposition 5.3, and by definition of ζ2, it must be

−ρK + q(yo) = −αVx(x, yo) ∀ x ∈ (ζ2(yo), g2(yo));

that is, V is an affine function of x in that interval. However, using the latter and (4.13), we also
have

1

α
αyo
(
ρK − q(yo)

)
− ρV (x, yo) = −f(x, yo) ∀ x ∈ (ζ2(yo), g2(yo)),

and we reach a contradiction since f(·, yo) is strictly convex by assumption, while V (·, yo) is affine. �

Proposition 5.8. Let Assumption 5.1 hold. Then the functions g1, g2 are locally Lipschitz.

Proof. Define the function

(5.12) V̄ (x, y) := A(y)ψ(x, αy) +B(y)ϕ(x, αy) + V̂ (x, y), (x, y) ∈ R2,

where A,B are the functions of Proposition 4.5. Then, one clearly has that V̄ ∈ C2,1(R2;R), and
V̄ = V in R2 ∩ C̄. Moreover, the mixed derivative V̄yx exists and is continuous, and standard
differentiation yield

V̄yx(x, y) = Ay(y)ψx(x, αy) +By(y)ϕx(x, αy) + α
(
A(y)ψzx(x, αy) +B(y)ϕzx(x, αy)

)
+ V̂yx(x, y).

(5.13)

Since Ay and By are locally Lipschitz by Proposition 4.5, and ψ and ϕ are smooth (cf. (4.1)), we
deduce that V̄yx(x, ·) is locally Lipschitz.

Let now yo ∈ R. Then, for any given xo ∈ R such that (xo, yo) ∈ ∂C, we know by Proposition
5.7 that V̄yxx(xo, yo) 6= 0, while V̄yx(xo, yo) = 0. By the implicit function theorem (see, e.g., the
Corollary at p. 256 in [12] or Theorem 3.1 in [30]) we therefore gain that for any i = 1, 2 there exists
a unique continuous function ḡi : (yo − δ, yo + δ)→ (xo − δ′, xo + δ′), for suitable δ, δ′ > 0, such that
V̄yx(ḡi(y), y) = 0 in (yo − δ, yo + δ). Also, the aforementioned properties of V̄yxy and V̄yxx imply that
there exists C(yo) > 0 such that

|ḡi(y2)− ḡi(y1)| ≤ C(yo)|y2 − y1|, ∀ y1, y2 ∈ (yo − δ, yo + δ).

Recalling now that V̄yx(gi(y), y) = 0, we can identify ḡi = gi, i = 1, 2, in (yo − δ, yo + δ) and
therefore gi is locally Lipschitz therein. Given the arbitrariness of the point (xo, yo) the proof is
complete. �
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6. A System of Differential Equations for the Free Boundaries

In this section we derive a first-order system of nonlinear differential equations for the free bound-
aries g1 and g2, i.e. we will be able to write{

g′1(y) = G1(g1(y), g2(y), y),

g′2(y) = G2(g1(y), g2(y), y),

for some explicitly determined maps G1, G2, whose regularity will allow also to establish a C1,Lip

regularity for g1, g2. To the best of our knowledge, for a two-dimensional degenerate singular sto-
chastic control problem with interconnected dynamics as ours, a similar result appears here for the
first time.

We first move on by establishing four equations relating g1, g2 and A,B. Recall (4.6), (4.7), and
(4.9). We also denote by p the transition density of Xx,y with respect to the speed measure; then,
letting A 7→ Pt(x,A, y), A ∈ B(R), t > 0 and y ∈ R, be the probability of starting at time 0 from
level x ∈ R and reaching the set A ∈ B(R) in t units of time, we have (cf., e.g., p. 13 in [4])

(6.1) Pt(x,A, y) =

∫
A
p(t, x, z, y)mx(z, αy)dz.

The density p can be taken positive, jointly continuous in all variables and symmetric (i.e. p(t, x, z, y) =
p(t, z, x, y)).

Theorem 6.1. Let Assumption 5.1 hold. Recall (4.1), (4.15), and for any (x, y) ∈ R2 define

(6.2) H(x, y) := fy(x, y) + αVx(x, y).

Moreover, for z ∈ R let

(6.3) λ(z) :=
√
z2 + 2ρη2,

and for y ∈ R, i, j = 1, 2, j 6= i,

(6.4) γi(y) := − 2

η2

∫ g2(y)

g1(y)
e−rj(αy)u

(
fy(u, y) +αV̂x(u, y)

)
du+Kri(αy)

(
e−rj(αy)g1(y) + e−rj(αy)g2(y)

)
,

The free boundaries g1 and g2 as in (3.8), and the coefficients A and B are such that

0 =

∫ g2(y)

g1(y)
ψ(z, αy)H(z, y)mx(z, αy) dz −Kψx(g1(y), αy)

Sx(g1(y), αy)
−Kψx(g2(y), αy)

Sx(g2(y), αy)
,(6.5)

0 =

∫ g2(y)

g1(y)
ϕ(z, αy)H(z, y)mx(z, αy) dz −Kϕx(g1(y), αy)

Sx(g1(y), αy)
−Kϕx(g2(y), αy)

Sx(g2(y), αy)
,(6.6)

A′(y)ψx(g1(y), αy) +B′(y)ϕx(g1(y), αy) + V̂yx(g1(y), y)

+α
[
A(y)ψzx(g1(y), αy) +B(y)ϕzx(g1(y), αy)

]
= 0

(6.7)

A′(y)ψx(g2(y), αy) +B′(y)ϕx(g2(y), αy)V̂yx(g2(y), y)

+α
[
A(y)ψzx(g2(y), αy) +B(y)ϕzx(g2(y), αy)

]
= 0.

(6.8)

Hence,

(6.9) A(y)=−r2(αy)η2λ(αy)

8αρ

γ1(y)
(
e
− 2
η2
λ(αy)g1(y) − e−

2
η2
λ(αy)g2(y)

)
− 2λ(αy)γ2(y)

η2

(
g2(y)− g1(y)

)
sinh2

(
λ(αy)
η2

(
g2(y)− g1(y)

))
−
(
λ(αy)
η2

(
g2(y)− g1(y)

))2
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(6.10)

B(y) = −r1(αy)η2λ(αy)

8αρ

γ2(y)
(
e

2
η2
λ(αy)g2(y) − e

2
η2
λ(αy)g1(y)

)
− 2λ(αy)γ1(y)

η2

(
g2(y)− g1(y)

)
sinh2

(
λ(αy)
η2

(
g2(y)− g1(y)

))
−
(
λ(αy)
η2

(
g2(y)− g1(y)

))2

 ,
(6.11) A′(y) =

η2

2ρ
e

2αy

η2
g1(y)

[
M(g1(y), g2(y), y)

er1(αy)(g2(y)−g1(y)) − er2(αy)(g2(y)−g1(y))

]

(6.12) B′(y) =
η2

2ρ
e

2αy

η2
g1(y)

[
N(g1(y), g2(y), y)

er1(αy)(g2(y)−g1(y)) − er2(αy)(g2(y)−g1(y))

]
,

where

M(x1, x2, y) := r2(αy)
(
er2(αy)x1 V̂yx(x2, y)− er2(αy)x2 V̂yx(x1, y)

)
+ αA(y)r′2(αy)r2(αy)

(
er1(αy)x2+r2(αy)x1

(
r2(αy)x2 + 1

)
− er1(αy)x1+r2(αy)x2

(
r1(αy)x1 + 1

))
+ αB(y)r2

2(αy)r′2(αy)er2(αy)(x1+x2)(x2 − x1)

and

N(x1, x2, y) := r1(αy)
(
er1(αy)x2 V̂yx(x1, y)− er1(αy)x1 V̂yx(x2, y)

)
+ αB(y)r′2(αy)r1(αy)

(
er1(αy)x2+r2(αy)x1

(
r2(αy)x1 + 1

)
− er1(αy)x1+r2(αy)x2

(
r2(αy)x2 + 1

))
− αA(y)r2

1(αy)r′1(αy)er1(αy)(x1+x2)(x2 − x1).

Proof. To obtain equations (6.5) and (6.6) we exploit the proved regularity of V (·, y) (cf. Propositions
2.4, 4.7, and Lemma 4.8) in order to follow the proof of Theorem 6.5 in [18]. This is based on an
application of the local time-space calculus of [31] to the process (e−ρsVy(Xs, y))s≥0 and the use of
the Green function (4.9), the transition probability (6.1), and Fubini’s theorem. Alternatively (and
equivalently) they can be derived from (4.15) by imposing that Vy(·, y) and Vyx(·, y) are continuous
on ∂C and proceeding via the more analytical direct approach of the proof of Proposition 5.5 in [17].
In particular, the second-order smooth fit Vyx(gi(y), y) = 0, i = 1, 2, easily gives (6.7) and (6.8).

We now move on by deriving (6.9) and (6.10). Notice that, given g1 and g2, and exploiting (4.15),
one has from (6.5) and (6.6) that A and B solve the linear system

A(y)

[
α

∫ g2(y)

g1(y)
ψ(z, αy)ψx(z, αy)mx(z, αy) dz

]
+B(y)

[
α

∫ g2(y)

g1(y)
ψ(z, αy)ϕx(z, αy)mx(z, αy) dz

]

= K

[
ψx(g1(y), αy)

Sx(g1(y), αy)
+
ψx(g2(y), αy)

Sx(g2(y), αy)

]
−
∫ g2(y)

g1(y)
ψ(z, αy)

(
fy(z, y) + αV̂x(z, y)

)
mx(z, αy) dz,

(6.13)

A(y)

[
α

∫ g2(y)

g1(y)
ϕ(z, αy)ψx(z, αy)mx(z, αy) dz

]
+B(y)

[
α

∫ g2(y)

g1(y)
ϕ(z, αy)ϕx(z, αy)mx(z, αy) dz

]

= K

[
ϕx(g1(y), αy)

Sx(g1(y), αy)
+
ϕx(g2(y), αy)

Sx(g2(y), αy)

]
−
∫ g2(y)

g1(y)
ϕ(z, αy)

(
fy(z, y) + αV̂x(z, y)

)
mx(z, αy) dz.

(6.14)

By using expressions for ψ, ϕ, Sx and mx (cf. (4.1), (4.6) and (4.7)) one can explicitly evaluate
the integrals appearing on the left-hand sides of (6.13) and (6.14). Then, solving the latter two
equations with respect to A and B one finds after some simple but tedious algebra (6.9) and (6.10).
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Notice indeed that the denominator appearing in (6.9) and (6.10) is nonzero since g1 6= g2 and one
has sinh2(z)− z2 > 0 for any z 6= 0.

In order to find (6.11) and (6.12) we solve (6.7) and (6.8) with respect to A′(y) and B′(y), and
use (4.1), (4.2), (4.3), and (6.3).

�

Remark 6.2. In [18] a system of equations like (6.5) and (6.6) has also been obtained (see eqs.
(6.11) and (6.12) therein). However, in [18] the uncontrolled process is of Ornstein-Uhlenbeck type
and this made it not possible to determine explicit expressions for A(y) and B(y) as in (6.9) and
(6.10) above. Indeed, the complex form of the functions ψ and ϕ associated to the Ornstein-Uhlenbeck
process does not allow to conclude that the determinant of the coefficients’ matrix arising when one
tries to solve (the analogous of) (6.13) and (6.13) with respect to A(y) and B(y) is nonzero.

We can now state the main result of this paper.

Theorem 6.3. Let D := {(x1, x2, y) ∈ R3 : x1 6= x2} × R. There exist explicitly computable1

functions Gi ∈ C0,Lip
loc (D;R), i = 1, 2 such that

(6.15)

{
g′1(y) = G1(g1(y), g2(y), y)

g′2(y) = G2(g1(y), g2(y), y).

In particular, gi ∈ C1,Lip
loc (R;R) for i = 1, 2.

Proof. Recall Theorem 4.5 and (6.2). In particular, for any (x, y) such that g1(y) ≤ x ≤ g2(y) – i.e.
for any (x, y) ∈ C̄ – we have by (4.15)

Vx(x, y) = A(y)ψx(x, αy) +B(y)ϕx(x, αy) + V̂x(x, y),

with A,B belonging to W 2,∞
loc (R;R). Defining then the function

H̄(x, y) = fy(x, y) + α
(
A(y)ψx(x, αy) +B(y)ϕx(x, αy) + V̂x(x, y)

)
, (x, y) ∈ R2,

one has H̄ = H on C̄.
Introduce now Φi : D → R defined as

Φ1(x1, x2, y) :=

∫ x2

x1

ψ(z, αy)H̄(z, y)mx(z, αy) dz(6.16)

−Kρ
∫ x1

−∞
ψ(z, αy)mx(z, αy) dz −Kρ

∫ x2

−∞
ψ(z, αy)mx(z, αy) dz

Φ2(x1, x2, y) :=

∫ x2

x1

ϕ(z, αy)H̄(z, y)mx(z, αy) dz(6.17)

+Kρ

∫ ∞
x2

ϕ(z, αy)mx(z, αy) dz +Kρ

∫ ∞
x1

ϕ(z, αy)mx(z, αy) dz.

Observing that (cf. Chapter II in [4])

ψx(·, αy)

Sx(·, αy)
= ρ

∫ ·
−∞

ψ(z, αy)mx(z, αy) dz,
ϕx(·, αy)

Sx(·, αy)
= −ρ

∫ ∞
·

ϕ(z, αy)mx(z, αy) dz,

one can readily see that, by (6.5)-(6.6), for any y ∈ R one has

(6.18) Φ1(g1(y), g2(y), y) = 0 and Φ2(g1(y), g2(y), y) = 0.

Thanks to Assumption 2.2 and Theorem 4.5, one has that H̄ ∈ C1,Lip
loc (R2;R). Hence, for any

i = 1, 2, the map (x1, x2) 7→ Φi(x1, x2, y) belongs to C2(D;R) for each y ∈ R and the map y 7→

1Cf. Remark 6.4.
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Φi(x1, x2, y) belongs to C1,Lip
loc (D;R) for each (x1, x2) ∈ R2. Recalling Proposition 5.8 we can take

the total derivative on both terms appearing in (6.18) we obtain for a.e. y ∈ R that

(6.19)

∂Φ1
∂x1

(g1(y), g2(y), y) ∂Φ1
∂x2

(g1(y), g2(y), y)

∂Φ2
∂x1

(g1(y), g2(y), y) ∂Φ2
∂x2

(g1(y), g2(y), y)


︸ ︷︷ ︸

=:Λ(g1(y),g2(y),y)

g′1(y)

g′2(y)

 = −

∂Φ1
∂y (g1(y), g2(y), y)

∂Φ2
∂y (g1(y), g2(y), y)

 .

The determinant of the matrix Λ, denoted by |Λ|, is given by

|Λ|(g1(y), g2(y), y) =
(
H̄(g1(y), y) +Kρ

)(
H̄(g2(y), y)−Kρ

)
mx(g1(y), αy)mx(g2(y), αy)·

·
(
ψ(g2(y), αy)ϕ(g1(y), αy)− ψ(g1(y), αy)ϕ(g2(y), αy)

)
.(6.20)

We now aim at showing that |Λ|(g1(y), g2(y), y) does not vanish for any y ∈ R under Assumption
5.1-(iii). On the one hand, if item (a) of that assumption holds, i.e. x 7→ fy(x, y) is strictly increasing,
then we have that x 7→ H(x, y) is such as well. Since H̄ = H on C̄ and g2(y) > ζ2(y) > ζ1(y) > g1(y)
by Proposition 5.3-(ii), we have

H̄(g1(y), y) +Kρ < 0, H̄(g2(y), y)−Kρ > 0,

and

ψ(g2(y), αy)ϕ(g1(y), αy)− ψ(g1(y), αy)ϕ(g2(y), αy) > 0;

therefore, |Λ|(g1(y), g2(y), y) < 0. On the other hand, if item (b) of Assumption 5.1-(iii) holds, i.e.
if fyx ≡ 0 and f(·, y) is strictly convex for any y ∈ R, we can argue by contradiction as in Case
(b) of the proof of Corollary 5.6. To this end, suppose, for example, that H̄(g1(yo), yo) + Kρ =
H(g1(yo), yo) +Kρ = 0, for some yo ∈ R. Denoting fy(x, y) = q(y) it then follows that

−ρK + q(yo) = −αVx(x, yo) ∀ x ∈ (g1(yo), ζ1(yo)),

by definition of ζ1 (cf. Proposition 5.3); that is, V is an affine function of x in that interval. However,
using the latter and (4.13), we also have

1

α
αyo
(
ρK − q(yo)

)
− ρV (x, yo) = −f(x, yo) ∀ x ∈ (g1(yo), ζ1(yo)),

and we reach a contradiction since f is strictly convex in x by assumption while V is affine. The
same argument also implies that H̄(g1(yo), yo) +Kρ 6= 0. We have then proved that in any case one
has |Λ|(g1(y), g2(y), y) 6= 0 under Assumption 5.1-(iii).

We can therefore invert the matrix Λ appearing in (6.19) and obtain that for a.e. y ∈ R

(6.21)


g′1(y) =

1

|Λ|(g1(y), g2(y), y)

[∂Φ1

∂x2

∂Φ2

∂y
− ∂Φ2

∂x2

∂Φ1

∂y

]
(g1(y), g2(y), y) =: G1(g1(y), g2(y), y)

g′2(y) =
1

|Λ|(g1(y), g2(y), y)

[∂Φ2

∂x1

∂Φ1

∂y
− ∂Φ1

∂x1

∂Φ2

∂y

]
(g1(y), g2(y), y) =: G2(g1(y), g2(y), y)

Observe now that, given the aforementioned regularity of ∂Φi
∂xj

, i, j = 1, 2, and of ∂Φi
∂y , i = 1, 2, we

have Gi ∈ C0,Lip
loc (D;R); hence, gi ∈ C1,Lip

loc (R;R). �

Remark 6.4. Notice that the right-hand sides of (6.21) are indeed functions only of (g1(y), g2(y), y).
To see that, it is enough to feed (6.9) and (6.10), and (6.11) and (6.12) in the right-hand sides of

(6.21), upon noticing that for any i, j = 1, 2, ∂Φi
∂xj

depend on A(y), B(y), while, for any i = 1, 2, ∂Φi
∂y

depend on A′(y), B′(y).
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Remark 6.5. In the proof of Proposition 5.6 of [17] (see page 2213 therein; see also Step 4 in
the proof of Lemma 7 in [29] and the proof of Proposition 6 in [14]), a system of ODEs for the
free boundaries is determined with the aim of proving that the free boundaries belong to C1 and are
strictly monotone. In our problem, proving strict monotonicity of g1 and g2 would require to establish
a strict sign for G1 and G2 (cf. (6.21)). However, the interaction between our dynamics – and the

consequent dependency of ψ, ϕ, and mx on y – makes the partial derivatives ∂Φi
∂y appearing in (6.21)

much more complex than the analogous quantities in [17] or [29], and this in turn makes it unclear
that Gi < 0, i = 1.2 (although expected).

6.1. A Discussion on Theorem 6.3 and on the Optimal Control.

6.1.1. On Theorem 6.3. Given the full degeneracy of our setting, the fact that the free boundaries

gi, i = 1, 2, belong to the class C1,Lip
loc (R;R) is, to the best of our knowledge, a remarkable result.

Indeed, the lack of uniform ellipticity of the diffusion coefficient makes it already difficult to obtain
a preliminary (locally) Lipschitz property of gis by invoking results from PDE theory ([6] and [33],
among others) or techniques as those in [34], [35], and [36]. Also the probabilistic approach developed
in [15] is not directly applicable since our free boundaries are associated to a Dynkin game rather
than to an optimal stopping problem.

It is also worth stressing that Theorem 6.3 not only provides regularity of the free boundaries,
but also a system of ODEs. To the best of our knowledge, a similar result appears here for the first
time. Clearly, in order to provide a complete characterization of gis, (6.15) should be complemented
by boundary conditions. The determination of those is a non trivial task. As a matter of fact,
we have not been able to identify a relevant value of y for which the values of the free boundaries
can be determined. The only information available is that the free boundaries diverge for large (in
absolute value) levels of y; but this is clearly not enough. Even enforcing a finite-fuel constraint like

y ≤ Y y,ξ
t ≤ y a.s. for any t ≥ 0 would not help in order to obtain boundary conditions. Indeed,

differently to the case with monotone controls (see [26]), here the drift process Y can be pushed back
into (y, y) once any of the boundary points of that interval is reached. Also, it is not clear to us how
to obtain some kind of asymptotic growth of the free boundaries in order to restrict the functional
class where to look for uniqueness of (6.15).

A possible way to obtain a complete implementable characterization of the free boundaries might
be the following. Instead of thinking of g1 and g2 as functions of y, for a fixed parameter α, one could
look at those as functions of α, for any given and fixed y. Bearing this in mind, one might try to prove
that α 7→ gi(α; y) are (at least) locally Lipschitz on [0,∞), and then follow the approach developed in
this section in order to obtain a system of ODEs involving ∂αgi(α; y), i = 1, 2, rather than ∂ygi(α; y).
Those ODEs would then be complemented by a natural boundary condition since, by continuity,
g1(0+; y) and g2(0+; y) would coincide with the free boundaries uniquely determined in Proposition
5.5 of [17]. However, it is not straightforward to prove the aforementioned Lipschitz regularity of
α 7→ gi(α; y); indeed, a preliminary analysis shows that this is related to that of α 7→ Vx(x, y;α),
and how to prove the latter is not clear to us. The investigation of such an interesting conjecture is
therefore left for future research.

6.1.2. On The Optimal Control. The following picture provides an illustrative description of the
expected behavior of the optimal control rule ξ?. This should be such that the jumps of the two-

dimensional process (Xx,y,ξ?

t , Y y,ξ?

t )t≥0 are induced by the optimal control only at initial time, if the
initial data (x, y) lie in the interior of I or D, or at those times at which the process meets jumps of
the free boundaries. The size of those interventions should be such that the process is immediately
brought to the closest point on ∂C, from where it evolves according to (2.2) and (2.3) and in such
a way that it is kept inside the closure of C in a minimal way. Mathematically, this amounts to

construct (Xx,y,ξ?

t , Y y,ξ?

t )t≥0 as a (degenerate) diffusion that is reflected at ∂C.
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The latter is per se an interesting and not trivial problem, whose solution in multi-dimensional
settings strongly hinges on the smoothness of the reflection boundary itself; sufficient conditions can
be found in the seminal papers [16] and [27]. Unfortunately, our information on ∂C do not suffice to
apply the results of the aforementioned works since we are not able to exclude horizontal segments
of the free boundaries g1 and g2 (cf. Case (1) and Case (2) in [16]). Indeed, although we can provide
explicit formulas for the maps G1 and G2 appearing in (6.15), their complex expressions makes it
hard to show that they are strictly negative (see also Remark 6.5). On the other hand, also the more
constructive approach followed in Section 5 of [9] seems not to apply in general to our case, unless
we assume (as the authors of [9] do) a linear growth of the free boundaries bi, i = 1, 2, or further
requirements on f leading to a weak solution to the reflection problem as in Proposition 7.3 of [18].
We therefore leave for future research the general study of the intricate and intriguing problem of
constructing the optimal control.
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7/8, 53100, Siena Italy

Email address: salvatore.federico@unisi.it

G. Ferrari: Center for Mathematical Economics (IMW), Bielefeld University, Universitätsstrasse
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