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Abstract
Let M be a d-dimensional connected compact Riemannian manifold with boundary
OM, let V € C?(M) such that p(dz) := ¢V@dz is a probability measure, and let X;
be the diffusion process generated by L := A + VV with 7 :=inf{t > 0: X; € OM}.
Consider the conditional empirical measure iy := E”(% fg ox, ds’t < 7') for the diffusion
process with initial distribution v such that ¥(0M) < 1. Then

1 i {v(90)1(dm) + 1(0)v(dm)}
{u(o)v (o) }* = (Am — Ao)? ’

where v(f) := [,, fdv for a measure v and f € L*(v), po := d3p, {dm}m>0 is the
eigenbasis of —L in L?(u1) with the Dirichlet boundary, { A, }m>0 are the corresponding
Dirichlet eigenvalues, and W is the L?-Wasserstein distance induced by the Rieman-
nian metric.
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Jim (W (u1f, o)} =

1 Introduction

Let M be a d-dimensional connected complete Riemannian manifold with a smooth boundary
OM. Let V € C?(M) such that p(dx) = e"@dx is a probability measure on M, where dx is
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the Riemannian volume measure. Let X; be the diffusion process generated by L := A+VV
with hitting time
7:=inf{t >0: X, € OM}.

Denote by &2 the set of all probability measures on M, and let E” be the expectation taken
for the diffusion process with initial distribution v € &. Consider the conditional empirical

measure .
1
Wy = E”(—/ dx.ds
tJo

Since 7 = 0 when Xy € OM, to ensure P”(7 > ¢) > 0 we only consider

t<7'>, t>0,ve A

ve Py={veP: v(M°) >0}, M°:=M)\OIM.

Let {¢m}m>0 be the eigenbasis in L?(u) of —L with the Dirichlet boundary such that
¢o > 0 in M°, and let {\,}m>0 be the associated eigenvalues listed in the increasing order
counting multiplicities. Then pg := ¢Zp is a probability measure on M. It is easy to see
from [5, Theorem 2.1] that for any probability measure v supported on M°, we have

Jim {2 = piolfvar = 0,

where || - ||vqr is the total variational norm.
In this paper, we investigate the convergence of pj to o under the Wasserstein distance
WQI

WQ(MI:MQ) = inf (/ ,()(C(],y)27T(dZL',dy>> y M1, f2 € @7
MxM

TEC (11,142)

where € (11, p12) is the set of all probability measures on M x M with marginal distributions
w1 and po, and p(z,y) is the Riemannian distance between = and y, i.e. the length of the
shortest curve on M linking x and y.

Recently, the convergence rate under Wy has been characterized in [15] for the empirical
measures of the L-diffusion processes without boundary (i.e. OM = (}) or with a reflecting
boundary. Since in the present setting the diffusion process is killed at time 7, it is reasonable
to consider the conditional empirical measure pj given ¢ < 7. This is a counterpart to
the quasi-ergodicity for the convergence of the conditional distribution ji; of X; given t <
7. Unlike in the case without boundary or with a reflecting boundary where both the
distribution and the empirical measure of X; converge to the unique invariant probability
measure, in the present case the conditional distribution fi; of X; given ¢ < 7 converges to
o = %u rather than g := ¢u, and this convergence is called the quasi-ergodicity in
the literature, see for instance [6] and references within.

Let v(f) := [,, fdv for v € & and f € L'(v). The main result of this paper is the
following.

Theorem 1.1. For any v € &,

> 0.

1 > VQg m—l— ()Vm2
Z{ (90) () + 1(P0)v(Pm) }

tlggo {t Wo(uy, 1o) } =1:= {1(0) (o) 12 (A — Ao)?

m=1



If either d < 5 or d > 6 but v = hu with u(hP) A po(lhyt|?) < oo for some p > ﬁd(j and
q>%, then I < oco.

Remark 1.1. (1) Let X; be the (reflecting) diffusion process generated by L on M where
OM may be empty. We consider the mean empirical measure iy := IE(% fot dx.ds), where v
is the initial distribution of X;. Then

o0 2
(1'1) tli)rg {t2W2(ﬂty7yJ0)2} = Z {I/(;\j+>} < 00,
m=1 m

where {@,, }m>1 is the eigenbasis of —L in L?(p) with the Neumann boundary condition
if OM exists, {\n}m>1 are the corresponding non-trivial (Neumann) eigenvalues, and the
limit is zero if and only if ¥ = p. This can be confirmed by the proof of Theorem 1.1 with
¢o = 1,2 =0 and p(¢,,) = 0 for m > 1. In this case, u is the unique invariant probability
measure of X;, so that ) = p for ¢ > 0 and hence the limit in (1.1) is zero for v = p.
However, in the Dirichlet diffusion case, the conditional distribution of (X;)o<s<; given t < 7
is no longer stationary, so that even starting from the limit distribution pyp we do not have
i = g for t > 0. This leads to a non-zero limit in Theorem 1.1 even for v = pq.

(2) Tt is also interesting to investigate the convergence of EY(Woy(uy, po)?|t < 7) for
pe = 1 fot dx.ds, which is the counterpart to the study of [15] where the case without
boundary or with a reflecting boundary is considered. According to [15], the convergence rate
of B (Wy(pu, po)?|t < 7) will be at most ¢!, which is slower than the rate =2 for Wy (u?, uo)?
as shown in Theorem 1.1. As the study of this convergence has essential difference from the
present one, we leave it to a forthcoming paper.

In Section 2, we first recall some well known facts on the Dirichlet semigroup, then
present an upper bound estimate on ||V (¢u@g")||e. The latter is non-trivial when M is
non-convex, and should be interesting by itself. With these preparations, we prove upper
and lower bound estimates in Sections 3 and 4 respectively.

2 Some preparations

We first recall some well known facts on the Dirichlet semigroup, see for instances [4, 7, 8, 13].
Let {®m }m>0 be the eigenbasis of the Dirichlet operator L in L?(y), with Dirichlet eigenvalues
{ A\ }m>o of —L listed in the increasing order counting multiplicities. Then Ay > 0 and

2.1 mllso < agv/m, aglmi <A — A < ozom%, m > 1
0

holds for some constant g > 1. Let pg be the Riemannian distance function to the boundary
OM. Then ¢;'ps is bounded such that

(2.2) 166 |22 (o) < 00, p € [1,3).



The Dirichlet heat kernel has the representation

Ze Aty () dm(y), t> 0,2,y € M.

m=0

Let E* denote the expectation for the L-diffusion process starting at point x. Then Dirichlet
diffusion semigroup generated by L is given by

PP (x) = E*[f(X0) Lirery] = /M PP (2, 9) f(y)(dy)
(2.3) o
= e M (G f)dm(), t>0,f € L¥(p).

m=0

There exists a constant ¢ > 0 such that

_d(g—p)
(24) NP llwrwysraw = sup PP fllpagy < ce (A 20, t>0,¢>p>1.
n(lf1P)<1

Next, let Ly = L+2V log ¢y. Then Ly is a self-adjoint operator in L?(p) with semigroup
P := etlo satisfying

(2.5) PYf=eMor PP (fdo), [ € L*(o), t>0.

S0, {dg B }m>o is an eigenbasis of Ly in L?(pg) with

(26) L0(¢m¢al) = _( - >\0)¢m¢0 ) PO(¢m¢O ) - ~(m=20) t¢m¢0 , m > 0 t > 0.

Consequently,

(2.7) P = po(fomdy e O e05", f € L (o),
m=0

and the heat kernel of P? with respect to g is given by

(2.8) P(2,y) = 3 (bmdg ) (@) (Gmdg ) ) On 1, 2y € M.t > 0.
m=0

By the intrinsic ultracontractivity, see for instance [9], there exists a constant oy > 1 such
that

7()\17/\0)t

)=

1€

29) 1P~ polliiuorsimge) = sup [BYF — po(f)lo < 1> 0,

po(|f<1 (TNt

Combining this with the semigroup property and the contraction of P? in LP(u) for any
p > 1, we find a constant as > 1 such that

(2.10)  [IP? = piollzoguyy == sup P2 f = po(f)||Logue) < cme” Mt >0,p > 1
po(lfIP)<1



By the interpolation theorem, (2.9) and (2.10) yield

_ (d+2)(g—p)

(211) (1P = proll o (uo) s paue) < cse”MTLIAGT 2 6> 0,00 > ¢ >p > 1

Since jio(¢2,052) = 1, (2.11) for p = 2 implies
Ce(/\m—)\o)t

[mdg oo = e P2 (drtrg ) ||o < ma t>0.

Taking t = (A, — Ao) ™' and applying (2.1), we find a constant as > 0 such that

(2.12) | Gmdy oo < aam e, m > 1.

In the remainder of this section, we investigate gradient estimates on P? and ¢, ",
which will be used in Section 4 for the study of the lower bound estimate on Wy (1Y, 1o). To
this end, we need to estimate the Hessian tensor of log ¢y.

Let N be the inward unit normal vector field of OM. We call M (or OM) convex if

(2.13) (VuN,u) = Hess,, (u,u) <0, ueTOoM,

where py is the distance function to the boundary M, and TOM is the tangent bundle of
the (d — 2)-dimensional manifold 0M. When d = 1, the boundary M degenerates to a set
of two end points, such that 9M = () and the condition (2.13) trivially holds; that is, M is
convex for d = 1. Recall that M° := M \ OM is the interior of M.

Lemma 2.1. If OM is convex, then there exists a constant Ko > 0 such that
HesSiog ¢ (1, 1) < Kolul|?, u € TM°.

Proof. Since M is compact with smooth boundary, there exists a constant ry > 0 such that
ps is smooth on the set
OoM :={x € M : ps(z) < ro}.

Since ¢y is smooth and satisfies ¢y > cps for some constant ¢ > 0, we have log(dop,') €
CZ(0yM). So, it suffices to find a constant ¢ > 0 such that

(2.14) HesSlog pp (U, 1) < clul®>, uwe TM°.

To this end, we fisrt estimate Hess,, on the boundary 0M. For any x € OM and u € T, M,
consider the orthogonal decomposition u = u; + ug, where

up = (N, u)N, ug:=u—u; € TOM.

Since |Vps| = 1 on dyM, we have

1
(2.15) Hess,, (X, N) = Hess,, (X, Vpy) = 5<X, V|Vpsl?) =0, X €T, M.



On the other hand, since us € TOM and Vps = N on OM, (2.13) implies
Hess,, (ug, u2) = (Vy, N, ug) < 0.
Combining this with (2.15) we obtain
Hess,, (u, u) = (N, u)*Hess,, (N, N) + 2(N, u)Hess,, (ua, N) + Hess,, (uz, us) < 0
for u € UzcomT, M. Since Hess,, is smooth on the compact set dyM, this implies
Hess,, (u,u) < clul*ps(z), © € M,u € T,M
for some constant ¢ > 0. Then the desired estimate (2.14) follows from

HesS1og p, (U, u) = py ' Hess,, (u, u) — py*(Vpa,u)? < clul?, uwe TM°.

By Lemma 2.1, when 0M is convex, there exists a constant K > 0 such that
(216) Ric — Hessv+210g¢0 Z —-K.

Since the diffusion process generated by Lg := A+V(V +2log ¢y) is non-explosive in M°, by
(2.16) and Bakry-Emery’s semigroup calculus, (see for instance [3] or [13, Theorem 2.3.3]),
we have

2.17) VPRg| < eKUPYIVgl, 20,9 € CH(M)
and for any p > 1, there exists a constant ¢(p) > 0 such that

o o 2K{PIgP ) (PRlg) " — (Plgl)?)
(2.18) IVESl < (pA2)(pA2—1)(1— e 2Kt)

W (P2, ¢ 0. € BM).

<

—_

When 0M is non-convex, we take as in [12] a conformal change of metric to make it
convex under the new metric. More precisely, we have the following result.

Lemma 2.2. There exists a function 1 < ¢ € Cp°(M) such that OM is conver under the
metric (-,-)y := ¢~ 2(-, ). Moreover, there exists a smooth vector field Z, on M such that

(2.19) Lo = ¢ 2A% + Z4 + 207 'V? log ¢y,

where V¢ and A? are the gradient and Lapalce-Beltrami operators induced by (-,-)4 respec-
tively.



Proof. let 6 > 0 such that the second fundamental form of OM is bounded below by —d.
Take 1 < ¢ € Cp°(M) such that ¢ = 1+ dpy in a neighborhood of M in which the distance
function py to OM is smooth. By [14, Lemma 2.1](see also [12]), OM is convex under the
metric (-, )y := ¢ 2(-,-). Next, according to the proof of [14, Lemma 2.2], there exists a
smooth vector field Z, on M such that (2.19) holds. O

Let 1 < ¢ € C°(M) be in Lemma 2.2, and let P be the diffusion semigroup generated
by
L? = gLy = ¢ *A? + ¢Z4 + 2V log ¢y.

We have the following result.

Lemma 2.3. Let 1 < ¢ € C°(M) be in Lemma 2.2.

(1) For any p € (1,00], there exists a constant ¢ > 0 such that
(2.20) wope fl, < D poi it b= 0. f e M
: t ¢—W(t|f|)qa >0, f € Cy(M).
Moreover, there exists a constant K > 0 such that
(2.21) VOP flo < X' PPV fly, t>0,f € Cy(M).

(2) There exists a constant ¢ > 0 such that

_d+2
2p

(2.22) HP1t¢’|Lp(M0)—>L°°(#0) <K(1A1) , t>0,p€[l,o0].

Proof. (1) Since 0M is convex under the metric (-, )4, by Lemma 2.1, we find a constant
K¢ > 0 such that

(2.23) 2Hessld;g¢o(u, u) < KJlul?, uweTM®,

where Hess? is the Hessian tensor induced by the metric (-,-)4. Since the operator A?® :=
dLAP+¢Z, is a C2?-smooth strictly elliptic second order differential operator on the compact
manifold M, it has bounded below Bakry-Emery curvature; that is, there exists a constant
Kf > 0 such that

APV fI2 = 2(VOAP V0 f)y > —KPIVOfR2, e C®(M), [uf = (u,u),.
Combining this with (2.23) we obtain
LoV f13 = 2VOLOf, VO g > —(K§ + KDV f3 = —K°|V°f[3, feC®(M°),

which means that the Bakry-Emery curvature of L? is bounded below by —K?. By the same
reason leading to (2.17) and (2.18), this implies (2.20) and (2.21).



(2) To estimate || P|| 1o (uo) Lo (uo), We make use of [10, Theorem 4.5(b)] or [11, Theorem
3.3.15(2)], which says that (2.9) implies the super Poincaré inequality

po(f2) < ruo([Vf12) + B(L+ 7= ) uo(| )2, f € CH(M)
P10

ks, By L? = ¢Ly we obtain

£(f.9) = — /M FLOgdu? = —@ /M F Logdjio =

for some constant 3 > 0. Let pu? =

1
— M vf7v9 ) fageczM'
M@d< ) b (M)
Then the above super Poincaré inequality implies
_ds2
PO < v ) + B A+ ) f])°, f € Cy(M)
for some constant 5 > 0. Using [10, Theorem 4.5(b)] or [11, Theorem 3.3.15(2)] again, this
implies
_d+2
17| o oy Lo oy < R(LAE)T 20

for some constant k > 0. Noting that

t>0,pe€ll, ]

ol 10 < 1 < (|9 llooto,
we find a constant ¢ > 0 such that (2.22) holds. O
Lemma 2.4. For any p € (1, 00|, there exists a constant ¢ > 0 such that for any f € D(Ly),
_ _1_d+2 1_di2
(224) VPl < e { (LA 5 fllingu) + (LA DT 5 | Lo liouy ). ¢ > 0.

Consequently, there exists a constant ¢ > 0 such that

(2.25) IV (g e < cm@a, m > 1.

Proof. (a) By the semigroup property and the LP(ju) contraction of P?, for the proof of
(2.24) it suffices to consider ¢ € (0, 1]. Since 1 < ¢ € C°(M), we have P (L) = 2(L?) and

¢

(2.26) FOF=PPF = [ P26~ DEY Lofds, 20,7 € 9(L)
0

Next, by (2.20) and (2.22), we find constants ¢, ¢ > 0 such that

IVP? flloo = IV P (P )l

(2'27) 1 _1_d+2
< 1t ™3| Py flloo < cat ™27 | fllooguy, £ € (0,1].

Combining this with (2.11) and (2.20), we find constants c3, ¢4 > 0 such that
t t 1 1
[ IVP@ - DR Laflnds < ey [ s H{PIPL Loy | s
0 0

8



% _1 0 t _1 é 0 1
§03/ s 2]|Pt_sLof|]oods+03/ s 2H{PS \Pt_sLof\p}pHOOds
0 t

2
<c3
0

1 d+2
< cqyt2 2 HLofHLP(uo)'

|+

t
_1 _1
5 2!IPtO_SIILP(uoHmeO)HLofHLp(uo)dS+Csﬂ 572 | P2 || 1o (o) Lo o) 1 Lo S Nl o o)
2

Substituting this and (2.27) into (2.26), we prove (2.24).
(b) Applying (2.24) to p = o0, f = ¢y’ t = (A — Ao) ! and using (2.6), we obtain

e IV(0m®y oo < c1(hm = A0)2 |Gmdp floos m >1
for some constant ¢; > 0. This together with (2.1) and (2.12) implies (2.25) for some constant
c>0. [
3 Upper bound estimate
According to [15, Lemma 2.3], we have

|VL (hy — 1)|

(31) :u’taluo h,, dlu’a
t7
where du ;
Hi a—
hi = b) = 1y, _
! dpo’ A (a.0) tanb>0} loga —logb

So, to investigate the upper bound estimate, we first calculate Ay.
By (2.8), we have

(3.2) / ¢o(2)p2(z, v (dr) = v(do) + ZIJ e~ Gm=Ralsgy pol 5 >0,
m=1
Next, (2.5) and (2.8) imply

(33)  w(PPf) = e u(goP (S5 ) = e /M Wor fdue, f € (M),

where 1 (M) is the class of nonnegative measurable functions on M. Moreover, for any
t > s >0, by the Markov property, (2.3), (2.5) and (3.3), we obtain

/M AR 6 Ler] = B [£(Xo)Linery (P21)(X,)] = v(PP{fPP,1})

= | WP 00" ), f € (),



Then
dE"[0x, Lis<ry]

dpi

= ei)\otqujptofsqﬁal-
Noting that (3.3) implies
E'[1j<ry] = v(P/1) = e uo(vyd ') = e (g0 Py '),

we arrive at

duy 1 CARY [0 x, 1gier
h;/ — /"Lt / [Xs {t< }]dS:1+pty,

duy  tEV 1o, d
(3'4) Ko {t<7} Ho

1 t
vVo.— I/PO -1 PO -1 ds.
Py tV(¢ORfo¢al>/0 {ws t—s¢0 V(d)ﬂ t¢0 )} S
By (2.11), [|¢ollec < 00 and [|¢g " || 22(uy) = 1, we find a constant ¢ > 0 such that

V(6P 'dg ") — V(o) (o) < v(do)l| PPy — po(dn )l

3.5
(3:5) <cem MM > e B

Due to the lack of simple representation of the product ¥” P? .¢;" in terms of the eigen-
basis {Gmdy* tm>0, it is inconvenient to estimate the upper bound in (3.1). To this end,
below we reduce this product to a linear combination of ¥ and PP .¢;', for which the
spectral representation works. Write

VP b —v(doP ¢y ") = Li(s) + Ia(s),

(3.6) Ii(s) = {v} —v(d0)} - {PLidg" — (o)} + v(do{n(do) — Plég'}),
Iy(s) = u(¢o){vl — v(do)} + v(do){ P dq" — 1u(do)}-

By (2.7), (2.8) and (3.2), we have

P by — (o) = > plm)e” Om 2= 5,
(3.7) .
W= (o) = v(bm)e Mm% 0000, £ > 5> 0.
m=1
Then
1 t
v = 0y -~ _[ d - At,
S <¢0P0¢01>/0 1(s)ds
() v (Pm) + v(Po) il dm) ,
(3.8) 5= (¢0P0¢0 Zl - S ° Oy "
. {1(00)v(dm) + V(o) Py ) e~ Am o)t
t - tV(QSOPOgbO mZ:l )\ _ )\0 ¢m¢0 .

Since p? € L' (), the following lemma implies p¢ € L'(ug) for t > 0.

10



Lemma 3.1. There exists a constant ¢ > 0 such that
(3.9) o(lp! = A1) < cllbllzgne ™, £ 0,0 = hu € P,

Proof. By (2.1) and (2.12), for any t, > 0 we find a constant ¢y > 0 such that

(3.10) Dl gmllsce™ P < cgem TR g > g

m=1

Combining this with (3.8) and (3.5), and noting that ||h¢y '||12(u) = |Allr2(. it suffices to
find a constant ¢; > 0 such that

1 [ _ — (M-
(311) B =~ /0 [0 = v(0)} AP 66" = 1(00) | 11y 45 < callBllizguye™ 2%, ¢ > .

Since ||y || r2(u) = 1 and ¢¥ = P§(h¢y") for v = hy, by (2.10), we find a constant ¢; > 0
such that

1 [ _ _ _ _
B < n /0 1P b5 = ho(d 1)||L2(M0)||P£(h¢0 Y) — po(hy 1)HLQ(uo)dS

1 t
S ;/0‘ ”Pto_s - /’LOHLQ(#O)HPSO — /’LOHLZ(#O)HhHLQ(u)dS

< C1HhHL2(u)ei(AliAo)t, t>0.

Lemma 3.2. For any o > 0, there exist constants co,ty > 0 such that

- Co
3.12 > t >t P .
( ) Py = V(d)o)t, = lo, V c 0,V € 0

Consequently, if v = hu with h € L*(u), then it := (1 + pY)uo is a probability measure for
t> to(l + C()).

Proof. By Lemma 3.1, if v = hu with h € L*(u), we have p¢ € L'(ug) for t > 0, and it
is easy to see that po(py) = 0. Since (3.12) implies 1 + g > 0 for ¢ > to(1 + o), i} is a
probability measure. It remains to prove (3.12).

By (3.5) and (3.8), it suffices to find a constant ¢; > 0 such that

(3.13) g = i “(%)”(Qbf\l) + v(¢0) 1(Pm)

m=1

By (2.1) and (2.12), we have

 2/|P0llollSmllooll 6m 5 Ml
(3.14) 1PPglle < e = 37 T e T < o0
m=1 m

11



Next, by (3.7) and the same formula for ;1 = v, we obtain
(3.15)  Plg = (=Lo)~ {u(¢o) (&) — v(¢o)) + (o) (V& — 1u(d0))} = (—Lo) " gss 5 >0,
where by ¢, 0%, ¥ > 0,
= 11(¢0) (Vb — V(o)) + V(o) (V4 — u(do)) = —2u(do)v(¢0) = —2v(do), s > 0.
This together with (3.15) yields
—LoP’g > —2u(dy), s> 0.

Therefore, it follows from (3.14) that

1
g=Plg— / LoPPgdr > —cs — 20(d9) > —cs — 2| o]|e.
0

So, (3.13) holds for ¢; = ¢z + 2||¢o||co- O

Lemma 3.3. There exist constants c,ty > 0 such that for anyt > ty, and any v € Py with
v = hy such that h € L*(p), we have i¥ € Py and

(3.16) t*Wa(fiy, po)* <

1+ct! {v(¢o) o ¢m + 11(0)v(dm) }
~ {u(po)v(o) }22 m = Xo)? .

Proof. By Lemma 3.2, there exist constants ¢,y > 0 such that gf € &, for t > t,, and

AMLFH ) ZIA L+ ) > fo

“Tran 17

So, [15, Lemma 2.3] implies

IVLO Pt|2

3.17 o)t < | ——— Tt
( ) WQ(uta/'LO) = M%(l_‘_ ?’1)

dpo < (1+ et Dpo(IVLG 5Y[%), t > to.

Next, (2.6) and (3.8) yield

uo(IVLy 9y *) =

1 {1(d0)v(dm) + v(do)p (¢m)}2
{v(poPdy")}? Z (Am — Ao)? '

Combining this with (3.5) and (3.17), we finish the proof. O

m=1

We are now ready to prove the following result.

Proposition 3.4. For any v € &,

(3.18) lim sup {*Wa(uf, 10)*} < 1.

t—o00

12



Proof. (1) We first consider v = hu with h € L?(u). Let D be the diameter of M. By
Lemma 3.1, there exist constants ci,%y > 0 such that fy is probability measure for ¢t >
and

(3.19)  Wy(uy, if)* < D2y = i lloar = D2po(lpf = AY1) < crllhl|2gne™ M, ¢ > to.
Combining this with Lemma 3.3 and the triangle inequality of Wy, we obtain
(3.20) Wy (u!, 10)? < (148 Heyt2em M2 bl 2y + (1 4+ 0) (1 +ct ™I, §> 0.

(2) In general, we may go back to the first situation by shifting a small time £ > 0.
More precisely, by the Markov property, (2.3), (2.5) and (3.2), for any f € %,(M) and
t>s>¢e >0, we have

Ey[f(Xs)l{iKT}] =[E" [1{€<T}EXE (f(Xsfs)l{tfs<T})]

= /MpsD(x7y)Ey[f(Xs—a>1{t—8<7}]”(dx)ﬂ(dy)
= e N /M (Ve 00) (W) EY[f (Xs—) Lip—eary|rv(dz) p(dy).

With f =1 this implies
Pﬂhcﬂze”“/(%@MMW@—€<TWMMM@M
M

So, letting
Ve = Ve do =: hep,
(W ¢o)

we arrive at

o Ey[f(Xs)l{t<T}] _ Ee [f(Xs—e)l{t—£<'r}]

E"[f(X)|t = =E"[f(X,_o)|t — )
FOXIE < 7] = S0t b (Xt —e <
Therefore,
1 t
(3.21) Wy = P / E"(Ox. |t <7T)ds ==, t>e.
Since

(¥l o) = /Mpg(%y)¢o($)¢o(y)V(d$)M(dy) =v(ooP205") = v(¢o) ol = a >0,
by (2.9) we find a constant ¢y > 0 such that

_ 1w _ _dt2
(3:22)  |hetg llz20u0) < @ U L2 (u0) < @7 I@olloo P2l L) < 2672, € € (0,1).
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Then (3.20) and (3.21) yield

t2W2 (ﬂ’ty,aa MO)Q

3.23
(3.23) <1+ (5’1)clcgafthe’(’\“AO)te’% +(1+8)1+ct™ DI, 6§>0,e€(0,1),

where

o {Va ¢0 (¢m)+ﬂ<¢0>y~6<¢m)}2
1= oo %}22 O — 20)? |

By (2.5), (2.6) and (3.2), we have

p(ldo) = v(go P ¢y ') = v (PP1),
(Wuo) = (G P (dmdy ') = e O w(6,),
so that - v(6m)
V€(¢m> = Tn)m’ m Z 0

Thus, lim. o v:(¢o) = v(do) and there exists a constant C' > 1 such that
(3.24) Cle ™ (pm)| < [ve(dm)| < Clu(dm)], m >1,e € (0,1).

Therefore, if I < oo, by this and

(3.25) > pdm)? < p(l) =1,

m=

—_

we may apply the dominated convergence theorem to derive lim. .o I. = I. On the other
hand, if I = oo, which is equivalent to

o0

Z _)\0 = %0

m:l

then by (3.24) and the monotone convergence theorem we get

i Va(¢m)2 ) —2XAme,, 2
111511_3011f 2 m >C hran_}glf Z — )\0 = 00,

which together with (3.25) and v.(¢g) — v(¢o) implies

o S (nlon) (6060
Bt e = o)) 1Hofm,1 o — Ao)?

| L (G0) ()12 — [[9olZpa(Bn)?
2 Tldo o it Con = ho)? -

14



In conclusion, we have

(3.26) lim . = I.

e—0

This together with (3.23) for e = ¢~ gives

(3.27) limsup {*Wa (1,2, p10)*} < I.

t—o0
On the other hand, it is easy to see that
2e

lite = 1 lloar < = 0 <<t
so that
(3.28) Wo(pfs 11y —2)* < D2\ -2 = 1] lloar < 2D%t7%, 1> 1.
Combining this with (3.27), we prove (3.18). O

4 Lower bound estimate and the finiteness of the limit

We will follow the idea of [1, 15], for which we need to modify fi} as follows. For any 5 > 0,
consider

fiy 5 = (L4 p} g)po, prg = Plapy, t>0.
According to Lemma 3.2, there exists to > 0 such that

Tv ~v 1 Tv ~v 1
(4.1) hi ==1+p; =2 2’ hig:=1+pig=> b%

6>0,t>t.
Consequently, [y ; and fif are probability measures for any > 0,1 > fo.
Lemma 4.1. For any 8 > 0, there exists a constant ¢ > 0 such that f; 3 := Lalﬁgﬁ satisfies
58d_q
1ft.6lloo + 1 Lo ftslloc + IV feplloc < et 77, £ 1.

Proof. By (2.6) and (3.8), we have

= V() + (o) iy ) o= Pm=20)t77 -1
o= S5 L)+ (00 0 (ot

t(Am — o) 2 (o P29y ")

— S {r(o)v(om) + V(qso)ﬂ(qﬁm)}e—(Am—Ao)rﬁ
Lofip = mz_l t(Am — )‘O)V(Qbopto¢al)

Combining these with (2.1), (2.12), (3.5), and

(bmp ")
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for some constant c¢g > 0, we find constants c1, ca, ¢3, ¢4, ¢5 > 0 such that

2 o= (Am—ho)i=8 9522
t L <
(Wil + afuall} < 00 35—,
e 2 -8 3d—2 o0 2 —B 3d—2 B(5d—2)
SCQZG_CBmdt m’2d §64/ e U gha ds < st 4, t>1.
0

m=1
Similarly, by (2.25) we find constants ¢}, ¢, ¢5 > 0 such that

0 —(Am—Ag)t—#  3d+d

, e m2d
tvatﬂHOO Sclz ()\m_)\O)Q
m=1
< C/2 Ze—c;;m%ramszf < cétﬁwjf{l), £>1.
m=1
Then the proof is finished. O
Lemma 4.2. For any (5 € (0, 20%], there exits a constant ¢ > 0 such that
1—ct! — {1(hgo) o (dm) + 1(d0) v (Pm)} L
Wy (1 5, p1o)? > —ct 1.
o i0)” 2 T e 2 O = 0)?

Proof. To estimate Wy(jif , j1o) from below by using the argument in [1, 15], we take
wy = —clog Pgﬁe_aflftﬁ, 6 €0,1],e > 0.
2

We have ¢f = fi5, [|¥5llco < || ft.8]l00, and by [15, Lemma 2.9], there exists a constant ¢; > 0
such that for any ¢ € (0,1),

N —

piy) — ¢i(r) < S{p(@.y)* +ell(Lofis) e + Vel Vsl ) @y €M,

1 _
| =D <5 [ 19haPd + = IV sl
M M

N

Therefore, by the Kantorovich dual formula, ¢j = f; s and the integration by parts formula

/ ft,ﬁﬁty,ﬁdﬂoz/ ft,ﬁLoft,ﬁduo:—/ IV f1.5/7 o,
M M M

we find a constant ¢ > 0 such that

L 1 ~v € e 1~V
C(sllﬂoft,ﬁlloo+€2HVft,ﬁH§o)+§Wz(ut,5,uo)2Z/Msolduo—/Msoodut,ﬁ
(4.2) = / (] — w5)dpo — / fr.801 sdpo = / (9] — w)dpo — / fe.5Lo frpd 1o
M M M M
1
> 5/ IV frp?dpo — ce 7|V fupll .
M

16



Taking e =t~ 2 and applying Lemma 4.1, when 8 < m we find a constant ¢ > 0 such that

(4.3) PWa(ii g, 10)* > o[V fopl’) = €475, £ > o,
Combining this with (3.5) and (4.3), we complete the proof. O

Lemma 4.3. There exist constants c,ty > 0 such that for any v = hu € Py with h € L*(u),
iy s 1y € Po fort >ty and

tWo(iiy g, 1) < cllPllrzgt™, > to.

Proof. jif 4, jif € P for large t is implied by Lemma 3.2. Next, by (4.1), we have

1
‘%(hga hy ) 2 5?
so that [15, Lemma 2.3 implies

\VL — hY )2
(4.4) Waliy g, i) h” ) dpo < 2u0(IVLg (57 — prp))-
ty '8

To estimate the upper bound in this inequality, we first observe that by (3.7) and (3.8),
when v = hy we have
5
Ly~ ) = L' (it — ) = [ Pl
(4.5) i 0

_ 1 ! _ -1 0 __
~ Ty C —w

where

= j(do)hy " + v(do)ey '
Since ||h||z2(u) > p(h) = 1,

(4.6) 191122u0) < 1@0lloo (1 + 1Al £20)) < 2llo0lloo] [Pl 2()

By (2.10), (4.6) and the fact that (—Lo)~2 = ¢ [;~ Pds for some constant ¢ > 0, we find a
constants ¢, co > 0 such that

VL (PP = 10)gll 12(u0) = HL — 110) 91 £2 (o) </O (P, s = 10) 9l 22(0)d
< CthHLQ(u)/ e~ (M1=20)(s%+7) 4 < CQHhHLQ(N)’ r € [0,1].
1

Therefore, by (3.5) and (4.5), we find constants ¢ > 0 such that
! t=8
IV Lo (55 = P 22(uo) < ;/0 VLG (P? = p0)gll r2uoydr < et DR]| 2), > to.

Combining this with (4.4) we finish the proof. O
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We are now ready to prove the following result.

Proposition 4.4. For any v € &,

(4.7) lim inf {*Wa (1), po)*} > 1 > 0,
t—o0
and I < o0 prom’ded either d <5, or d > 6 but v = hu with u(h?) A uo(|hgyt?) < oo for
2(d+2)
some p > d+6 and q > =

Proof. Let 8 € (0, 557]. By (3.19), Lemma 4.2 and Lemma 4.3, there exist constants ¢, ty > 0
such that for v = huy € &y and t > t,

tWapif, if) < |l 2t ™,

tWa(ji g, p10) > ({(1 —et™)I - ct—%)+}%7

tWo(pg 1) < cte_(”\l—/\O)t/2Hh”%ﬁ(#)'
Then

1 1
(4.8) tWa(uy, o) > ({(1—ct ) I—ct™ )t} —c||h| gyt~ —cte= M 202 12, ¢ > ¢,

(n)’

In general, let pif . = p1i° . be in the proof of Proposition 3.4. Applying (4.8) to 1y ;-2 replacing
py and using (3.22), (3.26), we obtain

htrg(lgjlf {th (/th&, Mo)} Z \/7,

which together with (3.28) proves (4.7).
It remains to prove I > 0 and I < oo the under given conditions, where due to (3.25),
I < oo is equivalent to

(4.9) I' = Z % < 00.

m=1

Below we first prove I > 0 then shown I’ < oo under the given conditions.
(a) I > 0. If this is not true, then

p(heo)p(m) = — (o) p(hm), m = 1.
Combining this with the representation in L?(1)

= ufén)bm f€ L),
m=0

where the equation holds point-wisely if f € C,(M) by the continuity, we obtain

= 1(fbm)(do)v(dm) = 2p(fbo)v ) =) 1 bm)t(bm) (o)
m=0 m=0

18



= 2p(fo)v (o) (o) — v(do)u(f), [ € Co(M).
Consequently,

0< M(%)j—: — 20w (o) 1(do) — (o),

which is however impossible since the upper bound is negative in a neighborhood of M,
because v(M°) > 0 implies v(¢g) > 0 for ¢ > 0in M°, and ¢y is continuous with ¢g|ar = 0.
Therefore, we must have I > 0.

(b) I' < oo for d < 5. By (2.6), (3.2), and (—Lg)~7 = ¢ [;° P%ds for some constant
c > 0, we obtain

VT =

/ T Lo) Hu — v(do)}dr o

/ dT’/ 52+7“/2 M0)¢:/2||L2(M0)d8'

Noting that (3.2) and (2.8) imply [[¢)}5 |21 () = (o) < 00 and

(4.10)

() pto) = o/ / Pha(x, y)v(dr)u(dy) < /2,

MxM
by (2.4) and (2.5), we find a constant ¢; > 0 such that

(s24r )\OH

(P2 s = uo) Urall2uoy < 17 allorguo) + @ 2 irs2llL -2

<c(s*+7r)” g <c(s*+r)” 3, s24+r/2<1,d<5,

and due to (2.11)

||(P2+r/2 No)wr/QHL? (no) = || s24r/2 T M0||L1(Mo)—>L2(M0)Hw:/QHLl(Mo)
< g MR/ 2y >

holds for some constant ¢; > 0. Combining these with (4.10), we prove I' < 0.
(c) I' < oo for d > 6 and v = hp with h € LP(u) for some p > d+6 Since {Gmdy * Fmso is
an orthonormal basis of L?(yg) and pio(hgy* — pu(heo)) = 0, we have

hoy' — p(heo) = ZMO {hegt — 1(heo) }dmdy ") dmdy

so that (2.6) and juo(¢ndp*) = 0 for m > 1 yield

3 e hoot — p(h m ~1
(—Lo)H (o — uthon)) = 3 Polli” —nho}ondy]) o
m=1 (/\m - )‘0>2
~ ju(hom) .
"2 Dt
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Thus,
(4.11) I' = ||(~Lo) "2 (hdg " — u(h%))Hiz(,m)-

Noting that po((hdy' — pu(hdg)) = 0 and (—Lg)~2 = cfyr PtO% dt for some constant ¢ > 0,

combining this with (2.4), (2.5), (2.11), ||h¢g " l|21(se) < o0, and ||h||Le(u,) < oo for some

2(d+2
p e (22

2) as we have assumed, we find constants ¢y, ¢y > 0 such that
I > _
1(=Lo) ™2 (A" — pa(hbo))l| 20y < /0 1P — 110){hebg " Hl 1) At
) 1 3
<165 st [ 1P = byt + [ 165 PR = (G0doMlozgudt
1

oo 1 3
= 17 121 (u0) /1 1P = toll oy £2uoydt + /0 | PE{h — v(¢0)do} |2 dt

00 1 1
C _d(2—-p)
< Cl/ e~ (M=)t 3¢ + Cl/ ||P£ ||Lp(u)_>L2(M)dt < 5 L T + Cg/ t o dt < oo,
1 0 17— A0 0

2d
d+6
(d) I < oo for d > 6 and v = hy with héy' € LI(pg) for some ¢ > 22 By (2.11) we

d+8
find constants ¢, co > 0 such that

since p > implies d(Qﬁ—;p) < 1. Combining this with (4.11) we prove (4.9).

_3 _ oo _
1= L0) 205" = odu oy < [ 1P = o) (g Hlozguo
0
< [ 1P = ol a5 g
< cl/ {1 t}_wﬂgfiq> o~ a=20)t8 gy < 00
0

2(d+2)

d+8 <l

implies

: (d+2)(2—q)
since q > e
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