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Abstract

Let M be a d-dimensional connected compact Riemannian manifold with boundary
OM, let V € C?(M) such that u(dz) := ¢V@dz is a probability measure, and let X;
be the diffusion process generated by L := A + VV with 7 :=inf{t > 0: X; € OM}.
Consider the empirical measure py := % fg dx.ds under the condition t < 7 for the
diffusion process. If d < 3, then for any initial distribution not fully supported on 0M,

c Zl — )\0 5 < htrgloglf%r;ft {tE[W2(Mt,M0)2‘T < T]}

o0

< limsupsup{ E[Wa(pt, o) |T <T } < Z #

t—oo T>t m:1 - /\0)2

holds for some constant ¢ € (0,1] with ¢ = 1 when M is convex, where pg 1= ¢3u
for the first Dirichet eigenfunction ¢g of L, {\n, }m>0 are the Dirichlet eigenvalues of
—L listed in the increasing order counting multiplicities, and the upper bound is finite
if and only if d < 3. When d = 4, supthE[Wg(ut,ﬂo)2|T < 7| decays in the order

t~!logt, while for d > 5 it behaves like t_d%, as t — oo.
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1 Introduction

Let M be a d-dimensional connected complete Riemannian manifold with a smooth boundary
OM. Let V € C?(M) such that p(dx) = e”®duz is a probability measure on M, where dx is
the Riemannian volume measure. Let X; be the diffusion process generated by L := A+VV
with hitting time

7:=inf{t > 0: X, € OM}.

Denote by & the set of all probability measures on M, and let E” be the expectation taken
for the diffusion process with initial distribution v € &?. We consider the empirical measure

1 t
Ht = —/ 5Xsd8, t>0
13 0

under the condition that t < 7. Since 7 = 0 when Xy € OM, to ensure P¥(7 > t) > 0,
where P is the probability taken for the diffusion process with initial distribution v, we only
consider

ve Py ={veP: v(M°) >0}, M°:=M)\OIM.

Let po = ¢2u, where ¢y is the first Dirichlet eigenfunction. We investigate the convergence
rate of EY[Wy (s, po)?|t < 7] as t — oo, where W, is the L:-Wasserstein distance induced
by the Riemannian metric p. In general, for any p > 1,

W, (p1, p2) == inf (/ p(m,y)pﬂ(dx,dy)) . M, e € P,
MxM

WG%(NI 1“’2)

where € (1, p2) is the set of all probability measures on M x M with marginal distributions
w1 and po, and p(z,y) is the Riemannian distance between z and y, i.e. the length of the
shortest curve on M linking x and y.

Recently, the convergence rate under Wy has been characterized in [21] for the empirical
measures of the L-diffusion processes without boundary (i.e. dM = (}) or with a reflecting
boundary. Moreover, the convergence of Wy (uy, 149) for the conditional empirical measure

i =E (ult <), t>0

is investigated in [20]. Comparing with E*[Wy(u, po)?|t < 7], in p? the conditional expecta-
tion inside the Wasserstein distance. According to [20], Wy (¥, 19)? behaves as t 72, whereas
the following result says that E[Wy(uy, 110)?|t < 7] decays at a slower rate, which coincides
with the rate of E[Wy(fi, 1)?] given by [21, Theorems 1.1, 1.2], where fi; is the empirical
measure of the reflecting diffusion process generated by L.

Theorem 1.1. Let {\,,}m>0 be the Dirichlet eigenvalues of —L listed in the increasing order
counting multiplicities. Then for any v € Py, the following assertions hold.

(1) In general,

. 14 S —2
(1.1) hﬂigp {tsTuZ;;]E [WQ(MmMO)Q}T < T}} < mZ=1 Om — Xo)2



and there exists a constant ¢ > 0 such that

(1.2) h{ggf {tlanE [Wg(ut,uo |T <T } > CZ — )\0

If OM is convez, then (1.2) holds for ¢ =1 so that
lim {tE (W (pae, p0)*|T < T}} = i 2z uniformly in T >t
t—00 b Om — Xo)? =t

(2) When d =4, there exists a constant ¢ > 0 such that
(1.3) sTu>pIE” [WQ(/,Lt,/,LO)2’T <7] <ct 'logt, t>2.
>t

(3) When d > 5, there exist a constant ¢ > 1 such that

o B < E¥ [W1(Mt,/ﬁo)2’T < T] < E¥ [Wg(,ut,,uo)z‘T < T} < T3 T >t > 2.

Y

Let X? be the diffusion process generated by L := L+2V log ¢ in M°. Tt is well known
that for any initial distribution supported on M°, the law of {X? : s € [0,¢]} is the weak
limit of the conditional distribution of {X; : s € [0,¢]} given T" < 7 as T" — oo. Therefore,
the following is a direct consequence of Theorem 1.1.

Corollary 1.2. Let pf = 1 [ dxods. Let v € Py with v(M°) = 1.
(1) In general,

lim sup {tE” (W2 (st 110)?] } < f: A — )2

t—o00

and there exists a constant ¢ > 0 such that

lim inf {tmf [Wa (e, 110)? }} > Ci #

t—ro0 o ()\m — )\0)2
If OM is convez, then
lim {t]E” [Wg(/.l,t NO)Q}} = i #
t—00 ’ ot (Am — Xo)2

(2) When d =4, there exists a constant ¢ > 0 such that
E [Wg(u?,uo)z} <cttlogt, t>2.
(3) When d > 5, there exists a constant ¢ > 1 such that
o R < EY [Wg(ﬂ?,ﬂg)Q] < ct_ﬁ, t> 2.

In the next section, we first recall some facts on the Dirichlet semigroup and the diffusion
semigroup P generated by Lo := L+2V log ¢y, then establish the Bismut derivative formula
for P which will be used to estimate the lower bound of E”[Way(j1t, 110)2|t < 7). With these
preparations, we prove Propositions 3.1 and 4.1 in Sections 3 and 4 respectively, which imply
Theorem 1.1.



2 Some preparations

As in [21], we first recall some well known facts on the Dirichlet semigroup, see for instances
5, 6, 12, 19]. Let {d,, }m>0 be the eigenbasis of the Dirichlet operator L in L?(u), with
Dirichlet eigenvalues {\,, }:m>0 of —L listed in the increasing order counting multiplicities.
Then A\g > 0 and

2.1 ¢m o < 050\/%7 ailm% < An— )\0 < Oéom%, m>1
0

holds for some constant g > 1. Let pg be the Riemannian distance function to the boundary
OM. Then ¢;'ps is bounded such that

(2.2) 160 | o Guo) < 00, p € [1,3).
The Dirichlet heat kernel has the representation

(2.3) Ze At () om (y), t> 0,2,y € M.

m=0

Let E* denote the expectation for the L-diffusion process starting at point x. Then Dirichlet
diffusion semigroup generated by L is given by

PP f(x) == E[f(X)1gen)] = /Mpf)(ﬂay)f(y)u(dy)
(2'4) [oe)
=Y e M (G f)bm(x), t>0,f€ L (p).

Consequently,
(2.5) lim {'P"(t < 7)} = lim {M'V(PP1)} = p(do)v(do), v € P

t—o00 t—00

Moreover, there exists a constant ¢ > 0 such that

_ _d(g—p)
(2.6) HPtDHLP(H)ﬁLq(#) = (‘Sllllé) ||Pth||Lq(u) < ce Aot(l /\t) e o t>0,g>p>1.
u(lfIP)<1

On the other hand, let Ly = L + 2V log ¢o. Noting that Lof = ¢y L(f¢o) + Aof, Lo is a
self-adjoint operator in L?(j) and the associated semigroup P := el satisfies

(2.7) PYf =™y PP(foo), [ € L (no), t=0.

S0, {¢g b }m>o is an eigenbasis of Ly in L?(ug) with
(2.8)  Lo(dmdp ') = —(Am = No)dmdo s PL(dmep ') = e P2 65t m > 0,t > 0.

Consequently,

(2.9) Pf =" po(fomdy e O o5, f € L (o),
m=0



and the heat kernel of P? with respect to jq is given by

(2.10) =Y (bmdo ) (@) (g (e 2Nz y e Mt > 0.
m=0

By the intrinsic ultracontractivity, see for instance [13], there exists a constant a; > 1 such
that

211 PY_ - PYf_ < M t>0
(2.11) 15 = ol 1 (uoy—= L) == sup |7 f — po(f)lleo < s t>0.
po(|f)<1 (IAt)z

Combining this with the semigroup property and the contraction of PP in LP(u) for any
p > 1, we find a constant as > 1 such that

(212) 1B = pollergue) = sup 1Pf = po(f) ooy < age” M7 £ > 0,p > 1.
pol1P)<1

By the interpolation theorem, (2.11) and (2.12) yield that for some constant a3 > 0,

(d+2)(g—p)
(213)  [1PY = ftoll ze(uoyspaue) < aze” M TLA LT T > 0,00 > ¢ > p> 1.

By this and (2.8), there exists a constant a4 > 0 such that

(2.14) Gmds oo < cum @, m > 1.

In the remainder of this section, we establish the Bismut derivative formula for PP, which
is not included by existing results due to the singularity of Vlog ¢y in Ly. Let X? be the
diffusion process generated by Ly, which solves the following 1t6 SDE on M°, see [8]:

(2.15) A" X0 = V(V + 2log ¢)(X0)dt + V2U,dB,,

where B; is the d-dimensional Brownian motion, and U; € Oxo(M) is the horizontal lift of
X? to the frame bundle O(M). Let Ric and Hess be the Ricci curvature and the Hessian
tensor on M respectively. Then the Bakry-Emery curvature of L is given by

Ricr, := Ric — Hessy 1 210g ¢ -
Let Ric?,(U;) € R? @ R? be defined by
(Ric?, (U;)a, b)ga = Ricy, (Usa, Upd), a,b € R

We consider the following ODE on R¢ @ R%:

(2.16) S0 = Rich(U)Q Q=1

where [ is the identity matrix.



Lemma 2.1. For any ¢ > 0, there exist constants 01,09 > 0 such that
(2.17) [0t o (00X 72] < 5, 6e (2)ed? ¢ > 0,0 € M°.
Consequently,

(1) For anye >0 and p > 1, there exists a constant k > 0 such that

IVPf(2)? < wo(x) =™ { PV [ (2)}7, [ e CHM).

(2) For anye > 0 and p > 1, there exists a constant k > 0 such that for any stopping time

T,

E*[|Qenr ] < kigpo(x) "e™, ¢ > 0.

Proof. Since Loy = —Aodo, ¢o > 0 in M°, ||¢pllee < 00 and |V¢y| is strictly positive in a
neighborhood of OM, we find a constant ¢y, cs > 0 such that

Lolog ¢g" = =y ' Lo + 652 [Vo|* — 2652 Vo[ < e1 — cadhg™.
So, by (2.15) and It6’s formula, we obtain
dlog g5 (X7) < {er — 2052 (X))}dt + V2(Viog 651 (X)), Und By).
This implies
t
(2.18) ]E””/ [0 2(X?)]ds < ct + clog(1 + ¢ ) (x), t>0
0
for some constant ¢ > 0, and for any constant § > 0,
E® [85C2 I ¢0_2(X§)}ds] < E® [ea log ¢ ' (z)+3 log o (XP)+c18t—5v/2 [ (V log ¢0(Xg),Usst>]
< €195 (@) ol (B[ IV 1omonl* (X010 2
Let c3 = 4|V ||%, and take § € (0, ca/c3], we derive
E” [e’ I d’O_Q(Xg)}ds] < e P(x), 6 €(0,ca/cs).

This implies (2.17). Below we prove assertions (1) and (2) respectively.
Since V € CZ(M) and ¢y € CZ(M) with ¢y > 0 in M°, there exists a constant oy > 0
such that

(2.19) Ricp, (U, U) > —ay¢y ' (2)|U]?, € M°,U € T, M.

By (2.15), (2.19), and the formulas of It6 and Bochner, for fixed ¢ > 0 this implies
dVPLfIH(XT)
= { Lol VPL (X)) = AV PLf, VLo PL ) }ds + V2AVIVEL f(X{), U,dB,)

6



> 2Ricpo( VP, f, VP f)(XD)ds + V2(V|VPY, f[*(X?), U,dB,)
—20:{¢g ' |VPLF)PHXO)ds + V2(VIV P, fI*(X,), UsdB)ds.

Then
IVR()FzEﬂVRﬂ%X®gEﬂwvwngﬁwm*mwﬂ
< {Brer b OB S RIV ()}

Combining this with (2.17), we prove (1).
Next, by (2.16) and (2.19), we obtain

||Qt/\7- || < M fo XO)ds t>0.

This together with (2.17) implies (2).

Lemma 2.2. For any t > 0 and v € C'([0,t]) with v(0) =0 and v(t) = 1, we have

t

@) VRS =B |00 [ 0QB.|, e s e a0
0

Consequently, for any e > 0 and p > 1, here exists a constant ¢ > 0 such that

0 C¢65 0| £1P\ 3 o
(2.21) VP f < —\/m(Pwt [fP)7, t>0,f € PBy(M°).

Proof. Since (2.21) follows from (2.20) with y(s) := &% and Lemma 2.1(2), it suffices to

¢
prove the Bismut formula (2.20). By an approximation argument, we only need to prove for

f € CL(M). The proof is standard by Elworthy Li’s martingale argument [7], see also [15].
By [V fl|lec < 00 and Lemma 2.1(1) for € = , we find a constant ¢; > 0 such that

(2.22) VPO f|(z) < clgb_1/4( ), sel0,t],ze M.
Next, since Loy = —Ao¢o implies Logy' = Ny *, by [td’s formula we obtain
(2.23) E*[dg " (Xins, )] < dg' (2)e™!, t2>0,n>1,
where 7, 1= inf{t > 0 : ¢o(X?) < 1} 1 0o as n T co by noting that the process X} is
non-explosive in M°.

Moreover, by Ito’s formula, for any a € R?, we have

d(VPtO_Sf(XS), UsQsa) = \/EHGSSPt—sf(UsdBw UsQsa) (X£)>
dP_o f(X)) = V2(VP f(X)),U.dB,), s€0,1].



Due to the integration by part formula, this and (0) = 0 imply

_%wwmwlmW@@%wﬂ

:ELA7Wv3;ﬂX®¢u%@a1—w@ﬂ
E[(l —7)(tA Tn)<VPt0—t/\Tnf( t/\Tn) Qtnr, @ H —(VEf(x), Ua)
_ EUO (1 - 7)(s)A(VP f(XY), Usta>}

E[(l —Y)(EA Tn)<VPt0—t/\Tnf( t/\m) Qinr, @ H — (VP f(z),Upa), n>1.

Since v is bounded with 7(t) = 1 such that (1 —~)(tA7,) — 0 as n — oo, and (2.22), (2.23)
and Lemma 2.1(2) imply

(VL f(X, ), Q)] < exsup (Bl (XD 1) (B7Qun, ) < oo,

n>1

by the dominated convergence theorem, we may take n — oo in (2.24) to derive (2.20). O

3 Upper bound estimates
In this section we prove the following result which includes upper bound estimates in Theo-
rem 1.1.
Proposition 3.1. Let v € &.
(1) (1.1) holds.

(2) When d =4, there exists a constant ¢ > 0 such that (1.3) holds.
(3) When d > 5, there exists a constant ¢ > 0 such that

v 2 -2
supE [Wg(ut,uo) |T<7‘] <ct a2, t>2.
T>t

The main tool in the study of the upper bound estimate is the following inequality due
to [1], see also [21, Lemma 2.3]: for any probability density g € L?(uq),

VL —1)]?
(3'1) Wy (9M07M0 / %dﬂo,

where 4 (a,b) := ml{am»o} To apply this inequality, as in [21], we first modify u; by
e = P2 for some r > 0, where for a probability measure v on M°, vP? is the law of the

Lo-diffusion process X? with initial distribution v. Obviously, by (2.10) we have

d/th T 1

ro= — = — sad_l Am = rm m_la
Pt, o t/o o ( § +Ze Um () PmPg

(3.2) v
— 1 [onoryxas



which are well-defined on the event {t < 7}.

Lemma 3.2. If d < 3 and v = hy with h¢g' € LP(uo) for some p > 2. then there exists
a constant ¢ > 0 such that

2(Am—Ao)r

m— Ao)?

sup
T>t

(B [10(|V Ly (oo — DA)|T < 7] =2 Z

2)

<ct_1( + 1yg=2y log r™ ), re(0,1],t> 1.

Proof. By the Markov property, (2.7) and (2.4), we have

Ew[f(‘)( )1{T<7'}] =[E” |:1{s<7'}f( )Exsl{T s<7’}:|
= PP{fPP_ 1} (x) = e T (¢o PH{fPp_y05'}) (x), s <T.

By the same reason, and noting that EV = [, E*v(dz), we derive

(3.3)

Ey[f(X81)f(X82))1{T<T}] = /M g [1{S1<T}f(XS1 )EXSl {f(X82—81)1{T*81<T}H V(dx)
“hoT (¢ [ So— 81{fP’JQ 32¢01}]) S1 < S2 < T

In particular, the formula with f =1 yields
PY(T < 7) = e T u(go P2y t).

Combining these with (3.2), (2.8), E*(¢|T < 1) = % for an integrable random

variable £, and the symmetry of P2 in L?(ug), for v = hu we obtain

o0

) ) tEV [V (1) IT < 7]
m=1 m

B i 2 [y dsi [1 B [Lzary (6mds (X)) (S )(XSQ)]ds2
= 120 =207 (X, — Ao )/(d0 PRy )

B i 2 [y dsy [1 v(d5 ' Po{omdy ' P [dmdo PP, 001} ds2
= te20m =207 (X,,, — M) (o PRy ")

* 2 [Fdsy [1 po({PS(heg )}y " PO, [6m5 " PI_, 05 ]) ds
te?(/\m—ko)r()\m . )‘O)NO(QS() IPIQ(thal)) .

m=1

By (2.13), |65 lr2(u) = 1 and [[heg | 11(ue) = #(h¢o) < [|¢ollse < 00, we find a constant
c1 > 0 such that

|16 " Pr(heg ) — 1u(do)v(do)l < lldg " (Pr = 110) (hg )| o)

(3.5)
< 1P2 = toll oy 220u0) 115 | 13 oy < cxe” 17T T > 1,



On the other hand, write

po({F5, (heg )} omey ' Py, [dmdy ' Pp_y, 5 ')
= v(o)pu(po)e™ MmN 2750 1 T (61 s0) + To(s1, 89) 4 J3(s1, 82),

),

(3.6)

o)

where, due to (2.

Ji(s1,52) = o ({ Py (g ') — 1(ho) oy ' Poy oy [dmo (Pr_o, 60" — 1(%0))]),
(31,52) p(¢o)e (Am*AO)(”’Sl)uo({Pi(h% ) = u(hdo) Homds ' 1),
) = p(heo)e” M g ({6,000 P PP, 00 1] — 1(90)})-

By (3.4), (3.5) and (3.6), we find a constant x > 0 such that

—2(/\m—>\0)
sup [tE” VL - NT < 7' -2
i TEI; [PJO(| (pr, } Z EPWE
(3 ) o 9] e,Q(Am Xo)r —2(Am—Xo)r
S ?m:1 (()\m — )\0>2 + )\m — )\0 / dSl/ |J1 + J2 + J3|(82, 82)d82) t Z 1.

Since [[hdy || Lru) < 00, |00 110wy < 00 for 8 < 3 due to (2.2), ||émdy ' ||lz2e) = 1, by
(2.13), for any 0 € (2,3), we find constants ¢;, ¢, > 0 such that

| J1 (51, 82)| < c1l|PY = 0l] 1o u0) =L (o) | PP—sy — 10l 120 (u0) 1% (o)

(3.8)

d+2

< cpemamRo)(sdT=s2) (] A 81)7%2{1 ANT = s2)}7 20

and
(2 + J3)(s1, 52)
(3.9) < e A (P — o + || Ppy, — /LOHLQ(uo)HL‘X’(uo))
< cge”Am—A0)(s2=s1) ({1 A 51}_%&@17’\0)51 +{1A(T - 52)}’ 20 ¢~ (M= )(t’”)).

Since ¢ > 2 and p > 42 imply 4 d+2 v d+2 < 1for d < 3, by (3.8) and (3.9), we find a constant
c>0 such that

/dsl/ |J1+J2+J3|(81,82)d S

@FIQ

T>t>1m>1.

Combining this with (3.7) and (2.1), we find constants cs, ¢4, ¢5, cg > 0 such that

2 o= (m=2o)r

sup [tE"[[no(|[VLy (prr — DT < 7] =Y —5
TZI? [[N0(| o (o, )| )| ] e (Am — Ao)?
X —2(Am—Xo)r o0 2 -2t

10



Lemma 3.3. There exists a constant ¢ > 0 such that for any t > 0 and nonnegative random
variable £ € o(X,: s <t),

supE"E|IT < 7] < E[EIt < 7], t>1,ve€ .
T>t

Proof. By the Markov property, (2.6) for p = ¢ = 0o and (2.5), we find constants ¢, ca > 0
such that

EV[@{T«}] = Ey[fl{t«}P%)ftl(Xt)] < Clef)‘O(Tft)Ey[fl{Kr}];
PY(T < 7) > P (t < 1) T T >¢>1,

Then
Ey[gl{T<T}] < ClE [51{t<‘r}]

E"¢IT < 7] = PUT <7 — oPY(t<T)

—E”[ﬂt <]
]

Lemma 3.4. Let d < 3 and denote vy = u(d:;o)“' For any e € (4 v 2f+47 1) # 0, there exists
a constant ¢ > 0 such that

sup B [|py. (y) — 1\2‘T <7] <egg(y)t'r e, t>1,r€(0,1],y € M°.
>t

Proof. By Lemma 3.3, it suffices to prove for T' = t replacing 7' > t. For fixed y € M°, let
f=70"y) — 1. We have
IOtr / f

(310)  E*[jpin(y) — 1P lyen] = / ds, / (L f (X f(Xor)] s

Then

By (3.3), uo(f) = 0, and the symmetry of P? in L?*(pg), we obtain

I := EY [1{t<r}f(X81)f(X82)} = N(¢O)_1 ( {f So— 81(fPt0 52¢61)})
(3.11) = M(%) Ho (f s2— sl<fPt0 52¢51)) = u(¢o)” Mo({fpto 32% 1} So— sl )
= M(¢O) MO({fPtO 32¢0 1}{ So—81 IU’O}f)

Taking ¢ € (2,3) so that &, := dQ—ff <1 ford <3 and ||¢y "] ragu,) < oo due to (2.2), for any
p € (1,2] we deduce from this and (2.13) that

H(00)T < || 11w uo) 1P @0 oo ao) | (Pl -y = 10) I,
(312) < 1 lleequo) 1Pl ouor» 2 o) |80 ooy 1Py s, = proll

< 1l flle o | fll L2y f 1A (€ = 52)} I A (52 = 51)} ™

0)
O)HfHLQ(,uo)
(d+2)

=2l (A1—Xo)(s2—51)

_p_
2(po)—=LP=T (p
(2

» e

11



holds for some constants ¢; > 0. Since f = p2(-,y) — 1 and inf ¢;' > 0, by (2.6) and (2.7),
we find constants S, B2 > 0 such that

120y < 14 R0 ) l2oan) < 1+ €005 ()16 27 ()|

_ 2=p _ _dp-1)
<1+ 5190 Wlgollod 17 G v)llogy < Bady ' (w)r™ 2, re(0,1],p € [1,2].

Combining this with (3.12) we find a constant ¢ > 0 such that

dp=1) _d (d+2)(2—p)

[<ogp ) HIAE=s)} " {1A(s2—s1)} % e mlbems) p e (1,2),

Taking p > pg :==1V (ddjg) such that

L d+22-p) _52-p)

4p 4p

<1,

we arrive at

_d(p—

1< 02¢_2(y) G 7{1 A(t—s2)} LA (52— 31)}_526_()\1_)‘0)(82_81)

for some constants €1,e5 € (0,1). Combining this with (3.10), we obtain

dlp—1) d

B [|per(y) — 1Pt < 7] < egg(y)t v~ 2 1, t>1.

Noting that

Cqdlp—1) dy d &

D (U S IV

s\ 2p 4 2dra ~lores
for any ¢ € ( Vv 2j+4, 1), there exists p > py such that % 2d+4 < e. Therefore, the proof is
finished. [

Lemma 3.5. Let d < 3 and denote i, (t) = + fg(qﬁmqﬁal)(Xs)ds. Then there ezists a constant
¢ > 0 such that for any p € [1,2],

p(d+4)—d—8

sTu>[;]E”° [[m@®)*[t <7] <em™ 20 77, t>1,m>1,r€(0,1).

Proof. By Lemma 3.3, it suffices to prove for T' =t replacing 7' > t. By Holder’s inequality,
we have

14 14 2- 1 -
B [[¢m(O)7IT < 7] < {B* [[¥n®)IT < 7]} {E* [[mOI|T < 7]}
Combining this with (2.5), it suffices to find a constant ¢ > 0 such that

—MXot

(3.13) B [t ()1 gery] < Cte — t>1r€e(0,1),
mad

(3.14) B [t ()" 1ary] < ev/me 472 t>1,r € (0,1).

12



a) Proof of (3.13). Let ¢ = by -. We have
(a) 0

(315) Evo Ul/)m( )| 1{t<7‘} / dSl/ 1{t<7}¢m( s1)¢gm(st)]d32-

By (2.8), (3.3), po(|ém|?) = 1, and the symmetry of P? in L2(j), we find a constant ¢; > 0
such that

ert]EVO [].{T<7—}Q§m(Xsl>Q§m(X32)} = ( {¢m S9—S1 (¢m t— Sz(b() )})
B 1 e (Am—Ao)(sg 51) . 2 po0 ¢—1))
= e )MO(¢m s9— sl(¢m t— 52¢0 )) = 11(d0) M0(|¢m| t—s270

< e (Am=20)(s2=51) ||Pt 82||LP(uo )—00 M0)||¢0 ”LP (10)» p>1

Since d < 3, we may take p € (1,3) such that ¢ := d+2 < 1 and ||¢g" || zr(uy) < o0 due to
(2.2), so that this and (2.13) imply

AVE [Lrcry (X )b (Xi)] < a0 om0 (1 4 (1 — 55}

for some constant ¢3 > 0. Therefore, (3.13) follows from (3.15) and (2.1).
(b) Proof of (3.14). For any s > 0 we have

4EVOU¢m( ’1{S<T}
(3.16 24/ dSQ/ d32/ d53/ 1{s<7}¢m( 51 )ng(X@)ng(XS:a)a)m(Xm)}ds4

o / ds, / ds, / dss / 0 [Lsg<rySn(Xor )X oy) s (53, 51)] s,

where due to (3.3) and the Markov property,

93(83, 84) =E" |:1{s<7'}<5m< 53)¢m 54 ‘X r< 83}
(317) = ¢m(Xs3)EXS3 [1{3 53<T}¢m< 84—53)}
= 0 G 00 P,y (9m Pl 05 H(Xsy), 0 <55 <54 < s,

So, by Fubini’s theorem and Schwarz’s inequality, we obtain

I(s):=s eAOsE”Ome( )’41{s<7}]
T 2
— 126)\08/ dTl/ EVO |:1{7,1<7_}gs(7”17’]“2> / ¢m(X d’r :|d7”2
0

1
<12 sup /I d'r’ / g2ros—Aorigro [1{T1<T}gs(r1,r2) }}2dr2.

r€|0,s]

Consequently,

1 2
(3.18) I(t) < sup I(s) (12 sup / drl/ ero(@s=r)gro (1 <r19s(r1,72)° }}Qdm) :

s€[0,t] s€[0,t]

13



On the other hand, by the definition of vy, (3.3), (3.17) and that ug is PP-invariant, we
obtain

E* |:1{7‘1<7'}|g8(rl7 T2)|2]

e—2>\0 (s—r1)—Xor1

S ,U(QSO) ( {¢01|¢m¢0 To— r1<¢m s— 7‘2 1)|2})
3.19 ho2s-m)
( ) = ° H(Qb ) M0(¢0|¢m ro—r1 (Qsm 5— 'r2¢0 )| )
267)\0(25 r1) 9 0 1N
< Wﬂo (¢0{|¢m( ro— 7"1 ) (¢0)| + |¢m ro—r1 <¢m[Ps—r2 - M0]¢O )| })

Then, by (3.17), (2.8), (3.3), po(|¢m|?) = 1, and noting that s is PP-invariant, we find a
constant ¢; > 0 such that

E" [Lir <rylgs(re, m2) ] < 26’”’(2“1)*2“””0)(”’“)chollio

e_)\O(ZS_Tl)HQSm“oo 0 —1y2
m T' T PS T

Sclef)\o(Zsfn){efZ()\m Xo)(ra—r1) + ”¢mHooH 0 r1<¢m[PSO_T2 _u0]¢61)‘|%4w0)}_

+2

By (2.1), (2.13), ||ng||L2(MO) =1, ¢ |l Lo(uy) < o0 and € := L2 v dQ—ff <1 for g € (2,3) due
to (2.2) and d < 3, we find constants ¢y > 0 such that

|Gl ool| PO, m( [Py, = 10)05 M ()

< Mmoo 120, 1122 gy 1) | Dl 2200 |1 (P, = 110) B 1200 1)

< H¢mHOOH ro— 1”1HL2(,LL0)—>L4 (po) H 80 T2 _ILLOH%‘Z(N())—)LOO(M())|‘¢61H%‘1(M0)

< coy/me 2N A (1) — ) FTELTA (5 — 1p) ).
Therefore, there exist constants ¢3 > 0 and € € (0, 1) such that

B (1< 951, 12)P] < ey of2e)-Om Nl

+ C3\/Ee—>\0(28—7’1)—2(>\1—)\0)(S—T2){1 A (,’,,2 _ 7,,1)}—28{1 A (t . ,',,2)}—28‘

Combining this with (3.18) and the definition of I(t), we prove (3.14) for some constant
¢ > 0, and hence finish the proof. O

Lemma 3.6. Let d < 3. Then for any p € (1, 35%:186 A jﬁ) # (0, there exists a constant ¢ > 0
such that

sup E"[puo(|VLy (per — V)P)T < 7] <ct™, t>1.
r>0,T>t

Proof. By Lemma 3.3, it suffices to prove for T' = ¢ replacing T > t. Let p € (1, 35dd++186 A gﬁ)
where p > 1 is equivalent to

P

3.20
(320) <t

14



3d+16 A d+2
5d+8 d+1

while p < implies

(d+2)2p—2) d(p—1) (d+4)+d +
4p * p2 +<p 1 _2> <1

and hence there exists ¢ € (0, 1) such that

(d+2)2p—2+4¢) dp-1) (d+4)+d +
Z n p2 +(p : —2) <1

(3.21)

By (2.13), (2.21), Ly = — [;° PYds, and applying Holder’s inequality, we find a constant
c1, co > 0 such that

) 2p
/ ‘VLEI(pt,r—l)fdeO S/ (/ ‘VPsO(pt,,,—l)‘ds) dpo
M M 0
1 2p
(3.22) < 01/ (/ {PS Pgs (prr — 1)|p}”ds) o5 =dpg
M 0 \/_

2p—1
[e.e] o0
_p 2p0s 2p -
< Cl(/ s -le 2- 1d$) / eesHO((bOE{Pg
4
0 0

Noting that %= < 1 due to (3.20), we obtain

P:’?Ts(ﬂt,r - 1)|p}2)d5, g > 0.

D 2pls

(3.23) / s e 21d < 0o, 6> 0.
0

Moreover, since |[¢g || j2--1 () = 1, tto(pr,r —1) = 0, and PP is contractive in LP(ug) for p > 1,

by (2.13) and Hoélder’s inequality, we find a constant ¢o > 0 such that

(657 {PEIPY (o = DY) < [1PEIPY (o = D2 st 1907 e

2
<IP o, N CPE = ) (P = D7,
< || P° 0
= ||P — Mo H L2 0)_>L24P6( )HPZPtr 1||L2(u0
< o1 sy T e o ply, 2

Combining this with (3.23), we find a function ¢ : (0, 00) — (0, 00) such that

E” [1gr<ryito(IV Lo H (prr — 1)[)]
3.24 e 2)(2p—2+¢
B <o) [T e A o 1y Pl — 12, ds, 850
0

By (2.8), (3.2) and Hélder’s inequality, we obtain
> p
1P2pes = 1120 (Z e—(Am—Ao)(2r+s/2)|¢m(t>|2>
m=1

15



<Ze m—20)( 2r+s/2> Ze An=X0)@r+s/2) |yt (1),

m=1

Noting that (2.1) implies
Z e~ (A= h)@rs/2) < Cl1/ efa2(7“+s/2)t%dt <az(1A 8)7%
1
for some constants aq, as, az > 0, we derive

B [[|P2prr — 12 0|t < 7] S es(1As) 50 3 e CrmdlCrts/ 2y, (1)t < 7]

m=1

for some constant ¢ > 0. Combining this with Lemma 3.5, (2.1), we find constants
¢4, Cs5, Cg, 7 > 0 such that

_ o0 2 e
B (1P~ 1l < 7] < et (1m0 25 [ ettty
1

[e.e]
_ _dlp=1) o_p(d+4)+d pd+d)+d o _
<cgt P(1As) 2 % 1 / t 1 Peldt
S

dp_1) _(pldt)+d

<t P(Ias) "z ¢ 27 og(2+ 571,

where the term log(2 + s™!) comes when ’W — 3 = —1. This together with (3.21) and
(3.24) for 6 € (0, \; — o) implies the desired estimate. O

Lemma 3.7. Let d < 3. If ry = t= for some a € (l,z—ll A 2‘3‘54) # 0, then prryr =
(1 —r4)pry, + e satisfies

lim sup B [10(| A (pr.pe 0, 1) = UD|T < 7] =0, ¢>1.

t—o00 T>t

Proof. By Lemma 3.3, it suffices to prove for T' = t replacing T" > t. By the same reason
leading to (3.16) in [21], for any 1 € (0,1),y € M, we have

B (|l (prpyy (y), 1) — 1)7t < 7] <’ ‘+”0 W) — 1] > 7).
[ (Pt v (y), 1) 1] it (Ipra (y) — 1] > n)

Combining this with Lemma 3.4 we find constants ¢ > 0 and ¢ € (0,a™!) such that

EVO U%(pt,m,n (y)7 <y)*2t71+a5.

== 1)t < 7] <’ ‘ +en o
JI—1 247

Since po(¢y?) = 1, we obtain

£ [/LU ( ’%(ptﬂ‘t Tt

‘ +en e pe (0,1),t > 1.

DT =19t < 7] <‘\/_ T

Noting that ae < 1, by letting first £ — oo then n — 0, we finish the proof. ]
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Lemma 3.8. Let ity = (1 + pryyr)to, where pry, = (1 —1r)pe, +r, 7 € (0,1]. Assume that
v = hu with heg' € LP(ug) for some p > 1. Then there exists a constant ¢ > 0 such that

sup E¥ [Wg(,umr,ut)Q!T < 7‘] <ecr, t>0,r€(0,1].
T>t

Proof. By Lemma 3.3, it suffices to prove for T' = t replacing T" > t. Firstly, it is easy to see
that

(325) WQ(Mt,T,MMt,T)Q S DQHMt,T,T’ - ﬂt,r”var = D2ﬂ'0(|pt,r,r - pt,rl) S 2D2T7 e (07 1]
Next, by the definition of y;,, we have
m(dw,dy) := p(dz) P (2, dy) € C (e, ),

where P?(x,-) is the distribution of X? starting at z. So,

(3.26) W ses < [ Elplar, X))

Moreover, by Ito’s formula and Lo = L 4 2V log ¢, we find a constant ¢; > 0 such that
dp(z, X0)* = Lop(z, )*(X))dr + dM, < {c1 + a1y ' (X)) pdr + dM,

holds for some martingale M,. Combining this with (2.18), and noting that log(1 + ¢;') >
log(1 + [|¢o||l}) > 0, we find a constant ¢, > 0 such that

Waus o, < cur o (E / ¢51<X£>ds> ()
M 0

< corpu(log(1 + ;1)) = 2 / log{1 + ¢5(X.)}ds, r € (0,1].

0

Combining this with (3.25), (3.3), ||P||ze(u) = 1 for t > 0 and p > 1, and noting that
. —1 0 41
inf pio(heg" Frehg ™) > 0,

we find constants c3, ¢4 > 0 such that

E'[1ycnW AL
B [Wo (o0, 1)t < 7] = Ly Wa i, 11)”]

Pv(t <)
t
(327) < C3T / —1p0 -1
< = — to(hoy ™ P; log{1 + ¢ ds
tﬂ0<h¢olpt0¢01) 0 0( 0 { 0 })
< c37||hepg || o o | log (1 + gb(?l)”m%(ﬂo) <cyr, 7€ (0,1].

Combining this with (3.25) we finish the proof.

We are now ready to prove the main result in this section.
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Proof of Proposition 3.1(1). Since the upper bound is infinite for d > 4, it suffices to consider
d<3.

(a) We first assume that v = hu with h < C'¢y for some constant C' > 0. In this case, by
(2.5) and E = [, E*v(dz), there exists a constant ¢y > 0 such that

(3.28) EY(-|t < 7) < B (|t < 1), t> 1.

Let piryr, = {(1 = 1) pry + 7 }peo with ry = ¢ for some a € (1, % A 2(554). By Lemma 3.8

and the triangle inequality of Wy, there exists a constant ¢; > 0 such that for any ¢ > 1,
(3.29) B [Wa(pu, 10)*[t < 7] < (14 &) B [Wa(perps o)t < 7] + (1 4+, > 0.

On the other hand, by (3.1), (3.28), Lemmas 3.2, 3.6 and 3.7, there exists p > 1 such that

. . VL_l(pt — 1)|2
] tEY [Wo (ttg v, pto)?t < 7] <1 tE” VLo (P, duolt <
im sup [Waftpyres 110)? ]t < 7] < im sup {/M D) ol <7
< lim supt{E” [10(IV Ly (per, — 1)|2)dﬂg‘t < 7]
t—o00
1 p p—1
+ (B [10(IV Ly (ot — DIP)dpo|t < 7]) 7 (B [0 (| (pp e, 1) = 1p=T) |t < 7]) 7 }
: v —1 2 - 2
= limsup tE” [uo(|V Ly (prr, — DIP)dpolt < 7] < Y 5

Combining this with (3.29) where a > 1, we prove (1.1).
(b) In general, for any t > 2 and € € (0,1), we consider

1 t
s = dx, ds.
lut t_g/; Xs S

Letting D be the diameter of D, we find a constant ¢; > 0 such that

(330) WQ(”?:Mt)Q < D2”Mt - Mi”var < Clgt_lv t>2c¢ (07 1)'
On the other hand, by the Markov property we obtain

B [ty Wa(5, 110)°] = B [11ecnt B* (Lppmeary W (be—c, 110)?)]
= Pl/(g < 7—>EVE |:1{t—5<7'}w2<ljlt757 ,UO)Q}
=P (t —e < 7)P"(e < T)E"* [Wa (e, o)’ |t — € < 7],
where v, = h.u with
1
hlw) = o= [ PP v(dn) < e n)inty)

for some constant c(e,v) > 0. Moreover, by (2.3), (2.5) and v, = h.u, we have

hm]Pf(t—5<T)IP> (e <)

= 1.
t—o0 Pv(t <)

18



So, (a) implies

lim sup {tE" (W, 10)° |t < T}}
t—o0

, Pe(t —e<m)P(e<T)(,
Sy Falen - <)
< S 2
- m=1 ()\m o )\0)2‘

Combining this with (3.30), we arrive at

lim sup {ﬂE” (W (pae, 1) [t < T}}

t—o0

<(1+ 5%) lim sup {tE” (W (15, ,uo)Q}t < 7] } + ce(l+ 5_%)
t—r00

§(1+5%)Z

m=1

2 1
m +01€(1 +€7§), €c (0,1)
m — N0

By letting ¢ — 0, we derive (1.1). O

Proof of Proposition 3.1(2)-(3). Let d > 4. By (3.30), it suffices to prove the desired esti-
mates for ) replacing p;. Therefore, we may and do assume v = hy with ||héy ! |ls < 0.

Since
{c_l+ (d+2)(p—1) _2} _2(d-4)

lim )
2p 3

pdpo

2(d—4)
3

by Lemma 3.2(1), for any k£ > , there exist constants ¢y, co > 0 such that

2 o=20m—o)r

B [1o(IV Ly (pro — DP|T < 7] <1 Y EWSWE e
m=1 m

< 02{1 + Lig=ay logr—! + t_lr_k}, re(0,1),t>1,T7 >t

Combining this with the following inequality due to [11, Theorem 2] for p = 2:

Wo(fro, 0)” < 4uo(|VLy ' (f = D)), fro € P,
we obtain
tBY [Wa(ptr, p0)*|T < 7] < c{r_% + 1ggeq logr™ +tr7*} T >t>1r€(0,1).

2(d—4)
3

By this and Lemma 3.8, we find a decreasing function ¢ : ( ,00) = (0,00) such that

EY [Wa (g, po)?|T < 7] < C(/f){t_lr_% +t  ggeg logr™ +t 727 4},

T>t>1re(01).k>"0—.
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(a) Let d = 4. We take r = t~! for ¢t > 1, such that (3.31) implies (1.3) for some constant
c>0.
(b) When d > 5. Since

lim {2_ 2k }_ 2d +4 - 2
T d ~ 3 d

]Q@ -2 (d — 2) -2’
there exists k > @ such that 2 — d2Tk2 > ﬁ. So, we may take r = "2 for t > 1 such
that (3.31) implies the inequality in (3). O

4 Lower bound estimate

This section devotes to the proof of the following result, which together with Proposition 3.1
implies Theorem 1.1.

Proposition 4.1. Let v € &y. There exists a constant ¢ > 0 such that (1.2) holds, and
when OM is convex it holds for ¢ = 1. Moreover, when d > 5, there exists a constant ¢ > 0
such that

(4.1) inf {tE[W (pe, jo)| T < 7]} > dtTE > 1.

To estimate the Wasserstein distance from below, we use the idea of [1] to construct a
pair of functions in Kantorovich’s dual formula, which leads to the following lemma.

Lemma 4.2. There exists a constant ¢ > 0 such that

z 1
Wa(pters 110)* = mo(IVLg  (prr — D) = ellprr = Ul + llpes — 1[%), 7> 0.

Proof. Let f = Ly (py, — 1), and take
o5 = —clog Phe =/ 6el0,1],> 0.
2

We have ¢y = f and by [21, Lemma 2.9],

c 1 1
Pi(y) — (@) < 5{p(x,9)* +ell(Lof) oo + ere2 IV}
08 < l v 2 —1 v 4
po(f = 1) < ro(IVFT) + ere™ [V fllc:
Since Lof = pi, — 1, this and the integration by parts formula imply

1 1
SWapter, 110)* + llprr = Ulso + 122 [VFI% > p0(5) = pur(f)

(4.2) .
= po(p] — f) = po(fLof) = éuo(IVLo‘lfIQ) — e VI, >0,
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Next, by Lemma 2.1(1) for p = oo and (2.12), we find constants ¢z, ¢z, ¢4 > 0 such that
IV £l = 1925 (e = Dl < [ 19P2 01, = Dt
<o [ s DR slpns — s
<l =1k [ (5B <l — U
0
Combining this with (4.2) we find a constant ¢; > 0 such that

— 1 _
Wa(per, 0)* > po(IVLG f1?) = es{ellprr — Ul + €2 llory — U5 + e llors — s}, € > 0.

4
By taking ¢ = ||pt,» — 1||& we finish the proof. O

By Lemma 4.2, to derive a sharp lower bound of Wy (s, 110)%, we need to estimate
ot — oo and B [po(|VLg (e, — 1)|*)|T < 7], which are included in the following three
lemmas.

Lemma 4.3. For anyr > 0 and v = hy with ||hoy || < 00, there exists a constant c(r) > 0
such that

sup B[l o, — 14| T < 7] <e(r)t™2, ¢ > 1.

T>t

Proof. By Lemma 3.3 and (3.28), it suffices to prove for v = vy and T' = t replacing T > t,
i.e. for a constant ¢(r) > 0 we have

(4.3) B [|lper — 15|t < 7] <e(r)t™?, t>1.

By (3.19), (2.8), (2.12), and /¢y || z2(49) = 1, we find a constant ¢; > 0 such that

E* [1{T1<T} |95(r1,72) |2]
< Cle—/\o(Qs—/\l)||q§m||io{e—(/\m—>\0)(7“2—7”1) + e—(/\l—Ao)(S—m)}’ §>1r9>1 > 0.

By (3.18) and P (t < 1) > cpe™ ! for some constant ¢y > 0 and all ¢ > 1, this implies

Evo me<t>’41{t<T}]
Pt <T)

B [[¢m ()]t < 7] := < ool dmlit ™ m=1,¢>1

for some constant ¢, > 0. Combining with (3.2) gives

E [lloe — L% [t < 7]

o] 3 o
~ 4
< < § :e—(Am—)\o)rH¢m||go) E e—(Am—Ao)Tert]EVO[1{T1<T}|¢m(t)|4]
m=1

m=1
S

3 [e's)
A4 B VIS P
= (Ze‘“’"‘w”%”&) ext ™ e g
m=1 m=1

By (2.1) and (2.14), this implies (4.3) for some constant ¢(r) > 0. O
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Lemma 4.4. Let v = hy with ||h¢y || < 0o. Then for any r > 0 there exists a constant
c(r) > 0 such that

a—2(Am=Xo)r

m— Ao)?

c(r)

tE [1o(IV Ly (pey — 1 \T<r—22 .

sup ,t> 1.

T>t

Proof. Let {J; : i = 1,2,3} be in (3.6). By (2.12), (2.14), and H(;ASmHLz(MO) = 1, we find a
constant ¢; > 0 such that for any 7' >t > so > 51 > 0,

|<]1<81782)| < thbalnooHPgl - M0||L°°(M0)||¢m¢al onij—sz - MOHLl(uo)HgbalHLl(uo)
<a ||¢m¢51||zoe_()‘1—/\0)(t+51—52)7

[a(s1, 52)| < [l dolloce™ P02 [ A oo | Py — pollzoe oy

—(A1—Xo0)s
§01€(1 0)27

[J3(s1, 82)| < l|gollace™ 2201685 M 21 P_, = p0ll 22uo) 190 121 o)
< crll @y HlZe” M),

Substituting these into (3.7) and applying (2.1) and (2.14), we find a constant ¢(r) > 0 such
that the desired estimate holds. O

Lemma 4.5. Let v = hy with ||h¢y'||ee < 00. Then for any r > 0 and p > 2, there exists a
constant c¢(r,p) > 0 such that

||VLal(pt,r - 1>|2p|lL2T’(uo) < C(TJ p)7 t>0.

Proof. Since p;, = OpT(Xs, )ds, we have pg(pr,) = 1 and ||prrlloc < P2l < 00. Then
by (2.12) and ||¢;* ||L2 =1, we find a constant ¢;(r) > 0 such that
no(@5 {PEIPS: (prr = DIPY?) < 11 | z2guo) [ (PE: = 110) e i

<1PE = pioll o o2 122 < ca ()o@,

Combining this with (3.22) for e =1 and 6 € (0 ), we finish the proof.

S
> A1—Ao

]

Finally, since pi,,» = p; P2, to derive a lower bound of Wy (pu, f10) from that of Wa(py.., o),
we present the following result.

Lemma 4.6. There exist two constants Ky, Ky > 0 such that for any probability measures
s p2 on M,

(4.4) Wy (1 P, o PY) < K1e™"Woy(puy, p12), t > 0.

When OM is convex, this estimate holds for K, = 1.
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Proof. When OM is convex, by [20, Lemma 2.16], there exists a constant K such that
Ric — Hessy 12100y = — I,

so that the desired estimate holds for K7 =1 and Ky = K, see [14].

In general, following the line of [18], we make the boundary from non-convex to convex
by using a conformal change of metric. Let N be the inward normal unit vector field of
OM . Then the second fundamental form of OM is a two-tensor on the tangent space of M
defined by

I[(X,Y):=—(VxN,Y), XY e€ToM.

Since M is compact, we find a function f € Cy°(M) such that f > 1, N || V.f on OM, and
Nlog floar + I(u,u) > 0 holds on OM for any v € TOM with |u| = 1. By [18, Lemma 2.1]
or [19, Theorem 1.2.5], OM is convex under the metric

<'7 '>, = f_2<'7 >

Let A/, V' and Hess' be the Laplacian, gradient and Hessian induced by the new metric
(-,-)'. We have V' = f?V and (see (2.2) in [16])

Lo=f72N + f2V{V + 2log éo + (d—2)f ).

Then the Lo-diffusion process X} with X having distribution p; can be constructed by
solving the following It6 SDE on M° with metric (-,-)" (see [2])

(4.5) A'XP = {2V (V +2log ¢ + (d — 2) f ) HXD)dt + V2 f (X)) U,dB,,

where B; is the d-dimensional Brownian motion, and U; is the horizontal lift of X? to the
frame bundle O'(M) with respect to the metric (-, -)".
Let Yy be a random variable independent of B, with distribution py such that

(4.6) Wa(pr, 12)? = E[p(X7,Yy)?].

For any =,y € M°, let P, : T,M — T,M be the parallel transform along the minimal
geodesic from z to y induced by the metric (-, -)’, which is contained in M° by the convexity.
Consider the coupling by parallel displacement

47) A ={fV(V +2logdo + (d = 2)f )}V )dt + V2F (V) Pyo o Urd By

As explained in [2, Section 3|, we may assume that (M°,(-,-)’) does not have cut-locus
such that P, is a smooth map, which ensures the existence and uniqueness of Y. Since
the distributions of X and Y are puy, po respectively, the law of (X?, V%) is in the class
C (PP, uaPY), so that

(4.8) W (i Py, 2 PY)? < E[p(X7, V)%, t>0.

Let p/(z,y) be the Riemannian distance between z and y induced by (-,-) := f72(-,-). By
1 < fe (M) we have

(4.9) 1flllp <o < p.
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Since except the term f~2V’log ¢y, all coefficients in the SDEs are in Cg°(M), by It0’s
formula, there exists a constant K such that

(4.10) A (XD VL) < (I p/ (XD ¥2) + Tyt + A,
where M, is a martingale and

1= {((f*V"log ¢o)(m). 1) — ((f?V'log ¢0)(70), Y0)’-

Let v : [0,1] — M be the minimal geodesic from X? to Y;° induced by the metric (-,-),
which is contained in M° by the convexity, we obtain

I= [ U o an) ). 2
_ /1 { 72 () Hessy, (s, ) + (VF2(06), 46) (V'S0 (15), %) (VG0 (75, 3s)'}? } N
0 ¢0(’78) (f2¢(%>(78)

S/O {(cbalf‘ )(vs)HeSS¢0(vs,vs)+f—[< V2 )%)’]Q}dsgcp’(xf,w)?

for some constant C' > 0, where the last step is due to (§s,7s) = p/(X2, V)%, 1 < f €
Cp°(M), and that by the proof of [20, Lemma 2.1] the convexity of OM under (-,-)" implies
Hess};, < coy for some constant ¢ > 0. This and (4.10) yield

B/ (X0, Y0)) < E[p/(X0, YO Jek+O0, 1> 0.
Combining this with (4.6) and (4.9), we prove (4.4) for some constant K, Ky > 0. O

We are now ready to prove the main result in this section.

Proof of Proposition 4.1. (a) According to (3.30), it suffices to prove for v = hyu with
|hég!||oe < 00. Let 7 > 0 be fixed. By Lemma 4.2, we obtain

HE [Wa(n,r, 10)*| T < 7] 2 B [1pp,, 1oy Walbtn s 110)*| T < 7]
> tEY [1{”“},1“0&5}#0(\VLo_l(pm, — 1)|2)’T < ’7':| — ce?
> B [po(|[VLy  (prr — DT < 7] — c€”
— 1B (1o, —1)w>e1t0(|[ VL (prr = DIP)|T < 7], £>0,T > ¢.

(4.11)

By Lemma 4.3 and Lemma 4.5 with p = 3, we find some constants ¢, co > 0 such that

tE [Ljjpr -1zt io(|VLg  (prr — 1) 2)| 7] < at{P"(||pey — 1| > |T < 7)}3
1
3

2
Sclte_%{Ey(Hpt,r—lH T <7)}* <c e 5t T >t
Combining this with (4.11) and Lemma 4.4, we find a constant ¢z > 0 such that
tBY [Wapteyr, 10)?|T < 7] > tE” [o(|V Ly (pre — DIP)|T < 7] — &
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o0 >\m_)\0)r

Z —e—estTh, T>t>1,
— Xo)?
where .
€ 1= ir>1£{c»52 + e 3t73} = 0ast — oo.
Therefore,
20 a=2(m—o)r
> -
htlgégf%%ft {tE [WQ(thNo ‘T < T}} > 2 Z:l Do = ) r > 0.
Combining this with Lemma 4.6, we derive
- 20 a=20m—o)r
> A Y
llggf%ﬁfﬁ {tE (W (pae, f10) ‘T < T}} 2K, 2_:1 P WEE r>0.

Letting r — 0 we prove (1.2) for ¢ = K;'. By Lemma 4.6, we may take ¢ = 1 when OM is
convex.

(b) The second assertlon can be proved as in [21, Subsection 4.2]. For any ¢ > 1 and
N eN, let uy = Ly 1 O0x, , where t; = = ) ,1 < i < N. [10, Proposition 4.2] (see also
9, Corollary 12.14]) implies

(4.12) Wi (i, po)? > N4, NeN,t>1

for some constant ¢y > 0. Write

N ‘.
1 = N [t
— 3T [
Tty

By the convexity of W2, which follows from the Kantorovich dual formula, we have

1

N i+1 i+1
(413) W (MN,Mt) < N / Wg 5Xt ,(SXg ds = Z/ Xt , 2d8

On the other hand, by the Markov property,
(414> Ey[p<Xti7 XS)Ql{T<T}] = EV |:1{ti<T}Pslzti{p(Xti7 >2P7?—51}(Xt7.)] .
Since PP1 < ¢je=! for some constant ¢; > 0 and all ¢ > 0, (2.7) implies

P2, {p(x, )P 1} (x)
< e TIPE p(a, ) (x) < ere T gg(2) PL, {p(e, )25} ().

It is easy to see that

(4.15)

Lo{p(z, )¢5 '} < 205
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holds on M°® for some constant co > 0. So, by (2.18), we find a constant ¢z > 0 such that

P2, {p(a, )2d5 () < coB° / G (X)dr < eals — ) log(1 + 65" ().

Combining this with (4.14) and (4.15), and using PP1 < ¢je~?! observed above, we find a
constant ¢; > 0 such that

E[p(Xe, Xs)*Liran] < cae™™ v(log(1 + ¢5"))(s — )
< cal|hg [loort(@olog(1 +log 5 1)) (s — ti)e T < es(s —ti)e™™F, s > 1.

Since PY(T < 1) > coe~ T for some constant ¢y > 0 and all T > 1, we find a constant ¢ > 0
such that

EY[p( Xy, Xo)?|T < 7] < c(s —t;), s>t
Combining this with (4.12) and (4.13), we find a constant ¢g > 0 such that

EY [W (11, pi0)2|T < 7] > %N—% —ctN7Y, T >t

Taking N = sup{i e N:i < atﬁ} for some a > 0, we derive

7 (B W o T < 7} 2 2= 2 iz
Therefore,
72 inf Y [W (g0, pe)*|T < 7] > sup < 622 — 2—Cl> >0, t>1
T>t a>0 \2qd «Q
]
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