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ABSTRACT. In this paper we show the Hormander hypoelliptic theorem for nonlocal operators
by a purely probabilistic method: the Malliavin calculus. Roughly speaking, under general
Hormander’s Lie bracket conditions, we show the regularization effect of discontinuous Lévy
noises for possibly degenerate stochastic differential equations with jumps. To treat the large
jumps, we use the perturbation argument together with interpolation techniques and some
short time asymptotic estimates of the semigroup. As an application, we show the existence
of fundamental solutions for operator d; — 2%, where JZ” is the nonlocal kinetic operator:

Hf(x,v) = pvf(f(x v+w) - f(x, )) " |d+a)d + V-V f(x,v) + b(x,v) -V, f(x,v).

Here KO < k(x,v,w) < ko belongs to C,‘;"(R3d) and is symmetric in w, p.v. stands for the
Cauchy principal value, and b € C;°(R*; RY).
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1. INTRODUCTION

1.1 Introduction. Let <7 be a differential operator in R with smooth coefficients. Hypoel-
lipticity in the theory of PDEs means that for any distribution u and open subset U C R,

Huly € C(U) = ue C(U).

Let Ap,Ay,--- Ay be d + 1-differential operators of first order (or vector fields) with smooth
coeflicients and ¢ a smooth function. The classical Hormander’s hypoelliptic theorem tells
us that if

¥ :=Lie(A, - , A4 [Ao, ALl -+ L [Ao, Ad)=R,

where [Aj, Ai] := AgA — AAy is the Lie bracket, and 7" stands for the Lie algebra generated
by vector fields Ay, [Ag, Arl, k= 1,--- ,d, then o7 := ZZ=1 Ai +Apg+c— a% is hypoelliptic in
R (cf. [8], [24], [7] and [13], etc.).

Consider the following 1t6’s type SDE
dX, = b(X,)dt + o (X,)dWF, Xy = x € RY, (1.1)

where W is a d-dimensional standard Brownian motionand b, 0 : R > R k=1,--- ,d are
C,’-functions. Here and below we use Einstein’s summation convention: If an index appears
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twice in a product, then it will be summed automatically. We now define d + 1-vector fields
by

AO = (bl— %0'1(910'2)6,, Ak = O-;'Cai’ k = 19”' ada (1'2)

where 0; := 0,, = 6%. Let u,(x, dy) be the distributional density of the unique solution X,(x)
of SDE (1.1). By It6’s formula, one sees that in the distributional sense,

puu(x, ) = (347 + Ao) pulx, ),
where the asterisk stands for the adjoint operator. Notice that

(%Ai + Ao)* = 1A+ A +c,
where Ay := (o0 ,a,ﬁ)ai — Ap and ¢ := 0,0 J-(O'jco-i) /2 — divb. By Hormander’s hypoelliptic
theorem, if
V¥ =Lie(Ay,- -+, Ag, [Xo,Al], T, [Xo,Ad]):Rd,

then p,(x, -) admits a smooth density (see [24]). In [14], Malliavin provides a purely proba-
bilistic proof for the above result by infinitely dimensional stochastic calculus of variations
invented by him, which is now called the Malliavin calculus (see [18]). Since then, the Malli-
avin calculus has been developed very well, and emerged in many fields such as financial,
control, filtering, and so on. Notice that in [7], Hairer presents a short and self-contained
proof for Hormander’s theorem based on Malliavin’s idea.

In this paper we are concerned with the following SDE with jumps:

dX, = b(X,)dt + o (X,)dWF + f g(X,_, 2)N(dt, dz), Xo = x € RY, (1.3)
Rd

0

where R‘é := R?\ {0}, and N(dt, dz) is a Poisson random measure with intensity drv(dz),
N(dt, dz) := N(dt, dz) — div(dz),

and v is a symmetric Lévy measure over Rg, and b,o : RY - R,k =1,---,dand g :
R? x Rg — R? are smooth Lipschitz functions. It is well known that SDE (1.3) admits a
unique strong solution X,(x) for each initial value x € R? (for example, see [20]). Suppose
g(x,—z) = —g(x,z). By Itd’s formula, one sees that the generator of SDE (1.3) is given by

1
A 9(x) = SAT(x) + Agp(x) + p.v. fR (pa+ g e, (14

0
where p.v. stands for the Cauchy principal value, and Ay, A, are defined by (1.2). More
precisely, for ¢ € C;"(Rd), if we define

Tip(x) := Eo(X(x)), (1.5)
then
0T =T =T . (1.6)

The aim of this work is to show that under full Hérmander’s conditions, the solution X,(x) of
SDE (1.3) admits a smooth density.

The smoothness of the distribution density of the solutions to SDEs with jumps has been
studied extensively since Malliavin’s initiated work. We mention some of them. In [3],
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Bismut put forward a simple argument: Girsanov’s transformation to study the smoothness
of the distribution densities to SDEs with jumps. In [2], Bichteler, Gravereaux and Jacod
give a systematic introducion for the Malliavin calculus with jumps. In [19], Picard used the
difference operators to present another criterion for the smoothness of the distribution den-
sities of Poisson functionals, see [9] for recent development for Wiener-Poisson functionals.
Under partial Hormander’s conditions, there are also several works to study the smoothnees
of degenerate SDEs with jumps. In [4], Cass established a Hormander’s type theorem for
SDEs with jumps by proving a Norris’ type lemma for discontinuous semimartingales. How-
ever, the Brownian noise can not disappear. In the pure jump degenerate case, Komatsu and
Takeuchi [11, Theorem 3] introduced a quite useful estimate for discontinuous semimartin-
gales, and then proved a Hormander’s type theorem for SDEs with jumps. Some subsequent
results based on Komatsu-Takeuchi’s estimate are referred to [21, 12]. Unfortunately, there
is a gap in the proof of [11, Theorem 3]. We fill it up in [26] in a slightly different form (see
Lemma 3.1 below). Basing on this new form of Komatsu-Takeuchi’s type estimate, we prove
a Hormander’s type theorem for pure jump SDEs with nonzero drifts in [27]. Other works
about the regularization of jump noises can be found in [1, 17, 10] and references therein.

In Malliavin’s probabilistic proof of Hormander’s hypoelliptic theorem, one of the key
steps is to show the LP-integrability of the inverse of the Malliavin covariance matrix. In the
nondegenerate full noise case, it is relatively easy to obtain. However, under Hérmander’s
Lie bracket conditions, it is a quite challenge problem. In particular, Norris [16] provides
an important estimate for general continuous semimartingales to treat this (see [18]). Now
it is usually called Norris’ lemma (see [7, Lemma 4.11] for an elegant proof), which can be
considered as a quantitative version of Doob-Meyer’s decomposition theorem. For general
discontinuous semimartingales, Komatsu-Takeuchi’s estimate should be regarded as a sub-
stitution of Norris” lemma. We shall use it to prove a full Héormander’s theorem for SDEs
with jumps, see Theorem 1.1 below.

One of the motivations of studying nonlocal Hormander’s hypoelliptic theorem comes
from the study of spatial inhomeogenous Boltzmann’s equations. It is well known that the
linearized spatial inhomeogenous Boltzmann’s equation can be written as the following form
that involves non-local operator of fractional Laplacian type (cf. [23] and [5]):

K,(-,w)

|w|a'+d

6,f+V-fo:p.V.Ld(f('+w)—f(-)) dw+ f H,, 1.7

where f and g are functions of x, v and w, and

Ko (v,w) :=2 f g(v — h)|h — wrt'*edh,
{h-w=0}

and
| _ W|y+1+a

Hy(v) =2 f f (g(v — h) — g(v — h + w))—————dhdw.
RAJ {h-w=0}

|W|a/+d

Here y + @ € (-1, 1). Note that K, is a symmetric kernel in w, i.e., K, (-, w) = K (-, -w), and
fH, s a zero order term in f. We shall see in Section 7 that the principal part of (1.7) can be
written as the form of (1.4).



1.2 Main results. To make our statement of main results as simple and apparent as possible,
throughout this paper we assume that for some « € (0, 2),

v(dz) = dz/|z]**e.

We also introduce the following assumptions about b, o and g: for some £ € N U {oo},
(H;) Foranyi e Nand j=0,---,¢, there are C;, C;; > 1 such that for all x € R and |7 < 1,

IV'b(0)| + V()| < Ciy IV, Vig(x, 2)| < Cjla]' ™.
Moreover, we require g(x, —z) = —g(x, z) and for some 8 € (0, 1],
IV.8(x,2) = V.g(x,0)| < Cilzf’, 2 <1,
where C, > 0 continuously depends on x € R,

(Hg) It holds that inf, ,cp« det(I + V,g(x, z)) > 0 and supp{g(x, -)} C B;.

Remark 1.1. It should be kept in mind that g(x,z) = o/(x)z with o : RY — RY®R? satisfying
Vil < Cifori €N, fullfills the assumptions about g in (H;). Moreover, in order to make
(Hfg’,) hold, one needs to assume g(x,z) = 0(x)z- 14<s with & being small enough so that SDE
(1.3) defines a stochastic diffeomorphism flows in RY.

Let Ay, A, be as in (1.2) and Xk(x) := 0,,4'(x,0)9;. Define
% = {Ak’A’kak = 15 e ’d},
and for j =1,2,---,
¥ = {[Ae VLIAL VL [A0. V] : V e Yk = 1, . d). (1.8)
The following strong Hormander’s condition is imposed:
(H:Y) For some jy € Ny := {0} UN, span{UjiO“//j} = R? at each point x € R.
We aim to prove the following result.
Theorem 1.1. Under (Hm)+(H§)+(Hffrr), there is a nonnegative smooth function p,(x,y) on
(0, ) X RY x R? so that
P o X; ' (x)(dy) = p,(x, y)dy,
where X,(x) is the solution of SDE (1.3) with starting point Xo(x) = x, and
0pi(x,y) = A pi(-, y)(xX) = & py(x, ) (¥), lim p,(x.y) = 6:(dy). (1.9)

where o/ is the adjoint operator of & (see (1.4)), and 6, is the Dirac measure concentrated
at x.

To treat the large jumps, we make the following stronger assumptions:
(H}) In addition to (H,), we assume that Uj.';o“//j - C;"(Rd) and
IVig(x, 2l < Cjlzl'™, il < 1, j € N,.

(Hg‘r’i) The following uniform Hormander’s condition holds: for some j, € Ny and ¢ > 0,

Jo

. . 2

;élRfdllurllzfl E E [uV(x)|" = co. (1.10)
J=0 Ve¥;

4



Remark 1.2. In (H}), the drift b may be linear growth, but o and g are bounded in x. If b is
also bounded, then for each V € U;’.‘;O”//j, it automatically holds that V € CZ"(R").

By a perturbation argument, we can prove the following result. Since its proof is com-
pletely the same as in [26, Theorem 1.2], we omit the details.

Theorem 1.2. Let £ be a bounded linear operator in Sobolev space W*P(RY) for any p > 1
and k € Ny. Under (H’2)+(H§)+(H3‘r‘i), there exists a continuous function p,(x,y) on (0, co0) X
RY x RY called fundamental solution of operator </ + £ with the properties that

(i) For each t > 0 and y € R% the mapping x — p,(x,y) is smooth, and there is a y =

y(a, jo,d) > 0 such that for any p € (1,00), T > 0 and k € N,
IVA0i(x, I, < Cr D, V(2,x) € (0, T] X R™. (1.11)
(ii) For any p € (1,00) and ¢ € LP(RY), Tyo(x) := fRd o(y)p:(x, y)dy € NWEP(RY) satisfies
0, Tp(x) = (& + L)Tp(x), ¥(t,x) € (0,00) x R”. (1.12)

The above result provides a way of treating the large jumps. In applications, we usually
take .Z as the large jump operator, for example,

Lo(x) = f (<p(x +27)— go(x))K(x, 2v(dz), ¢ > 0.
|z|>6

In fact, we shall apply Theorem 1.2 to the nonlocal kinetic operators in Section 7. However,
sometimes it is not easy to verify the boundedness of the large jump operator in W*”, The
following theorem provides part results for general SDE (1.3) without assuming (Hg), which
is still based on the perturbation argument and suitable interpolation techniques as in [26].

r
nonnegative measurable function p,(x,y) on (0, 00) x R? x RY so that

(i) For eacht > 0 and x € R%, P o X;l(x)(dy) = p;(x,y)dy, where X,(x) is the solution of
SDE (1.3) with starting point Xy(x) = x.
(ii) There are gy, %y, qo and vy such that for all € € [0, &), ¥ € [0,9) and q € [1, qp),

Theorem 1.3. Under (H,)+(Huw') and g € C(R? X BS), where B is the unit ball, there is a

a9
sup [|(T = A),* Afpi(x, )l < Cr 7, 1€ (0, 1).

xeR4

(iii) If the support of g(x,-) is contained in a ball By for all x € R?, where R > 1, then for
any k € Ny, there are 9, qy and 'y, such that for all ¥ € [0,v) and q € [1, qo),

s
sup [[VAAZ p,(x, g < Cr7%, 1€ (0, 1).

x€Rd

Remark 1.3. The above (ii) implies that for any ¢ € L*(R?),

Tip(x) = fR , e()p:(x,y)dy € C**,

where C**¢ is the usual Holder space. In particular, the strong Feller property holds for T,.
Moreover, if o, = 0 and a € [1,2), then T, satisfies the following nonlocal equation in the
classical sense

(9;7-1(/? = %77()0, t> O.
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1.3 Examples. Below we provide several simple examples to illustrate our results.

Example 1. (A standard nonlinear example) Let L, be an one dimensional Lévy process with
Lévy measure v(dz) = dz/|z|'*?, where « € (0,2). Consider the following SDE:

In this case, Ay = — sin(x)d, and A 1 = cos(x)d,. The generator of X; is given by
A p(x) := —sin(x)¢’(x) + p.v. f (tp(x + cos(x)z) — (p(x))v(dz).
R

Clearly, [Ao,gl] =0, and (ngrn) holds with ¢y = 1 in (1.10).

Example 2. (Nonlocal Grushin’s type operator) Let L, = (L,1 , L,z) be a two-dimensional Lévy
process with Lévy measure v(dz) = 1,<|z| > *dz, where a € (0,2). Let X, = (X}, X?) solve
the following SDE:

dx! =dL;, X;=x,
dx? = X/dL;, X; = x,.

In this case, A, =0fork=0,1,2, Zl =0y, ;fz = x0,,, and the generator of X; is given by
A p(X) := p.v. fz (go(xl + 21, X0 + X122) — go(x))v(dz).
R
Clearly, [A, A;] = ,, and (H"™) holds with ¢, = 2 in (1.10).

T

Example 3. (Local and nonlocal Grushin’s type operator) Let L, be an one-dimensional Lévy
process with Lévy measure v(dz) = |z]~'"%dz, where a € (0,2) and W, is an one-dimensional
Brownian motion independent of the process L. Let X, = (X, X?) solve the following SDE:

dx; =dL, X, =x,
dX? = X'dW,, X} = x,.

In this case, Ag = A} = 0,4, = x,0,,, Xl =0y, Xz = 0, and the generator of X; is given by
1
A p(x) = EX?GQP(X) +p.v. f (@1 + 21, x2) = () (dz).
R

Clearly, [;f] ,A2] = 0,, and (Hg“i) holds with ¢y = 2 in (1.10).

T
Example 4. (Nonlocal Kolmogorov’s type operator) Let L, be an one-dimensional Lévy
process with Lévy measure v(dz) = |z|7!"*dz, where a € (0,2). Let X, = (X!, X?) solve the
following SDE:

dx! = X2dt, Xy = x1,
dx? =dL, - X!dt, X} =x,.

In this case, A} = Ay = 0,Ap = x20,, — x10,,, Xl =0, Xz = 0,,, and the generator of X; is
given by

2 p(X) := X205, (X)) — x10,,(x) + P.V. f(‘ﬁ(xl, X +22) — SO(X))V(de)-

R
Clearly, [AO,XZ] = 0,, and (H"") holds with ¢y = 2 in (1.10).

or
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Example 5. (Nonlocal relativistic operator) Let L, be an one-dimensional Lévy process with
Lévy measure v(dz) = |z]7!7%dz, where a € (0,2). Let Z, = (X,, V;) solve the following SDE:

dXt = Vl‘/ 1 + |Vt|2dt, XO = x,
th = dL[ - X[dt, V() = V.

In this case, A; = A, = 0,Ag = v/ /1 + |v]?0, — x0,, Xl =0, Xz = 0y, and the generator of Z,
is given by

A p(x,V) = +8xgo(x, V) — x0yp(x, V) + p.V. f (go(x, v+ V) —(x, V))v(dw).
1+ |v]? R

Clearly, [Ag, A5] = (1 + |[v[2)~/2, and (H:Y) holds.

or

1.4 Structure. This paper is organized as follows: In Section 2 we recall Bismut’s approach
to the Malliavin calculus of Wiener-Poisson functionals. In Section 3, we recall and prove
an improved Komatsu-Takeuchi’s type estimate. In Section 4, we show the key estimate of
the Laplace transform of the reduced Malliavin matrix. In Section 5, we prove Theorem 1.1.
In Section 6 we prove Theorem 1.3. Finally, in Section 7, we apply our main result to the
nonlocal kinetic operators and show the existence of smooth fundamental solutions, where
the key point is to write the nonlocal operator as the generator of an SDE. For this aim, we
need to solve a relaxed Jacobi equation.

2. PRELIMINARIES

In this subsection, we recall some basic facts about Bismut’s approach to the Malliavin
calculus with jumps (see [22, Section 2]). Let I' ¢ R be an open set containing the origin.
We define

o :=T\{0}, o(2):=1Vd(TH™, 2.1)
where d(z,I7) is the distance of z to the complement of I'y. Notice that o(z) = é near 0.
Let Q be the canonical space of all points w = (w, u), where
e w:[0,1] — R is a continuous function with w(0) = 0;
e 4 is an integer-valued measure on [0, 1] X I'y with u(A) < +oo for any compact set
A cC[0,1] xT.
Define the canonical process on Q2 as follows: for w = (w, u),
Wi(w) := w(t), N(w;dt,dz) := u(w;dt,dz) := u(dt, dz).

Let (.:%,)1e0.1) be the smallest right-continuous filtration on € such that W and N are optional.
In the following, we write .# := .%|, and endow (€2, .%) with the unique probability measure
P such that

e W is a standard d-dimensional Brownian motion;
e N is a Poisson random measure with intensity d¢#v(dz), where v(dz) = k(z)dz with

k € C'(Ty; (0, ), f(l AlzPHk(z)dz < 400, [Vlog k()| < Co(2), (2.2)
Io

where o(z) is defined by (2.1). In the following we write
N(dr, dz) := N(dt, dz) — div(dz).



Let p > 1 and m € N. We introduce the following spaces for later use.

° L},: The space of all predictable processes: & : Q% [0, 1] XTI’y — R™ with finite norm:

1 p
€1l <= [E( f [£Cs, Z)IV(dz)dS)
0 Jry,

° Li: The space of all predictable processes: & : QX [0, 1] X'y — R™ with finite norm:

1 5
E( f (. z)|2v<dz)ds)
0 JTy

e H,: The space of all measurable adapted processes h : Q X [0,1] — R with finite

norm:
1 g
E( f |h(s)|2ds)
0

e V,: The space of all predictable processes v : Q X [0, 1] x [y — R? with finite norm:

?
< 00,

1
p

—+

1
B [ [ e arrviaaas
0JTy

1

P

+

1 ;
Ef |ECs, z)l”v(dz)ds] < 0.
0Jr,

Il 5 +=

1
P

ller, := < to0.

M, = IVl + Vel < o,
where o(z) is defined by (3.7). Below we shall write
Hoo— = ﬂp>1Hp, Voo— = ﬂp>1Vp.

e Hj: The space of all bounded measurable adapted processes / : Q X [0, 1] — R¢.

e V: The space of all predictable processes v : Qx[0, 1]xIy — R with the following
properties: (i) v and V,v are bounded; (ii) there exists a compact subset U C I’y such
that

v(t,z2) =0, Vz¢U.
e Forany p > 1,V (resp. Hy) is dense in V,, (resp. H,).

Let C7(R™) be the class of all smooth functions on R whose derivatives of all orders have
at most polynomial growth. Let FC}; be the class of all Wiener-Poisson functionals on
with the following form:

F((-’-)) = f(W(h]), te ’W(hml)’ﬂ(g1)7 e ’/'t(gmz))’ w = (W’#) € Q’

where f € C?(Rm”’"z), hi,--+ ,hy, € Hpand gy, , gm, € Yy are non-random, and

1 1
Wil = f (hi(s), dw(s)bga, p(g)) = f f ¢i(s, Du(ds, do).
0 0 JTy
Notice that
FC, isdensein N,z LF(Q, 7, P).
For F € TC;" and ® = (h,v) € Ho_ X V._, define

m

1 1y 1
DoF := ) .f fo h(s). hi(D)zads + > Do f fo fr Vigi(s. (s, d),  (23)
i=1 Jj=1 0

where V,g;(s,2) := vi(s,2)0,8;(s, 2).
We have the following integration by parts formula (cf. [22, Theorem 2.9]).
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Theorem 2.1. Let ® = (h,v) € Ho_ X V_ and p > 1. The linear operator (D@,TC;") is

closable in LP(Q). The closure is denoted by (Deg, ng (Q)), which is a Banach space with
respect to the norm:

IFllo:1,p == IFllr + 1D FllLr-
Moreover, we have the following consequences:

(i) Forany F € ng’p (Q), the following integration by parts formula holds:

E(DoF) = E(Fdiv(®)), (2.4)
where div(0) is defined by
dive := f (h(s), AW, )ad — f f AV D T 4 dz). (2.5)
To K(2)
(ii) Form,ke Nand F = (Fy,--- ,F,) € (ng )" @ € C;"(R’";R"), we have
©(F) € (W™ )" and De¢(F) = DoF'dip(F). (2.6)

The following Kusuoka and Stroock’s formula is proven in [22, Proposition 2.11].

Proposition 2.1. Fix ® = (h,v) € Hooo X V. Let n(w, s,z) : QX [0,1] Xy — R and
flw,s): Qx[0,1] = RY be measurable maps and satisfy that for each (s, z) € [0, 1] x Ty,

1(s,2), f(5) € Wg™, n(s,) € C'(Ty),
and s — f(s), Do f(s) are F-adapted,
s — (s, 2), Den(s, z), V.n(s, z) are left-continuous and % ¢-adapted. 2.7

Assume that for any p > 1, fol ||f(s)||’(;;l’pds < oo and
(IU(S, 2I” + |1Den(s, 2)I”

< 400, (2.8)

AR +[Vzn(s, Z)Ip)

]E[ sup sup
s€[0,1] zelp
Then 71(f) = [} F()IW,, Z) := [} [, n(s, DN (s, do) € W™ and
1 1
D@)fl(f):f D@f(S)dWs+f f(h(s)ds,
0 0

1 1
De A(n) = f f Den(s,z)N(ds, dz) + f f Vyn(s, 2)N(ds, dz),
0 r() 0 FO
where Vn(s, 2) := vi(s,2)0,n(s, 2).

2.9

We also need the following Burkholder’s type inequalities (cf. [22, Lemma 2.3]).

Lemma 2.1. (i) For any p > 1, there is a constant C, > 0 such that for any £ € L},

¢ P
E(sup j(; i &(s,z)N(ds, dz) )< Cpllfllﬁ}). (2.10)

t€[0,1]

(ii) Forany p > 2, there is a constant C,, > 0 such that for any & € L2,

te[0,1]

P
E( sup f £(s,2)N(ds, dz) ) < CliEl? (2.11)
0JT 4
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The following result is taken from [27, Lemma 2.5], which is stated in a slightly different
form.

Lemma 2.2. Let g,(z),n, be two left continuous F#g-adapted processes satisfying that for
some 8 € (0, 1],

0 < g4(2) < s 184(2) = g4O) < mylzf, Vizl < 1, (2.12)
and for any p > 2,

E( sup |175|”) < +00.
5€[0,1]

Let f, be a nonnegative measurable adapted process and v(dz) = dz/|z|]**®. Forany 6 € (0, 1)
and m > 2, there exist c;,0 € (0,1),C, > 1 such that forall A, p > 1 and t € (0, 1),

Eexp{—a [ [ e@tmsemias.an-a [ fst}
0JRY 0

‘ 3
<G, (E exp {—cz/le f (fs + gs(O))ds}) +CpA?,
0
where {,, s(z) is a nonnegative smooth function with

Gno(2) = 2", 2l <6/4, {ns(z) =0, [z > 6/2.

(2.13)

3. ImPROVED KOMATSU-TAKEUCHI'S TYPE ESTIMATE

Let .7, be the class of all m—dimensional semi-martingales with the following form

! ! !
X, =Xy + f Fods + f fraw* + f f gs(x)N(ds, dz),
0 0 0 Jrd

where f{‘ k=0,---,d and g,(z) are m-dimensional predictable processes with
2
IX.(@)llz, := sup (|Xs<cu>|2 VI @I VIf @) v sup M) < o for a.a. — w.
5€[0,1] e 1 A2

Here and below we use the following convention: If an index appears twice in a product,
then it will be summed automatically. For instances,

/ d f d
[ stawt = 3 [ pawis @ = Y
0 =1 YO0 k=1

For « > 0, let .7% be the subclass of .7, with
IIX.(w)ll.#, < kfora.a.—w.

We first recall the following estimates from [26, Theorem 4.2].

Lemma 3.1. For k > 0, let (X,)s0 and (f°)s0 be two semimartingales in ./ with the form

IAT ! !
X, = X, + f (f° + i%)ds + f AWk + f f g, (2)N(ds, dz),
0 0 0JzI<o

! t !
P=pr [ gease [ et [ @ @Nas.d
0 0 0 z|<0
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where 6 € (0, 1] and 7 is a stopping time. Assume that for some 5 € [0, 2],
Ihfl2 <8, a.s.

For any &,06,t € (0, 1], there are positive random variables {,{, with E{; < 1,i = 1,2 such
that almost surely

! A
o f (| AP+ f |gs(z)|2v(dz)) ds< @' +&™h f IX,[°ds + k6 log &1 + k(e + 16), (3.1)
0 |z|<8 0
and
INT 3 3 ! 1 1 1 1
ci f 1fOPds < (672 + &72) f IX,°ds + k62 log &, + k(672 + 7 + 1627F), (3.2)
0 0

where cy, c; € (0, 1) only depend on jl; lzI*v(dz).

I<1

Below we show a refinement of (3.1) and [11, Lemma 5.1] for our aim.

Lemma 3.2. For k > 0and § € (0, 1), let (X;)1»0 be a semi-martingale in .7,¢ with the form

! ! !
X, = X + f fods + f fraw* + f f 2,(2)N(ds, dz).
0 0 0 Jzl<6

For any €,6,t € (0, 1), there is a positive random variable { with E{ < 1 such that for all
B € [0,2], it holds almost surely

Co f (lfs"|2+ f IgS(Z)Izv(dz))ds<(6‘ﬁ+s_1) f IX,[ds + k6 log £ + ke, (3.3)
0 |zl<6 0

where ¢y € (0, 1) only depends on flz lz1*v(dz). In particular, if v(dz) = dz/|z|**® for some

a € (0,2) and

<1

2
gs(2) =T’y -z + g,(2) with sup (IIFSII?{S V sup .2 ) <Kk, ae —w, (3.4)

s€[0,1] lzZI<1 |Z|4

where Ty : R, x RY — R™ ® R? is a matrix valued predictable process, and || - ||gs denotes
the Hilbert-Schdmit norm, then for some co = co(d, @) € (0, 1),

! t
co f (| AP+ ||rs||§,s)ds <52t f 1X|*ds + k6" log £ + k6. (3.5)
0 0
Proof. By replacing (X, f*, g.(z)) with (X, f*, g.(2))/ vk, we may assume that
2
XLV PR R v 8@ < 3.6
RO A A AV N (3.6)

Notice that for ¢ < 2¢,

f FhRds + f f |gs<z)|2v<dz>ds<2e(1+ f |z|2v<dz>).
0 0 Jzl<6 lzI<1

This implies (3.3) with £ = 1. Below, without loss of generality, we assume ¢ > 2& and
m = 1. Following the proof in [11], let p(u) : R, — R, be an increasing smooth function
with

p(m) =uforO0<u<4andp(u) = % foru > 6, p'(u) < 1. 3.7

11



Since p(u) < u foru > 0, letting &, := (t =) A s — 0V (s — &), we have

f f f [—&
5F f X,Pds > f PG FIX,P)ds > f (6 PIX,P)ds — f (6 PIX,P)ds
0 0 & 0

t—& s+e t
=f dsf dp(5_ﬁer|2)=fSsdp(cs_ﬂlelz),
0 s 0

where the second equality is due to Fubini’s theorem. By 1t6’s formula, we obtain

!

1 1
5P f X, Pds > 267 f e X fods +67 | elp, + 261X P! I fAPds
0 0 0

f !
+{26‘ﬁ f £,0/ X, AW + f f £,(5s(2) — pN(ds, dz)}
0 0 Jzl<6

I 4
+ ‘ﬁfl Ss((ps(z) —Ps) — 25_ﬁp;ngs(Z))V(dz)ds = Z 1(0),
7|<o0 L

where p,(2) := p(6P|X, + g,()I*) and
ps = p6PIX,P), P = p' GPIXP), o = p"(6PIXP).
For I,(?), thanks to |&,| < &, by (3.6) and (3.7) we have
! !
()| <677 f (X, +leof{P)ds < 67 f X, Pds + 6P,
0 0

For I,(?), noticing that

les — &l < &{Li,g)(8) + Li—en(5)}
and

Ssp; =&+ S(pls - 1) + (Ss - 8)p: > E&- Sd_ﬁlxslz - |8s - 8|7

where we have used |p’(#) — 1| < u and |[p’(u)| < 1, we have
f Tt
L) > 67 f g fi1Pds = 2llp" ld™* f &l X1 f1 P ds
0 0
! t
> 6" f e — e PIX P~ le, = el]lf{Tds = 2" w6 e f X, ds
0 0
! ! A
> 67" f If5*ds — (1 + 2||p”|lw)ed™ f 1X,[’ds — 677 f le, — elds
0 0 0

! !
> 67" f If*Pds — (1 + 2||p”|lw)ed™ % f 1X,[?ds — 267P&.
0 0
For I3(t), noticing that

|83(/3X(Z) - px)' < 8{9 A (6_ﬁ| |Xs + gs(Z)lz - |XS|2|)}a

(3.8)

(3.9)

by [26, Lemma 4.1] with R = i, there is a positive random variable {; with E{; < 1 so that

-28
9¢

t 2 f
~L(t) - 9elog ) < f lesol X, P fFPds + — f £2(py(z) — ps)*v(dz)ds
0 9% Jo Jpz<s

12



3.6) 2e6~%F
<

! f
[ f IX,|*ds + f (|Xs+gs(z)|2—Xf)2v(dz)ds]
9 0 0 Jri<o

26~ 5 SN t A
< 1+4 |z|"v(dz) | X|"ds + lgs(2)["v(dz)ds
ldi<s 0 0 Jlzi<s

(3.6) d 6% !
< Ces™ f 1X,[*ds + £ f f |g5(2)*v(dz)ds.
0 0 J|z|<6

9
For I,(f), noticing that by Taylor’s expansion for x - p(67%x),
pGPIX + gl’) = p6PIXI*) — 26X gp' (6PIXI)
= 67p (6 PIXP)g” + 36 " (B)(2Xg + Ig")’,

where ¢ := §A(r|X|* + (1 — r)|X + g|?) for some r € [0, 1], we can write
6_2‘B ' ” 2\2
I(1) = - ff g0 (94(2))(2X,85(2) + 1g5(2)") v(dz)ds
0 Jz<o

t
o7 ff &,03lgs@Pv(dD)ds = L (0) + L (D),
0 Jlzl<6

where 9(2) := 6 P(r|X,*> + (1 = r)|X, + g,(z)[*). For 14, (1), noticing that
XV 18,2 < 6 = B,(2) < 5P(r6” + 4(1 — r)5*) < 46°7F < 4,

in virtue of p”(u) = 0 for u < 4, by (3.6) we have

_zﬁ

é‘ s
[ ()] = == fo fH | |ssp”(z%(z))(zxsgs@+|gs(z>|2>2v<dz)ds»~
7|<0<| X

6P 2 ' 2
< Tsllp"Hoo (f || v(dz))f(?)lel) ds.
lz|<6 0

For 14,(¢), as in the treatment of /,(¢), by (3.9) we have

!
Lin(t) > 67 f f e = 861X, — le, — el}lg ()P (dz)ds
0 J|7<6

! !
> e6F f f lgs(2)v(dz)ds — 57 f (5 PIX,” + les — el)ds f lz*v(dz)
0 Jz|<6 0 lzl<6

! !
>e6” f f |gs(z)|2v(dz)ds—(86_2ﬁ f |X‘Y|2ds+2825_ﬁ) f |zI*v(dz).
0 JzI<6 0 lzI<1

Combining the above estimates, we get for some C > 9 only depending on flz lzI*v(dz),

<1

f
52 + Ce67) f 1X,2ds + 9elog &) + Ce*67*
0

! A
>e6P f |5 2ds + (8(5—ﬁ - %sdz‘zﬂ) f f lgs(2)*v(dz)ds,
0 0 Jpzi<s

which gives (3.3) with ¢ = £}/ by dividing both sides by Ced*.
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If v(dz) = dz/|z]**®, then by g,(z) = I';z + g,(2) and (3.4), we have

t 1 A t
f f lgs(2)*v(dz) > > f f ICyz*v(dz) — f [2.(2)I*v(dz)
0 Jz<6 0 Jz|<é 0 Jzl<6
! !
> 67 f IT,|2,gds — & f f |z*v(dz) (3.10)
0 0 Jzl<o

!
> c6™ f ITl15gds — Cxs*,
0
where in the second inequality we have used that
f ZI_Zjdz/lzldﬂz — Cli:jéz_a.
)
Substituting this into (3.3) and taking 8 = 2 and & = §*7%, we get

t ! !
co f |f**ds + c6*@ f ITl7ds < (%7 +67%) f 1X|%ds + k6% log £ + k6",
0 0 0
which gives (3.5) by dividing both sides by 6*>7¢. O

Remark 3.1. Ifwe take 8 = 1 and € = § in (3.3), then (3.3) reduces to (3.1) with e = 8. Here
the key point for us is the estimate (3.5), which can not be derived from (3.1).

4. ESTIMATES OF LAPLACE TRANSFORM OF REDUCED MALLIAVIN MATRIX

The result of this section is independent of the framework in Section 2. Consider the
following SDE with jumps:

X,:x+f b(XS)ds+f0'k(Xs)de+ff g(X _,Z)ﬁ(ds,dz). 4.1
0 0 0 Jlzi<1

It is well known that under (H;), SDE (4.1) admits a unique solution denoted by X, = X;(x),
and x — X,(x) are smooth. Let J; := J,(x) := VX,(x) be the Jacobian matrix of X,(x). It is
also well known that J; solves the following linear matrix-valued SDE:

t ! !
Jo=1+ f Vb(X,)Jds + f Voru(X)J,dWy + f f V.8(X,-,2)J,-N(ds,dz).  (4.2)
0 0 0 Jlzl<1

Moreover, under (HY), the matrix J,(x) is invertible. Let K, := K;(x) be the inverse matrix of
J/(x). By Itd’s formula, K, solves the following linear matrix-valued SDE:

K, =1- f K,[Vb(X,) — (Vo )*(X,)]ds — f K,Vou(X)dW;
0 0

4.3)
! A
+ ff KS—Q(XS—’ Z)N(ds, dZ) - ff Ks—(Q : ng)(Xs—’ Z)V(dZ)dS,
0 Jiz<1 0 Jiz<1
where
O(x,2) := [+ V,g(x,2)"' —I=—-(I+V,g(x,2)" - V,g(x,2).
Below we introduce some notations for later use.
e Fork=1,---,d, let Ay, Ak,gk be defined as in the introduction. For simplicity, we write
A=A A), A= (AL Ay (4.4)
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e For a vector field V(x) := v;(x)d;, we also identify
Vi=(vy, -, Vo).
e For a smooth vector field V : R? — R, define
V i= [Ag, V1 + 514k [AL, VI,
and for ¢ € (0, 1),
Gv(x,2) := V(x + g(x,2)) = V(%) + Q(x, V(x + g(x, 2)),

4.5
H(x) = f (Gy(x.2) + V3g(x.2) - V() — g(x.2) - TV(OIv(d2). (*)
lzl<o
e For a row vector u € R? and a smooth vector field V : R? — R4, define
!
J(u, x) = f luK(x)V(X,(x))[*ds,
0 (4.6)

Wi(u, x) = f K, (x)([A, V],[A, V], V)(X(x))Pds,
0

where ([A, V], [A, V], V) is a matrix given by
(A1 V], [Ag VL [AL V], - [Ag, V] V).

We need the following easy lemma.
Lemma 4.1. Let V € Cl’f’(Rd :RY). Suppose that (H,) and (H;,’) hold.
(i) There are m € Ny and C > 0 such that for all 5 € (0,1), x € R? and |z] < 1,
10(x, 2| < Clzl, 1Gy(x,2)| < C(1+ [x")zl, [Hy(x)] < C(1+ |x")s>.
(ii) [Ar, V1. [Ar VI,V € CT(RERY).
(iii) V.Gy(x,0) = [A, VI(x).

Proof. (1) The first two inequalities are obvious by definitions. For the third one, by Taylor’s
formula, we have

IGv(x,2) + V,8(x,2) - V(%) = g(x,2) - V()| < C(1 + ™)zl

z17dz/|z|4*® < €8>, we obtain the third inequality.

)

Combining this inequality with j{
(i1) It follows by definition.
(iii) Let R(x, 2) := (I + V,g(x,2))"". Note that

Gy(x,2) = R(x,2)V(x + g(x,2)) — V(x)
and
V.Gy(x,0) = V,R(x,0)V(x + g(x,0)) + R(x,0)VV(x + g(x,0))V_g(x,0).
Since g(x,0) = 0, R(x,0) =T and V,R(x,0) = -V,V,g(x,0), we get
V.Gy(x,0) = VV(x)V,g(x,0) — V,V.g(x,0)V(x).
The proof is complete. O

Remark 4.1. Under (H)) and V € CZ"(Rd :RY), the m in the above (i) can be zero.
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The following lemma is standard by BDG’s inequality (see Lemma 2.1). We omit the
details.

Lemma 4.2. Under (H,) and (Hfg’), forany p > 1, we have

1X;(x)|P
1+ |x|?

supE( sup + |0 + |K,(x)|”)) < +00.

xeR?  \r€[0,1]
Now we can show the following crucial lemma.
Lemma 4.3. Let B := W and dy € N. Under (H,) and (Hfg’), for any C;"-function

V:RY — RIQR, there exist constants ¢ € (0,1),C > 1 such that for all 5,t € (0, 1), x € R¢
and p > 1,

sup P{#(u, x) < 67t, #i(u, x) > &t} < Cp(x0)6” + Ce™ ™, 4.7)
Jul=1

where F(u, x) and W;(u, x) are defined by (4.6). Moreover, under (H)) and V € C}°, the
constant C,(x) can be independent of x.

Proof. We divide the proof into four steps.
(1) Fixing ¢ € (0, 1), we make the following decomposition:

! !
L= f f N(ds, dz) + f f N(ds,dg) =: L + I,
0 Jzl<6 0 Jo<|z|<1

where L and L are the small jump part and large jump part of L, respectively. Clearly,
L’ and L? are independent.

Let us fix a cadldg path 7 : R, — R¢ with finitely many jumps on the finite time interval. Let
X% (x; %) solve the following SDE:

X0(x;h) = x + f b(X’(x; h))ds + f Ar(XC (x; h))dw*
0 0

+ f f g(X2_(x; 1), N(ds,d2) + ) g(X2_(x; 1), Alhy).
0 JlzI<o

0<s<t
Let K2(x; 1) := [VX?(x; 7)]~". Clearly, by g(x, —z) = —g(x, z), we have
X:(x) = X6 Wyegs, Ki(x) = KOO W)lejss (4.8)
which implies that
A, x) = (U, X, Wjpejor Wity X) = W, (W, X3 W) l_pss 4.9)
where for a row vector u € RY,
!
A (u, x; 1) = f K (x; V(XS (x; )P,
. (4.10)
WO (u, x; h) = f UK’ (x; W)([A, V1, [A, V1, V)X (x; 7)) ds.
0

(2) Below, we first consider the case # = 0. For simplicity, we drop the superscript 6 and
write
K: = Ki(x;0), X; = X,(x;0).
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Moreover, for fixed u € R?, we introduce the following processes: fork = 1,--- ,d,
fi=uk,V(X), f:=uKV(X), h :=uKH)X,),
fF = uK [An VIX),  8(2) = uK, _Gy(X,, 2),
%= uk [AL VIX),  82(2) = uK,_G(X,_, 2),
£ = uki([Ao, V1 + 3A,, [A;, V1] + H2)(X)),
where Hf, and Gy are defined by (4.5). Note that K, solves the following equation (see (4.3)):

K =1- f K,[Vh(X,) — (VA (X,)]ds — f K\ VA(X,)dW*
0 0

+ f f K, O(X,_,2)N(ds, dz) — f f K,(Q - V,2)(X,_, 2)v(dz)ds.
0 Jzl<o 0 JlzI<6

Using Itd’s formula, one finds that

fi=uV(x)+ f (f° + hyds + f fraw* + f f ¢:(2)N(ds, dz),
0 0 0 Jzl<o

! A t
2 =uV(x) + f f2ds + f AWk + f f g2 (2)N(dsdz).
0 0 0 Jz<6
Letl, := uK, (V,Gy)(X,_,0). By (iii) of Lemma 4.1, we have
T, = uk, [A, VI(X,.).

(4.11)

Since V € . by Lemma 4.1, there exist an m € Ny and C > 1 independent of u, x € RY
such that forall r € [0,1], |zl < 1land k=0, --- ,d,

Ifil + 1A+ 12 < Cluk (1 +1X,™),
IC s < Cluk,_|(1 + [X,_|™)

0 " (4.12)
|g:(2) + Ig; ()| < CluK,-|(1 + [X,-[")lz],
81(2)] := |g(2) = Tzl < Cluk,_|(1 + 1X,-[")lel,
and
|| < JuK,| - [HY(X)| < CluK (1 + | X,[™)6> . (4.13)
For vy := W and m being as above, define a stopping time

ri=inf{s >0 uk, VX" > 577},
By (4.12) and (4.13), there exists xy > O such that forall t € [0,7), |zl < l and k =0, --- ,d
R+ IR+ 1R+ TR < ko0, 2@ + 1820 < kod 12l
(I < ko672l > < ko627 (4.14)

Moreover, by (4.11) we also have

(AT t t
Jine = uV(x) + f (f) + hy)ds + f Lycr fEAWE + f f l5<:8s(z)N(ds, dz),
0 0 0 Jzl<6

! ! t
oo =uV(x) + f Ler s + f Lo fOAAWE + f f 1,:£(z)N(dsdz).
0 0 0 Jlzl<o

17



Fix t € (0,1). By (3.5) with k = ky077, there are constant ¢y = co(d, @) € (0, 1) and random
variable ¢; > 0 with E{; < 1 such that

INT t
o f (5P + I )ds < 8%07° f |finelPds + k90" log &1 + Ko™ (4.15)
0 0

By (3.2) with & = 6*, k = kp0™” and 8 = 4 — 2a, there are constant ¢; = ¢;(d,a) > 0 and
random variable {, > 0 with E{, < 1 such that

AT !
ci f 107 ds < 267° f finel?ds + k0027 log &5 + ko0 V(262 + 167°420) (4.16)
0 0
Combining (4.15), (4.16) with definition (4.10), one finds that for some ¢, = ¢,(ko, d, @) > 0,

ey 53" _ LA (4—2a)—
W (uy x;0) < 60 (u, x;0) + L log(dY 7877 + 677 + 1520420 p < 1.

Multiplying both sides by 677 and taking exponential, we obtain

52727 4153 N4-200-2y

_ 1_
1(;<r) €Xp {czé_W/,‘F(u, x;0) = 6 (u, x; 0)} <@ o 5 27)%6
Recalling y = W, taking expectations and by E{; < 1 and E{, < 1, we derive

sup B(Lcr exp {0207 #, (u, x,0) = 577 A (u, x;0)}) < €%, V6,1 € (0, 1).  (4.17)
u,xeR4
(3) Let m be as in (4.12). We introduce the following random set for later use:
Q(u, x; 1) = {a) tsup (UK (x, w3 BV IX3(x i )P") < 6‘7/2}.
s€(0,1]
We use (4.17) to show that there is a C > 1 such that for all £, 6 € (0, 1) and u, x € R?,
I := B(Los i) - €XP {020 #j(u, x) = 67 Hi(u, x)}) < C. (4.18)
Let
T ) = Lggm - €Xp {20 Y #, (u, x: 1) — 67 A (u, x: ).
Since Qf(u, x;0) C {t < 7}, by (4.17) we have
sup ET“(x;0) < e’ (4.19)

u,x€R4
LetO=1 <t <---<t, <ty =tbe the jump times of 7 before time ¢. For j =0,1,--- ,n
and s € [0, 1, — t;), noting that
Xy, (x, w3 h) = X2(X] (x, w3 1), 6,3 0)
=K, (X, w3 h) = K (x, 0; KI(X] (x, 03 1), 6,03 0),

s+t

where 6, is the usual shift operator in €, by definition we have

IQ?/H (u,x;h)(w) = lgfj_(u,_x;h)(w) : IQj)M_,j(u/,x’;())(et,‘w) M/:MK;?'/(x,w;h),x’:xf/_(,x',w;h)'

Thus, by the Markov property and (4.19), we have for all u, x € R?,
BT, (xh) = E(j nh) BTy O =urc <x:h>.x'=X;’,1<x;n>)

s _ ¢4
< e TTE T (s h) < - < e
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Now we can give a proof of (4.18). Let
Nt& = Z 1|A£5|>6’ As = f dZ/|Z|d+a-
sel0,1] o<kl<l

Then N is a Poisson process with intensity As. By the independence of L’ and L?, we have

Y BT (x; 1%) = Y BET“(x;h), i N = n)
t 1 t
n=0

() o0

no nor (A5)"
<Zeé+tP(Nf:n):etZeé Te tds
n=0 n=0
=e'exp{(e” — Ast} < e’ exp{36°As5) < C,

where we have used thate* — 1 < 3sfor s € (0,1) and A5 < c6™*.

(4) For any p > 1, by Chebyshev’s inequality we have
PO (u, x: L)) = P( sup (JuK, ()P V X" > 5—7/2)
s€[0,7]

<O'E [ sup (JuK, ()P v |xs<x>|2m)2"”] (4.20)

s€[0,7]
< (Cp(x) + Clu| 7)o"
Therefore, for all £ € (0,1), x € RY, [u| = 1 and p > 1, by (4.8), (4.20) and (4.18), we have
P{ A, x) < 67t Wi(u, x) > 61} < P((Q)(u, x; L))
+P {267 Wiu, x) = 67T A, %) > €267t — 1, Q0 (u, x; 1))

<(Cp(x) + C|u|47p)517 4 Cel="

aAR—a)

We complete the proof of (4.7) by setting 8 = § = “=¢

(5) Under (H}) and V € C}°, the m in Lemma 4.1 and (4.12) can be zero so that C,,(x) can
be independent of x. O

By a standard chain argument, we have the following lemma, which is the same in spirit
as [12, Lemma 3.1].

Lemma 4.4. Under (H,), for any n € N, there is a constant C,, > 1 such that for all R > 1,
supP( sup |X;(x)| = CnR) <C,E"', Yee(0,1). (4.21)
|x|<R s€[0,e]

Proof. Let D be the space of all cadl4g functions from [0, 1] to RY. Let P, = P o X~!(x) be
the law of X.(x) in D. With a little of confusion, let X be the coordinate process over D so
that (X, P,) cre forms a family of strong Markov processes. Let 7o = 0and R > 1. For j € N,
define

!
r=inf{r> 7 01X - X | > R}, L = ff zZN(ds, dz).
0 Jz<1
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Clearly, we have

sup X =X ISR, Xi, =X;o +8(X;,-,AL;).

tE[Tj,l,Tj)
Since |g(x, z)| < C(1 + |x|) for all x € R and |z] < 1, we have
|X‘rj| < |X‘rj—| + C(l + |XTj—|) < CIR + C2|X‘rj_1|~
By induction method, one sees that for each j = 1,2, -,

(C! - 1),

X, | < —2———R+ CJIXo| < C,R, |Xo| <R
! C -1
and therefore,
sup |Xi| < C,R, |Xo| <R, (4.22)
s€[0,7,]
which implies that
{ sup |X,| > CnR} c{r.<s) Xl <R (4.23)
s€[0,¢]

Noting that 7, = 7,y + 7, 0 6,
property, we have

where 6. is the usual shift operator, by the strong Markov

n—1?

Px{Tn < 8} = PX{T,, <& Ty < 8} < PX{Tl 0,  <&T,1 < 8}
=E,(Px, (11 <é&):itin <e&). (4.24)
On the other hand, by BDG’s inequality and the linear growth of b, o and g, we have

& 2 £
Ey(sup X —Xol2) SE, ( f |b<xs>|ds) +E, ( f Icr(Xs)lzds)
ref0.¢] 0 o
+E, ( f f Ig(Xs,Z)IZV(dz)ds)
0 Jiz<1

s e sup E (1 +1X,1°) < &1 +yP).
s€[0,&]

Hence,

Py(r1 < e) <P, ( sup X, — Xo| > R) <R’E, ( sup |X, — XOF) < CR2(1 + Pe.
t€[0,¢] 1€[0,€]

Thus, by (4.22) and (4.24), we get for |x| < R,
Px{r,, < g} < CR(1 + CﬁRZ)gPX{Tn_l < s} << Chel
The proof is complete by (4.23). O

Remark 4.2. Note that (4.21) can not be obtained by simple applications of Chebyshev’s
inequality. Intuitively, consider the Poisson process N, with intensity A. For n € N, we
clearly have

P(N, > n)=e¢ W) = (1)"e —”’Z W) < (A"

(k +
k=n
If we let T, be the n-th jump time of N, then {N, > n} = { T, < t}.
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We define the reduced Malliavin matrix by
t
5= [ K4+ TE)X @)K s,
0

where A and A are defined in (4.4). Following the proof of [27, Theorem 3.3], we have

Theorem 4.1. Under (H,), (H°) and (HSY), there exist y = y(a, jo) € (0, 1) and constants
Cy>21,c,€(0,1) such thatforallt €(0,1)and R, A, p > 1,

sup sup E| exp{—AuS,(x)u’}| < Cs expl—cat”} + Cr (A1) 7,

|x|<R |u|=1

where Cg , > 0 continuously depends on R, p.
Proof. Let Ag, A; be as in (1.2) and A, := ,,g'(-,0)d;. Define
Uy = A Ak =1,--- ,d),

and for j=1,2,---,

U = {[Ar V) (A V] (Ao, VI + HAL AL VI V € %k = 1, d).
Recall the definition of 7} in (1.8). It is easy to see that

span{Uj:iO”//,} - span{Uj:O:BlOZ/j}. (4.25)

Lety:=a A2 -a)/56 and x,u € R with [u| = 1. For j =0,1,---, jo + 1, define

E} = f UK, (x)V(X,(x)|ds < 167},
! VEOR/

Ej c (NI ES) u (Ul (EX\ ELL))

Notice that

and

E;‘H —{ f luK(x)([A, V], [A V1, V)(X,(x)[ds < }
Ve;

By 4.7) with V € %; and § = &, we have
P(E3 \ E%,)) < Cp(x)e” + Cexpl—cte™ ).

To estimate P(ﬂ’“” E?), note that

NIES ¢ {Oi‘jz f K (x)V(X,(x)ds < Z W}

Jj=0 Ve,
j()+]
Z Z f UK, () V(X,(x)Pds < £joe"" V. (4.26)
Jj=0 Ve%;
By (H:Y) and (4.25), for each x € R?, we have
j()+l
: 2
inf > ) V(P > 0.
Jj=0 VeZ;



which implies that for any « > 1, there is a ¢y > 0 such that

inf inf Z Z V)P > co. 4.27)
j_

Let C,, be as in Lemma 4.4. Define stopping times
7y = 1inf{r > 0 : |X,(x)| > C,R}, 75 :=inf{t > 0 : ||J,(X)||lgs > g8y
Noticing that for s < 73,
£ <)l < luK (o),
by (4.27) with k = C,R, we have on {t} > 17" 4} 0 {7 > 1},

Jjo+1 7y/0* 14

! 1 .
Z Z f uK,(x)V(X,(x)Pds > cof UK, (x)Pds > cote™"" /2.
0 0

J=0 Ve%;
Thus, by (4.26), we have for € < g, small enough,
(e ES) nfry > (s > 1y = 0.
On the other hand, by Lemma 4.4, we have

in+1 io+1
supP(T T <te” /4) < Gt 4y,
|x|<R

and by Lemma 4.2 and Chebyshev’s inequality, for any p > 1,

jo+1
supP (13 < 1) < C (g By
xeR4

Combining the above calculations, we obtain

sup P(EY) < Crpe” + Cexp{—cte ™7} + C, (287" 1y, (4.28)
|x|<R

Noting that
!
oo = Y, [ K oV o
VE%() 0
by (4.28) with n > 4p/(7y**!), we obtain

sup sup P(uﬁt(x)u* < ta”j) < Cppe” + Cexpi—cte ™"},

Ix|<R lul=1

The desired estimate of the Laplace transform of uﬁ,(x)u* follows from this estimate (see
[27]). O

Remark 4.3. Under (H)), (Hg) and (Hg‘r‘i), from the above proofs, one sees that Cg;, can be
independent of R.
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5. PrOOF OF THEOREM 1.1

For p,R € [1,00] and ¢ € CZ(R?), define

1/p
lloll per :=( |90(x)|”dx) , Te(x) 1= Bo(X,(x)).

We first prepare the following lemma for later use.

Br

Lemma 5.1. Under (H,) and (Hg), for any k,m € Ny and R, p > 1, there exists a constant
Cr = C(R, p,k) such that for all t € (0,1) and ¢ € Cf"(Rd),

k
VTPVl < Cr D IVl (5.1)

=0
Under (H)) and (Hy), the above R can be oo so that the global estimate holds.

Proof. (1) We first show (5.1) for k = m = 0. By the change of variables, we have

177l = E f (X (X))l dx = fR eI B(15,(X; () det(VX; ' (3))dy.
Br d

Noticing that
VX'0) = (VX)) o X' = K 0 X, (),
we have

17°¢ll,x < E (SuP det(l@(x))) llgll -

On the other hand, from (4.1) and (4.3), it i:c |l<)1; now standard to show that for any p > 2,
EIK/(x) - K)I” < Clx=yl”, x,y €RY,
which implies that
E|det K,(x) — det K,(y)|" < Clx —y’, x,y€ RY.
Hence, by Kolmogorov’s theorem,

E (sup det K,(x)) < Cp.

|x|<R
Thus (5.1) holds for k = m = 0.
(i1) Next for k € N and m € Ny, by the chain rule, we have
k
VATV 0(x) = VB((V"0)(X,(x) = > B((V"™e)(XN)G)). (52)
=0
where {Gj,j = 0,--- ,k} are real polynomial functions of VX,(x),---, VkX,(x). Hence, by
Holder’s inequality,

k
||Vk7-t0Vm()0||Z;R < Z(

=0

f E|(V’"+f'go>(x,<x>>|”dx) sup (BIG P/ 1) . (5.3)

Br XEBgR
By (4.2), it is now standard to show that for any g > 1 and £ € N,
sup E|[VX7|? < oo, (5.4)

xeRd
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Estimate (5.1) follows by (5.3), (5.4) and (1).
(iif) Under (H}) and (HY), by [27, Lemma 4.4], we have [|7%¢ll, < Cli¢||,, which together
with (5.3) and (5.4) implies (5.1) with R = co. O

Now we use the Malliavin calculus introduced in Section 2 to show the following main
result (see also [27]), which will automatically produce the conclusions in Theorem 1.1 by
Sobolev’s embedding theorem.

Theorem 5.1. Fix { > 2. Under (Hy), (H;) and (HY), for any k,m € Ngwithk +m = € — 1,

or

there exists a Yy, > 0 such that for all R > 1, t € (0,1), p € (1,00] and ¢ € CZ(R?),
VTV llpr < Crpt 7" il (5.5)

Moreover, under (H), (Hg) and (H™), one can take R = oo in (5.5).

First of all, by the chain rule and Proposition 2.1, we have the following Malliavin differ-
entiability of X, in the sense of Theorem 2.1. Since the proof is completely the same as in
[27], we omit the details.

Lemma 5.2. Let ® = (h,v) € Ho,- X V. Under (H,), foranyt € [0,1], X, € Wg‘x’_(Q) and

A A A
DeX, = f Vb(X,)DeX,ds + f Vo (X)De X, dW* + f o (X)hkds
0 0 0 (5.6)

! !
+ f f V,8(X,_,2)DeX,_N(ds,dz) + f V,g(X,_,z)N(ds, dz),
0J)z<1 0J)zl<1
where V,g(x,z) := 0,.8(x,2)vi(s, 2). Moreover, for any R, p > 2, we have

supE( sup |D@Xt(x)|”) < 00, 5.7)

|x|<R te[0,1]

Under (H)), the above estimate holds for R = co.

To use the integration by parts formula in Section 2, we need to introduce suitable Malli-
avin matrix. Let J;, = J;(x) = VX;(x) be the Jacobian matrix of x — X;(x), and K;(x) be the
inverse of J;(x). Recalling (4.2) and (5.6), by the formula of constant variation, we have

! !
DeX, = J,f KSO'k(XS)h’;ds + th K,V.,g(X,_,2)N(ds, dz). (5.8)
0 0Jz1<1

Here the integral is the Lebesgue-Stieltjes integral.
Next we want to choose special directions ®; € He- X Vo, j = 1,--+,d so that the
Malliavin matrix M;(x) := (Dg,X}(X)); j-1... « is invertible. Let

H(x;1) 1= f o (X,(0))K (x)ds,
0

where the asterisk stands for the transpose of a matrix, and
U(x,2) := [+ V,g(x,2) 'Vog(x,2), xeRY, [z < 1.

The following lemma is a direction consequence of the above definition and (Hy).
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Lemma 5.3. Under (Hy), for any k € Ngoand m = 0,--- ,{ — 1, there exists C > 0 such that
forall x e RYand 0 < 7] < 1,

|V§V’Z"U(x, DI < CA +xDlz™, U(x,z) = Ux,0)] < C(1 + |x]lzl, (5.9
where 3 is the same as in (Hy).
Below we fix £ > 2 and assume (Hg)+(Hg). For j=1,---,d, define
hj(x; 1) := H(x; )5, Vi(x55,2) 1= [Kn (DU X- (%), D)]74e.6(2),
where {;(z) 1s a nonnegative smooth function with
Le5(2) = 1" 12 < 6/4, Lis(2) =0, 12l > 6/2.

Let
©;(x) = (h(x), vj(x)).
Noticing that by equation (4.3),

K, =K, (I+V.g(X,_,AL))™",
by (5.8) we have
M (x) = Deg,X;(x) = (J(0)Z,(x));;, (5.10)

where Z,(x) = =" (x) + £ (x), and

2 (x) = fo K (x)(0o)(X(x)K (x)ds,

(5.11)

A

() o= f f K, ()(U U)X, (%), DK (0){05(2IN(ds, dz).

0 zl<1
By Lemma 5.3 and cumbersome calculations (see [27]), we have
Lemma 5.4. (i) Foreach j=1, -+ ,d and x € R?, ©(x) € Heo X V.
(ii) ForanyR,p > 1, ke Ngand m = 0,--- ,{ — 1, we have

supE( sup (IDgV"X,(x)l” + |D’gM,(x)|1’)) < 00, (5.12)
|x|<R t€[0,1]
supE( sup ID’(f)’diV(@i(x))I") <oco,i=1,---,d, (5.13)
<R \re[0.1]

where Dg := (Dg,, -+ , De,).
(iii) Under (H;)+(H§), the R in (5.12)-(5.13) can be infinity.

Now we can give

Proof of Theorem 5.1. We divide the proof into three steps. Below we fix £ > 2 and k, m € N
sothatk +m=¢-1.

(1) Let Z,(x) = ZV(x) + ZP(x) be defined by (5.11). In view of U(x,0) = V.g(x,0),
by (5.9), Lemma 2.2 and Theorem 4.1, there are constants C3 > 1, ¢3,0 € (0,1) and y =
v(a, jo) € (0,1) such that forall t € (0,1) and R, A, p > 1,

sup sup E exp {—AuX,(x)u"} < Cs exp{—c3tA”} + CR,p(/lgt)_p. (5.14)

IX<R lul=1
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Asin [26, Lemma 5.3], for any R, p > 1, there exist constants Cr , > 1 and y' = y'(«, jo,d) >
0 such that for all r € (0, 1),

sup B((det Z,(x)) 7) < Cr,pt ™. (5.15)

[x|<R
Since M;'(x) = 7 1(x)K,(x), by Lemma 4.2, (5.12) and (5.15), we obtain that for all p > 1,

sup [IM (0)llr) < Crpt™ 5 € (0, 1). (5.16)

|x|<R

Under (H;)+(H§)+(H§“i), by Remark 4.3 and (iii) of Lemma 5.4, the above R can be infinity.

r

(2) For ¢ € (0,1) and x € R?, let %/ (x) be the class of all polynomial functionals of

-1
m=1°

(D2dive)' 2, M-, (DEVEX ievtm=o..- ¢ (DEM,)

where the starting point x is dropped in the above random variables. By (5.16) and Lemma
5.4, for any H,(x) € %;(x), there exists a y(H) > 0 only depending on the degree of M:!
appearing in H and «, jy,d such that forall € (0,1) and p > 1,

sup ||H; (X)) < CR,pt_Y(H)- (5.17)
|x|<R

Under (H;)+(H§)+(H““i), by (5.16) and (iii) of Lemma 5.4, the above R can be infinity.

or

(3) Since the Malliavin matrix M, = DX, is invertible, by the chain rule (2.6), we have

Do(¢(X))) - M;" = (V)(X)).
For any Z € %;(x), by (5.10) and the integration by parts formula (2.4), we have
E((Ve)(X)Z) = B(De(p(X,) - M;'Z) = B(e(X,)Z'),
where
Z = divO - M 'Z — De(M;'Z) € G,(x).
Starting from this formula, by (5.2) and induction, there exists H € %;(x) such that
VAE((V"0)(X)) = E(p(X)H).

Therefore, for any p € (1, 00), by (5.17), (5.1) and Holder’s inequality, we have
kaq-Ogm p ?
V5T V70l pr < (f ‘E(QO(Xz(X))H(X))‘ dx)
Bg

< ( f E(|¢|P<Xt<x>))(E|H<x>|fﬁl)”‘1dx)"

Br
< Crpt " llgll,p, 1€ (0, 1).

Under (H;)+(Hg)+(Hgni), by (5.17) and Lemma 5.1, the above R can be infinity. O

r
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6. ProOOF oF THEOREM 1.3

Throughout this section we assume (H}), (Har') and g € C;°(RY x BS). Let y : [0, 00) —
[0, 1] be a smooth function with y(r) = 1 for r < 1 and y(r) = 0 for r > 2. For § > 0, define

xs(r) := x(r/6), gs(x,z):= g(x,2)xs(2).

Choose ¢ be small enough so that g; satisfies (Hg). Thus we can write

o= Lo+ Lo,
where
1, dz
Log(x) 1= AZp(x) + Aop(x) +pv. | (6(r+ g5(x.2)) — ¢()) Fred
R
and

d
Ze(x) = fR , (p(x + g(x,2)) = p(x + ga(x, Z)))IZV%'

0

Let (77)is0 (resp. (70);s0) be the semigroup associated with .7 (resp. Ly). Then we have
0T = AT = LT+ LT . (6.1)

By Duhamel’s formula, we have
t
T =T/¢+ f T LT pds. (6.2)
0

Notice that under (H}) and (H"™), (5.1) and (5.5) hold for R = co.

For 8> 0and p € (1,00), let HA? := (I - A)"g(U’(Rd)) be the usual Bessel potential space.
It is well known that for any k € N and p € (1, o) (cf. [25]), an equivalent norm in H*” is
given by

k
lpllep = > IVl
j=0

For a function g : R? — R’ we introduce
Top(x) = @(x + g(x)) — p(x).

Lemma 6.1. Let m € Ny. Assume g € CZ’“. For any 0 € (0,1) and p > d/6, there is a
constant C = C(p, 0,m) > 0 such that

1Tl < Cliellmrap > (T, (1 + 1V7812)) NI,

la|l<m

where @ = (a1, -+ , @) and || = ay + - - + a,,. In particular, we have
m m+1 _ym+1 s 6
1T eellmsgp < Cllelhmogenn PAVEls -+ 19" glle) (1 + 19" g gL,
where P is a polynomial function of its arguments.

Proof. Let 0 € (0, 1). First of all, for m = 0, we have

T, () < sup lo(x +y) — ()]

0 s
y#
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Recalling that for p > d/0 (see [15, Lemma 5]),

sup lo(- +y) — ()l

9 < || || 1y 25

p

we have
IT¢ll, < Cllgllapllglle,.

For m € N, by the chain rule and induction, there is a constant C > 0 such that for all x € R?,

V" Tl < C Y (Il + Vglled) D 1Wepl(x + g(x).
j=1

lal<m

As above one sees that for any p > d/6,

V" Tell, < € ) (T, (1 +1IV/81D) D IVl plgll.-
j=1

lal<m

The first estimate follows. As for the second estimate, it follows by interpolation. O

Corollary 6.1. Let a € (0,2) and 8 € (0,@). For 68 € (0,1) with B+ 6 € (0,a) and p > d/6,
there is a constant C > 0 such that for all ¢ € HPP,

IZ¢llgp < Cligllg+o,p- (6.3)

Moreover, if the support of g(x,-) is contained in a ball By for all x € R, then the above
estimate holds for all > O.

Proof. Notice that for any j =0,1,---,

IVig(-, 2)llo < Clzl, z € R,

and
dz
Lox) = | (el +8(x,2) — o(x + g5(x,2)) =
zI>6 |zl
By Lemma 6.1 we have
dz
1L s < [ (Wbl + 1T gcolen) 2o
k> |z
|Z|,8+€
< Cllellg+e.p ——dz < Cllellg+a,p,
|z[>6 Izl

where the last step is due to 8 + 6 < «. If the support of g(x, ) is contained in a ball B for
all x € R?, then

d
Ze(x) = I; o (p(x + g(x, 2)) = p(x + g5(x, 2))) -

|Z|d+a/ :
As above, (6.3) is direct by Lemma 6.1. O

The following results are proven in [27, Lemmas 5.2 and 5.3].
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Lemma 6.2. Let v,y and o be the same as in Theorem 5.1. Under (H)) and (H™), for any

or

p € (1,00), 0,9 €[0,1)andp > 0, there exists a constant C > 0 such that for all ¢ € C8°(Rd)
andt € (0, 1),

17 ¢llosp,, < CEligllg s (6.4)
o -
I7°A%¢ll, < CE gl - (6.5)
Now we can show the following key estimate.

Lemma 6.3. Let y,9, Y01 be as in Theorem 5.1. Fix 9 € [0, % A 1). Under (H)), (ngr‘i) and

g€ C?(Rd X BY), there exist f > a, po > 1 and constant C > 0 such that for all t € (0, 1),
p > poand ¢ € Cg"(Rd),

IT,A% gl < CrPro- g (6.6)

Moreover; if the support of g(x,-) is contained in a ball By, for all x € RY, then the f3 in (6.6)
can be any positive number.

Proof. Choose 0 € (0, ﬁ A1l A a)and M € N such that
MO<a, B:=(M+1)8>a.
Letp>d/8. Form=1,---,M, we have

!
||7:“10||(m+1)9,p < ”‘T;OQOH(m-%—I)Q,p + f ||7:95$7-:v()0”(m+1)9,pds
0
©4) -0 ' -20
< Ct leHSO”mG,p + Cf (t - S) ylollg(]—s(p”(m—l)&pds
0
(6.3) !
< Cl_eym“‘ﬁ”me,p + Cf (t - s)_zgym”(]-s()ollme,pds
0

!
-6 -26
< Ct m“‘ﬁ”me,p + Cf (t - S) ym”(]-s(p”(m+l)6,pdsa
0

which, by Gronwall’s inequality of Volterra type (cf. [28, Lemma 2.2]), yields that for all
te(0,1),

||7-t‘p||(m+1)9,p < Ct_gym”‘p”m&,p' (67)
Thus, by the semigroup property of 7 and iteration, we obtain that form =1,--- , M,
||7a(m+1)t‘)0”(m+1)9,p < Ct_eymlletQD”me,p <0< Ct_(erl)eym”(].;(p”p- (68)

On the other hand, by (6.2), (6.3) and (6.5), we have
s
IT:A%¢ll, < ITPA%¢ll, + f 170 LT A5 gl ds
0
!
<Cr™|igll, + C f IT3A% lly pds
0
2 5
<Crgll, +C | 17:A%¢lleds
0

!
= Cr " lgll, + 2Cf 17247 @llg s
0
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!
= Cr™lgll, +2C f 77548 gllg pds
0

6.7 !
< Crgll, + C f s T AR gl ds,
0

which, by Gronwall’s inequality, yields that for all ¢ € (0, 1),
IT:ASgll, < Cromigll,. (6.9)

Combining (6.8) with (6.9), we obtain (6.6).
Finally, if the support of g(x, -) is contained in a ball By for all x € R, then the m in (6.8)
can be any natural number. O

Now we can give

Proof of Theorem 1.3. Without loss of generality, we assume ¢ € (0, 1). Let ¢ € (0,8—«a) and
p > d/eV po, where p, appears in Lemma 6.3. For any ¢ € LP(RY), by (6.6) and Sobolev’s
embedding theorem, we have (I[—A)%‘T,(p € C,(R%) and for any ¢ € (0, 1) and ¢ € [0, y% Al),

1= &) FTA gl < CITLAT @l < COPO01 g, (6.10)

In particular, for each ¢, x, there is a function p,(x, -) € Lo (R9) such that for any ¢ € LP(RY),

Ti(x) = fR Oy

Moreover, we also have

ase 9 are 9
sup [T = A)* Aypi(x, )|z, =sup  sup f eI = A)* Ajpi(x, y)dY‘

xeRd xeR? peC (RY),llpll<1

= sup sup
x€RY peCy (R llgllp<1

=sup  sup  |(I-A) TAT ()

xeR? peC(RY),llpll,<1

ate 1
= sup II— A T:AZ¢g|le < CtPYo=0r,
eeCy RY),llpllp<1

[ aleria- 0 pieay

Thus we obtain (ii). As for (iii), it follows by (6.6) for all g > 0. O

7. APPLICATION TO NONLOCAL KINETIC OPERATORS

Consider the following nonlocal kinetic operator:
K u(x,v) = Lulx,v)+v-Vaulx,v)+ b(x,v) - Vou(x,v),

where
K(x, v, w)
|W|d+a

Lu(x,v) = p.Vf (u(x,v+w)—u(x,v))

R
Here « and b satisfy the following assumptions:
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(A) b e CYR™), and k € C*(R) satisfies that for some ky > 1,
KO < k(x,v,w) < kg, k(x,v,—w) = k(x,v,w).
Moreover, for any i, j € Ny, there is a constant C;; > 0 such that
VIV k(e v, w)] < Cyif (1 + V).
The aim of this section is to use Theorem 1.2 to show the following result.

Theorem 7.1. Under (A), there is a nonnegative continuous function p,(x,v,y,w) on R, X
RYxRIXR?xRY such that for each t,y, w, the map (x,v) — p,(x,Vv,y,w) belongs to C;?(R*),
and for each t > 0 and y,w € RY,
atpt(-xa v, Y, W) = %pt(" Y, W)(-x’ V)'
The key point for us is the following transform lemma.
Lemma 7.1. Given R € (0, ) and kg € [1, ), let k(z) : B — [Kal,Ko] be a measurable

function, where Bg = {x € R? : |x| < R). For any a € (0,2), there is a homeomorphism
@ : Bg — By such that for any nonnegative measurable function f,

fB 1o (D(Z)II‘”“ f f()l’jﬁ,?a . 7.1)

Moreover, we have the following properties about ®:
(i) ©(0) = 0 and if k(-2) = k(z), then ®(—z) = —D(2).
(ii) If k is continuous at 0, then @ is differentiable at point zero and
VO(0) = «(0)"/°I.
(iii) If k € C'(Bg), then for some C = C(ko, ||V«|le, @, R) > 0 and any z € By,

Clz|?, a€(0,1),
IVD(z) — VO(0)| < { Clzllog™ |z, a=1,
Clzl, a€(1,2),

where log" |z = max{—log|z|, 1}.
(iv) If k € C/(Bg) for some j € N, then for some C;j = Cj(R) and any 7 € B,

IVID(z)| < Cjlz)' ™.

Proof. Using the spherical coordinate transform, (7.1) is equivalent to

R dt R dt
f f o ®(tw)dw = f ftw)k(tw)dw—— T (7.2)
0 Jsd-1 Je|! 0 Jsd-1 Je|1+e”

where S97! := {w : |w| = 1} is the unit sphere in R?. Given w € S9!, let ¢(-, w) and (-, w)
be defined by the following identity respectively'

Foodr (R k(tw)dt K(1w)dr
tl+a/ - t1+a/ ’ tl+a/ t +a (73)
9(rw) Y(rw)

Since «; '< k(z) < ko, it is easy to see that ¢(-,w), U(,w) : [0,R] — [0,R] are strictly
increasing continuous functions and have the following properties:

$(0,w) = ¥(0,w) =0, (R, w) = Yy(R,w) =R
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and
P (r,w), w) = Y($(r,w),w) = r. (7.4)
Moreover,
KT < plr,w) < K. (7.5)
Indeed, by (7.3) and ;' < k(tw) < ko With ¢ > 1, we have
d(r,w) * <R+ k(r* =R <kor = ¢(r,w) > K(;l/ar

and
P w >R+ =R 265" = ¢(r,w) < K(l)/”r.

In particular, by a standard monotone class argument, it holds that for all nonnegative mea-
surable function g : [0, R) — [0, c0),

R d
fo S @) = f g()’(t(ffi) (7.6)

a(z) == y(lzl, z/1zD/lzl, ®(2) = a(z) - z.
By (7.6), one sees that (7.2) holds for the above @, and by (7.4) and (7.5),

K1 < a(z) < k), Vz € By (7.7)

Now let us define

(1) From the above construction of @, it is easy to see that ®(0) = 0 and
k(=z) = k(z) = P(-z) = —D(2).
(i1) We assume «(z) is continuous at 0. We have the following claim:

a(0) := lima(z) = x(0)'/*, VO(0) = a(0)L. (7.8)
Fori=1,---,d,lete;=(0,---,1,---,0). Noticing that ®(0) = 0, we have
0,07(0) = lim O/ (ee)/e = 1z lim a(ee;).
To prove (7.8), it suffices to show that
= lim|a(z)” — «(0)| = 1lim sup |y (r, w)/r)" = k(O). (7.9)

|u)| 1

From (7.3), one sees that
-1/a

R
¢(r,a)):[a/ f Kt(ffz)dHR“] , (7.10)

which implies that

R
(r/o(r,w))" = a/r"f I;(ltj:)dt + r*R7°.

Hence, by (7.4),
lim sup | ((r, w)/ r)* = «0) = lim Sup | (r/é(r, w))* = k(0)|

0 jwl=1
= lim sup (ar Md )

r—0 wl=1 tl+(1
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1
= lim sup f k(rw/s"®) = k(0)|ds = 0,

r—0 le:]

(r/R)”

where the last step is due to the dominated convergence theorem. Thus we get (7.9).

(ii1) By definition (7.3) and the change of variable s = #/|z|, we get

fR k(tz/|z)dt fR dr _ fR/'Z' k(sz)ds 1(1 |z|0‘)
ol t1+(y " t1+rz @ S1+(l a R '

Assume k € C'(Bg). Taking the gradient for both sides with respect to z, we obtain

1+a R/|z| =2
Va(z) = &( f VK(s2) 4oy 772 —K(Rz/lZl))).

T k(a@) \Jay 5 Re

Since k € [k, !, ko], by (7.7) and elementary calculations, we have

k2ie (||VK||OOR1“’/(1 —a)+(1+ KO)R‘”) 27", @€ ©,1),

Va@) < §3(IVkdles log(Rko/IzD) + (1 + ko)R™), a=1,
IVl (@ = 1) + 1 (1 + k)R, @€ (1,2).

Finally, noticing that
ai(Dj(Z) = Zjaia(Z) + 1i:ja(Z), 5i(Dj(0) = K(O)l/ali:j = 1i:ja(0),
we have . .
10,/ (2) — 0;0/(0)] < |Zj| - |0ia(z)| + 1i=j|a(Z) —a(0)|,
which together with (7.11) gives the desired estimate.

(iv) Let @~! be the inverse of ®. We have
(VO)o @' . VO ! =1 = VO = (VO ) ' 0 ®.
Therefore,
VO . (VD)o ® ' - VO ! + (VD)o @' . VD! =0,
and
IV2D| < [VOP - V20! o @
By induction method, there is a C = C(j, d) > 0 such that

) J
Vol < ¢ ) v Ee [ ] |vio) o o,

yed/ i=2

J
i=2

where

By (ii), one sees that
VD[l < Ck.
On the other hand, by definition, it is easy to see that
7! (2) = ¢(lzl, 2/ I/ 2l =: h(2)g(2),
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where g(z) := z/|z| and by (7.10),

R —1/a
k(2z/|z]) o
h(z) = ¢(lzl, z/lz]) = [af T dt + R ]
Izl
By elementary calculations, one finds that
IVh(2)l < Cll'™, [Vg(@)] < Clel ™,
and so,
Vo™ (2)| < Clz|' ™. (7.14)

Substituting (7.14) and (7.13) into (7.12), and by (7.7) and ®(z) = a(z) -z, we obtain (ii1). O
Corollary 7.2. Given R € (0, ), ko € [1,00) and dy € N, let k(x,z) : R® x By — [Kal,Ko] be

a measurable function. For any a € (0,2), there is a map ®(x,z) : R x By — By such that
for any nonnegative measurable function f

f rootas = [ r@ie

| |d+oz
Br

Moreover, ® enjoys the following properties:
(i) O©(x,0) =0 and if k(x, —z) = k(x, 2), then ®(x, —z) = —D(x, 2).
(ii) For x € R%, if k(x,-) is continuous at 0, then ®(x, -) is differentiable at point zero and
V.®(x,0) = «(x, 0)L.
(iii) If k(x,-) € CY(Bg) and ||V k|| < 0, then there are 8 € (0,1) and C > 0 such that for all
x € R% and 7 € By,
IV.D(x,z) - V.D(x,0)| < Clz’.
(iv) If k € C;"(Rdo X Bg), then for all i, j € Ny, there is a C;; > 0 such that for all x € R%
and 7 € Bg,
IViVIO(x, 2)] < Cijlel' ™,
where C;j is a polynomial of ||VViklle, m=1,---, i,n =0,---, j.

Proof. (i), (ii) and (iii) follow by (i), (ii) and (iii) of Lemma 7.1. As for (iv), it follows by
similar calculations as in the proof of (iv) of Lemma 7.1. O

Now we can give the proof of Theorem 7.1.

Proof of Theorem 7.1. Fix § € (0, 1) being small. Define

Kk(x,v,w)

Lou(x,v) :=p.v (u(x, v +w) —u(x,v)) T ,

[wl<é
and
Jou(x,v) := Lulx,v) + v - Vau(x,v) + b(x,v) - Vou(x, v).
Then we can write
K u(x,v) = Hou(x,v) + Liu(x,v),

where
Kk(x,v,w)

Lu(x,v) = f (u(x,v+w) — u(x, V))de.
|w|=6
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For each m and p > 1, by the chain rule, it is easy to see that
L1 ullnp < Cllual|n, -
On the other hand, by Corollary 7.2, there exists a function g(x, v, ) : B; — Bs so that

d
Lou(x,V) = p.v (u(x, v + g(x,v,w)) — u(x, V))%’
|w|<d Wi

and operator %} satisfies (H’2)+(Hg)+(H““i). The desired result follows by Theorem 1.2. O

or

REFERENCES

[1] Bally V. and Clément E.: Integration by parts formula and applications to equations with jumps. Prob.
Theory and Rela. Fields, 151, no.3-4, 613-657(2011).
[2] Bichteler K., Gravereaux J.B. and Jacod J.: Malliavin calculus for processes with jumps. Gordan and
Breach Science Publishers, 1987.
[3] Bismut J.M.: Calcul des variations stochastiques et processus de sauts. Z. Wahrsch. Verw. Gebiete, 63,
147-235(1983).
[4] Cass T.: Smooth densities for stochastic differential equations with jumps. Stoch. Proc. Appl., 119, no.5,
1416-1435(2009).
[5] ChenZ.Q. and Zhang X.: L”-maximal hypoelliptic regularity of nonlocal kinetic Fokker-Planck operators.
J. Math. Pures Appl. 116 (2018) 52-87.
[6] Fujiwara T. and Kunita H.: Stochastic differential equations of jump type and Lévy processes in diffeo-
morphism groups. J. Math. Kryoto Univ. 25, 71-106(1985).
[7] Harier M.: On Malliavin’s proof of Hormander’s theorem. Bull. Sci. Math., 135 (2011), pp. 650-666.
[8] Hormander L.: Hypoelliptic second order differential equations. Acta Math. 119, 147-171(1967).
[9] Ishikawa Y. and Kunita H.: Malliavin calculus on the Wiener-Poisson space and its application to canon-
ical SDE with jumps. Stoch. Proc. Appl., 116, 1743-1769(2006).
[10] Ishikawa Y., Kunita H. and Tsuchiya M.: Smooth density and its short time estimate for jump process
determined by SDE. Stoch. Proc. Appl., 128, 3181-3219(2018).
[11] Komatsu T. and Takeuchi, A. (2001). On the smoothness of pdf of solutions to sde of jump type. Interna-
tional Journal of Differential Equations and Applications, 2(2), 141-197.
[12] Kunita H.: Nondegenerate sde’s with jumps and their hypoelliptic properties. J. Math. Soc. Japan, 65(3),
993-1035(2013).
[13] Krylov N.: Hormander’s theoreom for parabolic equations with measurable in the time variable. SIAM J.
Math. Anal, Vol. 46, No. 1, pp. 854-870(2014).
[14] Malliavin P.: Stochastic calculus of variations and hypoelliptic operators. In: Proc Inter. Symp. on Stoch.
Diff. Equations, Kyoto, 195-263 (1976).
[15] Mikulevicius R. and Pragarauskas H.: On the Cauchy problem for certain integro- differential operators
in Sobolev and Holder spaces. Lithuanian Math. Journal, Vol.32, No.2, 1992.
[16] Norris J.: Simplified Malliavin calculus. In: Seminaire de Probabilités XX, Lecture Notes in Math. 1204,
Springer, Berlin, 101-130(1986).
[17] Nourdin I., Simon T.: On the absolute continuity of Lévy processes with drift. Ann. Probab. 34(3), 1035-
1051 (2006).
[18] Nualart D.: The Malliavin calculus and related topics. Springer-Verlag, New York, 2006.
[19] Picard J.: On the existence of smooth densities for jump processes. Prob. Theory Rela. Fields, Vol. 105,
481-511(1996).
[20] Protter P. E.: Stochastic integration and differential equations. Second Edition, Springer-Verlag, Berlin,
(2004).
[21] Takeuchi A.: The Malliavin calculus for SDE with jumps and the partially hypoelliptic problem. Osaka
J. Math. 39, 523-559(2002).
[22] Song Y. and Zhang X.: Regularity of density for sdes driven by degenerate 1évy noises. Electronic Journal
of Probability, 20 (2015), no. 21, 1-27.

35



[23] Villani C.: A review of mathematical topics in collisional kinetic theory. Handbook of Fluid Mechanics.
Ed. S. Friedlander, D.Serre, 2002.

[24] Williams D.: To begin at the beginning. In Stochastic Integrals. Lecture Notes in Math. 851 (1981), 1-55.

[25] Stein E.M.: Singular integrals and differentiability properties of functions. Princeton University Press,
1970.

[26] Zhang X.: Fundamental solutions of nonlocal hormander’s operators. Communications in Mathematics
and Statistics, 4(3), 1-44(2016).

[27] Zhang X.: Fundamental solutions of nonlocal hormander’s operators II. Annals of Probability , 45, 1799-
1841(2017).

[28] Zhang X.: Stochastic Volterra equations in Banach spaces and stochastic partial differential equation. J.
Funct. Anal., 258, 1361-1425 (2010).

Zmo Hao: ScHooL oF MATHEMATICS AND STATISTICS, WUHAN UNIVERSITY, WUHAN, HUBEI 430072, P.R.CHINA,
EMAIL: ZIMOHAO @ WHU.EDU.CN

XuHut PENG: ScHOOL OF MATHEMATICS AND STATISTICS, HUNAN NORMAL UNIVERSITY, CHANGSHA, HUNAN, P.R.CHINA,
EMAIL: XHPENG @HUNNU.EDU.CN

XICHENG ZHANG: SCHOOL OF MATHEMATICS AND STATISTICS, WUHAN UNIVERSITY, WUHAN, HUBEI 430072, P.R.CHINA,
EMmAIL: XICHENGZHANG @ GMAIL.COM

36



	1. Introduction
	2. Preliminaries
	3. Improved Komatsu-Takeuchi's type estimate
	4. Estimates of Laplace transform of reduced Malliavin matrix
	5. Proof of Theorem ??
	6. Proof of Theorem ??
	7. Application to nonlocal kinetic operators
	References

