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Abstract. In this paper, we investigate two different constructions of robust Orlicz spaces as a gen-

eralisation of robust Lp-spaces. We show that a construction as norm closures of bounded continuous

functions typically leads to spaces which are lattice-isomorphic to sublattices of a classical L1-space, thus

leading to dominated classes of contingent claims even for nondominated classes of probability measures.

We further show that the mathematically very desirable property of σ-Dedekind completeness for norm

closures of continuous functions ususally aready implies that the considered class of probability measures

is dominated. Our second construction, which is top-down, is based on the consideration of the maximal

domain of a worst-case Luxemburg norm. From an applied persepective, this approach can be justified

by a uniform-boundedness-type result showing that, in typical situations, the worst-case Orlicz space

agrees with the intersection of the corresponding individual Orlicz spaces.
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1. Introduction

Since the beginning of this century, the simultaneous consideration of families of prior distributions

instead of a single probability measure has become of fundamental importance for the risk assessment

of financial positions. In this context, one often speaks of model uncertainty or ambiguity, where the

uncertainty is modeled by a set P of probability measures. Especially after the subprime mortgage

crisis, the desire for mathematical models based on nondominated families of priors arose: no single

probability measure can be chosen which determines whether an event is deemed certain or negligible.

A model incorporating the phenomenon of mutually singular measures was found in a Brownian motion

with uncertain volatility, the so-called G-Brownian motion, cf. Peng [31, 32]. To date, the latter is the

most prominent example for a model consisting of a nondominated set of probability distributions, and

an extensive strand of literature has formed around this model.

In order to maintain a certain degree of analytic tractability while still allowing for uncertainty in

terms of nondominated priors, closures of the space Cb of bounded continuous functions under robust

Lp-norms ‖ · ‖Lp(P), for a nonempty set of priors P, have become a frequent choice for commodity

spaces or spaces of contingent claims in the context of a G-Brownian motion, see, for instance, Beissner

& Denis [3], Beissner & Riedel [4], Bion-Nadal & Kervarec [7], Denis et al. [11], or Denis & Kervarec

[12]. One reason for this choice is certainly that, roughly speaking, all “nice” analytic properties of Cb
carry over to the ‖ · ‖Lp(P)-closure. As a consequence, in the past decades, the analytic properties of

these spaces have been studied extensively, see, e.g., Denis et al. [11] or Beissner & Denis [3], and a

complete stochastic calculus has been developed based on these spaces, cf. Peng [33]. However, very

little is known about their properties as Banach lattices.

On another note, there has been renewed interest in the role of Orlicz spaces in mathematical finance.

They have, for instance, appeared as canonical model spaces for risk measures, premium principles,

and utility maximisation problems; see Bellini et al. [5], Biagini & Černý [6], Delbaen & Owari [10],

Gao et al. [15, 17, 18].
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The present manuscript lies at the intersection of these two strands of literature. One of its main

goals is an order-theoretic study of robust spaces arising from closures of bounded continuous functions

w.r.t. a robust Luxemburg norm introduced in equation (1) below, which we shall denote by CΦ(P).

These turn out to be separable in many typical situations. One of our main results, Theorem 13, states

that, typically, CΦ(P) is lattice-isomorphic to a sublattice of a classical L1-space without changing the

measurable space. As a consequence, its elements are still dominated by a single probability measure,

and the P-quasi-sure order collapses to an almost sure order – even for nondominated sets P of priors.

In particular, Theorem 13 applies to the situation considered in the G-framework, showing that the

robust closure CΦ(P) not only inherits all nice analytic properties from Cb, but also its dominatedness.

In the same spirit, we show that the robust closure of Cb is also too similar to the original space Cb in

terms of order completeness properties, such as the existence of suprema for bounded countable families

of contingent claims. Theorem 15 states that, in typical situations including the G-framework, σ-

Dedekind completeness of CΦ(P) already implies the dominatedness of the family of priors P and even

uniform integrability of the densities. We thereby qualify that what prevents nondominated models

from being dominated is the lack of all order completeness properties of the Banach lattice CΦ(P).

The ambient space in which we take the closure of Cb will be constructed as follows. We consider

a fixed measurable space (Ω,F), a nonempty set of probability measures P on (Ω,F), and a family

Φ = (φP)P∈P of Orlicz functions. As usual, we consider the quotient space L0(P) of all real-valued

measurable functions on (Ω,F) up to P-q.s. equality. On L0(P), we may consider the robust Luxemburg

norm

‖X‖LΦ(P) := sup
P∈P
‖X‖LφP (P) ∈ [0,∞], for X ∈ L0(P), (1)

where ‖ · ‖LφP (P) is the Luxemburg seminorm for φP under the probability measure P ∈ P. The robust

Orlicz space LΦ(P) is then defined to be the space of all X ∈ L0(P) with ‖X‖LΦ(P) <∞. Notice that

these spaces arise naturally in the context of variational preferences as axiomatised by Maccheroni et al.

[24]. These encompass prominent classes of preferences, such as multiple prior preferences introduced

by Gilboa & Schmeidler [19] and multiplier preferences introduced by Hansen & Sargent [20] – see also

[24, Section 4.2.1]. One of the most appealing qualities of variational preference relations is the handy

separation of risk attitudes (measured by the prior-wise expected utility approach) and ambiguity or

uncertainty attitudes (as expressed by the choice of P and the penalisation γ). Aggregating expert

opinions or the preferences of a cloud of variational preference agents, however, requires to consider

more than one utility function. Thus, considering the preference relation on L0(P) given by

X E Y :⇐⇒ inf
P∈P

EP[uP(X)]− γ(P) ≤ inf
P∈P

EP[uP(Y )]− γ(P), (2)

and following the arguments of Biagini & Černý [6], will naturally lead to robust Orlicz spaces as their

canonical model space. Special cases of robust Orlicz spaces have been studied in the G-Framework by,

e.g., Nutz & Soner [29] and Soner et al. [35], and for risk measures by Gao & Munari [16], Kupper &

Svindland [22], Liebrich & Svindland [23], Owari [30], and Svindland [36].

A second approach to robust Orlicz spaces present in the literature, cf. Nutz [28] and Soner et al. [34],

is given by the construction

LΦ(P) :=
{
X ∈ L0(P)

∣∣ ∀P ∈ P ∃α > 0 : EP[φP(α|X|)] <∞
}
,

the “intersection” of the individual Orlicz spaces. In the situation of equation (2), this space collects

minimal agreement among all agents under consideration, that is, they all can attach a well-defined util-

ity to each of the objects in LΦ(P). In terms of modeling robustness, one may therefore be tempted to

prefer LΦ(P) over LΦ(P), which depends on the modeling choice of the worst-case approach represented
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by the supremum over all priors in P. In Theorem 8, we show that, in many situations,

LΦ(P) = LΦ(P),

a uniform-boundedness type result which proves the equivalence of both constructions in terms of the

extension of the resulting spaces in L0(P).

Structure of the Paper: In Section 2, we start with a top-down construction of robust Orlicz spaces.

We discuss basic prpoerties of the latter. We derive an equivalent conditions for a robust Orlicz space

to coincide with a robust multiplicatively penalised L1-space, cf. Theorem 4, and give sufficient con-

ditions for the equality LΦ(P) = LΦ(P) to be valid, see Proposition 6 and Theorem 8. In Section 3,

we consider a bottom-up approach to robust Orlicz spaces via norm closures of bounded continuous

functions. We first derive a general condition ensuring the separability of CΦ(P) (Lemma 12). Based on

the latter, Theorem 13 states that, under very mild conditions, CΦ(P) is lattice-isomorphic to a sublat-

tice of L1(P∗) for a suitable probability measure P∗. Theorem 15, provides a set equivalent conditions

for the σ-Dedekind completeness of CΦ(P). In particular, we prove that the latter already implies the

dominatedness of the set of priors P. We conclude by giving, in special yet relevant cases, an explicit

description of the dual space of CΦ(P), see Proposition 19. The proofs of Section 2 can be found in the

Appendix A, and the proofs of Section 3 are contained in the Appendix B.

Notation: For a set S 6= ∅ and a function f : S → (−∞,∞], the effective domain of f will be

denoted by dom(f) := {s ∈ S | f(s) <∞}.
Throughout, we consider a measurable space (Ω,F) and a nonempty set P of probability measures

P on (Ω,F). The latter give rise to an equivalence relation on the real vector space L0(Ω,F) of all

real-valued random variables on (Ω,F). More precisely, we define

f ∼ g :⇐⇒ ∀P ∈ P : P(f = g) = 1.

The quotient space L0(P) := L0(Ω,F)/ ∼ is the space of all real-valued random variables on (Ω,F)

up to P-q.s. equality. The elements f : Ω → R in the equivalence class X ∈ L0(P) are called repre-

sentatives, and are denoted by f ∈ X. For X and Y in L0(P), we set

X � Y :⇐⇒ ∀ f ∈ X ∀ g ∈ Y ∀P ∈ P : P(f ≤ g) = 1,

a well-defined notion of a vector space order on L0(P). We refer to � as the P-q.s. order on L0(P).

Notice that (L0(P),�) is a vector lattice. In fact, for X,Y ∈ L0(P) and representatives f ∈ X, g ∈ Y ,

the minimum X ∧ Y is the equivalence class generated by f ∧ g, whereas the maximum X ∨ Y is the

equivalence class generated by f ∨g. We denote the vector sublattice of all bounded real-valued random

variables up to P-q.s. equality by L∞(P). The latter is a Banach lattice, when endowed with the norm

‖X‖L∞(P) := inf
{
m > 0

∣∣ ∀ f ∈ X : inf
P∈P

P(|f | ≤ m) = 1
}
, X ∈ L∞(P).

As usual, ca denotes the space of all signed measures with finite total variation. We denote by ca+ or

ca1
+ the subset of all finite measures or probability measures, respectively. For µ ∈ ca, let |µ| denote the

total variation measure of µ. Given two nonempty sets Q,R ⊂ ca, we write Q� R if supµ∈Q |µ|(N) = 0

for all events N ∈ F with supν∈R |ν|(N) = 0. We write, Q ≈ R if Q� R and R� Q. For singletons

Q = {µ}, we use the notation µ� R, R� µ, and R ≈ µ. Finally, ca(P) := {µ ∈ ca |µ� P} denotes

the space of all countably additive signed measures, which are absolutely continuous with respect to

P. The subsets ca+(P) and ca1
+(P) are defiend in an analogous way. For all µ ∈ ca, X ∈ L0(P)+,

and f, g ∈ X,
∫
f dµ and

∫
g dµ are well-defined and satisfy∫

f dµ =

∫
g dµ.



4 FELIX-BENEDIKT LIEBRICH AND MAX NENDEL

We shall therefore henceforth write

µX :=

∫
X dµ :=

∫
f dµ, for f ∈ X,

if X ∈ L0(P)+ or it contains a |µ|-integrable representative.

2. Robust Orlicz spaces and penalised versions of robust Lp-spaces

In this section, we introduce the main objects of this manuscript, robust versions of Orlicz spaces, and

investigate their basic properties. For the theory of classical Orlicz spaces, we refer to [13, Chapter 2].

An Orlicz function is a lower semicontinuous, nondecreasing, and convex function φ : [0,∞) → [0,∞]

with φ(0) = 0 such that there are x0, x1 > 0 such that φ(x0) > 0 and φ(x1) < ∞.1 Throughout this

section, we consider a general measurable space (Ω,F), a nonempty set of probability measures P, a

family Φ = (φP)P∈P of Orlicz functions, and define

φMax(x) := sup
P∈P

φP(x), for all x ∈ [0,∞). (3)

Notice that, by definition, φMax is a lower semicontinuous, nondecreasing, and convex function [0,∞)→
[0,∞] with φMax(0) = 0. However, in general, φMax is not an Orlicz function, since φMax(x0) ∈ [0,∞)

for some x0 ∈ (0,∞) cannot be guaranteed.

2.1. Robust Orlicz spaces as Banach lattices.

Definition 1. For X ∈ L0(P), the (Φ-)Luxemburg norm is defined via

‖X‖LΦ(P) := inf

{
λ > 0

∣∣∣∣ sup
P∈P

EP
[
φP(λ−1|X|)

]
≤ 1

}
= sup

P∈P
‖X‖LφP (P) ∈ [0,∞].2

We define by LΦ(P) := dom(‖ · ‖LΦ(P)) the (Φ-)robust Orlicz space.

Example 2. Let (Ω,F ,P) be a probability prior space and φ : [0,∞)→ [0,∞] be an Orlicz function.

(1) For an arbitrary function γ : P→ [0,∞), consider

φP(x) :=
φ(x)

1 + γ(P)
, for x ≥ 0.

This leads to an additively penalised robust Orlicz space with Luxemburg norm

‖X‖LΦ(P) = inf

{
λ > 0

∣∣∣∣ sup
P∈P

EP
[
φ(λ−1|X|)

]
− γ(P) ≤ 1

}
, for X ∈ L0(P).

For φ(x) =∞ · 1(1,∞), the Luxemburg norm is, independently of γ, given by

‖X‖LΦ(P) = sup
P∈P
‖X‖L∞(P), for X ∈ L0(P).

Introducing the, up to a sign, convex risk measure

ρ(X) := sup
P∈P

EP[X]− γ(P) ∈ [0,∞], for X ∈ L0(P)+,

the robust Luxemburg norm can be expressed as

‖X‖LΦ(P) = inf
{
λ > 0

∣∣ ρ (φ(λ−1|X|)
)
≤ 1

}
, for X ∈ L0(P).

(2) For θ : P→ (0,∞) with supP∈P θ(P) <∞, we consider

φP(x) := φ
(
θ(P)x

)
for P ∈ P and x ≥ 0.

1 This definition precludes triviality of φ, i.e. the cases φ ≡ 0 and φ =∞ · 1(0,∞).
2 Defining ‖ ·‖LφP (P) in the usual way, we obtain a seminorm on LΦ(P), not a norm as on the classical Orlicz space LφP(P).
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This leads to a multiplicatively penalised robust Orlicz space with Luxemburg norm

‖X‖LΦ(P) = sup
P∈P

θ(P)‖X‖Lφ(P), for X ∈ L0(P).

For p ∈ [1,∞) and φ = xp, we obtain the weighted robust Lp-norm

‖X‖Lφ(P) = sup
P∈P

θ(P)‖X‖Lp(P), for X ∈ L0(P),

and, for φ(x) =∞ · 1(1,∞), the Luxemburg norm is given by

‖X‖LΦ(P) = sup
P∈P

θ(P)‖X‖L∞(P), for X ∈ L0(P).

The resulting spaces will be referred to as weighted robust Lp-spaces, for 1 ≤ p ≤ ∞.

As in the classical case, robust Orlicz spaces are Banach lattices.

Proposition 3.
(
LΦ(P), ‖ · ‖LΦ(P)

)
is a Banach lattice, and LΦ(P) ⊂ L0(P) is an ideal.

A robust Orlicz space may be reduced to a robust L1-space if and only if it contains all bounded random

variables.

Theorem 4. The following statements are equivalent:

(1) L∞(P) ⊂ LΦ(P),

(2) φMax is an Orlicz function, i.e., there exists some x0 ∈ (0,∞) with φMax(x0) ∈ [0,∞),

(3) There exists a nonempty set Q of probability measures with P ⊂ Q and a weight function θ : Q→
(0,∞) with supQ∈Q θ(Q) <∞ such that ‖ · ‖LΦ(P) = supQ∈Q θ(Q)‖ · ‖L1(Q).

In this case, LΦ(P) is a weighted robust L1-space, and there is a constant κ > 0 such that

‖X‖LΦ(P) ≤ κ sup
P∈P
‖X‖L∞(P), for X ∈ L∞(P).

Example 5.

(1) We consider the setup of Example 2. Let θ : P→ (0,∞) with c := supP∈P θ(P) <∞, γ : P→ [0,∞),

and φ be a joint Orlicz function. Let

φP(x) :=
φ
(
θ(P)x

)
1 + γ(P)

, for x ≥ 0,

corresponding to the case of a doubly penalised robust Orlicz space. Then, for x0 ∈ (0,∞) with

cx0 ∈ dom(φ),

φMax(x0) = sup
P∈P

φP(x0) = sup
P∈P

φ
(
θ(P)x0

)
1 + γ(P)

≤ φ(cx0) <∞.

By Proposition 4, we obtain that LΦ(P) is a weighted robust L1-space.

(2) For each fixed probability measure P∗ on (Ω,F), Proposition 4 shows that the classical space

L∞(P∗) is a robust L1-space, although this result could, of course, also be obtained in a more direct

manner. Let P be the set of all probability measures P on (Ω,F) that are absolutely continuous

with respect to P∗. Consider φP(x) = x for all x ≥ 0 and P ∈ P, leading a robust L1-space over P.

Then,

‖X‖P,Φ = ‖X‖L∞(P∗), for X ∈ L0(P) = L0(P∗).
(3) Let P∗ be a probability measure on (Ω,F), and consider a convex monetary risk measure ρ : L∞(P∗)→

R, which enjoys the Fatou property, and satisfies ρ(0) = 0. The dual representation, up to a sign,

ρ(X) = sup
Z∈dom(ρ∗)

E[ZX]− ρ∗(Z), for X ∈ L∞(P∗),
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is a well-known consequence, where ρ∗ is the convex conjugate of ρ. In the situation of Example 2

(1), set

P :=
{
ZdP∗

∣∣Z ∈ dom(ρ∗)
}
,

γ
(
ZdP∗

)
:= ρ∗(Z), for Z ∈ dom(ρ∗),

φP(x) := x, for x ≥ 0 and P ∈ P.

Then LΦ(P) contains L∞(P) as a sublattice. In general, we have P � P∗, but P ≈ P∗ may fail

without further conditions on ρ. We can always define the “projection”

ρ̂(Y ) := ρ
(
J−1(Y )

)
, for Y ∈ L∞(P),

though, where J : L∞(P∗) → L∞(P) is the natural projection. In that case, LΦ(P) serves as

the maximal sensible domain of definition of ρ̂. For a detailed discussion of such spaces for a

substantially wider class of risk measures, we refer to [23]. See also [22, 30, 36].

2.2. An alternative path to robust Orlicz spaces. In this section, we focus on a way to translate

the concept of Orlicz spaces to a robust setting without using a robust Luxemburg norm and the

worst-case approach represented by the supremum over all models P ∈ P. One may indeed wonder

if this modelling assumption is actually necessary to produce the largest commodity space on which

the analytic behaviour of utility can be captured well with respect to any model considered in the

uncertainty profile. An alternative would be provided by the space

LΦ(P) :=
{
X ∈ L0(P)

∣∣ ∀P ∈ P ∃α > 0 : EP[φP(α|X|)] <∞
}
.

One can show that LΦ(P) is a vector sublattice of L0(P). Moreover, independent of Φ, LΦ(P) ⊂ LΦ(P)

holds a priori. A special case of this space has, e.g., been studied in [28] and [34].

The next proposition shows that, frequently, LΦ(P) = LΦ(P) if P is assumed to be countably convex.

Proposition 6. Suppose that P is countably convex, and assume that there exist constants (cP)P∈P ⊂
(0,∞) such that

φMax(x) ≤ φP(cPx) for all x ≥ 0 and P ∈ P. (4)

Then, LΦ(P) = LΦ(P).

Example 7. Without Condition (4), the assertion of Proposition 6 fails to hold. As an example,

consider the case, where Ω = R endowed with the Borel σ-algebra F , and P is given by the set of

all probability measures P, which are absolutely continuous w.r.t. P∗ := N (0, 1) with bounded density
dP
dP∗ ≥

1
2 . We set Pn to be the set of all P ∈ P with n ≤

∥∥ dP
dP∗
∥∥
L∞(P∗) < n+ 1, and

φP(x) := xn, for x ≥ 0, n ∈ N, and P ∈ Pn.

Then, {
X ∈ L0(P∗)

∣∣ ∀n ∈ N : EP∗ [|X|n] <∞
}
⊂ LΦ(P).

If U : Ω→ R is the identity, i.e., U ∼ N (0, 1) under P∗, then U ∈ LΦ(P), but Stirling’s formula implies

that, for all α > 0,

sup
P∈P

EP[φP(α|U |)] ≥ sup
n∈N

1
2EP∗ [α

n|U |n] =∞,

and U /∈ LΦ(P) follows.

The next theorem, which generalises [23, Proposition 4.2(ii)], shows that, for doubly penalised Orlicz

spaces, cf. Example 5(1), the assumptions of countable convexity of the set P can be further relaxed.

Theorem 8. Suppose that P is convex. Assume that Φ is doubly penalised with joint Orlicz function

φ, multiplicative penalisation θ, and convex additive penalty function γ : P → [0,∞) with countably
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convex lower level sets. Then,

LΦ(P) = LΦ(P).

Remark 9. An example for an additive penalty function as demanded in Theorem 8 is given by the set

P of all probability measures in dom(ρ∗) for a convex monetary risk measure ρ with dom(ρ∗)∩ca1
+ 6= ∅.

Assume that, in this situation, the multiplicative penalty is θ ≡ 1. Then, there are two equally consistent

ways to translate convergence in Lφ(P) to a robust setting given by the set P of priors. One could

either declare a net (Xα)α∈I to be convergent if it (i) converges in each space Lφ(P), for P ∈ P, at

equal or comparable speed to the same limit, or (ii) converges to the same limit in each space Lφ(P),

for P ∈ P. Convergence (i) is reflected by the norm ‖ · ‖LΦ(P), and the equality of speeds may be

relaxed by the additive penalty, whereas (ii) would be the natural choice of a topology on LΦ(P). Even

though LΦ(P) = LΦ(P) holds, convergence (ii) might not be normable or even sequential. However,

having both options at hand provides a degree of freedom to reflect different economic phenomena on

an applied level.

3. Closures of continuous functions

By construction, Φ-robust Orlicz spaces are ideals in L0(P) with respect to the P-q.s. order, and

therefore particularly well-behaved with respect to order properties. Each Φ-robust Orlicz space is

σ-Dedekind complete. Moreover, using arguments as in [16, Lemma 34], their (super) Dedekind com-

pleteness is equivalent to (super) Dedekind completeness of L0(P) and (super) Dedekind completeness

of L∞(P).3 In conclusion, Φ-robust Orlicz spaces not only have the desirable Banach space property,

but also behave well as vector lattices.

In contrast to the top-down construction of Φ-robust Orlicz spaces, one could also build a robsut space

bottom-up, a path taken in, e.g., [3, 7, 11]. Starting with a space of test random variables, one could

consider closing the test space in a larger ambient space with respect to the risk-uncertainty structure,

leading to smaller spaces. The existing literature typically discusses (special cases of) these spaces

as Banach spaces without further going into detail on their order-theoretic properties. This section

therefore fills this gap, and explores their properties as Banach lattices. We shall observe that they tend

to be not very tractable as vector lattices, and their well-behavedness with respect to order properties

has strong consequences.

Assumption 10. Throughout this section, we assume that Ω is a Polish space, F is the Borel-σ-algebra

on Ω, and P is a nonempty set of probability measures. Moreover, there exists some x0 ∈ (0,∞) such

that φMax(x0) ∈ [0,∞), or, equivalently, L∞(P) ⊂ LΦ(P).

Let Cb be the space of bounded continuous functions on Ω. By virtue of Assumption 10,

ι : Cb → LΦ(P), f 7→ [f ].

is a well-defined, continuous, and injective lattice homeomorphism. We shall abuse notation and also

refer to ι(Cb) as Cb, to the equivalence classes by capital letters though. Then, we consider

CΦ(P) := cl‖·‖
LΦ(P)

(
Cb
)
.

The space CΦ(P) is a Banach lattice, when endowed with ‖ · ‖LΦ(P) and the P-q.s. order.

Lemma 11.
(
CΦ(P),�, ‖ · ‖LΦ(P)

)
is a Banach lattice.

We would like to point out that all results in this section apply to the spaces discussed in [3, 7, 11].

3 For the definition of these notions, we refer to [2].
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The following lemma provides a tightness criterion for the separability of (CΦ(P), ‖ · ‖LΦ(P)). We

decisively generalise [7, Proposition 2.6] to a degree, which is new in the existing literature to the best

of our knowledge.

Lemma 12. Assume that, for every ε > 0, there exists a compact set K ⊂ Ω with

‖1Ω\K‖LΦ(P) < ε. (5)

Then, CΦ(P) is separable. In particular, condition (5) is met in either of the following situations:

(i) Ω is compact.

(ii) P is tight and dom(φMax) = [0,∞).

We emphasise that (ii) is treated as a rather mild condition in the literature, which is, in particular,

satisfied in the G-Framework, see [33, Theorem 2.5].

The next theorem proves that the P-q.s. order on CΦ(P) collapses to a P∗-a.s. order under mild

conditions, where P∗ � P is an appropriately chosen probability measure. Recall that, for a signed

measure µ such that each X ∈ CΦ(P) is |µ|-integrable, we define µX :=
∫
X dµ. We denote by CΦ(P)

∗

the topological dual space of CΦ(P) endowed with the operator norm ‖ · ‖CΦ(P)∗ . Furthermore, we set

ca(CΦ(P)) := ca(P) ∩ CΦ(P)
∗
,

the set of signed measures absolutely continuous with respect to P which define continuous linear

functionals on CΦ(P).

Theorem 13. Suppose that CΦ(P) is separable. Then, there exists a countable convex combination

P∗ ∈ ca
(
CΦ(P)

)
of probability measures in P such that the P-q.s. order and the P∗-a.s. order coincide on CΦ(P).

Moreover, CΦ(P) is lattice isomorphic to a sublattice L ⊂ L1(P∗). If, additionally, P is countably

convex, P∗ can be chosen as an element of P.

Remark 14. The preceding theorem is akin to results of Nagel [26], see [25, Theorem 2.7.8]. However,

these use Kakutani representation and isomorphisms between a multitude of Banach lattices, while

our approach does not require a change of the underlying measurable space or topological structure.

Moreover, it shows that the P-q.s. order collapses to a P∗-a.s. order on every sublattice of CΦ(P),

that is, P is dominated on each sublattice of CΦ(P). Prominent sublattices of CΦ(P) appearing in the

literature are the ‖ · ‖LΦ(P)-closures of bounded Lipschitz functions, or bounded cylindrical Lipschitz

functions, cf. [11, 21], respectively. The additional assumption of countable convexity is met if, e.g., P

is convex and weakly compact, such as in [3].

Another consequence of separability is that the only property which prevents P being dominated is the

mild order completeness property of σ-Dedekind completeness.

Theorem 15. Suppose that CΦ(P) is separable. Then, the following are equivalent:

(1) CΦ(P) is super Dedekind complete.

(2) CΦ(P) is σ-Dedekind complete.

(3) CΦ(P) = cl
(
L∞(P)

)
.

(4) CΦ(P) ⊂ LΦ(P) is an ideal.

In this case, the probability measure P∗ constructed in Theorem 13 satisfies P∗ ≈ P. If, additionally,

infP∈P φP(x0) ∈ (0,∞) for some x0 ∈ (0,∞), there is a probability measure Q∗ ∈ ca(CΦ(P)) such that

Q∗ ≈ P and such that the set of densities
{

dP
dQ∗

∣∣P ∈ P
}

is uniformly Q∗-integrable.

We thus see that, in typical situations encountered in the literature, all order completeness properties

agree, and their validity typically implies dominatedness of the underlying set of priors in a particularly

strong form.
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Separability is a desirable property from an analytic point of view. One may wonder what happens

if one drops this assumption. For the next result, we emphasise that, if we view CΦ(P) as a space of

measurable functions, two properties should not be far-fetched: (i) σ-Dedekind completeness, (ii) many

positive functionals which are integrals with respect to a measure are σ-order continuous. Recall that a

bounded linear functional ` : X → R on a Banach lattice (X ,�, ‖ · ‖) is σ-order continuous if for every

non-increasing sequence (xn)n∈N with infn∈N xn = 0, limn→∞ |`(xn)| = 0.

Lemma 16. Each σ-order continuous linear functional on CΦ(P) is given by a unique signed measure

in ca(CΦ(P)).

Proposition 17. Suppose that P is equivalent to the set of positive σ-order continuous linear func-

tionals on CΦ(P). Then properties (2)–(4) in Theorem 15 are equivalent.

Remark 18.

(1) The proof of Proposition 17 shows that (3) and (4) in Theorem 15 are always equivalent. If one

of them holds, Lemma 16 proves that each measure µ ∈ ca(CΦ(P)) is σ-order continuous. The

additional assumption in Proposition 17 therefore only presents a restriction for property (2), the

σ-Dedekind completeness of CΦ(P).

(2) In general, not every measure µ ∈ ca ∩ CΦ(P)
∗

is σ-order continuous. As an example, consider

Ω = [0, 1] endowed with its σ-algebra F of Borel sets and set P to be the set of all atomless

probability measures. Consider the robust weighted L1-space, where θ ≡ 1. One shows that each

X ∈ CΦ(P) has a unique continuous representative f and satisfies ‖X‖Lφ(P) = ‖f‖∞. Now consider

the linear bounded functional `(X) := f(1), X ∈ CΦ(P), where f ∈ X is continuous. Although

it corresponds to the Dirac measure concentrated at 1, it neither lies in ca(CΦ(P)) nor is σ-order

continuous on CΦ(P).

(3) As is remarked after [9, Corollary 5.6], Cb does not admit any nontrivial σ-order continuous func-

tional in our situation. One could therefore interpret Proposition 17 as a dichotomy: either CΦ(P)

behaves very much like the space of continuous functions, or it is an ideal of LΦ(P), which could

be obtained more directly as the closure of L∞(P).

We conclude with a Riesz representation result for the dual of CΦ(P), which extends [3, Proposition 4]

to our setting.

Proposition 19. Assume that P is weakly compact and that dom(φMax) = [0,∞). Then,

CΦ(P)
∗

= ca
(
CΦ(P)

)
.

Appendix A. Proofs of Section 2

Proof of Proposition 3. The fact that LΦ(P) is an ideal of L0(P) follows directly from the fact that

each φP is nondecreasing and convex and the fact that the supremum is subadditive. Hence, it is a

vector lattice with respect to the P-q.s. order. In a similar way, it follows that ‖ · ‖LΦ(P) defines a norm

on LΦ(P). Let (Xn)n∈N be a Cauchy sequence. Notice that, since φP is convex and nontrivial for all

P ∈ P, there exist aP > 0 and bP ∈ R such that

φP(x) ≥ (aPx+ bP)+ for all x ∈ R. (6)

By possibly passing to a subsequence, we may assume that

‖Xn −Xn+1‖LΦ(P) < 4−n for all n ∈ N.

For all n ∈ N, let λn > 0 with ‖Xn − Xn+1‖LΦ(P) < λn ≤ 4−n. In particular, λ−1
n 2−n ≥ 2n, i.e. we

can fix nP ∈ N such that aPλ
−1
n 2−n + bP > 0 holds for all n ≥ nP. Markov’s inequality together with
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equation (6) shows, for all P ∈ P,

∞∑
n=nP

P
(
|Xn −Xn+1| ≥ 2−n

)
≤

∞∑
n=nP

P
((
aP(λ−1

n |Xn −Xn+1|) + bP
)+ ≥ (aPλ−1

n 2−n + bP
)+)

≤
∞∑

n=nP

(aP2n + bP)−1 EP
[
φP
(
λ−1
n |Xn −Xn+1|

)]
≤

∞∑
n=nP

1

aP2n + bP
<∞.

Applying the Borel-Cantelli Lemma yields that

inf
P∈P

P
(
|Xn −Xn+1| ≤ 2−n eventually

)
= 1.

Hence, the event Ω∗ := {limn→∞Xn exists in R} ∈ F satisfies P(Ω∗) = 1 for all P ∈ P. We set X to be

(the equivalence class in L0(P) induced by) lim supn→∞Xn. Now, let P ∈ P and α > 0 be arbitrary.

Choose k ∈ N such that
∑

i≥k λiα ≤ 1. For l > k, we can estimate

φP(α|Xnk −Xnl |) ≤ φP

(
l−1∑
i=k

α|Xni+1 −Xni |

)
≤

l−1∑
i=k

λiαφP
(
λ−1
i |Xni+1 −Xni |

)
≤
∞∑
i=k

λiα.

Notice that the last bound is uniform in l and P. Letting l→∞ and using lower semicontinuity of φP,

φP(α|Xnk −X|) ≤
∞∑
i=k

λiα.

This implies

lim sup
k→∞

sup
P∈P

EP[φP (α|Xnk −X|)] ≤ lim
k→∞

∞∑
i=k

λiα = 0.

As α > 0 was arbitrary, X ∈ LΦ(P) and limk→∞ ‖Xk −X‖LΦ(P) = 0 follow. �

Proof of Theorem 4. Suppose L∞(P) ⊂ LΦ(P). Then, we can find some α > 0 such that

sup
P∈P

φP(α) = sup
P∈P

EP[φP(α1Ω)] ≤ 1.

Now let α > 0 with φMax(α) = supP∈P φP(α) <∞. Since φMax is convex, we may w.l.o.g. assume that

φMax(α) ≤ 1. For P ∈ P and Z ∈ L0(P), let

‖Z‖′P := sup
{
EP[|ZX|]

∣∣ ‖X‖LφP (P) = 1
}
.

Then, by [25, Theorem 2.6.9 & Corollary 2.6.6],4

‖X‖LφP (P) = sup
{
EP[|ZX|]

∣∣Z ∈ L0(P), ‖Z‖′P = 1
}

for all P ∈ P and X ∈ LφP(P). (7)

Since supP∈P φP(α) ≤ 1, ‖1Ω‖LφP (P) ≤ α−1. Hence, for all Z ∈ L0(P) with ‖Z‖′P = 1,

EP[|Z|] = ‖1Ω‖LφP (P)E
[∣∣Z(‖1Ω‖LφP (P))

−11Ω)
∣∣] ≤ 1

α
. (8)

For P ∈ P, let QP denote the set of all probability measures Q� P on (Ω,F) with

dQ
dP = |Z|

EP[|Z|] for some Z ∈ L0(P) with ‖Z‖′P = 1.

4 The cases LφP(P) ∈ {L1(P), L∞(P)} are not treated in this reference, but equation (7) is well known for them.
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Note that by [13, (2.1.21)], P ∈ QP holds for all P ∈ P. Let Q := {Q ∈ ca1
+ | Q ∈ QP for some P ∈ P}

and

θ(Q) := sup
P∈P : Q∈QP

(‖dQ
dP ‖
′
P)−1, for Q ∈ Q.

Then, for P ∈ P, Q ∈ QP, and Z ∈ L0(P) with ‖Z‖′P = 1 as well as dQ
dP = |Z|

EP[|Z|] , (8) implies that(∥∥dQ
dP
∥∥′
P

)−1
= EP[|Z|] ≤ 1

α
.

Hence, supQ∈Q θ(Q) <∞, and, for X ∈ L0(P),

‖X‖LΦ(P) = sup
P∈P
‖X‖LφP (P) = sup

P∈P
sup
Q∈QP

(∥∥∥dQ
dP

∥∥∥′
P

)−1

EQ[|X|]

= sup
P∈P : Q∈QP

(
‖dQ

dP ‖
′
P

)−1
sup
Q∈Q

EQ[|X|] = sup
Q∈Q

θ(Q)EQ[|X|].

As ‖1A‖LΦ(P) = 0, for A ∈ F , is equivalent to 1A = 0 in L0(P), this representation also proves Q ≈ P.

At last, suppose that LΦ(P) reduces to a weighted robust L1-space as in the assertion. From Q ≈ P, we

infer that the latter space contains L∞(Q) = L∞(P). For the last statement, choose κ := supQ∈Q θ(Q)

or, equivalently, κ := ‖1Ω‖LΦ(P). �

Proof of Proposition 6. Due to Condition (4),

‖X‖LφP (P) ≤ ‖X‖LφMax (P) ≤ cP‖X‖LφP (P) for all P ∈ P and X ∈ L0(P).

Therefore, we may concentrate on the case φP = φMax =: φ for all P ∈ P. Let X ∈ L0(P)\LΦ(P).

Then, there exists a sequence (Pn)n∈N ⊂ P with

‖X‖Lφ(Pn) ≥ 2nn for all n ∈ N.

Define P :=
∑

n∈N 2−nPn. Then, P ∈ P, since P is countably convex, and, for all n ∈ N,

‖X‖Lφ(P) = 2−n‖X‖Lφ(Pn) ≥ n→∞ as n→∞,

which proves that X /∈ LΦ(P). �

Proof of Theorem 8. We proceed similarly to the proof of [23, Proposition 4.2(ii)]. LetX ∈ L0(P)\LΦ(P).

Assume for contradiction there is n ∈ N and a constant c > 1 such that, for all P ∈ P,

EP[φ(θ(P)2−n|X|)] ≤ c(1 + γ(P)).

Using the convexity of φ, we then obtain

sup
P∈P

1
1+γ(P)EP

[
φ
(
θ(P)
c2n |X|

)]
≤ 1,

which means X ∈ LΦ(P) and is thus contradictory. We must therefore be able to choose a sequence

(Pn)n∈N ⊂ P with the property

∀n ∈ N : EPn [φ(θ(Pn)2−n|X|)] ≥ 2n(1 + γ(Pn)).

Fix P∗ ∈ P and consider the measures

Qn := γ(Pn)
1+γ(Pn)P

∗ + 1
1+γ(Pn)Pn, for n ∈ N.

By convexity of γ, γ(Qn) ≤ γ(P∗) + 1, n ∈ N. Using countable convexity of the lower level sets of γ,

Q :=

∞∑
n=1

2−nQn ∈ P
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satisfies γ(Q) ≤ γ(P∗) + 1. For α > 0 arbitrary, set I := {n ∈ N | θ(Q)α ≥ θ(Pn)2−n}. We estimate

EQ[φ(αθ(Q)|X|)] ≥
∞∑
n=1

2−nEQn [φ(θ(Q)α|X|)] ≥
∞∑
n=1

EPn [φ(θ(Q)α|X|)]
2n(1 + γ(Pn))

≥
∑
n∈I

EPn [φ(θ(Pn)2−n|X|)]
2n(1 + γ(Pn))

≥
∑
n∈I

2n(1 + γ(Pn))

2n(1 + γ(Pn))
=∞.

This proves X /∈ LΦ(P). �

Appendix B. Proofs of Section 3

Proof of Lemma 11.
(
Cb,�

)
is a sublattice of

(
LΦ(P),�

)
. By [25, Proposition 1.2.3(ii)], the closure

(CΦ(P),�) is a sublattice as well. As ‖ · ‖LΦ(P) is a lattice norm on CΦ(P),
(
CΦ(P), ‖ · ‖LΦ(P)

)
is a

Banach lattice by construction. �

Proof of Lemma 12. By Theorem 4, there exists some constant κ > 0 such that

‖X‖LΦ(P) ≤ κ‖X‖L∞(P), for all X ∈ Cb(Ω).

Let d be a metric consistent with the topology on Ω, and (ωn)n∈N dense in Ω. For m,n ∈ N and ω ∈ Ω,

let Xm,n(ω) := d(ω, ωn)∧m. Then, the algebra A ⊂ Cb(Ω) generated by (Xm,n)m,n∈N over the rational

numbers is still of countable cardinality. Let X ∈ Cb(Ω), ε > 0, and K ⊂ Ω compact with

‖1Ω\K‖LΦ(P) <
ε

2(1 + 2‖X‖∞)
.

By the Stone-Weierstrass Theorem, there exists some X0 ∈ A with ‖X0‖∞ ≤ 1 + ‖X‖∞ and∥∥(X −X0)1K
∥∥
L∞(P)

<
ε

2κ
.

Hence,

‖X −X0‖LΦ(P) ≤
∥∥(X −X0)1K

∥∥
LΦ(P)

+
∥∥(X −X0)1Ω\K

∥∥
LΦ(P)

≤ κ
∥∥(X −X0)1K

∥∥
L∞(P)

+
(
‖X‖∞ + ‖X0‖∞

)
‖1Ω\K‖LΦ(P) < ε.

Now, (i) trivially implies (5). Under condition (ii), let 0 < δ < ε and K ⊂ Ω compact with

φMax(δ−1) sup
P∈P

P(Ω\K) ≤ 1.

Then,

sup
P∈P

EP[φP(δ−11K)] ≤ sup
P∈P

EP[φMax(δ−11K)] = φMax(δ−1) sup
P∈P

P(Ω\K) ≤ 1.

This entails ‖1Ω\K‖LΦ(P) ≤ δ < ε. �

Proof of Theorem 13. By the Banach-Alaoglu Theorem, separability of CΦ(P) implies that the unit

ball B := {` ∈ CΦ(P)
∗ | ‖`‖CΦ(P)∗ ≤ 1} endowed with the weak* topology is compact and metrisable.

As such, it is separable. Assumption 10 and Theorem 4(iii) show that, for each P ∈ P, a multiple of

this measure lies in B. We thus define the subset

R := {cP | P ∈ P, c > 0, ‖cP‖CΦ(P)∗ = 1} ⊂ B.

For all 0 6= X ∈ CΦ(P)+ we can find µ ∈ R such that µX > 0. As R is separable with respect to

the relative weak* topology, we may choose a dense sequence (ckPk)k∈N ⊂ R and conclude that, for

X ∈ CΦ(P)+, supk∈N ckEPk [X] > 0 holds if and only if X 6= 0. Consider the measure

µ∗ :=
∞∑
k=1

2−kckPk ∈ ca(CΦ(P)),
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and P∗ := (µ∗(Ω))−1µ∗, which is a countable convex combination of (Pk)k∈N. By construction, the

functional EP∗ [·] ∈ CΦ(P)
∗

is strictly positive. Hence, for X,Y ∈ CΦ(P), X � Y if and only if

EP∗ [(Y − X)−] = 0, which immediately proves that both orders coincide on CΦ(P). P∗ � P allows

us to consider the natural projection J : CΦ(P) → L1(P∗), and we immediately obtain that CΦ(P) is

lattice isomorphic to the sublattice J
(
CΦ(P)

)
⊂ L1(P∗). �

Proof of Lemma 16. We first remark that each sequence (Xn)n∈N ⊂ CΦ(P)+ possessing representatives

(fn)n∈N such that fn ↓ 0 holds pointwise, yields infn∈NXn in CΦ(P). Consider now the vector lattice

Cb ⊂ L := {f ∈ L0(Ω,F) | [f ] ∈ CΦ(P)}.

The linear functional ˜̀ : L → R, f 7→ `([f ]),

satisfies ˜̀(fn) ↓ 0 for all sequences (fn)n∈N ⊂ L such that fn ↓ 0 pointwise. By [1, Lemma 4.65(3)],

σ(Cb) = F . Hence, [8, Theorem 7.8.1] provides a unique finite measure µ on (Ω,F) such that

˜̀(f) =

∫
f dµ for all f ∈ L.

Moreover, for all X ∈ CΦ(P) and all f, g ∈ X we have∫
f dµ = ˜̀(f) = `(X) = ˜̀(g) =

∫
g dµ.

In particular, considering that 1N ∈ L for all N ∈ F satisfying supP∈P P(N) = 0, µ ∈ ca(P) follows. �

For the sake of clarity, we give the proof of Proposition 17 in advance of Theorem 15.

Proof of Proposition 17.

(2) implies (3): Let A ⊂ Ω closed. Then, there exists a sequence (Xn)n∈N ⊂ Cb(Ω) with Xn ↓ 1A
pointwise. By monotone convergence,

lim
n→∞

µXn = µ1A (9)

follows for all µ ∈ ca+. By σ-Dedekind completeness of CΦ(P), there is a maximal lower bound

V ∈ CΦ(P) of {Xn | n ∈ N}. 0 � V � 1A holds in LΦ(P) a priori. Moreover, for each nonnegative

σ-order continuous functional µ on CΦ(P),

lim
n→∞

µXn = µV. (10)

Combining the global condition of the proposition with equations (9) and (10) now implies that 1A =

V ∈ CΦ(P). At last, consider the π-system Π := {A ⊂ Ω | A closed}, which is a subset of

Λ := {A ∈ F | 1A ∈ CΦ(P)}.

The latter is a λ-system, which can be shown similar to the conjunction of the global condition of the

proposition, and equations (9) and (10). Since CΦ(P) is σ-Dedekind complete, the latter is a λ-system.

By Dynkin’s lemma, it follows that Λ = F .

CΦ(P) contains all representatives of simple functions. As CΦ(P) is closed, Theorem 4 implies L∞(P) ⊂
CΦ(P). The latter space is closed, hence cl(L∞(P)) ⊂ CΦ(P).

(3) always implies (4): L∞(P) is an ideal in LΦ(P), and norm closures of ideals in Banach lattices

remain ideals ([25, Proposition 1.2.3(iii)]).

(4) implies (2): Suppose that CΦ(P) is an ideal in LΦ(P) with respect to the P-q.s. order. Let

D ⊂ CΦ(P) be order bounded from above and countable. Since LΦ(P) is σ-Dedekind complete,

U := supD exists in LΦ(P). Let Y ∈ CΦ(P) be any upper bound of D and X ∈ D. Then X � U � Y .

As CΦ(P) is an ideal, U ∈ CΦ(P), and we have proved that CΦ(P) is σ-Dedekind complete. �
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Proof of Theorem 15. Theorem 13 provides a strictly positive linear functional in the present situation.

Hence, (1) is equivalent to (2) by [27, Lemma A.3].

Now suppose that (1) holds. CΦ(P) is thus a separable and σ-Dedekind complete Banach lattice. As

such it cannot contain a sublattice isomorphic to `∞, the space of all bounded sequences with real values.

By [25, Corollary 2.4.3(x)], ‖ · ‖LΦ(P) is order continuous on CΦ(P). By [25, Theorem 2.4.2(vii)], each

continuous linear functional on CΦ(P) is order continuous. We have seen in the proof of Theorem 13

that ca(CΦ(P))+ ≈ P. Proposition 17 shows that (3) holds. Finally, the proof of Proposition 17 shows

that (3) implies (4), which in turn implies (2).

For the rest of the proof, we thus assume that the equivalent conditions (1)–(4) hold. Let P∗ ∈
ca
(
CΦ(P)

)
as in Theorem 13. For all A ∈ F , 1A ∈ CΦ(P) is implied by (3), and it follows that P ≈ P∗.

Finally, assume that β := infP∈P φP(x0) ∈ (0,∞] for some x0 ∈ (0,∞). In a first step, we prove that P

is a bounded subset of CΦ(P)
∗
. To this effect, note first that LΦ(P) = L∞(P) if β = ∞, and we can

assume β <∞ w.l.o.g. Second, note that, for all P ∈ P, φP(x0) ≥ β > 0. Hence, by [13, (2.1.21)],

sup
P∈P

EP[|X|] ≤ x0(1 + β)

β
‖X‖LΦ(P) for all X ∈ LΦ(P),

which proves the claim. Now, order continuity of the norm on CΦ(P) shows that the coherent monetary

risk measure ρ(X) := supP∈P EP[X], X ∈ L∞(P) = L∞(P∗), is continuous from above. The existence

of a probability measure Q∗ such that Q∗ ≈ P, EQ∗ [X] ≤ supP∈P EP[X] for all X ∈ L∞(P), and the

set of densities { dP
dQ∗ | P ∈ P} is uniformly Q∗-integrable, is a well-known consequence, see, e.g., [14,

Corollary 4.38]. By density of L∞(P) in CΦ(P), we also have Q∗ ∈ ca(CΦ(P)). �

Proof of Proposition 19. The inclusion ca(CΦ(P)) ⊂ CΦ(P)
∗

holds by definition. For the converse

inclusion, it suffices to show that every positive bounded linear functional ` can be represented by some

finite measure µ. To this end, let ` ∈ CΦ(P)
∗

be positive. Moreover, let (Xn)n∈N ⊂ Cb(Ω) with Xn ↓ 0

as n → ∞ and α > 0. Then, φMax(αXn) ∈ Cb(Ω) for all n ∈ N with φMax(αXn) ↓ 0 as n → ∞. Since

P is weakly compact, [11, Corollary 33] implies

lim
n→∞

sup
P∈P

EP[φP(α|Xn|)] = 0 as n→∞.

This suffices to conclude limn→∞ ‖Xn‖LΦ(P) = 0. Hence, we can apply the Daniell-Stone Theorem to

the lattice L := {f ∈ L0(Ω,F) | [f ] ∈ Cb} and the functional ˜̀(f) := `([f ]) in a similar fashion to

Lemma 16 to obtain ` = µ for a unique measure µ ∈ ca(P)+ such that

`(X) = µX, for all X ∈ Cb(Ω).

By standard arguments, one can extend this identity to all of CΦ(P) and prove µ ∈ ca(CΦ(P)) by

density of Cb ⊂ CΦ(P). To this end, one uses the observation from the proof of Proposition 3 that

every norm convergent sequence contains a P-q.s. convergent subsequence. �
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