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Abstract

We prove an abstract form of Hardy’s inequality for local and non-local regular
Dirichlet forms on metric measure spaces, using the Green operator of the Dirichlet form
in question. Under additional assumptions such as the volume doubling, the reverse
volume doubling, and certain natural estimates of the Green function, we obtain the
“classical” form of Hardy'’s inequality containing distance to a reference point or set.
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1 Introduction

The classical Hardy inequality was first proved by Har@l§] in order to find an elemen-
tary proof of a double series inequality of Hilbert. A modern form of the Hardy inequality in
R", n> 2, is as follows:

vt f 109 dxﬁf IVi(x)|?dx forall f € CX(R"), (1.1)
4 RD |X|2 R?

whereC(R") denotes the class of continuouslyfdrentiable functions oR" with compact
support (cf. B6]). Hardy’s inequality has found numerous applications in various areas
of mathematics such as partiafférential equations, geometric analysis, probability theory
etc. We refer the reader to the monogragh4p, 44, 49] and the references therein for more
information about Hardy’s inequality in Euclidean spaces and related historical reviews.
Generalizations ofl(.1) to Riemannian manifolds can be found B [L4, 24, 43]. Let
M be a Riemannian manifoldy be the Laplace-Beltrami operator dh andu be the Rie-
mannian measure. Then, for any smooth positive fungti@am M satisfying the equation
—A¢ + ®¢ = 0 for some smooth functiod®, the following version of the Hardy inequality is
true:

f%‘pfzdﬂsfwﬂzd# for all f € C3(M). (1.2)
M M

The following short proof of1.2) was given in 3, Section 4.4] andZ4, p. 258]. Consider
the weighted manifoldNl, &) with diz = ¢? du. An easy calculation shows that the weighted
Laplacian

Azu = ¢~2 div(p?Vu)

satisfies the following identities: the product rule
~pAs(p7) = —Af + %f

and the Green formula

—f UAzU 0 = f IVul?diz > O for allu € C3(M).
M M
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Multiplying the former identity withf¢-2, integrating it againstlz and applying the latter
identity withu = ¢~ f, we obtain (..2) (see also30)).

Note that (.2) is sharp in the sense that it recovers the sharp Hardy inequalijyhen
M =R", n> 2, because, for the functias(x) = |x|‘"%2, we have

—Ag(x) _ (n-2P 1
o) 4 |x?

Motivated by (.1) and (L.2), the main aim of this paper is to establish Hardy’s inequality
on general metric measure spackkd, 1), including manifolds and fractal spaces (s2g |
3, 22, 42,52)). In such a general setting, we replace the energy intg@lrwﬂ2 duin (1.2
by a Dirichlet form €, ) and use instead 6fA its inverse — the Green operatér Hence,
for a certain class of positive functiohson M, (1.2) transforms to

N 20, < 85, 1) forall f e 7 (1.3)
v Gh

The Hardy inequality in the forml(3) is proved in this paper in Theoregl for strongly
local regular Dirichlet forms and in Theoredn5— for general (non-local) regular Dirichlet
forms (in the latter case for a somewhat smaller class of funchipns

Given a Radon measuseon M, one can ask under what condition the following even
more general form of Hardy’s inequality is valid:

f f2dv < &(f, ). (1.4)
M

This question was studied ia9, 6, 50] where the answer was given in terms of a certain test-
ing inequality expressed via the Dirichlet form and the measuf@ur versions of Hardy’s
inequality are much more explicit and do not follow from the resultsléf §, 50].

Assume further that the metric measure spaded(u) satisfies the volume doubling
condition(VD), the reverse volume doubling conditigRVD), and that the Dirichlet form
(&, F) admits the Green functio® (x,y) satisfying a certain estimai&); whereg is a
positive parameter that is called timalk dimension(see Sectior? for the definitions of
these conditions). Under these hypotheses we establish in Théos¢ne “classical form”
of Hardy’s inequality: for any, € M and allf € ¥

f(x)?
m d(%o, X)°

du(x) < C&(f, f). (1.5)

Note thafR" satisfies the hypotheses of Theorgrprovidedn > 2 andB = 2. Theorenb.6
applies also on many fractals spaces where the estimates of the Green functighis-vidth
are available. Let us emphasize that in Theoke@the Dirichlet form does not have to be
local.

Recall thatR" with n > 2 admits also a weighted Hardy inequality (séB, [p.657, (7)],
[7, Corollary 4] or L6, Theorem 13]):

(n‘a_z)zf f(X)ZdX<f VT OO (1.6)
R RA

4 n X2 T X"
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foranyo € [0,n — 2). We establish an analogue df§) for strongly local Dirichlet forms,
under the hypothesd¥D), (RVD) and(G),. Our weighted Hardy inequality is stated in
Theorem7.5and has the form

2
fM d(];(x)zo)zw(x)du(x)sc fM wdr(f, f), (L.7)

whereI'(f, f) is the energy measure défandw is a certain admissible function that is de-
termined by a distance function to a certain closed nulkset M (see Definition7.3). In
particular, in the case of a singlet@n= {x,} we obtain the following generalization df.Q):

f(x)2
g < | gty At
(see Propositiof.6).

This part of our work is most technically involved since it requires investigation of a
weighted Dirichlet form &Y, 7W), where&™ (f, f) is defined by the right hand side of
(1.7), and establishing the estimatg), for the Green function of§™, FW) (Theorem
7.5). For the latter we use the following two highly nontrivial results:

>> the equivalence
(G)p © (UE)g + (NLE)g, (1.8)

where UE)z and (NLE )z denote certain upper and lower bounds of the heat kernel of
(&,F) (see Theorerd.l);

> the stability of UE), + (NLE), under certain non-uniform change of weigl&(, [55,
Theorem 1.0.1]; the latter works only in the c#se 2).

Our weighted Hardy inequalityl(7) seems to be entirely new in the setting of Dirichlet
forms.

This paper is organized as follows.

In Section2 we describe our basic setup: define the aforementioned conditi@)sapd
(RVD), recall some basic facts about Dirichlet forms, introduce the Green op&aind
define the condition(),.

In Section3 we prove the Hardy inequality for strongly local regular Dirichlet forms
(Theorem3.1).

In Sectiond we prove the Hardy inequality for general (non-local) regular Dirichlet forms
(Theoremd.5).

In Section5 we apply Theoremd.5 to specific settings. In particular, we obtain the
discrete Hardy inequality oA" (Theorem5.1). Under the assumption¥D), (RVD), (G)g,
we deduce from Theoreh5the explicit form (.5) of the Hardy inequality (Theorei®.6).
Besides, in a similar setting, we prove the fractional Hardy inequality for the subordinated
Dirichlet form (Theoren®.9).

In Section6 we prove the equivalencé.g) for strongly local Dirichlet forms (Theorem
6.1). This equivalence is interesting on its own merit, but we need it for the proof of the
weighted Hardy inequality in Section(Theorem?7.5). Previously {.8) was known in the
setting of random walks on graphs — s8&|[ Different ways of characterization of the heat
kernel upper and lower estimates have been considered in a large number of papers; see for
example, 4, 31, 32, 22, 26, 27, 29, 28] and references therein. In particular, it was proved
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in [27] that (UE)z and (NLE ) are equivalent to certain estimates of the restricted Green
functionsGB in balls B providedGE are jointly continuous f the diagonal. However, we do
not apply this result since the proof of the joint continuityG would have required at least
as much work as a direct proof df.g).

The main ingredients of the proof of Theordi are the mean exit time estimatg)g
and the elliptic Harnack inequalityH(). Our strategy for the proof oH) is based on the
argument in 27, Lemma 8.2], but the crucial point here is to gain upper and lower bounds
for a positive harmonic function via an integral of the Green function with respect to a certain
Riesz measure (see the proof of Propositd).

In Section7, we prove the weighted Hardy inequality.7) (Theorem?7.5) and give ex-
plicit examples of the weightv when the seE is a single point or anfane space ifR", or
the boundary of a bounded convex set (Propositibsr.7, 7.9).

Notation 1.1. Throughout the paper we use the following notation.

For anyp € [1, ] and any open se&® c M, denote as usual by?(Q, u) or LP (Q) the
real-valued Lebesgue space(n In caseQ2 = M we write LP = LP(M, ). We use (') to
denote the inner product ir?. Set

LP ={f: f e LP(Q) for any precompact open s& c M}.

loc —

For any seE c M, E is the closure of, andE® = M \ E.

For any functionf : M — R, its support supp is the complement of the largest open
set wheref = O u-a.e..

For any open se® c M, C(QQ) is the space of all continuous functions @nwith sup-
norm, andC.(Q) is the subspace @f(Q) consisting of functions with compact supports. In
caseQ) = M we writeC = C (M) andC. = C. (M).

The lettersC andc are used to denote positive constants that are independent of the
variables in question, but may vary at each occurrence.

The relationu < v (resp.,u > v) between functionsi andv means thati < Cv (resp.,

u > Cv) for a positive constar® and for a specified range of the variables. We wite v
fuxzvzu.

2 Basic setup

2.1 Metric measure space
Let (M, d) be a locally compact separable metric space. Assume that all the metric balls
B(x,r) ={ye M: d(y,x) <r}

in M are precompact. Legt be a Radon measure dvi with full support. Such a triple
(M, d, ) will be referred to ametric measure spacd-or convenience of notation, for any
X,y € M andr > 0, we write

V(xr) =u(B(xr) and V(xy) = u(B(x,d(xy))).

The metric measure spadd,(d, ) is said to satisfy theolume doubling conditio(vD)
if there existLp € (1, o0) such that

V(x, 2r) < CpV(x,r) forall xe M andr > 0.
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Note that the volume doubling condition is equivalent to

V(x,R) <
V(xr) —

C(?) ) forallxe MandO<r <R, (2.1)

whereC is a positive constant and. = log, Cp. The exponent, is called theupper volume
dimensiorof (M, d, u).

We say tha{M, d, ) satisfies theeverse volume doubling conditigRVD) if there exists
¢ > 0 such that

V(xR R\*-
>cl— <R :
V(x,r)_c(r) forallxe MandO<r <R (2.2)

The exponent_ is called thdower volume dimensioof (M, d, u).
It is known that if (M, d) is connected and diaM = o (or, equivalently, ifu (M) = oo;
see [L3, Proposition 2.1]) then
(VD) = (RVD)

with a_ = log,(1 + C;?) (see L3, Proposition 2.2],21, Theorem 1.1],28, Corollary 5.3],
[28, Proposition 5.2]). Clearly, if botvD) and(RVD) are satisfied then & a_ < a,. If
(M, d, u) satisfies RVD) thenu({x}) = 0 for anyx € M, so that M, d, u) is non-atomic.

The conditionsYD) and RVD) are known to hold on many families of metric measure
spaces. For exampleyD) and RVD) are satisfied for the Euclidean spad@%s convex
unbounded domains iR", Riemannian manifolds of non-negative Ricci curvature, nilpotent
Lie groups, and on many fractal-like spaces (8,12, 13, 22, 27, 28, 31, 34, 41, 52, 57)).

2.2 Dirichlet forms

Let (M, d, u) be a metric measure space aéd%) be a Dirichlet form orl.?, that is,& is
a symmetric, non-negative definite, closed, Markovian bilinear forb? imith the domairy
that is a dense subspaceldf(see P0]). The domainF is a Hilbert space with the following
norm:
IUllZ- = &(u, u) + IlullZ..

The Dirichlet form €, ¥) is calledregular if ¥ N C. is dense both iff (with respect to the
norm|| - [|#) and inC, (with respect to the supremum norm).

Definition 2.1. For any open s&® c M and a sefA € Q, acutgffunctiong of the pair @, Q)
is any functionp € ¥ N Cc(Q2) suchthat < ¢ < 1in M and¢ = 1 in an open neighborhood
of A.

It is known that if €, ) is regular then, for any open s@tc M and anyA € Q, there
exists always a cufbfunction of (A, Q) (see RO, p.27]).

A Dirichlet form (&, ¥) is calledstrongly localif &(u,v) = 0 for any two functions
u,v € ¥ with compact supports such that const in some open neighborhood of swpp

Any Dirichlet form (&, ) has the generator — a non-negative definite self-adjoint opera-
tor £ in L? such that donf£) c ¥ and

Eu,v) =(Lu,v) forallue dom(L), ve F.

For anyt > 0 setP, = e*£ so thatP, is a bounded, self-adjoint, positivity preserving operator
in L2. The family{P},, is called theneat semigroupf (&, 7). If P, fort > 0 has an integral
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kernel then the latter is called the heat kernel and is denotgw(byy) so that for allf € L2
andt > 0

Ptf(x):fMpt(x,y)f(y)du(y) for u-a.a.x € M.

Let (&, 7) be a regular Dirichlet form il.2 (M, ). For any non-empty open s@tc M,
defineF (Q) as the closure of NC. (Q) in ¥. ThenF (Q) is dense irL? () and(&, ¥ (Q))
is a regular Dirichlet from irL? (Q2), that is called the restriction ¢&, ¥) to Q. Denote by
L9 the generator of€, ¥ (Q)) and by{P{}} the corresponding heat semigroup. It is known
that, for any O< f € L?(Q) andt > 0,

P2f < P f.
Set also
Amin (Q) = inf specL®.

It is known that
E(u,u) inf &E(u,u)

uer@\O U2, wernca@\or lull?,

Amin(Q) = (2.3)

2.3 Green function

The positivity preserving property of the heat semigroups allows to exgghdrom
f € L2 to all non-negative measurable functianen M (of course, the value o for P, f is
allowed in this case). It is easy to verify that the semigroup progaiyf = P, (Psf) holds
also in this extended setting.

Define theGreen operator G for all non-negative measurable functiohen M by

0

Of course, the value is allowed forGf.

A functionG (x,y) on M x M is called theGreen functior{or the Green kernel) if it takes
values in[0, +o0], is jointly measurable, non-negative, and satisfies for any non-nedative
the identity

Gf(x) = fM G(x,y) f(y)du(y) foru-a.a.xe M.

For instance, if the heat semigro(ia} has the heat kerngk(x, y) then

G(xy) = fo T pcy)dt

(although the integral here may diverge). Note that the Green function is always symmetric
in X, y which follows from the symmetry d®;.

Let Q be a non-empty open subsetMf Denote byP{ the heat semigroup ¢&, F (Q2))
and byG® — the Green operator. It is known that, for any non-negative

0< P2 < Py,

whence also
0< G <Gf.
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Remark 2.2. Assume thatl,,,(Q2) > 0. Then the operato® has a bounded inverse in
L2(Q), and (£?)™* = G zq). In this cas&5® has the following property (se@7, Lemma 5.1]):
for any f € L?(Q), we haveG®f € 7(Q) and

E(G®,¢) = (f,¢) forall ¢ € F(Q). (2.4)

The following two-sided estimates for the Green funcii@(x, y) are fundamental for us
to derive Hardy'’s inequalities.

Definition 2.3. Giveng > 0, we say that conditiond)s is satisfied if the Green function
G(x,y) exists, is jointly continuous iM x M \ diag and

d(x,yy’
V(x.y)

Note that the estimat@ (5) can be obtained from certain heat kernel bounds as follows.

G(x,y) =

for all distinctx,y € M. (2.5)

Lemma 2.4. Assume thafM, d, i) satisfies(VD) and that the heat kernel ¢€&, ¥) exists
and satisfies the following estimates, for any® andu-a.a. xy € M:

1

QmwSVWfﬁAVmw (2.6)
and L
P (X y) Vx ) if t>d(xy)P. (2.7)
Then the Green function satisfies the estimate
G(X,y) ~ foo i dr, (2.8)
dxy) V(X 1)

for u-a.a. Xy € M. Moreover, if in addition(RVD) holds witha_ > B then the Green
function satisfiesa.5) for u-a.a. Xy € M.

Proof. Set for simplicityp = d(X,y). It follows from (2.7) that

©dt * Bré-tdr
G(X’y) Z L V(X,tl/ﬁ) - , V(X’ r)9

which proves the lower bound i2 @). It follows from (2.6) that

© dt o dt
G(X’V)SL V<x,t1/ﬁ)+fo Vr)

(T B idr Jod
“J), Vi) T V(xp)

14

It remains to observe that, §yD),

© rA-ldr % rF-ldr o° o°
fp Vixn f Vi) = V(20 SV p) (29)

whence the upper bound i.9) follows.
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If (RVD) is satisfied withw_ > B then

f"" rA-1 dr— ®V(x,p)rfdr
, V(xr)  V(xp)

V(X8 1

BT

00

N
<
RS
>
— e T

which together withZ.9) implies that

A
Gy = f Vo™ = Vi)

O

Example 2.5. Assume that the heat kernpl(x,y) on (M, d, u) exists and satisfies the fol-
lowing sub-Gaussian estimate: for et 0 andu-a.a.x,y € M,

pe(X,y) < W exp{—c(d?l(/’ﬁy))ﬁ_l}, (2.10)

whereg > 1 is thewalk dimensiorand the symbok means that both inequalities withand
> are satisfied but with élierent values of positive constai@sandc. For example,Z.10 is
satisfied with3 = 2 on any Riemannian manifold of non-negative Ricci curvature 46 [
as well as withB > 2 on many fractal spaces (s&x 8, 22, 25, 42)).

Clearly, .10 implies both 2.6) and @.7). Indeed, 2.6) and @.7) are trivial in the case
t > d(x y), while in the casé < d(x, y)’ we have, setting = d (x,y),

V(xr) I ry™ r Vs
V<X’f>pt<x’y>gmexp(‘c(tl—/ﬁ) )S(tl_/ﬁ) EXp(_C(tl_/ﬁ) =C
so that
Y=V’
which proves 2.6).

Example 2.6. For certain jump processes on fractal spaces the heat kernel satisfies the fol-
lowing stable-like estimate

1 t
A
V(X% t8) Vv (x,y) d (%, y)

Pt (X, y) = (2.11)

(see [L1]). For example, if

V(Xr)==r?
then @.11) becomes
1 t 1 d(x,y)\“?
pt(X’y)_t"_/ﬂA—d(x,y)Mﬂ_t“_/ﬂ(l-'_ tUB ) .
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This estimate is satisfied with = n for a symmetric stable processlii of indexg.
If t > d(x,y)’ then @.11) becomes

POY) = Gy

while in the case < d (x, y)’ inequality @.11) implies

t 1
V(% y)d(xyy VY

Hence, in the both cases the estimat$)(and @.7) are satisfied, and by Lemn£a4 the
Green function satisfie2(5).

P (X, y) =

3 Hardy’s inequality for strongly local regular Dirichlet
forms

In the setting of strongly local regular Dirichlet forms, in order to prove an abstract
version of Hardy'’s inequality, we adopt the method of change of measure explained in Intro-
duction. The following theorem is the main result of this section.

Theorem 3.1. Let (&, ) be a strongly local regular Dirichlet form in 4(M, ). Assume
that A,in (©2) > O for all precompact open sefd c M. Let h be a non-negative measurable
function on M such that

G(hnaa) el (3.1)
for any positive constant a. Then, for any fF,
h 2
fM o< (1, 1), (3.2)

If handGhvanish simultaneously at some points then at these points \r& se0.

Before the proof, let us recall some necessary notions from the theory of strongly local
Dirichlet forms. According to 20, Section 3.2] (see alsd.(, Section 4.3]), for any €
F N L*, there exists a unique positive Radon measijueu) on M such that

f fdl'(u,u) = E(uf,u) — %a(uz, f) forall f e F nC..
M

This measurd'(u, u) is called theenergy measuref u. For anyu, v € ¥ N L®, define a
signed energy measuréu, v) by

f f dr'(u,v) = %(a(u f.v) +&(u,vf) - &uv, ) forall f e FnCe.
M

Note thati"(u, v) is symmetric and bilinear, and it can be extended to,alle ¥ It is known
that

E(U,V) = f dr(u,v) foralluveF (3.3)
M
(see B, [20, Lemma 3.2.3]).
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Let Fioc be the space of all-measurable functionson M satisfying the following prop-
erty: for every precompact open subsketc M there exists a functiom’ € ¥ such that
u=u u-a.e. onQ. The locality of(&E, ) allows to extendE (u, v) to all u € F,c andv € F,
where¥. denotes a subspace $f consisting of functions with compact support. Indeed,
there existal € ¥ such thatu = U’ in a neighborhood of supp and& (U, v) is obviously
independent of the choice af, so that we sef (u,v) := & (U, V). It follows that the identity
(3.3 holds also fou € ¥, andv € 7.

It is known that the spac& N L* is closed under multiplication of functions (sez]
Theorem 1.4.2(ji)]). This implies that alsf.. N L}, is closed under multiplicatidn

For strongly local Dirichlet formsI” (u,v) can be extended to all, v € F,. (see [LO,
Theorem 4.3.11] 3, p.189]). Moreoven (u, v) satisfies the following Leibniz product rule

dr'(uv,w) = udr'(v,w) + vdr'(u,w) forallu,ve Fo.NLy

loc

andw € Fioc (3.4)

(see b3, p.190])).
The following lemma is a key ingredient for the proof of Theorérh

Lemma 3.2. Let (&, F) be a strongly local regular Dirichlet form ond(M, u). If ¢ is a
positive measurable function on M such that

both¢ and¢* belong toFoc N LY (3.5)

loc»

then
8(f,f)—8(¢,¢‘1f2):f¢2dl"(¢‘1f,¢‘1f)20 forall f e FenlL™  (3.6)
M

Consequently, we have
E(p, 1% < &(f, f) forall feFenlL™. (3.7)
Remark 3.3. If in addition to 3.5) ¢ € dom(£) then

E(p. 97117 = (Lo 97 17) = fM %fzd,u.

Hence, 8.7) becomes
[ Zrrdu<e
VIR

which coincides with1.2) when (M, d, i) is a Riemannian manifold ang = —A.

Proof. Sinceg! € Fioc N L= and the both function§ and f2 lie in . N L™, we obtain that

loc

o7 f andgplf?e FoN L™ (3.8)

(indeed, botlp~1f and¢~1f? belong toFi,c N L

. and have compact supports). B33 we
have

8(f,f)—8(¢,¢‘lf2):j,\;dl“(f, f)_ﬁn dr(e, ¢ 11?).

lindeed, iff,g € Froc N L. then, for any precompact open $gtthere existf’,g" € ¥ such thatf = f’
andg = ¢’ in Q. Both f” andg’ can be chosen to be bounded Mnbecause otherwis& can be replaced by
(f” AC) v (-C) foranyC > [|f||_~(q), and the same is valid f@f'. Hence,f’g’ € ¥ N L*. Sincefg = f'g" in

Q, we conclude thafg € Fioc N L.
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Applying the Leibniz rule 8.4), we obtain

dr(f, f) — dr(g, ¢ *£%) = dr((¢7*f) ¢, f) — dI(. (¢7'1) 1)
= (¢ f dI(g, f) + ¢ dI (¢, ) — (¢7*f (g, ) + f d(g,¢7*1))
= ¢d(¢7f,¢¢ ') - f dI(g, ¢ f)
= (¢*dr(g7 g7 1) + FdT(¢7*f, ¢)) - f dI(p, 47 )
= ¢?dI(¢7*f,97H1),

whence it follows that
E(1. ) - &(p.¢71?) = f #dr(¢F,671) > 0.
M

This proves 8.6) and, hence 3.7). |

Proof of Theoren3.1 It suffices to proved.2) for all f € ¥ N C. since for anyf € ¥ there
exists a sequendd,} from & N C. converging tof in . Applying (3.2) to eachf,, passing
to the limit asn — oo and using Fatou’s lemma in the left hand side, we obtaif) for f.

Hence, we assume further thiate ¥ N C.. Let Q be a precompact open subset\df
containing suppg so thatf € ¥ (Q). Leta, ¢ be positive constants. Set

ho=hAa

and consider if2 the function
¢ =G, + &.

By (3.1), ¢ is bounded ir. Sinceln, () > 0 andh, € L? (Q), we haveGh, € ¥ (Q) and,
henceg € Fioc (). Sinceg > &, it follows thatg™ € Fioc N L= (Q) (indeed,p™t = F o ¢
whereF (t) := &1 At is Lipschitz; seeZ0, Theorem 1.4.2(v)]). Therefore,satisfies the
hypotheses of Lemma2in Q, and we conclude that

E(p, ¢7112) < &(f, 1).
By (3.8) we havep 12 € 7 (Q), and by £.4) and the strong locality
E(p, 7112 = E(G®hy + £, ¢7112) = E(G®hy, ¢ 12)

_ h
~ (w71 = [ G

ha .,
>
_jg;Gh+gf O
whence h
a 2 <
fQGh+gf du < &(f, f).
Lettinga — ~, £ — 0, andQ — M, we obtain 8.2). ]

A non-negative measurable functiaron M is calledexcessivée P.u < uforallt > 0. It
follows thatP;u < Psu for allt > s> 0.
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Corollary 3.4. Let (&, ) be a strongly local regular Dirichlet form on2(M, x). Assume
that Amin (Q) > O for all precompact open sefd c M. Let ue L5, be a positive excessive
function on M. Then, for any & ¥,

- f 2, log(Pu) du < &(F, ). (3.9)
M

Proof. Fixt > 0 and set
h= —0:Piu

so thath is a non-negative measurable functiondnWe have
Gh:f Psh dS: —f Ps(atPtU)dS
0 0
- [ aPuards=- [ o.(P.)ds
0 0

:_f ds(Pu) ds< P,
t

Hence,
Gh<Pu<u

which implies thaGh e L;.. By TheorenB.1we conclude that

h 2
fM —th du <&(f, ).
Observing that

we obtain 8.9). m|

4 Hardy's inequality for regular Dirichlet forms

In this section, we prove an analogue of Theorérfor general (non-local) regular
Dirichlet forms. The main result is Theorefrb below.

4.1 Extended Dirichlet forms

Given a regular Dirichlet form&, ) on L2, denote byF, the family of allu-measurable
functionsu on M such thau is finite u-a.e. onM and there exists an sequerjagl c ¥ such
that

limu,=u w-a.e.onM and Ilim &(Uy — Uy, Uy — Upy) = 0.

n—oo n,mM—oo

For anyu € ¥, the limit
E(u,u) = rI]im E(Un, Up)

exists and does not depend on the choice of the sequerc€20, Theorem 1.5.2(i)]),
Moreover, by PO, Theorem 1.5.2(iii)],

F = Fon L2



14 Jun Cao, ALEXANDER GRIGOR’ YAN AND LIGUANG L1U

The pair(&, Fe) is called arextended Dirichlet form.
Recall that by 20, Theorem 1.4.2(ii)] the spac€ N L™ is closed under multiplication of
functions. The following lemma extends this propertyio

Lemma 4.1. Assume tha(&, F) is a regular Dirichlet form on the metric measure space
(M, d, ). Then, for any & FeN L2 and anyy € F. N L*, we have

loc

e F L. (4.1)

Consequently,

FeN Lige € Floc- (4.2)
Proof. Let us first show that4.1) implies @4.2). Indeed, given a function € e N L5, and a
precompact open subsetc M, we need to find a functiog € ¥ such thau = g u-a.e. on
Q. Lety be a cutd function of Q in M. By (4.1) we haveg := uy € ¥. Sinceg = uin Q,
we obtain 4.2).

Now let us prove 4.1). We use the following resulp, (1.3.18) and (1.4.8)]: for any

Borel measurable functiohon M,

feF o fel?and lImED(T, f) < oo, (4.3)

T—00

where

&N =3 [ (0= 1) (e )+ [ Fsd (4.4)

for some positive symmetric Radon measuté€, -) on M x M satisfyingo.(M, E) < u(E)

for any Borel measurable st ands; is a function such that & s, < 1 onM. Itis also
known that&®(f, f) is non-decreasing as — oo so that the limit in 4.3) always exists,
finite or infinite. Moreover, by20, Theorem 1.5.2(i)&(ii)] if f € F¢ then

lim EO(f, ) = &(f, ) < co.

Letu € Fe N Ly, andy € . N L™. Without loss of generality we can assume thandy
are Borel measurable. Clearly, we hawee L™ N L? so that, by 4.3), in order to prove that

wy € ¥, it suffices to verify that
lim &P (uy, uy) < co.

Without loss of generality, we can assume that,.. = 1. The set{xe M : |y (X)| > 1} is
a Borel set ofu-measure zero. Modifying on this set by settingg = 0 we can assume
without loss of generality that

(X)) <1 forallxe M.

Let Q be a precompact open set containing sapgimilarly, we can assume that(x) = 0
for all x e Q°.

Without loss of generality, we can also assume thifit-) = 1. Modifying u on the
Borel null set{x € Q : u(x) > 1}, we can assume that

u(x)| <1 forallx e Q.



HARDY'S INEQUALITY AND GREEN FUNCTION ON METRIC MEASURE SPACES 15

Let us verify that, for allx,y € M,
U (X) — Ul (W) < [(X) — g (y)] + [u(x) — u(y)l . (4.5)
Indeed, ifx,y € Q then

Uy (X) — u)yg I < U (X) — () + kel Hu(X) — uly)l
< () — @)l + [u(x) — uy)l.
If x e Q°andy € Q theny (X) = 0 and

Uy (X) — u)y )l = lu)! Wl = u)l ly (X) = w1 < 1w (X) =y )l,

and if X,y € Q° then|u(X)y(X) — u(y)y(y)| = 0.
It follows from (4.4) and @.5) that

f (W) — () do(x y) < f W) - y)) dors(x, V)
MxM MxM
+ f (U(X) = UW))? dors(x, V).
MxM

Since|uy| < |u|, we have also

f (up)? s du < f s, dy.
M M

D (uy, uy) < EV(y, v) + EV(u, u)

It follows that

and, hence,
lim EO(uy, uy) < lim Xy, ¥) + lim EP(u, u) < o,

which finishes the proof. ]

4.2 Transience of Dirichlet forms

According to PO, Section 1.5], a Dirichlet form&, ¥) is calledtransientif there exists
a bounded:-measurable functiog that is strictly positive.-a.e. onM and such that

f lugdu < VE(U,u) forallue F.
M

By [20, Lemma 1.5.5], if&, ¥) is transient the& (u, V) is an inner product ifFe and¥e with
this inner product is a Hilbert space. B¥(, Theorem 1.5.4], if§, ) is transient, then, for
any non-negativg-measurable functioh on M satisfying

ffod,u<oo,
M

we have thaGf € F. and

E(Gf,¢) = fM fodu forall ¢ € Fe. (4.6)

As it follows from [20, Lemma 1.5.1], in order to show that,(F) is transient, it sfiices to
find au-a.e. strictly positive functiog € L* such that

Gg(X) < o foru-a.a.xe M. 4.7)
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Lemma 4.2. If the Green function @x, y) exists and belongs tg).(M x M) then(&, F) is
transient.

Proof. It suffices to construct a strictly positive functigre L* such that
Gge Lt

loc»

which will imply (4.7). Observe first that iA andB are precompact subsetsfthen

ﬂfhw:jlﬁemwwmﬁmm:mmﬁw<m 4.8)

Fix a pointx, € M, setBy = B(X,, 2),
Ao =By, Ac=DBy\Bifor k>1,
and defingg by .
g= Z Cla,
k=0

where{c}, o IS sequence of positive reals yet to be determined. Clegrdy,0 on M. By
(4.8) we have, for all indiceg, n,

f GlAkd,u = ||G|||_1(anAk)

Bn
and, hence, N
fB Ggdkt = ), clIGllLx(geny - (4.9)
n k=0
Choosec forallk =0, 1, ... so that
Gl xay < 275
Then the series ind(9) converges for any, whenceGg e Lt follows. O

loc

Corollary 4.3. If (M, d, u) satisfieVD) and, for somgg > 0.

d(x,yy
V(x.y)

then(&, F) is transient. In particular(VD) + (G), imply the transience.

G(xy) < for u-a.a. Xye M,

Proof. Indeed, by YD), we have, for any baB (x, R) c M,

d(x y)’ N d(x y)’
| )= [ du(y)

xR V(XY) a =0 YB(x2R)\B(x2-I+IR) V(Xy) a
o V(x,27'R)
< 2R —
_éy ) Vix 2R

<Cp » (27R;
=0
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~ R (4.10)

Now, for any ballB (X,, R), we obtain, using4.10),

d(x vy’
fB(xo,R) fB(Xo,R) © (X, y) % (y) w (X) s L(%,R) (va(Xo,R) V(X’ Y) d,u(y)) % (X)
d(x. y)Y’ )
: fl;(xo,R) (fl;(x,ZR) V(x,y) Auly) | ()

< F\ﬁd/J (X) < 00,

B(%0,R)

which impliesG € Lt (M x M). Hence(&, ¥) is transient by Lemmé&.2 o

loc

4.3 Admissible functions and Hardy’s inequality

Definition 4.4. Let G be the Green operator of a Dirichlet form. A positiraneasurable
functionh on M is called(u, G)-admissible if it satisfies the following three conditions:

() Ghe L=

loc?

(i) (Gh™telLx;

loc?
(iii) J;, hGha < co.

The next theorem is our main result about Hardy’s inequality for general regular Dirichlet
forms.

Theorem 4.5. Let (&, ¥) be a regular Dirichlet form orfM, d, 1) and G be its Green opera-
tor. If his a(u, G)-admissible function on M, then the following Hardy inequality holds:

f N 24y <&(t. 1) forall f e (4.11)
v Gh

Remark 4.6. If (&, F) is strongly local then Theore® 1 gives the same Hardy inequality
(4.17) under a weaker hypothesi3.{) instead of(u, G)-admissibility.

Proof. Due to the regularity of the Dirichlet form€&(¥), it suffices to show4.11) for all
f € F N C. (see the proof of TheoreM1).

Let us first verify that if a g, G)-admissible functiorh exists then(&, F) is transient.
Indeed, it sifices to construct a positive functiane L! such thatg < h (then @.7) is
satisfied byGh € L5). Indeed, define a sequeng@g},’, of subsets oM as in Lemma4.2,
choose positivey, so that

e (A) < 275,
and set
g(x) = min{c, h(x)} if x e A
Clearly, 0< g < hand

f gdu < Cu (A) < 27
A
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whenceg € L! follows.
By [20, Theorem 1.5.4], the condition (iii) of Definitiof4 and the transience o&(F)
imply that
w:=Ghe 7. (4.12)

The condition (i) of Definitiord.4, thatis,w € L;° , and @.12 imply by Lemma4.1that

loc?

W € Floc.

By condition (ii) of Definition4.4, for any ballB c M there ise > 0 such thatv > ¢ in B.
By using R0, Theorem 1.4.2(v)], we conclude that! € 7, (indeed, we haver = F ow,
whereF(t) := &t A t™tis a Lipschitz function). Hencay ! € Fioc N L}, It follows that, for
anyf e ¥ nC,

wifle F c Fe (4.13)

By the transience off, ¥) and @.6), we obtain

f1f2d,1:fh(w-lfz)dﬂza(eh,w-lfz):a(w,w—lfz).
MGh M

Hence, the proof 0f4.11) amounts to verifying that
Ew,wtf?) < g(f, f) forall f e F NC.. (4.14)

According to RO, Lemma 4.5.4, Theorem 4.5.2] arD] Theorem 7.2.1], a regular Dirichlet
form &(u, v) admits a Beurling-Deny and LeJan decomposition:

&, v) = 9, V) + f

MxM

(@) — a)W(x) = Uy)) dJI(xy) + fM G0)V(x) dk(x),  (4.15)

for all u,v € 7., where&© is a strongly local symmetric form with domaif,, G andV
denote quasi continuous versionswéandyv, J is a symmetric positive Radon measure on
M x M \ diag (the jumping measure) akds a positive Radon measure dh (the killing
measure).

Let noww be a quasi continuous version @h. Thenw1f? andwf are also quasi
continuous. By4.12), (4.13 and @.15, we have

E(w,wtf?) = 9w, wlf?) (4.16)
+ f - (w(x) - W()/))(W(X)_lf(x)2 - W(Y)_lf(}’)z) dJ(x.y)
(MxM)\diag
+ f WOW(X) "L ()% dk(X).
M

By f e ¥ nC;and @.15, we have

&(f, f) = E9(1, f) +f

(MxM)\diag

(f(X) = f(y)2dI(xy) + j';l f(x)?dKk(X). (4.17)

In order to prove4.14), we compare the corresponding terms in the right hand sidési$)
and @.17). Clearly, the third terms in the the right hand sidesbi6 and @.17) are equal
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to each other. Since that bothandw ™ are inFiyc N L., the argument in Lemma.2 shows
that
EOw,wtf?) < 8O(1, f).

Finally, in order to compare the middle terms, observe that, fot, glE M,
(W() = W) (WO) (02 — wiy) ™ (1)?)

= £(0% + ()2 = WOOW(Y) ™ (1) — wyWE) T ()2
= (09 = T®))” + 2F () () —WIWR) (W) T () — wIWOI(W) ()
= (109~ 1)+ W) [ 2000 T WO) ) - (W) 1)) = (We9 1 ()|
= (109 = 1) = WOIWR)(W) £ () — wiy) ()’
<(f - )

This proves4.14) and, hence 4.1J). m|

Remark 4.7. As we see from the proof, the positivity of the functibrwas used only in
the first part in order to prove th&E, ¥) is transient. If it is known a priori thad&, )

is transient then we can alloivto be non-negative provided all the conditions (i)-(iii) of
Definition 4.4 are satisfied.

We conclude this section with the following corollary.

Corollary 4.8. Let (&, ) be a regular Dirichlet form or(M, d, i), and £ be its generator.
If a positive functionp € dom(L) satisfiesp, ¢~ € L. and fM ¢ Lo du < oo, then

loc
f %fzd,u <&(f,f) forall f e F. (4.18)
M

Proof. Indeed, applying Theored.5 with h = £¢ and observing that = Gh, we obtain
(4.18 from (4.11). O

5 Some “classical”’ versions of Hardy’s inequality

In this section, we apply Theore5 to obtain various versions of Hardy’'s inequality
on metric measure spaces, which are generalizations of clad&cedt¢fractional Hardy’s
inequality.

5.1 Discrete Hardy's inequality

We show here how Theoremb5yields a discrete Hardy’s inequality #1', wheren € N.
For anyk = (ky,...,k,) € Z", we set

Kl = TKal + - - - + [Kal

and define the graph structure % as follows: fork,m € Z" we say thatkk andm are
neighbors and writ& ~ mif ||k — m|| = 1.
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Define for alls > 1 the function
— (4 1 1 1 5 21
”(S)—Z;(Zi)mﬁ "9 T eas Tl T

Denote
I'={keZ":k =0forsome =1,...,n}.

Theorem 5.1. For any function f: Z" — R such that fe 12(zZ") and f|- = 0, the following
discrete Hardy inequality holds:

2n > (kD<) - P (5.)
keZM\{0} {kmeZn:m~k}
Since
>+
©V = a2
the inequality §.1) implies
n f(k)?
5 . f<)2 < > Ifm - fRE (5.2)
keZ"\{0} ” ” {k,meZn:m~kj}

If n=1 and a functiorf : Z — R vanishes fok < 0, we obtain from%.1)
Z w (K) f (k)? < Z (f(K) - f (k- 1))>. (5.3)
k=1 k=1

This inequality was proved in3p, 40] and shown there to be optimal. Of coursg,3
implies the classical discrete Hardy inequality
1 fR?
4 K2

sé(f(k)—f(k—l»z,

where the constant/4 is the best possible (se&g p. 239]).

Proof of Theorend.1 Define the distance di" by d(k, m) = ||[k—mj| and letu be the degree
measure, that ig; (k) = 2n for all k € Z". The Dirichlet form €, ¥) onZ" is given by

=3 > Ifm-fKP

{k.meZ":m~k}

whereF = 12(Z") . The discrete Laplacian is defined on all function$ : Z" — R by
— 1 n
Af(k)—anZI:((f(m) f(k)), kez"

It is known that the generatdf of (&, ¥) coincides with-A|.2 (see Bg)).
Consider the subset
Q=7"\T
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and set
FQ)={feF : : flr=0)

so that(&, ¥ (2)) be the restriction of&, ¥) to Q. For anyN € N, consider the following
function onZ":

o (k) = {nkn = (k| + -+ ka2 IO <Kl < N

if ||kl > N.

Clearly, if||k]| > N then
Agy (k) =0

For anyk € Qwith 0 < [|kl] < N-1, there exish verticesm ~ k satisfyingg, (m) = (||k||+1)%,
and anothen verticesm ~ k satisfyingg,(m) = (JIK| - 1)z, which implies that

A¢N(k) Z Pn(K) — on(m)
#n(K) ~2n o (k)
= 2/IKII? - (1K1l + 1)2 — (IIKIl - 1)%

2/Ik||2

At bl

Using the Taylor expansions of the functians> (1 + t)z andt — (1 — t) that converge in
[-1, 1], we obtain

Nl

2-(1+t)2 —(1-1)?
© 1l_1).. (——j+1) ©1id_1 1_j+1)
_9_ 2\2 2 23 (3 —_t)
2- ) : Z{; . (-1)

5G-1)---(G-2+1),

=2 Z (2i)2!

_ i 4 t2 _ 1
oi)2%14i — 1)~ “\1)
It follows that

AgK) 1
@ 2

If k e Q and|lkl| = N, then there exish verticesm ~ k satisfyinggy,(m) = (/K| — 1)% =

(N - 1)%, and anothen verticesm ~ k satisfyingg, (m) = Nz, which implies that

RYNC 1( o (N- 1)) )

o) 2 N3

w (K| forallke QwithO<|kKk|<N-1
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Hence, we obtain that, for dtle Q,

w (1K) ifO<|kl<N-1
A¢N (k) 1 N%— — i .
— — k = = —(N 1)2 = 54
0 if ||K|| > N.
Set
hn = dnmn
so that
— Agy = hy inQ. (5.5)

Note thaty, > 0 andhy > 0 in Q. In particular, the functio,, is non-negative and super-
harmonic inQ (let us mention that outsid@ it may happen thatA¢, < 0, for example,
—A¢y (0) < 0). Sincegy is non-constant, it follows that thd&, 7 (2)) is transient. In
particular, the Green functio@® exists. It follows from 6.5) by the comparison principle
that

oy = Ghy in Q. (5.6)

It is easy to see that the functibn= hy satisfies im2 all the conditions (i)-(iii) of Definition
4.4. Indeed, (i) holds byg.6), (ii) holds becaus&hy > 0 by the strong minimum principle
for superharmonic functions on graphs, and (iii) holds bechyses a finite support.

By Remark4.7, we can apply Theorem.5with h = hy and conclude that, for all
F (Q),

G®hy
The left-hand side here can be estimatesth@) (@nd 6.4) as follows:

hN 2 h_N 2 _f 2 E 2
fQGQth dﬂZquij du= | mytduz 2, @k f(2n.

O<|IKlI<N

f iy f2du < &(f, f). (5.7)
Q

Combining with £.7) and lettingN — oo, we obtain 5.1). O

5.2 Hardy’s inequality and distance function

In this subsection we obtain an explicit form of Hardy’s inequality under the hypotheses
(VD). (RVD) and(G), . For that, we construct explicitly,( G)-admissible functions that can
be used in Theorem.5. The main result is stated in Theorén® below.

Let us begin with the following Selberg-type integral formula & , ).

Lemma 5.2. Assume thafM, d, u) satisfieVD) and (RVD) with lower volume dimension
a_. If B ande are positive reals such th@t+ ¢ < a_, then the following estimate

f A2 d@y) | o G0N
m V(X2 V(zY) V(x.y)

(5.8)

holds uniformly for all distinct x, ¥ M.
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Proof. By condition RVD), there exists a large constaft> 2 such that for alk € M and
>0 V (x, KR)
X
—— > 2 .
V(xR (5.9)
Setr = d(x,y). In order to prove the lower bound i6.g), observe first that

d(x,2) < % = d(y,2 ~r,

whence
d(x, 28 d(z y)* d(x, 2 d(y,2°
du(2) > d
fM Vi Vzy) PO Jo s VD) V(y.9) P
B+e
~ W (V (X, 1/2) = V (%, 1/2K)).

Using further 6.9), we obtain

d(x. 2 d(z.y) . o
fM Vi) Vizy) PO 2 ez’ 1= oy

Before we prove the upper bound B.8), observe that, by4(10), for anyo > 0,

d(x, 2~
du(2 s K. 5.10
fB(x,R) V(X,2) (@ (5.10)
Let us prove that, forany @ 6 < a_,
d(x, 2)¢ R
du(2 < 5.11
Sy Vo574 < G5 &4

uniformly in x e M andR > 0. Indeed, applyingd.2) andé < a_, we obtain

d(x, 2¢ co d(x.2)"

fB(x,R)C V(x, 2)? W@ = jZ:(; «fB(x,sz)\B(x,zi R) V(X, 2)2 du(2)
had (2j+1R)9
<2 m

Z ) GO e V(X R)

V(x R) & V(x,2IR)
j(0-a-)
. V(x, R ; 5
. K
- V(xX,R)’

which proves %.11).
Now, we use%.10 and 6.11) to verify the upper bound irb(8). Using 6.2) and 6.10),

we obtain
f d(x, 2# d(z y)* L dx. 2 z)ﬂ rpre

d
sn V2 Vzy) YO =V Jarn VoD WD < oy

(5.12)
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Similarly, if r/2 < d(z, X) < 2r, then
dizy) <d(zxX)+d(x,y) <3r and V(X2 = V(xr),
which, together with%.10 implies

d(x, 2’ d(z y)* r’ f d(z y) rove
du(2) < du(2) < .
fB(X.m\B(X,r/Z) Ve 2 Vizy) O =V Jeya Vzy) P S Ven

For anyz € M satisfyingd(z x) > 2r, we have by YD) that

(5.13)

d(zy) ~d(x,2 and V(zy) ~ V(x,2),
which yields by 6.11) andg + ¢ < a_ that

d(x, 2 d(z y)* _ d(x, 2)°** rh+e
S VOV 4@ [ Vs 7 4= Ty

Adding up 6.12), (5.13 and 6.14), we conclude that

d(x, 2 d(z.y) o
fM V2 Vizy) MO = o

which finishes the proof of5(8). O

(5.14)

Remark 5.3. The Selberg integral formul&], p. 118, (6)] inR" says that, for all distinct
X,y € R",
|X - Zl_allz - yl_a2 dz = Cn,al,azlx - yln_al_aza (515)
Rr‘l
for any are positive reals,;, a, satisfyinga; + a, > n, where

o G L )

D(rr=5=%)

nagaz; —

NI

The inequalitiesq.8) can be regarded as a mild generalization of the ideriitig.

We use Lemmd.2 in order to construct a functioh that is admissible in the sense of
Definition4.4.

Lemma 5.4. Assume thatM, d, 1) satisfieqVD) and (RVD) with lower volume dimension
a_. Letp ande be positive reals such th@+ & < a_ and let the Green function @, y)
satisfy(G)g. Fix an arbitrary point x € M, a realp > 0 and define

A if d(Xo, X
h= ey A <P (5.16)
Vo if d(Xo, X) > p.
Then, the Green potential of h satisfies
inf Gh>20 YV R>0 (5.17)
B(%0,R)

and

plf+£ .
Gh(x) <C {V(xo,p) if d(Xo,X) <20

Vel i dee 22
where C is a positive constant independen oX, X,.

(5.18)
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Proof. The inequality $.17) follows from infgy, g h > 0 and

. . d(xyy R’
inf - G(x,y) > inf >
XyeB(Xo,R) %) xyeB(xo.R) V (X, Y) ~ V (X, R)

> 0. (5.19)

Indeed, setting = d(X,y), we obtain

R ' V(xr) (RY _V(xr) (RY
VR V1) V(R (?) S (?)

“ V(xR
o B a_—fB

NGRS

which proves %.19 and, hence 5.17).

In order to prove §.18), we apply G)s, (5.16 and split the integral in the definition of
Ghinto two parts as follows:

[ axyy
Gho) = | GEen(y) duty)

dx,yy pf d(x, y)’ d(xo, )°
~ d d

fB(xo,p) VoY) Vi) HO fa(xo,,»c V(xy) Vooy) LY
=i+ 1o (5.20)

Setr = d(X, X). We estimatd; and |, in (5.20 by considering two cases: > 2o and

r < 2p.
Caser > 2p. If y € B(X,,p) then

d(xy) <d(X, X) +d(X,Y) <r+p<2r
and
d(xy) 2 d(X,X) —d(X,y) >r—p>r/2

so that
d(x,y) ~r and V(x,y) = V(X I).

It follows that

rﬁ & rﬁ & r,8+8
= [ P duly) ~ ol s
By Lemma5.2 we have
rﬂ+s
P :
V(%)
Combining the last two estimates aridd0), we obtain
Ghix) < — ided
X) < rovidedr > 2p.
Voo *

Caser < 2p. In this case, applying(10 gives

p° d(x.yy’ i
~ d .
> V) fs(xo,p) Voo O = o)
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By (VD) and 6.10 we obtain
i d(x, )’

d(x, y)’ d(%, ) p
d ~ d
‘fB(XOAp)\B(XO,p) V(X,y) V(X.,Y) H®) V (X0, £) JB(x0.20)\Bixop) V(X Y) o
pﬁ+€
< . 521
Vo) 5.21)

Finally, if y € B (X, 4p)° thenr < 1d (x,,y) and
d(xYy) <d(X,Y) +d (X, X) < 2d (%, Y)

and 1
d(xy) 2 d(X.y) = d (%, X) > 5d (%o, ),
whence
V(XY) =V (%, Y)-
Using also §.11), we obtain
d(x y)’ d(%, Y)° d(%, yY'*° e
S Vo Vo HO= [ g WO S Gy 622
Combining 6.21) and 6.22) yields

+&

V (X0, 0)
Substituting the estimates bfandl into (5.20, we obtain

l> <

pB+s )
Gh(x) < rovided r < 2p,
X5 Voo P »

which finishes the proof 0f5(18. O

Corollary 5.5. Under the hypotheses of Lemrial, assume thagB + 2¢ < a_. Then the
function hin 6.16 is (u, G)-admissible.

Proof. The hypotheses(17) and 6.18 imply thath satisfies the conditions (i) and (ii) of
Definition 4.4. Let us verify the remaining condition (iii)). By5(18), (5.10, (5.11) and
B+ 2e < a_, we obtain

thhdl:(f +f +f )hGhdz
M B(%o-0) B(%0,20)\ B(Xo.0) B(%0,20)°

ps pB+a

N f d(Xo, X)e pﬁ+€

B(%0,20)\ B(Xo.p) V (X0, X) V(Xo,0)
d(Xo, X)? d(Xo, X)P®

+ du(X
LWwWM@V%W ux)

pﬁ+25
V(Xo, p)
which finishes the proof. ]

du(x)

S < 00,
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Applying Theoremd.5 with the admissible functioh as in 6£.16), we derive Hardy’s
inequality (L.5).

Theorem 5.6. Assume thatM, d, ) satisfieVD) and(RVD) with lower volume dimension
a_. Let(&, ) be a regular Dirichlet form on M that satisfi€&)s with 0 < 8 < a_. Then,

forall X, e Mand fe F,
f(x)?
du(x) < &(f, f).
Jy o 909 50

Proof. Choose a number such that O< 2 < a_ — . For thise andp € (0, ), we define
the functionh as in 6.16) and adopt all other notation from Lemréal. By Corollary5.5, h
is (u, G)-admissible. By Theorem.5we conclude that, for alf € F,

f f2— d,u<8(f f). (5.23)
Applying (5.16 and 6.1& we obtain

h F(%)2
oot f 2 dy f du(x).
f * 8oz ON B(xo.20)c A(Xo, X)P Hx)

where the implicit constant in the last step is independent,aind p. Substituting into

(5.23, we obtain ,
f(x)

du(x) < &(f, 1),

fB T M B D)

where the implicit constant is independentxgfandp. Lettingp — 0 yields
f(x)?

m d(Xo, X)°

which concludes the proof. O

du(X) < &(1, 1),

Remark 5.7. If (&, F) is strongly local then the proof of Theorebg simplifies as in this
case we apply Theorelinstead of Theorem.5and, hence, do not need Corolldryp.

As an example of application, we apply TheorBréto deduce the following estimate of
/lmin (Q).

Corollary 5.8. Under the assumptions of Theorén®6, for any nonempty open bounded
Q c M, we have

Anin(®) % (diam@))”. (5.24)
Proof. SetD = diamQ, fix a pointx, € Q and letu € ¥ N C.(Q). We have supp c Q and

D V
||u||2—f lu(x)|*d xsf( )luxlzd X).
2= Joen (X1 du(x) Naoog (X7 du(x)
By Theoremb.6, we have

_u(x)?®
m A(%o, X)P
Combining the last two inequalltles yields

llull?, < DP&(u, v,
which implies 6.24) by (2.3). ]

du(X) < &(u, u).
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5.3 Subordinated Green function and fractional Hardy’s inequality

For anys € (0, 1) the operator/’ generates theubordinatecheat semigrou;{)e‘tﬁ}
and the associated Dirichlet for@&{, 7). It is well-known that

t>0

et = f n(g)esLds forallt> 0,
0

Where{n@ (s)} o is a family of non-negative continuous functions ondd) that is called a

t>

subordinator(see p9], [22, Section 5.4]). Moreover, if§, ) is regular, then&®, F©) is
also regular (seetf7, Proposition 3.1]). Ife*4£}.o has the heat kerngk (x, y) then{e‘tﬁ}tzo
has the heat kernel

P (x,y) = f 17(9ps(x.y)ds forall x,y € M.
0

Using the identity

] Sg_l
fo nﬁ‘s)(s)dt:@ foralls>0 (5.25)

(see |7, (6)]), we obtain the following expression for the subordinated Green fun@dn

G@uwrif mwxwduif f'¢%®memsm:%j‘?*muyms(axn
0 0 0 0

Theorem 5.9. Assume thatM, d, u) satisfieVD) and(RVD) with lower volume dimension
a_. Let(&, ¥) be aregular Dirichlet form on M. Assume that the heat kerné€of) exists
and satisfiesZ.6) and @.7) for somes € (0,a_). Then, for any € (0, 1), the subordinated
Green kernel @ satisfies

o8
GO(x,y) ~ dx y)™ for distinct xy € M. (GO,

V(xy)
Consequently, there exists a constant O such that, for all fe 7,

f(x)?
m d(Xo, X)2°

Proof. The inequality $.27) follows directly from Theorens.6 and G®),. Let us verify
that the subordinated Green ker@ satisfies G),. By (5.26), (2.7) and /D), we obtain
the lower bound 0G®:

200y -1 d(x, )%
GO(xy) > ¢ f S 1pg(x,y)ds> f —— _ds~ 227
( y) ° d(x.y) pS( y) d(x.y) \ (X, Sl ) V(Xa y)

Recall that, by Lemma.4, (2.6) and @.7) imply (G)g. Applying (5.26), (2.6) and G)g, we
obtain the upper bound &©:

d(xyy o0
@wa=%L[ 3l ]f*mmwds
0 d(xy)?

du(x) < CEO(f, ). (5.27)

2d(xy)?
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oy st d d ),3(6 1) d
< S+ X, - X S
ﬁ Voo s+ 0y j;ym(w

C ax y)*”
T V(XY)
_d(x.y)*

V(x,y)

which finishes the proof. O

+d(x, Y HG(x,y)

In R" the following fractional version of Hardy’s inequality is known:

f(x)2
7 dx<
s f]R“ |x|20 dx<

261"(”+_26) 2

where the constart, 45 := r(n__z‘;) ) is best possible (se®,[p. 1873, Corollary 1]). Con-
4

sider inR" (n > 3) the Dirichlet form €, #) where

2
dx forall f € C5R"), (5.28)

8(f,f):f IV f|2dx (5.29)
Rn
and

feF =W =(f e L’(R"): VfelL?R"). (5.30)

The generator ofg, ¥) is the Laplacian-A = — ijlaxj, the heat kerne{p}i-o of the heat
semigroup e} is the Gauss-Weierstrass function

_ 1 X —yP
pt(x,y)—(4ﬂt)n/zexp(— yr ) (5.31)

and the Green function is given by

(%)

y IX —y[>™". (5.32)

NKW=£MMKWM=

For the subordinated Dirichlet forng&€), ¥©) we have
_ 2
7—‘(‘5)—{feL2(R”) f f 1) f(zﬁ)l dxdy< oo}
o Jrn [X= Y™

gO(f, f) = ((-A)’f. 1) f‘( A)zf(x)| dx for f e 7O

and

(see P2, Theorem 5.2]). Hence, by Theore®® with 8 = 2 we obtain $.28 with some
constant,s > 0.
Let us show how Theorerh.5yields 6.28 with the sharp constant. An exact computa-
tion shows that
r(*2)

G(‘S)(X, y) = WZF@

26—
X =y
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(see b1, p.117]). By Theorend.5, we have the Hardy inequalityi(11), where we choose
the admissible functioh to be
o= {7, e

X" X >

wherer > 0 and O< € < n—26. Now letin @.11) r — 0. By the Selberg integral formula
(see b.15 or [51, p. 118, (6)]), we obtain

h(¥) IX[€ _ 2T 1

im = :
o (6) rn;% € n-26—e 26
POCONGY - ICOL [ k- ynendy  TENCE) X

Taking heree = ™22, we obtain

- h(x) _ (2T(=2) 2 _ Cus
—0GOh() | T(EZ) ) NZ ~ |x®’

which implies 6.28).

6 Green functions and heat kernels

The main goal of this section is to show the equivalence between the Green function
estimate G);z and the uppelower bound of the heat kernel. This equivalence will be used
in Section7 in order to obtain a weighted Hardy inequality.

The following theorem is the main result of this section.

Theorem 6.1. Assume thaf&, 7) is a strongly local regular Dirichlet form on the metric
measure spacéM, d, u) that satisfieVD) and (RVD) with lower volume dimensioa_.
Then, for anyd < 8 < a_, the following two statements are equivalent:

(i) the Green function (X, y) exists, is jointly continuousfddiagonal, and satisfieG);

(i) the heat kernel {x,y) exists, is Holder continuous in,x € M, and satisfies the
following upper bound estimate

pu(X,y) < V(xil/ﬂ) exp{_c(d%ﬁY))ﬁq} UE),

as well as the near-diagonal lower bound estimate
C_l Y
- B
pe(X,y) > V(x 17) when dx,y) < et (NLE)g

forall x,y € M and all te (0, =), where C and ce are positive constants.

Combining Theorem$.1 and5.9, we have the following fractional version of Hardy’s
inequality for strongly local Dirichlet forms.

Corollary 6.2. Assume thatM, d, u) satisfiegVD) and(RVD) with lower volume dimension
a_. Let(&,F) be a strongly local regular Dirichlet form on M and satisfigs)z for some
B € (0,@_). Then, given any € (0, 1), the subordinated Green kernef’GsatisfiegG®)g.
Moreover, there exists a constantQ0 such that for all fe F©,

f(x)?

—__ du(x) < CEV(F, f).
L Ao X (%) (f, f)
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6.1 Overview of the proof of Theorem6.1

The detailed proof of Theore®1is presented in the subsections below. Here we give
an overview of the proof. In Sectigh2we prove the implication (ii}> (i). The estimates
and the continuity of the Green functions follow from similar properties of the heat kernel
upon integration in time.

The proof of the implication (i}= (ii) is much more involved. For that we need the
following definitions.

Definition 6.3. Let Q ¢ M be an open subset. A functiere ¥ is said to béharmonicin Q
if
E(u,¢) =0 forallg e F(Q).

A functionu € ¥ is said to besuperharmonigresp.subharmonigin Q if
E(u,¢) >0 (resp.E(u,¢) <0) forall0< ¢ € F(Q).

Definition 6.4. We say that thelliptic Harnack inequalityH) holds if there exist constants
C € (1, ) andé € (0,1) such that, for any balB ¢ M and for any functioru € ¥ that is
harmonic and non-negative B)

esssupi(x) < Cessinfu(x).
xe6B XeoB

Definition 6.5. We say that the mean exit time estimag4 holds if there exist constants
C € (1, ) ands € (0, 1) such that, for any baB c M of radiusr > 0, the restricted Green
operatoiG® exists and satisfies

esssui®1(x) < Cr?
xeB

and

essinfGB1(x) > C*r”.
Xe6B

It is known that UE)z + (NLE)z  (E)g + (H) (see B2, Theorem 7.4]). We show in
Sections.4and6.5that G)z = (E)g and G)g = (H), thus yielding (i)= (ii).

6.2 Proof of (UE)z + (NLE)g = (G),

Proof of Theoren®.1(ii) = (i). By [32, Theorem 7.4], the heat kernel i$ider continuous
in X,y € M. The Green function can be then defined pointwise by the identity

G(xy) = fo iy dt 6.1)

The estimates2(5) of the Green function have been already proved in Ler@mésee also
Example2.5).
Let us now prove the continuity @ (X, y) off-diagonal. By 6.1) we have

G(xY) - G (XYl < f IR (0Y) - PGyl dt 6.2)
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Next, we will use the following elementary estimate: for alk@ < 1,R> 0 andx € M,

Coaf 1 1 R
fo t (V(X,tl/ﬁ)/\V(x,R))dtsm' (6.3)

Indeed, usingRVD) andag + a_ > 3, we obtain

© 1 VR
ngt vix ot V(x R)f V(x tl/ﬁ)dt

V(x R tl/ﬂ
~ Y- —(8+1)
v (x, = s‘ BRPs¥h(ds
N BRA-2)8 o g R(1-2)8 |
V(xR Jo V(xR

By a < 1 we have also

Re 1 R(l—a)ﬁ
f t2 dt~ ——,
o VKR = V(KR
whence 6.3) follows.

For anyx € M and positive, R, consider the cylinder
D((t,x),R) = B(x,R) x (t — R, 1].

It was proved in4, Corollary 4.2] tha{UE),; + (NLE ), imply the following property: there
existd, ¢ € (0,1) such that, for any continuous caloric functiom D ((t, X,) , R) and for all
X € B(X, 6R)
d(x xo))9

osc u(s2.
R (s2eD((t.%0).R) (82

Fix y € M so thatu(t, x) = p;(X,y) is a non-negative continuous caloric function knx
(0, o). Fix also distinct pointx, X, € M and set = d(x, X,). For anyt > T := 2(r/6), if
we takeR = (t/2)Y# (this implies thatd(x, X,) < 6R), then the functioru is caloric in the
cylinderD ((t, X,) , R), which implies that

Ut %) - Ut X)| < (

Ipt(x,y)—pt(xo,y)ls(é) sup sup ps(y,2). (6.4)

t/2<s<t zeB(%0,R)

Forse [t/2,1] we have by(UE),
B
1 d(y,2\**
Ps(Y.2) < vV (y, 05) exp(—C( 1B ) ]

d(y,2) > d (Y, %) — d (X, 2) > d(y, %) - R=d(y, %) — (t/2)"7,
it follows that

Since

B
1 (Y, %) | 1 1
Ps(Y.2) < V (y, 079 exp[ ( t18 ) J s V (y, t¥8) 4 V (Y, Xo)
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(see Exampl@.5). Substituting into §.4), we conclude that, for atl> T := 2(r/6),

r\0 1 1
1Pt (X, Y) = Pt (%o, V)| < (tl—/ﬁ) (V(y, oA " V. xo))'

Applying (6.3) with a = 6/ we obtain

- o el 1 1 d (%o, Y™
fT ||ot(><,y)—|ot(><o,y)|dtSfT (tl—/ﬁ) (V(y,tug)Av(y,xo))dtsrg V(oY)

Similarly, we obtain

T T T 6/8 00 I"B 0/B 1 1 d(X y)ﬂ—G

X, dtsf (—) X, dtsf (—) ( A )dtgrg’—

fo Pt (x.y) o \1 P (xY) o \t V (y, t¥8) "V (y, X) V(X,Y)
and

T d (%o, YY*
Xo, V) dt g rf——222
fo P (%) V (%o, Y)

Substituting the above three estimates ift@), we obtain

040y L dO0yy™
V (%, Y) V(xy) '
which proves the locally uniform &lder continuity ofG (-,y) in M \ {y} with the Holder

exponend. SinceG (x,Y) is symmetric, this implies a joint continuity @& (x,y) in (x,y) €
M \ diag. ]

IG (X,Y) - G(XO,Y)| <r

6.3 Existence of the restricted Green function

Lemma 6.6. Let (VD), (RVD) and (G), be satisfied witl® < 8 < a_. Then the following
are true.

(i) For any ball B c M, there exists a non-negative symmetric functici{x@y) that is
jointly measurable in ¥y € B and satisfies

GBf(x) = f GB(x,y)f(y)du(y) forall f e L%B)andu-a.a. xe B. (6.5)
B

(i) There exist constants € (0,1) and C > 0 such that, for any ball B, the restricted
Green function G(x, y) satisfies

d(xy)y

GB(x,y)<C VoY)

foru-a.a. xye B (6.6)

and
d(xyy

GB(x,y) > C*
0¥ 2 €00y

for u-a.a. xy € €B. (6.7)



34 Jun Cao, ALEXANDER GRIGOR’ YAN AND LIGUANG L1U

Proof. By Corollary5.8we have, for any balB = B (x,, R),
Amin (B) 2 (diam(B))?* > 0.

By Remark2.2, the operato’® has a bounded inverse if (B), and the latter is exactly the
restricted Green operat@®. Besides, we have

0<GPf <Gf forall0< feL?B).

Let us now prove the existence of the integral kerngbBf For that, we will prove that, for
any 0< ¢ < 1, the operatoG — GB acting fromL2 (6B) to L? (B), has an integral kernel. By
[28, Lemma 3.3], for the existence of the integral kernel, ffisas to prove that

”G - GB”LZ((SB)—»L“’(B) < o,

that is,

|cf-G® < |Ifll. forany O< f € L2(5B). (6.8)

fliege

The functionG f — GBf is harmonic inB. Due toAmi,(B) > 0, we can apply the maximum
principle for harmonic functions (se@7, Lemma 4.1]) and obtain, for anysuch that <
A<1,

_ B _ B
OsesgsuyéGf G f)sesssu;éGf G®f)

B\1B
< esssuis f (x)

XeB\(1B)
d(x
< sup (xy)
xeB\(B) Jsg V (X, Y)

f(y) du(y).

Since for allx, y in the above expression
(1-0)R<d(xy) < 2R,
it follows that

d(xyy - (2RY RS =

VY SVa-0R S@ 0" gm0 YR

Therefore, we have

|Gf - G®f|| o < (1—0) [1lls (6.9)

® V (%, R)

whence 6.8) follows. Hence, the operat@ — G has an integral kernel, s& (x, y) that is
a non-negative jointly measurable functionBrx ¢B.
Clearly, the family{K®};c01) of kernels is consistent in the sense that, for a# 0" <
o’ <1,
K¥(xy) = K" (x,y) foru-a.a.x e Bandy e §'B.

Choose a sequenég ' 1 and define irB x B the kernel

K(x,y) = K%(x,y) foru-a.a.xe Bandy e §:B.
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Finally, we define the Green functi@P by

GB(X’Y) = G(X,Y) - K(Xay)

Similarly to the proof of 7, (5.8)], one shows tha&® satisfies §.5).
Because the operat@?® is positivity preserving, it follows fromJ8, Lemma 3.2] that

GB(x,y) >0 foru-a.a.x,y e B.
Moreover, by the symmetry @, we have, for allf, g € ¥(B),
(f,G"g) = &(G®f,GPg) = &(G®g, G®f) = (g, G®f),

which implies that
GB(x,y) = GB(y,x) foru-a.a.x,ye B.

By constructionGB (x,y) < G(x,y) so that the upper bound.@) of GB(x,y) follows
from (G)s. In order to prove the lower boun®.() of GB(x,y), it suffices to verify that, for
all0 < f € L?(£B),

esésBinfGBf (x) 2 fa . ?/(E(ijj f(y)du(y),

wheree > 0 is yet to be determined. Fix the paramei@endA from the previous part of
the proof, for example, sét= 1 and1 = 2. Assuming that < 1, we obtain by §.9)

B
IGf - GPf| . < Cm Il
so that, foru-a.a.x € ¢B,
GBf(X)ZfG(X,y)f(y)d,u—C R ffd,u. (6.10)
B V(XOsR) B

Let us show that the second term in the right hand sidédf() is a small fraction of the
first one. Since
d(xy)

V(xy)’

G(xy) 2

so it sufices to verify that, for alk,y € ¢B,

R d(x,y)’

<cC , 6.11
Voo R <O Viy 64
wherec(¢) — 0 ase — 0. Indeed, setting = d (X, y), we obtain
B B B a_ B —a_
R VD (Bf < e (B (L) (Bf (B <o
VX%, R V(xr) V(x,R\r V(x,R/2)\r R r r
Sincea_ > B, this proves §.11) with c(g) = Ce*-*. It follows that
GBf(X) > (1-Cc(e)Gf(X)
and, hence,
GB(x,y) > (1-Cc(e))G(x,y) foru-a.a.x,ye ¢B. (6.12)

By choosings small enough we obtair6 (7). ]
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6.4 (G)gimplies (E)g
Proposition 6.7. Let(VD), (RVD) and(G), be satisfied an@ < g < a_. Then
(G)s = (E)g.
Proof. Fix a ballB = B(x,, R) ¢ M. Then we obtain from4.10
esgsup;Bl < esgsuﬁ;‘-lB <R

Choose’ = € wheree is the constant fromg(7). Then, foru-a.a.x € 6B,

6*109 > [ CPydut)z [ f',((xx’yjf du ).

Using 6.11), we conclude

GB1(x) = V (X, 6R) = R,

V (%, R)
which finishes the proof ofH). ]

6.5 (G)gimplies (H)
Proposition 6.8. Let(VD), (RVD) and(G), be satisfied an@ < g < a_. Then
(G)s = (H).

Proof. If the restricted Green functior® are continuousfB-diagonal then this was proved
in [27, Theorem 3.12 and Lemma 8.2]. Without the continuityG, the key ingredient
of the proof — R7, Lemma 6.2(ii)], breaks down To overcome this diiculty, we have
developed here a new approach.

Letu € ¥ be non-negative and harmonic in a balk B(x,, R) ¢ M. We need to prove
that

esssup < Cessinfu (6.13)
5B 6B

for some constant§ € (1, o) andé € (0, 1) independent oB. Without loss of generality,
we can assume thate L™ (see B2, p. 1280, Theorem 7.4] for how to remove this additional
assumption). Also, by replacingby u,, we can assume without loss of generality that 0
on M.

By (6.12), there exists a smadl € (0, 1) so that for any balB

%G(x, y) <GB(x,y) < G(x,y) foru-a.a.x,ye ¢B. (6.14)

Let us fix thise and use in what follows. The further proof will be split into three steps.
Step 1. Riesz measure and a reduced functiéix B = B(X,, R) and consider also the
ball

&
Bl = EB
By [27, Lemma 6.4], there exists theduced functior of u with respect toB,, B) such that

o U e 7(B)

ell=uin B; and O<O<uinM;

e (is harmonic inB \ B; and superharmonic iB
(see Fig.l).

°Note that a posteriosE is still continuous &-diagonal which follows fromH).
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S
[ I

B
Figure 1: Functionsl andu.

By [27, Lemma 6.2(i)], there exists a regular non-negative Borel measumneB such
that

f odo = E(0,¢) forallp € F N Co(B). (6.15)
B

The measurer is called theRiesz measuref the superharmonic functiam Moreover, the
proof of [27, Lemma 6.2(i)] shows that does not charge any open set wheis iarmonic.
Sinceu'is harmonic in the both se8; and B\ B;, we obtain that supp c dB; =: S.
Consequently, the domain of integration G115 can be reduced t8.

Step 2.Let Q be an open neighborhood §f= dB;, such thaf) c B, for example,

Q=01+7)B\(1-17)B;
with a smallr e (O, %) . Consider also the ball

1 £
B,;==B;=-B
2= 5B =7

so thatB, andQ are disjoint (see Fig).
Fix a cutdt functiony of (S, Q). The aim of this step is to show that, for any function

0<¢peF NC(By), (6.16)

the following inequality holds:

1. -
SE(0.¥Gg) < (u ¢) < E(0,yGg) (6.17)

(see Fig.3).
By Remark2.2, both functionsG8¢ and (1- ¢)GB¢ belong toF (B). Since (1- ¢)GB¢
vanishes in an open neighbourhoodspfwe conclude by27, Proposition A.3] that

(1-y)GP¢ e F(B\S).
Sinceu’is harmonicB \ S we have

(0, (1 -y)GBp) = 0. (6.18)
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Figure 2: The setB, By, B, Q, S.

Figure 3: Functiong andy

Sinceu = G in By, ¢ is supported irB,, andu € ¥ (B), we obtain, using RemarR.2 and
(6.18 that

(u,¢) = (0. ¢) = E(0, G®¢)
= (0, yGP¢) + &(0, (1 - ¢)G®¢)
= &(0, yGBo). (6.19)

By (6.14 we have
1 .
§G¢ <GB <G¢ pu-a.a.ineB.

Since supp c 2B; = ¢B, it follows that

%quﬁ < wGBq) <yG¢ p-a.a.inB.
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Since both functiongG¢ andyGB¢ belong toF (B) andd'is superharmonic iB, we obtain

26(0,0G0) < 8(0.0G%) < E(0.¥G0).
This inequality together withg(19) yields 6.17).
Step 3. Now we can prove the Harnack inequali613. As before, lety be a fixed cut-
off function of (S, Q) and¢ be any function satisfyings(16). Since supg N supps = O and
the Green functios (X, y) is jointly continuous €-diagonal, the functiog(X)G(X, y)#(y) is

jointly continuous in k,y) € M x M. Clearly, we also haveG¢ € F n C.(B). Applying
(6.15 with ¢ = yG¢ and the Fubini theorem, we obtain

&0, yGo) = fs W()GH(X) dor(¥)
- [ w(x)( [ G(X,y)¢(y)du(y)) do (¥
S By
- [ ( [ w(x)e(x,y)dv(x))¢<y)dy(y>

By

_ fB ( fs G ) da(x))¢(y) du(y),

where in the last step we have used that 1 onS. Combining with 6.17), we obtain

1
> fB 2 ( fs G(x,Y) dcr(x))¢(y) du(y) < (u,¢) < fB 2 ( fs G(X,Y) d(,—(x))(p(y) duy).

Since this is true for any non-negatiyes ¥ N C(B,) and¥ N C¢(B,) is dense il.?(B,), we
conclude that

1
> fs G(x, y) do(X) < u(y) < j; G(x,y)do(x) for u-a.a.y € B,.

Since(G); implies

G(X,y) = forall x e Sandy € B,,
(%) V(o R) yeb
we deduce that
u(y) = Vix, R)a(S) for u-a.a.y € B,.
Hence, the Harnack inequalitg.(.3 holds withs = ;113. m]

7 Weighted Hardy’s inequality for strongly local Dirichlet
forms
Let (M, d, ) be a metric measure space d8d¥) be a strongly local Dirichlet form on

L2 (M, ). The main aim of this section is to obtain a weighted version of Hardy’s inequality
for strongly local Dirichlet forms.
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7.1 Intrinsic metric and weighted Dirichlet form

For allx,y € M, define
di(x,y) = sup{u(x) —u(y) : ue ¥ NC, dI'(u,u) < du}.

The functiond, (x,y) is called thentrinsic metricof (&, ). In generald; (x, y) is a pseudo-
distance.
Let us introduce the following hypothesg@s1)-(H3) that will be used in what follows.

(H1) For anyu € ¥, the energy measui&u, u) is absolutely continuous with respectuo
(H2) The intrinsic metria; coincides with the original metrid.

(H3) The metric spacéM, d) is complete.

It is known that, under these assumptions, the metric spgdcd)(is geodesic. Besides,
for any non-empty subsé of M, the functionf (x) = d (x, E) belongs tof . and satisfies
dr (f, f) < du (see B7)).

For example(H1)-(H3) are satisfied iM is a geodesically complete Riemannian man-
ifold, d is the geodesic distancg,is the Riemannian measure, affl ¥) is given by the
Dirichlet integral

8(f,f):f|Vf|2d,u,
M

wheref € W2 (M).

Letw: M — (0, ] be a continuous, locally integrable function, where “continuous” in
this context means thatis continuous ofw < oo} and lower semi-continuous dvl. Define
a weighted bilinear forng™ by

EW(u,v) = f wdl'(u,v) forallu,ve ¥ nCe
M
and set

cW = {u eFNCe: EMu,u) < oo}.

We will use the following result fromg5, Corollary 6.1.6].

Proposition 7.1. Let (&, ) satisfy(H1)-(H3) and let w: M — (0, ] be a continuous,
locally integrable function. Define

du,, = wdu.

Then the symmetric bilinear forg&™,C™) is closable and its closurés™, #W) is a
strongly local regular Dirichlet form on #(M, 1) that also satisfiegH1)-(H3).

7.2 Admissible weights and the weighted Hardy inequality

Motivated by BO, 55], we introduce the following definitions. Given a setc M and
p € (0, 1], define for anyx, € ¥ ands > 0 the set

(%, 9) == {xe M: d(X, %) < sandd(x,XZ) > ps}.
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Set also _
506 1) = | Zo06 9.

O<s<r

For example, ifE = {%,} thenX,(X,, 9) is the annulusB (Xo, ) \ B (X, 09), andfp(xo, r
coincides with the closed ball (X, r).

Definition 7.2. Let £ be a non-empty subset &fl. Fix p € (0,1). The setX is called
p-accessiblef the following conditions are satisfied:

>> X is closed angi(X) = O;

> there existg’ € (p, 1] such that, for any, € £ ands € (0, ), the setX, (X, 9) is
nonempty;

> foranyx, € £ andr € (0, ), the seﬁfp(xo, r) is path connected.

For example, if(M, d) is a non-compact complete geodesic spaceXard{X,} then all
these conditions are satisfied so that a singletqmascessible for any € (0,1). Other
examples op-accessible sets include closed subsets of a hyperplane in the Euclidean space
and the boundaries of uniform and Reifenberg domains &Eg@[5] or 66, p. 163]).

Definition 7.3. A functionw : M — (0, =] is called admissible if there exist a sSetc M
and a functiora : [0, o) — (0, oo] such that

w(x) = a(d(x, X)) forall xe M,
and the following conditions are satisfied:

(i) the setX is p-accessible for somee (0, 1);

(i) the functiona is continuous, non-increasing(r) < o for r > 0, and there exists a
constant € (0, 1) such that, for any > 0,

a(2r) > ca(r); (7.1)

(i) there exists a positive consta@tsuch that, for any, € £ and anyr > 0,

Hu(B(Xo, 1)) < Car)u(B(%o, 1)), (7.2)

wheredy,, = wdu.

It follows that any admissible functiomis continuous and locally integrable with respect
to .

For example, the functioa(r) = r~7 satisfies (ii) for anyo- > 0. If u (B (X,,r)) =~ r® for
allr > 0 andx, € X thena(r) = r = satisfies (iii) if and only if O< o < « (cf. [30, Sec. 4.3]
and Propositior?.6 below).

The notion of an admissible weight function was used5H| ffo prove the following
result.
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Theorem 7.4.[55, Thm 1.0.1, Prop. 4.2.2] If a strongly local Dirichlet for&, ) in
(M, d, u) satisfiegH1)-(H3) as well as the uniform parabolic Harnack inequality, and w is
an admissible weight on M then the weighted Dirichlet f¢&f?, #™) in (M, d, u,,) also
satisfies the uniform parabolic Harnack inequality.

Our main result in this Section is the following weighted Hardy inequality for admissible
weightsw.

Theorem 7.5. Assume thatM, d, u) satisfie{VD) and(RVD) with the lower volume dimen-
siona_ > 2. Let(&, ) be a strongly local regular Dirichlet form on?(M, u) that satisfies
(H1)-(H3)as well adG), . Let w be an admissible function on M as in Definitid. Define

du, = Wl

and assume additionally th&M, d, 1) satisfies(RVD) with the lower volume dimension
o™ > 2. Then the Green function ¢€™, ¥) satisfies(G), and, for all %, € M and f ¢
¥ N Ce, the following weighted Hardy inequality holds:

f(x)?
m d(X, Xo)?

M@@Msﬁw&@ﬂ (7.3)

Proof. By Theorenm6.1, the hypothesist), implies that the heat kerng) of (&€, ) satisfies
(UE), and (NLE),. Further, by #, Theorems 3.1 & 3.2] (see als®4)), the conditionsJE),
and (NLE), are equivalent to the parabolic Harnack inequality(&F) .

Sincew admissible, we conclude by Theoréhd, that the parabolic Harnack inequality
for (&, ) implies the parabolic Harnack inequality fa&Q, 7). Hence, the heat kernel
pM™ of (E™), FW) also satisfies the Gaussian estimatég), and (NLE ),, with measurex,,
instead ofu.

It was proved in 5, Proposition 4.2.2] that the measuytg satisfies(VD) (which is
a consequence of (2)). By hypothesig, satisfies alsgRVD) with o™ > 2. Applying
Lemma2.4in the spacgM, d, ) we obtain that the Green function &, 7)) satisfies
(G), with respect to the measug,. By Theoremb.6, we obtain that, for alf € 7™,

f(x)? (W)
fM A% P du(x) < EW(f, f). (7.4)

Let us now prove{.3) for all f € F N C. If the right hand side of{.3) is o, then (7.3) is
trivially satisfied. If the right hand side o7 (3) is finite thenf € C™) c #W and

fwﬁ@ﬂ:San
M

so that {.3) follows from (7.4). O

7.3 Thel%example:X is a singleton

Here we apply Theorem.5to get an explicit version of the weighted Hardy inequality
in the case whekh is a singleton.
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Proposition 7.6. Assume thatM, d, u) satisfies(VD) and (RVD) with lower volume di-
mensiona_ € (2,0). Let(&,F) be a strongly local regular Dirichlet form on(M, p)
that satisfiefH1)-(H3) and admits the Green function(§y) satisfying(G),. Fix some
0 < o < a_ — 2. Then the following inequality holds for aljx M and fe F N C¢:

£(x)2 1
o % G 41D o)

Proof. We will apply Theorenv.5with £ = {x,} and the weight
W(X) = d(X, X,)™” forall xe M. (7.6)

We need to verify that the weight is admissible and thai,, satisfies YD) and(RVD) with
W)
at’ > 2.
The conditions (i) and (ii) of DefinitiorY.3 are obviously satisfied with(r) = r=. In
order to prove the condition (iii) of Definition.3as well as YD) and(RVD) for wu,,, we will
use the following estimate

pa(B(X, 1)) = [r + d(X, Xo)] " u(B(x. 1)), (7.7)

that holds for alix e M andr > 0. Clearly, {.7) with x = X, implies (iii). Next, it follows
from (7.7) and the conditionsD) and RVD) for u that, for anyd > 1, x € M andr > 0,

oo BB
(B

which implies thaiy,, satisfies YD) and RVD) with the upper volume dimensian,. and
the lower volume dimensioa_ — o > 2. Hence, applying the inequality (3) of Theorem
7.5, we obtain 7.5).

Now let us prove1.7), assuming & o < a_. For anyy € B(x,r), we have

A

d(y, Xo) < d(y, X) + d(X, Xo) <1 +d(X, Xo)

and, hence,

Hu(B(X, 1)) = f d(Xo, ¥)™ du(y) 2 [r + d(X, Xo)] 7 (B(x, T)). (7.8)

B(x,r)

On the other hand, we have

Hw(B(X. 1)) = d(Xo, ¥)™7 du(y)

B(x,r)

o f ( f s 1d s) du(y)
B(x.r) \Wd(xo.y)

a'f (f d,u(y)) s 1ds
0 B(x,r)NB(Xo,9)

- f T min(u(B(x 1), 1B, 9)} 5L ds
d(x,%o0)-r

IA

2 [r+d(x,%0)] 00
SO’f 1(B(Xo, s))s“f‘lds+af u(B(x,r))stds (7.9)
d

(X,Xo)—T 2 [r+d(x,%0)]
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Observe that 1
d(x, %) —r <s< E[r +d(X %)] = d(x %) < 3r

and, hence, byMD) and RVD) for u,

1(B(Xo, 9))
p(B(Xo, I + d(X, Xo)))

u(B(x, 7r)) <

1(B(Xo, 9)) = H(B(X, T + d(X, X))

u(B(x.1).

(e (el

Substituting into 7.9) we obtain

r+d(X,Xo) ( S

R A e
S [r +d(X Xo)]™7u(B(x, 1)),
which together with7.8) yields (7.7). m|

) ST ds+ 1 + d(x X)] " u(B(x 1))

Denote byLip. (R") the class of Lipschitz functions iR" with compact support. Since
Lip. € W+2N(, it follows from Propositior?.6that, for anyf € Lip. (R") and 0< o < n—2,

[ A g [ IEE

T+2 ~ |X|(T

n |X| RN

(7.10)

which matchesX(.6).

7.4 The2" example: X is an subspace oR"

In this and the next subsection, we assume Mat R" with n > 3, d is the Euclidean
distance ilR", u is the Lebesgue measure, and the Dirichlet fofiyi{) is given by 6.29-
(5.30, so that the condition3/D), (RVD), (G), are satisfied witlw_ = a, = n.

Let X be an #ine subspace &" of the codimensiok € {1,2,...,n - 1}. Rotating and
translatingZ, we can assume without loss of generality that R". It is easy to observe
thatX is p-accessible for any € (0, 1). Any pointx € R" can be written as

X=(X,X") e REx R =Rkx 3
so thatd(x, X) = |X].

Proposition 7.7. In the above setting, fix sonfe< o < min{k,n — 2}. Then the following

inequality

2 2

f fz(x) axs [ VIO 4 (7.11)
= XX rno X

holds for all f € Lip(R").
Proof. We will apply Theorenv.5with the weight
W(x) = d(x,2)™ = X

and the corresponding measure
du,,(X) = X7 dx
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Let us first prove that, for any € R" andr > 0,
Hrw(B(X 1)) = 17 (r + X)) 77 (7.12)

Denote byB’ andB” the balls inRk andR", respectively, and by’ andu” — the Lebesgue
measures iR andR"*. Sincew depends only ox’, we have

o = Moy X p7

Since
B (X,r/2)x B” (X",r/2) c B(x,r) c B'(X,r)x B”(X",r)

and by {.7) with x, =0
wly (BT (x,1)) = (r +|x)™ rk and u”” (B” (X’,r)) = constr"*
(where we use that < k), it follows that
Ha (B 1)) 2 gty (B (%, 1)) p” (X7, 1) = 17(r + X))~
It follows from (7.12) that, for anya > 1,

v B

A7 S ——— %
Ha(B(X, 1))
Hencey,, satisfiesYD) and RVD) with @, = nanda_ = n— o > 2. By Theoren.5, the
inquality (7.12) holds for allf € W2 n C. (R"), in particular, for allf € Lip. (R"). i

Remark 7.8. It follows from (7.12 and|x| + |y| = |X| + |x — Y| that

o (BOG X = YD) = X =W (IX= Y1+ IX)™ = [x=yI" (IX| + [y) ™.

As it was shown in the proof of Theorem5, the Green functio®,, (x, y) of the Dirichlet
form (EW, ¥W) exists and satisfig&), , which yields

X — yi?
My (B(X, X = Y1)

Gu(x,y) = = X =y (X + V)7

7.5 The3™example: X is the boundary of a bounded convex domain

In this Subsection we apply Theorefrbin order to prove the following statement.

Proposition 7.9. LetQ c R" (n > 3) be a nonempty bounded convex domain.oFix (0, 1) .
Then the following inequality

f(x)? IVI(X)I?
fRn X2 d(x, 0Q)~ dxs fR d(x, 0Q)~ ax (7.13)

holds for all f e Lipc(R").
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In particular, 7.13 holds for a@éf € Lip(Q) with f|;o = 0 as this function extends to
that inLip. (R") by settingf =0inQ .

In the proof of Propositio.9we usesigned distance functiai(x) to 0Q that is defined
by

. (7.14)
d(x, 0Q2) if xeR"\ Q.

Note thats is Lipschitz and, hence, fierentiable almost everywhere &f. It follows from
[17, Theorem 5.1.5], thaV | = 1 for almost allx € R".

() = {—d(x, 0Q)  if xeQ,

Lemma 7.10.Let Q c R" be a nonempty bounded convex domain. Then there exists a
positive constant C such that, for any«R" and R s € (0, =),

l{X € B(X, R) : d(x,0Q) < s}| < CR™ min{s, R}. (7.15)

Proof. Note that 7.15 holds trivially if s > Ror if {x € B(X,R) : d(x,0Q) < s} = 0.
Hence, we assume in what follows that

O0<s<R and {xeB(X,R): d(x0Q) < s} #0.

Define for allt € R the set
Q ={xeR": 6(X) <t},

whereé (X) is the function 7.14). We claim thatQ; is a convex set for all € R. Indeed, for
t < O this was proved ind3, p. 17, the remark after Fig. 4]. Let us prove the convexit@pof
for t > 0. Note that, fot > 0, we have

Qt:{xeR”:d(x,§)<t}.

Fix two pointsx,y € Q; and prove that the line segment ¥] is contained in¢;. Choose
pointsx; § € Q such that
IXx—X <t and |y-¥ <t

Any pointz € [x,y] can be written ag = Ax + (1 - A)y for someA € [0, 1]. Sincex’y € Q
andQ is convey, it follows that

Z=1%+(1-Dye Q.
Since
-2 =|(x+ (- Dy) - (1% + @ - )
SAX=-R+@A-ly-9<t,

we conclude that € Q, and, hencex, y] c Q.
By the coarea formula (se&§, p. 112]), for any Lipschitz functior : R" — R and any
Lebesgue measurable get R",

flVfldx:fH”‘l(Aﬂ{xeR”: f(x) = t}) dt,
A R

whereH"! denotes then(— 1)-dimensional Hausdfirmeasure. Applying this formula with
f = 6 and using thafVs| = 1 a.e., we obtain

l{x € B(X, R) : d(x,0Q) < sl = [{x € B(X,R) : [6(X)| < s|
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= f [VS(X)] dx
{XeB(%o0,R): [6(X)|<S}

= sz”‘l({x € B(X, R) : 6(x) = t}) dt. (7.16)

S

Clearly, we have
{X € B(Xo, R) : 6(X) =t} = 0Q; N B(Xo, R) € 9(Q N B(Xo, R))

and, hence,
H™ Y ({x € B(X, R) : 6(X) = t}) < H™(3(Q; N B(X, R))). (7.17)

(see Fig4 for the casé € (—0, 0)).

Figure 4: The setB(x,, R), Q andQ; for t € (-0, 0)

Next, we will use the following result of XiadbB, Theorem 2.1]: for any € (1,n) and
any convex compact sét c R", we have

n-1

H™(JE) < cpn(can,(E))™". (7.18)

wherec;, is a positive constant depending only prandn, and cap is the variationalp-
capacity defined by

cap,(E) = inf {f VfPdx: feCTR"), f>1 onE}.
Rn
Below we use the following two basic properties of gégee p8)):

> (Monotonicity)if E; c E; are two compact subsetslitf then cap(E;) < cap,(E);

> (The ball capacityfor any ballB c R" of radiusr > 0, we have caE(E) ~ P,
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It follows from (7.18) that

H™(8( N B(%o, R)) = H™ (9 (@ N B(xe, R))

(capp (Qt N B(Xo, R)))n

SN—"

|
-

?

p

< (cap,(B(%. R) R)))”‘p ~ R (7.19)
Combining 7.16), (7.17 and (7.19, we obtain
l{x € B(X, R) : d(x,0Q) < s}| < R s,
which was to be proved. ]

Lemma 7.11.LetQ c R" be a nonempty bounded convex domain. Then, foraay0, 1),
the weight function
w(x) = d(x,0Q)"" forall x e R"

satisfies the relation
Hw(B(Xo, 1)) = 1"(r + d(xo, 0Q))™7 (7.20)

uniformly in % € R"and r > 0.

Proof. Obviously, for anyy € B(x,, ), we have
d(y, 0Q2) < d(Y, Xo) + d(Xo, Q) < 1 + d(Xo, 0),
whence leading to
o (B(Xo, 1)) = f d(y, 0Q)~7 dy > [r + d(Xo, Q)] 7|B(Xo, )| = r"(r + d(Xo, 92)) ™.
B(Xo.r)
In order to prove the matching upper boundugfB(x,, r)), we consider the following two

cases.
Case 1: let @x,, 9Q) > 2r. In this case, for any € B(X,, '), we have

d(y, 0Q2) > d(x%o, Q) — d(Xo, y) > d(Xo, 0Q)/2,
which implies

wy(B(Xo, 1)) = f d(y, 0Q)~7 dy < r"d(xp, 0Q) ™7 ~ r”(r + d(Xo, 0Q2))77.
B(Xo,r)

Case 2: let dx,, 0Q) < 2r. By the Fubini theorem and Lemn7alQ we obtain
(B0 = [

d(y, Q)™ dy ~ f (f s“"lds) dy
B(%o.r) B(Xo.r) \WJd(y.00Q)

:f (f dy) s lds
0 {yeB(Xo,r): d(y,0Q)<s}

< r”_lf min{r, s}s 7t ds= "7 = r(r + d(%, 0Q)) ™
0

which finishes the proof. ]
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Now can prove Proposition.9.

Proof of Proposition/.9. LetQ c R" be a bounded convex domain. Big Remark 2.4(c)],
any bounded convex domain is a John domain. Moreover4ByHxamples and Remarks
2.13(c)] that any convex John domain is a uniform domain. Hefads,a uniform domain.
By [55, p.5] or b6, p.163], the boundarf = 9Q is p-accessible for somg € (0,1).
It follows from the estimate?.20 of Lemma7.11that the weightw(x) = d(x,0Q) 7 is
admissible as in Definitiod.3with a(r) =r=7.

The estimateq.20 of Lemma7.11limplies also that, for any baB(x,, r) with x, € R"
andr > 0 and for any1 € (1, o),

o . Ha(BOGAN)) _ oy
S B S

Hence, the metric measure spaRé, (- |, u,,) (with the Euclidean distande|) satisfies YD)
and RVD) with the upper volume dimensianand the lower volume dimension- o > 2.
By Theorem?7.5we obtain the Hardy inequality’ (13). O

Remark 7.12. Theoreni7.5also says that the Green functiGg(x, y) of (W, #W) satisfies
(G),. Using Lemmar.11and that

X =yl +d(X, 0Q) =[x =yl + d(y, 0Q) = [x — yI + d(X, 6Q2) + d(y, 6€),
we obtain the following explicit estimate of the weighted Green function:

X -y
My (B(X, [X = 1))

Acknowledgement. The authors would like to thank Dr. Meng Yang for valuable discus-
sions on the theory of of Dirichlet forms.

o

Gu(x.y) = =[x = Y (1x =yl + d(x,69) + d(y. 9Q))
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