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Abstract

For a contractive iterated function system (IFS), it is known that there is a natural hyperbolic

graph structure (augmented tree) on the symbolic space of the IFS that reflects the relationship

among neighboring cells, and its hyperbolic boundary with the Gromov metric is Hölder equivalent

to the attractor K [Ka, LW1, LW3]. This setup was taken up to study the probabilistic potential

theory on K [KLW1,KL], and the bi-Lipschitz equivalence on K [LL]. In this paper, we formulate

a broad class of hyperbolic graphs, called expansive hyperbolic graphs, to capture the most essential

properties from the augmented trees and the hyperbolic boundaries (e.g., the special geodesics,

bounded degree property, metric doubling property, and Hölder equivalence). We also study a new

setup of “weighted” IFS and investigate its connection with the self-similar energy form in the

analysis of fractals.

Contents

1 Introduction · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1

2 Expansive graphs and hyperbolicity · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5

3 Hyperbolic boundaries · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10

4 Index maps and augmented graphs · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14

5 Separation conditions and doubling metrics· · · · · · · · · · · · · · · · · · · · · · · · · · 18

6 Examples and more on IFSs · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 23

7 Appendix: IFSs and augmented trees · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 29

1 Introduction

Let {Si}Ni=1 be a contractive iterated function system (IFS) on Rd, and let K be the attractor.

It is well-known that the IFS is associated with a finite word space Σ∗ (symbolic space or coding

space), and the limit set Σ∞ is used to represent elements in K. With the intention to carry over

the probabilistic potential theory to K, Denker and Sato [DS1, DS2] first constructed a special

type of Markov chain {Zn}∞n=0 on Σ∗ of the Sierpinski gasket (SG), and showed that the Martin

boundary of {Zn}∞n=0 is homeomorphic to the SG. Motivated by this, Kaimanovich [Ka] introduced

an “augmented tree” (Σ∗, E) by adding “horizontal” edges to the coding tree (Σ∗, Ev) according to
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the neighboring cells in each level of the SG. He showed that the graph is hyperbolic in the sense

of Gromov [Gr, Wo], and the SG equipped with the Euclidean metric is Hölder equivalent to the

hyperbolic boundary of (Σ∗, E). He also suggested that this approach would also work for more

general IFSs, and could provide another tool to study the geometry and analysis on fractals.

These initiatives were carried out by the authors in a series of papers [LW1,LW2,LW3,JLW,Wa,

KLW1,KLW2,KL]. In [LW1,LW3], we investigated the systems of neighboring cells to general IFSs

on which the hyperbolicity of the augmented trees is valid; it was shown that the hyperbolic bound-

aries and the attractors K are Hölder equivalent (or homeomorphic) under various circumstances.

The Hölder equivalence was applied to the bi-Lipschitz classification of the totally disconnected

self-similar sets [LL, DLL]. More importantly, this setup was taken up to study the probabilistic

potential theory on the self-similar sets [KLW1]: for an augmented tree (X,E) defined by an IFS on

Rd satisfying the open set condition, we introduced a class of reversible transient random walks on

(X,E). By identifying the Matin boundary, the hyperbolic boundary and K, we obtain an induced

Dirichlet form of Gagliardo-type on K. The relevant energy forms and function spaces were further

studied in [KL].

The augmented tree has very rich structure inherited from the iterations and the attractors. In

this paper, our first goal is to formulate a broad class of hyperbolic graphs to capture the most

essential concepts, such as the special geodesics, the bounded degree property, and the doubling

property of the Gromov metric on the hyperbolic boundaries, which were used extensively in

the study of augmented trees. This new setup allows us to carry out the idea of augmentation

much further, and beyond IFS. Besides extending the previous study on the identification of the

hyperbolic boundaries with the attractors K, we are able to use the hyperbolic techniques developed

to construct new metrics on K that are useful in the analysis of fractals.

Let (X,E) be a locally finite connected graph with a root ϑ ∈ X. We have the decomposition

E = Ev ∪ Eh, the set of vertical edges (which does not necessarily form a tree) and the set of

horizontal edges. Let Jm(x) denote the set of descendants in the m-th generation of x ∈ X.

Denote by d and dh the graph distances on (X,E) and (X,Eh) respectively, and let |x| := d(ϑ, x).

We call a rooted graph expansive if for x, y ∈ X with |x| = |y|,

dh(x, y) > 1 ⇒ dh(u, v) > 1, ∀ u ∈ J1(x), v ∈ J1(y),

and call it (m, k)-departing if

dh(x, y) > k ⇒ dh(u, v) > 2k, ∀ u ∈ Jm(x), v ∈ Jm(y).

Intuitively, the two definitions describe the distances of the descendants that are drifted apart

compared to the non-neighboring predecessors. The expansive property provides a rather simple

form of geodesics (convex geodesics, see Proposition 2.3, Figure 2), and the (m, k)-departing prop-

erty gives more details of how the graph evolves. These two lead to the following criteria for the

hyperbolicity (Theorem 2.11), which are crucial in the paper.

Theorem 1.1. Let (X,E) be an expansive graph. The following assertions are equivalent.

(i) (X,E) is hyperbolic;

(ii) ∃ L <∞ such that the lengths of all horizontal geodesics are bounded by L;

(iii) (X,E) is (m, k)-departing for some positive integers m and k.

2



(By a horizontal geodesic, we mean a geodesic in (X,E) consisting of edges in Eh only.) We will

call such (X,E) an expansive hyperbolic graph: together with the expansiveness, (ii) gives a clear

geometry of the geodesics in X; the (m, k)-departing property in (iii) will serve as the workhorse

in many of the proofs in this study.

We use ∂X to denote the hyperbolic boundary of (X,E), which is a compact space with an

associated metric θa, a > 0 small (Gromov metric, see Definition 2.4). By using the (m, k)-

departing property, we obtain a sharp description of the equivalent rays in X that converge to the

same boundary elements (Proposition 3.1) which will be used in a number of estimates. One of the

main results is (Theorem 3.6)

Theorem 1.2. Suppose (X,E) is an expansive hyperbolic graph, and has bounded degree (i.e.,

supx∈X deg(x) <∞). Then (∂X, θa) is a doubling metric space.

Recall that an augmented tree of an IFS with attractor K is based on the tree of the symbolic

space, together with the added horizontal edges that connect neighboring cells in the same level

(see Appendix). This can easily be reformulated on any vertical rooted graph (X,Ev): let (M,ρ)

be a complete metric space, and let CM denote the family of nonempty compact subsets of M . We

define an index map Φ : X → CM that satisfies Φ(y) ⊂ Φ(x) whenever y ∈ J1(x), and
⋂∞
i=0 Φ(xi)

is a singleton for any geodesic ray [xi]i from the root ϑ (see Definition 4.1); likewise, we also have

an attractor K. This setup is very general, which includes all IFSs (where Φ(x) is defined as the

cell Kx), as well as cases that are not from IFS, e.g., refinement systems of sets.

With the vertical graph (X,Ev) and the index map Φ, we define

E
(∞)
h :=

{
(x, y) ∈ X ×X : |x| = |y|, x 6= y, and Φ(x) ∩ Φ(y) 6= ∅

}
.

Let E(∞) = Ev ∪ E(∞)
h , and call (X,E(∞)) an AI∞-graph (augmented index graph of type-(∞),

or intersection type). In the case that {Φ(x)}x∈X is of exponential type-(b) (i.e., the diameter

|Φ(x)|ρ = O(e−b|x|) for some b > 0, as |x| → ∞), for some fixed γ > 0, we define a horizontal edge

set by

E
(b)
h (= E

(b)
h (γ)) :=

{
(x, y) ∈ X ×X : |x| = |y|, x 6= y, and distρ(Φ(x),Φ(y)) ≤ γe−b|x|

}
,

Let E(b) = Ev ∪ E(b)
h , and call (X,E(b)) an AIb-graph (augmented index graph of type-(b)).

Both AI∞- and AIb-graphs are expansive. The condition that defines an AI∞-graph is more

intuitive, and E
(∞)
h consists of fewer edges. However, concerning the hyperbolicity, the AIb-graph

has the advantage that we do not need to know the fine structure of K a priori. More precisely, by

using Theorem 1.1, we show that (Theorem 4.5)

Theorem 1.3. The AIb-graph is (m, 1)-departing for some m ≥ 1, and hence hyperbolic. More-

over, the index map Φ induces a bijection κ : ∂X → K that is a Hölder equivalence, i.e.,

ρ(κ(ξ), κ(η))a/b � θa(ξ, η) for all ξ, η ∈ ∂X.

(Here by f � g we mean that there exists C ≥ 1 such that C−1f(x) ≤ g(x) ≤ Cf(x) for all

variables x in a given domain.) The AI∞-graph is not always hyperbolic (Example 6.1); in order

to have that, we need an additional separation condition (Sb) on {Φ(x)}x∈X (Definition 5.1, which

is satisfied by IFS of similitudes with the OSC).
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Theorem 1.4. Suppose {Φ(x)}x∈X is of exponential type-(b), and satisfies condition (Sb) for

some b > 0. Then the AI∞-graph is hyperbolic, and the induced bijection κ : ∂X → K is Hölder

continuous, i.e., ρ(κ(ξ), κ(η))a/b ≤ Cθa(ξ, η) for all ξ, η ∈ ∂X.

The proof of the theorem is in Theorem 5.4 and Corollary 4.7. We also provide an example

(Example 6.2) to show that unlike the AIb-graph, the Hölder continuity of κ for the AI∞-graph

cannot be improved to Hölder equivalence.

For the augmented tree of an IFS, the bounded degree property is important because it allows

us to consider certain random walks on it [KLW1, KL]. This property has been characterized in

terms of the separation properties such as the open set condition and weak separation condition

for IFSs [LW3,Wa]. In Section 5, we prove (Theorem 5.5)

Theorem 1.5. The AIb-graph has bounded degree if and only if condition (Sb) is satisfied. Also,

the AI∞-graph has bounded degree provided that (Sb) is satisfied.

In our previous consideration of IFS, the structure of augmented trees (or AI∞- and AIb-graphs

here) arose from the geometry of Kx under a given metric (usually Euclidean metric). In the

analysis of fractals, there are situations that involve weighted IFS, which give rise to new metrics

on K (e.g., the resistance metric in the study of Dirichlet form [Ki1,HW] or the metrics involve in

the time change of Brownian motions [Ki2,Ki3,Ki4,GLQR]). This requires new graph structure to

accommodate the new parameter of weights.

In this regard, we let {Sj}Nj=1 be a contractive IFS on a complete metric space (M,ρ), and let

K be the attractor. Let s = (s1, . . . , sN ), sj ∈ (0, 1), be a vector of weights of the maps Sj ’s. We

regroup the finite words in the symbolic space to form a new coding tree (X(s), Ev) (see (6.2)) such

that in each level, the Kx’s have comparable weights. In this case the AI∞-graph is more natural

for use (see Section 6). While we cannot check the hyperbolicity directly (as {Kx}x∈X(s) does not

satisfy the separation condition (Sb) as in Theorem 1.4), we still obtain some rather satisfactory

conclusions (Theorem 6.3) for the class of p.c.f. sets [Ki1].

Theorem 1.6. Let {Sj}Nj=1 be a contractive IFS that has the p.c.f. property. Then for any weight

s ∈ (0, 1)N , the AI∞-graph (X(s), E(∞)) is an (m, 1)-departing expansive graph of bounded degree.

Consequently the AI∞-graph is a hyperbolic augmented tree.

The theorem is applied to study self-similar energy forms and resistance metrics in Section 6.

By using the fact that the natural identification κ : (∂X, θa) → (K, ρ) is a homeomorphism, we

can impose a new metric θ̃a on K, as a consequence of Theorem 1.6. We show that if K admits a

regular harmonic structure, then θ̃a is Hölder equivalent to the associated resistance metric on K

(Theorem 6.7).

We remark that in [Ki5], Kigami proposed another construction of metrics through the weighted

trees associated with successive partitions on compact metrizable spaces, while he stated that such

construction is possible if and only if the “resolution” graph (which is similar to our AI∞-graph

here) is hyperbolic. He also studied different types of properties among metrics and measures (e.g.,

Lipschitz equivalence, Ahlfors-regularity, volume doubling, etc.) via the weight functions on trees.

In a forthcoming paper [KLWa], by showing that a hyperbolic graph is near-isometric to an

expansive hyperbolic graph, we present in greater generality the framework of index maps and

augmented index graphs. We can also extend the scope of underlying spaces to quasi-metric spaces

4



(particularly the spaces of homogeneous type [Ch,CW]), and study random walks on such hyperbolic

graphs.

For the organization of the paper, we introduce the basics of expansive graphs and (m, k)-

departing property in Section 2, and prove Theorem 1.1. We study the boundaries of hyperbolic

expansive graphs in Section 3, and prove Theorem 1.2. In Section 4, we define the index maps,

as well as the associated AIb-graphs, AI∞-graphs, and prove the hyperbolicity of AIb-graphs in

Theorem 1.3. For the AI∞-graphs in Theorems 1.4 and 1.5, we need some separation properties

of the index family, which are detailed in Section 5. In Section 6, we give the two examples as

asserted above, and also apply the techniques developed to consider the weighted IFS. An appendix

on the augmented tree defined by IFS of similitudes and some related results are included for the

convenience of the reader.

2 Expansive graphs and hyperbolicity

A graph (X,E) is a countable set X of vertices together with a set E of edges which is a symmetric

subset of X × X \ ∆ (∆ := {(x, x) : x ∈ X}). It is called locally finite if for any vertex x ∈ X,

deg(x) := #{y : (x, y) ∈ E} < ∞. For x, y ∈ X, we use π(x, y) to denote the geodesic (path with

smallest path length) from x to y, and define the graph distance d(x, y) by the length of π(x, y) if

such path exists (d(x, y) =∞ otherwise). If d(x, y) is finite for all x, y ∈ X, we say that (X,E) is

connected; in this case d is an integer-valued metric on X.

In this paper, we assume that (X,E) is a rooted graph, i.e., a locally finite connected graph in

which a vertex ϑ ∈ X is fixed as a root. We write |x| := d(ϑ, x) for x ∈ X, and let Xn := {x ∈ X :

|x| = n}. Then X =
⋃∞
n=0Xn. We define a partial order ≺ on X with y ≺ x if and only if x lies

on some π(ϑ, y). For an integer m ≥ 0 and x ∈ X, let

Jm(x) := {y ∈ X : y ≺ x, |y| = |x|+m}, J−m(x) := {z ∈ X : x ∈ Jm(z)}

be the m-th descendant set and the m-th precedessor set of x respectively; in general, Jm(x) is

allowed to be empty. We also write J∗(x) := {y ∈ X : y ≺ x} and J−∗(x) := {z ∈ X : x ≺ z} for

further use.

Let Ev = {(x, y) ∈ E : |x|− |y| = ±1} and Eh = {(x, y) ∈ E : |x| = |y|} denote the vertical edge

set and the horizontal edge set respectively. Clearly E = Ev ∪Eh, and Ev = {(x, y) ∈ X ×X : x ∈
J1(y) or y ∈ J1(x)}. We say that a rooted graph (X,E) is vertical if E = Ev. A (rooted) tree is a

vertical rooted graph satisfying #J−1(x) = 1 for all x ∈ X \ {ϑ}.

We refer to the horizontal distance dh(·, ·) as the graph distance on (X,Eh). We write x ∼h y
for each pair (x, y) ∈ Eh ∪∆. It is clear that dh(x, y) =∞ for |x| 6= |y|, and d(x, y) ≤ dh(x, y). In

the case that d(x, y) = dh(x, y), there is a geodesic π(x, y) that lies in (X,Eh), called a horizontal

geodesic of (X,E).

Definition 2.1. We call (X,E) an expansive graph if it is a rooted graph that satisfies for x, y ∈ X,

dh(x, y) > 1 ⇒ dh(u, v) > 1, ∀ u ∈ J1(x), v ∈ J1(y), (2.1)

or equivalently if each u ∼h v implies x ∼h y whenever x ∈ J−1(u) and y ∈ J−1(v).
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It follows that in such a graph (X,E), if x, y are predecessors of u (i.e., x, y ∈ J−∗(u)) with

|x| = |y|, then x ∼h y. It is easy to see that the above condition is also equivalent to

max{dh(u, v), 1} ≥ dh(x, y), u ∈ J1(x), v ∈ J1(y). (2.2)

Intuitively, in an expansive rooted graph the children are drifted farther apart than their non-

neighboring parents (see Figure 1).

# # #

x xy y

u uv v

(a) (b) (c)

Figure 1: (a) is an expansive graph, while (b) and (c) are not.

Clearly every rooted tree is expansive. Note that an expansive rooted graph (X,E) is called

a pre-augmented (rooted) tree in [LW3, KLW1] if the vertical part (X,Ev) is a tree. There are

important examples in which the vertical parts of expansive graphs are not trees; in the following

we display one of those, which arises from the well-known Bernoulli convolutions.

Example 2.2. Let Y0 = {ϑ}, Yn = {x = ε1 · · · εn : εi = 0 or 1} for n ≥ 1, and Y =
⋃∞
n=0 Yn.

Clearly there is a natural tree structure E∗v on Y : x = ε1 · · · εn ∈ J1(y) if and only if y = ε1 · · · εn−1.

For 0 < ρ < 1, let In = {ξ(x) =
∑n
i=1 ρ

nεi : x = ε1 · · · εn ∈ Yn}. If 0 < ρ ≤ 1/2, then for each

n ≥ 1, ξ : Yn → In is bijective. However for 1/2 < ρ < 1, they may not be bijective, for example, if ρ

equals the golden ratio
√

5−1
2 (the positive solution of x2 +x−1 = 0), then we have ξ(011) = ξ(100).

We define an equivalence relation 'n on Yn by x 'n y if and only if ξ(x) = ξ(y). Let Xn be the

quotient of Yn with respect to 'n, and use Ev to denote the edge set on X =
⋃∞
n=0Xn induced by

(Y,E∗v ). Then (X,Ev) is a vertical graph, but not a tree unless all relations 'n are trivial. We can

augment (X,Ev) by adding a set of horizontal edges:

(x, y) ∈ Eh ⇔ x, y ∈ Xn, and |ξ(x)− ξ(y)| ≤ aρn for some n ≥ 0,

where a =
∑∞
n=1 ρ

n = ρ
1−ρ . Let E = Ev ∪ Eh. Then (X,E) is an expansive graph, because for

x, y ∈ Xn with |ξ(x)− ξ(y)| > aρn,

|ξ(u)− ξ(v)| > aρn − ρn+1 = aρn+1, u ∈ J1(x), v ∈ J1(y). �

For more discussion of this example in connection with the iterations and augmented trees, the

reader can refer to Appendix and [Wa].

A geodesic path [xi]i in a rooted graph (X,E) is said to be convex if |xi| ≤ 1
2 (|xi−1| + |xi+1|)

for all i. It is easy to see that for each convex geodesic [xi]i, there exist u = xk, v = x` (k ≤ ` and

they can be equal) such that 
xi−1 ∈ J1(xi), i ≤ k;

(xi−1, xi) ∈ Eh, k < i ≤ `;
xi−1 ∈ J−1(xi), i > `.
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We denote a convex geodesic segment from x to y by π(x, u, v, y); such geodesic may not be unique

(see Figure 2).

#

u v

x y

Figure 2: Two convex geodesics between x and y.

The following simple result is an important property of the expansive graphs.

Proposition 2.3. Let (X,E) be an expansive graph. Then any two vertices x, y ∈ X can be joined

by a convex geodesic.

Proof. Let π be a geodesic path from x to y. Then it is clear that π does not contain any segment

[u, v, w] such that |u| = |w| = |v| − 1; indeed in this case, we have dh(u,w) ≤ 1 by the expansive

property, which leads to a contradiction. Next if π contains a segment [u, v, w] such that |v| =

|w| = |u|+ 1 (or |u| = |v| = |w|+ 1), then by the expansive property, we can replace this segment

by [u,w−, w] (or [u, u−, w] respectively), where w− ∈ J−1(w) (see [Ka, Proposition 3.4]). Such a

replacement does not change the end points or increase the length of the segment. Repeating this

process, we get a convex geodesic from x to y eventually.

Definition 2.4. [Gr] On a rooted graph (X,E), we define the Gromov product of x, y ∈ X to be

(x|y) :=
1

2

(
|x|+ |y| − d(x, y)

)
.

(X,E) is said to be (Gromov) hyperbolic if there is δ ≥ 0 such that

(x|y) ≥ min{(x|z), (z|y)} − δ, ∀ x, y, z ∈ X.

In this case for a > 0 with eδa <
√

2, we can define a metric θa(·, ·) (Gromov metric) on X by

θa(x, y) = inf{
∑n

i=1
e−a(xi−1|xi) : n ≥ 1, x = x0, x1, · · · , xn = y ∈ X} (2.3)

for distinct x, y ∈ X, and θa(x, x) = 0 for x ∈ X. Let X̂ denote the θa-completion of X, and call

∂X := X̂ \X the hyperbolic boundary of (X,E).

The reader can refer to [CDP, Gr, GH, Wo] for more details of the hyperbolic graphs and the

hyperbolic boundaries. We observe that if (X,E) is expansive, then for x, y ∈ X and a convex

geodesic π(x, u, v, y), we have

(x|y) =
1

2

(
|x|+ |y| − d(x, y)

)
=

1

2

(
|u|+ |v| − dh(u, v)

)
= (u|v). (2.4)

Next we introduce another important notion to describe the departing behavior of the descen-

dant vertices in conjunction with the expansive property. Together they provide a useful criterion

for the hyperbolicity of the expansive graphs.

7



Definition 2.5. Let m, k be two positive integers. A rooted graph (X,E) is said to be (m, k)-

departing if for x, y ∈ X,

dh(x, y) > k ⇒ dh(u, v) > 2k, ∀ u ∈ Jm(x), v ∈ Jm(y). (2.5)

It follows from the definitions that every (1, 1)-departing graph is expansive; every rooted tree is

(m, k)-departing for any m, k, and every finite graph is (m, k)-departing for sufficiently large m, k.

However, an infinite expansive graph may not be (m, k)-departing for any m, k (see Figure 3 for a

simple example; in that graph, if both x, y are on the left or right side, then dh(x, y) = dh(u, v) for

u ∈ Jm(x) and v ∈ Jm(y), m ≥ 1).

#

x y

u v

Figure 3: An expansive graph that is not (m, k)-departing for any m, k.

Lemma 2.6. Suppose (X,E) is (m, k)-departing. Then it is (m, `k)-departing for any positive

integer `.

Proof. Let x, y ∈ X, u ∈ Jm(x) and v ∈ Jm(y) that satisfy dh(u, v) ≤ 2`k. Then there exists a

set of vertices {z0, z1, · · · , zs} ⊂ X|x|+m such that z0 = u, zs = v, s ≤ ` and dh(zi−1, zi) ≤ 2k for

i = 1, 2, · · · , s. By the (m, k)-departing property, we have

dh(x, y) ≤
s∑
i=1

dh(z
(−m)
i−1 , z

(−m)
i ) ≤ sk ≤ `k,

where z
(−m)
i ∈ J−m(zi) and z

(−m)
0 = x, z

(−m)
s = y. This completes the proof.

It follows that (m, 1)-departing implies (m, k)-departing for any k. Also, it is straightforward

to check inductively that (1, k)-departing implies (m, k)-departing for any m. Hence we have

Corollary 2.7. Suppose (X,E) is (1, 1)-departing. Then it is (m, k)-departing for any positive

integers m, k.

We give two examples to illustrate the (m, k)-departing property.

Example 2.8. (SG graph) Let X =
⋃∞
n=0 Σn with Σ = {0, 1, · · · , d} (d ≥ 1) be the symbolic

space representing the d-dimensional Sierpinski gasket K, and let Kx be the cell associated to the

word x ∈ X. Let Ev be the natural tree structure on X, and define Eh = {(x, y) ∈ X ×X : |x| =
|y|, x 6= y, and Kx ∩Ky 6= ∅} [Ka]. Consider the rooted graph (X,E) with E = Ev ∪ Eh. It is

easy to show that (X,E) is expansive and (1, 1)-departing.
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Indeed, it is easy to check that u ∼h v if and only if either (i) u = wi, v = wj for some

w ∈ X, i, j ∈ Σ, or (ii) u = wijk, v = wjik for some w ∈ X, i, j ∈ Σ, i 6= j, k ≥ 1 [DS1, Ki1]. Note

that (i) implies u− = v−, and (ii) implies dh(u−, v−) = 1. Therefore u ∼h v implies u− ∼h v−,

i.e., (X,E) is expansive. Moreover, for any horizontal segment [x, z, y], we can conclude that one

of x−, y− must equal z−, hence dh(x−, y−) ≤ 1. This shows that (X,E) is (1, 1)-departing. �

Example 2.9. (Hata tree) The Hata tree K is defined on C by the iterated function system

S1(z) = cz̄ and S2(z) = (1 − |c|2)z̄ + |c|2 where |c|, |1 − c| ∈ (0, 1) (see the left figure of Figure 4,

the detailed description of K can be found in [Ki1, p.16]). The graph (X,E) is the symbolic space

X with E = Ev ∪Eh, where Eh = {(x, y) ∈ X ×X : |x| = |y|, x 6= y, and Kx ∩Ky 6= ∅} (the right

picture). It is clear that (X,E) is expansive.

From the graph, we see that dh(11, 22) = dh(112, 221) = 2 (the 212-branch sticks out and is

thus not counted). Hence (X,E) is not (1, 1)-departing. However, it is not hard to see that (X,E)

is (m, 1)-departing for m ≥ 2 (check level 2, then use the similarity of the graph to conclude for all

levels), since the further separation of descendants overcomes the missing count of those outlying

branches. �

#

1 2

12 11 21 22

122 121

111

112

211
212

221 222

Figure 4: Hata tree (c = 0.5 + 0.3i) and the graph (X,E).

Proposition 2.10. Suppose (X,E) is (m, k)-departing, then the lengths of all horizontal geodesics

in (X,E) are bounded by L = L(m, k) := d 2m+1
k ek+ 2m. In particular, for (m, 1)-departing rooted

graphs, L = 4m+ 1.

Proof. Suppose otherwise, then there exists a horizontal geodesic π(x, y) with length L+ 1. Note

that π(x, ϑ) ∪ π(ϑ, y) is a path joining x and y. Comparing the lengths of two paths, we have

2|x| ≥ L + 1 > 2m, i.e., |x| > m. Let x(−m) ∈ J−m(x) and y(−m) ∈ J−m(y). Then there

exists a horizontal path joining x(−m) and y(−m) (otherwise dh(x(−m), y(−m)) = +∞, and Lemma

2.6 implies that dh(x, y) = +∞, a contradiction). Now consider a new path: x → x(−m) (along

horizontal edges) → y(−m) → y, and by comparing the length of this new path with the one of

geodesic π(x, y) we have

2m+ dh(x(−m), y(−m)) ≥ L+ 1.

It follows that dh(x(−m), y(−m)) ≥ d 2m+1
k ek + 1 > d 2m+1

k ek. Making use of Lemma 2.6, we have

dh(x, y) > 2d 2m+1
k ek ≥ L+ 1. This is a contradiction, and completes the proof.

The following theorem provides two useful criteria for the hyperbolicity of expansive graphs.
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Theorem 2.11. Let (X,E) be an expansive graph. Then the following assertions are equivalent.

(i) (X,E) is hyperbolic;

(ii) ∃ L <∞ such that the lengths of all horizontal geodesics are bounded by L;

(iii) (X,E) is (m, k)-departing for some positive integers m, k.

Proof. (i) ⇔ (ii) follows from a similar proof as in [LW1, Theorem 2.3].

(iii) ⇒ (ii) follows from Proposition 2.10.

(ii)⇒ (iii): We claim that (X,E) is (L+1, L+2)-departing. Indeed, let x, y ∈ X, x′ ∈ JL+1(x)

and y′ ∈ JL+1(y) satisfying L+ 2 < dh(x′, y′) ≤ 2(L+ 2) (see Figure 5). By Proposition 2.3, there

exists a convex geodesic segment π(x′, u, v, y′) between x′ and y′, and u 6= x′ (by the first inequality

and (ii)). Let u, v ∈ Xj . Then

2(L+ 2) ≥ dh(x′, y′) > d(x′, y′) = 2(|x′| − |j|) + dh(u, v) ≥ 2(|x′| − j).

As ` := |x′| − j ≤ L + 1 = |x′| − |x|, we have j ≥ |x|. Let u′ ∈ J∗(x) ∩ J−∗(x′) ∩ Xj and

v′ ∈ J∗(y) ∩ J−∗(y′) ∩Xj . Since x′ ∈ J`(u) ∩ J`(u′), u and u′ are predecessors of x′, and we have

u ∼h u′ by the expansive property. Similarly v ∼h v′. Hence by (2.2) and (ii),

dh(x, y) ≤ max{dh(u′, v′), 1} ≤ dh(u, v) + 2 ≤ L+ 2.

This proves the claim.

b b

bb

b bb b

x′ y′

yx

u′ v′
u v

Figure 5: Illustration for the proof of Theorem 2.11.

We will call the graphs in the above theorem expansive hyperbolic graphs.

3 Hyperbolic boundaries

In an infinite graph (X,E) with root ϑ, we let

Rv := {x = [xi]
∞
i=0 : x0 = ϑ, and xi+1 ∈ J1(xi), ∀ i ≥ 0} (3.1)

denote the class of (geodesic) rays starting from the root ϑ. For brevity, we shall use the bold

symbols such as x,y, z to denote the rays [xi]i, [yi]i, [zi]i in Rv respectively.

In this section, we assume that (X,E) is hyperbolic. It follows from (2.3) that

θa(x, y) � e−a(x|y), ∀ x, y ∈ X (3.2)

(see [Wo, p.245]), and hence the topology on the θa-completion X̂ is independent of the value of a

(as θa(·, ·) � θb(·, ·)a/b for a, b > 0); it is also known that both X̂ and ∂X are compact.
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Every ray in Rv is θa-Cauchy. Note that for x,y ∈ Rv, the Gromov product (xi|yi) is increasing

in i by the triangle inequality. By using this we define (x|y) := limi→∞(xi|yi). We say that

x,y ∈ Rv are equivalent if they converge to the same point in ∂X; this holds if and only if

(x|y) =∞. With such equivalence, the quotient of Rv is identified with ∂X.

For an integer k ≥ 0 and two rays x,y ∈ Rv, we define

|x ∨ y|k := sup{i ≥ 0 : dh(xi, yi) ≤ k}. (3.3)

Clearly if E = Ev, |x ∨ y|k = sup{i ≥ 0 : xi = yi} for all k ≥ 0, and equals (x|y) when (X,E) is a

tree. Note that if |x ∨ y|k =∞, i.e., dh(xi, yi) ≤ k for all i ≥ 0, then by

(xi|yi) = |xi| −
1

2
d(xi, yi) ≥ i−

k

2
, (3.4)

we have limi→∞(xi|yi) =∞, i.e., x and y are equivalent.

Furthermore, if the hyperbolic graph (X,E) is expansive, then by Theorem 2.11, it is (m, k)-

departing for some m, k > 0. This provides a more concrete characterization of the equivalence

classes in Rv as follows, which is used for some estimations in the sequel.

Proposition 3.1. Suppose the rooted graph (X,E) is expansive and (m, k)-departing. Then there

exists a constant D0 = D0(m, k) > 0 such that

|(x|y)− |x ∨ y|k| ≤ D0, ∀ x,y ∈ Rv. (3.5)

Consequently, two rays x,y in Rv are equivalent if and only if dh(xi, yi) ≤ k for all i ≥ 0.

Proof. Note that |x ∨ y|k = ∞ implies (x|y) = ∞. Hence we need only prove (3.5) for the case

that |x ∨ y|k <∞. Set ` := |x ∨ y|k + 1. Then dh(x`−1, y`−1) ≤ k, and dh(x`, y`) > k. Using (3.4)

for i = `− 1, we have

(x|y) ≥ (x`−1|y`−1) ≥ `− 1− k/2 = |x ∨ y|k − k/2.

On the other hand, by using the (m, k)-departing in Lemma 2.6 repeatedly, we have

dh(xmj+`, ymj+`) > 2jk, ∀ j ≥ 1. (3.6)

For j ≥ 0, we choose u, v ∈ X such that π(xmj+`, u, v, ymj+`) is a convex geodesic. Then x|u| ∼h u
and v ∼h y|u| (by the remark after Definition 2.1). By Proposition 2.10, there exists L = L(m, k) >

0 such that

dh(x|u|, y|v|) ≤ dh(x|u|, u) + dh(u, v) + dh(v, y|v|) ≤ 1 + L+ 1 = L+ 2. (3.7)

Let j0 = j0(m, k) be the smallest integer such that 2j0k ≥ L + 2. It follows from (3.6) and (3.7)

that |u| = |v| ≤ mj0 + `− 1. Hence by (2.4), we have

(xmj+`|ymj+`) = (u|v) = |u| − 1

2
dh(u, v) ≤ mj0 + `− 1,

and this implies that (x|y) ≤ mj0 +`−1 = |x∨y|k+mj0. Setting D0 = max{k/2,mj0}, inequality

(3.5) follows.
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By Proposition 3.1, we can extend the Gromov product to X̂ by letting

(x|ξ) = sup{ lim
i→∞

(x|xi)}, (ξ|η) = sup{ lim
i→∞

(xi|yi)}, (3.8)

where x ∈ X, ξ, η ∈ ∂X, and the supremum is taking over all rays [xi]i and [yi]i in Rv that converge

to ξ and η respectively; the differences of the limits for different rays are at most k if (X,E) is

(m, k)-departing. Then the Gromov metric θa(·, ·) on X̂ satisfies the same estimate as in (3.2).

Throughout the rest of the paper, we will assume that J1(x) 6= ∅ for all x ∈ X. In this section

we will investigate the metric doubling property of (∂X, θa). For x ∈ X and ξ ∈ ∂X, we extend

the partial order ≺ in Section 2 by writing ξ ≺ x if x lies on some ray [xi]i ∈ Rv that converges to

ξ. Define

J∂(x) := {ξ ∈ ∂X : ξ ≺ x}

and call it the cell of x in ∂X. Then it is clear that each J∂(x) is a nonempty compact subset of

∂X. We remark that in the context of IFS with attractor K and an associated graph structure

(X,E) of the symbolic space, J∂(x) plays the role of the x-cell Kx in K (see Appendix); this will

be discussed in detail in Section 4.

Proposition 3.2. Let (X,E) be an (m, k)-departing expansive graph. Then there exists a constant

γ > 0 (depending on a) such that for x, y ∈ Xn, n ≥ 1,

dh(x, y) > k ⇒ distθa(J∂(x),J∂(y)) > γe−an.

Proof. For ξ ∈ J∂(x) and η ∈ J∂(y), we choose two rays x,y ∈ Rv that pass through x, y and

converge to ξ, η respectively. Then |x ∨ y|k < n. It follows from (3.5) that

(ξ|η) ≤ (x|y) + k ≤ |x ∨ y|k + k +D0 < n+ k +D0.

Hence θa(ξ, η) ≥ ce−a(ξ|η) > γe−a|x| with γ = ce−a(k+D0).

For an integer k ≥ 0, define the k-shadow of x in ∂X by

J k∂ (x) :=
⋃
{J∂(y) : dh(x, y) ≤ k}. (3.9)

(Hence J 0
∂ (x) = J∂(x).)

Proposition 3.3. Let (X,E) be an (m, k)-departing expansive graph. Then there exists a constant

C ≥ 1 (depending on a) such that

Bθa(ξ, C−1e−a|x|) ⊂ J k∂ (x) ⊂ Bθa(ξ, Ce−a|x|), ∀ x ∈ X, ξ ∈ J∂(x). (3.10)

Proof. Suppose x ∈ Xn. For η ∈ ∂X \J k∂ (x), we choose y ∈ Xn with η ∈ J∂(y). Then dh(x, y) > k,

and by Proposition 3.2 we have

θa(ξ, η) ≥ distθa(J∂(x),J∂(y)) > γe−an, ∀ ξ ∈ J∂(x).

This shows that Bθa(ξ, γe−a|x|) ⊂ J k∂ (x) for all ξ ∈ J∂(x).

For ζ ∈ J k∂ (x), we choose z ∈ Xn that satisfies dh(x, z) ≤ k and ζ ∈ J∂(z). Then it follows

from (3.8) that

(ξ|ζ) ≥ (x|z) = n− 1

2
d(x, z) ≥ n− k

2
, ∀ ξ ∈ J∂(x).

Hence θa(ξ, ζ) ≤ C1e
−a(ξ|ζ) ≤ C2e

−a|x| with C2 = C1e
ak/2, and J k∂ (x) ⊂ Bθa(ξ, C2e

−a|x|) for all

ξ ∈ J∂(x).
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We remark that in (3.10), J k∂ (x) cannot be simply replaced by J∂(x), as is shown in the following

simple example that the left inclusion does not hold.

Example 3.4. Let (X,E) be the rooted graph as in Figure 6. It is an expansive graph, in which

any (nontrivial) horizontal geodesic has length 1. By Theorem 2.11, the graph is hyperbolic. Let

x = x1 be as in the figure. Then it is seen that J∂(x) = {ξ}, where ξ is the limit of the ray

x = [xi]
∞
i=0 in ∂X. There is another ray a = [ai]

∞
i=0 converging to ξ.

For n ≥ 1, let ηn be the limit of the ray [ϑ, a1, a2, · · · , an+1, bn, · · · ] in ∂X. Then ∂X =

{ξ, η1, η2, · · · }. By (3.8), we have (ξ|ηn) = n+ 1 and θa(ξ, ηn) � e−a(n+1) → 0 as n→∞. We see

that J∂(x) cannot contain any ball B(ξ, r), r > 0. �

# = a0 = x0

a1 x1 = x

a2

b1 a3

a4

a5

b2

b3

b4

x2

x3

x4

x5

Figure 6: J∂(x) does not contain any ball.

Definition 3.5. [He] A metric space (M,ρ) is called (metric) doubling if there is an integer ` > 0

such that for any ξ ∈ M and r > 0, the ball Bρ(ξ, r) can be covered by a union of at most ` balls

of radii r/2.

Theorem 3.6. Suppose (X,E) is an expansive hyperbolic graph, and has bounded degree (i.e.,

supx∈X deg(x) <∞). Then the hyperbolic boundary (∂X, θa) is doubling.

Proof. Fix a > 0 with eδa <
√

2, and suppose (X,E) is (m, k)-departing (by Theorem 2.11). Let

C ≥ 1 be the constant as in (3.10). For r ∈ (0, 1], let m∗(r) (m∗(r)) be the smallest (largest

respectively) nonnegative integers such that

C−1e−a(m∗(r)+1) < r < 2Ce−a(m∗(r)−1).

It follows that m∗(r)−m∗(r) < d log(2C2)
a e+ 2 =: `1. For a ball Bθa(ξ, r) ⊂ ∂X, let x be the vertex

such that |x| = m∗(r) and ξ ∈ J∂(x). We claim that Bθa(ξ, r) ⊂ J k∂ (x). Indeed, if m∗(r) = 0,

then x = ϑ, and trivially Bθa(ξ, r) ⊂ ∂X = J k∂ (ϑ); if m∗(r) ≥ 1, then by Proposition 3.3 we have

Bθa(ξ, r) ⊂ Bθa(ξ, C−1e−am
∗(r)) ⊂ J k∂ (x) as well. By the claim and Proposition 3.3, we have

Bθa(ξ, r) ⊂ J k∂ (x) =
⋃

y:dh(x,y)≤k

⋃
z∈J`1

(y)
J∂(z)

⊂
⋃

y:dh(x,y)≤k

⋃
z∈J`1

(y)
Bθa(ηz, Ce

−am∗(r)) (by (3.10))

⊂
⋃

y:dh(x,y)≤k

⋃
z∈J`1

(y)
Bθa(ηz, r/2),

13



where each ηz is chosen arbitrarily from J∂(z). Let t = supx∈X deg(x), which is finite by assump-

tion. Then

#{y : dh(x, y) ≤ k} ≤ tk and #J`1(y) ≤ t`1 .

Hence the ball B%a(ξ, r) is covered by a union of at most tk+`1 many balls of radii r/2, and (∂X, θa)

is doubling.

Remark 1. A similar result was proved in another setting by Bonk and Schramm [BS, Theorem

9.2]; here our proof on expansive hyperbolic graphs is more straightforward.

Remark 2. Note that the doubling property of (∂X, θa) does not imply the bounded degree

property of (X,E). For example, if we take Eh = {(x, y) ∈ X × X \ ∆ : |x| = |y|}, then it is

trivially an expansive hyperbolic graph, and ∂X is a singleton (so it is doubling trivially); but

deg(x) ≥ #Xn − 1 for x ∈ Xn, which has no bound if #Xn tends to ∞.

However, this converse can be verified with some further separation properties among the cells

(Theorem 5.5).

4 Index maps and augmented graphs

In this section, we fix a complete metric space (M,ρ), and let CM denote the family of all nonempty

compact subsets of M . By our convention in last section, any graph (X,E) mentioned below is

assumed to satisfy J∂(x) 6= ∅ for all x ∈ X.

Definition 4.1. Let (X,Ev) be a vertical graph. A map Φ : X → CM is called an index map (on

(X,Ev) over (M,ρ)) if it satisfies

(i) Φ(y) ⊂ Φ(x) for all x ∈ X and y ∈ J1(x);

(ii)
⋂∞
i=0 Φ(xi) is a singleton for all x = [xi]i ∈ Rv.

In particular, such Φ is called saturated if (i) is strengthened to Φ(x) =
⋃
y∈J1(x)Φ(y).

We call K :=
⋂∞
n=0

(⋃
x∈Xn

Φ(x)
)

the attractor of Φ, and Kx := Φ(x) ∩K a cell of K.

Remark 1. An index map Φ induces another index map Φ′ : X → CK with Φ′(x) = Kx; the image

{Kx}x∈X is the family of cells of K indexed by X. Since Φ and Φ′ behave the same at infinity (i.e.,⋂∞
i=0 Φ(xi) =

⋂∞
i=0 Φ′(xi) for all x = [xi]i ∈ Rv), we use these two interchangeably.

Remark 2. For a saturated index map Φ, the attractor K = Φ(ϑ), and the cell Kx = Φ(x) for all

x ∈ X. In fact, every index map Φ induces a saturated index map Φ̃ : X → CK with

Φ̃(x) :=
⋂∞

n=0

(⋃
y∈Jn(x)

Φ(y)
)
, x ∈ X, (4.1)

which also behaves the same as Φ at infinity. It is clear that Φ̃(x) ⊂ Kx for all x ∈ X, but the

reverse inclusion does not hold in general.

The index map Φ defines a mapping κ0 : Rv → K by

{κ0(x)} =
⋂∞

i=0
Φ(xi), ∀ x = [xi]i ∈ Rv. (4.2)

Using the local finiteness of (X,Ev) and a diagonal argument (cf. [Wo,LW3]), we can show that the

image of κ0 is equal to K. From Section 3, we see that for an expansive hyperbolic graph (X,E),

the hyperbolic boundary ∂X can be identified with a quotient set of Rv. Hence the induced map
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κ : ∂X → K from the quotient is well-defined if κ0 satisfies: x, y are equivalent ⇒ κ0(x) = κ0(y);

furthermore κ : ∂X → K is one-to-one if the converse is also satisfied. With these, we see that if

κ0 satisfies

x and y are equivalent ⇔ κ0(x) = κ0(y), (4.3)

then it induces a bijection κ : ∂X → K via the quotient.

Definition 4.2. We call (X,E,Φ) an admissible index triple if it satisfies

(i) (X,E) is an expansive hyperbolic graph;

(ii) Φ : X → CM is an index map on (X,Ev) over (M,ρ);

(iii) κ : ∂X → K is a well-defined bijection, i.e., (4.3) holds.

In such case, (X,E) is said to be an admissible (augmented) graph (associated to Φ); if (X,Ev) is

a tree, then we call (X,E) an admissible augmented tree.

By Remark 2,

κ(J∂(x)) = Φ̃(x) ⊂ Φ(x), ∀ x ∈ X; (4.4)

and the inclusion is an “=” if and only if the index map Φ is saturated. Via the bijection κ, the

Gromov metric θa on ∂X defines naturally a metric θ̃a on the attractor K by

θ̃a(ξ, η) = θa(κ−1(ξ), κ−1(η)), ξ, η ∈ K. (4.5)

Proposition 4.3. For an admissible index triple, the bijection κ is a homeomorphism.

We will prove this in [KLWa], as the proof requires more preparatory work and we will not need

the proposition here.

For a subset E in (M,ρ), we denote the diameter of E by |E|ρ (or simply by |E|). In Definition

4.1, we see that the family {Φ(x)}x∈X satisfies limn→∞supx∈Jn
|Φ(x)|ρ = 0. For b ∈ (0,∞), we say

that {Φ(x)}x∈X (or Φ) is of exponential type-(b) (under ρ) if the diameter |Φ(x)|ρ is decreasing in a

rate of e−b|x|, i.e., |Φ(x)|ρ = O(e−b|x|) as |x| → ∞, and call Φ an exponential type if it is of type-(b)

for some b ∈ (0,∞).

We mainly consider the following two classes of expansive graphs associated to index maps,

which are motivated by the augmented trees of the IFS’s [Ka,LW1,LW3,Wa] (see Appendix).

Definition 4.4. Let Φ be an index map on the vertical graph (X,Ev). We define a horizontal edge

set by

E
(∞)
h :=

⋃∞
n=1

{
(x, y) ∈ Xn ×Xn \∆ : Φ(x) ∩ Φ(y) 6= ∅

}
, (4.6)

and let E∞ = Ev ∪ E(∞)
h . We call (X,E(∞)) an AI∞-graph, augmented index graph of type-(∞)

(or intersection type).

In addition, assume that Φ is of exponential type-(b). For a fixed γ > 0, we define

E
(b)
h :=

⋃∞
n=1

{
(x, y) ∈ Xn ×Xn \∆ : distρ(Φ(x),Φ(y)) ≤ γe−bn

}
. (4.7)

Let E(b) = Ev ∪ E(b)
h . We call (X,E(b)) an AIb-graph, augmented index graph of type-(b).

It is clear that both (X,E(∞)) and (X,E(b)) are expansive. Comparing the two definitions,

the AI∞-graph is more intuitive but needs more information on the neighborhood of Φ(x), x ∈ X
under the given metric ρ; the AIb-graph is more flexible on the neighboring cells, which actually

makes it easier to handle. First we prove
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Theorem 4.5. For an index map Φ on (X,Ev) over (M,ρ) of exponential type-(b), the associated

AIb-graph is (m, 1)-departing, and is an admissible graph. Moreover, κ : (∂X, θa) → (K, ρ) is a

Hölder equivalence with exponent b/a, i.e.,

ρ(κ(ξ), κ(η))a/b � θa(ξ, η), ∀ ξ, η ∈ ∂X. (4.8)

Proof. It is easy to check from the definition of E
(b)
h that (X,E(b)) is expansive. To show that it is

(m, 1)-departing for some m ≥ 1, let δ0 := supz∈X e
b|z||Φ(z)|. Let u ∈ Jm(x) and v ∈ Jm(y) with

dh(u, v) = 2. Using the triangle inequality twice, we have

dist(Φ(x),Φ(y)) ≤ dist(Φ(u),Φ(v)) ≤ (2γ + δ0)e−b(|x|+m) ≤ γe−b|x|,

where the positive integer m is chosen to give the last inequality, i.e., (2γ+δ0)e−bm ≤ γ. Therefore

x ∼h y, and this shows that (X,E) is (m, 1)-departing. The hyperbolicity of AIb-graph follows

from Theorem 2.11.

By Proposition 3.1 (with k = 1) and (4.7), we see that two rays x,y are equivalent if and only

if dist(Φ(xi),Φ(yi)) ≤ γe−bi for all i. This verifies (4.3) so that κ : ∂X → K is a well-defined

bijection, and hence (X,E(b)) is an admissible graph.

We now prove that κ is a Hölder equivalence. For distinct ξ, η ∈ ∂X, we take two rays x,y ∈ Rv
that converge to ξ, η respectively with (ξ|η) = (x|y) (by (3.8) and the following remark). Let

n = |x∨y|1 as in (3.3) with k = 1, i.e., dh(xn, yn) ≤ 1 and dh(xn+1, yn+1) ≥ 2. By Proposition 3.1,

we have |(ξ|η)− n| = |(x|y)− n| ≤ D0 for some D0 := D0(m, 1) > 0. As κ(ξ) ∈ Φ(xn+1) ⊂ Φ(xn)

and κ(η) ∈ Φ(yn+1) ⊂ Φ(yn), we get the lower bound of (4.8) by

ρ(κ(ξ), κ(η)) ≥ dist(Φ(xn+1),Φ(yn+1))

≥ γe−b(n+1) ≥ γe−b(D0+1)e−b(ξ|η) ≥ C1θa(ξ, η)b/a,

and the upper bound by

ρ(κ(ξ), κ(η)) ≤ |Φ(xn)|+ dist(Φ(xn),Φ(yn)) + |Φ(yn)|

≤ (2δ0 + γ)e−bn ≤ (2δ0 + γ)ebD0e−b(ξ|η) ≤ C2θa(ξ, η)b/a.

This completes the proof.

Now we turn to study the AI∞-graphs. Unlike the AIb-graph, the AI∞-graph is not always

hyperbolic (see Example 6.1), and sufficient conditions for its hyperbolicity will be provided in

Section 5. The following result shows that if it is hyperbolic, then the admissibility follows.

Proposition 4.6. Suppose the AI∞-graph (X,E(∞)) is hyperbolic. Then for two rays x,y ∈ Rv,

the following assertions are equivalent.

(i) x and y are equivalent; (ii) κ0(x) = κ0(y); (iii) dh(xi, yi) ≤ 1 for all i ≥ 0.

It follows from (4.3) that (X,E(∞)) is an admissible graph (Definition 4.2).

Proof. (iii) ⇒ (i) is clear. For (ii) ⇒ (iii), since κ0(x) ∈ Φ(xi) and κ0(y) ∈ Φ(yi), we have

Φ(xi) ∩ Φ(yi) 6= ∅ for all i ≥ 0. This yields (iii) by the definition (4.6) of E
(∞)
h .

For (i) ⇒ (ii), as (X,E(∞)) is expansive and hyperbolic, by Theorem 2.11(iii) and Proposition

3.1, there exists an integer k > 0 such that dh(xi, yi) ≤ k for all i ≥ 0. We show inductively that any

such k will imply (ii). When k = 1, it follows that Φ(xi)∩Φ(yi) 6= ∅ for all i ≥ 0. By the compactness
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of Φ(xi) ∩ Φ(yi), the intersection
(⋂∞

i=0Φ(xi)
)
∩
(⋂∞

i=0Φ(yi)
)

=
⋂∞
i=0(Φ(xi) ∩ Φ(yi)) 6= ∅, hence

κ0(x) = κ0(y).

Inductively, suppose (ii) is verified when k = n for some n > 0. Let x,y ∈ Rv satisfy dh(xi, yi) ≤
n + 1. Then for each i ≥ 0, we choose zi ∈ X such that dh(xi, zi) ≤ 1 and dh(zi, yi) ≤ n. The

sequence {zi}∞i=0 may not be a ray; however, using the local finiteness of (X,Ev) and a diagonal

argument, we can choose a ray w ∈ Rv such that each wi contains an infinite subsequence of

{zi}∞i=0, and the expansive property (2.2) implies that dh(xi, wi) ≤ 1 and dh(wi, yi) ≤ n for all

i ≥ 0. Using the induction hypothesis, we have κ0(x) = κ0(w) = κ0(y), and the proof is completed

by induction.

When Φ is of exponential type-(b), comparing the AI∞-graph with the AIb-graph, it is clear

that E(∞) ⊂ E(b). The following is a consequence of Theorem 4.5.

Corollary 4.7. Suppose the index map Φ is of exponential type-(b), and the associated AI∞-graph

(X,E(∞)) is hyperbolic. Then κ : (∂X, θa)→ (K, ρ) is Hölder continuous with exponent b/a, i.e.,

ρ(κ(ξ), κ(η))a/b ≤ Cθa(ξ, η), ∀ ξ, η ∈ ∂X. (4.9)

Proof. We consider the associated AIb-graph (X,E(b)), and denote its graph distance and Gromov

product by d′(·, ·) and (·|·)′ respectively. By Theorem 4.5, (X,E(b)) is hyperbolic, and the bijection

κ′ : ∂X ′ → K satisfies ρ(κ′(ξ), κ′(η)) � e−b(ξ|η)′ for all ξ, η ∈ ∂X ′. As κ0 = κ′0 on Rv, it follows

that ∂X = ∂X ′ and κ = κ′.

Note that E(∞) ⊂ E(b). This implies d(x, y) ≥ d′(x, y), and

(x|y) =
1

2
(|x|+ |y| − d(x, y)) ≤ 1

2
(|x|+ |y| − d′(x, y)) = (x|y)′

for all x, y ∈ X. Taking the limits in (3.8), we have (ξ|η) ≤ (ξ|η)′, and

θa(ξ, η) ≥ c1e−a(ξ|η) ≥ c1e−a(ξ|η)′ ≥ c2ρ(κ′(ξ), κ′(η))a/b = c2ρ(κ(ξ), κ(η))a/b.

This verifies (4.9), the Hölder continuity of κ.

In general, we cannot expect this κ to be a Hölder equivalence (see Example 6.2). In the

following theorem, we give a characterization for the hyperbolicity, or equivalently the (m, k)-

departing property, of the AI∞-graph associated to a saturated index map (Remark 2 of Definition

4.1), together with the Hölder equivalence to hold.

Theorem 4.8. Suppose Φ is a saturated index map on (X,Ev) over (M,ρ). Then for b ∈ (0,∞)

and an integer k > 0, the following assertions are equivalent.

(i) The AI∞-graph (X,E(∞)) is (m, k)-departing for some m > 0, and κ : (∂X, θa)→ (K, ρ)

is a Hölder equivalence with exponent b/a, i.e.,

ρ(κ(ξ), κ(η))a/b � θa(ξ, η), ∀ ξ, η ∈ ∂X. (4.10)

(ii) Φ is of exponential type-(b) under ρ, and there exists γ > 0 such that (X,E(∞)) satisfies

for x, y ∈ X,

|x| = |y| and dh(x, y) > k ⇒ distρ(Φ(x),Φ(y)) > γe−b|x|. (4.11)
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Proof. For (i) ⇒ (ii), since (X,E(∞)) is expansive and (m, k)-departing, it is hyperbolic (Theorem

2.11). By Proposition 4.6, it is an admissible graph, and the bijection κ : ∂X → K is well-defined.

Using (4.4) and (4.10), we have

|Φ(x)|ρ = |κ(J∂(x))|ρ ≤ C1|J∂(x)|b/aθa ≤ C1e
−b|x|

for all x ∈ X. Therefore Φ is of exponential type-(b) under ρ. Moreover, for x, y ∈ Xn with

dh(x, y) > k, it follows from (4.4), (4.10) and Proposition 3.2 that

distρ(Φ(x),Φ(y)) = distρ(κ(J∂(x)), κ(J∂(y)))

≥ C2 distθa(J∂(x),J∂(y))b/a > C2γ0e
−bn.

This proves (4.11) with γ = C2γ0.

For (ii) ⇒ (i), the proof is similar to the one of Theorem 4.5 on the AIb-graph. Let δ0 =

supz∈X e
b|z||Φ(z)|ρ, which is finite as Φ is of exponential type-(b). Let u ∈ Jm(x) and v ∈ Jm(y)

with dh(u, v) = ` < 2k. Then Φ(u) and Φ(v) are joined by a chain {Φ(uj)}`j=0 with u0 = u and

u` = v, in which |uj | = |u| = |x|+m and Φ(uj−1) ∩ Φ(uj) 6= ∅ for all j ∈ {1, 2, · · · , `}. Therefore,

distρ(Φ(x),Φ(y)) ≤ distρ(Φ(u),Φ(v)) ≤
∑`−1

j=1
|Φ(uj)|ρ ≤ (2k − 1)δ0e

−b(|x|+m) ≤ γe−b|x|,

where the integer m > 0 is chosen to satisfy the last inequality, i.e., (2k−1)δ0e
−bm ≤ γ. By (4.11),

we have dh(x, y) ≤ k, and this proves that (X,E(∞)) is (m, k)-departing.

To prove (4.10), for ξ 6= η ∈ ∂X, we take x,y ∈ Rv that converge to ξ, η respectively with

(ξ|η) = (x|y), and let n = |x ∨ y|k as in (3.3). It follows from Proposition 3.1 that |(ξ|η) −
n| = |(x|y) − n| ≤ D0 for some D0 = D0(m, k) > 0. Using κ(ξ) ∈ Φ(xn+1), κ(η) ∈ Φ(yn+1),

dh(xn+1, yn+1) > k and (4.11), we get the lower bound of (4.10) by

ρ(κ(ξ), κ(η)) ≥ distρ(Φ(xn+1),Φ(yn+1))

> γe−b(n+1) ≥ γe−b(D0+1)e−b(ξ|η) ≥ cθa(ξ, η)b/a;

the upper bound is proved by Corollary 4.7. This completes the proof.

Remark. Letting k = 1 in (4.11), the condition becomes

|x| = |y| and Φ(x) ∩ Φ(y) = ∅ ⇒ dist(Φ(x),Φ(y)) > γe−b|x|. (4.12)

This is the condition (H) in [LW1] in the setup where K is a self-similar set (see also Appendix,

Theorem 7.1); the authors proved that this condition is sufficient for the Hölder equivalence between

∂X and K. Here a necessity part is also provided, together with an extra relation with the (m, k)-

departing property (or hyperbolicity) of these graphs.

5 Separation conditions and doubling metrics

In this section, we aim to give some sufficient conditions for AI∞-graphs to be hyperbolic, and

characterize the bounded degree property of AIb- and AI∞-graphs; both involve some separation

conditions on index maps and the doubling property of attractors.

Let Φ be an index map on a vertical graph (X,Ev) over a complete metric space (M,ρ) with

attractor K. We call a map ι : X → K a projection (with respect to Φ) if it satisfies ι(x) ∈ Kx(:=
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Φ(x) ∩K) for all x ∈ X. When there is no confusion, we shall denote the ball Bρ(ξ, r) by B(ξ, r)

for simplicity.

Definition 5.1. Let Φ be an index map with attractor K. For b ∈ (0,∞), we say that Φ (or

{Kx}x∈K) satisfies

(i) condition (Sb) if for any c > 0, there is a constant ¯̀= ¯̀(c) such that

#{x ∈ Xn : Kx ∩ F 6= ∅} ≤ ¯̀, ∀ n ≥ 0 and F ⊂M with |F |ρ < ce−bn; (5.1)

(ii) condition (Bb) if there exist a projection ι : X → K and c0 ∈ (0,∞) such that

B(ι(x), c0e
−b|x|) ∩K ⊂ Kx, ∀ x ∈ X. (5.2)

We remark that condition (Sb) is motivated from the open set condition on self-similar sets (see

(7.3) in Appendix, and condition (S′b) in Proposition 5.3). To study the above conditions, we need

a preliminary result on doubling metric spaces (Lemma 5.2). For a subset F ⊂M and r > 0, define

the r-covering number of F by

N c
r (F ) := inf{#Ξ : Ξ ⊂ F and F ⊂

⋃
ξ∈Ξ

B(ξ, r)}; (5.3)

F is called totally bounded if the r-covering number is finite for all r > 0. We also define the

r-packing number of F to be

Np
r (F ) := sup{#Ξ : Ξ ⊂ F and B(ξ, r) ∩B(η, r) = ∅, ∀ ξ, η ∈ Ξ, ξ 6= η},

and the r-separating number of F to be

Ns
r (F ) := sup{#Ξ : Ξ ⊂ F and ρ(ξ, η) ≥ r, ∀ ξ, η ∈ Ξ, ξ 6= η}.

Recall that the metric space (M,ρ) is doubling (Definition 3.5) if and only if

sup{N c
r (B(ξ, 2r)) : ξ ∈M, r > 0} <∞.

Lemma 5.2. Let (M,ρ) be a metric space. Then the inequalities

Ns
2r(F ) ≤ Np

r (F ) ≤ N c
r (F ) ≤ Ns

r (F ) (5.4)

hold for all totally bounded subset F ⊂ M and r > 0. As a consequence, the following assertions

are equivalent.

(i) (M,ρ) is doubling (Definition 3.5).

(ii) For some (⇔ any) t > 1, N̂ c(t) := sup{N c
r (B(ξ, tr)) : ξ ∈M, r > 0} <∞.

(iii) For some (⇔ any) t > 1, N̂p(t) := sup{Np
r (B(ξ, tr)) : ξ ∈M, r > 0} <∞.

(iv) For some (⇔ any) t > 1, N̂s(t) := sup{Ns
r (B(ξ, tr)) : ξ ∈M, r > 0} <∞.

The inequality (5.4) is straightforward by using the definitions, and the equivalence of (i)–(iv)

follows directly from (5.4). We omit the detail.

Proposition 5.3. Let Φ be an index map with attractor K, and is of exponential type-(b). Suppose

(K, ρ) is doubling, then the following conditions are equivalent:

(i) condition (Sb);
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(ii) condition (S′b): there exist c1 > 0 and `1 > 0 such that

#{x ∈ Xn : Kx ∩B(ξ, c1e
−bn) 6= ∅} ≤ `1, ∀ n ≥ 0, ξ ∈ K; (5.5)

(iii) condition (S′′b ): there exist a projection ι : X → K, c2 > 0 and `2 > 0 such that

#{x ∈ Xn : ρ(ι(x), ι(y)) < c2e
−bn} ≤ `2, ∀ n ≥ 0, y ∈ Xn. (5.6)

Proof. (i) ⇒ (ii) ⇒ (iii) is obvious. We need only show (ii) ⇒ (i) and (iii) ⇒ (ii).

(ii) ⇒ (i): For any c > 0 and F ⊂M with |F |ρ < ce−bn, we will show that (5.1) holds for some
¯̀. Without loss of generality, we assume that c > c1 and K ∩ F 6= ∅. Fix a point ξ ∈ K ∩ F ,

and denote the open ball B(ξ, ce−bn) ∩ K in (K, ρ) by BK . Since (K, ρ) has doubling property,

by Lemma 5.2(ii), BK can be covered by a union of N0 := N̂ c( cc1 ) open balls B(ξi, c1e
−bn) ∩K in

(K, ρ), where ξi ∈ K, i = 1, · · · , N0, i.e.,

K ∩ F ⊂ BK ⊂
⋃N0

i=1

(
K ∩B(ξi, c1e

−bn)
)
.

It follows from (5.5) that

#{x ∈ Xn : Kx ∩ F 6= ∅} ≤
∑N0

i=1
#{x ∈ Xn : Kx ∩B(ξi, c1e

−bn) 6= ∅} ≤ `1N0.

We see that (5.1) holds for the constant ¯̀= `1N0.

(iii) ⇒ (ii): For n ≥ 0 and ξ ∈ K, denote

Xn(ξ) := {x ∈ Xn : Kx ∩B(ξ, c1e
−bn) 6= ∅},

on which we define an edge set Ẽ = {(x, y) ∈ Xn(ξ) × Xn(ξ) \ ∆ : ρ(ι(x), ι(y)) < c2e
−bn}. By

(5.6), we see that the maximal degree in the graph (Xn(ξ), Ẽ) does not exceed (`2 − 1). Applying

Brooks’ Theorem on the chromatic number (cf. [LiW, Theorem 3.1]), there exists a coloring map

K : Xn(ξ)→ Σ with #Σ ≤ `2 such that K(x) 6= K(y) if (x, y) ∈ Ẽ.

Since Φ is of exponential type-(b), there exists a constant δ0 > 0 such that |Φ(x)|ρ ≤ δ0e
−b|x|

for all x ∈ X. Consider the discrete sets

M(i) := {ι(x) : x ∈ Xn(ξ), K(x) = i}, i ∈ Σ.

Then ρ(ι(x), ι(y)) ≥ c2e
−bn for x 6= y ∈ M(i). By the triangle inequality, it is easy to see that

M(i) ⊂ B(ξ, (c1 + δ0)e−bn) holds for all i ∈ Σ. Using Lemma 5.2(iii), we have

#Xn(ξ) =
∑

i∈Σ
#M(i) ≤ `2Ns

c2e−bn(B(ξ, (c1 + δ0)e−bn) ∩K) ≤ `2N̂s((c1 + δ0)/c2) <∞.

This completes the proof by letting `1 = `2N̂
s((c1 + δ0)/c2).

The following theorem provides sufficient conditions for AI∞-graphs to be hyperbolic, and

completes the study of AI∞-graphs in the last section.

Theorem 5.4. Let Φ be an index map with attractor K, and is of exponential type-(b). If either

(i) condition (Sb) is satisfied; or

(ii) the attractor (K, ρ) is doubling, and condition (Bb) is satisfied,
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then the AI∞-graph is hyperbolic, and hence an admissible graph.

Proof. We prove the hyperbolicity of (X,E∞) by using a similar argument as in [LW3, Theorem

1.2]. Suppose it is not hyperbolic. Then by Theorem 2.11, for any integer m > 0, there exists a

horizontal geodesic [x0, x1, · · · , x3m] with length 3m. Clearly |x0| =: n > m, and by the expansive

property (2.1), there is a horizontal path [y0, y1, · · · , y`] in Xn−m (see Figure 7) such that

(a) y0 ∈ J−m(x0), y` ∈ J−m(x3m), and yi ∈
⋃3m
j=0 J−m(xj) for all 0 < i < `;

(b) (yi, yj) ∈ Eh if and only if |i− j| = 1.

x0 x1 x2 xj x3m

yiy1y0 y`

x3 x4

y2

Figure 7: Two horizontal paths [xj ]j and [yi]i.

As 3m = d(x0, x3m) ≤ d(x0, y0) + d(y0, y`) + d(y`, x3m) ≤ m + ` + m, we have ` ≥ m. Let

F :=
⋃`
i=0 Φ(yi). Note that by (a), for any η ∈ F , there exists k ∈ {0, 1, . . . , 3m} such that both

Φ(xk) and η are contained in some Φ(yi). Thus for any projection ι : X → K,

ρ(ι(x0), η) ≤
∑k−1

j=0
ρ(ι(xj), ι(xj+1)) + |Φ(yi)|

≤ 2kδ0e
−bn + δ0e

b(m−n) ≤ δ0(6me−bm + 1)eb(m−n),

where δ0 := supz∈X e
b|z||Φ(z)| <∞. Take m large enough such that 6me−bm < 1. Then

F =
⋃`

i=0
Φ(yi) ⊂ B(ι(x0), 2δ0e

b(m−n)) =: B.

(i) If condition (Sb) is satisfied, by noting that |F | ≤ 4δ0e
b(m−n) =: ceb(m−n), we have

`+ 1 ≤ #
{
y ∈ Xn−m : Φ(y) ⊂ F

}
≤ #

{
y ∈ Xn−m : Ky ∩ F 6= ∅

}
≤ ¯̀(c).

This is impossible since ` ≥ m can be arbitrarily large.

(ii) If (K, ρ) is doubling and condition (Bb) holds, then we choose the above ι to satisfy (5.2).

By (b), the ball B contains at least b`/2c + 1 > m/2 mutually disjoint balls B(ι(y2i), c0e
b(m−n)),

0 ≤ i ≤ b`/2c. On the other hand by considering the packing number and the constant of doubling

(see Lemma 5.2(iii)), we have

Np
eb(m−n)(B ∩K) ≤ N̂p(2δ0/c0) <∞.

As m can be arbitrarily large, this is impossible. Hence (X,E∞) is hyperbolic in either case. By

Proposition 4.6, the AI∞-graph is an admissible graph.

Recall that for an expansive hyperbolic graph with bounded degree, the hyperbolic boundary

possesses the doubling property (Theorem 3.6). With the separation property, we have a stronger

result for AIb-graphs as well as a sufficient condition for AI∞-graphs.
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Theorem 5.5. Let Φ be an index map of exponential type-(b). Then the AIb-graph has bounded

degree if and only if condition (Sb) is satisfied. As a consequence, (Sb) condition is sufficient for

the AI∞-graph to have bounded degree.

Proof. It is clear that the last statement follows from the first one, since E∞ ⊂ E(b).

To show the necessity of the first part, by Theorem 4.5, the AIb-graph is hyperbolic, and the

hyperbolic boundary (∂X, θa) is Hölder equivalent to the attractor (K, ρ). From Theorem 3.6 we

know that (∂X, θa) has the doubling property, which is preserved by the Hölder equivalence κ, and

thus (K, ρ) is also doubling.

Next we will show that the index map Φ satisfies condition (S′′b ). We fix an arbitrary projection

ι from X to K. For x, y ∈ Xn with ρ(ι(x), ι(y)) < γe−bn (where γ > 0 is the constant in (4.7), the

definition of E
(b)
h ), we have x ∼h y since distρ(Φ(x),Φ(y)) ≤ ρ(ι(x), ι(y)) < γe−bn. Hence for all

y ∈ Xn,

#{x ∈ Xn : ρ(ι(x), ι(y)) < γe−bn} ≤ #{x ∈ Xn : x ∼h y} ≤ deg(y).

As `2 := supy∈X deg(y) < ∞, (5.6) holds for c2 = γ. Making use of Proposition 5.3, we see that

condition (Sb) is satisfied.

For the sufficiency, we calculate the degree of a fixed vertex y ∈ Xn. Set δ0 := supz∈X e
b|z||Φ(z)|.

For x ∈ J1(y), we see that Kx ⊂ Φ(x) ⊂ Φ(y). As |Φ(y)| ≤ δ0e
−bn =: ce−b(n+1), condition (Sb)

implies that

#J1(y) ≤ #{x ∈ Xn+1 : Kx ∩ Φ(y) 6= ∅} ≤ ¯̀(c).

For x ∈ J−1(y), it follows that

Φ(y) ⊂ Φ(x) ⊂ F := {ξ ∈M : ρ(ξ,Φ(y)) ≤ δ0eb(1−n)}.

Using the triangle inequality, we get |F | < 3δ0e
b(1−n) =: c′eb(1−n), and thus by condition (Sb),

#J−1(y) ≤ #{x ∈ Xn−1 : Kx ∩ F 6= ∅} ≤ ¯̀(c′).

For x ∈ Xn with (x, y) ∈ Eh, using the triangle inequality we have

Kx ⊂ Φ(x) ⊂ G := {ξ ∈M : ρ(ξ,Φ(y)) ≤ (γ + δ0)e−bn}.

It follows in a similar way that |G| < 3(γ + δ0)e−bn =: c′′e−bn, and hence

#{x ∈ X : (x, y) ∈ Eh} ≤ #{x ∈ Xn : Kx ∩G 6= ∅} ≤ ¯̀(c′′).

As deg(y) = #J−1(y) + #J1(y) + #{x ∈ X : (x, y) ∈ Eh}, we conclude from the above estimates

that deg(y) is uniformly bounded by ¯̀(c) + ¯̀(c′) + ¯̀(c′′) for all y ∈ X, so that the AIb-graph is of

bounded degree. We complete the proof.

As a consequence of Theorems 3.6, 5.5 and Proposition 5.3, we have

Corollary 5.6. Let Φ be an index map with attractor K, and is of exponential type-(b). Then the

AIb-graph has bounded degree if and only if the attractor (K, ρ) is doubling, and condition (S′′b ) (or

(S′b)) in Proposition 5.3 is satisfied.
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6 Examples and more on IFSs

We first give an example that the AI∞-graph is not hyperbolic.

Example 6.1. (An anisotropic binary partition of unit square) We define a binary subdi-

vision scheme to partition [0, 1]2 iteratively into subrectangles. By a Type-I subdivision, we mean

dividing a rectangle J horizontally into two equal subrectangles; Type-II means dividing J verti-

cally instead. Let L = { 1
2`(` + 1) : integer ` > 0} = {1, 3, 6 · · · }. Now let Jϑ = [0, 1]2. Suppose

we have defined Jx with x = x1 · · ·xn, xi = 0, 1. If n+ 1 ∈ L, we use Type-I subdivision on Jx to

obtain Jx0 and Jx1; otherwise, we use Type-II for the subdivision (see Figure 8).

Φ(1)

Φ(0) Φ(00) Φ(01)

Φ(10) Φ(11)
Φ(101)

Φ(100)

Φ(001)

Φ(000) Φ(010)

Φ(011)

Φ(110)

Φ(111)

Figure 8: The binary partition {Φ(x)}x∈Xn , n = 1, 2, 3, 4, 5; 1, 3 ∈ L.

Let (X,Ev) be the corresponding binary tree, on which we define the index map Φ(x) = Jx
and consider the AI∞-graph (X,E). Fix an integer ` > 0. Let n := `(`+1)

2 , x = 0n and y =

101021 · · · 0`−11. Then Φ(x) = [0, 2−n+`] × [0, 2−`] and Φ(y) = [0, 2−n+`] × [1 − 2−`, 1], which are

the rectangles in the lower-left and the upper-left corners of [0, 1]2 respectively. It is clear that

dh(x, y) = 2` − 1. Taking u = 0n+` ∈ J`(x) and v = 101021 · · · 0`−110` ∈ J`(y), we can also check

that dh(u, v) = dh(x, y) = 2` − 1. This shows that (X,E) is not (m, k)-departing whenever m ≤ `

and k ≤ 2` − 2. As ` can be arbitrary, (X,E) is not hyperbolic by Theorem 2.11. �

Our next example gives an IFS that is homogeneous (the contraction ratios are equal) and

satisfies the OSC. The associated AI∞-graph is hyperbolic (by Theorem 5.4(i)), but the hyperbolic

boundary is not Hölder equivalent to the attractor. This shows that (unlike the AIb-graphs) the

one-sided Hölder inequality in Corollary 4.7 cannot be improved.

Example 6.2. In M = R2, let p1 = (0, 0), p2 = (1, 0), p3 = (3, 0), p4 = (η, 2), p5 = (0, 3) and

p6 = (3, 3), where

η :=
∑∞

`=0
(4−n` + 4−n`−1) with n` = 1 +

`(`+ 7)

2
, ` = 0, 1, · · ·

Let Sj(x) = 1
4 (x+ pj), j ∈ Σ = {1, 2, · · · , 6}, and let K be the self-similar set of the IFS {Sj}6j=1.

We set X = Σ∗ (the symbolic space) and Φ(x) = Sx([0, 1]2), x ∈ X. Clearly
⋃6
j=1Φ(j) ⊂ [0, 1]2, and

every Φ(x) is a square with side length 4−|x| (see Figure 9). Hence Φ is an index map of exponential

type-(b) with b = ln 4, and it is easy to see that the associated saturated map Φ̃(x) = Sx(K) for

any x ∈ X (see (4.1)) .

Fix an integer ` > 0. Let x = 522122213 · · · 221`+1 and y = 45n`−1. Clearly |x| = |y| = n`, and

Φ(y) has the same upper-left corner ζ = (η/4, 3/4) as Φ(4). Moreover, we can calculate that the

lower-left corner of Φ(x) is (ξ/4, 3/4), where

ξ :=
∑`−1

k=0
(4−nk + 4−nk−1) = η −

∑∞

k=`
(4−nk + 4−nk−1).

Let u = x23 and v = y56. Then |u| = |v| = n` + 2, the lower-right corner of Φ(u) is (ξ/4 +

2 · 4−n`−1, 3/4), and the upper-left corner of Φ(v) is (η/4 + 4−n`−1 − 4−n`−2, 3/4). It follows that
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ζ

ζ
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Φ(u)

Φ(v)

Figure 9: The squares in Example 6.2.

Su(K) ∩ Sv(K) = Φ(u) ∩ Φ(v) = ∅. By checking the two nearest corners of Φ(u) and Φ(v), we see

that dist(Φ̃(u), Φ̃(v)) = dist(Φ(u),Φ(v)), hence

dist(Su(K), Sv(K)) = dist(Φ(u),Φ(v))

= (η/4 + 4−n`−1 − 4−n`−2)− (ξ/4 + 2 · 4−n`−1)

=
∑∞

k=`+1
(4−nk−1 + 4−nk−2) < 4−n`+1 = 4−`−2e−b|u|. (6.1)

Consider the AI∞-graph (X,E) associated to Φ̃, i.e.,

Eh = {(x, y) ∈ X ×X \∆ : |x| = |y|, Sx(K) ∩ Sy(K) 6= ∅}.

As the IFS {Sj}6j=1 satisfies the OSC, so that condition (Sb) in Definition 5.1 is satisfied, by Theorem

5.4, (X,E) is hyperbolic. Since neither Φ(u) nor Φ(v) intersects other cells in {Φ(z)}z∈Xn`+2
, we

have dh(u, v) = ∞. As ` can be arbitrarily large, (6.1) implies that the condition (4.11) fails for

any k ≥ 1. By Theorem 4.8, the hyperbolic boundary (∂X, θa) of (X,E) is not Hölder equivalent

to K. �

We now return to the setup in which {Sj}Nj=1 is a contractive IFS on a complete metric space

(M,ρ) (see Appendix). In the previous studies, the augmented tree was established according to

the geometric sizes of Kx [LW1,LW3]. Within the framework of augmented index graphs (Section

4), we are able to extend the consideration to some weighted IFSs. In the rest of this section, we

are given a vector of weights s ∈ (0, 1)N on {Sj}Nj=1 (instead of contraction ratio r = (rj)
N
j=1), and

expect some new metric induced on K.

Let Σ∗ be the symbolic space of a contractive IFS {Sj}Nj=1. Let s = (s1, s2, · · · , sN ) be a vector

of weights on Σ with sj ∈ (0, 1) (not necessarily probability weight). Write s∗ := minj∈Σ{sj}, and

sx := si1si2 · · · sim for x = i1i2 · · · im ∈ Σ∗ (sϑ = 1 by convention). We consider a regrouping on

Σ∗ by setting X0 := {ϑ}, and for n ≥ 1,

Xn = Xn(s) := {x = i1i2 · · · im ∈ Σ∗ : sx ≤ sn∗ < si1si2 · · · sim−1
}. (6.2)

Let X = X(s) :=
⋃∞
n=0Xn denote the modified coding space with respect to s. This X has

a natural tree structure Ev that consists of edges between each x = i1i2 · · · im ∈ Xn and y =
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i1i2 · · · imim+1 · · · ik ∈ Xn+1. Let Φ(x) = Sx(K), x ∈ X. Then Φ is a saturated index map on

(X,Ev) over (K, ρ).

Let r∗ = maxj∈Σ{rj} be the maximal contraction ratio of {Sj}j∈Σ. Then it is clear that

{Φ(x)}x∈X(s) is always of exponential type-(b) with b = | log r∗|. From (4.5) and Theorem 4.5, the

associated AIb-graph (X(s), E(b)) brings a metric θ̃a on K that is Hölder equivalent to the original

ρ, which is similar to the previous investigation; also, note that the index map Φ on (X(s), E(b))

rarely satisfies the separation conditions in Section 5, and hence we cannot expect that (X(s), E(b))

has bounded degree. The more interesting question is to investigate the hyperbolicity of AI∞-

graph (X(s), E(∞)) without assuming any separation property. The problem is difficult in general.

However, for post critically finite (p.c.f.) sets, we have some rather complete conclusions, as well

as a new connection to the harmonic structure and resistance networks in analysis on fractals.

We recall the notion of p.c.f. sets (without assuming self-similarity) [Ki1]. Let Σ∞ := {i1i2 · · · :
ik ∈ Σ, k ≥ 1} be the set of infinite words, and let $ : Σ∞ → K be the natural surjection defined

by

{$(i1i2 · · · )} =
⋂∞

k=1
Si1i2···ik(K).

The shift map σ : Σ∞ → Σ∞ is given by σ(i1i2i3 · · · ) = i2i3i4 · · · . Define the critical set and the

post critical set by

C := $−1
(⋃

i,j∈Σ,i6=j

(
Si(K) ∩ Sj(K)

))
and P :=

⋃∞
n=1

σn(C) (6.3)

respectively. We call the IFS {Sj}Nj=1 (or K) post critically finite (p.c.f.) if P is a finite set.

Also we define V0 = $(P) as the boundary of K. A p.c.f. set K has the property that every two

cells Si(K), Sj(K), i, j ∈ Σ, i 6= j are disjoint or intersect at finitely many points. An important

consequence is that [Ki1, Proposition 1.3.5] for any distinct x, y in the same Xn(s),

Sx(K) ∩ Sy(K) = Sx(V0) ∩ Sy(V0).

Theorem 6.3. Let {Sj}Nj=1 be a contractive IFS that satisfies the p.c.f. property. Then there exists

an integer m > 0 such that for any s ∈ (0, 1)N , the AI∞-graph (X(s), E(∞)) is an (m, 1)-departing

expansive graph, and hence (X(s), E(∞)) is admissible. Moreover, it has bounded degree.

Proof. It is clear that the AI∞-graph (X(s), E(∞)) is expansive. We show that (X(s), E(∞)) is

(m, 1)-departing for some positive integer m, i.e.,

dh(x, y) = 2 with |x| = |y| ≥ m ⇒ dh(x(−m), y(−m)) ≤ 1,

where J−m(x) = {x(−m)}.
Set `∗ := minξ 6=η∈V0

{ρ(ξ, η)}, `∗ := maxξ,η∈V0
{ρ(ξ, η)} and m := b log(`∗/`

∗)
log r∗ c + 1, where

r∗ = maxi{ri}. Let [x, z, y] be a horizontal geodesic. Suppose the statement is not true. Then

dh(x(−m), y(−m)) = 2, so that [x(−m), z(−m), y(−m)] is also a horizontal geodesic. As dh(x, y) = 2,

we can choose distinct ξ1, ξ2 such that ξ1 ∈ Sx(K)∩Sz(K) and ξ2 ∈ Sy(K)∩Sz(K). Observe that

Sx(V0) ∩ Sz(V0) = Sx(K) ∩ Sz(K) ⊂ Sx(−m)(K) ∩ Sz(−m)(K) = Sx(−m)(V0) ∩ Sz(−m)(V0).

Thus ξ1 ∈ Sz(V0) ∩ Sz(−m)(V0), and so does ξ2. Let w ∈ Σ∗ satisfy z = z(−m)w. It follows that

ξi ∈ Sz(V0) ∩ Sz(−m)(V0) = Sz(−m)(V0 ∩ Sw(V0)), i = 1, 2.
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Therefore there exists ηi ∈ V0 such that Sw(ηi) ∈ V0 (and Sz(ηi) = ξi) for i = 1, 2. The fact that

w ∈
⋃
k≥m Σk implies

`∗ ≤ ρ(Sw(η1), Sw(η2)) ≤ (r∗)mρ(η1, η2) ≤ (r∗)m`∗.

Thus m ≤ log(`∗/`
∗)

log r∗ , contradicting the choice of m above. Hence (X(s), E(∞)) is (m, 1)-departing,

and is an admissible augmented tree (Theorem 2.11 and Proposition 4.6).

Finally, we prove the bounded degree property. Set s∗ := maxj∈Σ{sj}. For x ∈ Xn(s) and

xv ∈ Xn+1(s), using (6.2) we have

sv = sxv · s−1
x ≥ sn+2

∗ · s−n∗ = s2
∗.

Therefore v ∈
⋃m′
k=1 Σk where m′ := b 2 log s∗

log s∗ c, and hence #J1(x) ≤ #(
⋃m′
k=1 Σk) < Nm′+1. Using

(6.3), it follows that supξ∈K{#($−1(ξ))} ≤ #C <∞. For x, y ∈ X(s), note that Sx(K)∩Sy(K) ⊂
Sx(V0). Therefore

#{y ∈ X : (x, y) ∈ Eh} ≤ #($−1(Sx(V0))) ≤ #V0 · supξ∈K{#($−1(ξ))} ≤ #V0 ·#C.

As deg(x) ≤ 1 + #J1(x) + #{y ∈ X : (x, y) ∈ Eh} for all x ∈ X, the graph (X(s), E(∞)) has

bounded degree.

Consequently, the map κ : ∂X(s) → K is a bijection as in Definition 4.2 (actually κ is a

homeomorphism by Proposition 4.3). Hence the Gromov metric θa on ∂X induces a new metric

θ̃a on K by (4.5). Next we show that the index map Φ over (K, θ̃a) satisfies the condition (Ba) in

Definition 5.1.

Proposition 6.4. Let {Sj}Nj=1 be a contractive p.c.f. IFS. For s ∈ (0, 1)N , let θ̃a be the metric on

K induced by (X(s), E(∞)). Then there exists c0 > 0 such that for any x ∈ X(s), Sx(K) contains

a ball of radius c0e
−a|x| in (K, θ̃a) (i.e., condition (Ba)).

Proof. Note that (X(s), E(∞)) is (m, 1)-departing (Theorem 6.3). By Theorem 4.8, there exists

γ > 0 such that for x, y ∈ X(s),

|x| = |y| and Sx(K) ∩ Sy(K) = ∅ ⇒ distθ̃a(Sx(K), Sy(K)) > γe−a|x|. (6.4)

Let ` := b log(#C)
logN c + 1, where C is the critical set. Then for x ∈ X, there is y ∈ J`(x) such that

Sy(K) ⊂ Sx(K \ V0). Choose ι(x) ∈ Sy(K) arbitrarily. It follows from (6.4) that

infη∈K\Sx(K){θ̃a(ι(x), η)} ≥ distθ̃a
(
Sy(K),∪z∈X|x|\{x}Sz(K)

)
> γ · e−a(|x|+`).

Hence Bθ̃a(ι(x), c0e
−a|x|) ⊂ Sx(K) with c0 = γe−a`. This completes the proof.

Let α = α(s) be the positive number such that
∑
j∈Σ s

α
j = 1, and let µs be the self-similar

measure with respect to the vector of probability weights (sα1 , s
α
2 , · · · , sαN ), i.e., the unique regular

Borel probability measure on K that satisfies

µs(·) =
∑

j∈Σ
sαj · µs(S

−1
i (·)). (6.5)

In particular if the IFS is p.c.f., then µs(Sx(K)) = sαx for all x ∈ X.
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Proposition 6.5. Let {Sj}Nj=1 be a contractive IFS that satisfies the p.c.f. property. For s ∈
(0, 1)N , the self-similar measure µs is Ahlfors-regular with exponent (−α log s∗/a) on (K, θ̃a), i.e.,

µs(Bθ̃a(ξ, r)) � r−α log s∗/a, ∀ ξ ∈ K, r ∈ (0, 1). (6.6)

Proof. Consider the AI∞-graph (X(s), E∞). For x ∈ X(s), set

Φ1(x) :=
⋃
{Φ(y) : dh(x, y) ≤ 1} = κ(J 1

∂ (x)),

where the index map Φ(x) = Sx(K). By Proposition 3.3 and Theorem 6.3, there is C0 ≥ 1 such

that

Bθ̃a(ξ, C−1
0 e−a|x|) ⊂ Φ1(x) ⊂ Bθ̃a(ξ, C0e

−a|x|), ∀ x ∈ X(s), ξ ∈ Φ(x).

Using s
α(|x|+1)
∗ < sαx = µs(Φ(x)) ≤ µs(Φ

1(x)) ≤ ts
α|x|
∗ where t := supx∈X(s) deg(x)(< ∞ by

Theorem 6.3), we have{
µs(Bθ̃a(ξ, C−1

0 e−an)) ≤ tsαn∗ ,

µs(Bθ̃a(ξ, C0e
−an)) ≥ sα(n+1)

∗ ,
∀ ξ ∈ K, n ≥ 0.

This proves (6.6).

In the following, we show that the metric measure space (K, θ̃a, µs) plays a special role in

connection with the study of local regular Dirichlet forms (which give a Laplacian) on K with a

regular harmonic structure. This will also extend a consideration by Hu and Wang [HW], in which

they studied the relation between the resistance metric R and the Euclidean metric for IFS on Rd.

We first recall some notations. A (discrete) Laplacian H = [Hpq]p,q∈V0 on V0 is a non-positive

definite matrix on V0 that satisfies
∑
q∈V0

Hpq = 0 for all p ∈ V0, and Hpq ≥ 0 for all distinct

p, q ∈ V0. For a weight vector s ∈ (0, 1)N , let Vn = Vn(s) :=
⋃
x∈Xn(s)Sx(V0) for n ≥ 1, and

V∗ = V∗(s) :=
⋃∞
n=0 Vn(s). Denote the collection of real-valued functions on Vn (or V∗) by `(Vn)

(or `(V∗) respectively). For a Laplacian H on V0, we have

(u,Hv) =
∑

p∈V0

u(p)
(∑

q∈V0

Hpq v(q)
)
, u, v ∈ `(V0).

We define the energy form En on Vn by

E0[u] = −(u,Hu), En[u] =
∑

x∈Xn(s)
s−1
x E0[u ◦ Sx], for u ∈ `(Vn), n ≥ 1

(i.e., En[u] := 1
2

∑
x∈Xn(s)s

−1
x

∑
p,q∈V0

Hpq|u(Sx(p)) − u(Sx(q))|2). We say that the pair (H, s) is a

regular harmonic structure [Ki1] of K if

min{En+1[v] : v ∈ `(Vn+1), v = u on Vn} = En[u], ∀ n ≥ 0, u ∈ `(Vn). (6.7)

This implies that for u ∈ `(V∗), {En[u]}∞n=0 is an increasing sequence (here in each En[u], u is

restricted on Vn), and

E [u] := limn→∞ En[u] = supn≥1 En[u], u ∈ `(V∗). (6.8)

The u ∈ `(V∗) can be extended continuously to a function on K if E [u] <∞. This defines the local

regular Dirichlet form (E ,D) with D := {u ∈ C(K) : E [u] <∞}, where C(K) denotes the space of

continuous functions on K. This energy form is self-similar in the sense that for any n ≥ 1,

E [u] =
∑

x∈Xn(s)
s−1
x E [u ◦ Sx], ∀ u ∈ D. (6.9)
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Define the effective resistance between two nonempty compact subsets F,G ⊂ K by

R(F,G) = (inf{E [u] : u = 1 on F, and u = 0 on G})−1

if F and G are disjoint, and = 0 otherwise.

Lemma 6.6. Let K be a connected p.c.f. set that possesses a regular harmonic structure (H, s).

Then there exists γ′ > 0 such that for any x, y ∈ X(s) with |x| = |y|, the inequality

R(Sx(K), Sy(K)) ≥ γ′ · s|x|∗

holds whenever Sx(K) ∩ Sy(K) = ∅.

Proof. Let x, y ∈ Xn(s) with Sx(K) ∩ Sy(K) = ∅. The p.c.f. property implies

R(Sx(K), Sy(K)) = R(Sx(V0), Sy(V0)) ≥ R(Sx(V0), Vn \ Sx(V0)). (6.10)

By (6.7) and (6.8), there exists a function u on K such that u = 1 on Sx(V0), u = 0 on Vn \Sx(V0),

and

En[u] = E [u] = R(Sx(V0), Vn \ Sx(V0))−1. (6.11)

Let H(x) := {z ∈ Xn(s) \ {x} : Sz(K) ∩ Sx(K) 6= ∅}. Using the bounded degree property of the

AI∞-graph (Theorem 6.3), we have

#H(x) = #{z ∈ X(s) : (z, x) ∈ Eh} < supx∈X(s){deg(x)} =: t <∞.

It follows that

En[u] =
1

2

∑
z∈H(x)

s−1
z

∑
p,q∈V0

Hpq|u(Sz(p))− u(Sz(q))|2 ≤ γ′−1s−n∗ ,

where γ′−1 := ts−1
∗
(

#V0

2

)2
max{Hpq : p 6= q ∈ V0}. This together with (6.10) and (6.11) proves the

lemma.

For ξ, η ∈ K, we write R(ξ, η) instead of R({ξ}, {η}) for short. It is well-known that R(·, ·) is a

metric on K, called the resistance metric. By definition, for compact subsets F,G ⊂ K we have

distR(F,G) := inf{R(ξ, η) : ξ ∈ F, η ∈ G} ≥ R(F,G). (6.12)

As a consequence of Lemma 6.6, we see that the metric space (K,R) with the index map Φ has

the property in (6.4).

Theorem 6.7. Let K be a connected p.c.f. set that possesses a regular harmonic structure (H, s).

Then the metric θ̃a induced by (X(s), E(∞)) satisfies

θ̃a(ξ, η) � R(ξ, η)−a/ log s∗ , ∀ ξ, η ∈ K. (6.13)

Proof. Firstly we prove that the index map Φ is of exponential type-(b) under R, where b := | log s∗|.
For this, let x ∈ Xn(s) and ξ, η ∈ Sx(K). Then for u ∈ D,

|u(ξ)− u(η)|2 = |u(Sx(ξ′))− u(Sx(η′))|2 (here Sx(ξ′) = ξ and Sx(η′) = η)

≤ R(ξ′, η′) E [u ◦ Sx] ≤ |K|R E [u ◦ Sx]

≤ |K|R · sxE [u] ≤ |K|R · sn∗E [u],
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where the diameter |K|R <∞ (cf. [Ki1, Theorem 3.3.4]), and the third inequality follows from the

the energy self-similar identity (6.9). Therefore, by using an equivalent expression of the effective

resistance [Ki1],

R(ξ, η) = sup{ |u(ξ)− u(η)|2

E [u]
: u ∈ D, E [u] 6= 0} ≤ |K|R · sn∗ = |K|R · e−bn.

This proves that |Φ(x)|R ≤ |K|R · e−b|x| for all x ∈ X.

By (6.12) and Lemma 6.6, the index map Φ satisfies (4.11) with k = 1 under R. It follows

from Theorem 4.8 that the bijection κ : (∂X, θa) → (K,R) satisfies (4.10) with ρ = R. From the

definition (4.5) of θ̃a, we see that θ̃a(·, ·) � R(·, ·)a/b on K.

7 Appendix: IFSs and augmented trees

In this Appendix, for the convenience of the reader, we summarize some notations and known facts

on iterated function systems, as well as some background of this paper.

Let (M,ρ) be a complete metric space, and let {Sj}Nj=1 (N ≥ 2) be a contractive iterated

function system (IFS) on (M,ρ) [Ki1], i.e., each Sj : M →M satisfies

rj := sup{ρ(Sj(ξ), Sj(η))

ρ(ξ, η)
: ξ, η ∈M, ξ 6= η} < 1. (7.1)

Then there exists a unique nonempty compact set K ⊂ M satisfying K =
⋃N
j=1 Sj(K), called the

attractor of {Sj}Nj=1; K is called a self-similar set if M = Rn and the Sj ’s are similitudes, i.e.,

|Sj(ξ)− Sj(η)| = rj |ξ − η|.

Let the alphabet set Σ := {1, 2, · · · , N}. Write Σ0 := {ϑ} (ϑ is the empty word), and for n ≥ 1,

Σn := {x = i1 · · · ik · · · in : ik ∈ Σ, ∀ k}. Let Σ∗ :=
⋃∞
n=0 Σn denote the symbolic space of finite

words. This Σ∗ has a natural N -ary tree structure with the root ϑ. For x = i1 · · · in ∈ X, write

rx := ri1ri2 · · · rin , Sx := Si1 ◦ Si2 ◦ · · · ◦ Sin and Kx := Sx(K) for short.

For a self-similar set K of a homogeneous IFS {Sj}Nj=1 (i.e., rj = r for all j), coding the iterations

by the tree of symbolic space Σ∗ is natural, as each Kx with x ∈ Σn has a constant diameter rn|K|.
But in a non-homogeneous case, the diameters of the cells on each level are not comparable. A

common way is to regroup the indices as follows: let r∗ = minj∈Σ{rj}, X0 = {ϑ},

Xn = {x = i1i2 · · · ik ∈ Σ∗ : rx ≤ rn∗ < ri1ri2 · · · rik−1
}, n ≥ 1, (7.2)

and X =
⋃∞
n=0Xn. This X has a natural tree structure Ev, and the diameters of the cells in

{Kx}x∈Xn
are comparable with rn∗ .

A contractive IFS of similitudes is said to satisfy the open set condition (OSC) if there is a

bounded nonempty open set U such that Sj(U) ⊂ U for all j ∈ Σ, and Si(U) ∩ Sj(U) = ∅ for all

i 6= j. The OSC is one of the most fundamental conditions in fractal geometry. For a self-similar

set K, the OSC yields an explicit expression of the Hausdorff dimension s of K by
∑N
j=1 r

s
j = 1,

and K supports the s-Hausdorff measure. Furthermore, the OSC is equivalent to the following

property (cf. [Sc, Theorem 2.2]): for any c > 0, there is a constant ` = `(c) such that

∀ η ∈ K and integer n > 0, B(η, crn∗ ) ∩Kx 6= ∅ for at most ` of x ∈ Xn. (7.3)
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We augment the tree (X,Ev) by a set of horizonal edges

Eh =
⋃∞

n=1
{(x, y) ∈ Xn ×Xn \∆ : Kx ∩Ky 6= ∅}, (7.4)

and let E = Ev ∪ Eh (cf. [Ka,LW1]). It has been proved that

Theorem 7.1. [LW1] Let {Sj}Nj=1 be an IFS of contractive similitudes that satisfies the OSC.

Then (X,E) is a hyperbolic graph, and for the hyperbolic boundary ∂X, the canonical identification

κ : ∂X → K is a homeomorphism. Furthermore, κ is a Hölder equivalence if the IFS satisfies the

condition (H), i.e., there exists a constant c > 0 such that

∀ n > 0, x, y ∈ Xn, Kx ∩Ky = ∅ ⇒ dist(Kx,Ky) ≥ crn∗ . (7.5)

The identification of K and ∂X has been applied to study the Lipschitz equivalence of self-

similar sets [LL,DLL]. If we enlarge the horizontal edge set to be

E′h =
⋃∞

n=1
{(x, y) ∈ Xn ×Xn \∆ : dist(Kx,Ky) ≤ γrn∗ } (7.6)

for some γ > 0 and let E′ = Ev ∪ E′h (cf. [LW3]), then we can improve Theorem 7.1 as

Theorem 7.2. [LW3] For any IFS {Sj}Nj=1 of similitudes, (X,E′) is a hyperbolic graph, and the

canonical identification ι : ∂X → K is a Hölder equivalence. Moreover, (X,E′) has bounded degree

if and only if {Sj}Nj=1 satisfies the OSC.

In [KLW1], thanks to the bounded degree property, we can introduce a class of transient re-

versible random walks on (X,E′) such that the Martin boundary, ∂X and K are homeomorphic,

by which we obtain a jump kernel (i.e., Näım kernel) to study the induced energy form on K.

For IFS {Sj}Nj=1 with overlaps, it is possible that Sx = Sy for some different x, y ∈ X, where

X is defined in (7.2). For example, let M = R, S1(x) = rx and S2(x) = rx + (1 − r), where

r =
√

5−1
2 is the golden ratio. Then S122 = S211 (see also Example 2.2). In this case, we can define

an equivalence relation ' on X by x ' y if and only if Sx = Sy. Then there is a natural vertical

graph (X∼, E∼v ) as the quotient of (X,Ev) with respect to ', which is not a tree unless the relation

' is trivial [LW3]. It was proved in [Wa] that the associated augmented tree of (7.4) in (X∼, E∼)

is hyperbolic if the self-similar set K has positive Lebesgue measure, or the IFS {Sj}Nj=1 satisfies

the weak separation condition (WSC) (cf. [LN], [LW, Theorem 2.1]), i.e., the condition (7.3) with

Xn replaced by the quotient Xn/ '. Some more variants were discussed in [Wa].
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