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Abstract

The paper is a survey of our recent and ongoing investigation on the class of Gromov

hyperbolic graphs arising from iterated function systems (IFS) in the theory of fractals.

The relations of the hyperbolic boundaries and the attractors of IFSs are discussed. The

applications include Lipschitz equivalence of attractors as well as the discrete potential

theory of random walks on such graphs.
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1 Introduction

With the intension to carry the probabilistic potential theory to the attractors of iterated

function systems (IFS), Denker and Sato [10] first constructed a special type of (non-

reversible) Markov chain {Zn}∞n=0 on the tree of symbolic space of the Sierpinski gasket
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(SG), and showed that the Martin boundary of {Zn}∞n=0 is homeomorphic to the SG. Mo-

tivated by this, Kaimanovich [30] introduced an“augmented tree” by adding “horizontal”

edges to the coding tree according to the neighboring cells in each level of the SG, which

was proved to be a hyperbolic graph in the sense of Gromov [23]. These ideas turned

out to be very inspiring and far reaching in view of the very rich contents in the involved

topics. In a series of papers, the initiatives were carried out and investigated in detail by

the authors and their collaborators [9, 29, 36–39, 42, 45–52, 58]. Some related literatures

include [2–6,12,15,31,33–35,59].

In this paper, we attempt to give a brief account of our decade-long investigation as

well as some ongoing works on the project of hyperbolic graphs on fractals. In Section 2,

we recall some basic definitions for hyperbolic graphs, and characterize the hyperbolicity

for the class of graphs in our consideration. In Section 3, we introduce the “augmented

tree” for an iterated function system (IFS). We study its hyperbolicity using the criterion

obtained in Section 2, and the Hölder equivalence of the hyperbolic boundary with the

attractor of the IFS, in particular for the IFS of contractive similitudes. This is used to

study the bi-Lipschitz equivalence of some totally disconnected self-similar sets in Section

4. In Section 5, we consider certain reversible random walk on the augment tree of the

IFS of contractive similitudes. The Martin boundary, the hyperbolic boundary and the

attractor are shown to be homeomorphic; the Martin kernel, the Näım kernel and the

induced energy form on the attractor are analyzed. In Section 6, we define a class of

expansive hyperbolic graphs and a concept of index map. These unify various formulations

of augmented trees, and include cases that are not governed by the IFS, such as refinement

systems. Many of the properties studied in Section 3 are extended in this new setting. In

Section 7, we provide some concluding remarks and future work of this study.

2 Hyperbolic graphs

We first define some basic notations for a graph. Let X be a countably infinite set. A

(undirected) graph is a pair (X, E), where E is a symmetric subset of X×X \{(x, x) : x ∈
X}. We call x ∈ X a vertex and (x, y) ∈ E (also denoted by x ∼ y) an edge. The degree

of a vertex x is the total number of edges which connect to x and is denoted by deg(x).

Throughout the paper, we assume that the graph is locally finite, i.e., deg(x) < ∞ for

all x ∈ X. For x, y ∈ X, a path from x to y is a finite sequence {x0, x1, · · · , xn} such

that x = x0, xn = y and (xi, xi+1) ∈ E , denoted by p(x, y); we call n = |p(x, y)| the

length of the path ({x} is a path with length 0 by convention). Moreover, if the above

path has minimal length among all possible paths from x to y, then we say that the path

is a geodesic and denote it by π(x, y). We always assume that the graph is connected,

that is, for any pair x, y ∈ X, there exists a path from x to y. Hence a graph induces an

integer-valued metric d(x, y) on X, which is the length of geodesic π(x, y) from x to y.

Choose a reference vertex ϑ ∈ X and call it the root of the graph. We use |x| to denote
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d(ϑ, x). We can decompose E as: E = Eh ∪ Ev where

Ev = {(x, y) ∈ E : |x| − |y| = ±1}, Eh = {(x, y) ∈ E : |x| = |y|}.

An edge (x, y) in Ev is called a vertical edge (x ∼v y), and an edge in Eh is called a

horizontal edge; the notation x ∼h y means that (x, y) ∈ Eh or x = y; we also use dh(x, y)

to denote the graph distance of the subgraph (X, Eh) (if there are no horizontal paths

joining x, y, we let dh(x, y) =∞ by convention). We also decompose the vertex set X as

X =
⋃∞
n=0Xn, where the n-th level Xn = {x ∈ X : |x| = n}. By the local finiteness,

it is easy to show (by induction) that Xn is a finite set for all n ≥ 0. A (geodesic) ray

π(x0, x1, · · · ) is an infinite sequence with x0 = ϑ, xn ∈ Xn and (xn, xn+1) ∈ Ev for all

n ≥ 0. For x, y ∈ X with |y| − |x| =: m > 0, we say y is an m-th descendant of x,

or x is an m-th predecessor of y, if there exists a ray π(ϑ, · · · , x, · · · , y, · · · ) connecting

them. Denote by Jm(x) and J−m(x) the sets of m-th descendants and predecessors of x

respectively, and let

J∗(x) =
⋃
m≥1

Jm(x), J−∗(x) =
⋃
m≥1

J−m(x).

Throughout, we assume that J1(x) 6= ∅ for all x ∈ X. We call (X, E) a tree if E = Ev and

J−1(x) is a singleton for all x ∈ X \ {ϑ}.

Definition 2.1. [23] Let (X, E) be a graph with a root ϑ ∈ X. Define the Gromov product

of two vertices x, y ∈ X by

(x|y) =
1

2
(|x|+ |y| − d(x, y)).

For δ ≥ 0, we say that (X, E) is δ-hyperbolic (with respect to ϑ) if

(x|y) ≥ min{(x|z), (z|y)} − δ, ∀ x, y, z ∈ X. (2.1)

(X, E) is said to be hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

The following justifies the definition of hyperbolicity [7, 60].

Proposition 2.2. If X is δ-hyperbolic with respect to a particular ϑ ∈ X, then it is 2δ-

hyperbolic for any other fixed root ϑ′ ∈ X. Hence the hyperbolicity is independent of the

choice of the root.

It is easy to see that a tree is 0-hyperbolic and (x|y) is the distance from ϑ to z, the

confluence of x and y. For a δ-hyperbolic graph, the Gromov product (x|y) is roughly the

distance from ϑ to π(x, y) in the following sense:

d(ϑ, π(x, y))− 2δ − 1

2
≤ (x|y) ≤ d(ϑ, π(x, y)). (2.2)

3



Indeed, the second inequality is trivial without requiring the hyperbolicity. For the first

inequality, using (2.1) for z ∈ π(x, y) we have

(x|y) ≥ min{(x|z), (z|y)} − δ =
1

2
|z|+ 1

2
min{|x| − d(x, z), |y| − d(y, z)} − δ.

Note that the two terms in min{· · · } have the sum |x|+ |y| − d(x, y) = 2(x|y), therefore

we can choose z such that |x| − d(x, z) = |y| − d(y, z) = (x|y) if (x|y) is an integer; and

|x| − d(x, z) = |y| − d(y, z)− 1 = (x|y)− 1
2 otherwise. It follows that

(x|y) ≥ 1

2
|z|+ 1

2

(
(x|y)− 1

2

)
− δ,

which implies (x|y) ≥ |z| − 2δ − 1
2 ≥ d(ϑ, π(x, y))− 2δ − 1

2 .

Note that in the inequality (2.2), we cannot omit −1
2 : consider the simplest example, a

triangle with X = {ϑ, x, y}. Since (ϑ|x) = (ϑ|y) = 0 and (x|y) = 1
2 , (2.1) holds for δ = 0,

hence it is 0-hyperbolic. Note that d(ϑ, π(x, y)) = 1, thus d(ϑ, π(x, y)) − 2δ − 1
2 = (x|y).

(In [60, Lemma 22.4], the −1
2 is missed in his estimate of (2.2).)

It is instructive to know that the notion of hyperbolicity is motivated by the “thin

triangles” in the Poincaré disc model: a geodesic triangle in (X, E) consists of three points

x, y, z ∈ X as vertices together with the three geodesic arcs π(x, y), π(y, z), π(z, x) as

sides; the triangle is called δ-thin if every point on any one of the sides is at distance at

most δ to one of the other two sides. The following is the geometric characterization of

hyperbolicity.

b

b

b

z

yx

6δ

Figure 1: A δ-thin geodesic triangle.

Proposition 2.3. [7, 17,60] In a δ-hyperbolic graph (X, E), every geodesic triangle is 8δ-

thin. Conversely, if every geodesic triangle in (X, E) is δ′-thin, then (X, E) is (3δ′ + 1
2)-

hyperbolic.

For a > 0 small (say eδa <
√

2), and x, y ∈ X, let

θa(x, y) =

{
e−a(x|y), x 6= y;

0, x = y.
(2.3)
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Then by (2.1), θa(x, y) ≤ eδa max{θa(x, z), θa(z, y)} for all x, y, z ∈ X. It is known that

θa(·, ·) is not necessarily a metric (unless δ = 0), but is always Lipschitz equivalent to a

metric ρa(·, ·) on X (i.e., C−1
1 ρa ≤ θa ≤ C1ρa holds for some constant C1 ≥ 1). Hence we

can regard θa as a metric for convenience, and call it a Gromov metric. Note that if we

choose another b > 0 for the Gromov metric, then θa = θ
a/b
b . By (2.3), it is clear that a

sequence {xn}∞n=0 in X is a θa-Cauchy sequence if and only if (xm|xn)→∞ as m,n→∞.

Definition 2.4. Denote by X̂ the θa-completion of a hyperbolic graph X. We call ∂X =

X̂ \X the hyperbolic boundary of X.

The hyperbolic boundary ∂X is a compact set. It is useful to identify ξ ∈ ∂X with

the class of geodesic rays in X that converge to ξ. It is known that two rays π(x0, x1, · · · )
and π(y0, y1, · · · ) are equivalent as θa-Cauchy sequences if and only if

d(xn, yn) ≤ 4δ for all n ≥ 0.

(To prove the necessity, we let n,m ≥ 0. Using (2.1), we have

n− 1

2
d(xn, yn) = (xn|yn) ≥ min{(xn|xm+n), (xn+m|yn+m), (yn+m|yn)} − 2δ

= min{n, (xn+m|yn+m)} − 2δ.

Letting m → ∞, we have (xn+m|yn+m) → ∞ as the two rays are equivalent, hence

d(xn, yn) ≤ 4δ follows.)

We can extend the Gromov product to X ∪ ∂X by letting

(x|ξ) = inf{ lim
n→∞

(x|xn)}, (ξ|η) = inf{ lim
n→∞

(xn|yn)},

where x ∈ X, ξ, η ∈ ∂X, and the infimum is taking over all geodesic rays π(x0, x1, · · · )
and π(y0, y1, · · · ) converging to ξ and η respectively; the Gromov metric on X ∪ ∂X is

defined in the same way as in (2.3).

In the following we will consider a specific class of rooted graphs, and give a useful cri-

terion for the hyperbolicity. For x, y ∈ X, we say that a geodesic π(x, y) = [x0, x1, · · · , xn]

is an h-geodesic if it consists of horizontal edges only, and a v-geodesic if xi+1 ∈ J1(xi) for

all i, or xi+1 ∈ J−1(xi) for all i; it is called a convex geodesic if there exist u, v ∈ π(x, y)

such that

π(x, y) = π(x, u) ∪ π(u, v) ∪ π(v, y)

(also denoted by π(x, u, v, y)) in which π(u, v) is an h-geodesic, and π(x, u), π(v, y) are

v-geodesics with u ∈ J−∗(x) and v ∈ J−∗(y) (one or two parts may vanish). Also between

x, y, the convex geodesic may not be unique; by convention, we use the one such that

|u| = |v| is minimum (see Figure 2). Note that

(x|y) =
1

2
(|x|+ |y| − d(x, y)) = |u| − 1

2
dh(u, v) = (u|v). (2.4)
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Figure 2: Two convex geodesics.

Lemma 2.5. Let (X, E) be a rooted graph such that (X, Ev) is a tree. Suppose the following

property is satisfied: for any x, y ∈ X,

(*) x ∼h y ⇒ x−1 ∼h y−1, (“ ∼h ” includes “ = ”),

where x−1 is the unique 1-st predecessor of x. Then any pair x, y ∈ X can be joined by a

convex geodesic.

Proof. The proof is quite simple: following [30], we can use the following moves repeatedly

to change the geodesic without increasing the length: for u, v ∈ π(x, y) with (u, v) ∈ Eh,

[u, v, v−1]→ [u, u−1, v−1] and [u−1, u, v]→ [u−1, v−1, v].

Eventually we get a convex geodesic connecting x and y.

The lemma allows us to have a good grasp of the geodesics in such graphs, and condi-

tion (*) is automatically satisfied for the augmented trees of the IFS in the next section.

Our main theorem in this section is the following criterion for hyperbolicity, which relies

on the convex geodesics.

Theorem 2.6. Let (X, E) be a rooted graph such that (X, Ev) is a tree and property (*)

is satisfied. Then the following are equivalent.

(i) (X, E) is hyperbolic;

(ii) ∃ L <∞ such that the lengths of all h-geodesics are bounded by L.

This was proved in [45, Theorem 2.3] based on the thin triangle characterization

(Proposition 2.3). In the following, we use an algebraic argument by the Gromov products

in Definition 2.1.

Proof. (i) ⇒ (ii) : Let π(x0, x1, · · · , xn) be an h-geodesic in (X, E). Then for i ∈
{0, 1, · · · , n}, it follows from (2.1) and (2.4) that

|x0| −
n

2
= (x0|xn) ≥ min{(x0|xi), (xi|xn)} − δ = |x0| −max

{ i
2
,
n− i

2

}
− δ.

Therefore n ≤ max{i, n− i}+ 2δ. By choosing i = bn/2c we have n ≤ 4δ + 1.

(ii)⇒ (i) : We prove that (X, E) is L
2 -hyperbolic. For x, y, z ∈ X, consider the convex

geodesics π(x, u, v, z), π(z, u′, v′, y) connecting x, z and z, y respectively (See Figure 3).
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Figure 3: Illustration for the proof of (ii) ⇒ (i).

Without loss of generality, assume that |u| ≤ |u′|. Then v = u′ if |u| = |u′|, or v ∈ J−∗(u′)
if |u| < |u′|. We compute the length of the path from x to y passing through u, v, u′, v′

successively as

L′ := d(x, u) + d(u, v) + d(v, u′) + d(u′, v′) + d(v′, y)

≤ (|x| − |u|) + d(u, v) + (|u′| − |v|) + L+ (|y| − |u′|)

= |x|+ |y| − 2
(
|u| − 1

2
d(u, v)

)
+ L

= |x|+ |y| − 2(x|z) + L (by (2.4)).

On the other hand, using the definition of Gromov product, we have

L′ ≥ d(x, y) = |x|+ |y| − 2(x|y).

Combining these two inequalities, we conclude that (x|y) ≥ (x|z)− L
2 . This implies that

(2.1) is satisfied for δ = L
2 .

3 IFS and augmented trees

We call a finite set of contractive maps {Sj}Nj=1 (N ≥ 2) on Rd an iterated function system

(IFS). It is well-known [13,27] that there exists a unique nonempty compact set K ⊂ Rd

such that K =
⋃N
j=1 Sj(K). We call the set K the invariant set (or attractor) of the IFS.

In particular, for IFS of similitudes (also called self-similar IFS) (i.e., Sj are similitudes:

|Sj(x)− Sj(y)| = rj |x− y|), we call K a self-similar set.

Throughout the paper, we mainly consider the self-similar IFS {Sj}Nj=1. Let Σ =

{1, 2, · · · , N}, and Σ∗ =
⋃∞
n=0 Σn, where Σ0 = {ϑ} contains the empty word ϑ only.

Given x = i1i2 · · · in ∈ Σn, we denote Sx = Si1 ◦ Si2 ◦ · · · ◦ Sin , Kx = Sx(K) (where Sϑ is

the identity map), and rx = ri1 · · · rin , the product of contractive ratios of the similitudes.

Let r∗ = min{rj : j ∈ Σ}.
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The symbolic space Σ∗ has a nature tree structure from each x ∈ Σ∗ to its descendants.

But for x ∈ Σn, the diameter of Kx may vary greatly. On the other hand, there are

different ways to redefine the coding space for the attractor K of the IFS. A commonly

used tree structure which regroups the x ∈ Σ∗ in a more tractable manner is as follows:

For n ≥ 1, let

Xn := {x = i1i2 · · · ik ∈ Σ∗ : rx ≤ rn∗ < ri1i2···ik−1
}. (3.1)

It can be proved that Xn ∩ Xn+1 = ∅ for each n. All maps in {Sx : x ∈ Xn} have

approximately equal contraction ratios (≈ rn∗ ), and all cells in {Kx : x ∈ Xn} have

approximately equal diameters: rn+1
∗ |K| < |Kx| ≤ rn∗ |K|.

Let X =
⋃∞
n=0Xn (as usual X0 = {ϑ}). Then X has a natural tree structure, denoted

by Ev. It is direct to check that the total number of the 1-st level descendants of each x

is less than N1+log r∗/ log r∗ (and ≥ N) where r∗ = max{rj : j ∈ Σ}. Note also that X

can be a proper subset of Σ∗, but they define the same limit points on infinite paths. In

order to describe the relation of the neighboring cells of Kx, x ∈ X, we augment the tree

(X, Ev) by adding horizontal edges in the following two ways:

Definition 3.1. On tree (X, Ev), we define a horizontal edge set by

Eh =
⋃∞

n=1
{(x, y) ∈ Xn ×Xn : x 6= y, Kx ∩Ky 6= ∅};

for a fixed constant γ > 0, we define another horizontal edge set by

Ẽh =
⋃∞

n=1
{(x, y) ∈ Xn ×Xn : x 6= y, dist(Kx,Ky) ≤ γrn∗ }. (3.2)

Denote E = Ev ∪ Eh, Ẽ = Ev ∪ Ẽh, and call (X, E) and (X, Ẽ) augmented trees of (X, Ev).

Since the constant γ in Ẽh has no real significance as long as it is positive, we omit it

in the notation for brevity.

It is easy to check that both augmented trees have property (*) by observing that

dist(Kx,Ky) ≤ dist(Kxi,Kyj). The augmented tree (X, E) is more naturally defined: it is

our original consideration in [45], and has important applications (see Sections 4 and 5).

But the hyperbolic property is not immediate: it needs additional conditions to control

the fine structure of the attractor K, for which we will discuss in the sequel. The graph

(X, Ẽ) is a relaxation of the intersection condition in (X, E), enlarging the horizontal edge

set Eh. This allows us to have a more complete result on the hyperbolicity of the graph

and the boundaries. The following is one of our main theorems.

Theorem 3.2. For self-similar IFS, the augmented tree (X, Ẽ) is hyperbolic. Moreover,

the hyperbolic boundary ∂X is Hölder equivalent to the self-similar set K, i.e., there exists

a canonical bijection κ : ∂X → K such that

C−1θa(ξ, η)α ≤ |κ(ξ)− κ(η)| ≤ Cθa(ξ, η)α, ∀ ξ, η ∈ ∂X, (3.3)

where C ≥ 1 is a constant and α = − log r∗/a.
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The proof of the theorem is in [46, Theorems 1.2 and 1.3]. We will give another proof

of this in Theorem 6.10 under a more general setup, which also includes the augmented

tree (Σ∗, Ẽ) and some more general cases.

For the augmented tree (X, E), we have

Proposition 3.3. For self-similar IFS, if the augmented tree (X, E) is hyperbolic, then

there exists a bijective map κ : ∂X → K such that

|κ(ξ)− κ(η)| ≤ Cθa(ξ, η)α, ∀ ξ, η ∈ ∂X,

where the constant C > 0 and α = − log r∗/a. In particular, the hyperbolic boundary ∂X

is homeomorphic to the attractor K.

We do not know if (X, E) is hyperbolic in general. However, we have simple conditions

that guarantee sufficiently many interesting cases that (X, E) is hyperbolic.

Proposition 3.4. Suppose self-similar IFS has the following property:

(H) ∃ C > 0 3 for any n > 0 and x, y ∈ Xn, either

Kx ∩Ky 6= ∅ or dist(Kx,Ky) ≥ Crn∗ .

Then the augmented tree (X, E) is hyperbolic. Moreover, the hyperbolic boundary ∂X is

Hölder equivalent to the self-similar set K as in (3.3).

Proof. Let 0 < γ < C, we define horizontal edge set Ẽ by (3.2). Then it is clear that the

property (H) implies E = Ẽ , and the assertion follows from Theorem 3.2.

Property (H) was introduced in [45], and also used in other applications [21,26]. The

property is satisfied for IFS of similitudes where the maps and the translations are defined

by integral entries [45], so are the homogeneous p.c.f. IFS of similitudes [21]. There are also

examples constructed so that (H) fails [45,46,58], including one that (X, E) is hyperbolic

(by Theorem 3.5 below), but ∂X is not Hölder equivalent to K [37].

One of the most fundamental conditions on the IFS of similitudes {Si}Ni=1 is the open

set condition (OSC) [27], namely, there exists a non-empty bounded open set O ⊂ Rd

such that Si(O) ⊂ O and the Sj(O)’s are disjoint. In such case, the Hausdorff dimension

α of K is given by
∑N

i=1 r
α
i = 1. It is also known that under the OSC, we can choose the

open set O such that O ∩ K 6= ∅ [56], which implies 0 < Hα(K)(< ∞). Moreover, the

OSC is equivalent to [13,46,56]

(S) for any c > 0, there exists ` = `(c) > 0 such that any ball B of radius crn∗ can

intersect Kx with at most ` of x ∈ Xn.

Theorem 3.5. If the self-similar IFS satisfies either

(i) the condition (S); or

(ii) the self-similar set K has a positive Lebesgue measure,

then the augmented tree (X, E) is hyperbolic.

9



Proof. Assuming (i), to prove the hyperbolicity, it suffices to show that the lengths of the

h-geodesics are bounded by some constant. Suppose otherwise, for any integer m > 0,

there exists an h-geodesic π(x0, x3m) = [x0, x1, . . . , x3m] with xi ∈ Xn. We consider the

m-th predecessor yi = x
[−m]
i . Let

p(y0, y3m) = [yi0 , . . . , yik ] (3.4)

with yij ∈ {y0, . . . , y3m} be the shortest horizontal path connecting y0 and y3m. By the

geodesic property of π(x0, x3m), it is clear that

k = |p(y0, y3m)| ≥ |π(x0, x3m)| − 2m = m. (3.5)

Now choose m ≥ ` such that (3m+ 1)rm∗ ≤ 1, where ` = `(|K|) is as in condition (S). Let

D =
⋃3m
i=0Kxi . From |Kxi | ≤ rn∗ |K| (i = 0, 1, · · · , 3m), it is direct to show that

|D| ≤ (3m+ 1)rn∗ |K| ≤ rn−m∗ |K|. (3.6)

Note that Kxi ⊂ Kyi , we see that Kyij
∩D 6= ∅ for each j = 0, 1, · · · , k. It follows that

#{y ∈ Xn−m : Ky ∩D 6= ∅} ≥ k + 1 > m ≥ `.

It contradicts condition (S) and the proof is completed.

For case (ii), we proceed as in (i). Let m be such that |D| ≤ rn−m∗ |K| (as in (3.6)),

and let D′ =
⋃k
i=0Kyi . By using the horizontal path property of D, we see that D′ is

contained in the (rn−m∗ |K|)-neighborhood of D, hence,

|D′| ≤ 2rn−m∗ |K|+ |D| ≤ Crn−m∗ .

Now consider (3.4). By the shortest path property, we see that for the even terms (or

odd terms) of {yi0 , . . . , yik}, every pair are disjoint (otherwise, we can shorten the path).

Observe that L(D′) ≤ C ′|D′|d, we hence have

CC ′r(n−m)d
∗ ≥ L(D′) ≥

bk/2c∑
i=0

L(Ky2i) ≥ (bk/2c+ 1)L(K)r
(n−m+1)d
∗ > 0.

This is a contradiction, as k ≥ m (by (3.5)) and m can be arbitrary large.

It follows that for the IFS of similitudes with OSC, the augmented graph (X, E) is

hyperbolic; the second condition applies to the well-known class of self-similar tilings (see

e.g., [25, 40]).

We now consider the bounded degree (i.e., sup{deg(x) : x ∈ X} <∞) property of the

graphs. This property is important, especially when we consider random walks on graphs

(see Section 5). In the following we will discuss this property in connection with the OSC.

We need a simple lemma which can be proved by contrapositive argument.
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Lemma 3.6. Let {Sj}Nj=1 be an IFS of contractive similitudes. Suppose that (X, Ẽ) is of

bounded degree, then Sx 6= Sy for any x 6= y in X.

Theorem 3.7. Let {Sj}Nj=1 be an IFS of contractive similitudes. Then (X, Ẽ) is of

bounded degree if and only if the IFS satisfies the OSC.

Proof. Assume that the IFS satisfies the OSC. Let x ∈ Xn (n ≥ 1), then |Kx| ≤ rn∗ |K|. Let

B be a ball centered at some point in Kx with radius (2γ+ |K|)rn∗ . Note that Ky ∩B 6= ∅
if x ∼h y, or x ∼v y with y ∈ Xn+1. Also there is only one vertex x[−1] ∈ J−1(x). By

making use of condition (S) from the OSC, we have the following estimate

deg(x) ≤ #{y : x ∼h y}+ #{y : x ∼v y} ≤ `(2γ + |K|) + `((2γ + |K|)r−1
∗ ) + 1.

Hence (X, Ẽ) is of bounded degree.

To prove the converse, it suffices to show that the condition (S) holds. Suppose

otherwise, there exists a constant c > 0 such that for any ` > 0, there exist n and a ball

B ⊂ Rd with radius crn∗ satisfying

#{x ∈ Xn : Kx ∩B 6= ∅} > `.

Let Xn,B denote the set in the above inequality, and let D =
⋃
{Kx : x ∈ Xn,B}. Then

|D| ≤ 2|K|rn∗ + crn∗ = (2|K|+ c)rn∗ .

We can choose k0 independent of n such that {B1, B2, · · · , Bk0} is a family of open balls

with radius γrn∗ /2 and covers D (where γ is in the definition (3.2) of Ẽh). There exists a

Bi that intersects at least `′ = b`/k0c of Kx (x ∈ Xn,B), say, Kx1 ,Kx2 , · · · ,Kx`′ . Then

dist(Kxi ,Kxj ) ≤ γrn∗ for 1 ≤ i, j ≤ `′. Hence xi ∼h xj if i 6= j. It follows that

deg(xi) ≥ `′ − 1, i = 1, 2, · · · , `′.

Since ` can be arbitrarily large and k0 is a fixed constant, we see that `′ can be arbitrarily

large. This contradicts that the graph is of bounded degree, and the condition (S) follows.

Hence the IFS satisfies the OSC.

Note that Eh ⊂ Ẽh, as a direct consequence of the above theorem, we have

Corollary 3.8. Let {Sj}Nj=1 be an IFS of contractive similitudes satisfying the OSC, then

the graph (X, E) is of bounded degree.

There are variations of the IFS, that also fall into this framework of augmented trees.

An easy example is the IFS {Si}2i=1, with S1(x) = 1
2x, S2(x) = 1

2(x + 1), then the aug-

mented tree has boundary [0, 1]. If we identify the two end vertices on each level of the

tree, then we get a new hyperbolic graph with the boundary homeomorphic to a circle.

A less trivial one is S1(x) = rx, S2(x) = rx+ (1− r) where r = (
√

5− 1)/2 is the golden

ratio (corresponding to the Bernoulli convolution). Note that for x, y ∈ Xn, x 6= y, Sx

11



can equal Sy (e.g., S122 = S211). We can identify these indices and form a new hyperbolic

graph. In this case, the vertical part of the graph is not a tree. This has been discussed

in detail in [58] as quotient graphs for the IFSs with a weak separation condition (WSC)

defined in [41]. It is known that the OSC is equivalent to the WSC together with Sx 6= Sy
for all x 6= y [62]. Also in [48], the Moran sets and the hyperbolicity were studied. In the

following we will introduce yet another type of IFS, the weighted IFS, which is connected

to the study of energy forms on fractals. All these considerations can be embraced in a

general setup of expansive hyperbolic graphs in Section 6.

To consider the weighted IFS, we start by defining another regrouping of indices in

the symbolic space Σ∗ as in the following. Let s = (s1, s2, · · · , sN ) be a vector with

0 < si < 1 for all i ∈ Σ. Denote s∗ = min{si : i ∈ Σ} and s∗ = max{si : i ∈ Σ}. For

x = i1i2 · · · in ∈ Σ∗, write sx = si1si2 · · · sin . We regroup Σ∗ by setting X0(s) = {ϑ}, and

for n ≥ 1, let

Xn(s) := {x = i1i2 · · · ik ∈ Σ∗ : sx ≤ sn∗ < si1si2 · · · sik−1
}.

Then X(s) =
⋃∞
n=0Xn(s) has a natural tree structure denoted by Ev. We also define

horizontal edge sets as in Definition 3.1 to get the augmented trees (X(s), E) and (X(s), Ẽ).

For (X(s), Ẽ), Theorem 6.10 in Section 6 will yield the hyperbolicity as well as the

Hölder equivalence of ∂X(s) and K. The more interesting and useful case is on (X(s), E).

For this, we can only prove the hyperbolicity for a restrictive class of self-similar sets,

called post critically finite (p.c.f.) sets, defined by Kigami [32]. The crucial property of

p.c.f. set is that the intersection of two cells Ki,Kj , i 6= j has at most finitely many

points. We have the following theorem (see [37]).

Theorem 3.9. Let {Sj}Nj=1 be a contractive IFS that satisfies the p.c.f. property. Then the

augmented tree (X(s), E) is hyperbolic, and is of bounded degree. Moreover, the embedding

κ : (∂X(s), θa)→ (K, | · |) is a Hölder continuous homeomorphism.

Let θa be the Gromov metric on ∂X(s), then it induces a new metric θ̃a on K via the

homeomorphism κ. We consider the metric space (K, θ̃a). Let α be the positive number

satisfying
∑N

j=1 s
α
j = 1. We define the self-similar measure µs to be the unique Borel

probability measure which satisfies the following identity

µs(·) =
N∑
j=1

sαj µs(S
−1
j (·)) .

The following proposition provides an interesting relation of above self-similar measure

and the induced Gromov metric on K.

Proposition 3.10. Let {Sj}Nj=1 be a contractive IFS that satisfies the p.c.f. property.

For s ∈ (0, 1)N , the self-similar measure µs is Ahlfors-regular with exponent (−α log s∗/a)

with respect to the new metric space (K, θ̃a), i.e.,

µs(Bθ̃a(ξ, r)) � r−α log s∗/a, ∀ ξ ∈ K, r ∈ (0, 1).

12



On a p.c.f. set, we consider the energy form (E,D) defined through a harmonic struc-

ture with weight s ∈ (0, 1)N on K [32, 55], which satisfies the following self-similarity:

E[u] =
∑

j∈Σ
s−1
j E[u ◦ Sj ], u ∈ D,

where D = {u ∈ C(K) : E[u] < ∞} is the domain of E, and C(K) is the set of contin-

uous functions on K. Also define the effective resistance between two nonempty disjoint

compact subsets F,G ⊂ K by

R(F,G) =
(

inf{E[u] : u = 1 on F, u = 0 on G}
)−1

.

Then R(ξ, η)(:= R({ξ}, {η}) for ξ, η ∈ K) is a metric on K (resistance metric [32]).

Theorem 3.11. Let K be a connected p.c.f. set that admits a harmonic structure with

weight s ∈ (0, 1)N , and let R be the resistance metric of the associated self-similar energy

form. Then the metric θ̃a on K induced by (X(s), E) satisfies

θ̃a(ξ, η) � R(ξ, η)−a/ log s∗ , ∀ ξ, η ∈ K.

The interested reader can refer to [37] for the details.

4 Lipschitz equivalence of self-similar sets

Recall that two compact metric spaces (X, d1) and (Y, d2) are said to be Lipschitz equiva-

lent, denoted by X ' Y , if there exists a bi-Lipschitz map σ : X → Y , i.e., σ is a bijection

and there exists a constant C > 0 such that

C−1d1(x, y) ≤ d2(σ(x), σ(y)) ≤ Cd1(x, y), for all x, y ∈ X.

Lipschitz classification of fractals was first started by Falconer and Marsh [14] on

Cantor-type sets under the strong separation condition. The recent interest was due to

Rao, Ruan and Xi [43] on their solution to an open question of David and Semmes, so called

the {1, 3, 5} − {1, 4, 5} problem, i.e., subdivide [0, 1] into five equal size subintervals, and

pick the 1, 3, 5-th subintervals and the 1, 4, 5-th subintervals (the 4-th and 5-th subintervals

have nonvoid intersection) to form the respective IFSs and self-similar sets K1, K2. They

used a technique of graph directed system to show thatK1 andK2 are Lipschitz equivalent.

The result stimulates a lot of interest and generalizations. In this section, we discuss a

different approach to this type of Lipschitz equivalence problem through the augmented

trees, hyperbolic graphs and hyperbolic boundaries [9, 51]. More developments can be

found in [48–50,52].

We will consider the self-similar IFS {Si}Ni=1 with equal contractive ratio. Let Σ =

{1, 2, · · · , N}, Xn = Σn and X =
⋃∞
n=0 Σn. Let (X, E) be the augmented tree as in

Definition 3.1. For convenience, we call (X, E) an N -ary augmented tree. We say that T
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is an Xn-horizontal component if T ⊂ Xn is a maximal connected subset with respect to

Eh. In this case, we denote by TD the set of all descendants of T (including T itself), i.e.,

TD = {x ∈ X : x|n ∈ T}

where x|n is the initial segment of x with length n. Obviously, TD should be a connected

subgraph of X, and if (X, E) is hyperbolic then TD is also hyperbolic. Indeed suppose

x, y are children of T and let γ be a horizontal geodesic in (X, E) with end points at x, y

respectively. Then the parents of γ in T form a connected horizontal path (by property

(*) in Lemma 2.5), hence is in T (because T is a connected component). This implies

that γ is also a horizontal geodesic in TD. Applying this argument to each level in TD, we

see that the lengths of horizontal geodesics in TD are uniformly bounded, inherited from

(X, E).

We let Fn denote the family of all Xn-horizontal components, and let F =
⋃
n≥0Fn.

Note that for distinct T, T ′ ∈ Fn, the subgraphs TD, T ′D are disjoint. Denote T by bxc for

x ∈ T , we can define a graph structure on F as: bxc and byc are connected by an edge

if and only if (u, v) ∈ Ev for some u ∈ bxc and v ∈ byc; we denote this graph by XQ (see

the left two graphs of Figure 4). It is clear that XQ defined above is a tree, and we call

it the quotient tree of X.

Figure 4: A rooted graph X, the quotient tree XQ and the union of three copies of X.

For T, T ′ ∈ F , we say that T and T ′ are equivalent, denoted by T ∼ T ′, if there exists

a graph isomorphism g : TD → T ′D, i.e., the map g and its inverse map both preserve the

vertical and horizontal edges of TD and T ′D. We denote the equivalence class by [T ].

Definition 4.1. We call an augmented tree (X, E) simple if the equivalence classes in F
is finite. Let [T1], . . . , [Tm] be the equivalence classes in F \ {ϑ}, and let aij, where 1 ≤
i, j ≤ m, denote the cardinality of the horizontal components of the 1-st level descendants

of T ∈ [Ti] that belong to [Tj ]. We call A = [aij ] the incidence matrix of (X, E).

Proposition 4.2. A simple augmented tree (X, E) is always hyperbolic.

Proof. Note that for each horizontal geodesic π(x, y) in X, the horizontal part must

be contained in a horizontal component of the augmented tree. Since there are finitely

many equivalence classes [T ] of horizontal components, and each T contains finitely many

vertices, it follows that π(x, y) is uniformly bounded, and hence (X, E) is hyperbolic.
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Definition 4.3. Let X,Y be two hyperbolic graphs. We say that σ is a near-isometry from

X to Y if there exist finite subsets E ⊂ X, F ⊂ Y , and c > 0 such that σ : X \E → Y \F
is a bijection and satisfies ∣∣d(σ(x), σ(y))− d(x, y)

∣∣ < c.

The following two propositions are easy consequences from the definitions [9, 51].

Proposition 4.4. Let X,Y be two hyperbolic augmented trees. Suppose there exists a

near-isometry from X to Y , then ∂X ' ∂Y .

It is clear that ∂(X, Ev) is an N -ary Cantor set. Our aim is to show that a simple

augmented tree (X, E) is near-isometric to (X, Ev); by the above proposition, ∂(X, Ev) '
∂(X, E). In the following we develop some tools to construct such near-isometry.

Proposition 4.5. Let (X, E) be a simple N -ary augmented tree, let [T1], . . . , [Tm] be the

equivalence classes with incidence matrix A, and let u = [u1, . . . , um]t where ui = #Ti.

Then Au = Nu.

Suppose (Xi, Ei), 1 ≤ i ≤ ` are augmented trees with roots ϑi. Let X̂ = (
⋃`
i=1Xi)∪{ϑ}

where ϑ is an additional vertex. We equip X̂ with an edge set Ê that consists of all Ei
and the new edges joining ϑ and ϑi. Then (X̂, Ê) forms a new connected graph and each

(Xi, Ei) becomes its subgraph (see Figure 4). We call (X̂, Ê) the union of {Xi}`i=1. It

follows that [9, Proposition 2.8]

Proposition 4.6. Let (X, E) be an N -ary augmented tree such that ∂(X, E) ' ∂(X, Ev).
Suppose (Xi, Ei), 1 ≤ i ≤ `, are copies of (X, E), and (X̂, Ê) is the union of {(Xi, Ei)}`i=1.

Then ∂(X̂, Ê) ' ∂(X, E).

The following notions of rearrangeable matrix [8, 51] and quasi-rearrangeable matrix

[9] are the most important technical devices in constructing the near-isometry between

(X, Ev) and (X, E).

Definition 4.7. Let a = [a1, . . . , am] and u = [u1, . . . , um]t be in Nm. For N > 0, we

say that a is (N,u)-rearrangeable if there exist p > 0 and a non-negative integral p×m
matrix C (rearranging matrix) such that

a = [1, . . . , 1]︸ ︷︷ ︸
p

C and Cu = [N, . . . , N ]t︸ ︷︷ ︸
p

. (4.1)

(In this case au = pN , and ui ≤ N .) We say that a is (N,u)-quasi-rearrangeable if the

second identity is replaced by Cu ≤ [N, . . . , N ]t.

A matrix A is said to be (N,u)-rearrangeable (quasi-rearrangeable) if each row vector

in A is (N,u)-rearrangeable (quasi-rearrangeable). (Note that the p and C in each row

may be different.)
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To realize the above definition, let us assume that there are m different kinds of objects,

each kind has cardinality ai and each one of the same kind has weight ui (assume that

the gcd of the ui’s is 1), hence the total weight is
∑

i aiui = pN . The rearranging matrix

C is a way to divide these objects into p groups (first identity in (4.1)) such that every

entry of a row represents the number of each kind in the group, and the total weight of

the objects in the group is N (the second identity in (4.1)).

Remark. The main purpose of this rearrangeable matrix A is to modify the horizontal

edges of the offsprings of a component T so that each component Ti in the offsprings has

the same parent x ∈ T (when gcd(u) = 1) . This rearrangement gives a near-isometry of

(X, E) to (X, Ev), and hence ∂(X, E) ' ∂(X, Ev) (by Proposition 4.4). In the following we

also consider Ak and the same idea holds with the k-th generation.

Recall that a non-negative matrix A is called primitive if An > 0 for some n, and is

called irreducible if for any (i, j), there exists k > 0 such that the (i, j)-entry of Ak is

positive. In [9], we proved

Proposition 4.8. Let A be an m×m primitive matrix and u ∈ Nm. Let u = gcd(u),

(i) if Au = Nu, then there exists k > 0 such that Ak is (uNk,u)-rearrangeable;

(ii) if Au ≤ Nu, then there exists k > 0 such that Ak is (uNk,u)-quasi-rearrangeable.

In both cases, the corresponding matrix Ci for each row of Ak is of size (ui/u)×m.

It is well-known that for any non-negative matrix A, it can be brought into the form

of the upper triangular block by a permutation matrix P ,

P tAP =

 A1 ∗
. . .

0 Ar


where each Ai is a square matrix that is either irreducible or zero, i = 1, . . . , r. We give

a stronger result that for certain power A`, the block matrices are primitive, if not zero.

The lemma has independent interest and might be useful elsewhere.

Lemma 4.9. Let A be a non-negative matrix, then we have

(i) if An is irreducible for any n ≥ 1, then A is primitive;

(ii) there is ` ≥ 1 such that the block matrices lying in the diagonal of the canonical

form of A` are either primitive or 0.

Proposition 4.10. Let (X, E) be a simple N -ary augmented tree, and assume that the

incidence matrix A is primitive. Then ∂(TD, E) ' ∂(X, Ev) for any horizontal component

T ∈ F .

Proof. Here we only sketch the main idea. Since the incidence matrix A of (X, E) is

primitive, A is also an incidence matrix of the subgraph TD. Let {[T1], · · · , [Tm]} be the

equivalence classes that are in TD, let ui = #Ti be the number of vertices in Ti, and let

u = gcd(u).
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By Propositions 4.5 and 4.8, there exists k such that Ak is (uNk,u)-rearrangeable.

Without loss of generality we can assume that k = 1. Hence for each Ti, there is a Ci
rearranging its descendants TiΣ into pi = ui/u groups consisting of components Tj ’s,

which are denoted by Vi,k, 1 ≤ k ≤ pi; the number of vertices in Vi,k is uN . We denote

this process by Step I.

Let ` = #T , and let Y be the union of ` copies of (X, Ev). Let E ′ be an augmented

structure on Y by adding horizontal edges that joining u consecutive vertices in each level

(see the right figure in Figure 5). We call this Step II. (Note that number of vertices in

the n-th level is `Nn−1 and u divides `.) Then

∂(Y, E ′) ' ∂(Y, Ev) ' ∂(X, Ev)

as the first ' follows from a direct check that the identity map is a near-isometry, and

the second ' follows from Proposition 4.6.

σT

TΣ

Figure 5: An illustration of σ : (TD, E)→ (Y, E ′) with u = 2, ` = 4,

the •,×, ◦,2 denote four kinds of components.

With this setup, we can define a map σ : (TD, E) → (Y, E ′) as follows. On the first

level, let σ be any bijection from T to Y1. Suppose we have defined σ on Ti of TD in the

n-th level, we can define σ on TiΣ by first applying Step I of rearrangement to obtain

{Vi,k}pik=1, then assigning the vertices of Vi,k to the descendants of σ(Ti) and applying

Step II (see Figure 5). It follows from the rearrangement property that each σ(Vi,k)
are descendants of u consecutive vertices in σ(Ti)(⊂ Yn) (see Theorem 3.7 in [51] for

detail). By the same proof as Theorem 3.7 in [51], that σ is a near-isometry, and hence

∂(TD, E) ' ∂(Y, E ′) ' ∂(X, Ev).

We continue the construction of the near-isometry σ : (X, E) → (X, Ev) with the

following incidence matrix A.

Lemma 4.11. Let (X, E) be a simple N -ary augmented tree with equivalence classes

{[T1], . . . , [Tm]}, and the incidence matrix is of the form

A =

[
A1 A3

0 A2

]
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where A1, A2 are non-zero matrices with orders r and m − r respectively. Let ui = #Ti,

u1 = [u1, . . . , ur]
t and u = gcd(u). Suppose

(i) A1 is (uN,u1)-quasi-rearrangeable;

(ii) for i = r + 1, . . . ,m, there exist near-isometries σi : ((Ti)D, E)→ (Yi, Ev).
Then there exists a near-isometry σ : (X, E)→ (X, Ev), hence ∂(X, E) ' ∂(X, Ev).

Proof. For convenience, we assume that A1 is (N,u1)-quasi-rearrangeable, i.e., gcd(u1) =

1; the general case follows from the same argument of Step II in last proposition. We will

use (i) and (ii) to construct a near-isometry σ : (X, E)→ (X, Ev). We write X1 = (X, E)

and X2 = (X, Ev). Let σ(ϑ) = ϑ and σ(i) = i, i ∈ Σ. Suppose σ has been defined on Σn

such that

(1) for component T ∈ [Ti], i ≤ r, σ(T ) has the same parent, i.e., σ(x)−1 = σ(y)−1

for all x, y ∈ T ⊂ Σn.

(2) for component T ∈ [Ti], i ≥ r + 1, σ(x) = σi(x) for x ∈ TD.

To define the map σ on Σn+1, we note that if T ⊂ Σn in (2), then σ is well-defined

by σi. If T ⊂ Σn in (1), without loss of generality, we let T ∈ [T1]. Then T gives rise

to horizontal components in Σn+1, we group them into Z1,j , j = 1, · · ·m according to the

components belonging to [Tj ].

By the quasi-rearrangeable property of A1 (assumption (i)), for the row vector a1 =

[a11, . . . , a1r], there exists a nonnegative integral matrix C = [csj ]u1×r such that

a1 = 1C and Cu1 ≤ [N, . . . , N ]t.

By using this, we can decompose a1 into u1 groups as follows. Note that a1j denotes the

number of horizontal components that belong to [Tj ]. For each 1 ≤ s ≤ u1, we choose

csj , 1 ≤ j ≤ r, of those components that are of size uj respectively, and denote this

collection by Λs. Then
⋃r
j=1Z1,j can be rearranged into u1 groups⋃r

j=1
Z1,j = Λ1 ∪ · · · ∪ Λu1 , (4.2)

and the total number of vertices in each group is ≤ N .

For the component T = {i1, . . . , iu1} ⊂ Σn in (X, E), we have defined σ(T ) = {j1 =

σ(i1), . . . , ju1 = σ(iu1)} in (X, Ev) by induction. In view of (4.2), we define σ on
⋃r
j=1Z1,j

by assigning vertices in Λs (cardinality ≤ N) to the descendants of js (cardinality N) in a

one-to-one manner; for the remaining T ′ ∈
⋃m
j=r+1Z1,j (maybe empty), say T ′ ∈ [Tj ] and

j ≥ r + 1, we define for x ∈ T ′, σ(x) to be any point in σ(T )Σ \
⋃r
j=1σ(Z1,j) to fill up

the σ(T )Σ. We also use σi to induce a near-isometry σ : TD → (σ(T ))D. We apply the

same construction of σ on the offsprings of every component in Σn+1. Inductively, σ can

be defined from X1 to X2.

We omit the proof that σ is a near-isometry, the reader can refer to [9, Lemma 4.4]

for detail.

Theorem 4.12. Let K be a self-similar set generated by an equicontractive IFS {Si}Ni=1.

If the augmented tree (X, E) is simple, then ∂(X, E) ' ∂(X, Ev).
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Proof. Let {[T1], . . . , [Tm]} be the equivalence classes of horizontal components, ui = #Ti,

and A the associated incidence matrix. By Lemma 4.9, there exist ` ≥ 1 and a permutation

matrix P such that

P tA`P =

 A1 ∗
. . .

0 Ak


where Ai are either 0 or primitive. From the definition of incidence matrix, we see that

Ak 6= 0, hence is primitive. Without loss of generality, we let ` = 1.

If k = 1, then A = A1 is primitive. For any horizontal component T ⊂ Σ, TD has

incidence matrix A also. Hence by Proposition 4.10 that ∂(TD, E) ' ∂(X, Ev). As Σ is

the disjoint union of such T , it follows that ∂(X, E) = ∂(∪(TD, E)) ' ∂(X, Ev).
If k = 2, let A1, A2 correspond to {[T1], . . . , [Tr]}, and {[Tr+1], . . . , [Tr]} respectively.

If A1 = 0, we can take A2 as the incidence matrix of (X, E) by removing finitely many

vertices that belong to [Ti], 1 ≤ i ≤ r. By Proposition 4.10, the result follows. If A1 6= 0,

then Proposition 4.10 implies that assumption (ii) in Lemma 4.11 is satisfied; the other

assumptions also follow readily, and the theorem follows. The general case that k ≥ 2

follows by applying the above argument inductively.

By applying Proposition 3.4 and Theorem 4.12, we obtain

Theorem 4.13. Let K and K ′ be self-similar sets that are generated by two IFSs that

have the same number of similitudes, the same contraction ratio, and satisfy condition (H)

(in Proposition 3.4). Suppose further the two augmented trees are simple. Then K ' K ′.

As an illustration, we consider the following example with IFS {Si}4i=1 defined by

{Ji}4i=1 as in Figure 6. Let r be the contraction ratio of the IFS. Then the self-similar

set K is Lipschitz equivalent to the canonical 4-ary cantor set of contraction ratio r. (For

detail, please see [51, Example 5.4])

Figure 6: The IFS is defined by {Ji}4i=1; the attractor K is Lipschitz

equivalent to the canonical 4-ary Cantor set of the same contraction ratio.
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5 Random walks on augmented trees

In this section we discuss a class of random walks on the augmented trees such that the

Martin boundaries are identified with the hyperbolic boundaries, and the attractor K.

This allows us to carry the discrete potential theory as well as the induced energy forms

(Dirichlet forms) on K [36,38,39]. We use the notation f � g to mean that there exists a

constant C > 0 such that C−1g(x) ≤ f(x) ≤ Cg(x) for any variable x in a given domain.

We recall some basic notions of discrete potential theory (see [11,60]). Let (X,G) be a

locally finite connected graph with the root ϑ ∈ X. A (reversible) random walk on (X,G)

is a Markov chain {Zn}∞n=0 with the state space X and the transition probability given

by P (x, y) = c(x,y)
m(x) , x, y ∈ X, where the conductance c(·, ·) is a nonnegative symmetric

function on X × X that satisfies c(x, y) > 0 if and only if (x, y) ∈ G, and m(x) :=∑
y∈X c(x, y) is the total conductance at x. A function f : X → R is called P -harmonic if∑
y∈X P (x, y)f(y) = f(x) for all x ∈ X; the graph energy of f is defined by

EX [f ] =
1

2

∑
x,y∈X

c(x, y)|f(x)− f(y)|2.

We assume that {Zn} is transient, i.e., the Green function G(x, y) =
∑∞

n=0 P
n(x, y)

is finite for all x, y ∈ X, where Pn is the n-step transition probability which can be

defined inductively by Pn+1(x, y) =
∑

z∈X P (x, z)Pn(z, y) with P 0 being the identity

matrix on X. Write P(· | Z0 = x) as Px(·) for short. We denote by F (x, y) = Px(∃ n ≥
0 such that Zn = y) the ever-visiting probability from x to y; it is known that G(x, y) =

F (x, y)G(y, y), and F (x, y) ≥ F (x, z)F (z, y) for all x, y, z ∈ X. The Martin kernel is

defined as

K(x, y) =
G(x, y)

G(ϑ, y)
=
F (x, y)

F (ϑ, y)
, x, y ∈ X.

Following [11,60], we define the Martin metric ρM (·, ·) on X by

ρM (x, y) =
∑

u∈X
a(u)

(
|K(u, x)−K(u, y)|+ |χu(x)− χu(y)|

)
,

where a : X → (0,∞) satisfies
∑

u∈X
a(u)
F (ϑ,u) < ∞, and χu is the indicator function at u.

In view of

K(u, x) =
F (u, x)

F (ϑ, x)
≤ 1

F (ϑ, u)
,

we see that ρM (·, ·) is well defined and is a metric on X.

Definition 5.1. Let X̂M be the completion of (X, ρM ). We call M = X̂M \X the Martin

boundary of {Zn}.

Note that the completion coincides with the minimal compactification of X such that

for every x ∈ X, K(x, ·) extends continuously to X̂M [60]. Under this topology (or the

Martin metric on X̂M ), the trajectory {Zn} converges to an M-valued random variable

Z∞ almost surely. Let ν denote the hitting distribution of Z∞ on M when Z0 = ϑ. For
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ξ ∈M, the ξ-process is defined as the random walk {Zξn}∞n=0 on (X,G) with the transition

probability P ξ(x, y) = P (x, y)K(y,ξ)
K(x,ξ) , x, y ∈ X (P ξ is a transition probability since K(·, ξ)

is P -harmonic), and the corresponding hitting distribution is denoted by νξ. The minimal

Martin boundary Mmin of {Zn} is the collection of all ξ ∈ M such that νξ is the point

mass at ξ; it is known that ν(M\Mmin) = 0.

To obtain the energy form on M, we define the Näım kernel by

Θ(x, y) =
K(x, y)

G(x, ϑ)
=

F (x, y)

F (x, ϑ)G(ϑ, ϑ)F (ϑ, y)
, x, y ∈ X.

Clearly Θ(·, ·) is symmetric on X ×X, and can be extended continuously to X ×M as

the Martin kernel K(·, ·) does. The extension onM×M\∆ (here ∆ := {(ξ, ξ) : ξ ∈M})
is formulated by

Θ(ξ, η) = lim
m→∞

∑
z∈Xm

`ξm(z)Θ(z, η), ξ 6= η ∈M, (5.1)

where `ξm(z) = Pξϑ
(
∃ n ≥ 0 3 Zξn = z, Zξk /∈ Xm ∀ k > n

)
is the last-visiting probability on

Xm of the ξ-process [57]; the limit exists as the sum is increasing in m.

For a ν-integrable function u on M, its Poisson integral Hu is given by

(Hu)(x) =

ˆ
M
K(x, ξ)u(ξ)dν(ξ), x ∈ X.

Note that K(·, ξ) is P -harmonic for all ξ ∈M, so is Hu. For u ∈ L2(M, ν), we define the

induced energy of u by

EM[u] = EX [Hu] =
1

2

∑
x,y∈X

c(x, y)|Hu(x)−Hu(y)|2.

The domain of the quadratic form EM is DM = {u ∈ L2(M, ν) : EM[u] <∞}.

Theorem 5.2. (Silverstein [57]) The induced energy has the expression

EM[u] =
m(ϑ)

2

¨
M×M\∆

|u(ξ)− u(η)|2Θ(ξ, η)dν(ξ)dν(η), u ∈ DM.

For a hyperbolic graph (X,G), we need some hypotheses on {Zn} to identify M with

the hyperbolic boundary ∂X:

(p0) p∗ := inf(x,y)∈E P (x, y) > 0;

(SI) (strong isoperimetry) sup{m(F )
c(∂F ) : F is a finite subset of X} < ∞, where m(F ) =∑

x∈F m(x) and c(∂F ) =
∑

x∈F,y/∈F c(x, y).

The (p0) implies that deg(x) ≤ (miny∈X:x∼y P (x, y))−1 ≤ p−1
∗ for all x ∈ X, hence (X,G)

has bounded degree. Also, it is known that (SI) yields the transience of {Zn} [60].
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Theorem 5.3. (Ancona [1]) Let (X,G) be a hyperbolic graph. Suppose {Zn} is a random

walk on (X,G) satisfying (p0) and (SI). Then there exists a constant C0 ≥ 1 such that

F (x, y) ≤ C0F (x, z)F (z, y) (5.2)

whenever x, y, z ∈ X and z lies on some π(x, y). Moreover, the Martin boundary M
equals Mmin, and is homeomorphic to the hyperbolic boundary ∂X.

To apply the above theorem, we provide a sufficient condition for {Zn} satisfying (SI).

For x ∈ X \ {ϑ}, define the return ratio at x ∈ X by

λ(x) :=
Px(|Z1| = |x| − 1)

Px(|Z1| = |x|+ 1)
=

∑
z∈J−1(x) c(x, z)∑
y∈J1(x) c(x, y)

.

Following a similar proof as [38, Theorem 5.1], we have

Proposition 5.4. Suppose a random walk {Zn} on a rooted graph (X,G) satisfies (p0)

and supx∈X\{ϑ} λ(x) < 1. Then {Zn} has strong isoperimetry (SI).

To obtain explicit estimates of Martin kernels and Näım kernels, we will consider a

class of random walks satisfying

(Rλ) (constant return ratio) λ(x) ≡ λ ∈ (0, 1) for all x ∈ X \ {ϑ}.
With condition (Rλ), by counting the time instants n0 = 0 and nk = inf{` > nk−1 : |Z`| 6=
|Z`−1|} for k ≥ 1 inductively, the sequence {|Znk |}∞k=0 is a birth and death chain on the

nonnegative integers with the transition probability P̃ (0, 1) = 1, P̃ (m,m− 1) = λ
1+λ , and

P̃ (m,m+ 1) = 1
1+λ for m ≥ 1; it follows that

F (x, ϑ) = F̃ (|x|, 0) = λ−|x|, ∀ x ∈ X. (5.3)

Definition 5.5. Let λ ∈ (0, 1). A random walk {Zn} on (X,G) is said to be λ-natural

(λ-NRW) if it satisfies (p0) and (Rλ).

Remark. The above definition generalizes the NRW (and quasi-NRW) in [38], which was

defined by self-similar measures of natural weight (with doubling property respectively).

We will see in the following Theorem 5.6 that the new NRW is characterized by the

doubling regular Borel measures. Note also that this definition is equivalent to the NRW

in [39] by Theorem 5.6.

From Proposition 5.4 we know that every λ-NRW satisfies (SI), and if (X,G) is hyper-

bolic, then Theorem 5.3 applies.

In the rest of this section, we will consider the λ-NRW {Zn} on the augmented tree

(X, Ẽ) associated to a self-similar set K (Definition 3.1). Recall that a regular Borel

measure µ on K is called (volume) doubling (VD) if there exists C ≥ 1 such that

0 < µ(B(ξ, 2r)) ≤ Cµ(B(ξ, r)) <∞, ∀ ξ ∈ K, r > 0.

The following theorem improves and strengthens [38, Theorem 4.8].
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Theorem 5.6. Let {Sj}Nj=1 be an IFS of contractive similitudes with attractor K, and let

(X, Ẽ) be an associated augmented tree in Definition 3.1. Then (X, Ẽ) admits a λ-NRW if

and only if {Sj}Nj=1 satisfies the OSC. Moreover, the conductance of the λ-NRW satisfies

c(x, x−) = λ−|x|µ(Kx), ∀ x ∈ X \ {ϑ}, (5.4)

for some doubling measure µ on K with

µ(Kx ∩Ky) = 0, ∀ x 6= y ∈ X with |x| = |y|. (5.5)

Proof. For the first statement, as the (p0) implies the bounded degree property of (X, Ẽ),

by Theorem 3.7, the OSC on {Sj}Nj=1 is necessary for possessing a λ-NRW.

To prove the sufficiency, we assume the OSC, and use the α-Hausdorff measure Hα to

construct a λ-NRW, where α is the Hausdorff dimension of K. It is known that under

the OSC, 0 < Hα(Kx) = rαxHα(K) < ∞ holds for all x ∈ X, and Hα(Kx ∩Ky) = 0 for

all distinct x, y ∈ X with |x| = |y| [13, 56,62]. For x ∈ X \ {ϑ} and (x, y) ∈ Ẽh, we let

c(x, x−) = λ−|x|Hα(Kx), c(x, y) = λ−|x|
√
Hα(Kx)Hα(Ky).

Then for x ∈ X \ {ϑ},

λ(x) =
c(x, x−)∑

y∈J1(x) c(x, y)
=

λ−|x|Hα(Kx)

λ−(|x|+1)
∑

y∈J1(x)Hα(Ky)
= λ.

To verify condition (p0), as the OSC is equivalent to the bounded degree property of

(X, Ẽ) (Theorem 3.7), let ` = supx∈X #{z : (x, z) ∈ Ẽh} < ∞. Note that for x ∈ Xn, we

have rn+1
∗ < rx ≤ rn∗ by (3.1). Therefore

m(x) = c(x, x−) +
∑

y∈J1(x)
c(x, y) +

∑
z∈X:(x,z)∈Ẽh

c(x, z)

= λ−nHα(K) ·
(
rαx + λ−1rαx +

∑
z∈X:(x,z)∈Ẽh

rα/2x rα/2z

)
≤ λ−nrαn∗ Hα(K) · (1 + λ−1 + `),

and c(x, y) ≥ λ−nrα(n+1)
∗ Hα(K) min{1, λ−1rα∗ } for y ∈ X with (x, y) ∈ Ẽ .

This proves the (p0) by P (x, y) = c(x,y)
m(x) ≥ rα∗ (1 + λ−1 + `)−1 min{1, λ−1rα∗ } for all

(x, y) ∈ Ẽ . Hence such conductance c defines a λ-NRW.

For the second part, let c′ be the conductance of a λ-NRW. Write qx = c′(x, x−)λ|x|

for x ∈ X \ {ϑ}, and qϑ = m′(ϑ)λ. By λ(x) ≡ λ, we have qx =
∑

y∈J1(x)qy for all x ∈ X.

For n ≥ 0 and a Borel set E ⊂ K, define

µn(E) = inf{
∑`

i=1
qxi : E ⊂

⋃`

i=1
Kxi , xi ∈ Xn}.

Clearly µn(E) is decreasing in n. Let µ(E) = limn→∞ µn(E). Then it is standard to check

that µ is a regular Borel measure on K, and from the OSC, it follows that

µn(Kx) =
∑

y∈Jn−|x|(x)
qy = qx, ∀ x ∈ X, n ≥ |x|,
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therefore µ(Kx) = qx for all x ∈ X. Denote Ux = K \
(⋃

y∈X|x|\{x}Ky

)
. Then Ux ⊂ Kx,

we have

qx = µ(K)−
∑

y∈X|x|\{x}
µ(Ky) ≤ µ(Ux) ≤ µ(Kx) = qx.

Hence µ(Ux) = µ(Kx) = qx, and this proves (5.5).

Finally we show that µ is doubling. Let p∗ = inf
(x,y)∈Ẽ P (x, y) (> 0 by the (p0)). Note

that for x ∈ X \ {ϑ},

qx− < m′(x−)λ|x|−1 =
c′(x−, x)λ|x|−1

P (x−, x)
≤ qx
λp∗

, (5.6)

and for (x, y) ∈ Ẽh,

qy < m′(y)λ|y| =
c′(y, x)λ|y|

P (y, x)
<
m′(x)λ|x|

P (y, x)
=

c′(x, x−)λ|x|

P (y, x)P (x, x−)
≤ qx
p2∗
. (5.7)

Suppose ξ ∈ K and 0 < r ≤ |K|. Let n1 be the integer such that rn1∗ |K| < r ≤ rn1−1
∗ |K|.

Choose x ∈ Xn1 such that ξ ∈ Kx. As |Kx| ≤ rn1∗ |K| < r, we have Kx ⊂ B(ξ, r), and

µ(B(ξ, r)) ≥ µ(Kx) = qx.

Let γ > 0 be as in (3.2). If γ ≤ 2r, then from the choice of n1 we see that γ ≤ 2|K|rn1−1
∗ ,

therefore n1 ≤ log(γ/2|K|)
log r∗

+ 1 := m0. Using (5.6) repeatedly, we have

µ(B(ξ, 2r)) ≤ µ(K) = qϑ < (λp∗)−n1qx ≤ (λp∗)−m0µ(B(ξ, r)).

If γ > 2r, we let n2 be the maximal integer such that γ · rn2∗ ≥ 2r and n2 ≤ n1. Then

either γ · rn2+1
∗ < 2r ≤ 2|K|rn1−1

∗ or n2 = n1 holds true, which implies 0 ≤ n1 − n2 ≤
max{0, log(γ/2|K|)

log r∗
+ 2} =: m1. Let u be the unique (n1 − n2)-th predecessor of x. Denote

Tu =
⋃
v∈X:u∼hvKv. For η /∈ Tu, as |η − ξ| ≥ dist(η,Ku) > γ · rn2∗ ≥ 2r, we see that

B(ξ, 2r) ⊂ Tu. It follows from (5.7) and (5.6) that

µ(B(ξ, 2r)) ≤ µ(Tu) = qu +
∑

v∈X:(u,v)∈Ẽh
qv

< (1 + `p−2
∗ )qu < (1 + `p−2

∗ )(λp∗)−(n1−n2)qx

≤ (1 + `p−2
∗ )(λp∗)−m1µ(B(ξ, r)).

Hence µ is doubling, and completes the proof.

Without loss of generality, we will assume that the doubling measure µ in (5.4) satisfies

µ(K) = 1. For a λ-NRW {Zn} on (X, Ẽ), by applying Theorems 3.2 and 5.3, the Martin

boundaryM =Mmin, and is homeomorphic to the hyperbolic boundary ∂X as well as the

attractor K. From now on we will identify K withM, and regard the hitting distribution

ν as a probability measure on K. Using (5.3) and a time reversal argument on {Zn}, we

have

F (ϑ, x) � Pϑ(Zτm = x) = µ(Kx), ∀ x ∈ Xm, m ≥ 0, (5.8)

where τm = inf{n ≥ 0 : Zn ∈ Xm} is the first hitting time for Xm (see [38] for details).

24



Theorem 5.7. Let {Zn} be a λ-NRW on an augmented tree (X, Ẽ) associated to a self-

similar set K. ThenM, ∂X and K are homeomorphic. Moreover, the hitting distribution

ν equals the probability doubling measure µ given in (5.4).

Proof. We only need to prove ν = µ. Let Ux and Tx be as in the proof of the above

theorem. We fix a projection ι : X → K that satisfies ι(x) ∈ Ux for each x ∈ X, and let

T (m)
x =

⋃
y∈Jm(x)

Ty, x ∈ X, m ≥ 0.

Then it is clear that
⋂∞
m=0 T

(m)
x = Kx. For any m fixed, as dist(K \ T (m)

x ,Kx) > 0, the

event Z∞ ∈ Kx implies that ι(Zn) lies eventually in T
(m)
x . Using Fatou’s lemma together

with (5.5) and (5.8), we have

ν(Kx) = Pϑ(Z∞ ∈ Kx) ≤ Eϑ
(

lim inf
n→∞

χ
T

(m)
x

(ι(Zn))
)

≤ lim inf
n→∞

Pϑ(ι(Zn) ∈ T (m)
x )

≤ lim inf
`→∞

Pϑ(ι(Zτ`) ∈ T
(m)
x ) = µ(T (m)

x ).

Letting m→∞, it follows ν(Kx) ≤ µ(Kx) for all x ∈ X, which implies ν(F ) ≤ µ(F ) for

any Borel set F ⊂ K; the same “≤” holds for K \ F . Hence ν(F ) = µ(F ), and completes

the proof.

For distinct ξ, η ∈ X ∪K(≈ X̂), we define

pµ(ξ, η) = sup{µ(Kz) : z ∈ X and lies on some geodesic π(ξ, η)}.

It is easy to see that the supremum can be reached at a vertex on the horizontal segment

of some convex geodesic between ξ and η. Moreover, this pµ(·, ·) satisfies the estimate

pµ(ξ, η) � V (ξ, η) := µ(B(ξ, |ξ − η|)), ∀ ξ, η ∈ K, ξ 6= η. (5.9)

Theorem 5.8. Let {Zn}∞n=0 be a λ-NRW on an augmented tree (X, Ẽ). Then

F (x, y) � λ|x|−(x|y)µ(Ky)pµ(x, y)−1, ∀ x, y ∈ X.

Consequently, the Martin kernel satisfies the estimate

K(x, η) � λ|x|−(x|η)pµ(x, η)−1, ∀ x ∈ X, η ∈ X ∪K.

Proof. For x, y ∈ X, let π(x, u, v, y) be a convex geodesic on which a vertex w lies on

the horizontal segment π(u, v) with µ(Kw) = pµ(x, y). By observing that F (x, z) ≥
F (x, z)F (z, y) for z ∈ X together with (5.2) in Theorem 5.3, we have

F (x, y) � F (x, u)F (u, v)F (v, y) � F (x, ϑ)

F (u, ϑ)
· F (u, v) · F (ϑ, y)

F (ϑ, v)
.
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As the length of π(u, v) does not exceed L (Theorem 2.6), we see that pL∗ ≤ F (u, v) ≤ 1

(here p∗ := inf
(x,y)∈Ẽ P (x, y) > 0), and the volume doubling property of µ implies that

µ(Kv) � µ(Kw) = pµ(x, y). From the estimates (5.3) and (5.8), it follows that

F (x, y) � λ|x|−|u|µ(Ky)µ(Kv)
−1 � λ|x|−(x|y)µ(Ky)pµ(x, y)−1.

This leads to the estimate K(x, y) = F (x,y)
F (ϑ,y) � λ

|x|−(x|y)pµ(x, y)−1 for x, y ∈ X, and passing

the limit along some ray [yi]i that converges to η, it can be extended to X ×K.

From the above estimates, it is easy to see that Θ(x, η) = K(x,η)
F (x,ϑ)G(ϑ,ϑ) � λ

−(x|η)pµ(x, η)−1

for all x ∈ X and η ∈ K. By using a similar technique as in [38, Theorem 6.3], we can

analyze the limit in (5.1), and extend such Näım kernel estimate to K ×K.

Theorem 5.9. Let {Zn}∞n=0 be a λ-NRW on an augmented tree (X, Ẽ). Then the Näım

kernel satisfies the estimate

Θ(ξ, η) � λ−(ξ|η)pµ(ξ, η)−1, ∀ ξ, η ∈ K, ξ 6= η.

Consequently, by (3.3) and (5.9), we have

Θ(ξ, η) � 1

V (ξ, η)|ξ − η|β
, ∀ ξ, η ∈ K, ξ 6= η,

where µ is the doubling measure associated with the λ-NRW as in (5.4), V (ξ, η) :=

µ(B(ξ, |ξ − η|)), and β = log λ
log r∗

.

In particular, if µ is chosen to be the normalized α-Hausdorff measure on K (where

α is the Hausdorff dimension of K), then µ(B(ξ, r)) � rα for all ball B(ξ, r) ⊂ K, and

the above estimate becomes Θ(ξ, η) � |ξ − η|−(α+β) [38]. Applying Silverstein’s Theorem

(Theorem 5.2) together with Theorems 5.7 and 5.9, we get

Theorem 5.10. Let {Zn}∞n=0 be a λ-NRW on an augmented tree (X, Ẽ). Then the induced

energy form (EK ,DK) satisfies

EK [u] := EX [Hu] �
¨
K×K\∆

|u(ξ)− u(η)|2

V (ξ, η)|ξ − η|β
dµ(ξ)dµ(η), ∀ u ∈ DK ,

where DK := {u ∈ L2(K,µ) : EK [u] <∞}, and β = log λ
log r∗

.

Remark. The above theorems also hold for (X, E) with property (H), as in this case

E = Ẽ as in Proposition 3.4.

The domain DK is equal to a Besov space Λ
β/2
2,2 (see [38,39]); it is decreasing in β, and

can be trivial (i.e., consists of only constant functions) when β is large. As EK defines

a symmetric bilinear form EK(·, ·) via the standard polarization, we are interested in the
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conditions for (EK ,DK) to be nontrivial, or becomes a regular (non-local) Dirichlet form

on L2(K,µ) [16]. The key for this is to determine the value of the critical exponents

β] := sup{β > 0 : dim(Λ
β/2
2,2 ∩ C(K)) > 1}, and

β∗ := sup{β > 0 : Λ
β/2
2,2 ∩ C(K) is dense in C(K) with the supremum norm},

where C(K) is the family of all continuous functions on K. It is known that 2 ≤ β∗ ≤ β]

in general; for classical domains in Rd with Lebegue measure, β∗ = β] = 2; for Cantor-

type sets, β∗ = β] =∞; for the d-dimensional Sierpiński gasket with α-Hausdorff measure

(here α = log(d+1)
log 2 is the Hausdorff dimension), β∗ = β] = log(d+3)

log 2 [28]; some examples

with β∗ < β] are provided in [20, 36]. Moreover, if K satisfies a chain condition in [18],

then β∗ ≤ β] ≤ d̄µ + 1, where d̄µ is the upper dimension given by

d̄µ = inf{α > 0 : ∃ c > 0 such that µ(B(ξ, r)) ≥ crα ∀ ξ ∈ K and r ∈ (0, 1)}.

It is also known that DK ⊂ C(K) when β > d̄µ (i.e., λ < r
d̄µ
∗ ). As a consequence, in the

case that β∗ > d̄µ, (EK ,DK) is a regular Dirichlet form for any β ∈ (d̄µ, β
∗).

We provide an approach to these critical exponents by using the networks of NRWs

(see details in [36]). For each λ ∈ (0, 1), in view of Theorem 5.6, we fix a conductance

c(λ)(·, ·) on (X, Ẽ) that defines a λ-NRW with a given doubling measure µ:

c(λ)(x, x−) = λ−|x|µ(Kx), x ∈ X \ {ϑ}, c(λ)(x, y) = λ−|x|
√
µ(Kx)µ(Ky), (x, y) ∈ Ẽh.

(5.10)

For m ≥ 1, by restricting the graph energy to
⋃m
i=0Xi, we let

E
(λ)
X,m[f ] =

1

2

∑
x,y∈X:|x|,|y|≤m

c(λ)(x, y)|f(x)− f(y)|2

for a real function f on X, and define the level-m resistance by

R(λ)
m (x, y) =

(
inf{E(λ)

X,m[f ] : f(x) = 1, f(y) = 0}
)−1

, x, y ∈ Xm.

To represent the resistance on K by a limit, we choose a sequence {κm}∞m=0, in which κm
is a map from K to Xm, satisfying that for any ξ ∈ K(≈ ∂X), {κm(ξ)}∞m=0 is a geodesic

ray converging to ξ. Define

R(λ)(ξ, η) := lim inf
m→∞

R(λ)
m (κm(ξ), κm(η)), ξ, η ∈ K.

With the assumption λ < r
d̄µ
∗ , it can be proved that the above limit always exists (hence

the “lim inf” can be replaced by “lim”), and is independent of the choice of {κm}; in this

case, R(λ)(ξ, η) > 0 if and only if there exists u ∈ DK such that u(ξ) 6= u(η).

We will further assume that the measure µ is self-similar, i.e., µ(·) =
∑

j∈Σ pjµ(S−1
j (·))

for some set {pj}j∈Σ of positive probability weights. For j ∈ Σ, denote by j∞ the unique

fixed point of the contractive similitude Sj , i.e., {j∞} =
⋂∞
n=0Kjn .
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Theorem 5.11. Suppose {Sj}j∈Σ is an IFS of contractive similitudes satisfying the OSC,

and µ is a doubling self-similar measure on the attractor K. For λ ∈ (0, 1), let {Zn} be

the λ-NRW on (X, Ẽ) defined by the conductance c(λ)(·, ·) as in (5.10). Then DK ∩C(K)

consists of only constant functions if R(λ)(i∞, j∞) = 0 for all i, j ∈ Σ, and the converse

is also true for λ ∈ (0, r
d̄µ
∗ ).

Consequently, β] = log λ]

log r∗
if

λ] := sup{λ > 0 : R(λ)(i∞, j∞) = 0, ∀ i, j ∈ Σ} ∈ (0, r
d̄µ
∗ ),

and β] =∞ if the above set of λ is empty.

We also have a result for β∗ when K is a p.c.f. set that satisfies

(?) there exist constants r0, C > 0 such that for any i, j ∈ Σ and ζ ∈ Ki ∩Kj,

|ξ − ζ|+ |ζ − η| ≤ C|ξ − η| whenever ξ ∈ Ki ∩B(ζ, r0) and η ∈ Kj ∩B(ζ, r0).

This condition (?) is fulfilled for most of familiar p.c.f. sets including all nested fractals.

Let V0 denote the projection of the post critical set, known as the boundary of K.

Theorem 5.12. With the same assumption as in Theorem 5.11, assume further that K

is p.c.f. and satisfies (?). If λ ∈ (0, r
d̄µ
∗ ), and for some ε ∈ (0, λ),

R(λ−ε)(ξ, η) > 0, ∀ ξ, η ∈ V0, ξ 6= η,

then DK is dense in C(K), and hence (EK ,DK) is a regular non-local Dirichlet form.

Consequently, β∗ = log λ∗

log r∗
if

λ∗ := inf{λ > 0 : R(λ)(ξ, η) > 0, ∀ ξ, η ∈ V0, ξ 6= η} ∈ [0, r
d̄µ
∗ ),

and β∗ ≤ log λ∗

log r∗
otherwise.

6 Expansive hyperbolic graphs

We establish a class of graphs called expansive hyperbolic graphs, which covers the various

augmented trees considered, and includes cases not governed by the IFS, like refinement

systems. It has the potential to have broader applications.

Definition 6.1. We call a rooted graph (X, E) an expansive graph if it satisfies for x, y ∈
X with |x| = |y|,

dh(x, y) > 1 ⇒ dh(u, v) > 1, ∀ u ∈ J1(x), v ∈ J1(y),

or equivalently if each u ∼h v with u ∈ J1(x) and v ∈ J1(y) implies that x ∼h y.
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It is easy to see that the above condition is also equivalent to

max{dh(u, v), 1} ≥ dh(x, y), u ∈ J1(x), v ∈ J1(y). (6.1)

Intuitively, in an expansive rooted graph the children are drifted farther apart than their

non-neighboring parents. Note that the expansive property is also equivalent to property

(*) in Lemma 2.5 if the vertical subgraph (X, Ev) is a tree.

There are important cases that the vertical parts of expansive graphs are not trees: for

example, the treatment of the IFS with a weak separation condition by taking quotients

of vertices on the augmented tree (X, E) [58]. By the same argument as in Lemma 2.5,

we see that any two vertices x, y ∈ X can be connected by a convex geodesic. To study

the hyperbolicity of (X, E), we introduce one more definition.

Definition 6.2. Let m, k be two positive integers. A rooted graph (X, E) is said to be

(m, k)-departing if for x, y ∈ X,

dh(x, y) > k ⇒ dh(u, v) > 2k, ∀ u ∈ Jm(x), v ∈ Jm(y).

It follows from the definitions that every (1, 1)-departing graph is expansive; every

rooted tree is (m, k)-departing for any m, k. However, an infinite expansive graph may

not be (m, k)-departing for any m, k. It is direct to check that

(m, k)-departing ⇒ (m, `k)-departing, and (`′m, k)-departing ∀ `, `′ > 1. (6.2)

In particular, (1, 1)-departing implies (m, k)-departing for any m, k ≥ 1. As an example,

we can show that the augmented tree (X, E) of the Sierpinski gasket (see [30]) is (1, 1)-

departing. With a little more work, we can show that the augmented tree (X, E) of the

Hata tree (see [32]) is (2, 1)-departing, but not (1, 1)-departing.

The (m, k)-departing property provides very useful criteria to check the hyperbolicity.

Theorem 6.3. Let (X, E) be an expansive graph. Then the following are equivalent.

(i) (X, E) is hyperbolic;

(ii) ∃ L <∞ such that the lengths of all h-geodesics are bounded by L;

(iii) (X, E) is (m, k)-departing for some positive integers m, k.

Proof. (i)⇔ (ii) follows from a similar proof as in Theorem 2.6.

(ii) ⇒ (iii) : we claim that (X, E) is (L + 1, L + 2)-departing. Indeed, let x, y ∈ X,

x′ ∈ JL+1(x) and y′ ∈ JL+1(y) satisfying L+ 2 < dh(x′, y′) ≤ 2(L+ 2) (see Figure 7). By

the expansive property (as in Proposition 2.5), there exists a convex geodesic π(x′, u, v, y′)
between x′ and y′, and u 6= x′ (by the first inequality and (ii)). Let u, v ∈ Xj , then

2(L+ 2) ≥ dh(x′, y′) > d(x′, y′) = 2(|x′| − |j|) + dh(u, v) ≥ 2(|x′| − j).
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As ` := |x′| − j ≤ L+ 1 = |x′| − |x|, we have j ≥ |x|. Let u′ ∈ J∗(x) ∩ J−∗(x′) ∩Xj and

v′ ∈ J∗(y) ∩ J−∗(y′) ∩Xj . Since x′ ∈ J`(u) ∩ J`(u′), u and u′ are predecessors of x′, and

we have u ∼h u′ by the expansive property. Similarly v ∼h v′. Hence by (6.1) and (ii),

dh(x, y) ≤ max{dh(u′, v′), 1} ≤ dh(u, v) + 2 ≤ L+ 2.

This proves the claim.

b b

bb

b bb b

x′ y′

yx

u′ v′
u v

Figure 7: Illustration for the proof of (ii)⇒ (iii).

(iii)⇒ (ii) : suppose (X, E) is (m, k)-departing. If (ii) does not hold, then there exists

x, y ∈ X, |x| = |y|, and horizontal geodesic π(x, y) such that |π(x, y)| = 2m + `k + 1,

where ` > (2m+1)/k is an integer. It is clear that 2|x| = d(x, ϑ)+d(ϑ, y) ≥ d(x, y) > 2m,

which implies |x| > m. Let x[−m] ∈ J−m(x) and y[−m] ∈ J−m(y). Computing the length

of the path joining x and y with x to x[−m], horizontally to y[−m], then to y, we have

m+ dh(x[−m], y[−m]) +m ≥ d(x, y) = 2m+ `k + 1.

It follows that dh(x[−m], y[−m]) > `k. Hence by (6.2), we have dh(x, y) = d(x, y) > 2`k,

i.e., 2m+ `k + 1 > 2`k, which leads to ` < (2m+ 1)/k, a contradiction.

We will call the graph in the above theorem an expansive hyperbolic graph.

The (m, k)-departing property also provides a useful estimate of the Gromov product.

Let Rv = {x = [xi]
∞
i=0 : x0 = ϑ, and xi+1 ∈ J1(xi), ∀ i ≥ 0} be the set of all rays in

(X, E). For any two rays x,y ∈ Rv, we define |x ∨ y|j = sup{i ≥ 0 : dh(xi, yi) ≤ j}.

Lemma 6.4. Suppose (X, E) is expansive and (m, k)-departing. Then there exists D0 > 0

(depends on m, k) such that∣∣(x|y)− |x ∨ y|k
∣∣ ≤ D0, ∀ x,y ∈ Rv.

Moreover, two rays are equivalent if and only if dh(xi, yi) ≤ k for all i.

On the hyperbolic boundary (∂X, θa), we define

J∂(x) = {ξ ∈ ∂X : ∃ ray π(ϑ, · · · , x, · · · ) that converges to ξ}, x ∈ X,

to be the set of descendants of x in ∂X. Under the Gromov metric θa, |J∂(x)| ≤ Ce−a|x|

and is compact. This J∂(x) acts as the Kx in the augmented tree of the IFS. By using

Lemma 6.4, we have an analog of the condition (H) in Section 3.
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Proposition 6.5. Let (X, E) be an (m, k)-departing expansive graph. Then there exists

a constant γ > 0 (depends on a) such that for x, y ∈ Xn, n ≥ 1,

dh(x, y) > k ⇒ distθa(J∂(x),J∂(y)) > γe−an.

A metric space (M,ρ) is called a doubling metric space [24] if there exists an integer

` > 0 such that for any ξ ∈ M and r > 0, the ball Bρ(ξ, r) can be covered by a union

of not more than ` balls of radius r/2. We prove the following interesting theorem using

Theorem 6.3, Lemma 6.4 and Proposition 6.5.

Theorem 6.6. Suppose (X, E) is a hyperbolic expansive graph and has bounded degree.

Then the hyperbolic boundary (∂X, θa) is doubling.

In the rest of this section, we will consider a generalization of the augmented trees. Fix

a complete metric space (M,ρ), and let CM denote the family of all nonempty compact

subsets of M . By our convention in Section 2, J∂(x) 6= ∅ for all x ∈ X.

Definition 6.7. Let (X, Ev) be a vertical rooted graph. A map Φ : X → CM is called an

index map (on (X, Ev) over (M,ρ)) if it satisfies

(i) Φ(y) ⊂ Φ(x) for all x ∈ X and y ∈ J1(x);

(ii)
⋂∞
i=0 Φ(xi) is a singleton for all x = [xi]i ∈ Rv.

We call K :=
⋂∞
n=0

(⋃
x∈Xn Φ(x)

)
the attractor of Φ, and Kx := Φ(x) ∩K a cell of K.

We also call the index map saturated if Φ(x) =
⋃
y∈J1(x) Φ(y).

Remark 1. For an index map Φ, let Φ∂(x) :=
⋂∞
n=0

(⋃
y∈Jn(x) Φ(y)

)
, x ∈ X. Then Φ∂

is a saturated index map, and Φ∂(x) ⊂ Φ(x). If Φ is saturated, then Φ(x) = Kx = Φ∂(x).

The index map Φ defines a mapping κ0 : Rv → K by

{κ0(x)} =
⋂∞

i=0
Φ(xi), ∀ x ∈ Rv.

Using the local finiteness of (X, Ev) and a diagonal argument (see [46, 60]), we can show

that the image of κ0 is equal to K. Note that for a hyperbolic expansive graph (X, E), the

hyperbolic boundary ∂X can be identified with a quotient set of Rv. Hence the induced

κ : ∂X → K is well-defined if κ0 satisfies: κ0(x) = κ0(y) provided that x and y are

equivalent; furthermore κ : ∂X → K is one-to-one if the converse is also satisfied. With

these, we see that κ : ∂X → K is a well-defined bijection if

x,y are equivalent ⇔ κ0(x) = κ0(y).

Definition 6.8. We call (X, E ,Φ) an admissible index triple if (X, E) is an expansive

hyperbolic graph, Φ : X → CM is an index map on (X, Ev) over (M,ρ), and κ : ∂X → K

is well-defined and is a bijection. In such case, (X, E) is said to be an admissible graph

(with respect to Φ).
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Remark 2. For an admissible index triple (X, E ,Φ), if Φ is saturated, then by Remark

1, we have Φ(x) = Φ∂(x) = κ(J∂(x)), and the Gromov metric θa implies

|Φ(x)|θ̃a = |J∂(x)|θa ≤ Ce−a|x|

where θ̃a is the metric on K induced by θa via the bijection κ : ∂X → K.

For a subset A in (M,ρ), we denote the diameter of A by |A|ρ (or simply by |A|).
In Definition 6.7, we see that the family {Φ(x)}x∈X satisfies limn→∞supx∈Xn |Φ(x)|ρ = 0.

For b ∈ (0,∞), we say that {Φ(x)}x∈X (or Φ) is of exponential type-(b) (under ρ) if the

diameter |Φ(x)|ρ is decreasing in a rate of e−b|x|, i.e., |Φ(x)|ρ = O(e−b|x|) as |x| → ∞, and

call Φ an exponential type if it is of type-(b) for some b ∈ (0,∞).

The following two classes of rooted graphs are our main consideration of the index

triples, which generalize the two augmented trees in Definition 3.1: the exponential type-

(b) corresponds to the r∗ in (3.2) with r∗ = e−b.

Definition 6.9. Let Φ be an index map on the vertical rooted graph (X, Ev). We define

a horizontal edge set by

E(∞)
h :=

⋃∞
n=1

{
(x, y) ∈ Xn ×Xn \∆ : Φ(x) ∩ Φ(y) 6= ∅

}
,

and let E(∞) = Ev ∪ E(∞)
h . We call (X, E(∞)) an AI∞-graph, augmented index graph

of type-(∞) (or intersection type).

Suppose in addition Φ is of exponential type-(b). Then for a fixed γ > 0, we define

E(b)
h :=

⋃∞
n=1

{
(x, y) ∈ Xn ×Xn \∆ : distρ(Φ(x),Φ(y)) ≤ γe−bn

}
, (6.3)

and let E(b) = Ev ∪ E(b)
h . We call (X, E(b)) an AIb-graph, augmented index graph of

type-(b).

It is clear that both (X, E(b)) and (X, E(∞)) are expansive. First we consider the

AIb-graphs.

Theorem 6.10. For an index map Φ on (X, Ev) over (M,ρ) of exponential type-(b), the

associated AIb-graph is (m, 1)-departing for some positive integer m, and is an admissible

graph. Moreover, κ : (∂X, θa)→ (K, ρ) is a Hölder equivalence, i.e.,

ρ(κ(ξ), κ(η))a/b � θa(ξ, η), ∀ ξ, η ∈ ∂X. (6.4)

Proof. To show that it is (m, 1)-departing for some m ≥ 1, let δ0 := supz∈X e
b|z||Φ(z)|.

Let u ∈ Jm(x) and v ∈ Jm(y) with dh(u, v) = 2. Using the triangle inequality twice, we

have

dist(Φ(x),Φ(y)) ≤ dist(Φ(u),Φ(v)) ≤ (2γ + δ0)e−b(|x|+m) ≤ γe−b|x|,
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where the positive integer m is chosen to give the last inequality, i.e., (2γ + δ0)e−bm ≤ γ.

Therefore x ∼h y, and this shows that (X, E) is (m, 1)-departing. The hyperbolicity of

AIb-graph follows from Theorem 6.3.

By Lemma 6.4 (with k = 1) and (6.3), we see that two rays x,y are equivalent if and

only if dist(Φ(xi),Φ(yi)) ≤ γe−bi for all i (i.e., κ0(x) = κ0(y)). This implies κ : ∂X → K

is a well-defined bijection, and (X, E(b)) is an admissible graph.

We now prove that κ is a Hölder equivalence. For distinct ξ, η ∈ ∂X, we take two rays

x,y ∈ Rv that converge to ξ, η respectively with (ξ|η) = (x|y). Let n = |x ∨ y|1 as in

Lemma 6.4 with k = 1, i.e., dh(xn, yn) ≤ 1 and dh(xn+1, yn+1) ≥ 2. By Lemma 6.4, we

have |(ξ|η) − n| = |(x|y) − n| ≤ D0 for some D0 > 0. As κ(ξ) ∈ Φ(xn+1) ⊂ Φ(xn) and

κ(η) ∈ Φ(yn+1) ⊂ Φ(yn), we get the lower bound of (6.4) by

ρ(κ(ξ), κ(η)) ≥ distρ(Φ(xn+1),Φ(yn+1))

≥ γe−b(n+1) ≥ γe−b(D0+1)e−b(ξ|η) ≥ C1θa(ξ, η)b/a,

and the upper bound by

ρ(κ(ξ), κ(η)) ≤ |Φ(xn)|+ dist(Φ(xn),Φ(yn)) + |Φ(yn)|

≤ (2δ0 + γ)e−bn ≤ (2δ0 + γ)ebD0e−b(ξ|η) ≤ C2θa(ξ, η)b/a.

This completes the proof.

Now we turn to the study of the AI∞-graphs. Unlike the AIb-graph, the AI∞-graph

is not always hyperbolic.

Proposition 6.11. Suppose the index map Φ is of exponential type-(b), and the asso-

ciated AI∞-graph (X, E(∞)) is hyperbolic. Then (X, E(∞)) is an admissible graph, and

κ : (∂X, θa)→ (K, ρ) is Hölder continuous, i.e.,

ρ(κ(ξ), κ(η))a/b ≤ Cθa(ξ, η), ∀ ξ, η ∈ ∂X. (6.5)

Proof. Note that (X, E(∞)) is a subgraph of (X, E(b)). On the AIb-graph (X, E(b)), let

us denote its graph distance and Gromov product by d′(·, ·) and (·|·)′ respectively. By

Theorem 6.10, κ′ : (∂X ′, θ′a)→ K is a bijection, and satisfies ρ(κ′(ξ), κ′(η)) � e−b(ξ|η)′ for

all ξ, η ∈ ∂X ′. As κ = κ′ on Rv, it follows that κ = κ′ on ∂X = ∂X ′ is a well-defined

bijection, and (X, E(∞)) is admissible.

From E(∞) ⊂ E(b), it follows that d(x, y) ≥ d′(x, y), and

(x|y) =
1

2
(|x|+ |y| − d(x, y)) ≤ 1

2
(|x|+ |y| − d′(x, y)) = (x|y)′ ∀ x, y ∈ X.

Taking limits, we have (ξ|η) ≤ (ξ|η)′, and

θa(ξ, η) ≥ c1e
−a(ξ|η) ≥ c1e

−a(ξ|η)′ ≥ c2ρ(κ′(ξ), κ′(η))a/b = c2ρ(κ(ξ), κ(η))a/b.

This verifies (6.5), the Hölder continuity of κ.
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The following is a characterization of the Hölder equivalence of ∂X to K for the

AI∞-graph associated to some saturated Φ.

Theorem 6.12. Suppose Φ is a saturated index map on (X, Ev) over (M,ρ). Then for

b ∈ (0,∞) and an integer k > 0, the following assertions are equivalent.

(i) The AI∞-graph (X, E(∞)) is (m, k)-departing for some m > 0, and κ : (∂X, θa)→
(K, ρ) is a Hölder equivalence with exponent b/a, i.e.,

ρ(κ(ξ), κ(η))a/b � θa(ξ, η), ∀ ξ, η ∈ ∂X.

(ii) Φ is of exponential type-(b) under ρ, and there exists γ > 0 such that (X, E(∞))

satisfies for x, y ∈ X,

|x| = |y| and dh(x, y) > k ⇒ distρ(Φ(x),Φ(y)) > γe−b|x|.

Remark 3. For k = 1, the above condition (ii) is just the condition (H) on self-similar

sets in Section 3. In comparison with Theorem 3.2, the above theorem gives a more

complete criterion for the AI∞-graph on Hölder equivalence of ∂X to K.

In the following, we give two sufficient conditions for hyperbolicity of the AI∞-graph.

We first define two separation conditions. Let Φ be an index map on a vertical graph

(X, Ev) over a complete metric space (M,ρ) with attractor K. We call a map ι : X → K

a projection (with respect to Φ) if it satisfies ι(x) ∈ Kx(:= Φ(x) ∩K) for all x ∈ X.

Definition 6.13. For b ∈ (0,∞), we say that Φ (or {Kx}x∈X) satisfies

(i) condition (Sb): if for any c > 0, there is a constant ¯̀= ¯̀(c) such that

#{x ∈ Xn : Kx ∩ F 6= ∅} ≤ ¯̀, ∀ n ≥ 0 and F ⊂M with |F |ρ < ce−bn;

(ii) condition (Bb): if there exist a projection ι : X → K and c0 ∈ (0,∞) such that

Bρ(ι(x), c0e
−b|x|) ∩K ⊂ Kx, ∀ x ∈ X.

Note that (Sb) is an analog of (S) in Section 3, and they are equivalent when M is Rd

(see [44, Theorem 2.1(iii),(iv)]) or any other doubling metric space. It is well-known that

for the OSC on self-similar sets in Rd, the desired open set O can be chosen to satisfy

O ∩ K 6= ∅ [56]. Then by taking ξ ∈ O ∩ K, a ball Bρ(ξ, r) ⊂ O and ι(x) = Sx(ξ) for

x ∈ X, we see that the OSC implies condition (Bb).

Similar to Theorem 3.5, we have

Theorem 6.14. Let Φ be an index map with attractor K, and is of exponential type-(b).

If either

(i) condition (Sb) is satisfied; or

(ii) the attractor (K, ρ) is doubling, and condition (Bb) is satisfied,

then the AI∞-graph is hyperbolic and hence an admissible graph.
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By using (Sb), we can also obtain an analog of Theorem 3.7.

Theorem 6.15. Let Φ be an index map with attractor K, and is of exponential type-(b).

Then the AIb-graph has bounded degree if and only if condition (Sb) is satisfied. Also the

(Sb) is sufficient for the AI∞-graph to have bounded degree.

7 Remarks and future work

In Section 3, we provided some sufficient conditions for the hyperbolicity of augmented

tree (X, E). It is interesting to find an example of a self-similar IFS that gives a non-

hyperbolic (X, E). (Note that in [37], we constructed an AI∞-graph (Definition 6.7) that

is not hyperbolic; however, the example is not self-similar.)

In the application of Gromov hyperbolic graphs to the Lipschitz equivalence problem

in Section 4, we only showed the case that the self-similar sets have equal contraction

ratios. Actually, by some minor modification of the matrix rearrangeable technique, we

can also use it to deal with more general self-similar sets, say, IFS with multiple contraction

ratios, and even with substantial overlaps [49]. Furthermore, this technique can be used

for classification of certain fractal squares with nice overlapping structures [52].

In Section 5, we discussed the λ-NRW on the hyperbolic graph (X, Ẽ) and obtained a

non-local regular Dirichlet form EK (i.e., the induced energy form) on the attractor K with

domain Λ
β/2
2,2 where β = log λ

log r∗
(Theorem 5.10). There is further functional relationship of

the graph energy EX and the induced energy EK studied in [36, Section 3]. By varying

the return ratio λ, we obtain a critical exponent λ∗, which is of crucial importance: for the

classical examples in analysis on fractals, this value gives another Besov space Λ
β∗/2
2,∞ as the

domain of the local regular Dirichlet form (LRDF) (or equivalently, Laplacian) [28,53,54].

Recently, Gregor’yan and Yang [19] gave an analytic proof of the existence of the

LRDF on the Sierpinski carpet using the Γ-convergence of the Λ
β/2
2,2 -norm to Λ

β/2
2,∞-norm

as β ↗ β∗. This approach was used in [19, 20, 22, 61] to p.c.f. sets, and some non-p.c.f.

sets. It will be interesting to find out any limiting r.w. of λ-NRW as λ ↘ λ∗ that yields

β ↗ β∗. Also it is important to investigate the relationship of the Dirichlet form obtained

from this approach of random walks on hyperbolic graphs and the one from the classical

discrete approximation in analysis of fractals.

In Section 6, we used index maps to establish the AIb-graphs as the generalization

of the augmented tree (X, Ẽ) in Section 3. It should be possible to consider the λ-NRW

on the AIb-graph, and expect the same estimate for the induced energy forms. Also in

here we have not yet discussed the near-isometry between hyperbolic graphs; in fact, the

transform allows us to extend the scope to large classes of hyperbolic graphs, and enables

us to consider the λ-NRW in these more general hyperbolic graphs. We expect the volume

doubling property of the hitting distribution, and a similar estimate for the Näım kernel

in term of the Gromov metric. We will discuss this in detail in a forthcoming paper.
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