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Abstract. In this paper we show the existence and uniqueness for a class of
density dependent SDEs with bounded measurable drift, where the existence

part is based on Euler’s approximation for density dependent SDEs and the
uniqueness is based on the associated nonlinear Fokker-Planck equation. As

an application, we obtain the well-posedness of a nonlinear Fokker-Planck

equation.

1. Introduction

In this paper we consider the following density dependent stochastic differential
equation (abbreviated as DDSDE):

dXt = b(t,Xt, ρt(Xt))dt+
√

2dWt, X0
(d)
= ν0, (1.1)

where Wt is a standard d-dimensional Brownian motion on some probability space
(Ω,F ,P), b : R+×Rd×R→ Rd is a bounded Borel measurable vector field and for
t > 0, ρt(x) = P◦X−1t (dx)/dx is the distributional density of Xt with respect to the
Lebesgue measure dx on Rd, ν0 is a probability measure over Rd. By Itô’s formula,
one sees that ρt solves the following nonlinear Fokker-Planck equation (FPE) in the
distributional sense:

∂tρt −∆ρt + div(b(t, ·, ρt)ρt) = 0, lim
t↓0

ρt = ν0 weakly. (1.2)

More precisely, for any ϕ ∈ C∞0 (Rd),

〈ρt, ϕ〉 = 〈ν0, ϕ〉+

∫ t

0

〈ρs,∆ϕ〉ds+

∫ t

0

〈ρs, b(s, ·, ρs) · ∇ϕ〉ds, (1.3)

where 〈ρt, ϕ〉 :=
∫
Rd ϕ(x)ρt(x)dx = Eϕ(Xt).

Since the coefficients of SDE (1.1) depend on the distributional density of the
solution Xt evaluated at Xt, the dependence of b on the measure ρt(x)dx, is called
“Nemytskii-type” dependence (cf. [1], [2]). Thus (1.1) can be also called McKean-
Vlasov SDE of Nemytskii-type. Let us first recall the definition of a weak solution
to DDSDE (1.1):

Definition 1.1. Let ν0 be a probability measure on Rd. We call a filtered probability
space (Ω,F ,P; (Ft)t>0) together with a pair of processes (X,W ) defined on it a
weak solution of SDE (1.1) with initial distribution ν0, if

(i) P ◦X−10 = ν0, W is a d-dimensional Ft-Brownian motion.
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(ii) for each t > 0, P ◦X−1t (dx)/dx = ρt(x) and

Xt = X0 +

∫ t

0

b(s,Xs, ρs(Xs))ds+
√

2Wt, P− a.s.

To show the existence of a weak solution, we consider the following Euler scheme
to DDSDE (1.1): Let T > 0, N ∈ N and h := T/N . For t ∈ [0, h], define

XN
t := X0 +

√
2Wt,

and for t ∈ [kh, (k + 1)h] with k = 1, · · · , N , we inductively define XN
t by

XN
t := XN

kh +

∫ t

kh

b(s,XN
kh, ρ

N
kh(XN

kh))ds+
√

2(Wt −Wkh), (1.4)

where ρNkh(x) is the distributional density of XN
kh, whose existence is easily seen

from the construction. We have the following existence and uniqueness result.

Theorem 1.2. Assume that b is bounded measurable and for any t > 0,

lim
u→u0

sup
|x|<R

|b(t, x, u)− b(t, x, u0)| = 0, ∀R > 0. (1.5)

(Existence) For any T > 0 and initial distribution ν0, there are a subsequence Nk
and a weak solution (X,W ) to DDSDE (1.1) in the sense of Definition 1.1 so that
for any bounded measurable f and t ∈ (0, T ],

lim
k→∞

Ef(XNk
t ) = Ef(Xt).

Moreover, for each t ∈ (0, T ], Xt admits a density ρt satisfying the estimate

ρt(y) 6 Ct−d/2
∫
Rd

e−
|x−y|2
λt ν0(dx), y ∈ Rd,

where C, λ > 1, and the following L1-convergence holds:

lim
k→∞

∫
Rd
|ρNkt (y)− ρt(y)|dy = 0. (1.6)

(Uniqueness) Suppose that ν0(dx) = ρ0(x)dx with ρ0 ∈ (L1 ∩ Lq)(Rd) for some
q ∈ (d,∞], and there is a C > 0 such that for all t, x, u, u′,

|b(t, x, u)− b(t, x, u′)| 6 C|u− u′|. (1.7)

Then weak and strong uniqueness hold for SDE (1.1).

Remark 1.3. If the uniqueness holds, then limit (1.6) holds for the whole sequence.

As a consequence of Theorem 1.2, we have the following well-posedness of the
nonlinear FPE (1.2).

Corollary 1.4. Let ν0 be a probability measure over Rd.

(i) Assume b is bounded and Borel measurable such that (1.5) holds. Then there
is a weak solution ρt to PDE (1.2) in the sense (1.3) with

∫
ρt = 1 and

0 6 ρt(x) 6 Ct−d/2
∫
Rd

e−
|x−y|2
λt ν0(dy), x ∈ Rd, t ∈ (0, T ]. (1.8)

(ii) Assume that (1.7) holds and that ν0(dx) = ρ0(x)dx with ρ0 ∈ (L1 ∩ Lq)(Rd)
for some q ∈ (d,∞]. Then the solution in assertion (i) is the unique weak
solution to (1.2).
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Proof. (i) The existence of a weak solution follows from the existence part of The-
orem 1.2 and Itô’s formula.

(ii) The uniqueness follows from the uniqueness part of Theorem 1.2 by Section 2
in [2]. �

McKean-Vlasov SDE of Nemytskii-type (density dependent SDE), i.e.

dXt = b
(
t,Xt,

dLXt
dx (Xt)

)
dt+ σ

(
t,Xt,

dLXt
dx (Xt)

)
dWt, X0

(d)
= ν0,

were first introduced in [1, Section 2]. In [1], [2], for a large class of time inde-
pendent coefficients b, σ, Barbu together with the second named author obtained
the existence of weak solutions for such (possibly degenerate) density dependent
SDEs (see Section 2). The strategy in [1] or [2] is to solve the associated nonlin-
ear Fokker-Planck equation and then by the well-known superposition principle (cf.
[11], generalizing [9] and [7]) to establish the existence of a weak solution to DDSDE
(1.1). Later, in [3], the same authors prove the uniqueness of the weak solution to
DDSDE (1.1), which is a consequence of the uniqueness of the corresponding non-
linear Fokker-Planck equation. Recently, in [4], they also consider the existence
of solutions to a class of nonlinear Fokker-Planck equations with measure-valued
initial data. The strategy of this paper is completely different from that in [1–4].
We start directly from DDSDE (1.1) and prove weak existence of solutions through
Euler’s approximation for DDSDE (1.1) and using simple heat kernel estimates. In
other words, we do not use the superposition principle. Moreover, our assumptions
on the drift are weaker. Especially, there is no regularity assumption of b in x. On
the other hand we only consider the case σ = identity.

As explained above we obtain weak (i.e. in the sense of Schwartz distributions)
solutions to FPE (1.2). Let us mention here that Chen and Perthame in [6] studied
the Cauchy problem for a general nonlinear degenerate parabolic-hyperbolic equa-
tion of second order in the framework of kinetic and entropy solutions, in the case
the coefficient do not depend explicitly on x and t.

However, all the above results do not cover Theorem 1.2 above. In particular,
we use a purely probabilistic method to show the existence of weak solutions for
the nonlinear FPE (1.2). This is the main contribution of the present paper. Here,
for simplicity, we only consider the additive noise case. For the case of uniformly
elliptic diffusion coefficients, it would also work by the corresponding heat kernel
estimates (see [5] and [10]).

This paper is organized as follows: In Section 2, we give some necessary prelim-
inaries about heat kernel estimates for the Euler scheme with bounded measurable
drifts. In Section 3, we prove our main Theorem 1.2 by Euler’s type approximation
(cf. [13]). Note that the usual Picard iteration does not seem to work for DDSDE
(1.1), since x→ b(t, x, ρt(x)) is too singular.

Throughout this paper, we use the following conventions: The letter C denotes a
constant, whose value may change in different places. We also use A . B to denote
A 6 CB for some unimportant constant C > 0.

2. Heat kernel of Euler scheme

In this section we show heat kernel estimates for Euler’s scheme of usual SDEs.
First of all, we recall some basic properties about the Gaussian heat kernel. Let

g(t, x) := (4πt)−
d
2 e−

|x|2
4t , t > 0, x ∈ Rd, (2.1)
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which is the fundamental solution of ∆, i.e.,

∂tg(t, x) = ∆g(t, x).

Moreover, we have the following Chapman-Kolmogorov equations:

(g(t) ∗ g(s))(x) :=

∫
Rd
g(t, x− z)g(s, z)dz = g(t+ s, x), t, s > 0, (2.2)

and the following easy facts,

g(t, x+ y) 6 2
d
2 g(2t, x)e

|y|2
4t , |∇g|(t, x) 6 2d/2√

t
g(2t, x). (2.3)

The following lemma is straightforward and elementary. For the readers’ conve-
nience, we provide a detail proof.

Lemma 2.1. For any T > 0, β ∈ (0, 1) and j = 0, 1, there is a constant C =
C(T, β, j, d) > 0 such that for any 0 < t 6 T and x1, x2 ∈ Rd,

|∇jg(t, x1)−∇jg(t, x2)| 6 C|x1 − x2|βt−
j
2−β

∑
i=1,2

g(4t, xi), (2.4)

and for any 0 < t1 < t2 6 T and x ∈ Rd,

|∇jg(t1, x)−∇jg(t2, x)| 6 C|t2 − t1|
β
2

∑
i=1,2

t
− j+β2
i g(2ti, x). (2.5)

Proof. (i) By definition (2.1), it is easy to see that for k = 1, 2, 3, there is a constant
C > 0 only depending on k, d such that

|∇kg(t, x)| 6 C(4πt)−
d
2 t

k
2 e−

|x|2
8t = C2

d
2 t−

k
2 g(2t, x).

Thus, for j = 0, 1 and β ∈ (0, 1), if |x1 − x2| >
√
t, then

|∇jg(t, x1)−∇jg(t, x2)| . t−
j
2 (g(2t, x1) + g(2t, x2))

. |x1 − x2|βt−
j
2−β(g(2t, x1) + g(2t, x2));

if |x1 − x2| 6
√
t, then by the mean-value formula,

|∇jg(t, x1)−∇jg(t, x2)| 6 |x1 − x2|
∫ 1

0

|∇j+1g(t, x1 + θ(x2 − x1))|dθ

. |x1 − x2|t−
j+1
2

∫ 1

0

g(2t, x1 + θ(x2 − x1))dθ

. |x1 − x2|t−
j+1
2 g(4t, x1) . |x1 − x2|βt−j/2−βg(4t, x1).

Combining the above calculations, we get (2.4).
(ii) If t2 − t1 6 t1, then by the mean-value formula,

|∇jg(t1, x)−∇jg(t2, x)| 6 |t1 − t2|
∫ 1

0

|∇j∂tg|(t1 + θ(t2 − t1), x)dθ

= |t1 − t2|
∫ 1

0

|∇j∆g|(t1 + θ(t2 − t1), x)dθ

. |t1 − t2|
∫ 1

0

g(2(t1 + θ(t2 − t1)), x)

(t1 + θ(t2 − t1))1+j/2
dθ

. |t1 − t2|t
−1− j2
1 g(2t2, x) . |t1 − t2|

β
2 t
− β2
2 g(2t2, x);

if t2 − t1 > t1, then t2 6 2(t2 − t1) and

|∇jg(t1, x)−∇jg(t2, x)| . t−
j
2

1 g(2t1, x) + t
− j2
2 g(2t2, x)
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. |t1 − t2|
β
2

(
t
− j+β2
1 g(2t1, x) + t

− j+β2
2 g(2t2, x)

)
.

The proof is complete. �

Let b : R+ × Rd → Rd be a bound measurable function. Fix T > 0 and x ∈ Rd.
Let XN

t = XN
t (x) be defined by the following Euler scheme:

XN
t = x+

∫ t

0

b(s,XN
φN (s))ds+

√
2Wt, t ∈ [0, T ], (2.6)

where φN (s) := kT/N for s ∈ [kT/N, (k+1)T/N). We have the following Duhamel
formula.

Lemma 2.2. For each t ∈ (0, T ] and x ∈ Rd, XN
t (x) admits a density pNx (t, y)

which satisfies the following Duhamel formula:

pNx (t, y) = g(t, x− y) +

∫ t

0

E
[
b(s,XN

φN (s)) · ∇g(t− s, y −XN
s )
]
ds. (2.7)

Proof. Fix t ∈ (0, T ] and f ∈ C∞c (Rd). For s ∈ [0, t], let u(s, x) := g(t− s, ·) ∗ f(x).
Since (∂s + ∆)u ≡ 0 and u(t, x) = f(x), by Itô’s formula, we have

Ef(XN
t ) = Eu(t,XN

t ) = u(0, x) +

∫ t

0

E
[
b(s,XN

φN (s)) · ∇u(s,XN
s )
]
ds.

From this, we derive the desired Duhamel formula. �

Remark 2.3. For a general initial value XN
0 = X0 ∈ F0 and each t ∈ (0, T ], since

for each x ∈ Rd, XN
t (x) is independent of X0, the Euler scheme XN

t defined by
(2.6) with initial value X0 also has a density pNX0

(t, y) given by

pNX0
(t, y) =

∫
Rd
pNx (t, y)P ◦X−10 (dx). (2.8)

The following Gaussian type estimate for pNx (t, y) was proved by Lemaire and
Menozzi [8]. Since it is not difficult, for the readers’ convenience, we provide a
detailed proof here.

Theorem 2.4. For any T > 0, there is a constant C = C(d, T, ‖b‖∞) such that
for all N ∈ N, t ∈ (0, T ] and x, y ∈ Rd,

pNx (t, y) 6 Cg(4t, x− y). (2.9)

Proof. Let ε > 0 be small enough so that

`ε := 2d+1
√
ε‖b‖2∞eε‖b‖

2
∞ 6 1/2.

Fix T > 0. Without loss of generality, we assume

N > (‖b‖2∞T/(4 log 2)) ∨ (T/ε). (2.10)

For simplicity we shall write

h := T/N, M := [ε/h] ∈ N.
Step 1: In this step we use induction to show that for all k = 1, · · · ,M ∧N ,

pNx (kh, y) 6 2d+1g(4kh, x− y). (2.11)

First of all, for k = 1, since XN
h = x + Wh +

∫ h
0
b(s, x)ds, by (2.3) and (2.10) we

have

pNx (h, y) = g(h, y −
∫ h

0

b(s, x)ds− x) 6 2d/2e‖b‖
2
∞h/4g(2h, x− y)
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6 2de‖b‖
2
∞T/(4N)g(4h, x− y) 6 2d+1g(4h, x− y).

Suppose now that (2.11) holds for j = 1, 2, .., k − 1. By Duhamel’s formula (2.7),
we have

pNx (kh, y)− g(kh, x− y) =

∫ kh

0

E
[
b(s,XN

φN (s)) · ∇g(kh− s, y −XN
s )
]
ds

=

k−1∑
j=0

∫ (j+1)h

jh

E
[
b(s,XN

jh) · ∇g(kh− s, y −XN
s )
]
ds. (2.12)

Note that for s ∈ (jh, (j + 1)h),

XN
s = XN

jh +
√

2(Ws −Wjh) +

∫ s

jh

b(r,XN
jh)dr.

Since
√

2(Ws −Wjh) is independent of XN
jh and has density g(s − jh, y), by the

C-K equations (2.2) we have

Ij(s) := E
[
b(s,XN

jh) · ∇g(kh− s,XN
s − y)

]
= E

[
b(s,XN

jh) · ∇g(kh− s) ∗ g(s− jh)
(
XN
jh +

∫ s

jh

b(r,XN
jh)dr − y

)]
= E

[
b(s,XN

jh) · ∇g
(
kh− jh,XN

jh +

∫ s

jh

b(r,XN
jh)dr − y

)]
6 ‖b‖∞

∫
Rd
|∇g|

(
kh− jh, z +

∫ s

jh

b(r, z)dr − y
)
pNx (jh, z)dz.

By (2.3) and induction hypothesis, we further have for s ∈ (jh, (j + 1)h),

Ij(s) 6
‖b‖∞2d/2√
kh− jh

∫
Rd
g
(

2(kh− jh), z +

∫ s

jh

b(r, z)dr − y
)
pNx (jh, z)dz

6
‖b‖∞2de(k−j)h‖b‖

2
∞/4

√
kh− jh

∫
Rd
g(4(kh− jh), z − y) · 2d+1g(4jh, x− z)dz

6
‖b‖∞22d+1eε‖b‖

2
∞/4

√
kh− s

g(4kh, x− y) =
2d`ε/

√
ε√

kh− s
g(4kh, x− y),

where we have used kh 6Mh 6 ε. Substituting this into (2.12), we obtain

|pNx (kh, y)− g(kh, x− y)| 6 2d`ε√
ε
g(4kh, x− y)

k−1∑
j=0

∫ (j+1)h

jh

1√
kh− s

ds

6
2d`ε√
ε
g(4kh, x− y)

∫ kh

0

1√
kh− s

ds

=
2d`ε√
ε
g(4kh, x− y)2

√
kh 6 2d+1`εg(4kh, x− y),

which implies, since g(t, x) 6 2dg(4t, x) and 2`ε 6 1, that

pNx (kh, y) 6 2d(1 + 2`ε)g(4kh, x− y) 6 2d+1g(4kh, x− y).

Step 2: Next we assume M < N and consider k = M + 1 · · · , 2M . Note that

XN
t+Mh = XN

Mh +Wt+Mh −WMh +

∫ t+Mh

Mh

b(s,XN
φN (s))ds

= XN
Mh +Wt+Mh −WMh +

∫ t

0

b(s+Mh,XN
φN (s)+Mh)ds,
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where we have used that φN (s+Mh) = φN (s) +Mh. In particular, if we let

X̄N
t := XN

t+Mh, W̄t := Wt+Mh −WMh,

then for t ∈ [0,Mh],

X̄N
t = XN

Mh + W̄t +

∫ t

0

b(s+Mh, X̄N
φN (s))ds.

Let p̄Nx (kh, y) be the density of X̄N
t with X̄N

0 = x. By Step 1, we have

p̄Nx (kh, y) 6 2d+1g(4kh, x− y), k = 1, · · · ,M.

Thus, for k = 1, · · · ,M , by (2.8) we have

pNx ((k +M)h, y) =

∫
Rd
p̄Nz (kh, y)pNx (Mh, z)dz

6 4d+1

∫
Rd
g(4kh, z − y)g(4Mh, x− z)dz

= 4d+1g(4(k +M)h, x− y).

Repeating the above procedure [Tε ] + 1-times, we obtain that for some C > 0
independent of N ,

pNx (kh, y) 6 Cg(kh, x− y), k = 1, · · · , N.
Step 3: Note that for t ∈ (kh, (k + 1)h),

XN
t = XN

kh +Wt −Wkh +

∫ t

kh

b(s,XN
kh)ds,

where Wt −Wkh is independent of XN
kh. Hence,

pNx (t, y) =

∫
Rd
g(t− kh, z +

∫ t

kh

b(s, z)ds− y)pNx (kh, z)dz

6 Ce(t−kh)‖b‖
2
∞/4

∫
Rd
g(4(t− kh), y − z)g(4kh, x− z)dz

6 CeT‖b‖
2
∞/4g(4t, x− y).

This completes the proof. �

The following corollary is a combination of Theorem 2.4 and Lemma 2.1.

Corollary 2.5. Let ν0(dy) = P ◦X−10 (dy) be the distribution of X0.

(i) For any T > 0, there is a constant C = C(d, T, ‖b‖∞) such that for all
N ∈ N, t ∈ (0, T ) and y ∈ Rd

pNX0
(t, y) 6 C

∫
Rd
g(4t, x− y)ν0(dx). (2.13)

(ii) For any T > 0 and β ∈ (0, 1), there is a constant C = C(d, T, ‖b‖∞, β)
such that for all N ∈ N, t ∈ (0, T ) and y1, y2 ∈ Rd,

|pNX0
(t, y1)− pNX0

(t, y2)| 6 C|y1 − y2|βt−
β
2

∑
j=1,2

∫
Rd
g(4t, x− yj)ν0(dx).

(iii) For any T > 0 and β ∈ (0, 1), there is a constant C = C(d, T, ‖b‖∞, β)
such that for all N ∈ N, t1, t2 ∈ (0, T ) and y ∈ Rd,

|pNX0
(t1, y)− pNX0

(t2, y)| 6 C|t1 − t2|β/2
∑
j=1,2

t
−β/2
j

∫
Rd
g(2tj , x− y)ν0(dx).
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Proof. (i) is a direct consequence of (2.8) and Theorem 2.4. We only show (iii)
since (ii) is similar by (2.4). Suppose t1 < t2. By (2.7), we have

|pNX0
(t1, y)− pNX0

(t2, y)| 6
∫
Rd
|g(t1, x− y)− g(t2, x− y)|ν0(dx)

+ ‖b‖∞
∫ t1

0

∫
Rd
|∇g(t1 − s, y − z)−∇g(t2 − s, y − z)|pNX0

(s, z)dzds

+ ‖b‖∞
∫ t2

t1

∫
Rd
|∇g(t1 − s, y − z)|pNX0

(s, z)dzds =: I1 + I2 + I3.

For I1, by (2.5), we have

I1 . |t1 − t2|
β
2

∑
j=1,2

t
− β2
j

∫
Rd
g(2tj , x− y)ν0(dx).

For I2, by (i), (2.5) and the C-K equations (2.2), we have

I2 . |t1 − t2|
β
2

∑
j=1,2

∫ t1

0

[∫
Rd

(tj − s)−
1+β
2 g(4(tj − s), z − y)

×
∫
Rd
g(4s, x− z)ν0(dx)dz

]
ds

= |t1 − t2|
β
2

∑
j=1,2

∫ t1

0

(tj − s)−
1+β
2

∫
Rd
g(4tj , x− y)ν0(dx)ds

. |t1 − t2|
β
2

∑
j=1,2

∫
Rd
g(4tj , x− y)ν0(dx).

For I3, by (i), (2.5) and the C-K equations, we have

I3 .
∫ t2

t1

∫
Rd

(t1 − s)−
1
2 g(4(t1 − s), z − y)

∫
Rd
g(4s, x− z)ν0(dx)dzds

=

∫ t2

t1

∫
Rd

(t1 − s)−
1
2 g(4t1, x− y)ν0(dx)ds . |t2 − t1|

1
2

∫
Rd
g(4t1, x− y)ν0(dx).

Combining the above calculations, we obtain the desired estimate. �

3. Proof of Theorem 1.2

Let (Ω,F , (Ft)t>0,P) be a complete filtered probability space, Wt a d-dimensional
standard Ft-Brownian motion, and X0 an F0-measurable random variable with
distribution ν0. Let T > 0, N ∈ N and h := T/N . Let XN

t be the Euler approx-
imation of DDSDE (1.1) constructed in the introduction. From the construction
(1.4), it is easy to see that XN

t solves the following SDE:

XN
t = X0 +

∫ t

0

bN (s,XN
φN (s))ds+

√
2Wt, (3.1)

where

bN (s, x) = 1{s>h}b
(
s, x, ρNφN (s)(x)

)
(3.2)

and

φN (s) :=

∞∑
j=0

jh1[jh,(j+1)h)(s). (3.3)
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The following lemma is easy by (3.1) and since ‖bN‖∞ 6 ‖b‖∞.

Lemma 3.1. For any T > 0, there is a constant C > 0 such that for all s, t ∈ [0, T ],

sup
N

E|XN
t −XN

s |4 6 C|s− t|2.

Let pNx (t, y) be the distributional density of the Euler scheme XN
t (x) of SDE

(3.1) starting from x at time 0. Since for each x ∈ Rd, XN
t (x) is independent of

X0, the distributional density ρNt (y) of XN
t with initial distribution ν0 is given by

ρNt (y) =

∫
Rd
pNx (t, y)ν0(dx). (3.4)

The following lemma is crucial for the existence of a solution to DDSDE (1.1).

Lemma 3.2. For fixed T > 0, there are a subsequence (Nk)k∈N and a continuous
function ρ ∈ C((0, T ]× Rd) such that for any M ∈ N,

lim
k→∞

sup
|y|6M

sup
1/M6t6T

|ρNkt (y)− ρt(y)| = 0. (3.5)

Proof. First of all, by the upper-bound estimate (2.9) for pNx (t, y), we have

sup
|y|6M

sup
1/M6t6T

|ρNt (y)| 6 C
∫
Rd

sup
|y|6M

sup
1/M6t6T

|g(4t, x− y)|ν0(dx) 6 CM ,

where CM is independent of N . Moreover, by Corollary 2.5, we have for any β < 1,
t1, t2 ∈ [1/M, T ] and y1, y2 ∈ Rd,

|ρNt1(y1)− ρNt2(y2)| 6 |ρNt1(y1)− ρNt2(y1)|+ |ρNt2(y1)− ρNt2(y2)|

. |t2 − t1|
β
2

∑
i=1,2

∫
Rd
|g(2ti, y1 − x)|ν0(dx)

+ |y1 − y2|β
∑
i=1,2

∫
Rd
|g(4t2, yi − x)|ν0(dx)

.M−(d+1+β)/2
(
|t2 − t1|

β
2 + |y1 − y2|β

)
, (3.6)

where the implicit constants in the above . are independent of N . Thus, by Ascolli-
Arzela’s theorem, we conclude the proof and have (3.5). �

Now we are in a position to give the

Proof of Theorem 1.2. (Existence) Fix T > 0. Let W be the space of all contin-
uous functions from [0, T ] to Rd. Let QN be the law of (XN

· ,W·) in W × W.
By Lemma 3.1 and Kolmogorov’s criterion, {QN}N∈N is tight. Therefore, by
Prokhorov’s theorem, there are a subsequence (Nk)k∈N and a probability measure
Q on W×W so that

QNk → Q weakly.

Without loss of generality, we assume that the subsequence is the same as that
in Lemma 3.2. Below, we still denote the above subsequence by QN , N ∈ N
for simplicity. Now, by Skorokhod’s representation theorem, there are probability

space (Ω̃, F̃ , P̃) and random variables (X̃N , W̃N ) and (X̃, W̃ ) thereon such that

(X̃N , W̃N )→ (X̃, W̃ ), P̃-a.s. (3.7)

and

P̃ ◦ (X̃N , W̃N )−1 = QN = P ◦ (XN ,W )−1, P̃ ◦ (X̃, W̃ )−1 = Q. (3.8)



10 ZIMO HAO, MICHAEL RÖCKNER AND XICHENG ZHANG

In particular, the distributional density of X̃N
t is ρNt . Moreover, by Lemma 3.2 and

(3.7), for any t ∈ (0, T ) and ϕ ∈ C∞0 (Rd),

Eϕ(X̃t) = lim
N→∞

Eϕ(X̃N
t ) = lim

N→∞

∫
Rd
ϕ(y)ρNt (y)dy =

∫
Rd
ϕ(y)ρt(y)dy.

In other words, ρt is the density of X̃t. Define F̃N
t := σ(X̃N , W̃N ; s 6 t). We note

that

P[Wt −Ws ∈ ·|Fs] = P{Wt −Ws ∈ ·},
hence,

P̃[W̃N
t − W̃N

s ∈ ·|F̃N
s ] = P̃{W̃N

t − W̃N
s ∈ ·},

which means that W̃N
t is an F̃N

t -BM. Thus, by (3.1) and (3.8) we have

X̃N
t = X̃N

0 +

∫ t

0

bN (s, X̃N
φN (s))ds+

√
2W̃N

t . (3.9)

Let us now show that∫ t

0

1s>hb
(
s, X̃N

φN (s), ρ
N
φN (s)(X̃

N
φN (s))

)
ds→

∫ t

0

b
(
s, X̃s, ρs(X̃s)

)
ds, (3.10)

in probability as N →∞. Let Ω0 ⊂ Ω̃ be a measurable set so that P̃(Ω0) = 1 and
for each ω ∈ Ω0,

lim
N→∞

(X̃N
φN (·)(ω), W̃N

· (ω)) = (X̃·(ω), W̃·(ω)). (3.11)

In particular, for each fixed ω ∈ Ω0 and s ∈ (0, T ), by (3.5), (3.6) and (3.11), we
have

lim
N→∞

|ρNφN (s)(X̃
N
φN (s)(ω))− ρs(X̃N

φN (s)(ω))| = 0, a.s. (3.12)

On the other hand, for any s > 0, by (1.5) we have

lim
|δ|→0

sup
|u|6R

sup
|x|<R

|b(s, x, u+ δ)− b(s, x, u)| = 0, ∀R > 0.

Thus, by (3.11) and (3.12), we have for each s > 0 and ω ∈ Ω0,

lim
N→∞

|b(s, X̃N
φN (s)(ω), ρNφN (s)(X̃

N
φN (s)(ω)))− b(s, X̃N

φN (s)(ω), ρs(X̃
N
φN (s)(ω)))| = 0,

which, by the dominated convergence theorem, implies that

lim
N→∞

Ẽ
∫ t

0

|1s>hb(s, X̃N
φN (s), ρ

N
φN (s)(X̃

N
φN (s)))− b(s, X̃

N
φN (s), ρs(X̃

N
φN (s)))|ds

= Ẽ
∫ t

0

lim
N→∞

|1s>hb(s, X̃N
φN (s), ρ

N
φN (s)(X̃

N
φN (s)))− b(s, X̃

N
φN (s), ρs(X̃

N
φN (s)))|ds = 0.

For proving (3.10), it remains to show

lim
N→∞

Ẽ
∫ t

h

|b(s, X̃N
φN (s), ρs(X̃

N
φN (s)))− b(s, X̃s, ρs(X̃s))|ds = 0.

Let Kε be a family of mollifiers in Rd. Define

Bε(t, x) = b(t, ·, ρt(·)) ∗Kε(x).

Clearly, for fixed ε > 0, by (3.11) we have

lim
N→∞

Ẽ
∫ t

h

|Bε(s, X̃N
φN (s))−Bε(s, X̃s)|ds = 0.
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Below for notational convenience, we write X̃∞t := X̃t and φ∞(s) := s. For N ∈
N ∪ {∞}, we have

Ẽ
∫ t

h

|Bε(s, X̃N
φN (s))− b(s, X̃

N
φN (s), ρs(X̃

N
φN (s))|ds

6 Ẽ
∫ t

h

1|X̃N
φN (s)

|6R

∣∣∣Bε(s, X̃N
φN (s))− b(s, X̃

N
φN (s), ρs(X̃

N
φN (s))

∣∣∣ds
+ 2‖b‖∞

∫ t

h

P̃
(
|X̃N

φN (s)| > R
)

ds =: INR (ε) + JNR .

For INR (ε), by (3.4), (2.9) and Hölder’s inequality with p > 2d and q = p
p−1 , we

have

INR (ε) =

∫ t

h

∫
BR

|Bε(s, y)− b(s, y, ρs(y))|ρNφN (s)(y)dyds

.
∫ t

h

∫
BR

|Bε(s, y)− b(s, y, ρs(y))|
∫
Rd
g(4φN (s), x− y)ν0(dx)dyds

.
∫ t

h

(∫
BR

|Bε(s, y)− b(s, y, ρs(y))|pdy
) 1
p

×
(∫

BR

∣∣∣∣∫
Rd
g(4φN (s), x− y)ν0(dx)

∣∣∣∣q dy

) 1
q

ds

.
∫ t

h

(∫
BR

|Bε(s, y)− b(s, y, ρs(y))|pdy
) 1
p

φN (s)−
d
p ds

.

(∫ t

h

(∫
BR

|Bε(s, y)− b(s, y, ρs(y))|pdy
) 2
p

ds

) 1
2 (∫ t

h

φN (s)−
2d
p ds

) 1
2

.

(∫ t

0

(∫
BR

|Bε(s, y)− b(s, y, ρs(y))|pdy
) 2
p

ds

) 1
2 (∫ t

0

s−
2d
p ds

) 1
2

,

where the implicit constant in the above . is independent of N,R and ε. Hence,
for each R > 0, by the dominated convergence theorem, we obtain

lim
ε→0

sup
N∈N∪{∞}

INR (ε) = 0.

For JNR , by Chebyshev’s inequality and (3.1) and since ‖bN‖∞ 6 ‖b‖∞, we have

JNR = 2‖b‖∞
∫ t

h

P(|XN
φN (s)| > R)ds

6 2‖b‖∞
∫ t

0

P(|X0|+ s‖b‖∞ +
√

2|WφN (s)| > R)ds

6 2‖b‖∞
(∫ t

0

P(|X0|+ s‖b‖∞ > R/2)ds+

∫ t

0

2φN (s)

(R/2)2
ds
)
,

which converges to zero uniformly in N , as R→∞. Combining the above calcula-
tions, we obtain

lim
ε→0

sup
N∈N∪{∞}

Ẽ
∫ t

h

|Bε(s, X̃N
φN (s))− b(s, X̃

N
φN (s), ρs(X̃

N
φN (s))|ds = 0.

Thus, (3.10) is proven and the existence of a solution to DDSDE (1.1) is obtained.
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(Uniqueness) Let Xt and X̄t be two solutions of DDSDE (1.1) defined on the same
probability space and with the same initial value X0, where X0 has the distribu-
tional density ρ0 ∈ Lq(Rd) with q ∈ (d,∞]. Let ρt(y) and ρ̄t(y) be the distributional
density of Xt and X̄t, respectively. Clearly, these are two solutions of the nonlinear
Fokker-Planck equation (1.2) with the same initial value ρ0. Consider the following
linearized SDE:

dXt = B(t,Xt)dt+
√

2dWt, X0 = x,

where B(t, x) := b(t, x, ρt(x)). It is well known that Xt(x) admits a density px(t, y)
with Gaussian type estimate: For some λ,C > 0, it holds that for all t ∈ (0, T ] and
x, y ∈ Rd,

px(t, y) 6 Cg(λt, x− y).

Note that by (2.9) and Hölder’s inequality,

ρt(y) =

∫
Rd
px(t, y)ρ0(x)dx .

∫
Rd
g(λt, x− y)ρ0(x)dx

6 ‖g(λt, ·)‖q/(q−1)‖ρ0‖q . t−d/(2q)‖ρ0‖q. (3.13)

Let
Γt := ρt − ρ̄t, Bt := b(t, ·, ρt)ρt − b(t, ·, ρ̄t)ρ̄t

and
Γεt (x) := Γt ∗Kε(x),

where {Kε(x), ε ∈ (0, 1)} is a family of mollifiers. By definition, it is easy to see
that

Γεt =

∫ t

0

∆Γεsds+

∫ t

0

div(Bs ∗Kε)ds.

Let βδ(r) :=
√
r2 + δ −

√
δ. For simplicity, we write

∫
f for

∫
Rd f(x)dx. By the

chain rule and integration by parts, we have

∂t

∫
βδ(Γ

ε
t ) =

∫
β′δ(Γ

ε
t )
(
∆Γεt + div(Bt ∗Kε)

)
=

∫
β′′δ (Γεt )

(
− |∇Γεt |2 − (Bt ∗Kε) · ∇Γεt

)
6
∫
β′′δ (Γεt )

(
− 1

2 |∇Γεt |2 + 2|Bt ∗Kε|2
)
,

where we have used that β′′δ (r) = δ/(r2 + δ)3/2 > 0. Hence, by Fatou’s lemma,∫
|Γt| 6 lim

δ→0
lim
ε→0

∫
βδ(Γ

ε
t ) 6 2 lim

δ→0
lim
ε→0

∫ t

0

∫
β′′δ (Γεs)(|Bs| ∗Kε)

2. (3.14)

For fixed δ > 0, since β′′δ (r) 6 δ−1/2 and by (3.13),

|Bt(x)| 6 ‖b‖∞(ρt(x) + ρ̄t(x)) 6 C(t−d/(2q) + 1),

the dominated convergence theorem implies

lim
ε→0

∫ t

0

∫
β′′δ (Γεs)

∣∣(|Bs| ∗Kε)
2 − |Bs|2

∣∣ 6 δ− 1
2

∫ t

0

lim
ε→0

∫ ∣∣(|Bs| ∗Kε)
2 − |Bs|2

∣∣ = 0

and also,

lim
ε→0

∫ t

0

∫
|β′′δ (Γεs)− β′′δ (Γs)| · |Bs|2 =

∫ t

0

∫
lim
ε→0
|β′′δ (Γεs)− β′′δ (Γs)| · |Bs|2 = 0.

Therefore,

lim
ε→0

∫ t

0

∫
β′′δ (Γεs)(|Bs| ∗Kε)

2 =

∫ t

0

∫
β′′δ (Γs)|Bs|2,
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and by (3.14), thanks to β′′δ (r) 6 1/r,∫
|Γt| 6 2 lim

δ→0

∫ t

0

∫
β′′δ (Γs)|Bs|2 6 2

∫ t

0

∫
|Bs|2

|Γs|
.

Moreover, noting that by (1.7) and (3.13),

|Bt(x)| 6 C|Γt(x)|(‖ρt‖∞ + 1) 6 C|Γt(x)|(t−
d
2q + 1),

we further have for γ ∈ (1, qd ),∫
|Γt| .

∫ t

0

(s−
d
q + 1)

∫
|Γs| 6

(∫ t

0

(s−
d
q + 1)γds

) 1
γ

(∫ t

0

[∫
|Γs|

] γ
γ−1

ds

) γ−1
γ

.

Thus by Gronwall’s inequality, we get∫
|Γt| ≡ 0,

which implies ρt = ρ̄t. Now the pathwise uniqueness of SDE (1.1) follows by
the well-known pathwise uniqueness for SDE (1.1) with bounded measurable drift
b(t, x, ρt(x)) (cf. [12]). �
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