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Abstract. We consider a system of fully nonlinear partial di�erential equations (PDEs) which
corresponds to the Hamilton�Jacobi�Bellman equations for the value functions of an optimal
innovation investment problem of a monopoly �rm. We study three di�erent approaches for
the numerical approximation of the considered problem: the collocation method, the �nite
di�erence method and the �nite element method. We discuss implementation issues for the
three considered schemes and perform numerical studies for di�erent model parameters to assess
their performance.

1. Introduction

We study the system of Hamilton�Jacobi�Bellman (HJB) equations

rV1pxq “ sup
I

L1pV1, V2, x, Iq ` f1pxq x P R,(1.1)

rV2px, yq “ L2pV2, x, yq ` f2pxq x P R, y ě 0,(1.2)

where r ą 0 is a constant (so-called discount rate) and the operators L1, L2 are de�ned as

L1pV1, V2, x, Iq :“b1px, IqBxV1pxq ´ p0pxqV1pxq ` p2pIqpV2px, 0q ´ V1pxqq,(1.3)

L2pV2, x, yq :“1
2σ

2pyqB2
yyV2px, yq ` b2px, yqBxV2px, yq ` µpyqByV2px, yq(1.4)

´ p0pxqV2px, yq

The terms f1 and f2 in (1.1)�(1.2) and b1, b2, p0, p2, σ, and µ in (1.3)�(1.4) a real-valued
continuous functions speci�ed in Table 2.2 below.

The HJB system (1.1)�(1.2), which can be classi�ed as a fully-nonlinear degenerate second
order partial di�erential equation in non-divergence form, was derived in [10] to study optimal
innovation investment strategies of a monopoly �rm under �nancial constraints. The solutions
V1 and V2 to (1.1)�(1.2) correspond to the value functions of di�erent investment modes of the
monopoly �rm considered on an in�nite time horizon and the control variable I in (1.1) is the
innovation investment (i.e. the amount of innovation activity the �rm performs). Given the
liquidity x ” xptq and the innovation investment I ” Iptq at time t ě 0, the monopoly �rm may
enter three di�erent modes of production m “ 0, 1, 2 with certain probability rates which are
characterized by a Markov process m :“ tmt P t0, 1, 2u : t ě 0u with m0 “ 1 and for every t ě 0

Prmt`dt “ j|mt “ is “

$

’

&

’

%

p0pxptqqdt, pi, jq “ p1, 0q or pi, jq “ p2, 0q,

p2pIptqqdt, pi, jq “ p1, 2q,

0, for any other pi, jq, i ‰ j,

(1.5)

where p0 ě 0 is the bankruptcy rate and p2 ě 0 is the innovation rate. For every state i P t0, 1, 2u,

it holds that
ř2
j“0 Prmt`dt “ j|mt “ is “ 1.
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The possible scenarios given by the above Markov process can be summarized as follows. The
mode m “ 1 corresponds to the pre-innovation mode where the �rm is selling products on the
old market and is developing a new product with a suitable amount of innovation investment
I which allows it to leave the old market (m “ 1) and enter the new market (m “ 2) with a
probability rate p2 ” p2pIq. Finally, depending on its liquidity the �rm may go bankrupt with
a probability rate p0 ” p0pxq and exit the market, that is the �rm leaves the modes m “ 1 or
m “ 2 and enters the mode m “ 0, where value is constant, that is V0 “ 0. The objective of the
�rm is to maximize the accumulated dividend fm, m “ 1, 2 over time, which yields the system
(1.1)�(1.2) for the modes m “ 1, m “ 2, respectively. For details on the derivation of the HJB
equations (1.1)�(1.2) we refer to [10].

The solutions of equations (1.1)�(1.2) do in general not exist in the classical sense but can be
de�ned in the sense of viscosity solutions, see, for instance [8, 14, 22, 25]. The existence of the
unique viscosity solution a general HJB equation written in the form

(1.6) F pD2V,∇V, V, xq “ 0 x P Rd,

is guaranteed provided that the functional F is continuous in all variables and satis�es a mono-
tonicity condition, that is, it holds for A,A1 P Rdˆd, r, s P Rd, x P Rd, d ě 1 that

(1.7) F pA, p, q, xq ď F pA1, p, q1, xq,

whenever A´A1 is negative de�nite and q ě q1, cf. [18].
Equation (1.2) corresponds to (1.6) with with d “ 2 and F given by

F pA, p, q, x, yq “ 1
2

ˆ

0 0
0 σ2pyq

˙

A` pb2px, yq, µpyqq¨p´ pp0pxq ` rqq ` f2pxq ,

which is monotone since σ2 ě 0 and pp0 ` rq ą 0. The continuity of F is a consequence of the
continuity of the functions σ, µ, and fm, bm, m “ 1, 2. Hence, we deduce that (1.2) admits a
unique viscosity solution V2.

Equation (1.1) corresponds to (1.6) with d “ 1 and F given by

F p0, p, q, xq “ sup
I

!

b1px, Iqp´ pp0pxq ` p2pIq ` rqq ` p2pIqV2px, 0q
)

` f1pxq ,

which is monotone because r ą 0 and p0, p2 ě 0. Nevertheless, the continuity of F is not obvious
since the control I may become discontinuous, as indicated by the numerical experiments, see
Figure 4.3.

From the theoretical as well as computational point of view, the condition (1.7) is crucial since
it guaranties the uniqueness of the viscosity solution and the convergence (in the viscosity sense)
of numerical schemes [1], in addition the conditions ensures the discrete maximum principle
holds for the numerical solution. There exist a number of approaches how to preserve the
monotonicity property (1.7) in the numerical approximation, for a recent overview we refer to [21].
Monotone �nite di�erence schemes can be obtain by an appropriate choice of the �nite di�erence
stencil, for instance by upwind �nite di�erence schemes [24, 26] or by adopting a semi-Lagrangian
approach [7, 11, 12]. Much fewer results are available on monotone �nite element (FEM) based
discretization methods [17, 15, 23, 21], where in particular [17] is the �rst to show convergence of
FEM discretizations of HJB equations of the type (1.1). We also mention the collocation method
which is popular choice in applications [10, 27] because its capability to solve HJB equations in
higher dimensions, cf. [6]. So far, very few results exist on adaptive numerical approximation
of HJB equations. We mention the work [27] which employs and adaptive collocation approach
and [19] which applies the least-squares �nite element method (LSFEM) to a linear second order
problem that satis�es the so-called Cordes condition. We note that the Cordes conditions is not
satis�ed for the equations in (1.1)�(1.2). In this work we apply an adaptive LSFEM method to
solve the �rst order nonlinear HJB equation (1.1).

We consider the discretization of (1.1) and (1.2) by three numerical methods: the Chebyshev
collocation method, the �nite di�erence method, and the (adaptive) �nite element method. We
note that the equation (1.2) can be solved independently of (1.1). Hence we �rst determine the
numerical approximation of the value function V2 in mode m “ 2. This numerical approximation
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is then used to compute the approximation of the value function V1 in mode m “ 1. The
discrete nonlinear system which results from the discretization of (1.1) is solved using a iterative
procedure, so-called policy iteration [2, 16]. Along with several other implementation details, we
discuss, in particular, relevant modi�cations of the policy iteration which are required to ensure
the convergence of the iterations for each of the considered numerical approaches.

The paper is organized as follows. In Section 2 we give details on the parameters and func-
tions in (1.1) and (1.2), and discuss analytical properties which are useful to deduce boundary
conditions that are required in the considered numerical approximations. In Sections 3�5 we give
details on the respective numerical schemes. We summarize the advantage and disadvantage of
the three numerical approaches in Section 6.

2. Preliminaries

2.1. Setting of the parameters. We �x the constants, ν1, ν2, rαn, sαn, η, δ, σ, r, γ1, ξ according
to Table 2.1. Then, we base our numerical experiment upon three scenarios: scenario 1 with
(αo “ 0.8, γ2 “ 0.05), scenario 2 with (αo “ 0.8, γ2 “ 0.005), and scenario 3 with (αo “ 1.0,
γ2 “ 0.05), where αo is the demand for the old market and γ2 is the bankruptcy parameter. The
functions which appear in (1.3) and (1.4) are de�ned in Table 2.2.

Table 2.1. Parameters of the monopoly model.

Parm. Value Description Parm. Value Description

ν2 0.2 Post-innovation dividend rate δ 1.55 Adjustment speed of Ys
ν1 0.0 Pre-innovation dividend rate σ 0.1 Volatility of Ys
rαn 0.8 Demand for the new market r 0.02 Discount rate
sαn 0.6 γ1 0.1 Innovation parameter
η 0.5 Horiz. di�. old/new ξ 0.025 Investment cost parameter

Table 2.2. Coe�cients of the HJBs.

Func Expression Description

p0pxq γ2 maxt0,´xu Bankruptcy rate

p2pIq γ1I Innovation rate

fmpxq νm maxt0, xu Pre/post-innovation dividends

π1
1
4α

2
o Pre-innovation pro�t

π2pyq
psαn ` yq

2 ` α2
o ´ 2ηpsαn ` yqαo

4´ 4η2
Post-innovation pro�t

b1px, Iq π1 ´
1
2ξI

2 ` rx´ f1pxq Pre-innovation liquidity trend

b2px, yq π2pyq ` rx´ f2pxq Post-innovation liquidity trend

µpyq δprαn ´ yq Demand trend for the new market

σpyq σy Volatility of the new market

2.2. Boundary conditions. All numerical schemes considered in this paper can only be applied
on bounded domains. Hence, we restrict the computations on a su�ciently large �nite domains
and deduce suitable boundary conditions from the considerations below.

The value function satis�es V1pxq Ñ 0 as x Ñ ´8. Moreover, for su�ciently large x, the
solution can be characterized by the following result from [10, Proposition 1].

Proposition 2.1. Assume that r ą ν1. For every x, y ě 0 the value in mode m “ 2 is given by

(2.1) V2px, yq “ x` c`
δrαn ` psαn ´ αoηq

2pr ` δqp1´ η2q
y `

1

4p1´ η2qpr ` 2δ ´ σ2q
y2,
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with c :“
δ2
rα2
n ` δrαnpsαn ´ αoηq

2rpr ` δqp1´ η2q
`

sα2
n ` α

2
o ´ 2ηαosαn

4rp1´ η2q
.

Furthermore, it holds for every x ě ẽ :“ max

"

2ξ|Inc|2 ´ α2
o

4pr ´ ν1q
, 0

*

with Inc :“
b

r2

γ21
` 2rc

ξ ´
α2
o

2ξ ´
r
γ1

(i) The optimal control is constant over time, that is I “ Inc;
(ii) The value in mode m “ 1 is given by

V1pxq “ x` c`
ξ

γ1
Inc.(2.2)

2.3. Rescaling transformation. A modi�cation of the di�erential equations on an in�nite
domain (1.1)�(1.2) results in problems on �nite domains. This allows for the application of
numerical schemes like the collocation method in Section 3 and the �nite di�erences method in
Section 4. In the manner of [10] we introduce the function

(2.3) z : RÑ p0, 1q, x ÞÑ zpxq “
1

1` expp´x{2q
,

which scales R into p0, 1q. The transformation (2.3) enables the application of the numerical
methods on the �nite domain p0, 1q where grid points can be constructed and boundary conditions
can be assigned at 0 or 1 rather than ´8 and `8. The inverse transformation of (2.3) reads

(2.4) x : p0, 1q Ñ R, z ÞÑ xpzq “ 2 ln

ˆ

z

1´ z

˙

.

We set Upzq :“ V1pxpzqq and V pz, yq :“ V2pxpzq, yq. The inverse transformation (2.4) implies
that BxV1 “

1
2zp1´ zqBzU and as a result the equations in (1.1)�(1.2) are rescaled into

rUpzq “ sup
I
L1

`

U, V, z, I
˘

` f1pxpzqq, z P p0, 1q;(2.5)

rV pz, yq “ L2

`

V, z, y
˘

` f2pxpzqq, z P p0, 1q, y ě 0;(2.6)

where

L1pU, V, x, Iq :“1
2zp1´ zqb1pxpzq, IqBxUpzq ´ p0pxpzqqUpxpzqq

` p2pIqpV pxpzq, 0q ´ Upxpzqqq,
(2.7)

L2pV, z, yq :“1
2σ

2pyqB2
yyV2px, yq `

1
2zp1´ zqb2pxpzq, yqBxV pxpzq, yq ` µpyqByV pxpzq, yq

´ p0pxpzqqV pxpzq, yq,
(2.8)

with the boundary conditions Up0q “ 0 and Upzq :“ V1pxpzqq with xpzq ě ẽ is given by (2.2).

3. Discretization by collocation method

In this section we describe the Chebyshev collocation method to compute an approximate
solution for (1.1) and (1.2). The method seeks the approximation V1pxq and V2px, yq in the
form of �nite series of Chebyshev polynomials with unknown coe�cients. The �nite series are
then substituted into (1.1) and (1.2) and the coe�cients are determined by requiring that the
di�erential equations are satis�ed at some �nite number of collocations nodes. The collocation
method can only be applied on a �nite domain and thus, for convenience, the scaling functions
(2.3) and (2.4) are used.

3.1. Discretization of the value in post-innovation mode, m “ 2. In a given state space
r
¯
z, z̄s ˆ r

¯
y, ȳs, we �rst construct a sparse grid of collocation nodes N :“ Nz ˆNy, where Nz :“

tziui“1,...,nz and Ny :“ tyjuj“1,...,ny , z
i and yj are de�ned as

zi “
z̄ `

¯
z

2
`
z̄ ´

¯
z

2
cos

ˆ

pnz ´ i` 0.5qπ

nz

˙

,(3.1)

yj “
ȳ `

¯
y

2
`
ȳ ´

¯
y

2
cos

ˆ

pny ´ j ` 0.5qπ

ny

˙

.(3.2)
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We construct a set of basis functions tφi,jpz, yquti“1,...,nzuˆtj“1,...,nyu corresponding to our Cheby-
shev sparse grid such that

(3.3) φi,jpz, yq “ Ti´1

ˆ

2 pz ´
¯
zq

z̄ ´
¯
z

´ 1

˙

Tj´1

˜

2
`

y ´
¯
y
˘

ȳ ´
¯
y

´ 1

¸

,

where Tk : t ÞÑ Tkptq is the Chebyshev polynomial of degree k de�ned for any t P r0, 1s. For the
given state space of p0, 0.5s ˆ r0, ȳs, our calculation is carried out in the space of r

¯
z, 0.5s ˆ r0, ȳs:

¯
y “ 0 represents that y “ 0 at the moment the mode switch from m “ 1 to m “ 2, and z̄ “ 0.5
corresponds to an upper boundary of x “ 0. In order to make sure the calculated value function
is continuous at x “ 0, we specify further that

(3.4) zi “

$

&

%

0.5`
¯
z

2
`

0.5´
¯
z

2
cos

ˆ

pnz ´ i` 0.5qπ

nz

˙

1 ď i ď nz ´ 1,

0.5 i “ nz.

The expansion of V2 as a Chebyshev series is given by

(3.5) pV2pz, yq :“

nz
ÿ

i“1

ny
ÿ

j“1

vi,jφi,jpz, yq “ vφpz, yq, z P p0, 0.5s,

where v̄ :“ tv̄k : k “ 1, . . . , nznyuk and φ :“ tφk : k “ 1, . . . , nznyu such that v̄k :“ vi,j and
φk :“ φi,jpz, yq with k “ pi´1qnz`j for i P t1, . . . , nzu and j P t1, . . . , nyu. The solution V pz, yq
of (2.6) is substituted by the expression (3.5). Thus the approximation of the value function
V is equivalent to determine the components v̄k of the vector v̄ such that (2.6) holds on the
collocation nodes tzi, yju with i, j P t1, . . . , nzu ˆ t1, . . . , ny ´ 1u. The approximation of V2 is
therefore de�ned by

(3.6) sV2pz
i, yjq :“

#

pV2pz
i, yjq, zi P p0, 0.5q,

V2pxpz
iq, yjq, zi P r0.5, 1s,

where x : z ÞÑ xpzq is given by (2.4) and V2 : px, yq ÞÑ V2px, yq is given by the formula (2.1).

Note that we impose pV2p0.5, y
jq “ V2pxp0.5q, y

jq to enforce the continuity of (3.6) at z “ 0.5.
In total there are nzny number of nodes, implying nzny number of equations. Furthermore,

for i P t1, . . . , nzu and j P t1, . . . , ny ´ 1u we introduce four nzpny ´ 1q ˆ nzny matrices B, By,
Byy, and Bz with entries

(3.7) Bs,k “ φkpz
i, yjq, By

s,k “ Byφkpz
i, yjq, Byy

s,k “ B
2
yyφkpz

i, yjq, Bz
s,k “ Bzφkpz

i, yjq,

where s “ pi´1qnz`j denotes node s. These four matrices capture the values of all base functions
and their partial derivatives at the nodes in N that are not on the boundary of znz “ 0.5. For
each node tzi, yju with i P t1, . . . , nz ´ 1u and j P t1, . . . , nyu, we de�ne the �ve column vectors
σ̄ :“ pσ̄sqs, µ̄ :“ pµ̄sqs, b̄2 :“ pb̄2,sqs, p̄0 :“ pp̄0,sqs, and f̄2 :“ pf̄2,sqs as follows:

µ̄s “ µpyjq, σ̄s “ σpyjq, b̄2,s “
1
2z
ip1´ ziqb2pxpz

iq, yjq, f̄2,s “ f2pxpz
iqq, p̄0,s “ p0pxpz

iqq,

and s “ pi´ 1qnz` j P t1, . . . , pnz´ 1qnyu. Thus the nodes s in N , v̄ should enforce the identity

(3.8) rBv̄ “ σ̄JByyv̄ ` µ̄JByv̄ ` b̄
J

2 B
z v̄ ´ p̄J0 Bv̄ ` f̄2.

For the other ny nodes, it holds that

(3.9) v̄Jφp0.5, yjq “ sV2p0, y
jq, j P t1, . . . , nyu.

3.2. Discretization of the value in pre-innovation mode, m “ 1. In contrast to mode
m “ 2, the value function V1 in mode m “ 1 is only de�ned on the domain of R. The control

I “ arg max
rI
L1pV1, V2, x, rIq is captured by

(3.10) Ipxq “
γ1pV2px, 0q ´ V1pxqq

ξBxV1pxq
.
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Similarly as for the mode m “ 2, we employ the transformation from the state space of x to the
state space of z P p0, 1q according to xpzq. After the transformation (2.4), the optimal control in
(3.10) can be rewritten as

(3.11) Ipxpzqq “
2γ1pV2pxpzq, 0q ´ V1pxpzqqq

ξzp1´ zqBzV1pxpzqq
.

We proceed with the same collocation method as in mode m “ 2, but on the one dimensional
state space of z P p0, 1q. However, there exists a kink for V1pxpzqq at z “ 0.5 and a jump in the
control function Ipxpzqq because of di�erent HJB expressions and the di�erence in BxV1pxpzqq
for positive and negative x. Thus, we de�ne the approximation of V1 as follow

(3.12) sV1pz
iq :“

#

pV1pz
iq, zi P p0, 0.5q,

qV1pz
iq, zi P r0.5, 1q,

where x : z ÞÑ xpzq is given by (2.4). Note that we impose pV1p0.5q “ qV1p0.5q to enforce the
continuity of (3.12) at z “ 0.5. Moreover, with the collocation method, it is of crucial importance

to distinguish whether limtÑ8X
0,x,I
t ă 0 given that x “ 0`. From an economic perspective,

‚ if limtÑ8X
0,x,I
t ă 0, the option control at t “ 0 already takes into account of the future

negative liquidity, implying it is more reasonable to calculate pV1 �rst;

‚ if limtÑ8X
0,x,I
t ě 0 for a given x “ 0`, then for any positive initial state x, X0,x,I

t never

converges to a negative value as tÑ8, and we can calculate for qV1 �rst.

In [10], it has been shown that whether a slightly positive initial liquidity converges to 0 or a
negative value in the long run tÑ8 depends on the parameter values.

The following technical explanation illustrates the situation where qV1 is calculated �rst. The

situation to calculate pV1 �rst is analogous. To ensure that the estimated value function would
be continuous at x “ 0, that is z “ 0.5, we further specify that

zi “

$

&

%

0.5 i “ 1,
z̄ ` 0.5

2
`
z̄ ´ 0.5

2
cos

ˆ

pnz ´ i` 0.5qπ

nz

˙

1 ă i ď nz.

The expansion of V1 as a Chebyshev series is given by

(3.13) qV1pzq :“

nz
ÿ

i“1

uiφi,1pz, 0q “ ūJφpz, 0q, z P p0.5, 1q,

where ū :“ tui : i “ 1, . . . , nzu is a column vector. The solution Upzq of (2.5) is substituted by the
expression (3.13). Thus the approximation of the value function U is equivalent to determine the
components ui of the vector ū such that (2.5) holds on the collocation nodes tzi : i “ 2, . . . , nzu.
We still need to specify an equation for the node z1 “ 0.5 corresponding to x “ 0. When the
liquidity x “ 0 is a steady state, it can be calculated from b1p0, Iq “ 0 that the optimal control
is Ip0q “ αo{

?
2ξ, and from (3.11) it follows that

qV1p0.5q “
γ1αo sV2p0, 0q

r
?

2ξ ` γ1αo
.(3.14)

We use an iterative algorithm to calculate the value function. In particular, we consider a
sequence of vectors ūpn´1q, with n P N˚ as the indicator for the iteration. In the stage n P N˚,
we calculate the discrete optimal control sIpn´1q :“ tI

pn´1q
i : i “ 1, . . . , nzu by

sIpn´1q “
γ1

`

Bv̄¨,1 ´Būpn´1q
˘

ξλ̄
J
Bzūpn´1q

,(3.15)

where the column vectors v̄¨,1 :“ tvi,1 : i “ 1, . . . , nzu and λ̄ :“ t1
2z
ip1 ´ ziq : zi P Nz, i “

1, . . . , nzu and the matrices B and Bz are such that

Bi,k “ φkpz
i, 0q, Bz

i,k “ Bzφkpz
i, 0q, i P t1, . . . , nzu.

Overall, the numerical details can be summarized as follows:
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Algorithm 3.1 (Collocation method).

We start with an initial guess for ūp0q and the control sIp0q. Then, for every n P N˚, we proceed
along the following two steps iteration:

Policy evaluation: Find ūpnq “ tu
pnq
i : i “ 1, . . . , nzu such that

(3.16)

$

’

&

’

%

rBūpnq “ b̄
J

1 pI
pn´1qqBzūpnq ´ pp̄0 ` p̄2pI

pn´1qqqJBūpnq ` p̄J2 pI
pn´1qqBv̄¨,1 ` f̄1,

ū
pnq
1 “

γ1αo sV2p0, 0q

r
?

2ξ ` γ1αo
.

Policy improvement: Update the optimal control by (cf. (3.15))

sIpnq “
γ1

`

Bv̄¨,1 ´Būpnq
˘

ξλ̄
J
Bzūpnq

.

Stopping criterion: Repeat the loop until the `8 norm
ˇ

ˇB
`

ūpnq ´ ūpn´1q
˘ˇ

ˇ

8
ď ε.

The numerical calculation of pV1pzq with z P p0, 0.5s is similar to the calculation of qV1pzq.

4. Discretization by finite differences

This section is devoted to the description of the �nite di�erence approximation of (1.1). For
the sake of brevity, we do not consider the �nite di�erence approximation of V2 since the results
of the �nite di�erence approximation are very similar to those obtained by the �nite element
method in Section 5.1 below.

It is more convenient to consider the discretization of the rescaled equations (2.5) since it allows
us to apply the method on a �nite domain. Furthermore, we observe that by Proposition 2.1,
the solution V1 of (1.1) is known explicitly for every x ě ẽ. Hence, it is enough to solve (2.5)
and (2.6) in p0, z̃q, where z̃ “ 1{p1 ` expp´λẽqq. We introduce an equidistant grid with mesh
sizes ∆z :“ z̃{M where

zi “ i∆z for i “ 0, 1, . . . ,M .(4.1)

We recall that the mesh grid has been rescaled by (2.3). The variable xi “ xpziq are redistributed
according to (2.4), see Fig. 4.1 where we display the distribution of the grid point xi.

Figure 4.1. Distribution of the 215 grid points on the rescaled domain.
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We denote bi1pIq :“ b1pxpziq, Iq, p
i
0 :“ p0pxpziqq, p2 :“ p2pIq, f

i
1 :“ f1pxpziqq, λ

i :“ 1
2zip1´ziq,

and for i “ 0, . . . ,M we denote by V i
1 the �nite di�erence approximation of the value function

V1 on the grid (4.1), that is V i
1 « V1pxiq.

We approximate BzV1 by the backward, centered, or forward di�erences that are denoted by
D´z , D0

z, and D`z , respectively, and de�ned by

D´z V
i

1 :“
V i

1 ´ V
i´1

1

∆z
, D0

zV
i

1 :“
V i`1

1 ´ V i´1
1

2∆z
, D`z V

i
1 :“

V i`1
1 ´ V i

1

∆z
.(4.2)

We also introduce the upwind �nite di�erence approximation of BzV1pxpziqq « D˘z V
i

1 with

D˘z V
i

1 :“

#

D`z V
i

1 , if bi1pIq ą 0,

D´z V
i

1 , if bi1pIq ď 0.
(4.3)

4.1. Discretization of the value in mode m “ 1. We assume that the numerical approxima-
tion of the value function atm “ 2 at y “ 0 is known and denote its values on the �nite di�erence

grid (4.1) by V i,0
2 « V2pzi, 0q, i “ 0, . . . ,M and set the vector V 2 :“ pV 0

2 , . . . , V
M

2 q. The approx-

imation of the control at the grid points is denoted by Ii, i “ 0, . . . ,M and I :“ pI0, . . . , IM q.
To obtain the �nite di�erence approximation of V1 we replace the derivatives in (2.5) by the

corresponding di�erence approximations (4.3) which yields the following discrete system for all
nodes i “ 1, . . . ,M ´ 1

(4.4) rV i
1 “ sup

I

LM1 p
sV1, sV2, zi, Iq ` f

i
1,

where sV1 :“ tV 0
1 , . . . , V

M
1 u and

(4.5) LM1 p
sV1, sV2, zi, Iq :“ λib

i
1pI

iqD˘z V
i

1 ´ p
i
0V

i
1 ` p2pI

iqpV i,0
2 ´ V i

1 q

with V 0
1 and VM

1 given as boundary conditions, see Section 2.2. Similar to (3.10) or (3.11), the
discrete optimal control Ih can be calculated explicitly. In the expression (3.11), we approximate
BzV1 by the centered �nite di�erence which gives

(4.6) Ii “
γ1

`

V i,0
2 ´ V i

1

˘

ξλiD0
zV

i
1

.

Analogically as in the case of the collocation method, we solve the nonlinear problem (4.4)
with the policy iteration iterative procedure [2, 16]. Each iteration of the algorithm consists of a

policy improvement step, where the control (also called policy or investment) sIpn´1q is improved

by a previous value sV
pnq

1 of a policy evaluation step. Altogether, upwind scheme and policy
iteration give the following algorithm:

Algorithm 4.1 (Finite di�erence).

We start with an initial guess sIp0q :“ Inc for the control. Then, for every n P N˚, we proceed
along the following two steps iteration:

Policy evaluation: Find sV
pnq

1 :“
 

V
i,pnq

1 , i “ 1, . . . ,M ´ 1
(

, such that

(4.7) rV
i,pnq

1 “ LM1 p
sV
pnq

1 , sV2, zi, sI
pn´1qq ` f i1.

Policy improvement: Update the control sIpnq :“
 

Ii,pnq, i “ 1, . . . ,M ´ 1
(

with

(4.8) Ii,pnq “
γ1

`

V i,0
2 ´ V

i,pnq
1

˘

ξλiD0
zV

i,pnq
1

.

Stopping criterion: Repeat the loop until

‖sIpnq ´ sIpn´1q‖8
‖sIpnq‖8

ď ε.

4.2. Numerical experiments. In our numerical experiments we �x the tolerance of the stop-
ping criteria to ε “ 10´6. As it has been already discussed in Section 2.2, we have V1pxpzqq Ñ 0
when z Ñ 0 while V1pxpz̃qq is given by (2.2).
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(a) V1 computed before rescaling. (b) I computed before rescaling.

(c) V1 computed after rescaling. (d) I computed after rescaling.

Figure 4.2. The value V1 and the optimal control I computed with and without
rescaling. Without rescaling, we used the solution computed by collocation
method as the left boundary condition. The value V2 was computed separately
by collocation method with 104 grid points.

(a) Scenario 1. (b) Scenario 2. (c) Scenario 3.

Figure 4.3. Gradient of the control close to xpzq “ 0 and for each scenario. The
number of grid points is 2M ,M “ 20, 15, 14, 13, 12, 11, 10.

4.2.1. E�ect of the domain and the bondary conditions. We do not see any notable di�erence
between the two solutions computed with and without rescaling as long as x and xpzq stay
far away from the left border. This is expected since in Figs. 4.2a�4.2b we used the solution
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Table 4.3. Numerical results.

(a) Scenario 1 (αo “ 0.8 , γ2 “ 0.050) rescaled.

No. of grid Mesh size No. of `8 error `8 error `2 error `2 error
points ∆z iter. in V1 in I in V1 in I

215 2.97ˆ10´5 19 1.03ˆ10´5 1.24ˆ10´2 4.80ˆ10´6 1.06ˆ10´4

214 5.94ˆ10´5 20 2.11ˆ10´5 1.81ˆ10´2 9.90ˆ10´6 2.22ˆ10´4

213 1.19ˆ10´4 19 4.25ˆ10´5 2.61ˆ10´2 2.00ˆ10´5 4.40ˆ10´4

212 2.38ˆ10´4 18 8.51ˆ10´5 3.71ˆ10´2 4.00ˆ10´5 8.51ˆ10´4

211 4.75ˆ10´4 16 1.70ˆ10´4 5.20ˆ10´2 8.01ˆ10´5 1.64ˆ10´3

210 9.50ˆ10´4 16 3.41ˆ10´4 7.23ˆ10´2 1.60ˆ10´4 3.15ˆ10´3

(b) Scenario 2 (αo “ 0.8 , γ2 “ 0.005) rescaled.

No. of grid Mesh size No. of `8 error `8 error `2 error `2 error
points ∆z iter. in V1 in I in V1 in I

215 2.97ˆ10´5 14 6.26ˆ10´6 3.06ˆ10´4 1.68ˆ10´6 1.66ˆ10´5

214 5.94ˆ10´5 14 1.27ˆ10´5 7.07ˆ10´4 3.41ˆ10´6 3.37ˆ10´5

213 1.19ˆ10´4 13 2.59ˆ10´5 1.47ˆ10´3 6.90ˆ10´6 6.79ˆ10´5

212 2.38ˆ10´4 12 5.22ˆ10´5 2.90ˆ10´3 1.39ˆ10´5 1.36ˆ10´4

211 4.75ˆ10´4 14 1.06ˆ10´4 5.53ˆ10´3 2.80ˆ10´5 2.73ˆ10´4

210 9.50ˆ10´4 16 2.12ˆ10´4 1.01ˆ10´2 5.62ˆ10´5 5.48ˆ10´4

(c) Scenario 3 (αo “ 1.0 , γ2 “ 0.050) rescaled.

No. of grid Mesh size No. of `8 error `8 error `2 error `2 error
points ∆z iter. in V1 in I in V1 in I

215 1.53ˆ10´5 13 6.86ˆ10´6 4.69ˆ10´3 5.79ˆ10´6 1.19ˆ10´4

214 3.05ˆ10´5 14 1.39ˆ10´5 6.93ˆ10´3 1.18ˆ10´5 2.24ˆ10´4

213 6.10ˆ10´5 14 2.79ˆ10´5 9.88ˆ10´3 2.37ˆ10´5 4.13ˆ10´4

212 1.22ˆ10´4 12 5.59ˆ10´5 1.37ˆ10´2 4.75ˆ10´5 7.50ˆ10´4

211 2.44ˆ10´4 9 1.12ˆ10´4 1.87ˆ10´2 9.51ˆ10´5 1.34ˆ10´3

210 4.88ˆ10´4 9 2.23ˆ10´4 2.48ˆ10´2 1.90ˆ10´4 2.37ˆ10´3

(a) Scenario 1. (b) Scenario 2 (c) Scenario 3

Figure 4.4. Convergence of the policy iteration.

computed by collocation method as left boundary condition while in Figs. 4.2c�4.2d we used the
condition that V1 vanishes at in�nity, that is V1pxpzqq Ñ 0 when z Ñ 0. Moreover, the value V2
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(a) V1 with αo “ 0.8 and γ2 “ 0.050. (b) I with αo “ 0.8 and γ2 “ 0.050

(c) V1 with αo “ 0.8 and γ2 “ 0.005. (d) I with αo “ 0.8 and γ2 “ 0.005.

(e) V1 with αo “ 1.0 and γ2 “ 0.050. (f) I with αo “ 1.0 and γ2 “ 0.050.

Figure 4.5. Rate of convergence

has been computed only for x P p´9.19, 9.19q and was extended by zero to the entire domain R.
For instance for x ă ´9, we can clearly see that both solutions do not agree.

There is a further explanation of the behavior at the left border of the domain. The original
equation (1.1) is de�ned on R. By solving (1.1) on the �nite domain p´9.19, 9.19q we have
made an approximation which induces a boundary layer at the region close to the left border,
see Figs. 4.2a�4.2b. Rescaling (1.1) into (2.5) does not solve this issue completely since we
have also have to make a cuto� of the domain to solve the rescaled equation (2.5). Indeed, the
transformation (2.4) is not de�ned neither at z “ 0 nor at z “ 1. Therefore, we must solve (2.5)
on peps, z̃q, where eps “ 10´16 and z̃ is a point such that V1pxpz̃qq is known for every z ě z̃,
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see Section 2.2. This explains the boundary layer in Figs. 4.2c�4.2d. Similar observations was
observed by [1] for di�erent problem de�ned on an unbounded domain.

4.2.2. Approximation of the control. In our numerical experiments, we used the centered �nite
di�erences to approximate the derivative in (4.6) and in Algorithm 4.1. Of course, other choices
are possible namely the backward di�erences D´z , the forward di�erences D`z , and the upwind
di�erences D˘z , see (4.2) and (4.3). Under di�erent con�guration of the couple of parameters
pαo, γ2q, Fig. 4.4 illustrates the sensitivity of the policy iteration according to the choice of the
�nite di�erences scheme used in the policy improvement step of Algorithm 4.1. The policy
iteration converges with the centered �nite di�erences in every con�guration of the model. It
converges even quicker with the forward �nite di�erences for large γ2, see Fig. 4.4b and with the
backward �nite di�erences for large αo, see Fig. 4.4c. Even though the combination of the policy
iteration and upwind di�erences is more natural since it can be deduced from the optimality
condition of (4.4), the scheme diverges in every scenario.

We also observe that the number of iterations changes with the number of grid points, see
Table 4.3. It is also sensitive to the parameters αo and γ2. Larger γ2, see Table 4.3a, require less
iterations and larger αo, see Table 4.3c, require more.

4.2.3. Rate of convergence. Since no closed form or analytical solution is known, we determine
the rate of convergence by using a reference solution computed with a large number of grid points
M “ 220. Fig. 4.5 illustrates the relative `8 and the `2 errors and indicate convergence with
order 1, despite the `2 error for the approximation of the optimal control in the scenarios 1 and
3 converging with reduced rate 1{2.

5. Discretization by finite elements

In this section we introduce �nite element schemes for the approximation of (1.1) and (1.2).
We note that, opposed to the collocation and the �nite di�erence methods, we do not employ
the transformation (2.3) but instead work on domains of �nite size, that is we consider (1.1)
for x P p´20, 20q or x P p´10, 10q and (1.2) for px, yq P p´20, 0q ˆ p0, 20q and impose suitable
conditions along the boundary of the respective domains. This choice is motivated by two reasons.
Firstly we want to examine the e�ect of the (arti�cial) boundary conditions on the numerical
solution and secondly we want to demonstrate the e�ect of adaptive mesh re�nement which can
be done more naturally on the unrescaled domain.

Throughout the section we use the following notation. By L2pΩq we denote the standard
Lebesgue space of square integrable functions on Ω. For u, v P L2pΩq we denote the L2-inner

product by pu, vq :“
ş

Ω upxqvpxqdx with the corresponding L2-norm }u}L2pΩq :“ pu, uq1{2.

5.1. Discretization of the value in mode m “ 2. We note that for x ě 0 by Proposition 2.1
the solution of the HJB equation (1.2) is given explicitly by the formula in (2.1). Hence, similarly
as in Section 3, we only consider numerical approximation of V2 for x ă 0 and impose a Dirichlet
boundary condition at x “ 0 via (2.1). In addition, in order to solve V1 we only need to obtain
the solution V2 at y “ 0. Therefore, to obtain a �nite element approximation of V2 we solve
the HJB equation (1.2) on the bounded domain Ω´ “ p´20, 0q ˆ p0, 20q. The boundary of Ω´

is denoted as BΩ´ and the boundary at x “ 0 is denoted as ΓD :“ BΩ´ X p0, yq, y P r0, 20s.
We remark that by using the transformation from Section 2 it is possible to compute numerical
solution on an unbounded domain p´8, 0qˆp0, 20q, but we are not going to pursue this approach
here.

For simplicity we construct the �nite element scheme using uniform triangulations Th of Ω´.
For a �xed mesh size parameter h ą 0 the triangulation Th is obtained by partitioning Ω´

into uniform squares with side h and each square is then sub-divided into four equally sized
right-angled triangles. Given a triangulation Th of Ω´ we denote by S1pThq the standard �nite
element space of continuous functions which are piece-wise linear with respect to the triangulation
Th. The set of nodes tx` ” px`, y`qu

L
`“1 of Th is denoted as Nh. We also introduce a �nite

element space of functions that satisfy the homogeneous Dirichlet boundary condition on ΓD as
Vh “ tφh P S1pThq, φh|ΓD “ 0u.
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The standard nodal interpolation operator is denoted as Ih : CpΩ
´
q Ñ S1pThq, where for

v P CpΩ
´
q the interpolant Ihv P S1pThq is de�ned via the relation Ihvpx`q “ vpx`q, @x` P Nh.

For u, v P CpΩ
´
q de�ne the the discrete L2-inner product for Ω´ Ď R2 as

(5.1)
`

u, v
˘

h
“

ż

Ω´
Ihpuvqpxqdx “

ÿ

TPTh

|T |

3

3
ÿ

i“1

upvT,iqvpvT,iq ,

where vT,1,vT,2,vT,3 P Nh denote the vertices of the triangle T P Th.
We note that the considered �nite element space of piecewise linear continuous functions only

satis�es S1pThq Ă H1pΩ´q, that is the second order derivatives are not de�ned for vh P S
1pThq.

For vh P S1pThq we introduce the discrete second order operator δ2
xx,h : S1pThq Ñ S1pThq,

δ2
xx,h « B

2
xx as

(5.2) p´δ2
xx,hvh, φhqh “ pBxvh, Bxφhq @φh P S

1pThq ,

and similarly we de�ne δ2
yy,h « B

2
yy. Consequently the discrete Laplace operator ∆h :“ δ2

xx,h `

δ2
yy,h : S1pThq Ñ S1pThq satis�es

(5.3) p´∆hvh, φhqh “ p∇vh,∇φhq @φh P S
1pThq .

Let tφ`u
L
`“1 be the set of nodal basis functions of S1pThq, i.e. S1pThq “ spantφ1, . . . , φLu and

vh P S
1pThq can be expressed as vhpxq “

řL
`“1 v`φ`pxq with coe�cients v` P R. By the de�nition

of the discrete inner product (5.1) and the fact that φ`pxmq “ δ`m for xm P Nh, we deduce from
(5.2) that

B2
xxvhpx`q “ 3|supppφ`q|

´1pBxvh, Bxφ`q @x` P Nh,

as well as

∆hvhpx`q “ 3|supppφ`q|
´1p∇vh,∇φ`q @x` P Nh,

cf. [17, 13, 21].
The �nite element approximation of the continuous problem is then constructed as follows.

The �nite element solution V2,h P S
1pThq satis�es the Dirichlet boundary condition at ΓD, that

is V2,hpx`q “ V2p0, y`q for x` “ p0, y`q P NhXΓD (where V2p0, ¨q is given by (2.1)) and solves the
discrete syslem

(5.4)
´

´ 1
2σ

2δ2
yy,hV2,h`b¨∇V2,h`pr`p0qV2,h, φh

¯

h
´

´

hstab∆hV2,h, φh

¯

h
“ pf2, φhqh @φh P Vh .

where hstabpx`q “ h|bpx`q|, with b “ ´pb2, µq.
Equivalently we may rewrite (5.4) as

(5.5) r
`

V2,h, φh
˘

h
“

´

L2,hpV2,hq ` f2, φh

¯

h
`

´

hstab∆hV2,h, φh

¯

h
@φh P Vh ,

with L2,hpV2,hq :“ 1
2σ

2pyqδ2
yy,hV2,hpx, yq´bpx, yq¨∇V2,hpx, yq´p0pxqV2,hpx, yq which is a discrete

counterpart of (1.4) with an additional arti�cial di�usion term hstab∆hV2,h.
The arti�cial di�usion term guarantees the monotonicity and convergence of the �nite element

approximation, cf. [17] and [21, Section 3.5]. It is well know that the nodal basis functions of
S1pThq satisfy
(5.6) p∇φi,∇φjq ď 0 for i ‰ j ,

for weakly acute triangulation Th. Since we employ uniform right-angled triangulations (con-
sequently Th are weakly acute) in can be shown that the arti�cial di�usion term ´hstab∆hV2,h

ensures the monotonicity of the �nite element scheme (5.4), [21, Lemma 3.42]; a generalization
for adaptive meshes which satisfy the property (5.6) is possible by a suitable choice of the stabi-
lization parameter hstab, for more details see [17, Section 8] and [21]. By the monotonicity of the
numerical approximation standard arguments imply that the �nite element solution V2,h of (5.4)
converges to the (unique) viscosity solution of (1.2) (considered on Ω´), cf. [17]. On noting the

representation V2,hpxq “
řL
`“1 v2,`φ`pxq we observe that (5.4) is equivalent to a system of linear

equations for the coe�cients tv2,`u
L
`“1. Due to the monotonicity of the numerical approximation
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the associated matrix is a M -matrix, which also implies a maximum principle for the numerical
approximation (5.4), see for instance [21, Corollary 3.43].

Surprisingly, the numerical scheme (5.4) also works for hstab ” 0 and appears to provide a
numerical solution which is monotone (without oscillations).

5.2. Discretization of the value in mode m “ 1. In this subsection we investigate the
approximation of V1 by a continuous and piece-wise a�ne function V1,h P T , where the underlying
triangulation T of the domain Ω Ă R results from an adaptive mesh re�nement strategy, that is,
the computation starts with a coarse initial grid T0 and than performs local mesh re�nements.
This strategy is motivated by the fact that the solution V1 and the control Iopt are rather
smooth despite some singularities close to x “ 0 and close to the boundary due to the �arti�cial�
boundary layer, cf. Section 4.2.1. Indeed, it is known that adaptive schemes lead to optimal
convergence rates for certain model problems, see [9] for an overview. We propose the following
adaptive numerical scheme sharing some similarities with the policy iteration in Algorithm 4.1.
We stabilize the policy improvement step by using the L2-projection Π0 onto piece-wise constant
functions P0pT q :“ tv P L8pΩq | v|T P R for all T P T u and a damped steps size.

Algorithm 5.1 (Adaptive Scheme).
Outer loop: Given some initial triangulation T0, the initial guess I0 :“ Inc for the optimal
control, and an approximation of V2, we perform for each ` P N the following steps.

Inner loop: Set Ip0q :“ I` and solve for each n P N the following problems.

Policy evaluation: Compute an approximation V
pnq

1,h P S
1pT`q of the solution to the scalar

convection problem

´b1pI
pn´1qqBxV

pnq
1 ` pp0 ` p2pI

pn´1qq ` rqV
pnq

1 “ f1 ` p2pI
pn´1qqV2p¨, 0q in Ω.(5.7)

Policy improvement: Update the optimal control by (cf. (3.10))

Ipnq :“ Π0

¨

˝Ipn´1q ` 0.5

¨

˝

γ1pV2p¨, 0q ´ V
pnq

1,h q

ξBxV
pnq

1,h

´ Ipn´1q

˛

‚

˛

‚.(5.8)

Stopping criterion: Repeat the loop until the relative change of the control Ipnq is below some
given threshold ε` depending on ndof :“ dimS1pT`q, that is,

‖Ipnq ´ Ipn´1q‖L2pΩq

‖Ipnq‖L2pΩq

ď ε` with ε` :“ ndof´1.(5.9)

Set the function I``1 :“ Ipnq and compute re�nement indicators. These re�nement indicators
drive an adaptive mesh re�nement resulting in a new triangulation T``1.

We approximate the solution V
pnq

1 to (5.7) by the least-squares �nite element method (LS-
FEM). This method approximates the solution to a partial di�erential equation by the mini-
mization of some (arti�cial) energy. In case of (5.7) this minimization reads

V
pnq

1,h “ arg min
WhPS1pT q

‖´b1pIpn´1qqBxWh ` pp0 ` p2pI
pn´1qq ` rqWh ´ f1 ´ p2pI

pn´1qqV2p¨, 0q‖L2pΩq.

(5.10)

The LSFEM is a popular numerical scheme in �uid dynamics and elasticity. It is competitive with
the SUPG and superior to the Galerkin �nite element method for advection-di�usion equations
[3, 4]. Although there exist no theoretical results for the LSFEM and general HJB equations, a
�rst investigation in [19] shows convergence for linear elliptic Dirichlet boundary value problems
in non-divergence form with coe�cients satisfying the Cordes condition. We choose the LSFEM
for our computations due to the following reasons. It seems that we do not have to enforce
boundary conditions. This is bene�cial, since the left boundary data is without a rescaling of
the domain unknown. Moreover, the LSFEM is easy to implement, results in a linear system of
equations with symmetric positive de�nite matrix, and provides a built-in error control. Let us
explain the latter two advantages in more detail. The minimization in (5.10) is equivalent to the
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minimization of the error Wh ´ V
pnq

1 over all Wh P S
1pT q with respect to the semi-norm

‖¨‖a,Ipn´1q :“ ‖´b1pIpn´1qqBx ¨ `pp0 ` p2pI
pn´1qq ` rq¨‖L2pΩq in H1pΩq.

If there exists a unique solution V
pnq

1 P H1pΩq to (5.7), the semi-norm is indeed a norm. This
implies the well-posedness of the minimization problem in (5.10) and the resulting algebraic
problem involves a symmetric positive de�nite matrix. Hence we can use e�cient solvers for the
corresponding linear system of equations. Furthermore, the evaluation of the residual on each
T P T leads to the computable re�nement indicators

‖´b1pIpn´1qqBxV
pnq

1,h ` pp0 ` p2pI
pn´1qq ` rqV

pnq
1,h ´ f1 ´ p2pI

pn´1qqV2p¨, 0q‖L2pT q

“ ‖´b1pIpn´1qqBxpV
pnq

1,h ´ V
pnq

1 q ` pp0 ` p2pI
pn´1qq ` rqpV

pnq
1,h ´ V

pnq
1 q‖L2pT q.

We use this built-in error control to drive adaptive mesh re�nements with Dör�er marking
strategy and bulk parameter Θ “ 0.3.

We terminate our computations if the number of iterations in an inner loop exceeds �fteen
or the number of degrees of freedom ndof “ dimS1pT q exceeds half a million. All experiments
utilize the parameters in Tables 2.1�2.2 and approximations of V2 computed separately. The
initial grid T0 is a uniform partition of the domain Ω into 10 subintervals in all experiments. We
re�ne the mesh either adaptively or uniformly. The computations utilize the open source tool
for solving partial di�erential equations FEniCS [20].

5.2.1. Numerical experiment scenario 1 (αo “ 0.8, γ2 “ 0.05). The parameters in this experi-
ment read αo “ 0.8 and γ2 “ 0.05. We use the same approximation of V2 as in the computation
in Section 4. This approximation results from the collocation method in Section 3. The underly-
ing domain reads Ω “ p´9.19, 9.19q. Our numerical experiments show a boundary layer close the
left boundary in x “ ´9.19. This layer leads to additional di�culties in the convergence of the
inner loop. To neglect this arti�cial e�ect, we modify the stopping criterion in (5.9). Rather than
comparing the iteratively computed controls on the entire domain Ω, we restrict the integration
to the subdomain Ωred :“ p´5, 9.19q. More precisely, the stopping criterion reads

‖Ipnq ´ Ipn´1q‖L2pΩredq

‖Ipnq‖L2pΩredq

ď ε` with ε` :“ ndof´1.(5.11)

Figure 5.6 displays the convergence history plot, where the �nite di�erence solution withM “ 220

grid points from Section 4 serves as reference solution. Notice that the top left plot in Figure 5.6
shows that the behavior of the control close to the left boundary x “ ´9.19 di�ers signi�cantly
compared to the computation with the �nite di�erence method on the rescaled domain. However,
the convergence history plots on the right hand side of Figure 5.6 indicates that this phenomenon
does not have a decisive impact on the control I and the value function V1 in the domain Ωred.
Indeed, the plot shows that the L2 and L8 error for the value function V1,h converges with the

rate Opndof´1q with adaptive and uniform mesh re�nements. The error in the approximation of
the control seems to be slightly worse than Opndof´1q for the L2 error and slightly worse than

Opndof´1{2q for the L8 error. As ndof approaches 104, we observe di�culties. This indicates
that more accurate computations might require some stabilization as for example in the scheme
in Section 5.1.

5.2.2. Numerical experiment for scenario 2 (αo “ 0.8, γ2 “ 0.005). If we use the approximation
V2 from the collocation method in this scenario, the computed controls with the �nite di�erence
method and the LSFEM seem to di�er slightly. A more accurate approximation with the �nite
element scheme from Section 5.1 overcomes that di�culty and results in similar approximations
of V1, despite the (arti�cial) boundary layer close to the left boundary of the underlying domain
Ω “ Ω20 “ p´20, 20q (cf. Figure 5.7). The adaptive scheme seems to be very stable, that is,
the inner loop always terminates after maximal 5 iterations. With uniformly re�ned meshes the
computations fails after ndof exceeds 81921.

Figure 5.7 displays the convergence history plot of the computed value function V1,h and
control Ih, where we use the �nite di�erence solution with M “ 220 grid points and the same
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Figure 5.6. Computations for Scenario 1. Top left: Computed controls Ih with
the collocation method, the �nite di�erence (FD) method, and the LSFEM. Top
and bottom right: Solid lines represent the error of the adaptive scheme, dotted
lines represent the error on uniformly re�ned meshes. Dashed lines indicate
the rate Opndof´1q and the dash-dotted line indicates the rate Opndof´1{2q.
Bottom left: Density of vertices in the �nest adaptively re�ned mesh T .

approximation of V2 serves as reference solution. The �gure displays the error on the domain
Ω10 “ p´10, 10q. We observe that the L2 and L8 error of the control Ih behave approximately like
ndof´1. This rate is achieved with adaptive and uniform mesh re�nements. However, the uniform
mesh re�nement results in a pre-asymptotic regime with reduce speed of convergence. The L2

and L8 errors for the approximated value function V1 seem to converge with a rate of almost
ndof´2. In linear model problems such fast rates can be explained by the duality arguments of
Aubin and Nitzsche, see for example [5]. After ndof exceeds 5000 the errors ‖V1´V1,h‖L2pΩ10q

and
‖V1´V1,h‖L8pΩ10q remain almost constant. This might be caused by the fact that the seemingly
bene�cial convergence properties of the LSFEM scheme lead to a much better approximation
(with respect to the L2 and L8 norm) of the solution V1 than the �nite di�erence scheme with
signi�cantly more degrees of freedom.

In addition Figure 5.7 visualizes the control Ih computed with the collocation method, the
�nite di�erence method, and the LSFEM with underlying domain Ω10 and V2 computed on the
domain p´10, 0qˆp0, 20q as well as with underlying domain Ω20 and V2 computed on the domain
p´20, 0q ˆ p0, 20q. The plot on the bottom left of Figure 5.7 shows that the adaptive mesh
re�nement focuses on the domain close to 0 and between ´17 and ´8.

5.2.3. Numerical experiment scenario 3 (αo “ 1, γ2 “ 0.05). In this computation we use an
approximation of V2 with the collocation method on the domain Ω “ p´9.19, 9.19q. We compare
our results to the reference solution resulting from the �nite di�erence scheme withM “ 220 grid
points an the same approximation of V2. In our experiments the inner loop for the uniformly
re�ned meshes does not terminate as ndof exceeds 20000, the adaptively re�ned schemes seems
to be stable in the sense that the inner loop terminates after one or two iterations.
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Figure 5.7. Computations for scenario 2. Top left: Computed controls Ih with
the collocation method, the �nite di�erence (FD) method, and the LSFEM (LS-
FEM 10 is computed on Ω10 and LSFEM 20 on Ω20). Top and bottom right: Solid
lines represent the error of the adaptive scheme, dotted lines represent the error
on uniformly re�ned meshes. The dashed lines indicates the rate Opndof´1q,
the dotted line indicates the rate Opndof´2q. Bottom left: Density of vertices
in the �nest adaptively re�ned mesh T .

Figure 5.8 visualizes the approximations of the control I. Again, there is some boundary
layer close to the left boundary x “ ´9.19 of the domain Ω. Therefore, the convergence history
of our approximation V1,h displays the error on the reduced domain Ωred “ p´5, 9.19q. As in
the previous experiment the L2 and L8 error of the approximated value function V1,h seems to

converge with the rate ndof´2 and so outperforms the approximation with the �nite di�erence
scheme. The L2 error of the control seems to converge approximately with the rate ndof´1 and
the L8 error converges, unlike in the previous experiment, with the rate ndof´1{2. Similar to
the previous experiment, the adaptive scheme seems to be more stable than the uniform mesh
re�nement in the sense that the inner loop in the uniform scheme does not terminate as ndof
exceeds 20481, the inner loop in the adaptive scheme requires less than two iterations in each
iteration.

6. Conclusion

We conclude by noting that, for the considered parameters, the computed numerical approx-
imations were similar for all three numerical schemes. Nevertheless, we made some interesting
observations (in particular in the solution for m “ 1) which we summarize below.
Boundary/transformation e�ects: There were no notable di�erences between the com-

puted approximation of V1 between the di�erent numerical schemes. Compared to other methods,
the adaptive LSFEM methods exhibited slightly faster convergence behavior, nevertheless due
to the fact the V1 is rather smooth the di�erences were not signi�cant. For x close to the origin,
the computed optimal controls also exhibited very good agreement. Nevertheless, near the left
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Figure 5.8. Computations for scenario 3. Top left: Computed controls Ih with
the collocation method, the �nite di�erence (FD) method, and the LSFEM. Top
and bottom right: Solid lines represent the error of the adaptive scheme, dot-
ted lines represent the error on uniformly re�ned meshes. The dashed line
indicates the rate Opndof´1q, the dotted line indicates the rate Opndof´2q.
Bottom left: Density of vertices in the �nest adaptively re�ned mesh T .

boundary the three methods give very di�erent numerical solutions. This can be explained by the
following consideration. The collocation method and the �nite di�erence method are applied on
the in�nite domain p´8,8q via the coordinate transformation on p0, 1q. The uniform discretiza-
tion on p0, 1q can be interpreted as a discretization of the original problem with increasing mesh
size for growing |x|, that is the approximation inevitably becomes inaccurate for large |x|. The
�nite element method is applied on a bounded domain, where the solution near the boundary
is a�ected by the arti�cial boundary condition. We observe that the e�ect of the boundary can
be mitigated by increasing the size of the computational domain, which is particularly useful in
combination with adaptive mesh re�nement which potentially reduces the overall computational
cost without the loss of accuracy on larger domains.
Convergence of the policy iteration: It was necessary to modify the policy iteration for

each of the considered numerical schemes in order to ensure convergence of nonlinear iterations.
It appears that, the sensitivity of the iterative scheme is due to the fact that the optimal control
can become discontinuous at x “ 0, as indicated by the numerical experiments. Nevertheless,
a rigorous analysis of the convergence behavior of the policy iteration scheme for the present
problem is still missing.
Approximation of V2: The numerical solution of V2 enters as a parameter in the numerical

approximation of V1, consequently the quality of approximation of V1 will have in�uence on
the numerical approximation of V1. Due to the lack of arti�cial di�usion, we observed that
the numerical approximation V2 computed by collocation method contained minor oscillations.
This e�ect can be attributed to the lack of numerical stabilization in the collocation scheme.
A close inspection of the related numerical result reveals that these oscillations transfer to the
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approximation of V1. While the e�ect was minor and did not have notable impact on the accuracy
of numerical solution in the present setup, the result suggest that the use of monotone schemes
for V2, such as the stabilized FEM method provides a more reliable numerical algorithm.
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