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Abstract

Consider a population evolving from year to year through three seasons: spring, summer
and winter. Every spring starts with N dormant individuals waking up independently of each
other according to a given distribution. Once an individual is awake, it starts reproducing
at a constant rate. By the end of spring, all individuals are awake and continue reproducing
independently as Yule processes during the whole summer. In the winter, N individuals
chosen uniformly at random go to sleep until the next spring, and the other individuals
die. We show that because an individual that wakes up unusually early can have a large
number of surviving descendants, for some choices of model parameters the genealogy of the
population will be described by a Λ-coalescent. In particular, the beta coalescent can describe
the genealogy when the rate at which individuals wake up increases exponentially over time.
We also characterize the set of all Λ-coalescents that can arise in this framework.

AMS 2020 subject classifications: Primary 60J90; Secondary 60J80, 92D15, 92D25
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1 Introduction

Dormancy is a widespread evolutionary strategy. A significant proportion of all living microor-
ganisms are in some form of latent state of life [17]. The persistence of a latent subset of a
population creates a buffer against selection [12, 13] and contributes to the maintenance of bio-
diversity [14]. Recently, probabilistic models have been successful in explaining some aspects
of this facet of evolution and opening interesting questions in the fields of population genetics
and beyond. The impact of dormancy at different scales on the coalescent processes describing
the genealogies of populations were investigated in [15, 3, 4, 5]. Branching processes in random
environment explain how dormancy can be selectively advantageous under fluctuating environ-
mental conditions [6] while models from adaptive dynamics uncover that dormancy can arise
from competition [7].

While some microbial organisms can last dormant for millions of years [22], most deactivation
periods are much shorter. For example, mosquitos survive hostile environmental conditions by
producing eggs which resist low temperatures and dry conditions [11]. Water triggers the eclosion
of the eggs, so typically the newborns have favorable weather conditions and avoid the dry
season. The earlier an individual reaches the reproductive state the higher its chances of having
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a large number of descendants in the next generation. This induces a selective pressure favoring
mosquitos that are fortunate to be in contact with water soon after the rainy season starts.

The mechanisms for leaving a dormant state have been observed to be under selective pressure
not only in the case of mosquitos [26] but also in different contexts such as experimental evolution;
see, for example, figure 2 of [18] and [19]. In such experiments, individuals reproduce until the
resources are depleted, and after that some of them are sampled and propagated to fresh identical
media. The process of taking some bacteria from a depleted to a fully replenished environment
induces a form of latency. Similarly to the mosquitos, the bacteria undergoing the experiment
are subjected to selective pressures resulting from the randomness of the activation time, and
waking up rapidly from the dormant state provides an important advantage.

Wright and Vetsigian [27] postulated that the randomness in the times when individuals
emerge from a dormant state could cause the distribution of the numbers of offspring produced
by different individuals to become highly skewed. Indeed, they demonstrated in their bacterial
experiments that “the heavy-tailed nature of the distribution of descendants can, in our case,
be largely explained by phenotypic variability in lag time before exponential growth.” It is well
established in the probability literature [24, 25] that heavy-tailed offspring distributions can affect
the genealogical structure of the population. Whereas the genealogy of populations under a wide
range of conditions can be modeled by Kingman’s coalescent [16], in which only two lineages
can merge at a time, the genealogies of populations with heavy-tailed offspring distributions are
sometimes best described by coalescents with multiple mergers, also known as Λ-coalescents,
which allow many ancestral lines to merge at once. The primary aim of this paper is to describe
how the randomness in the times when individuals emerge from dormancy affects the genealogy
of the population and, in particular, to understand the conditions under which the genealogy is
best described by a Λ-coalesent. Wright and Vetsigian [27] report that “it is unlikely that the
variance diverges with population size for the particular species and conditions we examined,”
indicating that Λ-coalescents probably do not arise in this instance. Nevertheless, we find that
Λ-coalescent genealogies can appear if some rare individuals emerge from dormancy sufficiently
early.

1.1 A model involving dormancy

We now describe a population model involving dormancy, which is very similar to the one intro-
duced by Wright and Vetsigian in Section 2.7 of [27]. Note that we refer to the time period in the
model as a day, which might be most appropriate when considering an evolutionary experiment
involving bacteria, but in other contexts it will be more natural to think of this time period as
lasting a year, and we will refer to different seasons. The model evolves as follows. We begin
every day (or year) with a population of N dormant individuals. Each day (or year) has length
TN and consists of three phases:

• Activation phase (Spring): This phase has length tN . Each individual wakes up at some
random time before tN and then starts reproducing at rate λN .

• Active phase (Summer): This phase has length TN − tN , and during this phase all
individuals are awake and reproducing at rate λN .

• Sampling phase (Winter): At time TN , we choose N individuals uniformly at random
from the population to go to sleep until the start of the next day (or year), and all other
individuals die.
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Note that we have compressed the winter into a single time point, whereas it may be more realistic
to think of the deaths as occurring gradually over a longer winter period. However, this will not
substantially affect the results that follow.

For d ∈ Z and i ∈ [N ] := {1, . . . , N}, we denote by τ
(d)
i,N the random time in [0, tN ] when

the ith individual at the start of day d becomes active. We assume that the random variables

τ
(d)
1,N , . . . , τ

(d)
N,N are independent and identically distributed. We denote by X

(d)
i,N and ν

(d)
i,N the

number of descendants of the ith individual starting day d at time TN before and after sampling
respectively. The total number of individuals at the end of day d before sampling is then

S
(d)
N :=

∑

i∈[N ]

X
(d)
i,N .

Note also that
∑

i∈[N ] ν
(d)
i,N = N . Since the distributions of the τ

(d)
i,N , X

(d)
i,N , and ν

(d)
i,N do not depend

on d, we will frequently drop the superscripts when we are concerned only with the distributions
of these quantities. By a well-known fact about Yule processes, conditional on the activation time
τi,N , the random variable Xi,N is geometrically distributed with parameter exp(−λN (TN −τi,N)).
Moreover, conditional on (X1,N , . . . ,XN,N ), we see that νi,N has a hypergeometric distribution
with parameters SN , Xi,N and N .

We now explain how we will represent the genealogy of this population. Let us assume
that we sample n ∈ [N ] individuals at random on day 0. We define a discrete-time Markov
chain (Ψn,N (d))∞d=0 taking its values on the set of partitions Pn of [n], by letting Ψn,N(d) be the
partition of [n] such that i and j are in the same block if and only if the ith and jth individuals in
the sample have the same ancestor on day −d. We will be interested in the asymptotic behaviour
as N → ∞ of this ancestral process. The quantity

cN :=
E[(ν1,N )2]

N − 1
,

where (·)n denotes the falling factorial, will play a crucial role. Note that cN is the probability
that two individuals chosen uniformly at random from one generation have the same ancestor in
the previous generation. It therefore establishes the appropriate time scale on which to study the
process because after scaling time by 1/cN , the expected time for two randomly chosen individuals
to trace their lineages back to a common ancestor will equal 1.

Tools for studying the limits as N → ∞ in models such as this one were developed in
[24, 21, 25]. It is well-known that when the distribution of the family sizes ν1,N is highly skewed,
the genealogy can sometimes be described by a Λ-coalescent. Recall that whenever Λ is a finite
measure on [0, 1], the Λ-coalescent, introduced independently in [23] and [24], is a Pn-valued
Markov process having the property that whenever there are b blocks, each possible transition
that involves k of the blocks merging into one happens at rate

λb,k :=

∫ 1

0
yk−2(1− y)b−k Λ(dy).

When Λ is a unit mass at 0, we have λb,2 = 1 and λb,k = 0 whenever k ≥ 3, so we obtain
Kingman’s coalescent in which each pair of blocks merges at rate 1. When Λ({0}) = 0, the
Λ-coalescent can be constructed from a Poisson point process on [0,∞) × (0,∞) with intensity
dt× y−2 Λ(dy), in such a way that if (t, y) is a point of this Poisson point process, then at time
t we have a merger event in which each lineage independently participates in the merger with
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probability y. This viewpoint is useful for understanding the results that follow. In particular,
when Λ is a unit mass at one, we obtain a process known as the star-shaped coalescent in which
all blocks merge after a waiting time whose distribution is exponential(1).

In Section 1.2, we consider a simple case in which there is no summer, and individuals can only
wake up at the very beginning and at the very end of the spring. The genealogy of the population
in this case is described in Theorem 1.1. In Section 1.3, we consider the case in which there is also
no summer, but the rate at which individuals wake up from dormancy increases exponentially
over time. The genealogy of the population in this case is stated in Theorem 1.2. In Section 1.4,
we state Proposition 1.3, which gives conditions under which the summer period does not affect
the genealogy of the population. In Section 1.5, we state Theorem 1.4, which characterizes the
possible Λ-coalescents that can arise as limits in this model. After establishing some preliminary
results in Section 2, we prove Theorem 1.1 in Section 3, Theorem 1.2 in Section 4, Proposition 1.3
in Section 5, and Theorem 1.4 in Section 6.

1.2 A two-point distribution for the exit time from dormancy

Here we describe the limiting genealogy in a simple instance of the model introduced above in
which there is no summer, meaning that TN = tN , and the random variables τi,N can take only
the two values 0 and TN . We write

P (τi,N = 0) = ωN = 1− P (τi,N = TN ),

where ωN is assumed to satisfy
lim

N→∞
NωN = 0. (1.1)

Note that the progeny of individual i at time TN is given by

Xi,N = bi,NGi,N + (1− bi,N ),

where (bi,N )Ni=1 is an i.i.d. family of Bernoulli random variables with parameter ωN and (Gi,N )Ni=1

is an i.i.d. family of geometric random variables with parameters e−λNTN independent of (bi,N )Ni=1.
Let us assume in addition that

λNTN = β log(κN), for some κ, β > 0. (1.2)

We denote by DS [0,∞) the set of càdlàg functions from [0,∞) to S, equipped with the usual
Skorohod J1 topology. We then have the following result. Throughout the paper, convergence of
ancestral processes as N → ∞ refers to weak convergence of stochastic processes in DPn [0,∞).

Theorem 1.1. Assume that conditions (1.1) and (1.2) hold. Then:

1. If β > 1, the processes (Ψn,N (⌊t/cN ⌋))t≥0 converge as N → ∞ to the star-shaped coalescent.

2. If β = 1, the processes (Ψn,N (⌊t/cN⌋))t≥0 converge as N → ∞ to the Λ-coalescent, with Λ
being the probability measure characterized by y−2Λκ(dy) :=

1
E[Y 2

κ ]P (Yκ ∈ dy), where Yκ is

a [0, 1]-valued random variable whose distribution is determined by

P (Yκ > x) := e
− x

κ(1−x) , x ∈ [0, 1]. (1.3)

3. If β < 1, the processes (Ψn,N (⌊t/cN⌋))t≥0 converge as N → ∞ to Kingman’s coalescent.

4



This result can be understood as follows. Suppose an individual wakes up from dormancy un-
usually early, at time 0 rather than at time TN . Then this individual spawns a branching process
in which individuals give birth at rate λN , meaning that the expected number of descendants alive
at time TN will be eλNTN . Suppose first that β = 1. Then the number of descendants alive at
time TN can be approximately expressed as κNW , where W has an exponential(1) distribution.
Because there will also be N − 1 individuals who wake up at time TN , the fraction of the popula-
tion at time TN that is descended from the individual who woke up early will be approximately
κW/(κW + 1), which means approximately a fraction κW/(κW + 1) of the ancestral lines will
merge at this time. Indeed it is straightforward to check using (1.3) that we have the equality in
distribution

Yκ =d
κW

κW + 1
. (1.4)

If instead β < 1, then the number of descendants at time TN of the individual who woke
up early will be much smaller than N , making multiple mergers unlikely and giving rise to a
Kingman’s coalescent genealogy. On the other hand, if β > 1, then the number of descendants of
this individual will be much larger than N , meaning that with high probability all of the sampled
ancestral lines merge, leading to a star-shaped genealogy.

1.3 Exponentially increasing rates of exit from dormancy

We now consider a possibly more realistic scenario in which the rate at which individuals exit
from dormancy increases approximately exponentially over time. As in the model in Section 1.2,
we assume there is no summer, so TN = tN . We assume that λN = λ > 0 for all N . We also
assume that TN − τi,N = ζi ∧ TN , where (ζi)

N
i=1 is a sequence of i.i.d. random variables whose

distribution does not depend on N . We assume there exist constants γ > 0 and c > 0 such that,
using ∼ to denote that the ratio of the two sides tends to one, we have

P (ζ1 > y) ∼ ce−γy , as y → ∞, (1.5)

Finally, we assume that

lim
N→∞

logN

TN
= 0. (1.6)

We obtain the following result.

Theorem 1.2. Assume that conditions (1.5) and (1.6) hold, and let a = γ/λ. Then:

1. If a ≥ 2, the processes (Ψn,N(⌊t/cN ⌋))t≥0 converge as N → ∞ to Kingman’s coalescent.

2. If 1 ≤ a < 2, the processes (Ψn,N (⌊t/cN⌋))t≥0 converge as N → ∞ to the Λ-coalescent in
which Λ is the Beta(2 − a, a) distribution.

3. If 0 < a < 1, the processes (Ψn,N (⌊d⌋))∞d=0 converge as N → ∞ to the discrete-time Ξa-
coalescent described in Theorem 4(d) of [25].

To understand this result, consider the distribution of the random variables Xi,N . If we
disregard the truncation at TN , which will turn out to have minimal effect, then conditional on
ζi = u, the distribution of Xi,N is geometric with parameter e−λu. We assume for simplicity that
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the distribution of ζi is exactly exponential with rate γ. Then, making the change of variables
s = e−uλ and using Stirling’s approximation in the last step, we obtain

P (Xi,N > k) =

∫ ∞

0
(1− e−uλ)kγe−γudu = a

∫ 1

0
(1− s)ksa−1ds =

aΓ(k + 1)Γ(a)

Γ(k + 1 + a)
∼ Γ(a+ 1)k−a.

Therefore, this result fits into the framework of Theorem 4 of [25], where it was established
that beta coalescents describe the limiting genealogies in populations with these heavy-tailed
offspring distributions. Note also that when 0 < a < 1, there will be multiple individuals in
each day whose descendants comprise a substantial fraction of the population, which is why the
limit of the ancestral processes is not a Λ-coalescent but rather a discrete-time process in which
multiple groups of lineages merge in each time step.

1.4 The effect of the summer on the genealogy

In Sections 1.2 and 1.3, we assumed there was no summer. We now consider how the inclusion of
a summer period impacts the genealogy of the population. For this, we compare two populations
whose spring has length tN and whose reproduction rate is λN , which are subject to the same
activation times. One population has a summer of length TN − tN > 0, and the other one
has no summer, so that years have length tN . Let (Ψ̂n,N (d))∞d=0 denote the ancestral process
associated with a sample of n individuals at time 0 from the population without a summer, and
let (Ψn,N (d))∞d=0 denote the corresponding ancestral process for the model with a summer. We
obtain the following result.

Proposition 1.3. Assume that there is a sequence (ρN )∞N=1 of positive numbers such that

(Ψ̂n,N (⌊ρN t⌋))t≥0 ⇒ (Ψn(t))t≥0 in DPn [0,∞), where Ψn is a continuous-time Markov chain with
values in Pn. For the model with a summer, let Yi,N denote the number of descendants of the ith
individual at the beginning of a given season who are alive at time tN , and assume that

lim
N→∞

ρNE

[

1

Y1,N + · · · + YN,N

]

= 0. (1.7)

Then
(Ψn,N (⌊ρN t⌋))t≥0 ⇒ (Ψn(t))t≥0.

When condition (1.7) holds, coalescence of lineages during the summer is sufficiently rare that
the inclusion of the summer period does not affect the genealogy of the population in the limit.
To understand why (1.7) is the correct condition, note that under the usual scaling ρN = 1/cN ,
the probability that two randomly chosen lineages coalesce is cN = 1/ρN . On the other hand,
conditional on there being M individuals alive at the end of the spring, the probability that
two randomly chosen lineages merge during the summer, regardless of the length of the summer,
is bounded above by 2/(M + 1), as a consequence of Lemma 5.1. Therefore, condition (1.7)
implies that the probability that two lineages coalesce in the summer is of smaller order than the
probability that two lineages coalesce in the spring.

On the other hand, if (1.7) fails, then as long as the summer has a length that does not tend
to zero as N → ∞, the summer period will cause additional pairwise mergers of ancestral lines.
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1.5 A characterization of the possible Λ-coalescent limits

Theorem 1.4 below characterizes the Λ-coalescents that can arise as limits of ancestral processes
in the model introduced in Section 1.1. Essentially, the possible measures Λ are those that can
be expressed as mixtures of the measures Λ that appear as limits in Theorem 1.1. Note that
the model in Section 1.1 is characterized by the birth rates (λN )∞N=1, the times (tN )∞N=1 and
(TN )∞N=1, and the distributions of the random variables (τ1,N )∞N=1. Therefore, to say that the
Λ-coalescent can arise as a limit in this model means that there are choices of these parameters
for which the rescaled ancestral processes converge to the Λ-coalescent.

Theorem 1.4. It is possible for the Λ-coalescent to arise as the limit of the rescaled ancestral
processes (Ψn,N (⌊ρN t⌋))t≥0 in the population model defined in Section 1.1 if and only if we can
write

Λ = a1δ0 + a2δ1 + Λ′, (1.8)

where a1 and a2 are nonnegative real numbers and Λ′ is a measure on (0, 1) with density h with
respect to Lebesgue measure, where

h(y) =

∫ ∞

0

1

κ

(

y

1− y

)2

e
− y

κ(1−y) η(dκ) (1.9)

for all y ∈ (0, 1) and
∫∞
0 (1 ∧ κ2) η(dκ) < ∞.

We now make a few remarks concerning this result:

1. To relate this result to Theorem 1.1, note that the density of the random variable Yκ

described in (1.3) is given by

fκ(y) =
1

κ(1 − y)2
e
− y

κ(1−y) , y ∈ [0, 1].

Therefore, if Λ′ has density h with respect to Lebesgue measure, where h is given by (1.9),
then y−2Λ′(dy)/dy =

∫∞
0 fκ(y) η(dκ). Note also that

Λ′(dy) = h(y)dy =

(
∫ ∞

0
y2fκ(y)η(dκ)

)

dy =

∫ ∞

0
Λκ(dy)E[Y 2

κ ]η(dκ). (1.10)

2. Suppose η(dκ) = κ−1−a dκ, where 0 < a < 2. Then
∫∞
0 (1 ∧ κ2) η(dκ) < ∞. In this case,

making the substitution x = y/(κ(1 − y)), we have

h(y) =

(

y

1− y

)2 ∫ ∞

0
e
− y

κ(1−y)κ−2−a dκ =

(

y

1− y

)1−a ∫ ∞

0
e−xxa dx,

which is a constant multiple of the Beta(2 − a, a) density appearing in Theorem 1.2.

3. Typically, when rescaling time in the ancestral processes, we take ρN = 1/cN , so that
the expected time required for two randomly chosen lineages to merge equals 1. When
ρN = 1/cN , the measure Λ that appears in the limit must be a probability measure.
Allowing arbitrary scaling constants (ρN )∞N=1 simply allows finite measures Λ that are not
probability measure to arise in the limit. See Remark 6.1 for details.
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4. For the purposes of this result, we may assume without loss of generality that tN = TN ,
because regardless of the choice of tN , it is always possible that the distribution of the times
τi,N may be concentrated on a smaller subinterval of [0, TN ]. That is, every Λ-coalescent
that can arise in this model can arise in an instance of the model in which there is no
summer period.

5. The decomposition (1.9) in Theorem 1.4 is unique. Indeed, if two measures η and η̂ define
the same function h via (1.9), then the Laplace transforms of the measures zη◦φ−1(dz) and
zη̂ ◦φ−1(dz), where φ(κ) = 1/κ, coincide in (0,∞). We conclude that η◦φ−1 = η̂◦φ−1, and
hence η = η̂. In combination with Theorem 1.4 we infer that {δ0, δ1} ∪ {Λκ}κ>0 is the set
of extremal points of the convex set of probability measures Λ appearing in Theorem 1.4.
Note that (1.10) shows how any probability measure Λ appearing in Theorem 1.4 can be
written as a mixture of the probability measures Λκ.

We end this section with an alternate characterization of the measures Λ′ appearing in The-
orem 1.4.

Proposition 1.5. An integrable function h : (0, 1) → (0,∞) can be expressed as in (1.9) for some
measure η on [0,∞) if and only if there is a completely monotone function g : (0,∞) → (0,∞)
such that

h(y) =
y2

(1− y)2
g

(

y

1− y

)

,

for all y ∈ (0, 1) and
∫∞
0 g(v)(1 ∧ v2) dv < ∞.

Proof. First note that, the relation Tg(y) = (y/(1−y))2g(y/(1−y)), y ∈ (0, 1), defines a bijective
function T mapping positive functions on (0,∞) into positive functions on (0, 1). Moreover,
making the substitution v = y/(1− y), we see that

∫ 1

0

y2

(1− y)2
g

(

y

1− y

)

dy =

∫ ∞

0

v2

(1 + v)2
g(v) dv.

Hence, the integrability of Tg is equivalent to the integrability of v 7→ g(v)(1 ∧ v2). In addition,
if h is given by (1.9), then h = Tg with

g(v) =

∫ ∞

0

1

κ
e−

v
κ η(dκ).

Clearly g is the Laplace transform of the measure m(dz) := z η ◦φ−1(dz), where φ(κ) = 1/κ, and
thus, g is completely monotone. Conversely, assume that h = Tg for some completely monotone
function g. The latter is, by Bernstein’s theorem, the Laplace transform of a measure m on
[0,∞). It follows that h is given by (1.9) with η(dκ) := κm ◦ φ−1(dκ), which ends the proof.

2 Genealogies in Cannings Models

The model introduced in Section 1.1 is an example of a Cannings model. Cannings models, first
introduced in [8, 9], have discrete generations and a fixed population size N , and the distribution
of the family size vector (ν1,N , . . . , νN,N ) is required to be exchangeable. There is by now a
standard set of tools for studying the genealogy of such models. To prove convergence of the
ancestral process in our model to a Λ-coalescent, we will mainly use the following result, which
is essentially Theorem 3.1 of [24]; see also Theorem 3.1 of [25].
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Theorem 2.1. Consider a Cannings model in which the sizes of the N families are denoted by
ν1,N , . . . , νN,N . Let

cN =
E[(ν1,N )2]

N − 1
.

Now sample n individuals at random from the population in generation zero, and let Ψn,N (k) be
the partition of [n] such that i and j are in the same block of Ψn,N (k) if and only if the ith and jth
individuals in the sample have the same ancestor in generation −k. Let Λ be a probability measure
on [0, 1]. Then the processes (Ψn,N (⌊t/cN ⌋))t≥0 converge in DPn [0,∞) to the Λ-coalescent for all
n ∈ N if and only if the following three conditions hold:

1. We have
lim

N→∞
cN = 0.

2. We have

lim
N→∞

E[(ν1,N )2(ν2,N )2]

N2cN
= 0.

3. For all x ∈ (0, 1) such that Λ({x}) = 0, we have

lim
N→∞

N

cN
P (ν1,N > Nx) =

∫ 1

x
y−2 Λ(dy).

Remark 2.2. In place of condition 1 in Theorem 2.1, Sagitov [24] has the condition that
N−1E[(ν1,N − 1)2] → 0, which is equivalent because the fact that E[ν1,N ] = 1 implies that
E[(ν1,N )2] = E[(ν1,N − 1)2]. Also, in place of condition 3, Sagitov has the condition that for all
integers a ≥ 2, we have

lim
N→∞

E[(ν1,N − 1)2 · · · (νa,N − 1)2]

NacN
= 0.

However, the equivalence of (16) and (20) in [21] implies that we can consider (νk,N )2 in place of
(νk,N − 1)2, and equation (17) of [21] implies that the limit is zero for all a ≥ 2 if and only if the
limit is zero when a = 2. These observations lead to the formulation of the result given above.

For the rest of this section, we consider a subclass of Cannings models in which the family
sizes in each generation are obtained in the following way. We consider a sequence of independent
and identically distributed positive integer-valued random variables X1,N , . . . ,XN,N , where Xk,N

denotes the number of offspring produced by the kth individual. Note that we do not allow
the random variables Xk,N to take the value zero. We let SN = X1,N + · · · +XN,N be the total
number of offspring. We then sample N of the SN offspring without replacement to form the next
generation, and denote by νk,N the number of offspring of the kth individual that are sampled.
Note that the model introduced in Section 1.1 fits into this framework.

In this section, we will use the notation f(N) ≪ g(N) to mean limN→∞ f(N)/g(N) > 0 and
f(N) . g(N) to mean supN f(N)/g(N) < ∞.

Lemma 2.3 is useful for translating properties of the family sizes after sampling to properties
of the family sizes before sampling, and vice versa.

Lemma 2.3. For r ∈ N, k1, . . . , kr ≥ 2, and N > k1 + · · ·+ kr, we have

E[(ν1,N )k1 · · · (νr,N )kr ]

(N)k1+···+kr

= E

[

(X1,N )k1 · · · (Xr,N )kr
(SN )k1+···+kr

]

. (2.1)
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In particular,

cN :=
E[(ν1,N )2]

N − 1
= NE

[

X1,N (X1,N − 1)

SN (SN − 1)

]

. (2.2)

Moreover,

cN ≥ P (X1,N ≥ 2)2

2N
. (2.3)

Proof. The identity (2.1) follows from equations (19) and (21) in the proof of Lemma 6 of [25].
Both sides give the probability that, if we sample k1 + · · · + kr individuals, the first k1 are
descended from the first individual in the previous generation, the next k2 are descended from
the second individual in the previous generation, and so on. The result (2.2) is a special case of
(2.1). It remains to prove (2.3). Using (2.2) for the first inequality and Jensen’s inequality for
the third, we have

cN ≥ NE

[

X1,N (X1,N − 1)

S2
N

]

≥ N

2
E

[

X2
1,N

S2
N

1{X1,N≥2}

]

≥ N

2

(

E

[

X1,N

SN
1{X1,N≥2}

])2

≥ N

2

(

1

N
P (X1,N ≥ 2)

)2

,

which ends the proof.

Lemma 2.4 shows that when cN → 0, the distribution of the total number of offspring is
highly concentrated around some value aN when N is large. This result implies that, when an
unusually large family arises that will produce multiple mergers of ancestral lines, the total size
of the remaining N−1 families in that generation can be treated as being essentially nonrandom,
so that the size of the large family will determine the proportion of ancestral lineages that merge
in this generation.

Lemma 2.4. Suppose limN→∞ cN = 0. Then there exists a sequence of positive numbers (aN )∞N=1

such that the following hold:

1. We have SN/aN →p 1, where →p denotes convergence in probability as N → ∞.

2. There exists δ > 0 such that

lim
N→∞

c−1
N P

(

SN − max
1≤k≤N

Xk,N < δaN

)

= 0.

Proof. Let S̄N−1 = SN −X1,N = X2,N + · · · +XN,N . Let

mN = inf{k : P (S̄N−1 ≤ k) ≥ 1/2}. (2.4)

Let 0 < δ < 1/2. We have

P
(

X1,N ≥ δS̄N−1

)

≥ P (X1,N ≥ δmN )P (S̄N−1 ≤ mN ) ≥ 1

2
P (X1,N ≥ δmN ).

Because S̄N−1 = SN −X1,N , it follows that

NP (X1,N ≥ δmN ) ≤ 2NP
(

X1,N ≥ δS̄N−1

)

= 2NP

(

X1,N ≥ δ

1 + δ
SN

)

. (2.5)
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Using the fact that SN ≥ N followed by Markov’s Inequality, we have

P

(

X1,N ≥ δ

1− δ
SN

)

= P

(

X1,N (X1,N − 1) ≥
( δ

1 + δ
SN

)( δ

1 + δ
SN − 1

)

)

= P

(

X1,N (X1,N − 1) ≥ δ2

(1 + δ)2
SN (SN − 1)

(

SN − 1+δ
δ

SN − 1

))

≤ P

(

X1,N (X1,N − 1)

SN (SN − 1)
≥ δ2

(1 + δ)2
· N − 1+δ

δ

N − 1

)

≤
(

(1 + δ)2

δ2
· N − 1

N − 1+δ
δ

)

E

[

X1,N (X1,N − 1)

SN (SN − 1)

]

. (2.6)

From (2.2), (2.5), and (2.6) we get

NP (X1,N ≥ δmN ) ≤
(

2(1 + δ)2

δ2
· N − 1

N − 1+δ
δ

)

cN , (2.7)

which tends to zero as N → ∞ by assumption.
For 1 ≤ k ≤ N , let

Wk,N = Xk,N1{Xk,N≤δmN } + 1{Xk,N>δmN }.

Let UN = W1,N + · · · +WN,N , and let ŪN−1 = UN −W1,N . Equation (2.7) implies

P (SN 6= UN ) ≤ NP (X1,N 6= W1,N ) → 0 as N → ∞. (2.8)

Let dN = E[W1,N ], and let aN = NdN . Then E[UN ] = aN . It follows from (2.4) that

P (S̄N−1 ≤ mN − 1) < 1/2,

and therefore by Markov’s Inequality,

1/2 < P (S̄N−1 ≥ mN )

≤ P (ŪN−1 ≥ mN ) + (N − 1)P (X1,N 6= W1,N )

≤ E[ŪN−1]

mN
+ (N − 1)P (X1,N 6= W1,N )

=
(N − 1)aN

NmN
+ (N − 1)P (X1,N 6= W1,N ).

Because (N − 1)P (X1,N 6= W1,N ) → 0 by (2.8), it follows that for sufficiently large N , we have

aN
mN

≥ 1

3
. (2.9)

We now establish the result using a second moment argument. Given r = 1/ℓ for some
positive integer ℓ and an integer k such that 1 ≤ k ≤ ℓ, define

Uk,r,N = W⌊(k−1)rN⌋+1,N + · · ·+W⌊krN⌋,N .

Note that UN = U1,1,N , and that Uk,r,N is the sum of between rN − 1 and rN + 1 random
variables. Therefore,

E[Uk,rN ] ≥
(

r − 1

N

)

aN , (2.10)
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and using that W1,N ≥ 1, we have

Var(Uk,r,N) ≤ (rN + 1)Var(W1,N )

= (rN + 1)
(

E[W 2
1,N ]− (E[W1,N ])2

)

≤ (rN + 1)E[W1,N (W1,N − 1)]. (2.11)

Using that X1,N ≤ δmN on the event {W1,N − 1 6= 0}, and that W1,N is independent of S̄N−1,
we have

cN ≥ NE

[

W1,N (W1,N − 1)

S2
N

]

≥ NE

[

W1,N (W1,N − 1)

(δmN + S̄N−1)2

]

= NE[W1,N (W1,N − 1)]E

[

1

(δmN + S̄N−1)2

]

. (2.12)

Now

E

[

1

(δmN + S̄N−1)2

]

≥ P (S̄N−1 = ŪN−1)E

[

1

(δmN + S̄N−1)2

∣

∣

∣
S̄N−1 = ŪN−1

]

. (2.13)

Let Z1,N , . . . , ZN,N be independent random variables whose distribution is the conditional distri-
bution of X1,N given X1,N ≤ δmN . Note that

E[Z1,N ] = E[W1,N |X1,N ≤ δmN ] ≤ E[W1,N ]

P (X1,N ≤ δmN )
≤ aN

NP (X1,N ≤ δmN )
. (2.14)

Let V̄N−1 = Z2,N + · · · + ZN,N . Then, using Jensen’s Inequality, followed by (2.14) and then
(2.9), for N large enough that δmN > 1 we have

E

[

1

(δmN + S̄N−1)2

∣

∣

∣
S̄N−1 = ŪN−1

]

= E

[

1

(δmN + V̄N−1)2

]

≥ 1

(δmN + E[V̄N−1])2

≥
(

δmN +
(N − 1)aN

NP (X1,N ≤ δmN )

)−2

≥ 1

a2N

(

3δ +
N − 1

NP (X1,N ≤ δmN )

)−2

.

It follows from (2.8) that limN→∞(N −1)/(NP (X1,N ≤ δmN )) = 1, and therefore for sufficiently
large N , we have

E

[

1

(δmN + S̄N−1)2

∣

∣

∣
S̄N−1 = ŪN−1

]

≥ 1

a2N (1 + 4δ)2
.

Combining this result with (2.12) and (2.13), we get

cN ≥ NE[W1,N (W1,N − 1)]P (S̄N−1 = ŪN−1) ·
1

a2N (1 + 4δ)2
,

and therefore

E[W1,N (W1,N − 1)] ≤ cNa2N (1 + 4δ)2

NP (S̄N−1 = ŪN−1)
.
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By (2.11),

Var(Uk,r,N) ≤ (rN + 1)cNa2N (1 + 4δ)2

NP (S̄N−1 = ŪN−1)
. (2.15)

Let ε > 0. Taking r = 1 and using Chebyshev’s Inequality along with (2.8) and the assumption
that limN→∞ cN = 0, we get

P

(∣

∣

∣

∣

SN

aN
− 1

∣

∣

∣

∣

> ε

)

≤ P (SN 6= UN ) +
Var(UN )

a2Nε2
≤ P (SN 6= UN ) +

(N + 1)cN (1 + 4δ)2

NP (S̄N−1 = ŪN−1)ε2
→ 0.

That is, we have SN/aN →p 1, which is part 1 of the result. To prove part 2, we take r = 1/3
and note that we can have

SN − max
1≤k≤N

Xk,N < δaN

only if at least two of the random variables Uk,r,N , for k ∈ {1, 2, 3}, are less than δaN . Let
0 < δ < 1/3. By (2.10), (2.15), and Chebyshev’s Inequality,

P (Uk,r,N < δaN ) ≤ P

(

∣

∣Uk,r,N − E[Uk,r,N ]
∣

∣ >
(

r − δ − 1

N

)

aN

)

≤
(

r − δ − 1

N

)−2Var(Uk,r,N)

a2N

≤
(

r − δ − 1

N

)−2 (rN + 1)cN (1 + 4δ)2

NP (S̄N−1 = ŪN−1)
.

Therefore, the probability that at least two of the random variables Uk,r,N , for k ∈ {1, 2, 3}, are
less than δaN is bounded above by

3
(

r − δ − 1

N

)−4
· (rN + 1)2c2N (1 + 4δ)4

N2P (S̄N−1 = ŪN−1)2
.

This expression tends to zero faster than cN because δ < 1/3.

Lemma 2.5. Suppose limN→∞ cN = 0. For all ε > 0 we have

lim
N→∞

N2

cN
P

(
∣

∣

∣

∣

νk,N
N

− Xk,N

SN

∣

∣

∣

∣

> ε for some k ∈ [N ]

)

= 0.

Proof. Suppose Y is the number of red balls drawn, when n balls are chosen from an urn con-
taining b balls, of which r are red. Chvátal [10] showed that if ε > 0, then

P

(

Y ≥
(r

b
+ ε
)

n

)

≤ e−2ε2n. (2.16)

Conditional on Xk,N and SN , we see that νk,N can be interpreted as the number of red balls
drawn, when N balls are chosen from an urn containing SN balls, of which Xk,N are red. By
applying (2.16) on the event that SN > N , and noting that on the event that SN = N , we have
νk,N = Xk,N = 1 for all k, we get

P

(∣

∣

∣

∣

νk,N
N

− Xk,N

SN

∣

∣

∣

∣

> εN for some k ∈ [N ]

)

≤ 2Ne−2ε2NP (SN > N).
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Conditional on SN > N , the probability that two randomly chosen individuals have the same
ancestor is at least 2/(N(N + 1)), so

cN ≥ 2

N(N + 1)
P (SN > N). (2.17)

The result follows.

Lemma 2.6. Suppose limN→∞ cN = 0. For all ε > 0, we have

lim
N→∞

N2

cN
P
(

ν1,N ≥ Nε, ν2,N ≥ Nε
)

= 0. (2.18)

This in turn implies

lim
N→∞

E[(ν1,N )2(ν2,N )2]

N2cN
= 0. (2.19)

Proof. Let ΦN be the set of all ordered pairs (j, k) with 1 ≤ j < k ≤ N such that νj,N ≥ Nε and
νk,N ≥ Nε. Let |ΦN | be the cardinality of ΦN . Note that at most 1/ε of the random variables
νk,N can exceed Nε, and so

|ΦN | ≤ 1/ε2. (2.20)

Note that

P
(

ν1,N ≥ Nε, ν2,N ≥ Nε
)

=
2

N(N − 1)
E
[

|ΦN |
]

. (2.21)

Define the events

AN =

{
∣

∣

∣

∣

νk,N
N

− Xk,N

SN

∣

∣

∣

∣

≤ ε

2
for all k ∈ [N ]

}

(2.22)

and
BN =

{

SN − max
1≤k≤N

Xk,N ≥ δaN

}

, (2.23)

where δ is the constant from Lemma 2.4. Also, note that Xk,N/SN > ε/2 is equivalent to
Xk,N > (SN − Xk,N )ε/(2 − ε), which on BN implies that Xk,N > εδaN/2. Therefore, using
(2.20),

E
[

|ΦN |
]

= E
[

|ΦN |1Ac
N

]

+ E
[

|ΦN |1Bc
N

]

+ E
[

|ΦN |1AN∩BN

]

≤ P (Ac
N ) + P (Bc

N )

ε2
+

(

N

2

)

P

(

X1,N >
εδaN
2

)2

.

Now P (Ac
N ) ≪ N−2cN by Lemma 2.5 and P (Bc

N ) ≪ cN by part 2 of Lemma 2.4. Also, by (2.7)
and (2.9), we have P (X1,N > εδaN/2) . N−1cN . Combining these observations, and using that
cN → 0 by assumption, we get

lim
N→∞

c−1
N E

[

|ΦN |
]

= 0.

The claim (2.18) now follows from (2.21).
To prove (2.19), let ε > 0, and note that

E[(ν1,N )2(ν2,N )2]

N2cN
≤

E
[

(ν1,N )2(ν2,N )21{ν1,N≥Nε, ν2,N≥Nε}

]

N2cN
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+
E
[

(ν1,N )2(ν2,N )21{ν1,N<Nε}

]

N2cN
+

E
[

(ν1,N )2(ν2,N )21{ν2,N<Nε}

]

N2cN

≤ N4P (ν1,N ≥ Nε, ν2,N ≥ Nε)

N2cN
+

2(Nε)E[(ν1,N )2ν2,N ]

N2cN
.

By exchangeability and the fact that ν1,N + · · ·+ νN,N = N ,

E[(ν1,N )2ν2,N ] =
1

N − 1
E[(ν1,N )2(ν2,N + · · · + νN,N)] ≤ N

N − 1
E[(ν1,N )2] = NcN .

It now follows, using (2.18), that

lim sup
N→∞

E[(ν1,N )2(ν2,N )2]

N2cN
≤ lim sup

N→∞

N2

cN
P (ν1,N ≥ Nε, ν2,N ≥ Nε) + lim sup

N→∞
2ε ≤ 2ε.

Because ε > 0 was arbitrary, the result (2.19) follows.

Lemma 2.7. Suppose limN→∞ cN = 0. Suppose Λ is a probability measure on [0, 1]. Then,
the ancestral processes (Ψn,N (⌊t/cN⌋))t≥0 in the Cannings model described above converge in
DPn [0,∞) to the Λ-coalescent for all n if and only if for all x ∈ (0, 1) such that Λ({x}) = 0, we
have

lim
N→∞

N

cN
P

(

X1,N

aN
>

x

1− x

)

=

∫ 1

x
y−2 Λ(dy). (2.24)

Proof. We need to check the three conditions of Theorem 2.1. Condition 1 holds by assumption,
and condition 2 holds by Lemma 2.6.

It remains to show that (2.24) is equivalent to condition 3 of Theorem 2.1. Define the events
AN as in (2.22) with ε in place of ε/2, and define BN as in (2.23). Let S̄N−1 = SN −X1,N . Let
x ∈ (0, 1). We have

P (ν1,N > Nx) ≥ P

(

AN ∩
{

X1,N

SN
> x+ ε

})

≥ P

(

AN ∩
{

S̄N−1 ≤ (1 + δ)aN
}

∩
{

X1,N

aN
≥ (x+ ε)(1 + δ)

1− x− ε

})

≥ P (S̄N−1 ≤ (1 + δ)aN )P

(

X1,N

aN
≥ (x+ ε)(1 + δ)

1− x− ε

)

− P (Ac
N ).

Note that P (Ac
N ) ≪ N−2cN by Lemma 2.5. Also, because (2.7) and (2.9) imply X1,N/aN →p 0,

it follows from Lemma 2.4 that S̄N−1/aN →p 1. Therefore,

lim inf
N→∞

N

cN
P (ν1,N > Nx) ≥ lim inf

N→∞

N

cN
P

(

X1,N

aN
≥ (x+ ε)(1 + δ)

1− x− ε

)

(2.25)

and

lim sup
N→∞

N

cN
P

(

X1,N

aN
≥ (x+ ε)(1 + δ)

1− x− ε

)

≤ lim sup
N→∞

N

cN
P (ν1,N > Nx). (2.26)

The other direction is more involved. By exchangeability and the inclusion-exclusion formula,

NP (νk,N > Nx)−
(

N

2

)

P (ν1,N > Nx, ν2,N > Nx) ≤ P

( N
⋃

k=1

{νk,N > Nx}
)

. (2.27)
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Now

P

( N
⋃

k=1

{ν1,N > Nx}
)

≤ P (Ac
N ) + P (Bc

N ) + P

(

BN ∩
N
⋃

k=1

{

Xk,N

SN
> x− ε

})

≤ P (Ac
N ) + P (Bc

N ) +NP

(

BN ∩
{

X1,N

SN
> x− ε

})

. (2.28)

Note that S̄N−1 ≥ δaN on BN . Then

P

(

BN ∩
{

X1,N

SN
> x− ε

})

≤ P

(

{

δaN ≤ S̄N−1 ≤ (1− δ)aN
}

∩
{

X1,N

X1,N + δaN
> x− ε

})

+ P

(

{

S̄N−1 > (1− δ)aN
}

∩
{

X1,N

X1,N + (1− δ)aN
> x− ε

})

≤ P
(

S̄N−1 ≤ (1− δ)aN
)

P

(

X1,N

aN
≥ (x− ε)δ

1− x+ ε

)

+ P

(

X1,N

aN
≥ (x− ε)(1 − δ)

1− x+ ε

)

, (2.29)

and plugging this back into (2.27) and (2.28), we get

NP (ν1,N > Nx) ≤ P (Ac
N ) + P (Bc

N ) +

(

N

2

)

P (ν1,N > Nx, ν2,N > Nx)

+NP
(

S̄N−1 ≤ (1− δ)aN
)

P

(

X1,N

aN
≥ (x− ε)δ

1− x+ ε

)

+NP

(

X1,N

aN
≥ (x− ε)(1 − δ)

1− x+ ε

)

. (2.30)

We now show that the first four terms on the right-hand side of (2.30) are small. We have
P (Ac

N ) ≪ N−2cN by Lemma 2.5, and P (Bc
N ) ≪ cN by part 2 of Lemma 2.4. We have P (ν1,N >

Nx, ν2,N > Nx) ≪ N−2cN by Lemma 2.6. Recall also that S̄N−1/aN →p 1, and therefore
P (S̄N−1 ≤ (1 − δ)aN ) → 0, while we have P (X1,N ≥ θaN ) . N−1cN for all θ > 0 by (2.7) and
(2.9). Thus, we get

lim sup
N→∞

N

cN
P (ν1,N > Nx) ≤ lim sup

N→∞

N

cN
P

(

X1,N

aN
≥ (x− ε)(1 − δ)

1− x+ ε

)

(2.31)

and

lim inf
N→∞

N

cN
P

(

X1,N

aN
≥ (x− ε)(1− δ)

1− x+ ε

)

≥ lim inf
N→∞

N

cN
P (ν1,N > Nx). (2.32)

Recall that we need to show that condition 3 of Theorem 2.1 is equivalent to (2.24). First,
suppose condition 3 of Theorem 2.1 holds. Choose x ∈ (0, 1) such that Λ({x}) = 0. Because
δ and ε can be arbitrarily small, equations (2.26) and (2.32) imply that for all θ > 0 for which
Λ({x− θ}) = Λ({x+ θ}) = 0, we have

∫ 1

x+θ
y−2 Λ(dy) = lim inf

N→∞

N

cN
P
(

ν1,N > N(x+ θ)
)

≤ lim inf
N→∞

N

cN
P

(

X1,N

aN
≥ x

1− x

)

≤ lim sup
N→∞

N

cN
P

(

X1,N

aN
≥ x

1− x

)

≤ lim sup
N→∞

P
(

ν1,N > N(x− θ)
)
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=

∫ 1

x−θ
y−2 Λ(dy).

Because Λ({x}) = 0, equation (2.24) follows. Conversely, suppose (2.24) holds for all x such that
Λ({x}) = 0. Reasoning as above, equations (2.25) and (2.31) imply that for all θ > 0 for which
Λ({x− θ}) = Λ({x+ θ}) = 0, we have

∫ 1

x+θ
y−2 Λ(dy) = lim inf

N→∞

N

cN
P

(

X1,N

aN
>

x+ θ

1− (x+ θ)

)

≤ lim inf
N→∞

N

cN
P (ν1,N > Nx)

≤ lim sup
N→∞

N

cN
P (ν1,N > Nx) ≤ lim sup

N→∞

N

cN
P

(

X1,N

aN
≥ x− θ

1− (x− θ)

)

=

∫ 1

x−θ
y−1 Λ(dy).

Therefore, condition 3 of Theorem 2.1 holds, and the proof is complete.

3 Results for two-point distributions

We would like to prove the results for the simple model with a two-point distribution for the
activation times introduced in Section 1.2. To this end, we begin with an observation for the
asymptotic behaviour of the moments of the geometric distributions that will govern the numbers
of offspring of the early bird in each of the three regimes. The more general results from Section 2
will be very useful.

Let G1,N be a geometric random variable with parameter e−λNTN . The following lemma
provides, under condition (1.2), the asymptotic behavior of the nth moments

MN (n) := E

[(

G1,N

G1,N +N − 1

)n]

.

Lemma 3.1. Let n ∈ N. Assume that (1.2) holds with κ, β > 0.

1. If β > 1, limN→∞MN (n) = 1.

2. If β = 1, limN→∞MN (n) = E[Y n
κ ], where Yκ is a random variable on [0, 1] with distribution

P (Yκ > x) = e
− x

κ(1−x) , x ∈ [0, 1].

3. If β < 1, MN (n) ∼ n!κnβN−n(1−β) as N → ∞.

Proof. Note first that

MN (n) =

∫ 1

0
P

(

G1,N

G1,N +N − 1
> x1/n

)

dx =

∫ 1

0
P

(

G1,N >
(N − 1)x1/n

1− x1/n

)

dx. (3.1)

Assume now that β > 1 and let us show part 1 of the lemma. Note that, for any y ≥ 0

P (G1,N > (N − 1)y) =

(

1− 1

(κN)β

)⌊(N−1)y⌋

−−−−→
N→∞

1.
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Thus, part 1 of the lemma follows from the dominated convergence theorem.
Assume now that β = 1 and let us prove part 2. Note that, for any y ≥ 0

P (G1,N > (N − 1)y) =

(

1− 1

κN

)⌊(N−1)y⌋

−−−−→
N→∞

e−
y
κ .

Thus, part 2 follows using dominated convergence theorem and making the substitution y = x1/n.
In the remainder of the proof we assume that β < 1. Making the change of variable y =

x1/n/(1 − x1/n) in (3.1) and using standard properties of the floor function, we obtain

MN (n) ∼
∫ ∞

0

nyn−1

(1 + y)n+1

(

1− 1

(κN)β

)(N−1)y

dy =

∫ ∞

0

nyn−1

(1 + y)n+1
e−αNydy,

as N → ∞, where αN = −(N −1) log(1− (κN)−β). Making the substitution z = αNy, we obtain

MN (n) ∼ α−n
N

∫ ∞

0

nzn−1

(

1 + z
αN

)n+1 e
−zdz ∼ α−n

N

∫ ∞

0
nzn−1e−zdz = α−n

N n!,

and part 3 follows since αN ∼ κ−βN1−β as N → ∞.

Lemma 3.2. Under assumption (1.1), we have

lim
N→∞

cN = 0.

Moreover, if (1.2) holds for

1. β > 1, then cN ∼ NωN as N → ∞.

2. β = 1, then cN ∼ NωN E[Y 2
κ ] as N → ∞.

3. β < 1, then cN ∼ 2κ2βωNN2β−1 as N → ∞.

Proof. We begin with a few general observations. Let S̄N−1 = SN −X1,N =
∑N

i=2Xi,N , and note
that, thanks to Lemma 2.3, we have

cN = NE

[

(X1,N )2
(SN )2

]

= NωNE

[

(G1,N )2
(G1,N + S̄N−1)2

]

, (3.2)

Since the expectation in the previous expression is smaller than one, the first statement follows
from the assumption that NωN → 0 as N → ∞.

Let us now have a closer look at the expectation in (3.2). Splitting on the event that there
exists bi,N = 1 with i > 1 and its complement, and defining

I+N := E

[

(G1,N )2
(G1,N + S̄N−1)2

∣

∣

∣

∣

N
∑

i=2

bi,N > 0

]

≤ 1 and I0N := E

[

(G1,N )2
(G1,N +N − 1)2

]

,

we obtain

E

[

(G1,N )2
(G1,N + S̄N−1)2

]

= (1− (1− ωN )N−1)I+N + (1− ωN )N−1I0N , (3.3)
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Clearly, 0 ≤ I+N ≤ I0N , and because NωN → 0 it follows that I0N is the leading term in (3.3) and

cN = NωNE

[

(G1,N )2
(G1,N + S̄N−1)2

]

∼ NωNI0N , as N → ∞. (3.4)

In addition, we have

I0N = MN (2)− E

[

(N − 1)G1,N

(G1,N +N − 1)(G1,N +N − 1)2

]

, (3.5)

and the second term is smaller than 1/N . Note that we have not used any assumptions on the
distribution of G1,N up to this point.

Parts 1 and 2 of the lemma now follow directly using Lemma 3.1. In the remainder of the
proof we assume that (1.2) holds for β < 1. In order to prove part 3, we use Lemma 3.1 to see
that

MN (2) ∼ 2κ2β

N2(1−β)
,

as N → ∞. To complete the proof, we need to show that the second term in (3.5) converges
faster to 0. Note that, using Lemma 3.1 with n = 1 in the last step, we get

E

[

G1,N

(G1,N +N − 1)2

]

≤ 1

N
MN (1) ∼ κβ

N2−β
,

as N → ∞. This completes the proof.

Lemma 3.3. Assume that condition (1.1) holds. If in addition (1.2) holds for β < 1, then

lim
N→∞

E[(ν1,N )3]

N2cN
= 0.

In particular, in this case, the processes (Ψn,N (t/cN ))t≥0 converge to Kingman’s coalescent.

Proof. The second statement follows from the first one using [20, Thm. 4(b)]. Let us prove the
first statement. Thanks to Lemma 2.3, and using that (X1,N )3 = 0 if b1,N = 0, we obtain

E[(ν1,N )3]

N2cN
=

(N − 1)(N − 2)

NcN
E

[

(X1,N )3
(SN )3

]

≤ NωN

cN
E

[

(G1,N )3
(G1,N + S̄N−1)3

]

,

with S̄N−1 =
∑N

k=2Xi,N . Moreover, from part 3 in Lemma 3.2, we see that it suffices to show
that

lim
N→∞

N2(1−β)E

[

(G1,N )3
(G1,N + S̄N−1)3

]

= 0.

Now, using that S̄N−1 ≥ N − 1 and that, for a ≤ b and b ≥ 3, we have (a)3/(b)3 ≤ (a/b)3, we
obtain

E

[

(G1,N )3

(G1,N + S̄N−1)3

]

≤ E

[

(

G1,N

G1,N +N − 1

)3
]

= MN (3),

for N ≥ 3, and the result follows using Lemma 3.1 with n = 3.
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Proof of Theorem 1.1. The case β < 1 is already covered by Lemma 3.3.
We want to apply Theorem 2.1 for the case of β ≥ 1. Conditions 1 and 2 hold by Lemma 3.2

and Lemma 2.6 respectively. Hence we are left to check condition 3.
Using Lemma 2.5, we obtain that for any x ∈ (0, 1) and any ε ∈ (0, x∧(1−x)), for sufficiently

large N

N

cN
P

(

X1,N

SN
> x+ ε

)

≤ N

cN
P (ν1,N > Nx) ≤ N

cN
P

(

X1,N

SN
> x− ε

)

. (3.6)

Let A be the event that the individual with label 1 woke up early, i.e. A := {τ1,N = 0} = {b1,N =

1}, and let B be the event that at least two individuals woke up early, i.e. B := {∑N
i=1 bi,N = 2}.

For any y ∈ (0, 1) we can split the probability we are interested in into

P

(

X1,N

SN
> y

)

= P

(

X1,N

SN
> y | Ac

)

P (Ac) + P

(

X1,N

SN
> y | A ∩Bc

)

P (A ∩Bc)

+ P

(

X1,N

SN
> y | A ∩B

)

P (A ∩B) .

Note that P (X1,N/SN > y | Ac) ≤ P (1/N > y) = 0 for any given y and N sufficiently large.
In addition we can bound P (A ∩B) ≤ Nω2

N . By Lemma 3.2, we have cN ∼ NωNC(β), where
C(β) = 1 if β > 1 and C(1) = E[Y 2

κ ] if β = 1. Hence,

lim sup
N→∞

N

cN
P

(

X1,N

SN
> y | A ∩B

)

P (A ∩B) = 0.

Observe that we can rewrite

P

(

X1,N

SN
> y | A ∩Bc

)

= P

(

G1,N

G1,N +N − 1
> y

)

= P

(

G1,N >
y

1− y
(N − 1)

)

=

(

1− 1

(κN)β

)

⌊

y
1−y

(N−1)
⌋

,

since G1,N has a geometric distribution with parameter (κβ)−1.
If β > 1, combining the observations above, we obtain

lim
N→∞

N

cN
P

(

X1,N

SN
> y

)

= lim
N→∞

NωN (1− ωN )N−1

NωN

(

1− 1

(κN)β

)

⌊

y
1−y

(N−1)
⌋

= 1

for any y ∈ (0, 1). Setting Λss := δ1, the Dirac-measure on 1, we conclude from (3.6) that

lim
N→∞

N

cN
P (ν1,N > Nx) = 1 =

∫ 1

x
z2Λss(dz),

for any x ∈ (0, 1). Theorem 2.1 then implies that the genealogy converges to the star-shaped
coalescent.

Analogously, if β = 1, then defining Yκ as in part 2 of Theorem 1.1,

lim
N→∞

N

cN
P

(

X1,N

SN
> y

)

= lim
N→∞

NωN (1− ωN)N−1

cN

(

1− 1

κN

)

⌊

y
1−y

(N−1)
⌋

=
1

E[Y 2
κ ]

e−
1
κ

y
1−y .
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Since (3.6) holds for all ε > 0 and supε>0
x−ε

1−(x−ε) = infε>0
x+ε

1−(x+ε) =
x

1−x this implies that

lim
N→∞

N

cN
P (ν1,N > Nx) =

1

E[Y 2
κ ]

e−
1
κ

x
1−x =

1

E[Y 2
κ ]

P (Yκ > x)

Hence, setting Λκ(dy) :=
y2

E[Y 2
κ ]P (Yκ ∈ dy), we obtain

lim
N→∞

N

cN
P (ν1,N > Nx) =

∫ 1

x
y−2Λκ(dy)

for all x ∈ (0, 1), which ends the proof.

4 Exponentially increasing rates of exit from dormancy

This section is devoted to the proof of Theorem 1.2, which characterizes the asymptotic genealo-
gies in the model described in Section 1.3.

4.1 A comparison between the genealogies of two models

The main ingredient in the proof of Theorem 1.2 is a result that allows us to compare the
genealogies of two populations constructed from the same sequence (ζi)

N
i=1 of i.i.d. positive

random variables. The first model is the one described in Section 1.1, with no summer (i.e.
tN = TN ), with λN = λ > 0, and where TN − τi,N = ζi ∧ TN (the model in Section 1.3 is the
special case where ζ1 is exponentially distributed with parameter γ). In the second model, the
family sizes (X̃1, . . . , X̃N ) at the end of the year are i.i.d. and such that, conditionally on ζi, X̃i

is geometrically distributed with parameter e−λζi (i.e. days start at time −∞). The vector of
family sizes (ν̃1,N , . . . , ν̃N,N ) is obtained by sampling N individuals without replacement among
the S̃N := X̃1 + · · ·+ X̃N present at the end of the year.

The next result will be useful for comparing the genealogies of the previously described models.

Lemma 4.1. Let f : RN
+ → R+ be a positive bounded function. Then,

|E[f(X1,N , . . . ,XN,N )]− E[f(X̃1, . . . , X̃N )]| ≤ 2‖f‖∞(1− P (ζ1 ≤ TN )N ).

Proof. It follows directly from the fact that (X1,N , . . . ,XN,N ) and (X̃1, . . . , X̃N ) are equal if
ζi ≤ TN for all i ∈ [N ].

Let us now set

cN :=
E[(ν1,N )2]

N − 1
and c̃N :=

E[(ν̃1,N )2]

N − 1
.

The next result provides sufficient conditions for the limiting genealogies of the two models to
coincide.

Proposition 4.2. Assume that

lim
N→∞

N3P (ζ1 > TN ) = 0. (4.1)

Then cN ∼ c̃N as N → ∞. Moreover, for r ≥ 1, the condition

lim
N→∞

N r+2P (ζ1 > TN ) = 0 (4.2)
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implies that, for all k1, . . . , kr ≥ 2,

lim
N→∞

E[(ν1,N )k1 · · · (νr,N )kr ]

Nk1+···+kr−rcN
= lim

N→∞

E[(ν̃1,N )k1 · · · (ν̃r,N )kr ]

Nk1+···+kr−r c̃N
,

in the sense that if either limit exists, then so does the other, and the limits are equal.

Proof. Using Lemma 2.3 for the two models we obtain

cN = NE

[

(X1,N )2
(SN )2

]

and c̃N = NE

[

(X1)2

(S̃N )2

]

.

Thus, using Lemma 4.1 with f defined via f(x1, . . . , xN ) = N(x1)2/(x1 + · · ·+ xN )2, we obtain

|cN − c̃N | ≤ 2N(1− P (ζ1 < TN )N ),

and the first result follows from (4.1) and (2.3).
For the second statement, let us assume that (4.2) holds. Note first that Lemma 2.3 yields

E[(ν̃1,N )k1 · · · (ν̃r,N )kr ]

Nk1+···+kr−rc̃N
=

(N)k1+...+kr

Nk1+...+kr

N r

c̃N
E

[

(X̃1)k1 · · · (X̃r)kr
(S̃N )k1+···+kr

]

, (4.3)

and
E[(ν1,N )k1 · · · (νr,N )kr ]

Nk1+···+kr−rcN
=

(N)k1+...+kr

Nk1+...+kr

N r

cN
E

[

(X1,N )k1 · · · (Xr,N )kr
(SN )k1+···+kr

]

. (4.4)

Consider the function f : NN → R+ defined via

f(x1, . . . , xN ) =
(x1)k1 · · · (xr)kr

(x1 + · · ·+ xN )k1+···+kr

.

Note that f(x1, . . . , xN ) gives the probability that, if we sample k1 + · · · + kr balls from an urn
containing, for each i ∈ [N ], xi balls with label i, the first k1 of them have label 1, the next k2
balls have label 2, and so on. In particular, ‖f‖∞ ≤ 1. Thus, applying Lemma 4.1 with f , we
obtain, for N sufficiently large,

N r

c̄N

∣

∣

∣

∣

E

[

(X̄1)k1 · · · (X̄r)kr
(S̄N )k1+···+kr

]

− E

[

(X1,N )k1 · · · (Xr,N )kr
(SN )k1+···+kr

]
∣

∣

∣

∣

≤ 2N r

c̄N
(1− P (ζ1 < TN )N ). (4.5)

Therefore, using (2.3) and (4.2), we conclude that the left-hand side in (4.5) converges to zero as
N → ∞. Moreover, since (4.2) implies (4.1), we have cN ∼ c̃N . Hence, the result follows from
(4.3) and (4.4).

4.2 Exponential model

In this section, we come back to the model described in Section 4, i.e. we assume that ζ1 satisfies
(1.5), that its law has no mass at zero, and that TN satisfies (1.6).

The next result provides the asymptotic behaviour of the tails of X̃1.

Lemma 4.3. Assume that (1.5) holds, and set a = γ/λ. Then,

P (X̃1 > k) ∼ cΓ(1 + a)k−a, as k → ∞. (4.6)
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Proof. Let µ denote the law of ζ1. Consider the bijective function fλ : (0,∞) → (0,∞) defined
via

fλ(u) := − ln(1 − e−λu), u ∈ (0,∞),

and the measure µλ := µ ◦ f−1
λ , i.e. µλ is the push forward measure of µ by fλ. With these

definitions, we have

P (X̃1 > k) =

∫ ∞

0
(1− e−λu)kP (ζ1 ∈ du) =

∫ ∞

0
e−kuµλ(du),

i.e. the tail of X̃1 is the Laplace transform of the measure µλ. The asymptotic behaviour of this
Laplace transform around ∞ relates to the behaviour around zero of the distribution function of
µλ via a Tauberian theorem. Let us make this precise. Set µ̄(x) := µ((y,∞)), y > 0, and note
that

µλ((0, x]) = µ̄(f−1
λ (x)).

Hence, using the substitution y = f−1
λ (x), we obtain

lim
x→0+

µλ((0, x])

xa
= lim

y→∞

µ̄(y)

(fλ(y))a
= lim

y→∞

µ̄(y)

e−λay
= c.

The result then follows directly from Karamata’s Tauberian theorem (Theorem 1.7.1 of [2]).

Proof of Theorem 1.2. Let us denote by (Ψ̃n,N (d))∞d=0 the ancestral process associated with the
model whose family sizes (before sampling) are (X̃1, . . . , X̃N ), and set a := γ/λ.

Since the law of ζ1 satisfies (1.5), we conclude from Lemma 4.3 that the tails of X̃1 satisfy (4.6).
Hence, Theorem 4 in [25] implies that: i) if a ≥ 1, the processes (Ψ̃n,N(⌊t/c̃N ⌋))t≥0 converge as
N → ∞ to the Λ-coalescent in which Λ is δ0 if a ≥ 2 or the Beta(2−a, a) distribution if a ∈ [1, 2),
and ii) if a ∈ (0, 1), the processes (Ψ̃n,N (d))∞d=0 converge as N → ∞ to the Ξa-coalescent described
in Theorem 4(d) of [25].

It remains to prove that that the processes (Ψn,N (d))∞d=0 and (Ψ̃n,N (d))∞d=0, in the appropriate
time scale, have the same limiting genealogy. For this, note that, under (1.5) and (1.6), conditions
(4.1) and (4.2) are satisfied. Hence, the result follows combining Proposition 4.2 with Theorem 2.1
in [21].

5 Spring and summer

In this section we prove Proposition 1.3, which, informally speaking, states that under mild
hypotheses, the length of the summer TN − tN does not change the genealogy of the population.
The key to the argument will be the following lemma about Polya urns.

Lemma 5.1. Consider a Polya urn in which there are initially M balls, all of different colors.
We repeatedly draw a ball at random from the urn and return it to the urn along with another
ball of the same color, until there are N balls in the urn. Then if we choose two balls at random
from the urn, the probability that they are the same color is at most 2/(M + 1).

Proof. Let D be the event that both balls have the same color. For k ∈ {0, 1, 2}, let Rk be
the event that k out of the two balls chosen are among the M balls that were in the urn at the
beginning. Then P (R2|D) = 0 because the initial M balls all have different colors. By symmetry,
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we have P (R1|D) = 1/M . Finally, the well-known exchangeability of Polya urns implies that
P (R0|D) is the same as the probability that the first two balls added to the urn are the same
color, which is 2/(M + 1). It follows that P (D) =

∑2
k=0 P (Rk)P (D|Rk) ≤ 2/(M + 1).

Proof Proposition 1.3. For the population with a summer, we want to bound the probability
qN that two individuals chosen at random at time TN have the same ancestor at time tN . Let
M = Y1,N + · · · + YN,N be the number of individuals alive at time tN . Between times tN and
TN , the sizes of the families started by the M individuals at time tN evolve as independent Yule
processes. Using the a well-known connection between Yule processes and Polya urns, one can
see that the sequence keeping track of the families into which successive individuals are born
follows the same dynamics as the sequence keeping track of the colors of successive balls added
to a Polya urn starting from M balls of different colors. Thus, by Lemma 5.1, the probability,
conditional on M , that two individuals chosen at random at time TN have the same ancestor at
time tN is at most 2/(M + 1), which means the unconditional probability satisfies

qN ≤ 2E

[

1

Y1,N + · · ·+ YN,N

]

.

Consider the canonical coupling of Ψn,N and Ψ̂n,N using the same activation times τ
(d)
i,N and

the same birth times during the spring for both processes. Let DN be the first day (or year)
that at least one pair of individuals in the sample in Ψn,N finds a common ancestor during the

summer, that is, in (tN , TN ]. By the coupling, the processes Ψn,N and Ψ̂n,N coincide until time
DN , and by the observations above and condition (1.7), for all K > 0 we have

P
(

Ψn,N(d) = Ψ̂n,N (d) ∀d = 0, . . . , ⌊KρN⌋
)

≥ P (DN > KρN ) ≥
(

1− 2

(

n

2

)

E

[

1

Y1,N + · · ·+ YN,N

])KρN
N→∞−−−−→ 1,

which implies the result.

6 Classifying the possible limits

In this section, we prove Theorem 1.4, which classifies all possible Λ-coalescents that can arise as
limits in the model introduced in Section 1.1.

Remark 6.1. Suppose the ancestral processes (Ψn,N (⌊ρN t⌋))t≥0 converge to the Λ-coalescent for
all n, where Λ is a finite nonzero measure. Because Λ([0, 1]) is the rate at which two randomly
chosen lineages merge in the Λ-coalescent and cN is the probability that two individuals have
the same parent in one generation in the Cannings model, we must have ρNcN ∼ Λ([0, 1]) as
N → ∞. It follows that if we replace ρN by 1/cN , then all of the transition rates in the limit will
be multiplied by 1/Λ([0, 1]). Therefore, the ancestral processes (Ψn,N (⌊t/cN ⌋))t≥0 will converge
for all n to the Λ̃-coalescent, where Λ̃ = Λ/Λ([0, 1]) is a probability measure.

Conversely, suppose the ancestral processes (Ψn,N(⌊t/cN ⌋))t≥0 converge for all n to the Λ-
coalescent, where Λ is a probability measure. Let a > 0. Then, if we choose ρN = a/cN , the
ancestral processes (Ψn,N (⌊ρN t⌋))t≥0 will converge for all n to the aΛ-coalescent. We can also, of
course, obtain convergence to the zero measure by choosing ρN such that ρNcN → 0 as N → ∞.
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In view of Remark 6.1, we may restrict our attention to the case in which ρN = 1/cN , and
to show that the possible Λ-coalescents that can arise as limits with this choice of scaling are
precisely the probability measures satisfying (1.8) and (1.9). Proposition 6.2 shows how to obtain
all of these Λ-coalescents as limits.

Proposition 6.2. Let Λ be a probability measure on [0, 1] of the form

Λ = a1δ0 + a2δ1 +Λ′ (6.1)

for nonnegative real numbers a1 and a2 and Λ′ a measure on (0, 1) with density h given by (1.9).
Then there exist choices for birth-rates (λN )∞N=1, the times (tN )∞N=1, (TN )∞N=1 distributions of
the wake-up times (τ1,N )∞N=1 such that the ancestral processes (Ψn,N (⌊t/cN ⌋))t≥0 converge for all
n to the Λ-coalescent.

Proof. We will construct the approximating Cannings model as a mixture of the simple two-point
models discussed in Section 1.2 and deduce the convergence of their ancestral processes to the
desired Λ-coalescent from Theorem 2.1 using the analogous observations for the simple models
made in Section 3.

For any N ∈ N, let the length of spring be tN = TN = log(N2). This is an arbitrary choice
that ensures that the length of spring is finite in the Cannings model, but grows to infinity as
N → ∞. Let

ωN = N−2,

and let b1,N , . . . , bN,N be i.i.d. Bernoulli random variables with parameter ωN . Choose the
wake-up times to be of the form

τi,N = (1− bi,N )TN + bi,N τ̃i,N , i ∈ [N ],

where τ̃1,N , . . . , τ̃N,N are i.i.d. with a distribution that will depend on the specific form of Λ in
(6.1), and (bi,N )i∈[N ] and (τ̃i,N )i∈[N ] are independent, for any fixed N ∈ N. Here τ̃i,N describes
the wake-up time of the individual i given that it woke up early. Assuming λN ≡ 1, the number
of offspring of individual i at the end of spring before resampling is thus given by

Xi,N = (1− bi,N ) + bi,NGi,N

where Gi,N has a geometric distribution on N with parameter e−(TN−τ̃i,N ). Abbreviate σi,N :=
TN − τ̃i,N .

Like in (3.4) in the simple cases, we immediately see

cN ∼ NωNE

[

(G1,N )2
(G1,N +N − 1)2

]

. (6.2)

Note that this observation holds for any distribution of σi,N . In particular, if we denote by c
(1)
N ,

c
(2),κ
N and c

(3)
N the analogs of cN in the simple model with β = 1 + r, β = 1 and β = 1 − r,

respectively, by Lemma 3.2 we know

NωNE

[

(G1,N )2
(G1,N +N − 1)2

∣

∣

∣

∣

σ1,N = log(N1+r)

]

∼ c
(1)
N ∼ NωN , (6.3)

NωNE

[

(G1,N )2
(G1,N +N − 1)2

∣

∣

∣

∣

σ1,N = log(κN)

]

∼ c
(2),κ
N ∼ NωNE[Y 2

κ ], κ > 0,
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NωNE

[

(G1,N )2
(G1,N +N − 1)2

∣

∣

∣

∣

σ1,N = log(N1−r)

]

∼ c
(3)
N ∼ 2ωNN1−2r.

Assume more specifically that r ∈ (0, 1/2), and define

αN :=

∫ N

N−r/2

η(dκ).

Since we assume
∫∞
0 (κ2 ∧ 1)η(dκ) < ∞, we can estimate

αN =

∫ N

N−r/2
η(dκ) =

∫ N

N−r/2

1

(κ2 ∧ 1)
(κ2 ∧ 1)η(dκ) ≤ N r

∫ ∞

0
(κ2 ∧ 1)η(dκ). (6.4)

In particular, N−2rαN → 0 as N → ∞.
We now distinguish different cases for the possible choices of Λ in (6.1). Let us first treat the

case where a1 > 0. Using X :=d µ to denote that we are defining a random variable X to have
the distribution µ, for sufficiently large N we can define

σ1,N :=d
2N−2rαN

a1

∫ N

N−r/2

δ(log(κN)∧TN )
η(dκ)

αN

+
2N−2ra2

a1
δ(log(N1+r)∧TN ) +

(

1− 2N−2r(αN + a2)

a1

)

δ(log(N1−r)∧TN )

=
2N−2rαN

a1

∫ N

N−r/2

δlog(κN)
η(dκ)

αN

+
2N−2ra2

a1
δlog(N1+r) +

(

1− 2N−2r(αN + a2)

a1

)

δlog(N1−r).

If η is not the zero-measure, then αN is positive and the integral in the first term is an integral
with respect to the probability measure 1[N−r/2,N ](κ)η(dκ)/αN . Otherwise the first term is simply
zero.

Note that this σ1,N is precisely a mixture of the simple cases discussed above. We now check
the three conditions in Theorem 2.1 to obtain the desired convergence. Let Gκ

1,N be a random

variable having a geometric distribution on N with parameter (κN)−1. Conditioning on the
possible values of σ1,N in (6.2), and using (6.3) in the last step, which determines the asymptotic
behavior of the last two summands, we then get

cN ∼ NωN

{

2N−2rαN

a1

∫ N

N−r/2

E

[

(G1,N )2
(G1,N +N − 1)2

∣

∣

∣

∣

σ1,N = log(κN)

]

η(dκ)

αN

+
2N−2ra2

a1
E

[

(G1,N )2
(G1,N +N − 1)2

∣

∣

∣

∣

σ1,N = log(N1+r)

]

+

(

1− 2N−2rαN + a2
a1

)

E

[

(G1,N )2
(G1,N +N − 1)2

∣

∣

∣

∣

σ1,N = log(N1−r)

]}

∼ NωN
2N−2r

a1

∫ N

N−r/2
E

[

(Gκ
1,N )2

(Gκ
1,N +N − 1)2

]

η(dκ)

+
2N−2ra2

a1
c
(1)
N +

(

1− 2N−2rαN + a2
a1

)

c
(3)
N (6.5)
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Due to the integral, the first summand requires a bit more care. Equation (6.3) yields

lim
N→∞

E

[

(Gκ
1,N )2

(Gκ
1,N +N − 1)2

]

= E
[

Y 2
κ

]

.

By (1.4), we have Yκ = κW/(κW+1), whereW has an exponential distribution with parameter 1.
Therefore, using (1.3) and the fact that E[Y 2

κ ] =
∫∞
0 P (Yκ >

√
x) dx, we estimate

∫ 1

0
e
− 1

κ

√
x

1−
√

xdx = E
[

Y 2
κ

]

= E

[

(

κW

κW + 1

)2
]

≤ κ2E[W 2] = 2κ2 (6.6)

for any κ > 0. Like in the simple cases (3.5), we obtain

E

[

(Gκ
1,N )2

(Gκ
1,N +N − 1)2

]

= E





(

Gκ
1,N

Gκ
1,N +N − 1

)2


− E

[

(N − 1)Gκ
1,N

(Gκ
1,N +N − 1)(Gκ

1,N +N − 1)2

]

,

and the second term is smaller than 1/N . Using (6.4)

∫ N

N−r/2

E

[

(N − 1)Gκ
1,N

(Gκ
1,N +N − 1)(Gκ

1,N +N − 1)2

]

η(dκ) ≤ N−1N r

∫ ∞

0
(κ2 ∧ 1)η(dκ)

N→∞−−−−→ 0. (6.7)

Like in (3.1) and below, we see

E





(

Gκ
1,N

Gκ
1,N +N − 1

)2


 =

∫ 1

0
P

(

Gκ
1,N >

(N − 1)
√
x

1−√
x

)

dx =

∫ 1

0

(

1− 1

κN

)

⌊

(N−1)
√

x
1−

√
x

⌋

dx

≤
(

1− 1

κN

)−1 ∫ 1

0
e

√
x

1−
√

x
(N−1) log(1− 1

κN )dx

=

(

1− 1

κN

)−1

E

[

Y 2
1

c(κ,N)

]

,

if we define

c(κ,N) := −(N − 1) log

(

1− 1

κN

)

> 0.

Using (6.6), for any N sufficiently large we can bound

E





(

Gκ
1,N

Gκ
1,N +N − 1

)2


 ≤ 3c(κ,N)−2. (6.8)

Standard calculus shows that κc(κ,N) is decreasing in κ, and we can therefore estimate

inf
N−r/2≤κ≤1

κc(κ,N) = c(1, N) = −(N − 1) log

(

1− 1

N

)

N→∞−−−−→ 1.
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This yields a uniform upper bound for c(κ,N)−1 because for all N sufficiently large

∀κ ∈ [N−r/2, 1], we have κc(κ,N) ≥ 1

2
and therefore c(κ,N)−1 ≤ 2κ. (6.9)

This allows us to estimate

1[Nr/2,N ](κ)E





(

Gκ
1,N

Gκ
1,N +N − 1

)2


 ≤ 1[Nr/2,1](κ)3c(κ,N)−2 + 1(1,N ](κ)

≤ 1[Nr/2,1](κ)8κ
2 + 1(1,N ](κ)

≤ 1[Nr/2,N ](κ)12(κ
2 ∧ 1).

Since we assume
∫∞
0 (κ2∧1)η(dκ) < ∞, we have found an integrable upper bound. Lebesgue’s

dominated convergence theorem and the fact that c(κ,N)−1 → κ as N → ∞ yield

lim
N→∞

∫ ∞

0
1[N−r/2,N ](κ)E





(

Gκ
1,N

Gκ
1,N +N − 1

)2


 η(dκ) =

∫ ∞

0
E
[

Y 2
κ

]

η(dκ).

If we combine this with (6.7), we obtain

lim
N→∞

∫ N

N−r/2

E

[

(Gκ
1,N )2

(Gκ
1,N +N − 1)2

]

η(dκ) =

∫ ∞

0
E
[

Y 2
κ

]

η(dκ). (6.10)

It follows from (1.10) that

∫ ∞

0
E[Y 2

κ ] η(dκ) = Λ′([0, 1]) = 1− a1 − a2, (6.11)

and it was noted after (6.4) that N−2rαN → 0 as N → ∞. Therefore, plugging (6.10) into (6.5)
yields

cN ∼ NωN
2N−2r

a1

∫ ∞

0
E
[

Y 2
κ

]

η(dκ) +
2N−2ra2

a1
NωN +

(

1− 2N−2rαN + a2
a1

)

2ωNN1−2r.

∼ N1−2rωN

(

2

a1
(1− a1 − a2) +

2a2
a1

+ 2

)

= N1−2rωN
2

a1
(6.12)

In particular, cN → 0 as N → ∞ and the first condition of Theorem 2.1 holds. The second
condition of Theorem 2.1 now follows directly from Lemma 2.6.

We are only left to verify the third condition. As in the proof of Theorem 1.1, let A :=
{τ1,N = 0} = {b1,N = 1} be the event that the individual with label 1 woke up early, and let

B := {∑N
i=1 bi,N = 2} be the event that at least two individuals woke up early. Like in the simple

case, regardless of the precise distribution of σ1,N we have

P

(

X1,N

SN
> y

)

= P

(

X1,N

SN
> y

∣

∣ Ac

)

P (Ac) + P

(

X1,N

SN
> y

∣

∣ A ∩B

)

P (A ∩B)

+ P

(

X1,N

SN
> y

∣

∣ A ∩Bc

)

P (A ∩Bc).
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We have P (X1,N/SN > y | Ac) ≤ P (1/N > y) = 0 for N sufficiently large, whence we may ignore
this term in further considerations. Also, since P (A ∩B) ≤ Nω2

N and we chose ωN = N−2,

lim sup
N→∞

N

cN
P

(

X1,N

SN
> y

∣

∣ A ∩B

)

P (A ∩B) ≤ lim
N→∞

N

cN
Nω2

N = lim
N→∞

a1
2
N−1+2r = 0.

As before, we condition on the different values of σ1,N . Letting Gκ
1,N , G+

1,N , and G−
1,N be geometric

random variables with parameters (κN)−1, N−(1+r) and N−(1−r) respectively, we obtain

lim
N→∞

N

cN
P

(

X1,N

SN
> y

)

= lim
N→∞

N

cN
P

(

G1,N

G1,N +N − 1
> y

)

P (A1 ∩Bc
2)

= lim
N→∞

NωN

cN

{

2N−2rαN

a1

∫ N

N−r/2
P

(

G1,N

G1,N +N − 1
> y

∣

∣

∣

∣

σ1,N = log(κN)

)

η(dκ)

αN

+
2N−2ra2

a1
P

(

G1,N

G1,N +N − 1
> y

∣

∣

∣

∣

σ1,N = log(N1+r)

)

+

(

1− 2N−2rαN + a2
a1

)

P

(

G1,N

G1,N +N − 1
> y

∣

∣

∣

∣

σ1,N = log(N1−r)

)}

= lim
N→∞

∫ N

N−r/2

P

(

Gκ
1,N

Gκ
1,N +N − 1

> y

)

η(dκ)

+ lim
N→∞

a2P

(

G+
1,N

G+
1,N +N − 1

> y

)

+ lim
N→∞

a1
2
N2rP

(

G−
1,N

G−
1,N +N − 1

> y

)

.

Let us consider the three limits separately. Reasoning as in the proof of Lemma 3.1,

lim
N→∞

P

(

Gκ
1,N

Gκ
1,N +N − 1

> y

)

= lim
N→∞

(

1− 1

κN

)

⌊

(N−1) y
1−y

⌋

= e−
1
κ

y
1−y .

Using Chebychev’s inequality together with (6.8) and (6.9) we again obtain an integrable upper
bound and therefore can use Lebesgue’s dominated convergence theorem to obtain

lim
N→∞

∫ N

N−r/2

P

(

Gκ
1,N

Gκ
1,N +N − 1

> y

)

η(dκ) =

∫ ∞

0
e
− 1

κ
y

1−y η(dκ). (6.13)

Likewise,

lim
N→∞

P

(

G+
1,N

G+
1,N +N − 1

> y

)

= lim
N→∞

(

1− 1

N1+r

)

⌊

(N−1) y
1−y

⌋

= 1. (6.14)

Lastly,

lim
N→∞

a1
2
N2rP

(

G−
1,N

G−
1,N +N − 1

> y

)

= lim
N→∞

a1
2
N2r

(

1− 1

N1−r

)

⌊

(N−1) y
1−y

⌋

= 0.

29



Combining this, we obtain

lim
N→∞

N

cN
P

(

X1,N

SN
> y

)

=

∫ ∞

0
e
− 1

κ
y

1−y η(dκ) + a2 + 0 (6.15)

for every y ∈ (0, 1). Applying Lemma 2.5 as in (3.6) and using the identity

e−ℓx/(1−x) =

∫ 1

x

ℓ

(1− y)2
e−ℓy/(1−y) dy, (6.16)

equation (6.15) implies that for every x ∈ (0, 1), we have

lim
N→∞

N

cN
P (ν1,N > Nx) =

∫ ∞

0
e−

1
κ

x
1−x η(dκ) + a2 + 0

=

∫ ∞

0

∫ 1

x

1

κ

1

(1− y)2
e
− 1

κ
y

1−y dy η(dκ) + a2 + 0

=

∫ 1

x
y−2h(y)dy + a2 + 0

=

∫ 1

x
y−2(Λ′ + a2δ1 + a1δ0)(dy). (6.17)

With this we have verified the third condition of Theorem 2.1 and may thus conclude that the
ancestral processes of the Cannings model we constructed do indeed converge to the Λ-coalescent.

The case of a1 = 0 just requires an adaptation of the distribution of σ1,N . We define

σ1,N :=d N−2rαN

∫ N

N−r/2

δlog(κN)
η(dκ)

αN
+N−2ra2δlog(N1+r) +

(

1−N−2r(αN + a2)
)

δ0.

As before, we calculate cN by conditioning on the possible values of σ1,N and obtain

cN ∼ NωNN−2r

∫ N

N−r/2

E

[

(Gκ
1,N )2

(Gκ
1,N +N − 1)2

]

η(dκ) +N−2ra2c
(1)
N + 0.

Using (6.3), (6.10), and (6.11), we get

cN ∼ N1−2rωN

{
∫ ∞

0
E
[

Y 2
κ

]

η(dκ) + a2

}

= N1−2rωN {1− a2 + a2} = N1−2rωN ,

which converges to 0 as N → ∞ and therefore the first condition in Theorem 2.1 holds. Again,
the second condition the follows directly from Lemma 2.6. To obtain the third condition, as
before, we condition on the different values of σ1,N and obtain

lim
N→∞

N

cN
P

(

X1,N

SN
> y

)

= lim
N→∞

∫ N

N−r/2
P

(

Gκ
1,N

Gκ
1,N +N − 1

> y

)

η(dκ)

+ lim
N→∞

a2P

(

G+
1,N

G+
1,N +N − 1

> y

)

.
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Using (6.13) and (6.14) we obtain

lim
N→∞

N

cN
P

(

X1,N

SN
> y

)

=

∫ ∞

0
e−

1
κ

y
1−y η(dκ) + a2

for every y ∈ (0, 1) as in (6.15) and therefore, for every x ∈ (0, 1),

lim
N→∞

N

cN
P (ν1,N > Nx) =

∫ 1

x
y−2(Λ′ + a2δ1)(dy)

as in (6.17). With this we have verified the third condition of Theorem 2.1, which completes the
proof.

Proof of Theorem 1.4. Proposition 6.2 and Remark 6.1 establish that all measures Λ that can be
written as in (1.8), with the density of Λ′ being given by (1.9), can arise as limits of the ancestral
processes in the model introduced in Section 1.1. It remains to show that these are the only
measures that can be obtained.

In view of Remark 6.1, it suffices to consider the scaling in which ρN = 1/cN . Note that if
we denote by µN the distribution of exp(−λN (TN − τ1,N )), then

P (X1,N > n) =

∫ 1

0
(1− p)m µN (dp), for all m ∈ N. (6.18)

That is, the distribution of X1,N is a mixture of geometric distributions. We need to show that if
(6.18) holds, then the measure Λ that appears on the right-hand side of (2.24) must satisfy (1.8)
and (1.9).

For 0 < x < 1, we have

N

cN
P

(

X1,N

aN
>

x

1− x

)

=
N

cN
P

(

X1,N >
aNx

1− x

)

=
N

cN

∫ 1

0
(1− p)⌊

aNx

1−x
⌋ µN (dp).

We first show that we get minimal contribution to the integral when p ≥ N−3/4. Using (2.17),

N

cN

∫ 1

N−3/4

(1− p)⌊
aNx

1−x
⌋ µN (dp) ≤ N2(N + 1)

2P (SN > N)

∫ 1

N−3/4

(1− p)⌊
aNx

1−x
⌋ µN (dp)

≤ N2(N + 1)

2P (X1,N > 1)

∫ 1

N−3/4

(1− p)⌊
aNx

1−x
⌋ µN (dp)

=
N2(N + 1)

2

∫ 1
N−3/4(1− p)⌊

aNx

1−x
⌋ µN (dp)

∫ 1
N−3/4(1− p) µN (dp)

.

Because aN ≥ N , we have, for all p ≥ N−3/4,

(1− p)⌊
aNx

1−x
⌋

1− p
≤
(

1− 1

N3/4

)
Nx
1−x

−2

,

and therefore

lim sup
N→∞

N

cN

∫ 1

N−3/4

(1− p)⌊
aNx

1−x
⌋ µN (dp) ≤ lim sup

N→∞

N2(N + 1)

2

(

1− 1

N3/4

)
Nx
1−x

−2

= 0.
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It follows that for all x ∈ (0, 1) such that Λ({x}) = 0, we have

lim
N→∞

N

cN

∫ N−3/4

0
(1− p)⌊

aNx

1−x
⌋ µN (dp) =

∫ 1

x
y−2 Λ(dy). (6.19)

We claim that for p < N−3/4, we can make the approximation 1− p ≈ e−p, and we therefore
assume for now that

lim
N→∞

N

cN

∫ N−3/4

0

(

(1− p)⌊
aNx

1−x
⌋ − e−

aNpx

1−x

)

µN (dp) = 0. (6.20)

Then, (6.19) implies that for all x ∈ (0, 1) such that Λ({x}) = 0, we have

lim
N→∞

N

cN

∫ N−3/4

0
e−

aNpx

1−x µN (dp) =

∫ 1

x
y−2 Λ(dy).

Define a new measure χN on (0,∞) to be the push-forward of the restriction of µN to (0, N−3/4)
by the map p 7→ aNp, multiplied by N/cN . Writing z = x/(1− x), we then have

lim
N→∞

∫ ∞

0
e−ℓz χN (dℓ) =

∫ 1

x
y−2 Λ(dy) (6.21)

for all x ∈ (0, 1) such that Λ({x}) = 0. We claim that this convergence must hold for all x ∈ (0, 1).
To see this, we assume, seeking a contradiction, that Λ({x}) = b > 0 for some x > 0. Choose u
and v such that 0 < u < v < z. Choose C1 and C2 such that e−ℓvℓ ≤ C1e

−ℓu for all ℓ ≥ 0 and
∫∞
0 e−ℓuχN (dℓ) ≤ C2 for sufficiently large N . Choose 0 < δ < min{z − v, b/(4x2C1C2)}. Then,
(6.21) implies that for sufficiently large N , we have

b

2x2
<

∫ ∞

0

(

e−ℓ(z−δ) − e−ℓ(z+δ)
)

χN (dℓ)

≤ 2δ

∫ ∞

0
e−ℓ(z−δ)ℓ χN (dℓ)

≤ 2δC1

∫ ∞

0
e−ℓu χN (dℓ)

≤ 2δC1C2

≤ b

2x2
,

which is a contradiction. Therefore, Λ({x}) = 0 for all x > 0, and thus by (6.21) the Laplace
transforms of the measures χN converge pointwise to a limit on (0,∞). By Theorem 8.5 of [1], it
follows that the measures χN converge vaguely to a limit measure χ, and the pointwise limit of
the Laplace transforms of χN is the Laplace transform of χ. That is, for all x ∈ (0, 1), we have

∫ ∞

0
e−ℓx/(1−x) χ(dℓ) =

∫ 1

x
y−2 Λ(dy).

We now use (6.16) and change the order of integration to get

∫ 1

x

(
∫ ∞

0
ℓ

(

y

1− y

)2

e−ℓy/(1−y) χ(dℓ)

)

y−2 dy =

∫ 1

x
y−2 Λ(dy).
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Now letting η be the push-forward of χ by the map x 7→ 1/x, we see that the restriction of Λ
to (0, 1) must have density h, as given in (1.9). To obtain the integrability condition, we note
that because we are assuming ρN = 1/cN , the measure Λ must be a probability measure, and
therefore

1 ≥
∫ 1

0
h(y) dy =

∫ ∞

0

∫ 1

0
y2 · 1

κ(1− y)2
e
− y

κ(1−y) dy η(dκ).

Letting W have an exponential distribution with mean 1, the inner integral is

E

[(

κW

κW + 1

)2]

,

which is easily seen to be bounded between C3(1∧κ2) and C4(1∧κ2) for some positive constants
C3 and C4 for all κ > 0. This implies that

∫∞
0 (1 ∧ κ2) η(dκ) < ∞.

It remains only to establish (6.20). For 0 < p < 1, the Taylor expansion log(1 − p) =
−∑∞

n=1 p
n/n yields −p/(1 − p) ≤ log(1 − p) ≤ −p, and therefore e−p/(1−p) ≤ 1 − p ≤ e−p. It

follows that

e
− p2

1−p

aNx

1−x e−
aNpx

1−x = e
−
(

p
1−p

aNx

1−x

)

≤ (1− p)⌊
aNx

1−x
⌋ ≤ e−p

(

aNx

1−x
−1
)

= e−
aNpx

1−x ep. (6.22)

For p ≤ N−3/4, the upper bound in (6.22) gives

e−
aNpx

1−x ≥ (1− p)⌊
aNx

1−x
⌋e−N−3/4

,

which, in combination with the finiteness of the right-hand side of (6.19), implies that

lim sup
N→∞

N

cN

∫ N−3/4

0

(

(1− p)⌊
aNx

1−x
⌋ − e−

aNpx

1−x

)

µN (dp) ≤ 0. (6.23)

For the bound in the other direction, note that if p ≤ N−3/4 and aN ≤ N5/4, then the lower
bound in (6.22) gives

e−
aNpx

1−x ≤ (1− p)⌊
aNx

1−x
⌋e

2x
(1−x)

N−1/4

,

which, in combination with the finiteness of the right-hand side of (6.19), gives that for aN ≤ N5/4,

lim inf
N→∞

N

cN

∫ N−3/4

0

(

(1− p)⌊
aNx

1−x
⌋ − e−

aNpx

1−x

)

µN (dp) ≥ 0. (6.24)

Now suppose instead aN > N5/4. If p ≤ N1/4/aN and p ≤ N−3/4, then p2aN ≤ N−1/2. Therefore,
the lower bound in (6.22) gives

e−
aNpx

1−x ≤ (1− p)⌊
aNx

1−x
⌋e

2x
(1−x)

N−1/2

,

and therefore

lim inf
N→∞

N

cN

∫ N1/4/aN

0

(

(1− p)⌊
aNx

1−x
⌋ − e−

aNpx

1−x

)

µN (dp) ≥ 0. (6.25)

Finally, to handle the case when N1/4/aN < p ≤ N−3/4, note that the assumption aN > N5/4

implies, by part 1 of Lemma 2.4, that P (SN ≥ 1
2N

5/4) ≥ 1/2 for sufficiently large N , and
therefore there is a positive constant C5 such that cN ≥ C5/N . Therefore,

lim inf
N→∞

N

cN

∫ N−3/4

N1/4/aN

(

(1− p)⌊
aNx

1−x
⌋ − e−

aNpx

1−x

)

µN (dp) ≥ lim inf
N→∞

−N2

C5
e−

x
1−x

N1/4

= 0. (6.26)
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Equations (6.25) and (6.26) imply that (6.24) holds also when aN > N5/4 which, along with
(6.23), implies that (6.20) holds.
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