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Abstract

We analyze the role of financial contraints for the speed of product innovation in a mar-

ket characterized by technological and demand uncertainty. In a dynamic market setting we

characterize the optimal R&D investment strategy of a monopolistic incumbent firm that can

invest to develop a new product with uncertain demand. The size of the R&D investment flow

determines the distribution of the stochastic innovation time and at the same time influences

the dynamic evolution of firm’s liquidity. If liquidity is negative the firm faces bankruptcy risk.

We show that optimal investment is a U-shaped function of liquidity and characterize under

which circumstances it is optimal for the firm to go into debt in order to speed up innovation.

Furthermore, we show that, due to the existence of financial constraints, the relationship be-

tween the incumbent’s profit on the existing market and the expected innovation time for the

new product is non-monotone and follows a titled-z shape.
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1 Introduction

Product Innovation is a crucial strategic activity for many firms. When firms are able to offer

distinctive and innovative products, they not only extend their existing product lines, but also

exert advantage against competitors. According to a widely circulated McKinsey survey, 84%

of executives believe that innovation is critical for their business.1 An innovation process takes

time (Gee, 1978) and requires continuous financial investment from the firm. However, product

innovation is associated with different types of uncertainties, in particular technological uncertainty

and market uncertainty. Technological uncertainty implies it is difficult to predict the time and

effort required for the successful innovation, and consequently, the firm has incomplete information

about investment costs. Market uncertainty refers to the uncertain demand for the new product in

case of a successful innovation, and leads to uncertain profitability. These two uncertainties affect

the return to firms’ product innovation investments.

Due to their risky nature, access to external financing for innovation projects is for many firms

problematic (Brown et al., 2009) and therefore a large fraction of such projects have to be financed

internally. This implies that innovation investment decisions of firms are often influenced by fi-

nancial constraints. According to the data from CIS survey in Germany 2012-2014 (Behrens et al.

(2017)), 18.5% of innovative firms have sacrificed innovation projects due to lack of finance. 23%

of all firms and 48% of firms in R&D-intensive industries would like to increase their innovation

expenditures in case of an exogenous positive shock to their cash flow. Moreover, the combination

of uncertainties, about the success of product innovation and the future profitability, might jeop-

ardize firms’ financial standing. Consider Kodak in 1996. Then CEO George Fisher knew that

the company’s core business might be invaded, or even replaced by digital photography. Kodak

was so worried about the threat posed by the new technology that they invested more than $2

billion in R&D for digital imaging. However, Kodak failed to anticipate how the market would

develop and commited to product specifications which proved difficult to change. Hence they could

not save their position in the traditional market but also failed to find a new market. In case a

firm relies heavily on external financing for its R&D investments, when such disappointing market

performance of the new product or cost overruns of the the innovation project accor, this can affect

a firm’s ability to roll over future debt and R&D investment might increase the bankruptcy risk

for firms (Buddelmeyer et al. (2010)).

1See https://hbr.org/2019/12/real-innovation-requires-more-than-an-rd-budget
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The main agenda of this paper is to study how financial constraints and the induced risk of

bankruptcy influence optimal investment strategies for product innovation by incumbent firms

in a market. In particular, we analyze how optimal investment depends on the firms’ financial

standing, formally expressed as the firm’s liquidity, as well as on its strength in the established

market, formally expressed as the size of firm’s profits on that market. Furthermore, we explore

the role of frictions in access to external financing, expressed as the firm’s bankruptcy risk when

being unable to roll-over existing debt. Our focus on incumbent firms is motivated by empirical

evidence that a large fraction of product innovations is developed by incumbents rather than by

new market entrants (Chandy and Tellis (2000)).

Intuitively, when considering the effect of a firm’s financial standing and strength on the estab-

lished market on product innovation incentives, several effects come into play. First, with respect

to the firm’s available liquidity, a larger stock induces a lower demand for external financing, which

reduces the bankruptcy risk and therefore the expected costs associated with investment. However,

for firms with substantial negative liquidity in particular, a potential bankruptcy implies a reduc-

tion in expected costs of investment due to limited liability. Second, with respect to the firm’s

strength on the established market, at least in case the new product is a partial substitute for

the firm’s existing product, cannibalization arguments induce a negative relationship between the

incumbent’s strength on the established market and product innovation incentives, if there are be

no financial frictions. Besides, higher profits of the incumbent on the established market reduces

the need for external financing and therefore reduces the expected costs of innovation investment.

In this paper we disentangle these effects and shed light on their interplay in the framework of a

simple dynamic market model, which incorporates technological and market uncertainty as well as

bankruptcy risk. This risk is induced by the accumulation of debt due to the inability to internally

finance innovation investments. By this approach, we bring together an industrial organization

perspective that focuses on firms’ innovation incentives, with a corporate finance perspective that

emphasizes the impact of financial constraints. Building on our characterization of firms’ optimal

investment strategies we can also address how the interplay of profitability of established markets

and access to external financing influence the speed of innovation and bankruptcy risk in an industry.

We consider a monopolistic firm offering an established product on a mature market with a

constant demand function. The firm receives a continuous profit stream from its sales on this

market and at the same time can invest to develop a new product, which is a partial substitute

to the established product. The completion time of the new product development is stochastic
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and the innovation rate depends on the firm’s R&D investment. Once the product development is

completed the firm puts the new product on the market. Then the demand for the new product

evolves stochastically, starting from a low level and approaching a long-term market size, which is

higher than that of the established product. The dynamics of the firm’s liquidity is driven by the

difference between market profits and innovation investment plus dividends as well as by interest

received or paid. It is assumed that the firm has access to external financing, such that liquidity

can become negative. A firm with negative liquidity runs the risk of going bankrupt, and the risk

increases with the size of negative liquidity. This formulation captures in reduced form that firms

in debt might loose access to credit when trying to roll-over debt and that the probability for this

to happen increases with the firm’s leverage (see e.g. Sapienza (2002) for empirical evidence in

this respect). It is also assumed that the firm follows a simple dividend policy, paying out a fixed

fraction of its liquidity as dividend as long as liquidity is positive and not paying when liquidity is

negative. The firm determines its R&D investment in order to maximize the expected discounted

future dividend stream.

Our analysis shows that the optimal R&D strategy, as a function of the firm’s liquidity, has a

U-shape. Investments are highest when liquidity is either very high, which implies that the firm

essentially faces no financial constraints, or when the firm is already heavily indebted, in which case

a fast product innovation is the only chance to avoid future bankruptcy. For firms with a liquidity

level between these two extremes two different scenarios might arise, depending on the efficiency of

R&D investments, the profitability of the estabished market and the frictions in the firm’s access

to credit. In particular, a debt scenario or a no debt scenario might arise. In the former case it

is optimal for a firm with positive initial liquidity to invest so heavily in R&D that it eventually

accumulates debt and faces a positive bankruptcy probability, whereas in the latter case the firm

never goes into debt if the initial liquidity is non-negative, and over time eliminates any potential

initial debt. For large parts of the parameter range giving rise to a no debt scenario, the optimal

R&D investment strategy is discontinuous at the liquidity level of zero and exhibits a downward

jump there. The liquidity level of zero is then a stable fixed point of the liquidity dynamics under

optimal investment, meaning that a firm with positive initial liquidity diminishes it to zero in order

to speed up the innovation process, and then simply invests all incoming profits in R&D till the

innovation is successful without relying on any external financing. Combining analytical results with

an extensive numerical analysis we fully characterize how the occurrence of these scenarios depends

on the interplay of the key model parameters, and how these scenarios influence the relationship
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between parameters and speed of innovation and the firm’s bankruptcy probability. In particular,

we show in such a scenario with financial constraints that, a highly non-monotone relationship

between the profitability of the established market and the speed of innovation emerges. A higher

profitability on the established market induces lower R&D investment and slower innovation if the

firm is either in a debt scenario (arising for low levels of profitability) or in a no debt scenario

with positive long-run liquidity (arising for high levels of profitability). Additionally, in a no debt

scenario with long-run liquidity of zero there is a positive relationship between profitability of the

established market and the speed of innovation.

Our results contribute to different streams of related literature. First, we extend analyses of

product innovation incentives of incumbents in the absence of financial frictions. Dawid et al. (2015)

and Dawid et al. (2020) show in a similar dynamic market setting and perfect financial markets,

that the optimal product innovation investments of a monopolist respectively duopolist depend

negatively on firm’s production capacity on the established market. Therefore, there is a negative

relationship between the cash-flow generated on the established market and innovation investment.

Our analysis highlights, that this monotone relationship no longer holds if the assumption of perfect

financial markets is dropped. Second, our findings are related to the long-lasting debate on the

relationship between cash-flow and investment under financial constraints. Empirical results in

that respect are mixed. Many paper starting with Fazzari et al. (1988, 2000) find that financially

constrained firms have a stronger positive relationship between cash flow and investment compared

to where financial constraints do not play a role. This view has been challenged on both theoretical

and empirical grounds by Kaplan and Zingales (1997, 2000). Gomes (2001) and Alti (2003) have

put forward models showing a positive relationship between cash-flow and investment in settings

with perfect financial markets. In this realm of literature dealing with generic investments, typically

in physical capital, several papers have also studied the relationship between R&D investment and

cash flow, and in how far it is related to financial constraints. The general conclusion from this body

of literature is that there is evidence that firms face constraints for financing R&D investments and

this gives rise to high sensitivity of innovative firm’s investment to cash flows (see Hall and Lerner

(2010) for a survey of this literature).

Our paper complements this mainly empirical literature from a theoretical perspective and pro-

vides several innovative aspects. First, while these papers consider general R&D investment, we

specifically focus on product innovation investments of incumbents by taking into account that, the

firm’s strength on the established market influences both the firm’s revenues and its incentive to
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extend its product range. Second, our analysis characterizes the optimal investment strategy of the

firm as a function of its current financial state, thereby capturing how the innovation investments

of the firm evolves over time as its liquidity changes. This perspective allows us to show that,

even within the same market environment the sign of the relationship between cash flow and R&D

investment might change according to the firm’s financial standing. Third, we characterize under

which circumstances a rational incumbent should risk bankruptcy and jeopardize its position on

the established market in order to pursue product innovation.

The remainder of the paper is organized as follows. In Section 2 we introduce our model. Analyt-

ical results characterizing the optimal investment strategy and the resulting liquidity dynamics are

presented in Section 3. In Section 4 we extend these findings with an extensive numerical analysis

illustrating the optimal investment strategies and the corresponding expected innovation times and

bankruptcy probabilities for different parameter constellations. We provide concluding remarks in

Section 5. All proofs are given in Appendix A, Appendix B contains additional numerical results

and Appendix C a detailed description of our numerical method.

2 The Model

A monopoly firm is producing on an established market and developing at the same time a new

product n, which is a partial substitute to the established product o. At the stochastic innovation

time τ the firm can introduce the new product and afterwards is active in both markets. The

inverse demand is assumed to be linear and of the form

po(t) = αo − qo(t)− ηqn(t),

pn(t) = ᾱn + αn − qn(t)− ηqo(t).

Here pi(t), i ∈ {o, n}, denotes the price for product i and qi(t) the output of product i ∈ {o, n} at

time t. The parameter η ∈ [0, 1) indicates the degree of horizontal differentiation between the two

products. The consumers’ maximal willingness to pay for the established product, αo, is assumed

to be constant. The maximal willingness to pay for the new product is denoted by ᾱn + αn, and

αn is assumed to evolve stochastically from the moment of successful innovation τ and to follow a

mean-reverting stochastic process:

dαn = δ (α̃n − αn) dt+ σαndW (t), δ, σ > 0, (1)
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with αn(τ) = 0. W (t) is a Wiener process, and α̃n > αo − ᾱn captures the fact that the market

potential of the new product is lager than that of the established product. The minimal market

size ᾱn > 0 is sufficiently large to guarantee that the equilibrium output for the new product stays

non-negative even for αn = 0.

If the firm cannot service its debt, it might have to exit the market, i.e., go bankrupt. The

number of products, that firm is able to offer, is captured by m(t) ∈ {m0,m1,m2}, which we

denote as the mode of the problem. In mode m0 the firm has exited the market and therefore

qo = qn = 0, in mode m1 the firm is active only on the established market, such that qo > 0, qn = 0

and in mode m2 the firm has both products on the market, i.e. qo, qn ≥ 0. At time t = 0, we have

m(0) = {m1} indicating that the firm is active on the established market, and has not innovated

yet.

At each time t the monopoly firm chooses the optimal output quantities taking into accout the

current mode. For reasons of simplicity we normalize the unit costs of production to zero. For

m(t) = m1 standard calculations show that

qo(m1) = αo
2 .

Similarly, in mode m2 the optimal output quantities are given by

qo(αn,m2) = αo − η(ᾱn + αn)
2(1− η2) ,

qn(αn,m2) = (ᾱn + αn)− ηαo
2(1− η2) ,

whenever both expressions are non-negative. This is ensured by assuming that ᾱn > ηαo and that

αo − η(ᾱn + α̃n) is sufficiently large such that the probability that αo < η(ᾱn + αn) is negligible.

This generates the following market profits π(αn,m) in the different modes:

π(αn,m2) = (ᾱn + αn)2 + α2
o − 2η(ᾱn + αn)αo

4− 4η2 ,

π(0,m1) = α2
o

4 ,

π(αn,m0) = 0.

It is easy to verify that π(αn,m2) ≥ π(0,m1) with strict inequality whenever qn(αn,m2) > 0.

The transition from mode m1 to m2 corresponds to a successful innovation. The arrival process
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of the innovation is assumed to be memoryless and the innovation rate, is given by λ12 = γII(t),

where I(t) denotes the R&D investment by the monopoly firm and the innovation parameter γI > 0

captures the efficiency of the firm’s R&D activities. R&D investment is associated with quadratic

costs of the form ξ
2I

2, ξ > 0. The financial situation of the firm is expressed by its liquidity e(t),

which evolves according to

ė = π(αn,m)− ξ

2I
2 −D + re, (2)

where r > 0 is the interest rate, and D(t) denotes the dividends paid out at time t to the share-

holders. We assume the dividend policy D(e,m) = νm max{0, e} with νm ∈ (0, 1). According to

this policy the firm pays dividends as a fixed proportion of the positive liquidity reserve and does

not pay any dividends if it has negative liquidity. It is worth mentioning that νm is assumed to

be a constant, rather than a control variable for the firm in our model. Hence, in general this

dividend policy is not intertemporally optimal. We make this simplification because our focus is

on the innovation investment under bankruptcy threat rather than on the optimal dividend pol-

icy. Providing a characterization of the optimal dividend policy in this framework with demand

uncertainty and endogenous investment is highly challenging and will be the topic of future work.

Liquidity can become negative, in which case the firm is in debt. To capture the risk for a firm as-

sociated with external financing of its investment, it is assumed that there is a positive probability

that an indebted firm is not able to extend its debt contracts, and has to exit the market. This

probability is assumed to be increasing with the amount of debt.2 More precisely, the transition

rate (bankruptcy rate) from mode m = {m1,m2} to m = m0 is given by

λk0 := γB max[0,−e], k = 1, 2.

This formulation can also be interpreted as a reduced form representation of a situation where the

firm faces a fixed credit limit and is exposed to unanticipated financial shocks, e.g., with respect

to its fixed costs. The bankruptcy parameter γB determines how tight the financial constraints are.

The case γB = 0 indicates no financial constraint, and γB →∞ implies that the firm has no access

to credit. Note that in our formulation the (expected) costs of external financing are completely

captured by the dependence of the bankruptcy risk from liquidity, whereas the interest rate in the
2Empirical evidence that higher leverage and higher R&D investment increase the risk of loosing a banking

relationship and having to exit the market are provided e.g. in Sapienza (2002) and Buddelmeyer et al. (2010)
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liquidity dynamics (2) does not depend on the level of firm liquidity. Assuming that the interest

the firm pays for loans also depends positively on its level of debt would certainly be a reasonable

assumption, but we abstain from such a formulation here in order to keep the model as simple as

possible. Our aim here is to study the optimal investment behavior of a firm who is aware that

its expenditures for innovation activities might jeopardize its existence if these activities remain

unsuccessful for too long. This effect is captured in the form of the bankruptcy rate.

Under these assumptions, the overall dynamics of the liquidity is given by the state dynamics

ė =


0 m = m0,

π(0,m1)− ξ
2I

2 − ν1 max{0, e}+ re m = m1,

π(αn,m2)− ν2 max{0, e}+ re m = m2,

(3)

and the Markov process m in {m0,m1,m2} with transition states

λij =


γII (i, j) = (m1,m2),

γB max[0,−e] (i, j) ∈ {(m2,m0), (m1,m0)},

0 else.

(4)

Before the successful innovation in mode m1, the firm is constantly balancing the two effects from

the innovation investment. One effect is that the investment decreases the firm’s liquidity reserves

and brings about a possible bankruptcy once the liquidity becomes negative. The other effect is the

likelihood of transition into mode 2 that is boosted by investment. Note that a negative liquidity

in mode 2 also implies a bankruptcy probability. Since the firm’s profit flow in mode 2 is always

non-negative, such negative liquidity has to be due to the result of the negative liquidity at the

moment of transition from mode m1. In other words, there is a certain risk of bankruptcy even

after successful innovation if the debt accumulated during the innovation phase is too high. We

consider the investment problem of a decision maker with the objective of maximizing the expected

dividend stream received by the firm’s shareholders. Formally, this problem is given by

max
I(·)

J = E
[∫ ∞

0
e−rtD(e,m)dt

]
. (5)

subject to the state equation (3), the Markov process m(t) characterized by the transition rates (4)

and the initial conditions e(0) = eini, m(0) = m1. It should be noted that the firm’s investment
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does not generate any expected revenue in mode m2, which trivially implies that I(t) = 0 for all t

with m(t) = m2. Hence, in what follows we will focus entirely on the characterization of optimal

firm investment in mode m1. Due to the time autonomous structure of the problem, optimal

investment depends only on the current state, but is independent of time. Hence, in what follows

we will express the optimal investment in mode m1 as a function of the state e and denote the

optimal investment function by φ(e).

3 Analytical Results

In order to solve the firm’s investment problem we use a Dynamic Programming approach and

as a first step specify the Hamilton-Jacobi-Bellman (HJB) equations which characterize the value

functions Vk in modes mk, k = 1, 2. With respect to mode m0 we note that no more dividends

are paid once the firm is bankrupt, which means that the value function is given by V0(e, αn) = 0

for all values of the state (e, αn). In mode m2, no more investments are made and hence there is

no control for the decision maker to choose. Standard arguments (see e.g. Chapter 8 in Dockner

et al. (2000)) show that under appropriate smoothness assumptions a function V2(e, αn), solving

the HJB equation

rV2(e, αn) = ν2 max{0, e}+ δ(α̃n − αn)∂V2(e, αn)
∂αn

+ σ2α2
n

2
∂2V2(e, αn)

∂α2
n

+∂V2(e, αn)
∂e

ė+ γB max{0,−e}
(
V0(e, αo)− V2(e, αn)

)
(6)

is the value function for the monopoly firm. The first term on the right hand side (RHS) is the

dividend received by the share holders. The next three terms indicate the expected change in the

value function due to the dynamics of market demand and the liquidity. The last term states

the expected change in the value resulting from the possibility of bankruptcy in case of negative

liquidity.

Considering now the investment problem in mode m1, we denote the value function in this

mode as V1(e). Because the new market emerges only after successful innovation at time τ and by

assumption αn(τ) = 0, we write the value function in mode m1 only as a function of the firm’s

liquidity e, but drop the second argument αn. The corresponding HJB equation for a given dividend
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rate ν1 in this mode can be written as

rV1(e) = max
I

[
ν1 max{e, 0}+ dV1(e)

de ė+ γII (V2(e, 0)− V1(e)) + γB max{0,−e} (V0(e)− V1(e))
]
. (7)

On the RHS, the expected change of the value comes from the changes of firm’s liquidity, the

possibility of transition into modes m2 and m0. Using the Bellman equation for m1, i.e., equation

(7), we obtain the following characterization of optimal investment.

Lemma 1. The optimal investment before innovation, i.e., in mode m1, is given by

φ(e) = γI
ξ

V2(e, 0)− V1(e)
dV1(e)/de > 0. (8)

Lemma 1 can be easily derived by taking the first order derivative of the RHS of equation (7)

with respect to I. It shows there are several factors that influence the firm’s optimal innovation

investment. R&D investment increases with respect to the innovation parameter γI , which de-

termines the marginal effect of an increase of R&D investment on the innovation rate, and with

respect to the jump in the value (V2(e, 0) − V1(e)) at the moment of successful innovation. The

optimal innovation investment decreases with respect ξ dV1(e)
de . To interpret this expression it should

be noted that in light of (2) marginally increasing investment reduces the firm’s liquidity by ξI

and this decrease in liquidity is associated with a decrease in the firm owner’s value of ξI dV1(e)
de .

Hence, the coefficient ξ dV1(e)
de corresponds to the coefficient of the quadratic adjustment cost term

in standard investment problems with convex investment costs. Thus, optimal investment in our

setting can be interpreted in the usual way as the ratio of marginal (expected) returns to investment

and the adjustment cost coefficient. In this respect it should be noted that the firm owner always

profits from additional liquidity, which implies that we always have dV1(e)/de > 0.

3.1 Scenario without effects of financial constraints

In order to better understand the effect of the bankruptcy threat for the optimal investment,

we first study, as a benchmark, the special scenario without bankruptcy risk. In particular, we

consider a situation where the initial liquidity is sufficiently large such that the firm never faces

a positive bankruptcy probability even if it chooses its unconstrained optimal investment level.

For such a scenario we can explicitly derive the value functions in both modes. Moreover, the

firm’s optimal innovation investment can also be calculated. These results are summarized in the
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following proposition.

Proposition 1. Assume that eini > ẽ = max
[
ξ(Inc)2−α2

o/2
2(r−ν1) , 0

]
with

Inc =
√
r2

γ2
I

+ 2rc
ξ
− α2

o

2ξ −
r

γI
> 0 (9)

and either r > ν1 or ẽ > 0. Then the optimal investment in mode m1 is constant over time with

I(t) = Inc for all t ∈ [0, τ ]. In each mode liquidity changes monotonously over time and the value

functions in the two modes are given by

V1(e) = e+ c+ 1
γ2
I

rξ −
√
r2ξ2 + 2crξγ2

I −
ξγ2
Iα

2
o

2

 , (10)

V2(e, αn) = δα̃n + (ᾱn − αoη)(r + 2δ − σ2)
2(r + δ)(1− η2)(r + 2δ − σ2) αn + α2

n

4(1− η2)(r + 2δ − σ2) + e+ c, (11)

with

c = δ2α̃2
n + δα̃n(ᾱn − αoη)(r + 2δ − σ2)

2r(r + δ)(1− η2)(r + 2δ − σ2) + ᾱ2
n + α2

o − 2ηαoᾱn
4r(1− η2) (12)

for all e ≥ eini.

Proposition 1 covers two scenarios. First, if r > ν1 and eini ≥ ẽ then liquidity grows throughout

mode m1 even if the firm chooses the unconstrained optimal investment level and therefore liquidity

never becomes negative. In case r < ν1 and ẽ > 0 we must have that α2
o/4 > ξ(Inc)2/2, which

means that the market profit in mode m1 is sufficient to cover the investment costs under the

unconstrained investment Inc. At the liquidity level ẽ the remaining part of the market profit

plus earned interest is exactly equal to the firm’s dividend payout. Hence, for any non-negative

initial level of liquidity, in m1 the liquidity of a firm investing Inc converges to ẽ and therefore

never becomes negative. Since the firm no longer invests in mode m2 liquidity stays non-negative

throughout mode m2 if it is non-negative at the time of the innovation.

Given that the firm’s investment in mode m1 is constant the expected innovation time can be

easily calculated as

E[τ ] =
∫ ∞

0
tγII

nc exp (−γIInct)dt = 1
γIInc

. (13)

The value functions in both modes can be interpreted as a summation of the instantaneous liquidity

reserve e and the discounted future profits. Since the interest rate is equal to the discount rate and

the firm lives eternally, moving the payout of liquidity across time does not influence the value of
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the discounted dividend stream of the firm owner as long as it is guaranteed that liquidity never

becomes negative. Furthermore, as long as the firm does not face any (future) bankruptcy risk,

the innovation investment is determined by the relationship between marginal costs and marginal

future returns, but is independent of the liquidity and also of the dividend rate, see (9). From

this equation also the following very intuitive effects of the key parameters on the unconstrained

optimal investment level can be directly derived.

Corollary 1. Optimal R&D investment without bankruptcy risk, Inc, increases with the efficiency

of R&D (γI) but decreases with respect to investment costs (ξ) and the size of the established market

(αo). If r+2δ > σ2, then optimal investment increases with the market potential of the new product

(α̃).

For the following analysis in particular the negative dependence of optimal R&D investment on

the size of the established market is important. Intuitively, this dependence is due to a standard

cannibalization effect. The introduction of the new product leads to a reduction in the price of

the old product. Hence, the value of the new product introduction for the monopolist is smaller

when the quantity of the established market product the firm sells is larger. If the monopolist has

sufficiently large liquidity such that it can always internally finance its optimal R&D investments,

this is the only effect induced by an increase of αo. However, if the firm is financially constrained an

increase of αo also reduces the demand for external financing and hence the relationship between

the optimal investment and the size of the established market is less clear cut. We now turn to

analyzing this scenario where the firm has to take into account a potential bankruptcy risk.

3.2 Scenario with effects of financial constraints

If the unconstrained level of investment cannot be internally financed through profits on the estab-

lished market, the monopolist, even if it initially does not have any debt, faces financial constraints.

Building on Proposition 1 the following corollary shows that the efficiency of R&D activities as well

as the size of the established market play a key role in determining whether financial constraints

are relevant for the firm.

Corollary 2. If 2rc ≤ α2
o or 2rc > α2

o and γI ≤ γI with

γ
I

= rαo
√

2ξ
2rc− α2

o

(14)
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and c given by (12), then ẽ = 0. The optimal investment reads φ(e) = Inc for all e ≥ 0 and for

all eini ≥ 0 liquidity e(t) stays non-negative for all t ≥ 0 and either converges towards the steady

state ẽ ≥ 0 (for r < ν1) or diverges towards infinity while the firm is in mode m1 (for r ≥ ν1). If

γI > γ
I

then either φ(e) < Inc for some liquidity e ≥ 0 or for some eini ≥ 0 there is a positive

probability for bankruptcy under the investment strategy φ(.), or both.

In what follows we will focus on the case with 2rc > α2
o and γI > γ

I
, where the inability

to internally finance the unconstrained optimal investment also affects the investment of a firm

without initial debt. Intuitively for 2rc ≤ α2
o the attractiveness of the new market is so low relative

to the established one that, for any effectiveness of R&D the unconstrained R&D investment can

be financed internally by market profits and therefore financial constraints have little relevance. In

order to restrict attention to scenarios where financial constraints have potential impact we make

the following formal assumption.

Assumption 1. Throughout the following analysis it is assumed that 2rc > α2
o.

The existence of bankruptcy risk makes the characterization of the optimal investment strategy

much more challenging compared to the case without such risk. Formally, this is due to the fact

that the last terms on the right hand side of the HJB equations (6) and (7), which disappear if only

positive values of e are considered, prevent us from obtaining closed form solutions for the value

functions in modes m1 and m2 on the entire state space.

3.2.1 Post-innovation

Since market profit in mode m2 is non-negative and the firm makes no investments, the value

function V2(e, αn) can be explicitly calculated for a positive initial liquidity e > 0. Given ν2 > r

liquidity in the long run oscilates around the positive steady state e∗2 = π(α̃,m2)/(ν2 − r) > 0.

For r ≥ ν2, liquidity would diverge to positive infinity, but it is clear that such a dividend policy

would be sub-optimal. Because liquidity never decreases in mode m2, the bankruptcy rate is zero

for all t ≥ τ if e(τ) > 0, and the value function V2(e, αn) has the same expression as equation

(11) for e ≥ 0. Since for negative liquidity no dividends are paid, these considerations and the

fact that (11) does not depend on ν2 show that also in the presence of bankruptcy risk, the value

functions V1 and V2 and also the optimal investment strategy do not depend on the value of ν2.

With respect to V2(e, αn) for e < 0, the non-linear form of the HJB equation does not allow us to
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obtain a closed form solution. Therefore, we have to resort to numerical calculations to determine

the value function.

3.2.2 Pre-innovation R&D Investment

Taking into account Corollary 2, it is in general it is not clear whether for γI > γ
I

the liquidity stays

non-negative under the optimal investment strategy even if it starts evolving from a non-negative

initial level. Since the problem in mode m1 is an optimal control problem with one-dimensional

state-space the liquidity trajectory under the optimal control has to be monotonous (see Hartl

(1987)). Therefore, the analysis of the locations of the steady states of the problem provide clear

insights on whether liquidity might become negative if the monopolist invests optimally. The

following lemma provides a characterization of steady states candidates e∗ under the assumption

of differentiability of the value function at e∗.

Lemma 2. Assume that e∗ is a steady state of the liquidity dynamics under the optimal investment

strategy φ(e) in mode m1 and that the associated value function V1(e) is differentiable at e∗. Then

the following conditions have to be satisfied:

αo
2 −

ξΦ2(e∗)
2 + re∗ − ν1 max{0, e∗} = 0, (15)

ξφ(e∗)dV1(e∗)
de − γI

(
V2(e∗, 0)− V1(e∗)

)
= 0, (16)

rV1(e∗) = max{0, ν1e
∗}+ γIφ(e∗)

(
V2(e∗, 0)− V1(e∗)

)
− γB max{0,−e∗}V1(e∗), (17)

γIφ(e∗)
(
∂V2(e∗, 0)

∂e
− dV1(e∗)

de

)
+ ν11I [e∗≥0] − r

dV1(e∗)
de

+ γB

(
1I [e∗≤0]V1(e∗)−max{0,−e∗}dV1(e∗)

de

)
= 0.

(18)

This system of necessary conditions is derived by taking into account the steady state condition

ė = 0 (15), the first order condition for investment (16), the HJB equation at the steady state

(17) and the state derivative of the HJB equation at the steady state (18). Once the problem in

mode m2 is solved and V2(e, αn) is known, then there are four unknowns in the above equations,

e∗, Φ(e∗), V1(e∗), and dV1(e∗)/de. Though closed form solutions to this system of equations in

general cannot be obtained, Lemma 2 provides the basis for identifying via numerical analysis all

candidates for steady states with local differentiability of the value function.

Before applying this lemma in the numerical analysis we first derive conditions under which zero

liquidity is a steady state. In light of Corollary 2 we already know that this can only happen for
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γI ≥ γI . Due to the kink in the dividend policy and the bankruptcy rate at e = 0 we must expect

that in general the value function V1 is not differentiable at e = 0. Hence, Lemma 2 cannot be

directly applied and we must resort to a viscosity solution of the HJB equation when determining

the value function of the problem (see e.g. Bardi and Capuzzo-Dolcetta (2008)). Based on this we

can characterize the conditions under which e∗ = 0 is a steady state under optimal investment.

Proposition 2. The liquidity e∗ = 0 is a stable steady state under the optimal investment strategy

φ(e) in mode m1 if

γI ∈
[
γ
I
, γ̄I
]

(19)

with γ
I

given by (14) and

γ̄I = (r + γBc)αo
√

2ξ
2rc− α2

o

, (20)

where c is given by (12). Optimal R&D investment in the steady state is then given by

φ(0) =
√

2π(0,m1)
ξ

(21)

and for γI ∈
(
γ
I
, γ̄I
)

optimal investment is discontinuous at e = 0 such that

lim
ε→0+

φ(−ε) < φ(0) < lim
ε→0+

φ(ε).

Proposition 2 gives the upper and lower bounds for γI such that at e = 0 choosing investment,

that is exactly covered by market profits, can be optimal. Whereas the lower bound γ
I

does not

depend on the bankruptcy parameter, the upper bound in (19) is influenced by γB. This is quite

intuitive since the bankruptcy parameter only becomes relevant if the firm’s liquidity becomes

negative. Proposition 2 also implies that if e = 0 is a steady state then the optimal investment

strategy φ(e) exhibits a jump at this value of the liquidity. Clearly, this jump is due to fact that,

as soon as liquidity becomes negative, an increase of investment increases the bankruptcy risk and

therefore the incentive to invest is lower compared to a situation where no such effect on bankruptcy

risk exists. For γI in the interval (19) the optimal investment without consideration of the effect

on bankruptcy risk is larger than the profit on the established market, whereas optimal investment

taking into account the effect on bankruptcy risk is below market profit. In such a scenario, for

positive initial liquidity the firm invests above the profit on the established market until liquidity
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has been depleted to zero and then reduces investment such that it equals the current profit. If γI is

sufficiently large, then for small negative liquidity optimal investment, even under the consideration

of its effect on bankruptcy risk, is larger than what can be internally financed by the profits on

the established market. In this scenario the optimal investment strategy induces that the firm goes

into debt even if it starts with a non-negative liquidity. This intuition is formalized in the following

corollary, which follows directly from Proposition 2 together with Corollary 2.

Corollary 3. For γI < γ
I
, then under the optimal investment ė(0) > 0. For γI > γ̄I , we have

ė(0) < 0.

It follows directly from Proposition 2 that, for a given value of γI > γ
I
, there is a positive

threshold for the bankruptcy risk parameter γB, such that e = 0 is a steady state of the liquidity

dynamics under optimal investment only if γB is above that threshold.

Corollary 4. For γI > γ
I

there exists a unique threshold γ̄B such that e∗ = 0 is a stable steady

state if and only if γB ≥ γ̄B.

In the following section we will use this corollary to distinguish between scenarios where a firm

with positive initial liquidity eventually accumulates debt or keeps a non-negative liquidity.

Before numerically exploring in the next section additional properties of the optimal investment

policy and the resulting innovation rate and liquidity dynamics, we conclude this analytical section

by briefly discussing the implications of the a variation of the dividend rate ν1 in mode m1. In

particular, we show in the following proposition that if the monopolist never enters the negative

liquidity domain in mode m1, then it is optimal to delay all dividend payments till mode m2.

Proposition 3. Denote by φ̃(e) the optimal solution to the problem (5) under ν1 = 0. If ė ≥ 0

at e = 0, i.e. α2
o ≥ 2ξφ̃(0)2, then for any value of eini ≥ 0 the maximal value for the firm owner

under ν1 = 0 is larger or equal than the maximal value that can be obtained for any ν1 ≥ 0.

The intuition for this result is that while investing the firm should keep as high a liquidity as

possible in order to avoid going into debt. Paying out dividends during mode m1 could either make

the firm go into debt or restrict its possible innovation choice. Both of these effects are associated

with costs for the firm and hence reduce the expected dividend stream. In case the firm optimally

avoids to go into debt under ν1 = 0, there is no bankruptcy risk and therefore no costs associated

with delaying the payout of dividends to mode m2. As discussed above, this is due to the fact that

interest and discount rate coincide and that the firm has a positive income stream in mode m2. The

17



condition that liquidity stays non-negative under the optimal investment is crucial for the claim of

Proposition 3. If initial liquidity is positive but at some point becomes negative under the optimal

investment strategy, it can no longer be claimed that in general ν1 = 0 is optimal. In such a scenario

it might be profitable for the owner to receive dividends before a potential bankruptcy, which would

stop all dividend flows. As mentioned above, studying the optimal (liquidity dependent) dividend

policy is not the focus of our analysis. The main purpose of Proposition 3 is to provide some

foundation for the fact that throughout the numerical analysis we will assume that ν1 = 0.

4 Numerical Analysis

It is challenging to get closed form solutions for the value function and investment when γB > 0.

This is because of the non-linear form of the HJB equations, especially for e < 0. In order to analyze

the effect of the bankruptcy threat on optimal investment, we need to numerically determine the

value function of V1(e), which requires to approximate V2(e, αn) first. To achieve this goal, we

resort to numerical methods. More specifically, we rely on a collocation method to calculate the

approximate solution for V2(e, αn) for e < 0 and V1(e). Details of our approach, building on

Vedenov and Miranda (2001) and Dawid et al. (2015), are provided in Appendix C. When applying

the numerical method, we encounter two technical challenges. The first is that the collocation

method operates on a finite state space, but in our model the state space for liquidity is infinite.

The second challenge is that, the denominator term dV1(e)/de in the optimal control (8) could be

close to 0, especially when the initial liquidity is very negative and the bankruptcy probability is

very large. This would make the optimal control I explode and the numerical calculations difficult.

In order to solve these two technical problems, we propose a transformation from the state space of

liquidity e to a state space of z according to z(e) = (1 + exp (−λe))−1 ∈ (0, 1) with 0 < λ < 1. The

new state space of the problem is the interval (0, 1), and therefore a bounded interval, which makes

the application of the collocation method easier. Then e(z) = −1
λ ln

(
1
z − 1

)
and the calculations

are carried out in the state space (αn, z) ∈ [0, αu]× [zl, zu] after innovation in mode m2, and in the

state space z ∈ [zl, zu] before innovation in mode m1, where αu > α̃ is chosen sufficiently large, zl
is close to zero and zu close to one. Note that after this transition, the dynamics read

ż(e) = λz(e)
(
1− z(e)

)
ė,
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while ė is given by (2). The denominator of the optimal investment is

dV1 (e(z))
dz = dV1 (e(z)) /de

λz(1− z) .

For strongly negative liquidity e, which corresponds to z(e) close to zero, both the nominator

dV1 (e) /de and denominator λz(1 − z) after the transition are close to 0. The technical problem

associated with a small value of the derivative of the value function can thereby be alleviated. In this

section, we focus on the influence of the bankruptcy parameter γB and the firm’s strength on the

established market αo on the firm’s investment, the expected innovation time and the bankruptcy

probabilities.

4.1 Parameter calibration

Our numerical analysis is based on a standard parameter setting shown in the following table.

Based on this standard parameter setting we will analyze the effects of variations of several of these

parameters, in particular γB, γI and αo.

ν1 = 0 pre-innovation dividend rate δ = 1.55 adjustment speed for αn to reach α̃n
ν2 = 0.2 post-innovation dividend rate σ = 0.1 uncertainty in new market dynamics
αo = 0.8 size of the old market r = 0.02 interest rate
ᾱn = 0.6 base size of the new market γB = 0.05 bankruptcy parameter
α̃n = 0.8 expansion of new market γI = 0.1 efficiency of innovation
η = 0.5 horizontal differentiation ξ = 0.025 invesment costs
λ = 0.5 parameter for state-space

transformation

Table 1: Parameter values

Although this parameter setting is not based on a systematic empirical calibration for a specific

setting, they have been chosen with clear theoretical and empirical foundations in mind. As men-

tioned above, our choice of ν1 = 0 is based on Proposition 3, whereas as discussed in Section 3.2.1

the choice of ν2 does not affect any of our results.

The reason behind the choice of parameter values for αo, ᾱn, α̃n and η is the resulting demand

elasticity. Empirical evidence indicates that the unitary elasticity is reasonable for many established

consumption goods. For the established market without the influence by the new product, the
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chosen parameter values would yield the price elasticity before innovation as

−
(dpo

dqo

)−1 (po
qo

)∣∣∣∣∣
qo(m1)

= 1,

and the price elasticity for the new product, in the long-run when αn = α̃n, to be equal to

−
(
∂pn
∂qn

)−1 (pn
qn

)∣∣∣∣∣
qo(α̃n,m2); qn(qo(α̃n,m2))

= 1.05.

The parameter values for σ and δ are chosen in a way that the expected duration in mode m2

until the new product price reaches its peak ᾱn+ α̃n is approximately 2.5 years, which is consistent

with empirical observations about the time till full development of the demand for a new product

in industries like the car industry (Volpato and Stocchetti, 2008).

Parameters γB, γI and ξ are calibrated such that for the default set of parameter values, the

average innovation time is 2 to 2.5 years, which is consistent with empirical data about the average

length of innovation projects (Behrens et al., 2017).

In the following analysis, we first calculate the value function V2(e, αn) for mode m2. Using the

estimated values V2(e, 0), we then numerically determine the (approximate) value function V1(e)

in mode m1. This allows us then to analyze the influence of γB and αo on the optimal investment,

the liquidity dynamics, expected innovation time and bankruptcy probability.

4.2 Post-innovation

There is no more investment after the successful innovation, i.e., no control to be chosen by the

firm. The value function V2(e, αn) in mode m2 is shown in Figure 1. V2(e, αn) increases with both

the market demand for new product αn, and the liquidity e. When e < 0, Figure 1 also indicates

the influence of the bankruptcy risk on the value in mode m2. Note that without bankruptcy

risk (i.e. γB = 0) the value function V2(e, αn) is linear in e with a slope of 1, and has the same

functional form for both positive and negative liquidity reserves. However, for γB = 0.05, which is

the case depicted in Figure 1, V2(e, αn) is in the negative domain convex-convace with respect to

e and clearly below the value that would emerge for γB = 0. This highlights that the bankruptcy

risk decreases the value, when the liquidity reserves are negative, and that the size of the negative

effect of the bankruptcy risk depends in a non-linear way on the liquidity.
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Figure 1: Value function V2(e, αn).

4.3 Pre-innovation

We now turn to the analysis of optimal investment during the innovation phase in mode m1. First,

we note for further reference that in our default parameter setting the optimal R&D investment

level in the absence of financial constraints is Inc = 4.93, and the minimal amount of liquidity at

which this investment can be financed internally is given by ẽ = 7.2. It’s worth mentioning that

Assumption 1 is satisfied for this parameter setting. Based on Proposition 1 and Corollary 3 it is

clear that the optimal investment strategy and the induced dynamics depend crucially on the fact

whether e = 0 is a steady state of the liquidity dynamics under optimal investment or not. Hence,

we first characterize regions in the parameter space where e = 0 is a steady state. Since in these

scenarios a firm with non-negative initial liquidity never goes into debt under optimal investment

we refer to these cases as no debt scenarios. On the contrary we label situations where optimal

investment implies that the firm should enter the negative domain of the liquidity as debt scenarios.

4.3.1 Debt vs. No Debt Scenarios

Corollary 4 implies that if all other parameters are given according to their default values we have

a debt scenario for γB < γ̄B = 0.0069, whereas a no debt scenario arises for γB ≥ 0.0069. With

respect to our second key parameter, αo, the effect of a parameter variation on the occurrence of
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Figure 2: Influence of the bankruptcy risk parameter γB and the firm’s strength in the old market
αo on liquidity 0 as a steady state, i.e., e∗ = 0.

the no debt scenario is less clear cut, since both boundaries γ
I

and γ̄I in Proposition 2 depend in

a highly non-linear way on αo. In order to gain insights how increasing the size of the established

market affects the occurrence of the no debt scenario and how this effect depends on the value of the

bankruptcy parameter, we show in Figure 2 the influence of γB and αo on the occurrence of the no

debt scenario. Specifically, the shaded area shows the combination of γB and αo such that e∗ = 0 is

a steady state for the standard parameter setting. In our analysis, we assume that 0.7 ≤ αo ≤ 2.8

to make sure that the output quantities for both the old and the new products to be non-negative

after innovation. The shaded area is bounded from above by αo = 0.992 and below by αo = 0.7. It

can be clearly seen that for sufficiently large values of γB it is never optimal for the firm to go into

debt, however for values of the bankruptcy parameter below approximately γB = 0.012 the firm

avoids to go into debt only if the size of the established market is sufficiently large. Two effects,

both pointing in the same direction, drive this result. First, due to the cannibalization effect the

optimal innovation investment becomes lower if αo grows, and, second, the profit on the established

market grows with αo and therefore the firm is able to internally finance larger investments.

4.3.2 Effect of the Bankruptcy Risk

We are now in a position to characterize the shape of the optimal investment strategy φ(e) and

to explore how this optimal strategy changes if the bankruptcy risk parameter grows. The opti-

mal strategies depicted in this and the following sections have all been calculated based on the

numerically determined value functions of the problem, as described in Appendix C.

In Figure 3 we show the optimal investment strategies for our standard parameter setting and

different values of γB. As noted above, for our standard parameter setting e∗ = 0 is a steady state
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Figure 3: Effect of the bankruptcy risk parameter γB on the optimal investment strategy φ(e) for
debt scenarios (a) and no debt scenarios (b).

whenever γB ≥ γ̄B = 0.0069. In panel (a) we show the optimal investment strategy for values of γB
below this threshold, i.e. debt scenarios, whereas in panel (b) the optimal investment strategy in no

debt scenarios are depicted. The value functions V1(e) corresponding to these optimal investment

strategies can be found in Appendix B.

Figure 3 illustrates our theoretical result that the optimal investment strategy exhibits a down-

ward jump at zero liquidity in the no debt scenario. Furthermore, it shows that investment is

continuous at e = 0 in the debt scenario. Intuitively, one might expect that even in the debt

scenario investment changes discontinuously when the bankruptcy risk kicks in at e = 0, but under

the optimal strategy the firm at a time t, when e(t) is still positive, already foresees that liquidity

will turn negative in the future and therefore already takes into account that current investment

will influence future bankruptcy risk.

A main insight from Figure 3 is that the optimal investment strategy φ(e) is U-shaped when

γB > 0 for both the debt and the no debt scenarios. When the initial liquidity is positive and large,

the optimal investment is not influenced by the bankruptcy threat and the optimal investment

is equal to that with no bankruptcy risks, i.e., Inc, as given in equation (9). When the initial

liquidity is positive but close to 0, we can observe that the firm’s optimal investment decreases, but

for different reasons in the two scenarios. For the debt scenario the firm has an incentive to delay

the point in time when liquidity becomes negative and thus the bankruptcy threat arises, and the

firm does this by reducing its investment. Moreover, Figure 3a shows that the larger γB is, the

steeper is the decrease of φ(e) as liquidity approaches zero. For the no debt scenario φ(e) decreases

as e approaches zero because the firm anticipates the downward jump of investment once e = 0
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Figure 4: Effect of bankruptcy risk parameter γB on the liquidity dynamics ė(e) for debt scenarios
(a) and no debt scenarios (b).

is reached, and in light of the convex investment costs smoothes this investment path by reducing

investment already before the zero liquidity steady state is reached. Since in the no debt scenario

liquidity never becomes negative for eini ≥ 0 it is evident that the branch of φ(e) for e ≥ 0 does

not change if γB is varied. Furthermore, considering the significantly negative liquidity levels, the

firm invests more the larger the negative liquidity is. The intuition for this behavior is that if the

firm is deeply in debt, then there is a large probability that the firm will go bankrupt if it does

not innovate quickly, thereby generating higher profits. The amount of debt the firm holds at the

time of bankruptcy does not influence owners’ value (in any case it is zero due to limited liability

of owners) and therefore it is optimal to invest heavily in order to try to speed up innovation.

Figure 4 shows the values of ė under optimal investment for the debt and no debt scenarios.

There is always a positive steady state, e∗, which is unstable. In the debt scenario this is the

only steady state and the liquidity decreases for any e < e∗ (see Figure 4a). Hence, the liquidity

diverges to −∞ in the long run as long as the firm is in mode m1, i.e. neither has innovated nor

gone bankrupt. For larger values of the bankruptcy parameter γB, i.e. for the no debt scenario, two

additional steady states emerge (see 4b). The locally stable steady state at e = 0 and an unstable

negative steady state constituting the lower boundary of the basin of attraction of e = 0. Hence, if

the initial liquidity of the firm is negative, but the amount of debt is small, then it is optimal for

the firm to choose a sufficiently small R&D investment such that its debt is reduced to zero over

time.

Figure 5 illustrates these findings by showing the dynamics of liquidity and optimal investment

for an initial liquidity of e(0) = 1. The figure highlights that even in the debt scenario (i.e., for
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Figure 5: Effect of the bankruptcy risk parameter γB on the dynamics of liquidity and optimal
investment for an initial liquidity of e(0) = 1.

γB = 0.001, 0.005) the firm accumulates debt rather slowly, and once entering the negative liquidity

domain the firm chooses an invesmtent level that is almost constant over time and substantially

below the unconstrained optimal level Inc = 4.93. For the case where the bankruptcy risk param-

eter is sufficiently large to induce the no debt scenario (i.e., γB = 0.01), the downward jump in

investment, once liquidity hits zero, can be clearly seen in Figure 5b. As is illustrated in panel (a)

of the figure, this downward jump indeed implies that liquidity stays constant at the steady state

level of e∗ = 0. Overall, figure 5b also illustrates that an increase of γB has a negative impact

on the firm’s level of investment throughout time, where this effect becomes more pronounced as

liquidity gets close to zero.

To conclude our analysis for the effect of an increase in the bankruptcy risk parameter we

now consider the impact of γB on the expected innovation time and the actual ex-ante expected

probability for the firm to go bankrupt. Restricting attention to scenarios with a non-negative

initial firm liquidity, it follows directly from our previous analysis that, if γB ≥ γ̄B, then we are

in a no debt scenario, where the bankruptcy probability is zero and the exepcted innovation time

does not depend on the actual value of γB. The latter observation is due to the fact that in the

no debt scenario the level of investment for non-negative liquidity is not influenced by γB. This

in confirmed in Figure 6a, which also shows that as long as we remain in the debt scenario the

firm’s expected innovation time increases with γB, due to the negative effect of this parameter on

investment.

With respect to the bankruptcy probability an inverse U-shaped relationship with γB emerges

(see Figure 6b). As long as γB is small, the direct effect of an increase of this parameter dominates,
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Figure 6: Effect of the bankruptcy risk parameter γB on the expected innovation time E(τ) and
the bankruptcy probability for a given the initial liquidity e(0) = 0.1.

thereby leading to a higher bankruptcy probability. However, as discussed above, such an increase

induces a reduction of firm investment and therefore a slower build-up of debt, which reduces the

bankruptcy probability. As γB grows this effect starts to dominate and the bankruptcy probability

decreases with γB. As γB crosses the threshold γ̄B, and we enter the no debt scenario, the negative

effect on investment is so strong that the firm never accumulates any debt and hence the bankruptcy

probability is zero.

4.4 Effect of αo

The size of the established market αo determines the quantity sold by the firm on the established

market and also the associated profit. In particular, this parameter therefore influences the firm’s

ability to finance innovation expenditures internally. Understanding how optimal innovation invest-

ments depend on αo allows us to gain insight on the question under which circumstances larger sales

and higher profits on the established market lead to higher R&D investments and faster innovation.

Figure 7, shows the optimal investment strategy as a function of liquidity for γB = 0.005 and

different values of αo. Whereas in panel (a) the entire relevant part of the state space is shown, and

in panel (b) we zoom in to liquidity values close to zero. First, it should be noted that for the default

value αo = 0.8 we are in a debt scenario because γB = 0.005 < 0.0069 = γ̄B. However, increasing

the market size of the established market to αo = 0.85 lowers the threshold to γ̄B = 0.0048 such

that a no debt scenario arises for γB = 0.005. Hence, the investment strategy is continuous at zero

liquidity for αo = 0.7, 0.8, but exhibits a jump for αo = 0.85, 0.9.

Concerning the effect of αo on the level of investment, it becomes clear that if liquidity is
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Figure 7: Effect of the established market size αo on the optimal investment I(e) for the bankruptcy
risk parameter γB = 0.005. Panel (a) shows the entire relevant part of the state space whereas
panel (b) zooms into the neighborhood of e = 0.

strongly positive or strongly negative the optimal R&D investment is smaller the larger the es-

tablished market is. For large liquidity, where the consideration of financial constraints hardly

influence investment, this is due to a standard cannibalization effect. The larger quantity of the

established product that the firm sells, the stronger negative implication the drop in the price of

the established product has, which is triggered by product innovation. Hence, large sales on the es-

tablished market reduce the incentive to invest in the development of the new product. This result

is consistent with Dawid et al. (2015), which shows that, in the absence of financial constraints,

a larger production capacity on the established market induces lower investment in new product

development. The cannibalization effect is also present in the case of negative liquidity, however

here it is complemented by a second effect. If the firm has negative liquidity then an increase in

investment instantaneously increases the firm’s bankruptcy rate. The larger the established market

is the larger is the loss in expected future dividends induced by bankruptcy. Hence, an increase in

αo has a negative effect on R&D expenditures. We refer to this effect as the bankruptcy loss effect.

A third effect of an increase of αo is that it pushes up the limit of the firm’s expenditure that can

be financed internally and therefore reduces the amount of debt needed for a certain investment size.

This effect, which we label as the financing effect, increases the optimal size of R&D investment.

A close look at the optimal investment I(e) around e = 0 reveals that, this effect may dominate

canibalization in this part of the state space. In particular, in the no debt scenario, where e∗ = 0

is a stable steady state (αo = 0.85, 0.9 in Figure 7b), a larger value of αo induces higher R&D

investments. This is quite obvious in the steady state e∗ = 0, where investment is given by α2
o/4,

and it also holds in an interval around zero liquidity. However, in a debt scenario (αo = 0.7, 0.8
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Figure 8: Effect of the established market size αo on the expected innovation time E[τ ] under
bankruptcy risk parameters γB ∈ {0.05, 0.005} and initial liquidity e(0) ∈ {0, 1}.

in Figure 7b), the cannibalization and bankruptcy loss effects dominate, and a larger size of the

established market induces lower product innovation investments also around e = 0. Intuitively, the

main difference to the no debt scenario is that the bankruptcy loss effect is present here, whereas

in the no debt scenario this effect is absent for any non-negative liquidity and negligible for small

negative liquidity, because under the optimal investment the negative liquidity quickly disappears.

The interplay of these three effects determines how an increase in the size of the established

market αo influences the firm’s expected innovation time. Figure 8 depicts the expected innovation

time as a function of αo under four cases with different values of the bankruptcy risk parameter γB
and different initial liquidity e(0). Focusing first on the case where the firm’s initial liquidity is zero,

it follows directly from our analysis above that for γB = 0.05 the state e∗ = 0 is a stable steady

state for all values of αo ∈ [0.7, 0.992], where for αo > 0.992 we have γ̄I > γI = 0.1. Hence, for

αo ∈ [0.7, 0.992] R&D investment is constant over time and equal to φ(e(t)) = φ(0) = αo/
√

2ξ ∀t ≥

0, see (21). Since this expression increases with αo, the expected innovation time decreases with

αo, as can be seen in the dashed grey line in Figure 8. For αo > 0.992 the state e = 0 is no longer

a steady state, but starting from e = 0 liquidity grows over time in mode m1, where investment is

constant at φ(e(t)) = Inc ∀t ≥ 0. Due to the cannibalization effect Inc decreases with αo, so on

this interval the expected innovation time grows when the size of the established market becomes

larger. If we assume a lower value of the bankruptcy risk parameter (γB = 0.005), then we get

qualitatively the same picture as above as long as αo ≥ 0.845, which is the threshold where γ̄I = γI

for this value of γB. For αo ∈ [0.845, 0.992] zero liquidity is a stable steady state, whereas for
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αo ≥ 0.992 liquidity grows and investment is constant at the unconstrained optimum. However, for

αo < 0.845 we are in the debt scenario and the firm accumulates debt over time. Consistent with

the intuition developed above, in this interval the expected innovation time increases with αo since

the combination of the cannibalization and bankruptcy loss effects reduces overall R&D investment.

Hence, for low values of the bankruptcy risk parameter the relationship between the size of the

established market and expected innovation time is characterized by a highly non-monotone tilted

z-shaped pattern (the solid grey line in Figure 8). If firm’s initial liquidity is sufficiently large

(e(0) = 1), then the probability that the firm innovates before liquidity gets close to zero is so

large that for most parts of the considered range of αo values it does not matter how large the

bankruptcy risk parameter is (compare the dashed and solid red lines in Figure 8). Therefore, the

cannibalization effect dominates and the expected innovation time grows with αo. Only for very

low values of αo around 0.7 the financing effect starts to have a sizeable impact. In this region the

expected innovation time is clearly larger under a higher bankruptcy risk parameter. The intuition

for this observation is that in light of such a small size of the established market, a large fraction

of the firm’s investment has to be financed from the existing stock of liquidity rather than from

instantaneous profit and therefore liquidity decreases fast. Hence, the effects driving incentives

around e = 0 become relevant with a higher probability and also with a lower associated discount

factor.

5 Conclusions

This paper is one of the first to explicitly incorporate the bankruptcy risk associated with prolonged

investments in uncertain innovation projects in a dynamic market model. We analyze the optimal

product innovation investment strategy of a monopolistic firm facing technological and demand un-

certainty as well as financial constraints. The firm can finance investments externally, however faces

a bankruptcy risk that grows with the size of the firm’s debt. We analytically characterize scenarios

in which it is optimal for the monopolist to refrain from the accumulation of any debt, thereby

treating non-negativity of liquidity as a binding constraint, and scenarios where accumulating a

positive amount of debt is optimal. Combining these insights with an extensive numerical analysis

we show that the optimal investment strategy is U-shaped as a function of the firm’s liquidity,

such that investments are lowest around zero liquidity. We argue that this shape is driven by the

interplay of three effects, the well-known cannibalization effect, the bankruptcy loss effect and the
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financing effect. Due to the induced adjustment of firm’s investment strategy, an increase of the

bankruptcy risk parameter has a non-monotone inverse U-shape effect on the actual bankruptcy

probability of the firm. Finally, we show that there is a highly non-monotone relationship between

the profitability of the established market for the firm and the expected innovation time under

optimal investment. In that respect our paper contributes from a dynamic theoretical perspective

to the long lasting debate in the economics of innovation about the relationship between the prof-

itability of a firm and its innovation incentives. In particular, we show that (assuming low initial

liquidity and a low bankruptcy risk parameter) for very low and very high levels of profitability

of the established market, increasing the size of the established market delays innovation, whereas

for intermediate levels innovation is sped up if profits on the established market go up. Hence, our

analysis delivers several testable empirical implications, which we plan to address in future work

using firm-level data.

The framework developed in this paper can be extended in several directions, thereby allowing

to address a number of important issues that were put aside in our analysis. First and foremost,

we have considered a monopolistic firm and therefore have abstracted from the effect of strategic

competition. On the one hand, competition should generate incentives to preempt the competitor

and therefore increases the willingness of firms to take on debt. On the other hand, particularly in

markets without strong patent protection, there exists risk that even after winning the innovation

race the competitor might catch-up, and thereby eliminate pioneering profits. Such risk could

make the accumulation of a large debt prior to innovation substantially more risky compared

to the monopoly case. Addressing these issues in an oligopolistic framework of a multi-mode

differential game is a natural extension to our work here. A second restriction of our analysis is

that we have not fully characterized the combination of optimal investment and optimal dividend

policy. Although we are confident that our qualitative insights about optimal R&D investment fully

carry over to a setting where the dividend strategy is fully state-dependent, potentially singular

and intertemporally optimal, determining such an optimal policy gives rise to a highly challenging

singular control problem, whose solution would be an important technical contribution. Finally,

in this paper we have assumed that the firm has access to credit at a given interest rate even if it

already has accumulated substantial debt. Alternatively, one could assume that the interest rate

grows with the level of debt, thus there is a maximal level of debt under which the firm still can

get additional credit, or both. Whereas the addition of an upper bound for debt should hardly

influence our results, endogenizing the interest rate, either assuming a competitive credit market or
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a potential debtor with some market power, would enrich the analysis and allow additional insights

on the robustness of the U-shaped investment pattern identified here.
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A Proofs

Proof of Lemma 1. Taking the derivative of both sides of HJB (7) with respect to I yields the

following equation

γI(V2(e, 0)− V1(e))− ξI dV1(e)
de = 0,

which leads to

I = γI
ξ

V2(e, 0)− V1(e)
dV1(e)/de .

Taking into account that dV1(e)
de > 0 for all e shows that also the second order condition is satisfied.

Furthermore, it follows from π(αn,m2) ≥ π(0,m1) ∀αn ≥ 0 with strict ineqaulity for some αn > 0

that V2(e, 0) > V1(e) for all e and therefore φ(e) > 0. �

Proof of Proposition 1.

Assuming that eini ≥ 0 is sufficiently large such that e(t) ≥ 0 for all t and the firm never faces a

positive bankruptcy probability. In such a case the HJB (6) in mode 2 can be rewritten as

rV2(e, αn) = ν2e+ δ(α̃n − αn)∂V2(e, αn)
∂αn

+ σ2α2
n

2
∂2V2(e, αn)

∂α2
n

(22)

+∂V2(e, αn)
∂e

(
(ᾱn + αn)2 + α2

o − 2η(ᾱn + αn)αo
4(1− η2) − ν2e+ re

)
.

Assume V2(e, αn) takes the form of

V2(e, αn) = a2α
2
n + a1αn + be+ c, (23)

with the unknown coefficients a1, a2, b and c that need to be determined. Substituting (23) into

(22) and comparing the coefficients of 1, αn, α2
n and e on both sides of the equation yields the values

of a1, a2, b and c and thus leads to the expression (11). Among the two solutions of this system of

equations only the one with V1(0) < V2(0, 0) is relevant. A similar method can also be applied in

mode m1 to solve the HJB equation of (7), i.e.,

rV1(e) = ν1e+ dV1(e)
de

(
α2
o

4 + γ2
I

2ξ

(
V2(e, 0)− V1(e)

dV1(e)/de

)2
− ν1e+ re

)
.

Assuming a value function of the form V1(e) = e+ c̃ yields after the comparison of coefficients the

expression (10). Substituting equations (10) and (11) into (8) yields that the optimal investment

without bankruptcy risk is equal to (9). Note that the constant term c̃ in the value function V1(e)

33



is the smaller root of a quadratic equation. It follows from V1(e) < V2(e, 0) that the smaller root

has to be considered.

As a last step we verify that for any e > ẽ indeed e(t) > 0 holds under the optimal investment

strategy. Taking into account that liquidity is positive we have in mode m2

ė = (r − ν2)e+ π(αn,m2).

Since π(αn,m2) > 0 it follows that ė > 0 for sufficiently small positive values of e and therefore

liquidity stays positive if it is positive at the time t = τ of the innovation. Considering m1 we have

under the optimal investment

ė = (r − ν1)e+ α2
o

4 −
ξ

2(Inc)2, (24)

which is non-negative due to our assumptions that e ≥ ẽ. Hence, e(t) > 0 holds also in mode m1. �

Proof of Corollary 1. First it should be noted that 4rc−α2
o > 0, which can be verified by inserting

(12) for c. Taking this into account, we have

∂Inc

∂γI
= − r

γ2
I

 2r/γI

2
√(

r
γI

)2
+ 4rc−α2

o
2ξ

− 1


︸ ︷︷ ︸

<0

> 0.

The monotonicity of Inc with respect to ξ follows directly from 4rc − α2
o > 0 and considering the

effect of an increase of α̃ it follows directly from (12) that under the assumption r + 2δ > σ2 we

have ∂c
∂α̃n

> 0, which implies that Inc increases with α̃n. Finally, considering the effect of a change

of αo we obtain
∂Inc

∂αo
= 1

2
√(

r
γI

)2
+ 4rc−α2

o
2ξ

1
2ξ

(
4r ∂c
∂αo
− 2αo

)
< 0.

The sign of the term in the bracket is negative because

4r ∂c
∂αo
− 2αo = − 4ηδα̃n)

2(r + δ)(1− η2 + 2αo
1− η2 −

2ηᾱn
1− η2 − 2αo

= − 4ηδα̃n)
2(r + δ)(1− η2 + 2η

1− η2 (ηαo − ᾱn) < 0,
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due to our assumption that ᾱn > ηαo. �

Proof of Corollary 2. For 2rc = αo we obtain

ξ(Inc)2

2 = α2
o

4 + ξr

γI

(
r

γI
−
√
r2

γ2
I

+ α2
o

2ξ

)
<
α2
o

4

and therefore α2
o

4 > ξ(Inc)2

2 holds for all γI ≥ 0. The unconstrained investment Inc is an increasing

function of c and therefore α2
o

4 > ξ(Inc)2

2 holds for all γI ≥ 0 whenever 2rc ≤ αo. If 2rc > αo the

value of of γ
I

follows directly from inserting (9) into the inequality α2
o

4 ≥
ξ(Inc)2

2 and solving for γI .

For γI ≤ γ
I

optimality of Inc for all e ≥ 0 follows directly from Proposition 1. The resulting

liquidity given by (24) is positive for all e ≥ 0 if r − ν1 > 0. For r < ν1 the equation ė = 0 has a

unique positive solution e∗ = α2
o−2ξ(Inc)2

4(ν1−r) . If γI > γ
I

then for e = 0 we have ė = α2
o

4 −
ξ(Inc)2

2 < 0.

Hence, either the firm chooses φ(e) < Inc on some interval (−ε, 0] or for eini = 0 we have e(t) < 0

for all t ≥ 0, which implies that there is a positive probability that the firm goes bankrupt before

it moves to mode m2. �

Proof of Proposition 2. First we note that it follows from Corollary 2 that e = 0 is not a steady

state for γI < γ
I

and that for γI ≥ γ
I

we have ė(0) ≤ 0, where ė(e) denotes the value of ė at

liquidity level e. Furthermore, we have limγI→0 φ(e) = 0 for all e. Denoting the limit from below

of optimal investment at e = 0 by φ(0)− = limε→0 φ(−ε), this implies that φ(0)− <
√

2π(0,m1)
ξ and

therefore limε→0 ė(−ε) > 0 for sufficiently small values of γI .

Next we show that there is a single value of γI for which under the optimal investment strategy

we can have φ(0)− = φ(0) =
√

2π(0,m1)
ξ and that this value is given by γI = γ̄I . Using (21) and

the fact the the value functions in both modes have to be continuous we conclude that in such a

scenario we must have
γI(V2(0, 0)− V1(0))

ξdV1(0)/de− =
√

2π(0,m1)
ξ

. (25)

In order to determine dV1(0)/de− we take the left derivative of the HJB equation at e = 0 to obtain

γI

√
2π(0,m1)

ξ

(
∂V2(0, 0)
∂e−

− dV1(0)
de−

)
+ γBV1(0) +

(
π(0,m1)− ξ(φ(0)−)2

2

)
︸ ︷︷ ︸

=0

d2V1(0)
de2 = 0,
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Since V2(e, 0) is smooth at e = 0, it holds that ∂V2(0, 0)/∂e = 1 and we can get

dV1(0)
de− =

γI

√
2π(0,m1)

ξ + γBV1(0)

γI
√

2π(0,m1)
/
ξ

. (26)

Furthermore, (16) yields that the value function in mode m1 at the steady state e∗ = 0 equals to

V1(0) =
γIV2(0, 0)

√
2π(0,m1)

/
ξ

r + γI
√

2π(0,m1)
/
ξ

. (27)

Inserting this into (25) yields

rγIV2(0, 0)
ξ
(
r + γI

√
2π(0,m1)

/
ξ
)

dV1(0)
de−

=
√

2π(0,m1)
ξ

and using (26) we obtain

rγIV2(0, 0)
ξ
(
r + γI

√
2π(0,m1)

/
ξ + γBV2(0, 0)

) =
√

2π(0,m1)
ξ

.

Solving for γI yields a unique solution, which is given by (20). Hence, lime→0− φ(e) = φ(0) =√
2π(0,m1)

ξ can only hold if γI = γ̄I .

Using this inisght we can now show that we have φ(0)− >
√

2π(0,m1)
ξ if and only if γI > γ̄I .

We first show that this inequality holds for a sufficiently large value of γI . Consider an arbitrary

fixed value of γB = γ̃B. In light of Assumption 1 we have limγI→∞ I
NC >

√
2π(0,m1)

ξ and therefore

for a sufficiently large γI > γ̄I the inequality INC >
√

2π(0,m1)
ξ holds. Note that both sides in

this inequality are independent from γB. We now show by contradiction that for this value of

γI we must have φ(0)− >
√

2π(0,m1)
ξ . To do this, we assume that φ(0)− ≤

√
2π(0,m1)

ξ . Since

γI 6= γ̄I we know that this weak inequality cannot hold as equality and therefore we must have

that φ(0)− <
√

2π(0,m1)
ξ . Keeping γI fixed, it is straight forward to see that for any e < 0 we

have limγB→0 φ(e) = INC >
√

2π(0,m1)
ξ . Therefore, for sufficiently small γB > 0 we must have

φ(0)− >
√

2π(0,m1)
ξ , whereas by assumption we have φ(0)− <

√
2π(0,m1)

ξ for γB = γ̃B. Since

φ(e) changes continuously with γB, this implies that there must exist a value γ̂B ∈ (0, γ̃B) such

that φ(0)− =
√

2π(0,m1)
ξ for γB = γ̂B. According to our arguments above, this can only hold if

γI = γ̄(γ̂B), where for expositional reasons we now write γ̄I explicitly as a function of γB. The
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threshold γ̄I(γB) is an increasing function of γB, and therefore we have

γI > γ̄I(γ̃B) > γ̄I(γ̂B),

which contradicts γI = γ̄(γ̂B). Hence, we have shown that φ(0)− >
√

2π(0,m1)
ξ has to hold for

a sufficiently large γI . Summarizing, we have shown that φ(0)− < (>)
√

2π(0,m1)
ξ has to hold for

sufficiently small (large) γI and that φ(0)− =
√

2π(0,m1)
ξ can only hold if γI = γ̄I . Taking into

account the continuity of φ(e) with respect to γI this implies that

φ(0)−

<
√

2π(0,m1)
ξ γI < γ̄I

=
√

2π(0,m1)
ξ γI = γ̄I

>
√

2π(0,m1)
ξ γI > γ̄I .

(28)

Using the notation φ(0)+ = limε→0 φ(ε) analogous arguments show that

φ(0)+

<
√

2π(0,m1)
ξ γI < γ

I

=
√

2π(0,m1)
ξ γI = γ

I

>
√

2π(0,m1)
ξ γI > γ

I
.

(29)

We are now in a position to show that for γI ∈ [γ
I
, γ̄I ] the optimal investment at e = 0 is given

by φ(0) =
√

2π(0,m1)
ξ . Since the value function V1(e) in general can have a kink at e = 0, we are

searching for a viscosity solution to the HJB equation, see Bardi and Capuzzo-Dolcetta (2008).

Therefore, we have to show that for a continuous value function satisfying the HJB equation (7)

on e 6= 0 and (27) for e = 0 the first order condition (16)

φ(0) =
√

2π(0,m1)
ξ

= γI(V2(0, 0)− V1(0))
ξκ

(30)

holds for some κ ∈
[
dV1(0)/de+, dV1(0)/de−,

]
where dV1(0)/de− = limε→0 dV1(−ε)/de is the

one sided derivative from below and dV1(0)/de+ that from above. We know that dV1(0)/de+ ≤

dV1(0)/de−, which follows from φ(0)− ≤ φ(0)+ and

φ(0)− = γI(V2(0, 0)− V1(0))
ξdV1(0)/de− , φ(0)+ = γI(V2(0, 0)− V1(0))

ξdV1(0)/de+ .
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Such a value of κ exists if and only if
√

2π(0,m1)
ξ ∈ [φ(0)−, φ(0)+]. Taking into account (28) and

(29) this is true if and only if γI ∈ [γ
I
, γ̄I ]. �

Proof of Proposition 3. For γI ≤ γI liquidity stays positive for any eini ≥ 0 under the unconstrained

optimal investment level Inc and ν1 = 0. Hence in this case φ̃(e) = Inc and the firm does not have

any bankruptcy risk. Accordingly the value function is equal to that of the problem without

financial constraints (10) and therefore V1,0(e) ≥ V1,ν1(e) for all e ≥ 0, where V1,ν1(e) denotes the

value function of problem (5) under the dividend rate ν1. For γI > γI there is no positive steady

state for any value of ν1 and therefore we always have ė ≤ 0 at e = 0. Assume that for the optimal

investment strategy φ0(e) under ν1 = 0 we have α2
o/4 = ξφ0(0)2/2 and therefore ė = 0 at e = 0.

We first show that this implies ė = 0 at e = 0 for an optimal strategy φν1 under any dividend rate

ν1 ≥ 0. Assume that there would be a ν̃1 > 0 such that ė < 0 at e = 0 under strategy φν̃1 . Since

the value of ν1 has no impact on the payoff stream for e ∈ (−∞, 0] and under φν̃1 and eini = 0

liquidity would be negative for all t, it follows from the optimality of φ0(e) that V1,0(0) ≥ V1,ν̃1(0).

Hence choosing investment of φ0(0) at e = 0 is also an optimal strategy for any value of ν1. Based

on this we conclude that if [0,∞) is invariant under an optimal strategy φ0, then for any ν1 ≥ 0

there exists an optimal strategy φν1 such that e(t) ≥ 0, ∀t holds for any eini ≥ 0.

Now consider such an optimal strategy φν1 for some ν1. Consider an arbitrary eini ≥ 0 and

denote by ẽ(t) the liquidity trajectory under the optimal policy and by D̃(t) = ν1ẽ(t) ≥ 0 the

dividend stream and by Φ̃(t) = φν1(e(t)) the investment stream. Based on our considerations

above, we have ẽ(t) ≥ 0 for all t. Now consider an alternative dividend and investment trajectory

of the form D̂(t) = 0 and Φ̂(t) = Φ̃(t) for all t. The corresponding expected values of the total

dividend (in both modes) are denoted by J̃ and Ĵ . Then showing that Ĵ ≥ J̃ proves the claim of

Proposition 3.

To show that Ĵ ≥ J̃ holds we first observe that both trajectories give rise to exactly the same

trajectory of innovation rates, which implies that under both trajectories the distribution of the

innovation time τ is identical. Hence, for establishing Ĵ ≥ J̃ it is sufficient to show that Ĵ(τ̃) ≥ J̃(τ̃)

holds for any realisation τ̃ of the stochastic innovation time. Here Ĵ(τ̃) and J̃(τ̃) denote the values

conditional on the innovation time, given by

J̃(τ̃) =
∫ τ̃

0
e−rtD̃tdt+ e−rτ̃V2(ẽ(τ̃), 0),

Ĵ(τ̃) = e−rτ̃V2(ê(τ̃), 0).
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Furthermore, liquidity dynamics under the two trajectories read

˙̃e = π(0,m1)− ξ

2Φ̃2
t − D̃t + rẽ, and ẽ(0) = eini,

and
˙̂e = π(0,m1)− ξ

2Φ̃2
t + rê, and ê(0) = eini.

The difference between the two liquidity streams can be written as ∆et = êt − ẽt and ∆e(0) = 0.

Then,

∆̇e = D̃ + r∆e.

and it follows that

∆e(t) =
∫ t

0
exp (rt− rρ)D̃(ρ)dρ.

Using this and noting that V2(e, 0) is linear with slope 1 in e for all e ≥ 0 (see (11)), we obtain

Ĵ(τ̃)− J̃(τ̃) = e−rτ̃ (V2(ê(τ̃), 0)− V2(ẽ(τ̃), 0))−
∫ τ̃

0
e−rtD̃(t)dt

= e−rτ̃∆e(τ̃)−
∫ τ̃

0
e−rtD̃(t)dt

= 0

Hence, Ĵ ≥ J̃ and this completes the proof. �

B Value Function in Mode m1

Figure 9 shows the value function V1(e), calculated through our numerical procedure, for our default

parameter setting and different values of γB.

The figure shows that V1(e) increases with liquidity e, which is quite easy to understand because

more liquidity induces higher dividends and a higher fraction of internally financed investments.

Note that when γB = 0, the value function is linear with respect to e and has the functional form

of (10). For a positive initial liquidity, the value function is not influenced by γB because there is

no bankruptcy threat. Whereas for the negative liquidity, there is a positive possibility for the firm

to go bankrupt, and a higher γB decreases the value. For e → −∞ the value function V1(e) goes

to zero for any γB > 0 since expected time till bankruptcy goes to zero.
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Figure 9: Effect of the bankruptcy risk parameter γB on the mode 1 value function V1(e)

C Details of the Numerical Procedure

In order to numerically determine a Markov Perfect Equilibrium strategy profile for the entire

game, we first need to calculate a solution for value function V2(αn, e) in mode m = 2 that solves

the HJB equation (6). Based on the derived solution V̂2(αn, e), we then numerically calculate the

(approximate) value function V1(e) as the solution to the HJB equation (7) in mode m1.

C.1 Post-innovation mode m2

Note that for the state space of e ≥ 0, the analytical solution of V +
2 (αn, e) is (11), hence we only

need to calculate V −2 (αn, e) for e ≤ 0. Note that V2(αn, e) in our model is a continuous function

in e, implying that V +
2 (αn, 0) = V −2 (αn, 0). In order to better estimate the value function in mode

m = 1, we have proposed a transformation from the state space of liquidity e to a state space of

z according to the transformation rule z(e) = (1 + exp (−λe))−1 with λ ∈ (0, 1). The state space

of e ∈ (−∞,+∞) corresponds to z ∈ (0, 1), and the negative liquidity corresponds to z ∈ (0, 0.5].

Thus, our numerical calculation is carried out in the state space (αn, z) ∈ [0, ᾱn] × (0, 0.5]. From

e(z) = (ln z − ln (1− z)) /λ, after the transition, it holds that

∂V −2 (αn, z)
∂z

= ∂V2(αn, e)
∂e

de(z)
dz = 1

λz(1− z)
∂V2(αn, e)

∂e
,

and the value function V −2 (αn, z) satisfies the revised HJB as

rV −2 (αn, z) = δ (α̃n − αn) ∂V
−

2 (αn, z)
∂αn

+ σ2α2
n

2
∂2V −2 (αn, z)

∂α2
n

+ γB
λ
V −2 (αn, z) ln

(
z

1− z

)
(31)

40



+λz(1− z)∂V
−

2 (αn, z)
∂z

(
(ᾱn + αn)2 + α2

o − 2ηαo(ᾱn + αn)
4(1− η2) + r

λ
ln
(

z

1− z

))
.

In order to solve this nonlinear partial different equation, we resort to the numerical collocation

method to calculate an approximate solution V̂ −2 (αn, z).

In a given state space [αln, αun]× [zl, zu] with l and u denoting the lower and the upper boundary

for the corresponding interval, we first construct a sparse grid of collocation nodes N = Nα ×Nz,

where Nα = {αin}i=1,...,nα and Nz = {zj}j=1,...,nz , and αin and zj are defined as

αin = αun + αln
2 + αun − αln

2 cos
((nα − i+ 0.5)π

nα

)
, (32)

zj = zu + zl

2 + zu − zl

2 cos
((nz − j + 0.5)π

nz

)
. (33)

Then we construct a set of basis functions {bkα,kz(αn, z)}{kα=1,...,nα}×{kz=1,...,nz} corresponding to

our Chebyshev sparse grid such that

bkα,kz(αn, z) = Tkα−1

−1 +
2
(
αn − αln

)
αun − αln

× Tkz−1

−1 +
2
(
z − zl

)
zu − zl

 ,
and function Tk(x) is the Chebyshev polynomial of of degree k defined on the interval [0, 1]. For the

given state space of [0, ᾱn]× (0, 0.5], our calculation is carried out in the space of [0, αun]× [zl, 0.5]:

αln = 0 represents that αn = 0 at the moment the mode jumps from m = 1 to m = 2, and zu = 0.5

corresponds to an upper boundary of e = 0. In order to make sure the calculated value function is

continuous at e = 0, we specify further that

zj =


0.5+zl

2 + 0.5−zl
2 cos

(
(nz−j+0.5)π

nz

)
1 ≤ j ≤ nz − 1,

0.5 j = nz.

(34)

The value function is assumed to take the form of

V̂ −2 (αn, z) =
nα∑
kα=1

nz∑
kz=1

ckα,kz × bkα,kz(αn, z) = ~c> ·~b(αn, z),

where ~c and ~b are column vectors with a length of nαnz such that ~ck = ckα,kz and ~bk(αn, z) =

bkα,kz(αn, z) with k = (kz − 1)nz + kα for kα ∈ {1, ..., nα} and kz ∈ {1, ..., nz}. ~c and ~b(α, z)

together can capture all the polynomial elements in the value function given a pair of {α, z}. We
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aim to determine the weight vector of ~c such that the (approximate) value function V̂ −2 (αn, z)

satisfies the HJB equation (31) on the collocation nodes {αin, zj} with i ∈ {1, ..., nα} and j ∈

{1, ..., nz − 1} in N . For the other nα nodes with i ∈ {1, ..., nα} and j = nz in N , we have

V̂ −2 (αin, zj = 0.5) = V +
2 (αin, e = 0) to make V2(αn, e) continuous. In total there are nαnz number

of nodes, implying nαnz number of equations.

Furthermore, for i ∈ {1, ..., nα} and j ∈ {1, ..., nz − 1} we introduce four nα(nz − 1) × nαnz

matrices B, Bα, Bα, and Bz with entries

Bs,k = bk(αin, zj), Bα
s,k = ∂bk(αin, zj)

∂αn
, Bαs,k = ∂2bk(αin, zj)

∂α2
n

, Bz
s,k = ∂bk(αin, zj)

∂z
,

where s = (j−1)nz + i denotes node s. These four matrices capture the values of all base functions

and their partial derivatives at the nodes in N that are not on the boundary of znz = 0.5. For

each node {αin, zj} with i ∈ {1, ..., nα} and j ∈ {1, ..., nz − 1}, we define the following four column

vectors in such a way that ~gż captures the dynamics of the liquidity, ~gα2 captures the quadratic of

αn, ~gα captures αn, and ~gz captures z. Specifically these four vectors read

~gα2
s =

(
αin

)2
, ~gαs = αin, ~ges = 1

λ
ln
(

zj

1− zj

)
,

~gżs = λzj
(
1− zj

)((ᾱn + αin
)2 + α2

o − 2η(ᾱn + αin)αo
4(1− η2) + r

λ
ln
(

zj

1− zj

))
,

and s ∈ {1, ..., nα(nz − 1)}. Thus ~c has to be chosen to solve

rB · ~c = δα̃nBα · ~c− δ~gα ·Bα · ~c+ σ2

2 ~g
α2 · Bα · ~c+ ~gż ·Bz · ~c+ γB~ge ·B · ~c . (35)

and in addition

~c>~b(αi, 0.5) = V +
2 (αi, 0), i ∈ {1, ..., nα}. (36)

There are in total nαnz linear equations when combining (35) and (36), which can be solved using

standard solvers. Note that there is no control in mode m2, implying that solving these nαnz
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equations yields the solution ~c. Thus, we can write the calculated value function in mode 2 as

V̂2(αn, e) =


V̂ −2 (αn, z(e)) e < 0 ,

V +
2 (αn, e) e ≥ 0 .

C.2 Pre-innovation mode m1

There are several differences in mode m1 compared with that in m2: V1(e) is only defined on the

domain of e, and the control is captured by

φ(e) = γI
ξ

V2(0, e)− V1(e)
dV1(e)/de .

In order to numerically calculate for V1(e), we carry out the same transformation as for mode m2

from the state space of e to the state space of z ∈ (0, 1) according to e(z). After the transition, the

optimal control can be rewritten as

φ(e(z)) = γI
ξ

V̂2(0, e(z))− V1(e(z))
λz(1− z)dV1(e(z))/dz .

We proceed with the same collocation method as in mode m2, but on just one dimensional state

space of z. Because the HJB in mode m1 has different expressions for the positive and negative

e, we need to calculate the value function separately for V +
1 (z) with z ∈ [0.5, 1), corresponding to

e ≥ 0, and for V −1 (z) with z ∈ (0, 0.5], corresponding to e ≤ 0. The value function V1(e(z)) has to

be continuous on the entire state space, however, there might exist a kink for V1(e(z)) at z = 0.5

and a jump in the control function φ(e(z)) because of different HJB expressions and the difference

in dV1(e(z))/de for positive and negative e. As has been shown in our analysis in Section3 such

discontinuity can arises only if e∗ = 0 is a stable steady state, which according to Proposition 2,

happens if and only if γI ∈ [γ
I
, γ̄I ]. If γI ≥ γ

I
] we are in the no debt scenario and the interval

z ∈ [0.5, 1] is invariant under the state dynamics under optimal investment. For γI ≥ γ̄I the value

function V +
1 of the problem is given in closed form by (10). For γI ∈ [γ

I
, γ̄I) . Finally, for γI > γ̄I

only the interval z ∈ [0, 0.5] is invariant.

43



In any case the HJB equations on the positive domain, given by

rV +
1 (z) =ν1e(z) + λz(1− z)dV +

1 (z)
dz

(
α2
o

4 −
ξ

2φ
2(e(z)) + (r − ν1)e(z)

)

+ γIφ(e(z))
(
V2(0, e(z))− V +

1 (z)
)
, z ∈ [0.5, 1].

(37)

and on the negative domain, given by

rV −1 (z) =λz(1− z)dV −1 (z)
dz

(
α2
o

4 −
ξ

2φ
2(e(z)) + re(z)

)

+ γIφ(e(z))
(
V2(0, e(z))− V −1 (z)

)
+ γBe(z)V −1 (z), z ∈ [0, 0.5]

(38)

are solved separately in our numerical procedure.

With respect to the boundary conditions and the sequence of the numerical calculation of V −1
and V +

1 three cases have to be distinguished:

1. For γI ∈ [γ
I
, γ̄I ] both intervals z ∈ [0, 0.5] and z ∈ [0.5, 1] are invariant under the state

dynamics under optimal investment and e∗ = 0 is a stable steady state. Hence,

V −1 (0.5) = V +
1 (0.5) =

∫ ∞
0

e−(r+γIφ(e(0.5)))tγIφ(e(0.5))V +
2 (0, 0)dt = γIαoV

+
2 (0, 0)

r
√

2ξ + γIαo
. (39)

with φ(e(0.5)) = φ(0) = αo/
√

2ξ has to hold both for V −1 and V +
1 .

2. For γI > γ̄I we have ė < 0 under optimal investment at e = 0. Hence, the interval z ∈ [0, 0.5] is

invariant under the state dynamics under optimal investment. Therefore, we first numerically

find a function V̂ −1 (approximately) solving (38), where no explicit boundary conditions are

imposed.3 Then, as a second step, we numerically determine a solution of (37) with the

boundary condition V +
1 (0.5) = V̂ −1 (0.5).

3. For γI < γ
I

we have ė > 0 under optimal investment at e = 0. Hence, the interval z ∈ [0.5, 1]

is invariant under the state dynamics under optimal investment and the value function V +
1

of the problem is given in closed form by (10). The value function on the negative domain is

determined as the solution of (38) with boundary condition V −1 (0.5) = V +
1 (0.5).

As has been explained in the main text, in this paper we only consider the first two of these three
3Formally, we have the boundary condition limz→0 V −1 (z) = 0 and we check in our numerical solution that V −1 (zl)

becomes small for a sufficiently small lower bound of the state interval considered in the numerical approximation of
V̂ −1 (see below).
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cases, since in case 3. financial constraints are irrelevant for e(0) ≥ 0. In what follows we just

describe our algorithm for the first case, the procedure in the second case is analogous.

In order to calculate an (approximate) value function V̂ +
1 (z) that makes (37) hold on the interval

z ∈ [0.5, zu), we first construct a set of collocation nodes Nz = {zj}j=1,...,nz . The idea is similar as

to construct the grid in mode m = 2 except in mode m = 1 that nα = 1 and αu = αl = 0. Thus,

the corresponding set of base functions is denoted by {b1,kz(0, z)}kz=1,...,nz . In order to be able to

incorporate the boundary condition (39) at z = 0.5, we further specify that

zj =


0.5 j = 1,

zu+0.5
2 + zu−0.5

2 cos
(

(nz−j+0.5)π
nz

)
1 < j ≤ nz.

Similarly to mode m2 we consider an (approximate) value function of the form

V̂ +
1 (z) =

nz∑
kz=1

cposkz
× b1,kz(0, z) = ~cpos

> · ~bpos(z) ,

where ~cpos = (cposk )nzk=1 and ~bpos(z) = (bposk (z))nzk=1 are column vectors with a length of nz and

bposk (z) = b1,k(0, z). Finding the solution is equivalent to determine the vector ~cpos such that V̂ +
1 (z)

satisfies the HJB (37) on the collocation nodes zj ∈ Nz and j ∈ {2, ..., nz}. Furthermore, V̂ +
1 has

to satsify (39) at node z1. Thus, there are in total nz equations and to be solved with nz unknowns

in vector ~cpos. It should be noted that, contrary to mode m2, the right hand side of the HJB

equations in this mode contain terms with the optimal control φ(zj) at the considered node, where

the optimal control function φ depends on the value function V1 and its state derivative.

We use an iterative algorithm to solve this system of equations. In particular, we consider a

sequence of vectors ~cpos(it), with it ∈ {0, 1, ...} is the indicator for the iterations. In iteration

it ≥ 1, we calculate for all nodes zj in Nz, i.e., j ∈ {1, ..., nz}, the optimal control as

~φ(it) = γI
ξ

Diag
((
V2(0,~gz)−B · ~cpos(it− 1)

)
·
(
~gz · I ·Bz · ~cpos(it− 1)

)−1
)
, (40)

where Diag(X) generates a column vector with elements on the diagonal line of X, I is a nz × nz
identity matrix, ~gz is of length nz with ~gzj = λzj(1− zj) and B and Bz are such that

Bj,k = bposk (zj), Bz
j,k = dbposk (zj)

dz , j, k ∈ {1, .., nz}.
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Substitution of ~φ(it)j∈{2,...nz} at node zj into HJB (37) together with the boundary condition at

node z1 generates a system of nz linear equations in ~cpos(it), which can be solved by standard

methods. This gives the value of ~cpos(it) and updated optimal controls at each node under this

new coefficient vector. The iteration is stoped once after inserting these updated controls into HJB

equations the maximal absolute difference between the right and left hand side of (37) across nodes

is sufficiently small. Overall, the numerical details can be summarized as follows:

(1) Choose nz and calculate the nodes in Nz. Choose the stopping criterion ε.
(2) Calculate B, Bz and ~gz.
(3) Choose ~cpos(0).
(4) Calculate the optimal control ~φ(0).
(5) While the stopping criteria is not satisfied, iterate the following steps for it = 1, 2, ....

(a) Calculate ~cpos(it) by solving the combined nz equations: (39) for node z1 = 0.5 and (37)
for node zj using ~φj(it− 1), j ∈ {2, ..., nz}.

(b) Calculate the optimal control ~φ(it).
(c) Calculate the difference ∆j(it) between left and right hand side of (39) for node z1 and

(37) for node zj using ~φ(it) and ~cpos(it).
(d) Checking the stopping criteria of maxj∈{1,...,nz}

[
|∆j(it)| /(B · ~cpos(it))j

]
< ε.

(6) Set the value function V̂ +
1 (z) = ~cpos

>(it) · ~bpos(z) and calculate the optimal control φ(e(z))
by V̂ +

1 (z).

The numerical calculation of V̂ −1 (z) with z ∈ (zl, 0.5] is analogous to the numerical calculation

for V̂ +
1 (z) and we do not repeat the details here. The numerical approximation for value function

V1(e) then reads

V̂1(e) =


V̂ +

1 (z(e)) e ≥ 0,

V̂ −1 (z(e)) e < 0.

46


	Introduction
	The Model
	Analytical Results
	Scenario without effects of financial constraints
	Scenario with effects of financial constraints
	Post-innovation
	Pre-innovation R&D Investment


	Numerical Analysis
	Parameter calibration
	Post-innovation
	Pre-innovation
	Debt vs. No Debt Scenarios
	Effect of the Bankruptcy Risk

	Effect of ALO

	Conclusions
	Proofs
	Value Function in Mode m1
	Details of the Numerical Procedure
	Post-innovation mode m2
	Pre-innovation mode m1


