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Abstract. We study a general class of singular degenerate parabolic stochastic partial
di�erential equations (SPDEs) which include, in particular, the stochastic porous medium
equations and the stochastic fast di�usion equation. We propose a fully discrete numerical
approximation of the considered SPDEs based on the very weak formulation. By exploit-
ing the monotonicity properties of the proposed formulation we prove the convergence of
the numerical approximation towards the unique solution. Furthermore, we construct an
implementable �nite element scheme for the spatial discretization of the very weak formu-
lation and provide numerical simulations to demonstrate the practicability of the proposed
discretization.

1. Introduction

In this paper we study the numerical approximation of a class of singular-degenerate para-
bolic stochastic partial di�erential equations

(1) du = [∆(|u|p−2u) + f ] dt+ σ(u) dW in (0, T )×D ,

where D ⊂ Rd, d ≥ 1 is a bounded, open domain and σ(u)W is a multiplicative noise term
which may also depend on the derivative of the solution and which will be speci�ed below.

The above equation for p > 2 is the stochastic porous medium equation and for p ∈ (1, 2)
the equation corresponds to the stochastic fast di�usion equation; the case p = 2 yields the
stochastic heat equation.

Stochastic quasilinear di�usion equations of the type (1) appear in several contexts, in-
cluding, interacting branching di�usion processes [14], self-organized criticality [2, 35], and
non-equilibrium �uctuations in non-equilibrium statistical mechanics [32, 24]. We present
three of such instances in more detail below.

As a �rst example, consider the H−1 gradient �ow structure of the porous medium equation

∂tu = −Ku

(
δE

δu
(u)

)
= ∆(|u|p−2u)

with Onsager operator Ku = −∆ and energy E(u) = 1
p

∫
|u|p dx. The corresponding �uctuat-

ing system, in accordance with the GENERIC framework of non-equilibrium thermodynamics
(see [58]), then reads

du = −Ku

(
δE

δu
(u)

)
+Bu dW ,(2)

= ∆(|u|p−2u) +
√

2κB div( dW ) ,(3)

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) � SFB 1283/2 2021 �
317210226.

1



2 �UBOMÍR BA�AS, BENJAMIN GESS, AND CHRISTIAN VIETH

with BuB
∗
u = 2κBKu, κB the Boltzmann constant and W a vector-valued space-time white

noise. Notably, the stochastic PDE (3) is super-critical and, thus, lacks a well-posedness
theory. The results of the present paper are applicable to approximate versions of (3), that
is, to

(4) du = ∆(|u|p−2u) +
√

2κB div( dW̃ ),

where W̃ is a trace-class Wiener process in L2; in this case, in one spatial dimension, the
stochastic perturbation div(W̃ ) still is less-regular than space-time white noise.

The second class of examples arises from �uctuations in non-equilibrium statistical mechan-
ics. This leads to stochastic PDE of the general type

(5) du = ∆α(u) dt+ ε
1
2∇ · (g(u)dWt),

where dW denotes space-time white noise, with the Dean-Kawasaki stochastic PDE

du = ∆u dt+ ε
1
2∇ · (

√
udWt),

as a model example, see for example [20, 48, 26]. Stochastic PDE of this type serve as con-
tinuum models for interacting particle systems, including stochastic corrections reproducing
the correct �uctuation behavior on the central limit and large deviations scale, see [25, 32].

Since for large particle number the �uctuations decay, we see the small factor ε
1
2 in front of

the noise. For example, a concrete example of an interacting particle process is given by the
zero range process, see [32, 31], leading to nonlinear, non-degenerate di�usion α in (5) and

noise coe�cients corresponding to g(u) = α
1
2 (u). We note that with this choice (5) is in line

with the GENERIC framework (2) when considering

(6) ∂tu = ∆α(u)

as a gradient �ow on the space of measures with energy given by the Boltzmann entropy.
The corresponding stochastic PDE (5) is super-critical and, therefore, lacks a well-posedness
theory. Instead, one considers joint scaling limits ε→ 0, N →∞ of

(7) du = ∆α(u) dt+ ε
1
2∇ · (g(u)dWN ),

where WN is a regularized noise, see [31, 32]. In the case α′ ≥ c > 0 and g Lipschitz
continuous, this class of stochastic PDE is included in the results of the present work.

The third class of equations covered by the present work arises in the continuum scaling
limit of the empirical mass of interacting branching di�usions with localized interaction, which,
informally, converges to the solution of a stochastic PDE

(8) du = ∆u2 dt+ (uc(u))
1
2 dW,

where dW denotes space-time white noise, see [13, 54]. The results of the present work apply

to the particular case of c(u) = u and W being a trace class Wiener process in H
d+2
2 .

It is common to these stochastic PDE that, due to the irregularity of the random pertur-
bation, solutions are expected to be of low regularity. In fact, in many cases solution take
values in spaces of distributions only, causing severe di�culties in even giving meaning to the
nonlinear terms appearing in the stochastic PDE.

The lack of regularity of solutions is one of the decisive di�erences distinguishing the nu-
merical analysis of stochastic PDE from deterministic PDE. While, if the noise and thus the
solutions are regular enough, the numerical analysis can proceed similarly to the determin-
istic case, this ceases to be true in more rough situations. Indeed, if one considers (1) with
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regular enough noise, the solutions will take values in spaces of functions (Lp spaces), and,
therefore, standard �nite element basis can be used, such as piecewise constant or piecewise
linear functions. The proof of their convergence still requires adaptation from the determinis-
tic arguments, e.g. replacing compactness arguments by a combination of tightness arguments
and Skorohod's representation theorem (cf. e.g. [43], [57]), but the numerical method is close
to the deterministic case. In contrast, when the noise is not as regular, one cannot expect
to close Lp-based estimates, but one has to work in spaces of distributions. Concretely, this
means to move from Lp-based estimates for (1) to H−1-based estimates.

While the modi�cation of �nite element methods from L2-based to H−1-based thus is
necessary and natural in the context of stochastic PDE, this causes obstacles in their numerical
realization: Precisely, while in an L2-based approach, the choice of piecewise constant (or
piecewise linear) �nite elements φi leads to a sparse mass matrix

(M̃h)i,j = (φi, φj)L2 ,

this is not true in the H−1-based approach which leads to a mass matrix

(9) (Mh)i,j = (φi, φj)H−1= (∇(−∆)−1φi,∇(−∆)−1φj)L2 .

Note that (9) is not a sparse matrix, since (−∆)−1φj has global support. Consequently, the
resulting numerical scheme is ine�cient.

Interestingly, in one spatial dimension this di�culty was addressed in the contribution [29],
where an H−1 -based �nite element scheme was suggested in the context of a deterministic
porous medium equation, motivated by the aim to treat irregular initial data and forcing. In
[29] it was noticed, that in one spatial dimension a modi�ed �nite element basis φ̃i can be
constructed, leading to a sparse mass-matrix (9). In view of (9) this requires to choose a
basis so that (−∆)−1φj has small support. While, in one spatial dimension, this can relatively
easily be enforced by choosing φi of the form

−ai−11[xi−1,xi) + ai1[xi,xi+1) − ai+11[xi+1,xi+2),

for d ≥ 2 this construction becomes less obvious. In addition, in higher dimension, the proof
of the Lp-density of the resulting �nite element spaces proves much more challenging.

In the light of this exposition, the contribution of the present work is two-fold: Firstly,
motivated by the intrinsic irregularity of stochastic PDE, we provide anH−1 based analysis of a
fully discrete �nite element scheme for (1) and prove its convergence. Secondly, we construct
a �nite element basis in dimension d ≥ 2, which allows for an e�cient implementation of
the proposed numerical approximation in the H−1-setting, and analyze its approximation
properties in Lp. More precisely, motivated by the deterministic numerical approximation
[29] we propose a fully discrete �nite element based numerical approximation of (1) based on
its very weak formulation. We show that the proposed numerical approximation converges
for p ∈ (1,∞). Furthermore, we generalize the �nite element spatial discretization of the
very weak formulation, which was restricted to d = 1 and its convergence was shown for
p ≥ 2d/(d + 2) in [29], to higher dimensions and 1 < p ≤ 2d/(d + 2). Moreover, we present
numerical simulations to demonstrate the e�ciency and convergence behavior of the proposed
numerical scheme, including the case of (discrete) space-time white noise.

The paper is organized as follows. In Section 2 we state the notation and assumptions
along with the de�nition and basic properties of very weak solutions of (1). We introduce
the fully discrete numerical approximation of (1) in Section 3 and show well-posedness of the
proposed discrete approximation along with a priori estimates for the numerical solution. The
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convergence of the numerical approximation towards the very weak solution of (1) is shown in
Section 4. In Section 5 we propose and analyze a non-standard �nite element scheme for the
spatial discretization of the very weak solution which enables an e�cient implementation of the
resulting fully discrete numerical approximation. Numerical simulations which demonstrate
the practicability of the proposed numerical scheme are presented in Section 6. Finally, we
discuss the extension of the convergence proofs to a discrete approximation of the space-time
white noise in Appendix A.

Comments on the literature. There exists a rich literature on the numerical approximation
of deterministic degenerate parabolic equations, i.e. (1) with σ(u) ≡ 0, where the earlier
results include [53], [46]. For more recent results we refer to [28], [29], [23], [27] and the
references therein. Regarding numerical approximation of nonlinear SPDEs in the standard
�nite element setting we refer the reader to the recent paper [57] and the references therein.
The particular case of monotone SPDEs is relatively well covered by the existing literature,
we mention for instance [45], [30]. In contrast to the deterministic setting there exist much
fewer results on the numerical approximation of singular-degenerate SPDEs of the type (1).
As far as we are aware, the only result on the numerical approximation of (1) so far is
[43], where the convergence of the proposed numerical approximation towards a martingale
solution has been shown in dimension d = 1 for regular noise and a limited range of the
exponent p ∈ (2, 3), not including the case of the stochastic fast di�usion equation p < 2. We
note that, in contrast to the present work, [43] employs standard H1-conforming �nite element
spatial discretization which excludes the applicability of their analysis to the case of space-time
white noise. We also mention the recent paper [9] which employs the H−1-setting to study
convergence of an explicit �nite di�erence approximation of a singular-degenerate stochastic
di�erential inclusion. As far as we are aware [9] and the present paper are the only ones to
employ the H−1-setting in the numerical context; whereas in the present work we also employ
a practical H−1-conforming �nite element discretization. Finally, we mention the following
papers which deal with discrete approximations of the space-time white noise: [1] considers
the (linear) stochastic heat equation, [7], [55] deal with the nonlinear stochastic Schrödinger
equation and [10] considers the stochastic Landau-Lifshitz-Gilbert equation. We note that the
present work appears to be the �rst one to show convergence of the fully discrete numerical
approximation of nonlinear SPDEs which includes discrete (piecewise constant) approximation
of the space-time white noise in the variational framework, see Appendix A below.

In the deterministic setting, the analysis of the equation (1) is well understood, see, e.g. [64].
In the stochastic setting, the well-posedness of (1) in the variational framework goes back to
[49, 59] with many details given in [51]; for a generalization of the variational approach to
the case of the stochastic fast di�usion equation we refer to [60]. Generalizations to maximal
monotone nonlinearities and Cauchy problems can be found in [4], based on monotonicity
techniques. Martingale solutions for di�usion coe�cients given as Nemytskii operators have
been constructed in [42]. In [47] the well-posedness for (1) with additive noise was shown
based on a weak convergence approach. An L1-based alternative approach to well-posedness
has been developed based on entropy solutions in [8, 13, 16] and based on kinetic solutions
in [40, 22, 39, 33, 31]. Solutions to (1) with multiplicative space-time white noise have been
constructed in [14].

Besides well-posedness, also the long-time behavior of solutions has been analyzed, see, for
example, [33] for the existence of random dynamical systems, [11, 38] for the existence of
random attractors, and [4, 17, 18, 65] for ergodicity. For regularity of solutions we refer to
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[36, 21, 15, 5] and the references therein. Results on �nite speed of propagation and waiting
times were derived in [37, 4, 34]. Extensions to parabolic-hyperbolic SPDEs may be found in
[6, 8], and to doubly nonlinear SPDEs in [61] and the references therein.

2. Notation and preliminaries

Let D ⊂ Rd be a bounded open domain with C1,1-smooth boundary ∂D or a rectangular
domain. For 1 ≤ p ≤ ∞, we denote the conjugate exponent as p′ = p

p−1 . We use the notation

(Lp, ‖ · ‖Lp) for the standard Lebesgue spaces of p-th order integrable functions on D and

(Wk,p, ‖ · ‖Wk,p) for the standard Sobolev spaces on D, where (Wk,p
0 , ‖ · ‖Wk,p

0
) stands for the

Wk,p space with zero trace on ∂D; for p = 2 we denote the corresponding Sobolev spaces as
(Hk, ‖ · ‖Hk) and (H1

0, ‖ · ‖H1
0
). We note that the dual space of H1

0, denoted by (H−1, ‖ · ‖H−1),

is a Hilbert space with the scalar product (v, w)H−1 := (∇(−∆)−1v,∇(−∆)−1w)L2 where
(−∆)−1 : H−1 → H1

0 is the inverse Dirichlet Laplace operator, see (10) below.
Throughout the paper we denote V := (Lp ∩H−1), and H := H−1 and note that V ↪→ H ≡

H′ ↪→ V′ constitutes a Gelfand triple for the considered range of the exponent p in d ≥ 1 ( for
p ≥ 2d/(d+ 2) one may take V ≡ Lp since in this case Lp ⊂ H−1), cf., [50, Chapter 2, Section
3].

For v ∈ H−1 we de�ne the inverse Laplace operator ṽ =: (−∆)−1v as the unique weak
solution of the problem

(10)
−∆ṽ = v in D,

ṽ = 0 on ∂D .

We consider W to be a cylindrical Wiener process on a real separable Hilbert space K,
that is, for an orthonormal basis {ẽi}i∈N of K, we (formally) have W (t) =

∑
i∈N ẽiβi(t) with

{βi(t)}i∈N independent Brownian motions on a �ltered probability space (Ω,F , {Ft}t,P). Let
L2(K,H) denote the space of real Hilbert-Schmidt linear operators from K to H. We note that
(L2(K,H), ‖ · ‖L2(K,H), ( · , · )L2(K,H)) is a real separable Hilbert space with inner product

(σ1, σ2)L2(K,H) =

∞∑
i=1

(σ1ẽi, σ2ẽi)H ,

and the corresponding norm ‖σ‖2L2(K,H) =
∑∞

i=1 ‖σẽi‖2H.
We consider a slight generalization of the equation (1):

du = [∆α(u) + f ] dt+ σ(u) dW in (0, T )×D,(11a)

α(u) = g on (0, T )× ∂D,(11b)

u(0) = u0, in D,(11c)

where α : R→ R, and σ : V→ L2(K,H); the initial condition u0 ∈ L2(Ω,H) is assumed to be
F0-measurable.

We assume that the function α : R → R is continuous, monotonically increasing, and
satis�es a coercivity and growth condition, i.e.,

(12) α(z)z ≥ µ|z|p − λ and |α(z)| ≤ c(|z|+ 1)p−1 , ∀z ∈ R ,

for some p > 1 and c, µ > 0, λ ≥ 0, respectively. These properties of the nonlinearity α
(along with a suitable choice of σ) guarantee the validity of Assumption 1 below.
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The choice α(z) ≡ |z|p−2z yields the stochastic porous medium/fast di�usion equation (1)
and satis�es the above assumptions for p > 1.

The concept of the very weak solution in the deterministic setting, i.e., for (11) with σ(u) ≡
0, has been considered for instance in [50], [29]. The formal calculations below motivate the
de�nition of the very weak solutions for the stochastic equation (11) (see De�nition 2.2 below).
We consider the integral form of (11) as

u(t) = u0 +

∫ t

0
[∆α(u(s)) + f(s)] ds+

∫ t

0
σ(u(s)) dW (s).

We multiply the above equation by ṽ = (−∆)−1v, integrate over D, integrate twice by parts
in the second order term and use the boundary condition to obtain

(u(t), (−∆)−1v)L2 = (u0, (−∆)−1v)L2 −
∫ t

0
(α(u(s)), v)L2 ds

−
∫ t

0
(g(s), ∂~n(−∆)−1v)L2(∂D) ds+

∫ t

0
(f(s), (−∆)−1v)L2 ds

+

∫ t

0
(σ(u(s)) dW (s), (−∆)−1v)L2 .

Note that by the de�nition of the inverse Laplace operator it follows that (v, (−∆)−1w)L2 =
(∇(−∆)−1v,∇(−∆)−1w)L2 ≡ (v, w)H.

We employ the following notation

〈Au(s), v〉V′×V = (α(u(s)), v)L2 ,

and we set

〈b(s), v〉V′×V = (f(s), (−∆)−1v)L2 − (g(s), ∂~n(−∆)−1v)L2(∂D) ,(13)

for su�ciently regular f and g, cf. Remark 2.1 below.
We assume throughout the paper that the following conditions are satis�ed, cf. Assumptions

(K), (H1)-(H4) in [60]:

Assumption 1. i) Hemi-continuity of A: the function

ε 7→ 〈A(w + εz), v〉V′×V : [0, 1]→ R
is continuous for all v, w, z ∈ V.

ii) Monotonicity of A: there exists λB ≥ 0, such that for all v, w ∈ Lp

(14) 2 〈Av −Aw, v − w〉V′×V + λB‖v − w‖2H ≥ ‖σ(v)− σ(w)‖2L2(K,H) .

iii) Coercivity of A: for µ > 0 and λ, λA, κσ ≥ 0 it holds

〈Av, v〉V′×V + λA‖v‖2H ≥µ‖v‖
p
V − λ|D|+

1

2
‖σ(v)‖2L2(K,H) − κσ.(15)

iv) Boundedness of A: there exists a constant C > 0 such that

‖Av‖V′ ≤ C(‖v‖V + 1)p−1 ∀v ∈ V.

v) Regularity of the data: b ∈ Lp′(Ω× (0, T );V′) is progressively measurable and there exists
a constant C > 0 such that ‖b‖Lp′ (Ω×(0,T );V′) ≤ C.

We note that properties iii), iv) in Assumption 1 imply the following boundedness property

(16) ‖σ(v)‖2L2(K,H) ≤ C(1 + ‖v‖2H + ‖v‖pV) .
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Remark 2.1. We note that (−∆)−1v ∈ W2,p ∩W1,p
0 with ‖(−∆)−1v‖W2,p ≤ C‖v‖Lp for

v ∈ V ⊆ Lp by standard elliptic regularity theory, cf. [41, Ch. 9], [44, Ch. 4] and (−∆)−1v ∈
H1

0 since v ∈ V ⊂ H−1. Furthermore, since (−∆)−1v ∈ W2,p for v ∈ V the normal trace

of (−∆)−1v satis�es ∂~n
(
(−∆)−1v

)
∈W 1/p′,p(∂D) for domains with C1,1-smooth boundary or

rectangular domains, cf. [56, Thm. 5.4-5.5 p. 97-99]. In the particular case g = 0 the considered
framework generalizes to convex domains with piecewise smooth boundary.

Assumption 1 v) holds for b de�ned in (13) for f ∈ Lp
′
(Ω × (0, T ) × D), g ∈ Lp

′
(Ω ×

(0, T ) × ∂D). Due to the above regularity properties of (−∆)−1v, Assumption 1 v) remains

valid for more general data, e.g., for f ∈ Lp
′
(Ω × (0, T );W−1,p′ + H−1), g ∈ Lp

′
(Ω ×

(0, T ); (W 1/p′,p(∂D))′) (with an appropriate modi�cation of (13)), cf. [50, proof of Théorème
3.1]; for further details and generalizations see also [29, p. 1060].

The above formal construction motivates the following de�nition of very weak solutions of
the stochastic problem (11).

De�nition 2.2. Let u0 ∈ L2(Ω,F0,P;H). Then an Ft-adapted process u ∈ Lp(Ω, {Ft}t,P;Lp((0, T );V))∩
L2(Ω, {Ft}t,P;C([0, T ];H)) is a very weak solution of (11) if it satis�es P-a.s. for all v ∈ V
and all t ∈ [0, T ]:

(u(t), v)H = (u0, v)H −
∫ t

0
〈Au(s), v〉V′×V ds

+

∫ t

0
〈b(s), v〉V′×V ds+

∫ t

0
(σ(u(s)) dW (s), v)H.(17)

Remark 2.3. Owing to Assumption 1 we may interpret the very weak formulation of (11)
from De�nition 2.2 as a monotone stochastic evolution equation posed on the Gelfand triple
V ↪→ H ≡ H′ ↪→ V′, cf. [50, Théorème 3.1], [29]. Hence, the existence and uniqueness of
the very weak solution in De�nition 2.2 follows by the standard theory of monotone stochastic
evolution equations [49], [60].

Below we provide examples of SPDEs covered by the framework of Assumption 1. In partic-
ular, these include all of the problems mentioned in the introduction. We let {ek,j}k∈Zd,j=1,...,d

be an orthonormal basis of L2(D;Rd) consisting of eigenvectors of the Laplacian −∆ with
Dirichlet boundary conditions , acting componentwise on functions with values in Rd, and
with corresponding eigenvalues {λk}k∈Zd . Following [63] and [19], we recall that

(18) ‖ek,j‖L∞ . λ
d/4
k , and ‖∇ek,j‖L∞ . λ

(d+2)/4
k .

In the following examples, we let K = `2(Zd;Rd) with orthonormal basis ẽk,j , k ∈ Zd, j =
1, . . . , d, and βk,j i.i.d. Brownian motions.

Example 2.1 (GENERIC framework for the H−1-gradient �ow). We consider (4) with p > 1.
We set V = Lp ∩ H−1, H = H−1, and A(u) = −∆(|u|p−2u) extended to V → V′. Fur-

thermore, let (ηk,j)k∈Zd,j=1,...,d satisfy
∑

k∈Zd
∑d

j=1 η
2
k,j < ∞ and de�ne σ(u)w ≡ σw :=

√
2κB

∑
k∈Zd

∑d
j=1 ηk,jdiv((ẽk,j , w)`2ek,j). Then, Assumption 1 can be veri�ed analogously to

[51, Exercise 4.1.2 and Example 4.1.11] and (11) corresponds to (4) with W̃ =
∑

k∈Zd
∑d

j=1 ηk,jek,jβk,j.

Example 2.2 (Fluctuations in non-equilibrium systems). Let α ∈ C1(R) satisfy c∗ < α′ < C∗

for some c∗, C∗ > 0, g be a Lipschitz continuous function, W̃ =
∑
|k|≤N

∑d
j=1 ek,jβk,j be a
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Wiener process, and {ek,j}k∈Zd,j=1,...,d as in (18). We consider (7) in the form

du = ∆α(u)dt+ ε
1
2∇ · (g(u) dW̃ ),

for ε ≤ c∗

2C(N) , where C(N) =
(∑

|k|≤N
∑d

j=1 ‖ek,j‖2L∞
)
. We choose V = L2, H = H−1,

A(v) = −∆α(v) extended to V→ V′, and

σ(u)w := ε
1
2

∑
|k|≤N

d∑
j=1

∇ ·
(
g(u)ek,j(w, ẽk,j)RN

)
.

We then have

− 2 〈Av −Aw, v − w〉V′×V + ‖σ(v)− σ(w)‖2L2(K,H)

= −2 〈Av −Aw, v − w〉V′×V +
∑
|k|≤N

d∑
j=1

‖σ(v)ẽk,j − σ(w)ẽk,j‖2H

= −(α(v)− α(w), v − w)L2 + ε
∑
|k|≤N

d∑
j=1

‖∇ · (g(v)ek,j)−∇ · (g(w)ek,j)‖2H−1

≤ −c∗‖v − w‖2L2 + ε

 ∑
|k|≤N

d∑
j=1

‖ek,j‖2L∞

 ‖g(v)− g(w)‖2L2

≤ −c∗‖v − w‖2L2 + C(N)ε‖g‖Lip‖v − w‖2L2 ≤ −
c∗

2
‖v − w‖2L2 .

The remaining assumptions can be veri�ed similarly. We note that the scaling relation ε ≤
c∗

2C(N) implicitly depends on the dimension d, since the number of frequency modes ≤ N depends

on the dimension, cf. [25].

Example 2.3 (Branching interacting particle systems). Let ηk,j > 0, k ∈ Zd, j = 1, . . . , d

satisfy
∑

k∈Zd
∑d

j=1 η
2
k,jλ

d+2
2

k <∞, and W̃ :=
∑

k∈Zd
∑d

j=1 ηk,jek,jβk,j. We consider (8) with

c(u) = u, and W = W̃ , that is,

du = ∆u[2]dt+ udW̃ ,

with u[2] := |u|u and non-negative initial condition u0. In order to �t this example in the

abstract setup of Assumption 1 we choose V = L3, H = H−1, A(u) = −∆u[2] extended to
V→ V′, and

σ(u)w := u
∑
k∈Zd

d∑
j=1

ek,jηk,j(w, ẽk,j)`2 .
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We then have, by (18),

− 2 〈Av −Aw, v − w〉V′×V + ‖σ(v)− σ(w)‖2L2(K,H)

= −(v[2] − w[2], v − w)L2 +
∑
k∈Zd

d∑
j=1

‖σ(v)ẽk,j − σ(w)ẽk,j‖2H−1

≤
∑
k∈Zd

d∑
j=1

‖(v − w)(ek,jηk,j)‖2H−1≤

∑
k∈Zd

d∑
j=1

η2
k,j‖ek,j‖2W1,∞

 ‖v − w‖2H−1

≤

∑
k∈Zd

d∑
j=1

η2
k,jλ

d+2
2

k

 ‖v − w‖2H−1 ≤ C‖v − w‖2H−1 .

The remaining assumptions can be veri�ed similarly.

In one spatial dimension, assuming a relation between the order of the di�usion and the
noise coe�cient, the results of the present work can also be applied to space-time white noise,
as demonstrated by the following example.

Example 2.4 (Branching interacting particle systems 2). For d = 1, we consider

du = ∆u[m]dt+ δu[m+1
2

] dW,

where W is space-time white noise, u[m] := |u|m−1u. For m = 2 this includes (8) with
c(u) = u2.

For δ > 0 small enough Assumption 1 has been veri�ed in [14, Section 2] with V = Lm+1,

H = H−1, A(u) = −∆u[m] extended to V→ V′, and σ(u)w := δu[m+1
2

]w.

3. Fully discrete Numerical Approximation

We introduce a uniform partition of the time interval [0, T ] with a constant time step size
τ = T/N , where N ∈ N, as 0 = t0 < t1 < . . . < tN = T with tn := nτ . For a mesh
size h ∈ (0, 1] we consider a family of �nite dimensional subspaces (Vh)h>0 ⊂ V with the
approximation property

(19) inf
vh∈Vh

‖v − vh‖V → 0 for h→ 0, ∀v ∈ V ,

and let J̃ ≡ J̃h = dim(Vh) for any h > 0. We de�ne a family of mappings Qh : V → Vh via
the best approximation property, i.e., Qhv = arg min

vh∈Vh
‖v − vh‖V for v ∈ V. Furthermore, we

denote by Ph : H→ Vh the family of projection operators which satisfy

lim
h→0
‖w − Phw‖H = 0 ∀w ∈ H .

An explicit construction of the discrete �nite element spaces Vh and the operators Qh and
Ph will be provided in Section 5 below (see Lemma 5.3, Corollary 5.4 and Remarks 5.5, 5.6).

We de�ne the discrete Brownian increments for i = 1, 2, . . . as

(20) ∆nβi :=

{
0 if n = 1,

βi(tn)− βi(tn−1) if n = 2, . . . , N ,
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and for r ∈ N we de�ne the truncated Hilbert-Schmidt operator σr : V→ L2(K,H) as

σr(u)w =

r∑
i=1

σ(u)ẽi(w, ẽi)K for w ∈ K,

where {ẽi}i∈N is the orthonormal basis of K and u ∈ V.
The time-discrete approximation of the right-hand side b (given in De�nition 2.2) is obtained

as

bn :=
1

τ

∫ tn

tn−1

b(t) dt ≈ b(tn) .

Given N ∈ N, τ = T
N , h > 0 and r ≥ 1, the fully discrete approximation of (11) is obtained

as follows: set u0
h = Phu0 ∈ Vh, and for n = 1, . . . , N determine unh ∈ Vh as the solution of

the problem(
unh − un−1

h , vh
)
H + τ 〈Aunh, vh〉V′×V = τ 〈bn, vh〉V′×V +

(
σr(un−1

h )∆nW, vh
)
H .(21)

for all vh ∈ Vh. We note that the above scheme can be equivalently rewritten as

(unh, vh)H + τ
n∑
k=1

〈
Aukh, vh

〉
V′×V

=
(
u0
h, vh

)
H τ

n∑
k=1

〈
bk, vh

〉
V′×V

(22)

+
n∑
k=1

(
σr(uk−1

h )∆kW, vh

)
H
.

Remark 3.1. We note that the choice ∆1βi ≡ 0, i ∈ N in (20) is not strictly required but is
convenient since it slightly simpli�es the notation and convergence analysis in Section 4 for
u0 ∈ H. In particular, this choice enables to restate the numerical scheme (22) in the form (29)
with the �shifted� interpolant u−τ de�ned in (28) which satis�es the estimate in Corollary 4.1.

An alternative is to show the convergence by a density argument. For u0 ∈ H one can
consider a su�ciently regular sequence uk0 → u0, k →∞, set ∆1βi ≡ βi(t1)−βi(t0) and de�ne

uτ (t) = uk0 for t ∈ [0, τ). Then the stochastic integral
∫ θ+τ (t)
τ in (29) is replaced by

∫ θ+τ (t)
0 and

Corollary 4.1 holds for each k <∞.

The measurability of the fully discrete solution is a consequence of the following lemma,
c.f., [30, Lemma 3.2], [45, Lemma 3.8].

Lemma 3.2. Let (S,Σ) be a measure space. Let f : S × Vh → Vh be a function that is
Σ-measurable in its �rst argument for every (�xed) X ∈ Vh and is continuous in its second
argument for every (�xed) α ∈ S. If for every α ∈ S the equation f(α,X) = 0Vh has a unique
solution X = g(α) then g : S → Vh is Σ-measurable.

The next lemma guarantees the existence, uniqueness and measurability of the fully discrete
numerical approximation (21).

Lemma 3.3. For any h > 0, u0
h ∈ L2(Ω,F0,P;H), and τ < min

{
1
λA
, 2
λB

}
there exists a

unique solution {unh}
N
n=1 of the numerical scheme (21). Furthermore, the Vh-valued random

variables unh are Ftn-measurable, n = 1, . . . , N .

Proof. We assume that for u0
h ∈ L2(Ω,F0,P;H) there exist Vh-valued random variables{

ujh
}n−1

j=1
that satisfy (21) and that ujh are Ftj -measurable for j = 1, . . . , n − 1. We show

the existence of Vh-valued unh, that satis�es (21) and is Ftn-measurable.
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For each ω ∈ Ω the scheme (21) de�nes a canonical mapping hω : Vh → Vh for which it
holds hω(unh(ω)) ≡ 0. Consequently for U ∈ Vh we write

〈hω(U), U〉Vh :=
1

τ
(U − un−1

h (ω), U)H + 〈A(U), U〉V′×V

− 〈bn(ω), U〉V′×V −
(
σr(un−1

h (ω))
∆nW (ω)

τ
, U

)
H
.

We note that

(U − un−1
h (ω), U)H ≥ ‖U‖2H − C‖un−1

h (ω)‖H‖U‖V .

Hence, using the coercivity Assumption 1 iii) along with the embedding V ↪→ H we obtain

〈hω(U), U〉Vh ≥ ‖U‖V

(
µ‖U‖p−1

V − C

τ
‖un−1

h (ω)‖H − C
∥∥∥∥σ(un−1

h (ω))
∆nW (ω)

τ

∥∥∥∥
H
− ‖bn‖V′

)

+

(
1

τ
− λA

)
‖U‖2H +

1

2
‖σ(U)‖2L2(K,H) − C (λ,D, κσ) .

We choose Rω ≥ C(λ,D, κσ) > 0 such that

µRp−1
ω − C

τ
‖un−1

h (ω)‖H − C
∥∥∥∥σ(un−1

h (ω))
∆nW (ω)

τ

∥∥∥∥
H
− ‖bn‖V′ ≥ 1 .

Since (1/τ − λA) ≥ 0, we get for ‖U‖V = Rω that

〈hω(U), U〉Vh ≥ 0 .

Consequently, for each ω ∈ Ω the existence of unh(ω) ∈ Vh that satis�es (21) follows by the
Brouwer's �xed point theorem [62, Ch. II, Lemma 1.4].

To show uniqueness we consider U , Ũ ∈ Vh, such that hω(U) = hω(Ũ) ≡ 0 and obtain by
the monotonicity Assumption 1 ii) that

0 = τ〈hω(U)− hω(Ũ), U − Ũ〉Vh = ‖U − Ũ‖2H + τ
〈
A(U)−A(Ũ), U − Ũ

〉
V′×V

≥ (1− λBτ

2
)‖U − Ũ‖2H ≥ 0,

which yields the uniqueness of the discrete solution for τλB < 2.
Finally, the Ftn-measurability of the unh follows by Lemma 3.2

�

Under a slightly stronger assumption on τ we obtain the following stability Lemma.

Lemma 3.4. For τ < 1
2λA

there exist constants µ > 0, C ≥ 0 such that for n = 1, . . . , N it

holds

E

‖unh‖2H + µτ

n∑
j=1

‖ujh‖
p
V

 ≤ C ,
and

E

 n∑
j=1

τ‖Aujh‖
p′

V′

 ≤ C .
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Proof. i) We set vh = ujh ∈ Vh in (21) with n ≡ j, use the identity 2(a − b, a)H = ‖a‖2H −
‖b‖2H + ‖a− b‖2H and by summing up the resulting equations for j = 1, . . . , n we get, that

‖unh‖2H +

n∑
j=1

‖ujh − u
j−1
h ‖2H + 2τ

n∑
j=1

〈
Aujh, u

j
h

〉
V′×V

= ‖u0
h‖2H + 2τ

n∑
j=1

〈
bj , ujh

〉
V′×V

+ 2

n∑
j=1

(
σr(uj−1

h )∆jW,u
j
h

)
H
.(23)

Using the Cauchy-Schwarz and Young's inequalities we estimate the stochastic term as

(
σr(uj−1

h )∆jW,u
j
h

)
H
≤
(
σr(uj−1

h )∆jW,u
j−1
h

)
H

+
1

2

∥∥∥σr(uj−1
h )∆jW

∥∥∥2

H
+

1

2
‖ujh − u

j−1
h ‖2H .

(24)

Next, we deduce by the Hölder and Young inequalities that〈
bj , ujh

〉
V′×V

≤ ‖b‖p
′

Lp′ (Ω×(0,T );V′) +
µ

2
‖ujh‖

p
V .(25)

We substitute (24), (25) into (23) and obtain using Assumption 1 iii), v) that

‖unh‖2H + τ

n∑
j=1

(
µ‖ujh‖

p
V + ‖σ(ujh)‖2L2(K,H)

)
≤ C + ‖u0

h‖2H + 2λAτ

n∑
j=1

‖ujh‖
2
H

+ 2
n∑
j=1

(
σr(uj−1

h )∆jW,u
j−1
h

)
H

+
n∑
j=1

∥∥∥σr(uj−1
h )∆jW

∥∥∥2

H
,(26)

where the constant C now also depends on the constant from Assumption 1 iii).

By the independence of σr(uj−1
h ) and ∆jW we deduce that E

[(
σr(uj−1

h )∆jW,u
j−1
h

)
H

]
= 0.

Furthremore, we estimate

E
[∥∥∥σr(uj−1

h )∆jW
∥∥∥2

H

]
= τE

[
‖σr(uj−1

h )‖2L2(K,H)

]
≤ τE

[
‖σ(uj−1

h )‖2L2(K,H)

]
,

for j > 2 and
∥∥σr(u0

h)∆1W
∥∥2

H = 0 since that ∆1W = 0.
Hence, we obtain after taking the expectation in (26) that

E

‖unh‖2H + µτ

n∑
j=1

‖ujh‖
p
V


≤ C + E

[
‖u0

h‖2H
]

+ 2λAτE

 n∑
j=1

‖ujh‖
2
H

 .
The �rst statement of the Lemma then follows after an application of the discrete Gronwall
lemma for, .e.g, τλA ≤ 1

4 .
ii) For the second estimate we use the boundedness Assumption 1 iv), p′ = p

p−1 and obtain

that

‖Aunj ‖
p
p−1

V′ ≤ Cp(‖u
n
j ‖

p
V + 1) .

Hence the second estimate follows by part i) of the proof. �
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4. Convergence of the numerical approximation

Given the temporal partition {tn}Nn=0 with associated discrete random variables {unh}Nn=0

we de�ne the piecewise constant time-interpolants for t ∈ [0, T ] as follows:

(27) uτ (0) = u1
h, uτ (t) = unh for t ∈ (tn−1, tn]

and

u−τ (t) = 0 for t ∈ [0, t1) = [0, τ), u−τ (t) = un−1
h for t ∈ [tn−1, tn),(28)

u−τ (T ) = uNh .

We note that the interpolant u−τ is (Ft)t∈[0,T ] adapted by Lemma 3.3.
On recalling (22) we note that the numerical scheme can be restated in terms of the above

interpolants, i.e., it holds P-a.s. that

(uτ (t), vh)H +

∫ θ+τ (t)

0
〈Auτ (s)− bτ (s), vh〉V′×V ds

=
(
u0
h, vh

)
H +

∫ θ+τ (t)

τ

(
σr(u−τ (s)) dW (s), vh

)
H for all t ∈ (0, T ), ∀v ∈ Vh ,(29)

where bτ (t) = bn for t ∈ (tn−1, tn] and

θ+
τ (0) := 0, θ+

τ (t) := tn for t ∈ (tn−1, tn], n = 1, . . . , N .

As a consequence of Lemma 3.4 by Assumption 1 and (16) the time interpolants from (27)
and (28) satisfy the following a priori estimates.

Corollary 4.1. For any h > 0 and (su�ciently small) τ > 0 it holds that

i) sup
t∈[0,T ]

E
[
‖u−τ (t)‖2H

]
≤ C, ii) sup

t∈[0,T ]

E
[
‖uτ (t)‖2H

]
≤ C,

iii) E

[∫ T

0

‖u−τ (t)‖pV dt

]
≤ C, iv) E

[∫ T

0

‖uτ (t)‖pV dt

]
≤ C,

v) E

[∫ T

0

‖Au−τ (t)‖p
′

V′ dt

]
≤ C, vi) E

[∫ T

0

‖Auτ (t)‖p
′

V′ dt

]
≤ C,

and

vii) E

[∫ T

0

‖σ(u−τ (t))‖2L2(K,H) dt

]
≤ C,

viii) E

[∫ T

0

‖σ(uτ (t))‖2L2(K,H) dt

]
≤ C,

where C > 0 is a constant that only depends on the data of the problem.

From the a priori bounds in Corollary 4.1 we can directly deduce the following sub-
convergence result.

Lemma 4.2. Let Assumption 1 hold and let u0 ∈ L2(Ω,F0,P;H). Then there exists a
subsequence h, τ, r (not relabeled) such that for h, τ → 0, r →∞ the following holds:
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i) there is a progressively measurable u ∈ Lp(Ω× (0, T );V) such that

u−τ ⇀ u and uτ ⇀ u in Lp(Ω× (0, T );V).

There is a uT ∈ L2(Ω;H) such that

u−τ (T ) = uτ (T ) ⇀ uT in L2(Ω,H) .

ii) There exists a progressively measurable a ∈ Lp
′
(Ω × (0, T );V′) such that Auτ ⇀ a in

Lp
′
(Ω× (0, T );V′). There is a progressively measurable σ ∈ L2(Ω× (0, T );L2(K,H)) such

that σr(u−τ ), σr(uτ ) and σ(uτ ) weakly converge to σ in L2(Ω× (0, T );L2(K,H)).
iii) for ( dP× dt)-almost all (ω, t) ∈ Ω× (0, T ) the following equation holds in V′

(30) u(t) = u0 +

∫ t

0
b(s)− a(s) ds+

∫ t

0
σ(s) dW (s),

iv) there is an H-valued continuous version of u (sill denoted by u) which satis�es (30) and

‖u(t)‖2H = ‖u0‖2H +

∫ t

0

(
2 〈b(s)− a(s), u(s)〉V′×V + ‖σ(s)‖2L2(K,H)

)
ds(31)

+ 2

∫ t

0
(u(s), σ(s) dW (s))H.

v) uT = u(T ), i.e. uτ (T ) ⇀ u(T ) in L2(Ω;H).

Proof. i) We deduce from Corollary 4.1 iii), iv) that u−τ ⇀ u− and uτ ⇀ u in Lp(Ω×(0, T );V).
The limit are the same according to [30, Lemma 4.2] see also [45, proof of Prop. 3.3].

Item ii) of the Lemma follows from Corollary 4.1 vii) and viii), the limits again coincide
in Lp(Ω× (0, T );V) by the arguments from i).

To show part iii) we consider v = ψφ ∈ L∞(Ω×(0, T );V) for ψ ∈ L∞(Ω×(0, T );R), φ ∈ V.
We set vh = ψφh ∈ Vh with φh = Qhφ ∈ Vh in (29), integrate w.r.t. t over [0, T ] and take the
expectation to get

E
[∫ T

0
(uτ (t), v(t))H +

〈∫ t

0
Auτ (s) ds, v(t)

〉
V′×V

dt

]
= E

[∫ T

0
(u0
h, v(t))H +

〈∫ t

0
bτ (s) ds, v(t)

〉
V′×V

(32)

+

(∫ t

0
σr(u−τ (s)) dW (s), v(t)

)
H

dt

]
+R1,τ,h +R2,τ,h −R3,τ,h −R4,τ,h −R5,τ,h +R6,τ,h +R7,τ,h +R8,τ,h ,
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where

R1,τ,h := E

[∫ T

0

〈∫ θ+τ (t)

t
bτ (s)−Auτ (s) ds, vh(t)

〉
V′×V

dt

]
,

R2,τ,h := E
[∫ T

0

(∫ τ

0
σr(u−τ (s)) dW (s), vh(t)

)
H

dt

]
,

R3,τ,h := E

[∫ T

0

(∫ θ+τ (t)

t
σr(u−τ (s)) dW (s), vh(t)

)
H

dt

]
,

R4,τ,h := (uτ , vh − v)L2(Ω×(0,T );H),

R5,τ,h :=

〈∫ ·
0
Auτ (s) ds, vh − v

〉
Lp′ (Ω×(0,T );V′)×Lp(Ω×(0,T );V)

,

R6,τ,h := (u0
h, vh − v)L2(Ω×(0,T );H),

R7,τ,h :=

〈∫ ·
0
bτ (s) ds, vh − v

〉
Lp′ (Ω×(0,T );V′)×Lp(Ω×(0,T );V)

,

R8,τ,h :=

(∫ ·
0
σr(u−τ (s)) dW (s), vh − v

)
L2(Ω×(0,T );H)

.

By the boundedness of bτ and Auτ in Lp
′
(Ω × (0, T );V′) (Assumption 1 v) and Corol-

lary 4.1 vi)) it follows that R1,τ,h → 0 for τ, h → 0 and similarly the boundedness of σ(u−τ )
in L2(Ω× (0, T );L2(K,H, )) (Corollary 4.1 vii)) implies after an application of Itô's isometry
that R2,τ,h, R3,τ,h → 0 for τ, h→ 0. For instance

|R3,τ,h| ≤ E

∫ T

0

∥∥∥∥∥
∫ θ+τ (t)

t
σr(u−τ (s)) dW (s)

∥∥∥∥∥
2

H

dt

1/2

‖vh‖L2(Ω×(0,T )×H)

= E

[∫ T

0

∫ θ+τ (t)

t
‖σr(u−τ (s))‖2L2(K,H) ds dt

]1/2

‖vh‖L2(Ω×(0,T )×H)

≤ τ1/2E
[∫ T

0
‖σr(u−τ (t))‖2L2(K,H) dt

]1/2

‖vh‖L2(Ω×(0,T )×H).

Analogously, using Corollary 4.1 and u0
h in L

2(Ω;H) yields that |Rk,τ,h| ≤ C‖v−vh‖L2(Ω×(0,T );V)

for k = 4, 6, 8 and |Rk,τ,h| ≤ C‖v − vh‖Lp(Ω×(0,T );V) for k = 5, 7. For instance

|R4,τ,h| ≤ T 1/2

(
sup
t∈[0,T ]

E
[
‖uτ (t)‖2H

])1/2

‖vh − v‖L2(Ω×(0,T );H)

≤ C

(
sup
t∈[0,T ]

E
[
‖uτ (t)‖2H

])1/2

‖vh − v‖L2(Ω×(0,T );V) .

On recalling v = ψφ and vh = ψφh ∈ Vh, φh = Qhφ ∈ Vh we deduce by (19) that

‖vh − v‖Lp(Ω×(0,T );V) ≤ C‖ψ‖L∞(Ω×(0,T ),R)‖φ− φh‖V → 0 for h→ 0.

Hence, we conclude that Rk,τ,h → 0, k = 4, . . . , 8 for h→ 0.
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Next, the weak convergence Auτ ⇀ a, σ(uτ ) ⇀ σ implies for h, τ → 0, r →∞

E
[∫ T

0

〈∫ t

0
Auτ (s) ds, v(t)

〉
V′×V

dt

]
→ E

[∫ T

0

〈∫ t

0
a(s) ds, v(t)

〉
V′×V

dt

]
,

E
[∫ T

0

(∫ t

0
σr(u−τ (s)) dW (s), v(t)

)
H

dt

]
→ E

[∫ T

0

(∫ t

0
σ(s) dW (s), v(t)

)
H

dt

]
.

From the weak convergence of uτ ⇀ u in L2(Ω × (0, T );H) and the strong convergence of
u0
h → u0 in L2(Ω;H) we deduce that

E
[∫ T

0
(uτ (t), v(t))H dt

]
→ E

[∫ T

0
(u(t), v(t))H dt

]
,

and

E
[∫ T

0
(u0
h, v(t))H dt

]
→ E

[∫ T

0
(u0, v(t))H dt

]
.

Finally, since bτ → b in Lp
′
(Ω× (0, T );V′) it follows that

E
[∫ T

0

〈∫ t

0
bτ (s) ds, v(t)

〉
V′×V

dt

]
→ E

[∫ T

0

〈∫ t

0
b(s) ds, v(t)

〉
V′×V

dt

]
.

From the above convergence results we conclude, by taking h, τ → 0, r →∞ in (32) that

E
[∫ T

0
(u(t), v(t))H +

〈∫ t

0
a(s) ds, v(t)

〉
V′×V

dt

]
= E

[∫ T

0
(u0, v(t))H +

〈∫ t

0
b(s) ds, v(t)

〉
V′×V

+

(∫ t

0
σ(s) dW (s), v(t)

)
H

dt

]
,

for all v = ψφ, φ ∈ V, which implies (30).
By the standard theory of monotone SPDEs, see for instance [52, Theorem 4.2.5] or [60,

Theorem A.2], part iv) follows from iii) by the Itô formula for the square of the H-norm,
which also implies that u has an H-valued continuous modi�cation (which we again denote by
u) that satis�es (30).

Finally, to show v) we note that uτ (T ) ⇀ uT by part i) which together with iii) implies

uT +

∫ T

0
a(s) ds = u0 +

∫ T

0
b(s) ds+

∫ T

0
σ(s) dW (s) in Lp

′
.

Since the continuous H-valued modi�cation of u (cf. iv)) satis�es (30) we may conclude that
uT = u(T ). �

The following variant of the Gronwall lemma, cf. [30, Lemma 5.1], will be useful for the
proof of the subsequent theorem.

Lemma 4.3. Let a and b be real-valued integrable functions such that for all t ∈ [0, T ]

(33) a(t) ≤ a(0) +

∫ t

0
b(s) ds,

then for all λB ≥ 0 and for all t ∈ [0, T ]

(34) e−λBta(t) + λB

∫ t

0
e−λBsa(s) ds ≤ a(0) +

∫ t

0
e−λBsb(s) ds.
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Moreover, if equality holds in (33), then equality holds in (34).

In the next theorem we conclude that the weak limit of the numerical approximation from
Lemma 4.2 is the very weak solution of the equation (11).

Theorem 4.4 (Convergence of the numerical approximation). Let Assumption 1 hold and let
u0 ∈ L2(Ω,F0,P;H). Then, for h, τ → 0, r → ∞ the fully discrete solution of scheme (29)
converges to the unique very weak solution u ∈ Lp(Ω× (0, T );V)∩L2(Ω;C([0, T ];H)) of (11)
in the sense of De�nition 2.2.

Proof. We have shown in Lemma 4.2 that every weak limit u of the numerical approximation
satis�es for t ∈ [0, T ]

u(t) = u0 +

∫ t

0
b(s)− a(s) ds+

∫ t

0
σ(s) dW (s) .

Hence, it remains to show that a = Au, σ = σ(u).
Throughout the proof we use the shorthand notation ` := (h, τ, r) and ` → ∞ stands for

h, τ → 0, r →∞. We de�ne

Ξ`(t) :=

{
‖uτ (t)‖2L2(Ω;H) if t ∈ (0, T ],

‖u0
h‖2L2(Ω;H) if t = 0 .

Analogously to the proof of Lemma 3.4 we deduce from (23) on noting the de�nition of the
time interpolants (29) that for any t ∈ (0, T ] it holds

Ξ`(t) ≤ Ξ`(0)

+ E
[ ∫ t

0
2 〈bτ (s)−Auτ (s), uτ (s)〉V′×V + ‖σr(uτ (s))‖2L2(K,H) ds

]
+R`(t) ,

with R`(t) = E
[∫ θ+τ (t)
t 2 〈bτ (s)−Auτ (s), uτ (s)〉V′×V + ‖σr(uτ (s))‖2L2(K,H) ds

]
.

We use Lemma 4.3 and obtain from the above inequality that

e−λBTΞ`(T ) ≤ Ξ`(0)− λB
∫ T

0
e−λBsΞ`(s) ds

+ E
[∫ T

0
e−λBs

(
2 〈bτ (s)−Auτ (s), uτ (s)〉V′×V + ‖σr(uτ (s))‖2L2(K,H)

)
ds

]
(35)

+ λB

∫ T

0
e−λBs|R`(s)| ds.

Note that by the monotonicity property (14) it holds for arbitrary w ∈ Lp(Ω× (0, T );V) that

− 2E
[∫ T

0
e−λBs 〈Auτ (s), uτ (s)〉V′×V ds

]
≤ E

[∫ T

0
e−λBs

(
− ‖σ(uτ (s))− σ(w(s))‖2L2(K,H) + λB‖uτ (s)− w(s)‖2H

)
ds

]

− 2E

[∫ T

0
e−λBs

(
〈Aw(s), uτ (s)− w(s)〉V′×V + 〈Auτ (s), w(s)〉V′×V

)
ds

]
.
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We substitute the above inequality into (35) and obtain

e−λBT ‖uτ (T )‖2L2(Ω;H)

≤ ‖u0
h‖2L2(Ω;H) + 2E

[∫ T

0
e−λBs 〈bτ (s), uτ (s)〉V′×V ds

]
+ E

[∫ T

0
e−λBs

(
− ‖σ(w(s))‖2L2(K,H) + 2 (σ(uτ (s)), σ(w(s)))L2(K,H)

+ λB‖w(s)‖2H − 2λB (uτ (s), w(s))H

)
ds

]
(36)

− 2E

[∫ T

0
e−λBs

(
〈Aw(s), uτ (s)− w(s)〉V′×V + 〈Auτ (s), w(s)〉V′×V

)
ds

]

+ λB

∫ T

0
e−λBs|R`(s)| ds .

Next, we observe that, by Corollary 4.1,

λB

∫ T

0
e−λB |R`(t)|dt

≤ τλB
(

2
(
‖bτ‖Lp′ (Ω×(0,T );V′) + ‖Auτ‖Lp′ (Ω×(0,T );V′)

)
‖uτ‖Lp(Ω×(0,T );V)

+ ‖σ(uτ )‖2L2(Ω×(0,T );L2(K,H))

)
≤ Cτ → 0 for `→∞ .

Hence, using the weak convergence of Lemma 4.2 i), ii) we deduce from (36) by the lower-
semicontinuity of norms that

e−λBT ‖u(T )‖2L2(Ω;H) ≤ lim inf
`→∞

e−λBT ‖uτ (T )‖2L2(Ω;H)

≤ ‖u0‖2L2(Ω;H) + 2E
[∫ T

0
e−λBs 〈b(s), u(s)〉V′×V ds

]
+ E

[∫ T

0
e−λBs

(
− ‖σ(w(s))‖2L2(K,H) + 2(σ(s), σ(w(s)))L2(K,H)(37)

+ λB‖w(s)‖2H − 2λB(u(s), w(s))H

)
ds

]

− 2E

[∫ T

0
e−λBs

(
〈Aw(s), u(s)− w(s)〉V′×V + 〈a(s), w(s)〉V′×V

)
ds

]
.

After taking the expectation in (31) we get for all t ∈ [0, T ]

‖u(t)‖2L2(Ω;H) = ‖u0‖2L2(Ω;H) + E
[∫ t

0
2 〈b(s)− a(s), u(s)〉V′×V + ‖σ(s)‖2L2(K,H) ds

]
.



NUMERICAL APPROXIMATION OF SINGULAR-DEGENERATE SPDES 19

Using Lemma 4.3 we obtain from the above equality that

e−λBT ‖u(T )‖2L2(Ω;H) = ‖u0‖2L2(Ω;H) − λBE
[∫ T

0
e−λBs‖u(s)‖2H ds

]
+ E

[∫ T

0
e−λBs

(
2 〈b(s)− a(s), u(s)〉V′×V + ‖σ(s)‖2L2(K,H)

)
ds

]
.(38)

Next, we subtract (38) from (37) and get

0 ≤ E

[∫ T

0
e−λBs

(
− ‖σ(w(s))− σ(s)‖2L2(K,H) + λB‖w(s)− u(s)‖2H

)
ds

]
(39)

− 2E

[∫ T

0
e−λBs

(
〈Aw(s), u(s)− w(s)〉V′×V − 〈a(s), u(s)− w(s)〉V′×V

)
ds

]
.

On taking w = u in (39) we get that

0 ≤ −E

[∫ T

0
e−λBs‖σ(u(s))− σ(s)‖2L2(K,H) ds

]
≤ 0 ,

which implies that σ(u(s)) = σ(s) in L2(Ω× (0, T );L2(K,H)).
Next, we choose w = u− εz for z ∈ Lp(Ω× (0, T );V), ε ∈ (0, 1) in (39) and get

E
[∫ T

0
e−λBs 〈A(u(s)− εz(s)), z(s)〉V′×V ds

]
≤ E

[∫ T

0
e−λBs

(1

2
ελB‖z(s)‖2H + 〈a(s), z(s)〉V′×V

)
ds

]
.

Using Assumption 1 i, iv) we deduce by the Lebesgue dominated convergence theorem for
ε→ 0 that

E
[∫ T

0
e−λBs 〈Au(s), z(s)〉V′×V ds

]
≤ E

[∫ T

0
e−λBs 〈a(s), z(s)〉V′×V ds

]
.

This implies that a = Au, since z ∈ Lp(Ω× (0, T );V) is arbitrary.
Finally, we conclude by the uniqueness of the very weak solution, that the whole sequence

converges to the same limit u.
�

Remark 4.5. We note that, opposed to [29], the present convergence analysis does not re-
quire any restriction of the time step with respect to the mesh size for initial data with low
regularity u0 ∈ H−1, cf. [29, Remark 5.1]. The time step restriction, which is due to condi-
tion [29, (3.6)], is required to obtain boundedness of the piecewise linear time-interpolant of
the numerical solution in Lp(0, T ;V). The above convergence analysis (which also covers the
deterministic case) only employs the piecewise constant time-interpolants (27), (28) of the nu-
merical solution; this makes the condition [29, (3.6)] redundant in the present setting. Despite
the fact the the proposed numerical scheme works well with rough initial data, such as the delta
function in d = 1, our experience shows that the regularity of the initial condition in�uences
the convergence order of the proposed numerical approximation.
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5. Practical finite element approximation of V ⊂ Lp

A natural approach is to construct the numerical solution unh ∈ Vh ⊂ Lp, n = 0, . . . , N using
a �nite element space Vh consisting of piecewise constant functions on a given partition of the
domain D with a given mesh size h. However, the piecewise constant �nite element approx-
imation of the very weak formulation is impractical since the resulting �nite element matrix
associated with the H-scalar product (·, ·)H = (·, (−∆)−1·)L2 = (∇(−∆)−1·,∇(−∆)−1·)L2 in
the discrete very weak formulation (21) will be dense. Furthermore, the evaluation of the
H-inner product requires the evaluation of the inverse Laplace operator (−∆)−1, which does
not have an explicit formula in general. This is a consequence of the fact that the inverse
Laplacian of the characteristic function χT for some subset T ⊂ D does not have compact
support in D, i.e., in general supp{(−∆)−1χT } ≡ D. A further complication lies in the fact
that there is no explicit formula available for (−∆)−1χT , in general.

Below, we discuss the construction of a �nite element basis {φi}J̃i=1 of Vh for d ≥ 1 on
rectangular domains with the property that ψi := (−∆)−1φi can be computed explicitly and

has local support in D for i = 1, . . . , J̃ .

5.1. Finite-element basis in d = 1. We summarize the �nite element method proposed in
[29] for D ⊂ R1. For the domain D = (−L,L), where L > 0 we introduce a partition into
disjoint open intervals {(xi−1,xi)}Ji=1, x0 = −L, xJ = L such that D = ∪Ji=1[xi−1,xi] and
denote χI to be the characteristic function of the interval I. We then set Vh = span{φi, i =
1, . . . , J} ⊂ Lp where φi : [−L,L]→ R are de�ned as

φ1(x) =
3

2
χ[x0,x1](x)− 1

2
χ(x1,x2](x) ,(40)

φi(x) = −1

2
χ(xi−2,xi−1](x) + χ(xi−1,xi](x)− 1

2
χ(xi,xi+1](x) ,(41)

φJ(x) = −1

2
χ(xJ−2,xJ−1](x) +

3

2
χ(xJ−1,xJ ](x) .(42)

for any x ∈ (−L,L).
Note that the proposed approximation is equivalent to a piecewise constant approximation,

i.e., Vh ≡ span{φi} = span{χ(xi−1,xi], i = 1, . . . , J}. The proposed basis has the useful prop-

erty that ψi := (−∆)−1φi (with (−∆)−1 de�ned on (−L,L)) admits an explicit representation
for all i = 1, . . . , J which has a small support in D. It can be veri�ed by direct calculation
that

(43) ψ1(x) =


−3

4(x− x0)2 + h(x− x0) if x ∈ [x0,x1],
1
4(x− x1)2 − h

2 (x− x1) + h2

4 if x ∈ (x1,x2],

0 otherwise,

further

(44) ψi(x) =


1
4(x− xi−2)2 if x ∈ (xi−2,xi−1],

−1
2(x− xi−1 − h

2 )2 + 3h2

8 if x ∈ (xi−1,xi],
1
4(xi+1 − x)2 if x ∈ (xi,xi+1]

0 otherwise,
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for i = 2, . . . , J − 1, and

(45) ψJ(x) =


1
4(xJ−1 − x)2 − h

2 (xJ−1 − x) + h2

4 if x ∈ (xJ−2,xJ−1]

−3
4(xJ − x)2 + h(xJ − x) if x ∈ (xJ−1,xJ ]

0 otherwise,

We note that both basis have a small support in D, i.e., supp(φj) = supp(ψj), j = 1, . . . , J
with

supp(φj) =


[x0,x2] if i = 1 ,

[xj−2,xj+1] for j = 2, . . . , J − 1 ,

[xJ−2,xJ ] if j = J .

Consequently, the �mass� matrix

Mh = {mij}Ji,j=1 := {(φj , (−∆)−1φi)L2}Ji,j=1 ≡ {(φj , ψi)L2}Ji,j=1

which corresponds to the H-inner product in the numerical scheme (21) will be sparse.

5.2. Spatial discretization in higher dimensions. We consider D = (−L,L)d for some
L > 0, d = 1, 2, . . . , and denote x = (x1, . . . , xd)

T ∈ D. Given m ∈ N we set J := 2m and

consider a uniform partition of D with mesh size h = 2L
J into J̃ := Jd rectangular subdomains

Di := (xi1−1,xi1 ] × (xi2−1,xi2 ] × · · · × (xid−1,xid ] for a multiindex i ∈ {1, . . . , J}d, where
i := (i1, . . . , id), ik = 1, . . . , J for k = 1, . . . , d, and xik := −L + ikh. We denote the above
partition of the domain D as Th = {Di, i ∈ {1, . . . , J}d}.

We consider φik , ψik = (−∆)−1φik , ik = 1, . . . , J to be the one dimensional basis functions
de�ned in the previous section and construct the basis functions {φi}, i ∈ {1, . . . , J}d of Vh
in Rd as follows: for i ∈ {1, . . . , J}d we set

φi(x) =

(
3

d1/(d−1)

1

h2

)d−1 d∑
k=1

φik(xk)
d∏
l=1
l 6=k

ψil(xl)(46)

=
d∑

k=1

φik(xk)
d∏
l=1
l 6=k

(
3

d1/(d−1)

1

h2
ψil(xl)

)
x ∈ D .

On noting ψik = (−∆)−1φik it can be deduced from (46) by a direct calculation that ψi =
(−∆)−1φi can be expressed explicitly as

ψi(x) =

(
3

d1/(d−1)

1

h2

)d−1 d∏
k=1

ψik(xk)(47)

=

(
d1/(d−1)

3
h2

)
d∏

k=1

(
3

d1/(d−1)

1

h2
ψik(xk)

)
x ∈ D .

Equivalently the basis functions ψi(x), i ∈ {1, . . . , J}d are the solutions of the Poisson problem

−∆ψi = φi in D = (−L,L)d,

ψi = 0 on ∂D .
An example of a basis function for 2 ≤ ik ≤ J − 1 for d = 2 is given in Figure 1.
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Figure 1. φ(i1,i2) and ψ(i1,i2) for d = 2

Clearly ψi ∈ C1(D̄) since ψik ∈ C1([−L,L]) for all k = 1, . . . , d. In addition, since ψik , φik ⊂
R have a small local support in [−L,L], also supp(ψi) =×d

k=1
supp(ψik) and supp(φi) =⋃d

k=1 supp(φik)×
(
×d

l=1
l 6=k

supp(ψil)

)
⊂ Rd remain �small�. Consequently, the "mass" matrix

for d ≥ 1

Mh = {mij}J̃i,j=1 := {(φj , (−∆)−1φi)L2}J̃i,j=1 ≡ {(φj ,ψi)L2}J̃i,j=1

is sparse; more precisely, there are only 5d non-zero elements in each row of Mh.
By construction, the �nite element space Vh consists of (discontinuous) piecewise poly-

nomial functions on the rectangular partition Th of the domain D. In order to analyze the
approximation properties of Vh in Lp it is convenient to consider the space of piecewise con-
stant functions on Th which is denoted as Vh = span{χi} where χi := 1Di are indicator
functions of the elements Di.

We de�ne the restriction operator Rh : Lp → Vh as

(48) Rhv(x) :=
∑

i∈{1,...,J}d
viχi(x) ,

where vi =
1

|Di|

∫
Di
v(y) dy.

Next, we analyze the properties of the operator Rh.

Lemma 5.1. For any p ≥ 1 the operator Rh is Lp-stable, i.e., ‖Rhv‖Lp ≤ ‖v‖Lp for all
v ∈ Lp, and for all v ∈W1,p it holds that

‖v −Rhv‖Lp ≤ Ch‖∇v‖Lp .



NUMERICAL APPROXIMATION OF SINGULAR-DEGENERATE SPDES 23

Proof. The Lp-stability follows from the de�nition of Rh by the Hölder inequality as

‖Rhv‖pLp ≤
∑

i∈{1,...,J}d
|Di|

∫
Di
|v(y)|p dy

(∫
Di

1

|Di|p/(p−1)
dy

)p−1

= ‖v‖pLp .

Next, we assume that v is smooth, the result for v ∈ W1,p follows by density. By the
fundamental theorem of calculus and the Hölder inequality we get that

‖v −Rhv‖pLp ≤
∑

i∈{1,...,J}d

1

|Di|

∫
Di

∫
Di
|v(x)− v(y)|p dy dx

≤ dp−1hp
d∑

k=1

∑
i∈{1,...,J}d

∫
Di
|∂xkv(x)|p dx = C(p, d)hp‖∇v‖pLp .

�

Lemma 5.2. {Vh}h>0 is a Galerkin scheme for Lp, p ≥ 1. I.e., for every v ∈ Lp it holds that

inf
vh∈Vh

‖v − vh‖Lp → 0 for h→ 0 .

Proof. By density of W1,p ↪→ Lp we deduce from Lemma 5.1 that

‖v −Rhv‖Lp → 0 for h→ 0 ∀v ∈ Lp.(49)

Since Rhv ∈ Vh we get from the above that

inf
vh∈Vh

‖v − vh‖Lp ≤ ‖v −Rhv‖Lp → 0 for h→ 0 .

�

For the (piecewise polynomial) basis functions φi de�ned in (46) we denote φi := Rhφi ∈ Vh
and observe that Vh = span{χi} = span{φi}.

In order to show the approximation property of the �nite element space Vh := span{φi} ⊂
Lp we de�ne the restriction operator Rh : Lp → Vh as

(50) Rhv(x) :=
∑

i∈{1,...,J}d
viφi(x) ,

where vi =
8

3h2

1

|Di|

∫
Di

(−∆)−1v(y) dy.

For simplicity we restrict the proof of the convergence of the above restriction operator to
d = 2 and assume that D is a rectangle; we expect an analogous proof to hold for d ≥ 3
and more general domains as well. For n ∈ N we denote by Vn := span{ek, k = 0, . . . , n}
the �nite-dimensional space spanned by the the �rst n eigenfunctions of the homogeneous
Dirichlet Laplace operator on the rectangular domain D = (−L,L)× (−L,L)

(51) ek(x1, x2) = sin

(
2πk

x1 + L

2L

)
sin

(
2πk

x2 + L

2L

)
, k ∈ N.

By the density of ∪n∈NVn in Lp it su�ces to show the convergence of the restriction operator
(50) for v ∈ Vn.
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Lemma 5.3. Let n ∈ N be �xed. For any p ≥ 1 and v ∈ Vn it holds that

‖v −Rhv‖Lp −→ 0 for h→ 0 .

Proof. It is enough to show that the statement holds for v ≡ ek, k ∈ N.
For x = (x1, x2) ∈ D we consider the following discrete Laplace operator

(−∆9
h)u(x1, x2) :=

8

3h2

[
u(x1, x2)− 1

8
u(x1 + h, x2 + h)− 1

8
u(x1, x2 + h)

− 1

8
u(x1 − h, x2 + h)− 1

8
u(x1 + h, x2)

− 1

8
u(x1 − h, x2)− 1

8
u(x1 + h, x2 − h)(52)

−1

8
u(x1, x2 − h)− 1

8
u(x1 − h, x2 − h)

]
.

The discrete Laplace operator −∆9
h corresponds to the 9-point �nite di�erence approximation

of the Laplace operator, cf. [12, p. 190, Example 4]; see also Figure 2. We note that for

−1 −1

−1

−1

−1 −1

−1 −1

8

Figure 2. Finite di�erence stencil related to the Discrete Laplace operator −∆9
h.

u ∈ C4(D) the discrete Laplace operator (52) satis�es the consistency property

(53) (−∆9
h)u(x) + ∆u(x) = O(h2) ∀x ∈ D.

With each element Di ∈ Th we associate the corresponding basis functions φi, ψi. To deal
with the complication that the basis functions associated with the elements of the partition
Th along the boundary of the domain D have a di�erent shape (c.f., (46) for i1, i2 = 1, J and
(40), (42)), we introduce a layer of 4(J + 1) �ghost� cells D∗(0,i2), D

∗
(J+1,i2), D

∗
(i1,0), D

∗
(i1,J+1),

i1, i2 = 0, . . . , J + 1 (the dimensions of the cells will be speci�ed below) along the outer side
of the boundary of D. We then denote the resulting extended partition with (J + 2)2 cells as
T ∗h = Th ∪ {D∗(i1,i2)}, i.e., T

∗
h includes the elements of Th and the �ghost� cells.

Recall the following trivial symmetry properties of the eigenfunctions ek from (51) (as well
as for (−∆−1

D )ek, since (−∆−1
D )ek = λkek) which hold along the boundary of D: ek(−L −

x1, x2) = −ek(−L + x1, x2), ek(L + x1, x2) = −ek(L − x1, x2), and ek(−L − x1,−L − x2) =
ek(−L + x1,−L + x2), ek(L + x1,−L − x2) = ek(L − x1,−L + x2). We note that (for ghost
cells D∗i with dimensions given implicitly via the de�nition (55)) the symmetry also transfers

to the piecewise constant approximation of ek over T ∗h , i.e., for Rhek naturally extended on
T ∗h . We will use this fact to construct an "extension" of Rh from (50) on T ∗h (see (57) below).
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We consider a (modi�ed) �nite element basis associated with the elements of the extended
partition T ∗h with (J + 2)2 basis functions which are de�ned as (46) with the exception that
we only use the (suitably shifted) "interior" basis functions (41), (44). Namely, we use (46)
where for i1 = i, i2 = i we set for i = 0, . . . , J + 1

φ∗i (x) = −1

2
χ(xi−2,xi−1](x) + χ(xi−1,xi](x)− 1

2
χ(xi,xi+1](x) ,(54)

where we de�ne x−1 = −L − (x1 − x0), xJ+1 = L + (xJ − xJ−1) (i.e., we replace the basis
functions (40), (42) and (43), (45) by their "interior" counterparts); we proceed analogously
for the basis functions ψ1, ψJ , i.e., replace (43), (45) by a suitably shifted analogues ψ∗1, ψ

∗
J

of (44).
We note that the �boundary� basis functions satisfy φ1(x)|(x0,x1) = (φ∗1(x)− φ∗0(x))|(x0,x1),

φJ(x)|(xJ−1,xJ ) = (φ∗J(x)−φ∗J+1(x))|(xJ−1,xJ ) (and similarly for ψ1, ψJ). We deduce from (46)
that analogous relations also hold for φ∗i and φi (as well as for ψ∗i and ψi) for instance it

holds at the bottom boundary (analogically for the top, left and right boundaries)

(55) φ(i1,1)|D(i1,1)
=
(
φ∗(i1,1) − φ

∗
(i1,0)

)
|D(i1,1)

,

and similarly for φ(i1,1)|D(i1+1,1)
, φ(i1,1)|D(i1−1,1)

. Slightly modi�ed relations hold for the basis

functions associated with the corner elements D(1,1), D(1,J), D(J,1), D(J,J) of Th; for instance
for D(1,1) we deduce

φ(1,1)|D(1,1)
=
(
φ∗(1,1) − φ

∗
(1,0) − φ

∗
(0,1) + φ∗(1,1)

)
|D(1,1)

,(56)

φ(1,1)|D(2,1)
=
(
φ∗(1,1) − φ

∗
(1,0)

)
|D(2,1)

,

φ(1,1)|D(1,2)
=
(
φ∗(1,1) − φ

∗
(0,1)

)
|D(1,2)

,

and similarly for basis functions at D(1,J), D(J,1), D(J,J).
On noting the aforementioned symmetry properties of eigenfunctions ek and the relations

(55), (56) (along with their counterparts covering the remaining situations) we observe that
(50) for v ≡ ek is equivalent to

(57) Rhv(x)|D ≡
∑

i∈{0,1,...,J,J+1}d
viφ
∗
i (x) ,

where {φ∗i } is the previously constructed extended basis of "interior" basis functions associated
with elements of T ∗h .

The equivalent representation (57) of the restriction operator (50) simpli�es the subsequent
considerations, since it only involves one type of (interior) basis functions. For the rest of the
proof we will work with the basis functions φ∗i but drop the superscript �∗� to simplify the

notation (also note φ∗(i1,i2) ≡ φ(i1,i2) for 1 < i1, i2 < J , i.e., the modi�cation is only required

at the boundary).
We consider an element Di ⊂ D. By a direct calculation of the elementwise mean of the

basis functions (46) for d = 2 (i.e., evaluating φj ≡ Rhφj), we note that for x ∈ Di, �xed
i = (i1, i2) it holds that φi(x) ≡ 1 and φj(x) ≡ −1

8 for j ∈ N (i) := {j ∈ {1, , . . . , J}2; Dj ∩
Di 6= ∅} ≡ {j = (i1 + k1, i2 + k2); k1, k2 = −1, 0, 1}, j 6= i, cf. Figure 2; below we denote

k = (k1, k2) ∈ {−1, 0, 1}2 the local index of j with respect to i and write j ≡ globi(k).
Consequently, we observe that the coe�cients in the de�nition of the discrete Laplace operator
(52) for x ∈ Di correspond to the values φj |Di , j ∈ N (i), scaled by the factor 8

3h2
.
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Hence, from the above observation, noting the de�nitions (50), (48) and recalling (52) we
deduce for x ∈ Di that

Rh[Rhv](x) =
∑

j∈N (i)

vjφj(x) =
8

3h2

∑
j∈N (i)

1

|Dj |

∫
Dj

(−∆)−1v(y)φj(x) dy

≡ 8

3h2

1∑
k1,k2=−1

1

|Dglobi(k)|

∫
Dglobi(k)

(−∆)−1v(y)φglobi(k)(x) dy

≡ 1

|Di|

∫
Di

1∑
k1,k2=−1

(−∆)−1v(y1 + k1h, y2 + k2h)
8

3h2
φglobi(k)(x) dy(58)

=
1

|Di|

∫
Di

(−∆9
h)
(
(−∆)−1v(y)

)
dy ,

where we employed the integral transformation Dj → Di for j 6= i (i.e., y = (y1, y2) ∈ Dj →
(y1 + k1h, y2 + k2h) ∈ Di) along with the fact that |Dj | = |Di|.

By the consistency property (53) we get from (58) for x ∈ Di that

Rh[Rhv](x) =
1

|Di|

∫
Di
−∆(−∆)−1v(y) dy +O(h2) =

1

|Di|

∫
Di
v(y) dy +O(h2)

≡ Rhv(x) +O(h2) .

Consequently, on recalling Lemma 5.1 we conclude for h→ 0 that

(59)
∥∥v −Rh[Rhv]

∥∥
Lp ≤ ‖v −Rhv‖Lp +O(h2)→ 0 .

Next, we estimate the di�erence Rh[Rhv] − Rhv. Due to the local support of the basis
functions for x ∈ Di we may express

(
Rh[Rhv]−Rhv

)
(x) =

8

3h2

∑
j∈N (i)

1

|Dj |

∫
Dj

(−∆)−1v(y) dy
(
φj(x)− φj(x)

)
.(60)

As in (58) we employ the transformation Dj → Di for j 6= i and rewrite the above expression
as

(
Rh[Rhv]−Rhv

)
(x)

=
8

3h2

1

|Di|

∫
Di

1∑
k1,k2=−1

(
(−∆)−1v(y1 + k1h, y2 + k2h)

(
φglobi(k)(x)− φglobi(k)(x)

))
dy .
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Hence, after expressing the basis functions (46) explicitly (recall i = (i1, i2), x = (x1, x2) ∈
Di = (xi1−1,xi1)× (xi2−1,xi2)), for each y = (y1, y2) we restate

1∑
k1,k2=−1

(−∆)−1v(y1 + k1h, y2 + k2h)
(
φglobi(k)(x)− φglobi(k)(x)

)
=

[
(−∆)−1v(y(1,1))

(
−1

2
ai1,1(x1)− 1

2
ai2,1(x2) +

1

8

)
+ (−∆)−1v(y(0,1))

(
−1

2
ai1,2(x1) + ai2,1(x2) +

1

8

)
+ (−∆)−1v(y(−1,1))

(
−1

2
ai1,3(x1)− 1

2
ai2,1(x2) +

1

8

)
+ (−∆)−1v(y(1,0))

(
ai1,1(x1)− 1

2
ai2,2(x2) +

1

8

)
+ (−∆)−1v(y(0,0))

(
ai1,2(x1) + ai2,2(x2)− 1

)
(61)

+ (−∆)−1v(y(−1,0))

(
ai1,3(x1)− 1

2
ai2,2(x2) +

1

8

)
+ (−∆)−1v(y(1,−1))

(
−1

2
ai1,1(x1)− 1

2
ai2,3(x2) +

1

8

)
+ (−∆)−1v(y(0,−1))

(
−1

2
ai1,2(x1) + ai2,3(x2) +

1

8

)
+ (−∆)−1v(y(−1,−1))

(
−1

2
ai1,3(x1)− 1

2
ai2,3(x2) +

1

8

)]
,

where we employ a shorthand notation y(k1,k2) = (y1 + k1h, y2 + k2h) and for n = 1, 2 we
denote (cf. (46))

ain,1(xn) :=
3

2h2
ψin+1(xn) =

3

2h2

1

4
(xn − xin−1)2 for xn ∈ (xin−1,xin),

ain,2(xn) :=
3

2h2
ψin(xn) =

3

2h2

[
−1

2

(
xn − xin−1 −

h

2

)2

+
3h2

8

]
for xn ∈ (xin−1,xin),

ain,3(xn) :=
3

2h2
ψin−1(xn) =

3

2h2

1

4
(xin − xn)2 for xn ∈ (xin−1,xin).

The following property, which follows from (44) by direct calculation, will be essential in the
sequel

(62) ain,1(x) + ain,2(x) + ain,3(x) =
3

4
,

for in = 2, . . . , J − 1, and x ∈ (xin−1,xin).
Next, we expand the terms ṽ(y(k1,k2)) := (−∆)−1v(y1 + k1h, y2 + k2h) in (61) at y ≡ y(0,0)

using Taylor series as

1∑
k1,k2=−1

ṽ(y(k1,k2))
(
φglobi(k)(x)− φglobi(k)(x)

)
= I + · · ·+ IV ,
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where

I =

[
ṽ(y) + (∂x1 ṽ(y) + ∂x2 ṽ(y))h+

(
1

2
∂2
x1 ṽ(y) + ∂x1∂x2 ṽ(y) +

1

2
∂2
x2 ṽ(y)

)
h2

+O(h3)

](
−1

2
ai1,1(x1)− 1

2
ai2,1(x2) +

1

8

)
+

[
ṽ(y) + ∂x2 ṽ(y)h+

1

2
∂2
x2 ṽ(y)h2 +O(h3)

](
−1

2
ai1,2(x1) + ai2,1(x2) +

1

8

)
,

II =

[
ṽ(y) + (−∂x1 ṽ(y) + ∂x2 ṽ(y))h+

(
1

2
∂2
x1 ṽ(y)− ∂x1∂x2 ṽ(y) +

1

2
∂2
x2 ṽ(y)

)
h2

+O(h3)

](
−1

2
ai1,3(x1)− 1

2
ai2,1(x2) +

1

8

)
+

[
ṽ(y) + ∂x1 ṽ(y)h+

1

2
∂2
x1 ṽ(y)h2 +O(h3)

](
ai1,1(x1)− 1

2
ai2,2(x2) +

1

8

)
+ ṽ(y) (ai1,2(x1) + ai2,2(x2)− 1) ,

III =

[
ṽ(y)− ∂x1 ṽ(y)h+

1

2
∂2
x1 ṽ(y)h2 +O(h3)

](
ai1,3(x1)− 1

2
ai2,2(x2) +

1

8

)
+

[
ṽ(y) + (∂x1 ṽ(y)− ∂x2 ṽ(y))h+

(
1

2
∂2
x1 ṽ(y)− ∂x1∂x2 ṽ(y) +

1

2
∂2
x2 ṽ(y)

)
h2

+O(h3)

](
−1

2
ai1,1(x1)− 1

2
ai2,3(x2) +

1

8

)
,

IV =

[
ṽ(y)− ∂x2 ṽ(y)h+

1

2
∂2
x2 ṽ(y)h2 +O(h3)

](
−1

2
ai1,2(x1) + ai2,3(x2) +

1

8

)
+

[
ṽ(y)− (∂x1 ṽ(y) + ∂x2 ṽ(y))h+

(
1

2
∂2
x1 ṽ(y) + ∂x1∂x2 ṽ(y) +

1

2
∂2
x2 ṽ(y)

)
h2

+O(h3)

](
−1

2
ai1,3(x1)− 1

2
ai2,3(x2) +

1

8

)
.

We rearrange the above terms I − IV , use the identity (62) and obtain

1∑
k1,k2=−1

ṽ(y(k1,k2))
(
φglobi(k)(x)− φglobi(k)(x)

)
= 0 ·

[
ṽ(y) + (∂x1 ṽ(y) + ∂x2 ṽ(y))h+ ∂x1∂x2 ṽ(y)h2

]
(63)

+
1

2
∂2
x1 ṽ(y)

[
− ai2,1(x2)− ai2,2(x2)− ai2,3(x2) +

3

4

]
h2

+
1

2
∂2
x2 ṽ(y)

[
− ai1,1(x1)− ai1,2(x1)− ai1,3(x1) +

3

4

]
h2 +O(h3)

= O(h3) .
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Hence, we substitute (63) into (60) to conclude that∥∥Rh[Rhv]−Rhv
∥∥
Lp =

∥∥∥ 8

3h2

∑
j∈{1,...,J}d

1

|Dj |

∫
Dj

(−∆)−1v(y)
(
φj(·)− φj(·)

)
dy
∥∥∥
Lp

(64)

= Ch .

Finally, by the triangle inequality we estimate

‖v −Rhv‖Lp ≤ ‖v −Rh[Rhv]‖Lp + ‖Rh[Rhv]−Rhv‖Lp ,(65)

and the statement follows by (59) and (64). �

The above lemma allows us to deduce the density of {Vh}h>0 in Lp.

Corollary 5.4 (Approximation property of Vh). For every v ∈ Lp, p ≥ 1 it holds that

inf
vh∈Vh

‖v − vh‖Lp → 0 for h→ 0.

Proof. Consider vε ∈ Vn and note that limh→0 ‖vε − Rhvε‖Lp = 0 by Lemma 5.3. Since
Rhvε ∈ Vh we get

inf
vh∈Vh

‖v − vh‖Lp ≤ ‖v −Rhvε‖Lp ≤ ‖v − vε‖Lp + ‖vε −Rhvε‖Lp .

The statement then follows by the density of ∪n∈NVn in Lp. �

The restriction operator (50) is not implementable since it requires the evaluation of the
function (−∆)−1v, which is not available in general. For practical purposes (e.g., to compute
the discrete approximation of the initial condition) it is convenient to consider the discrete
H−1-projection Ph : H−1 → Vh which is de�ned for v ∈ H−1 as follows

(66) (Phv, wh)H−1 = (v, wh)H−1 ∀wh ∈ Vh.

Remark 5.5. The H−1-stability of the orthogonal projection, i.e., ‖Phv‖H−1 ≤ C‖v‖H−1 fol-
lows on taking wh = Phv in (66) and using the Cauchy-Schwarz and Young's inequalities.
Furthermore, we note that (66) is equivalent to Phv = arg minwh∈Vh ‖v − wh‖2H−1 which in

particular implies that Ph(Rhv) = Rhv for v ∈ V = Lp ∩H−1.
Consequently, using the continuous embedding Lp ↪→ H−1, for p ≥ 2d/(d + 2) we get for

v ∈ Lp, vε ∈ Vn
‖v − Phv‖H−1 ≤ ‖v −Rhvε‖H−1 ≤ ‖v − vε‖H−1 + ‖vε −Rhvε‖H−1

≤ ‖v − vε‖H−1 + C‖vε −Rhvε‖Lp .

Hence, by Lemma 5.3, the density of Lp, p ≥ 2d/(d + 2) in H−1 and the density of ∪n∈NVn
in Lp we conclude the approximation property of the H−1-orthogonal projection:

lim
h→0
‖v − Phv‖H−1 = 0 ∀v ∈ H−1 .

Remark 5.6 (Case p < 2d/(d + 2)). For v ∈ V = Lp ∩ H−1 we recall that the operator
Qh : V→ Vh in Section 3 is de�ned as

Qhv = arg min
vh∈Vh

‖v − vh‖V .

For p ≥ 2d/(d+2) it holds that V = Lp and we may choose the operator Qhv = arg min
vh∈Vh

‖v−

vh‖Lp for v ∈ Lp = V and obtain (19) directly from Corollary 5.4.



30 �UBOMÍR BA�AS, BENJAMIN GESS, AND CHRISTIAN VIETH

For p < 2d/(d+ 2) < 2 the embedding Lp ↪→ H−1 does not hold, nevertheless one can show
(19) by a density argument. We consider vε ∈ Vn and estimate

(67) ‖v −Qhv‖V ≤ ‖v −Qhvε‖V = ‖v − vε‖V + ‖vε −Qhvε‖V.

We estimate the second term on the right-hand side above as

‖vε −Qhvε‖V ≤ ‖vε −Rhvε‖V = ‖vε −Rhvε‖Lp + ‖vε −Rhvε‖H−1 = I + II,

where I → 0 for h → 0 by Lemma 5.3. Note that the de�nition of the H−1 inner product
implies ‖v‖2H−1 = (v, (−∆−1)v)L2. Hence, we estimate the second term by the Cauchy-Schwarz

inequality and the L2-stability of the inverse Laplacian as

II2 ≤ ‖vε −Rhvε‖L2‖(−∆−1)(vε −Rhvε)‖L2 ≤ C‖vε −Rhvε‖2L2 → 0 for h→ 0,

by Lemma 5.3. Then (19) follows from (67) by the density of {Vn}n∈N in V.

6. Numerical Experiments

6.1. Convergence of the projection in d = 2. We study the experimental Lp-convergence
( for p = 3) of the H−1-projection operator (66) as well as of an implementable counterpart

R̃h : Lp → Vh of the restriction operator (50) de�ned as

R̃hv(x) :=
∑

i∈{1,...,J}d
ṽiφi(x) ,

where ṽi =
8

3h2
[(−∆9

h)−1Rhv]i. I.e., the coe�cients are the solutions of �nite di�erence scheme

−∆9
h

(
3h2

8
ṽi

)
= Rhv|Di ,

for i ∈ {1, . . . , J}2; we note that it holds by construction that RhR̃hv = Rhv and R̃hRhv =

R̃hv.
In Figure 3 we display the convergence plot of the H−1-projection of the Barenblatt solution

PhuB(t, ·) at t = 0.1 (see (68) below) along with the convergence plot of Phχ(−0.5,0.5)2 of the

(non-smooth) indicator function of the (−0.5, 0.5)2-square; in both cases D = (−1.5, 1.5)2.
The convergence plot implies convergence of the projection in Lp (p=3) of order h for the

smooth Barenblatt function and of order of h2/3 in the non-smooth case.
In addition we display in Figure 3 the convergence plot of the restriction operator R̃h for

the indicator function χ(−0.5,0.5)2 which is also of order h2/3.

6.2. Barenblatt solution of the deterministic PME. We consider (1) with α(u) =
|u|p−2u, f ≡ 0, g ≡ 0, σ ≡ 0 which corresponds to the deterministic porous medium equation

∂tu = ∆(|u|p−2u).

The exact solution of the porous medium equation with initial condition u0 = δ0 (i.e., the
δ-distribution centered at 0) the so-called Barenblatt solution

(68) uB(t, x) = t−a max
{

0, C − k|x|2t−2b
}1/(p−2)

,

where a , b, k, C are suitable constants that depend on p, d, c.f. [64, Ch. 17.5].
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Figure 3. Convergence of the H−1-projection (left) and of the restriction

operator R̃h (right).

In the experiments below we choose D = (−1.5, 1.5)d, d = 1, 2 and T = 0.1, p = 3. We
consider a regularized initial condition u0 = δ0 ≈ ũh,0 ∈ Vh with

ũh,0(x) =
1

(2h)d

{
1 if x ∈ Di, j ∈

{
J
2 ,

J
2 + 1

}d
0 else

and set uh,0 = Ph(ũ0) ∈ Vh.
We study the convergence of the numerical approximation with respect to τ , h in the Lp-

norm, i.e., we compute the error ‖uB − uτ‖Lp([t,T ]×D) over time-interval [t, T ] = [0.01, 0.1]
where we choose t > 0 to reduce the e�ect of the approximation of the initial condition.

In Table 1 we display the Lp-error for τ = 1/N , h = 2L/J in d = 1. The corresponding con-
vergence plots in Figure 4 indicate that the convergence order of the numerical approximation
with respect to τ is slightly less than one and around 3

2 with respect to h.

N \ J 8 16 32 64 128 256
8 0.083032 0.02221 0.020881 0.024805 0.025878 0.025931
16 0.07524 0.016254 0.015419 0.015481 0.015893 0.016162
32 0.075711 0.017544 0.0070398 0.0088919 0.0094508 0.0094772
64 0.077172 0.021771 0.0054151 0.0051293 0.0056912 0.0059705
128 0.077702 0.022649 0.0060452 0.0028429 0.0033319 0.0035322
256 0.077591 0.022801 0.006569 0.002342 0.0017761 0.0019579
512 0.077532 0.022934 0.0069462 0.002467 0.0011016 0.0010656
1024 0.077593 0.023061 0.007187 0.0025917 0.00099377 0.00060724

Table 1. Lp((0.01, 0.1)×D)-error of the solution, d = 1.

To highlight the �nite speed of propagation property on the discrete level we display the
evolution of the support of the numerical approximation in Figure 5.

Next we examine the convergence behaviour in d = 2, we note that in this case u0 /∈ H−1.
In Table 2 we display the Lp-error computed for τ = 1/N , h = 2L/J .



32 �UBOMÍR BA�AS, BENJAMIN GESS, AND CHRISTIAN VIETH

Figure 4. Convergence of the Lp((0.01, 0.1) × D)-error of the numerical ap-
proximation of the deterministic Barenblatt solution in 1d. Left: convergence
with respect to h for �xed τ , right: convergence with respect to τ for �xed h.

The corresponding convergence plots in Figure 6 indicate that the convergence order of the
numerical approximation with respect to τ and h are both close to one. As expected, (due to
the lower regularity of the initial condition in d = 2) the observed convergence order of the
spatial discretization is slightly worse than the corresponding convergence order for d = 1. We
display the time evolution of the numerical solution in Figure 7 and a detail of the numerical
solution at T = 0.1, d = 2 is displayed in Figure 8.

N \ J 8 16 32 64 128 256
8 0.092154 0.050998 0.045512 0.04534 0.04531 0.045288
16 0.094038 0.047956 0.032504 0.028832 0.027894 0.027644
32 0.095218 0.048104 0.026604 0.019108 0.016976 0.016402
64 0.098787 0.050731 0.026017 0.015466 0.011883 0.010852
128 0.10062 0.052414 0.026237 0.013883 0.0087862 0.0070965
256 0.10077 0.052773 0.026229 0.013247 0.0072316 0.0048007
512 0.10086 0.052981 0.026295 0.013092 0.0067107 0.0037732
1024 0.10109 0.05325 0.026433 0.013108 0.0065808 0.0034176

Table 2. Lp((0.01, 0.1)×D)-error of the solution, d = 2.

6.3. Barenblatt solution for the stochastic PME. We consider the stochastic porous
medium equation (1) with a scalar-valued Wiener process W (t) and linear multiplicative
noise σ(u) = u and f, g = 0. In this case, for d = 1, D = R and p = 3 the analytic solution
can be expressed as

uB

(∫ t

0
eW (s)− s

2 ds, ·
)
eW (t)− t

2 ,
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Figure 5. (top) Time evolution of the numerical solution for J = 64, N = 128
in d = 1; (bottom) the corresponding support of the numerical solution, in
yellow, and the support of the analytic solution, in red.

where uB is the deterministic Barenblatt solution (68), cf. [3, p. 87,88] and the references
cited therein. The support at time t ∈ (0, T ] are all x ∈ R, such that

(69) |x| ≤

√
C

2d(p− 1)

a(p− 2)

(∫ t

0
eW (s)− s

2 ds

)a/d
=
√

12C
3

√∫ t

0
eW (s)− s

2 ds,

with C = C(d, p) as above. Hence, we perform the simulations on a �nite the domain
D = (−L,L) that contains the support of the solution in (0, T ] for each considered realization
of the Wiener process W (t); in the present simulations we set L = 1.5. The �nite speed of
propagation is preserved in the preformed the simulations.

In Table 3 and Figure 9 we observe the convergence with respect to (τ, h) of the numerical
approximation of the stochastic Barenblatt solution. We display the expectation of the
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Figure 6. Convergence of the Lp((0.01, 0.1) × D)-error of the numerical ap-
proximation of the deterministic Barenblatt solution in 2d. Left: convergence
with respect to h for �xed τ , right: convergence with respect to τ for �xed h.

error of the numerical approximation of the stochastic Barenblatt solution in the Lp (p = 3)
norm, where we use Monte-Carlo method with 106 realizations of the noise to approximate
the expectation.

N \ J 8 16 32 64 128 256
8 0.045434 0.022878 0.036722 0.040406 0.041319 0.041538
16 0.06444 0.01176 0.021544 0.025007 0.025851 0.026057
32 0.069643 0.012408 0.011412 0.014496 0.015296 0.01549
64 0.074465 0.016884 0.0065525 0.0087332 0.0095565 0.0097648
128 0.076666 0.020286 0.0057942 0.00491 0.0056214 0.0058322
256 0.077362 0.02164 0.0063097 0.0029489 0.0031048 0.0032878
512 0.077722 0.022367 0.0067772 0.0025539 0.0017667 0.0018573
1024 0.077983 0.022812 0.0070991 0.002603 0.0012162 0.0010803

Table 3. Lp(Ω× (0.01, 0.1)×D)-error of the approximation of the stochastic
Barenblatt solution.
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Figure 7. Snapshots of the numerical solution computed with J = N = 256
at time t = 0, 0.025, 0.05, 0.075, 0.1.
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Figure 8. Numerical approximation of the Barenblatt solution at time t = T
for J = N = 256, d = 2

Figure 9. Convergence of the Lp(Ω× (0.01, 0.1)×D)-error of the numerical
approximation of the stochastic Barenblatt solution. Left: convergence with
respect to h for �xed τ , right: convergence with respect to τ for �xed h.

Figure 10 shows one sample path, the analytic support (for this path) is plotted in red and
the support of the approximation in yellow. We observe that the �nite speed of propagation
is preserved P-a.s.
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(a) Time evolution of the numerical solution, J = 64, N = 128.

(b) Support of the numerical solution, J = 64, N = 128; red line indicates the analytic support (69).

Figure 10. Numerical approximation of the stochastic Barenblatt solution in 1d.

6.4. Numerical experiments with space-time white noise. We study the stochastic
porous medium equation with space-time white noise on D = [−L,L], L = 1.5, where no
analytic solution is available. We consider a uniform partition of D into sub-intervals Di =
(−L + (i − 1)h,−L + ih), i = 1, . . . , J with mesh size h = 2L

J . We consider the stochastic
porous medium equation (1) with linear multiplicative space-time white noise σ(u) dW ≡
σ0udWh where σ0 is a constant. The term dWh(t, x) = σ0u

∑J
i=1

χi(x)

h1/2
dβi(t), where χi

are the indicator functions of Di and βi are independent Brownian motions, is a V̄h-valued
approximation of the space-time white noise, cf., for instance, [1], [7], [55].

In Figure 11 we display the numerical solution for one realization of the discrete space-time
white noise with σ0 = 1

8 , p = 3 along with the corresponding support. We observe that the
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evolution of the support for the space-time white noise does not deviate signi�cantly from the
deterministic case. In particular the numerical approximation preserves the �nite speed of
propagation of the support, see Figure 12.

(a) Time evolution of the numerical solution, J = 64, N = 128.

(b) Support of the numerical solution, J = 64, N = 128.

Figure 11. Numerical solution of the stochastic problem with discrete space-
time white noise in 1d.

Next, we examine the convergence of the numerical approximation with the approximate
space-time white noise σ0udWh. We choose σ0 = 1 and consider a sequence of nested meshes
h = 3/J , J = 200 × 2i for i = 1, 2, 3, 4 and set τ = T

102−2(1+i) = O(h2). Since no explicit
solution is known for the case of space-time white noise we consider the numerical solution uh̃
with h̃ = 1/J̃ , J̃ = 6400 as a reference solution. To construct realizations of the noise which
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Figure 12. Evolution of the the support of the numerical approximation,
J = 64, N = 128: green - support of the numerical solution of the determin-
istic problem, yellow - support of the stochastic numerical solution with the
discrete space-time white noise; red line indicates the analytic support of the
deterministic solution.

are consistent across all discretization levels we construct the realizations of the space-time
noise on the coarse level by suitable averaging of the noise on the �nest level J̃ = 6400 with
h̃ = 3/6400, τ̃ = T

104−6 as in [9, Section 4.1]. For technical reasons we compute the Lp, p = 3
error of the numerical approximation at the �nal time level which corresponds to the �nal
time T = 0.1, the expectation was computed as an average of 100 realizations of the discrete
space-time white noise. The plot of the error in Figure 13 indicates convergence order of order
1/2 with respect to the mesh size h or 1/4 with respect to the time step τ = O(h2). We
note that the presented convergence result goes beyond the existing theory of Example 2.4
which does not cover linear multiplicative noise. The convergence of the considered discrete
space-time white noise approximation dWh in the additive noise case is given in Appendix A.
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Appendix A. Approximation of the space-time white noise

We discuss the convergence of the numerical approximation of (11) with additive space-
time white noise in dimension d = 1 for the piecewise constant approximation of the noise
introduced in Section 6.4, instead of the truncated noise expansion analyzed before. For
simplicity below we consider D = (0, 1) and a uniform partition with |Di| = h = 1/J .
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Figure 13. Convergence of the error E
[
‖uNh − uÑh̃ ‖

3
L3

]1/3
of the numerical ap-

proximation uNh for h = 3/J , J = 400, 800, 1600, 3200 to the reference solution

uÑ
h̃

at the �nal time level tN = tÑ = T .

We note that the approximation of the space-time white noise introduced in Section 6.4 can
be interpreted as a projection of the space-time white noise W onto Vh (cf. [1], [7], [55]):

dWh(t, x) = Rh dW (t, x) =

J∑
i=1

χi(x)

h1/2
dβi(t).

where Rh is the restriction de�ned in (48).
For v ∈ H = H−1 we observe that

( dWh(t), v)H =

∫
D

dWh(t, x)(−∆−1)v(x) dx =
J∑
i=1

dβi(t)

|Di|1/2

∫
Di

(−∆−1)v(x) dx

=

J∑
i=1

|Di|
dβi(t)

|Di|1/2

(
1

|Di|

∫
Di

(−∆−1)v(x) dx

)
=

∫
D
Rh
(
(−∆−1)v(x)

)
dW (t, x) dx.

Hence, using the Cauchy-Schwarz inequality and Lemma 5.1 we deduce for v ∈ L2(Ω;H−1)

independent of
∫ t
s dW that

E
[ ∫ t

s
( dW (ξ), v)H − ( dWh(ξ), v)H

]
≤ E

[(∫ t

s

(
dW (ξ), (−∆−1)v −Rh(−∆−1)v

)
L2

)2
]1/2

= E
[∫ t

s
‖(−∆−1)v −Rh(−∆−1)v‖2L2 dξ

]1/2

(70)

≤ hE
[∫ t

s
‖∇
(
(−∆−1)v

)
‖2L2 dξ

]1/2

= hE
[∫ t

s
‖v(ξ)‖2H dξ

]1/2

,

where we also used that (−∆−1)v ∈ H1
0 and ‖∇

(
(−∆−1)v

)
‖L2 = ‖v‖H for v ∈ H−1.
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In the case of (11) with additive space-time white noise we may consider the following
numerical scheme as an alternative to (21)(

unh − un−1
h , vh

)
H + τ 〈Aunh, vh〉V′×V = τ 〈bn, vh〉V′×V + (∆nWh, vh)H .(71)

To obtain the counterpart of the a priori estimate in Lemma 3.4 for the solution of (71) we

estimate the noise term in analogously to (24) using the independence of ∆jW , uj−1
h as

E
[(

∆jWh, u
j
h

)
H

]
≤ E

[(
∆jW,u

j−1
h

)
H

]
+ E

[(
∆jWh, u

j
h − u

j−1
h

)
H

]
≤ 1

2
E
[∥∥∆jWh

∥∥2

H

]
+

1

2
E
[∥∥ujh − uj−1

h

∥∥2

H

]
.

We take {ek}k∈N to be the eigenbasis of the Dirichlet Laplacian onD, express χi =
∑

k∈N(χi, ek)L2ek
and note that

∆jWh =
1

|h|1/2
J∑
i=1

χi(x)∆jβi =
1

|h|1/2
J∑
i=1

(∑
k∈N

(χi, ek)L2ek(x)
)

∆jβi.

Hence, using the independence of {βi}Ji=1 and E[|∆jβi|2] = τ we estimate

E
[∥∥∆jWh

∥∥2

H

]
=

1

h
E

( J∑
i=1

(∑
k∈N

(χi, ek)L2ek

)
∆jβi,

J∑
i=1

(∑
k∈N

(χi, ek)L2ek

)
∆jβi

)
H


=
τ

h

J∑
i=1

∥∥∥∑
k∈N

(χi, ek)L2ek

∥∥∥2

H
=
τ

h

J∑
i=1

∑
k,`∈N

(
(χi, ek)L2(−∆−1)ek, (χi, e`)L2e`

)
L2

=
τ

h

J∑
i=1

∑
k∈N

(χi, ek)
2
L2

π2k2
‖ek‖2L2 ≤ τh

J∑
i=1

∑
k∈N

1

π2k2
≤ τ

6
,

where we used that (−∆−1)ek = ek
π2k2

, (ek, e`)L2 = δk` and (χi, ek)L2 ≤ h. The remainder of
the proof of Lemma 3.4 follows with minor modi�cations.

The proof of Lemma 4.2 can also be adapted for the approximation (71) in a straightforward
way. The noise term in (71) is rewritten as (∆nWh, vh)H = (∆nW, vh)H+(∆nWh −∆nW, vh)H
and the expectation of second term vanishes for h→ 0 thanks to (70). The remainder of the
convergence proof of (71) follows as for the original approximation.
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