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ABSTRACT. This paper is devoted to studying the Hamilton-Jacobi-Bellman
equations with distribution-valued coefficients, which is not well-defined in the
classical sense and shall be understood by using paracontrolled distribution
method introduced in [GIP15]. By a new characterization of weighted Holder
space and Zvonkin’s transformation we prove some new a priori estimates, and
therefore, establish the global well-posedness for singular HJB equations. As
an application, the global well-posedness for KPZ equations on the real line
in polynomial weighted Hélder spaces is obtained without using Cole-Hopf’s
transformation.
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1. INTRODUCTION

In this paper we are concerned with the following singular Hamilton-Jacobi-
Bellman equation in R¢ (abbreviated as HIJB):

Lu:= (0 —A)u=H(Vu)+b-Vu+ f, u(0)=uog, (1.1)
where H : R? — R is a locally Lipschitz function of at most quadratic growth, and
for some a € (3,2) and k € (0, 1),

be LFEC™(py), f€LFC™(py).
Here p,.(z) := (x)~* := (1 + |z|?)~*/? and C~*(p,) stands for the weighted Holder
(or Besov) space (see Section 2.1).
It is well known that HJB equation appears originally in optimal control theory,
whose solution represents the value function of an optimal control problem (see

[Kry80, YZ99, FS06]). Let us consider the following stochastic optimal control
problem:

V(t,x) = ing [/; L(87 X;y(m)7'7(s))d8 + '(/J(X%(x)) )

where the infimum is taken for all controls v being in some class of adapted pro-
cesses, L is the cost function, v is the final bequest value, and X} (z) = X, is the
state process and solves the following SDE:

dX; = (b(t, X;) + v )dt + V2dW;, X ==,
where W is a d-dimensional Brownian motion. Let

H(t,z,Q) := (v-Q+ L(t,z,v)).

By the dynamical programming principle, V' solves the following backward HJB
equation:

inf
veERd

OV +AV+b-V,V+HNVV)=0, V(T,z) = ().
Moreover, by the verification theorem, the optimal control v is then given by
VV(t, X;), where X} solves the following SDE:

AX; = (b(t, X)) + VV(t, X]))dt + V2dW,;, X§ = 2.

Thus the study of singular HJBs provides us a possibility to study the singular sto-
chastic control problem. Here the singularity means that b could be a distribution.

Another main motivation of studying HIJB (1.1) is to solve the following Kardar-
Parisi-Zhang (KPZ) equation on the real line:

ZLh = “0,h)* +&,  h(0) = ho, (1.2)

where ¢ is a Gaussian space-time white noise on R™ x R. The KPZ equation was
introduced in [KPZ86] as a model for the growth of interface represented by a height
function h. In [KPZ86] the authors predicted that under a famous 1 — 2 — 3 scaling
the height function must converge to a scale invariant random field which is called
KPZ fixed point (see [C12, Qual2, MQR17] and reference therein). Such conjecture
is called the strong KPZ universality conjecture. A weaker form of universality
which is now called the weak universality conjecture states that the KPZ equation
is itself a universal description of the fluctuations of weakly asymmetric growth
models (see e.g. [BG97, HQ18, HX19] and reference therein).

The main difficulty in solving (1.2) comes from the singularity of space-time
white noise and the nonlinearity, which makes 9,h is not a function and (9,h)?
cannot be understood in the classical sense. This problem can be avoided by using
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Cole-Hopf’s transform (see [KPZ86, BCJL94, BGIT]), i.e. w := e” formally solves
the stochastic heat equation

Lw=w, w(0)=e, (1.3)

which can be understood by Itd’s integration ([Wal86]). In [BCJL94, BGI7] the
solutions to (1.2) are defined by logw with w being the solutions to (1.3). But it
remained unclear whether the Cole-Hopf solution solves the original KPZ equation.

The first rigorous result on solving the original KPZ equation (1.2) on the torus
is due to Hairer by using rough path theory [Hail3]. Later Hairer introduced the
theory of regularity structures in [Hail4] and Gubinelli, Imkeller and Perkowski
proposed paracontrolled distribution method in [GIP15, GP17], which makes it
possible to study a large class of PDEs driven by singular noise. The key ideas
of these theories are to use the structure of solutions to give a meaning to the
not classically well-defined terms. These terms are well-defined with the help of
renormalization for the higher order terms of noise. More precisely, (9,h)? can be
formally understood as a subtraction of an infinite correction term: (9,h)? — co.
By a renormalization and decomposition procedure, one can reduce KPZ equation
(1.2) to an HIB equation (1.1) together with other linear equations (see Section 6
for more details).

Most of the well-known works in the field of singular SPDEs are considered
in the finite volume case. Since the main interest for the KPZ equation comes
from large scale behavior, it is natural to consider the KPZ equation on the real
line. In general the space-time white noise on the infinite volume stays in weighted
Besov spaces, and so does the solution. This prevents to apply the fixed point
argument to construct local solutions. The first work to overcome this difficulty
was achieved by Hairer and Labbé [HL15, HL18] for the linear rough heat equation
by using the exponential weight. For non-linear equation a priori estimate is a
natural tool and has been used successfully in the dynamical ®4 model by Mourrat
and Weber [MW17, MW17a] and Gubinelli and Hofmanova [GH19], which rely on
the damping term —¢3. In [PR19] a priori estimate and a paracontrolled solution
to KPZ equation have been obtained for (1.2) by using Cole-Hopf’s transform.
Using the probabilistic notion of energy solutions [GJ14, GJ13, GP18] or studying
the associated generator and Kolmogorov equation [GP18a] it is possible to give a
meaning of the KPZ equation on R, but this essentially depends on the invariant
measure and is restricted to the initial data, which is absolutely continuous w.r.t.
the stationary measure. In [CWZZ18] martingale solutions have been constructed
for geometric stochastic heat equations on infinite volume by using Dirichlet form
approach, which also relies on the integration by parts formula for the invariant
measure.

For (1.1) we have similar difficulty as (1.2). Since b, f € LC~*(p,) and a >
1/2, the best regularity space for u is LC?~ by Schauder’s estimate. As a
result, the transport term b - Vu is not well-defined in the classical sense. We need
to use regularity structure theory or paracontrolled distribution method to give a
meaning to equation (1.1). The main aim of this paper is to use PDE arguments
and paracontrolled distribution method to obtain the global well-posedness of (1.1).
Notice that for general H, we cannot use Cole-Hopf’s transform to transform (1.1)
into a linear equation.
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1.1. Main results. Our goal in the study of the present problem is to make some
progress in establishing global bounds for singular SPDEs in which strong damp-
ing is not at hand. As mentioned above, to define b - Vu we need to do renor-
malizations by probabilistic calculations. It is not the main aim of this paper
to discuss the renormalization terms as this has been done extensively (see e.g.
[Hail3], [GP17], [PR19]). For the main result, we suppose that the definition of
boV.7b € LFEC2%(py,.) and bo V.I f € LFECI2%(py,.) are well defined, where
I =L ie. (b, f) € B%(px) (see Section 2.3 and Section 2.4), which in general
could be realized by probabilistic calculation (see Section 6 for examples). Under
this assumption we are mainly concerned with the analysis of the deterministic
system in the following.

The following result is a special case of main Theorem 5.1.

Theorem 1.1. Let o € (3, 2) and r be small enough so that § := 2(5%-+1)x < 1,

a:=a+r"Y* e (L, 2). Suppose that for some ¢ > 0,

2°3
[0 H(Q)| < c(1+1Q)).
When d > 2, we also suppose H is sub-quadratic growth, i.e., for some ¢ € [0,2),

|H(Q)] < c(|Q|° +1).

Then for any renormailzied pair (b, f) € BS(px) and initial value ug € C*F¢(p5),
where £ > 0 is a small number, there exists a unique paracontrolled solution u €
S%%(p,) to HIB equation (1.1) in the sense of (5.4) and (5.5) below, where n =

Nk, a, () < I_Ta converges to zero as kK — 0.

As the main application, we obtain well-posedness of (1.2). The regularity of
the space-time white noise ¢ is more rough than the coefficient f given in (1.1).
To apply Theorem 1.1 we need to introduce some random distributions and use
Schauder estimate to transform (1.2) to (1.1). This is the usual way being done
for KPZ equation (cf. [Hail3, GP17, PR19]). We use Y to denote the stationary
solution to the linear equation (§;—A)Y =&, and YV, v are random distributions
defined in Section 6.

Theorem 1.2. Let x > 0 be small enough, § := 40k < 1. For hg = Y (0)+h(0) with
h(0) € C%"’Qe(pg(g) for e > 0, there exists a unique paracontrolled solution to (1.2)

1/4

7 E . .
in the sense that h—Y —Y" —YV .=h e Sz > (py) is a unique paracontrolled
solution to (6.3) for 2[(100k) V (k'/* 4+ 80k)] < n < 1.

This result improves the weight for the solution space obtained in [PR19] and is
proved in Theorem 6.3.

1.2. Sketch of proofs and structure of the paper. In Section 2 we first intro-
duce the basic notations and the spaces used throughout the paper. The regulariza-
tion effect of heat semigroups and paracontrolled calculus are recalled in Section 2.2
and Section 2.3, respectively. The conditions for the coefficient (b, f) are discussed
in Section 2.4.

The bulk of our argument is contained in Sections 3-5 and we now proceed to
explain the strategy. We separate (1.1) as the following two equations:

O —DN)w=0b-Vw+ f, w(0) = wy (1.4)
(O —A)u=b-Vu+ H(Vw+ Vu), u(0) = up. (1.5)

In Section 3 we first establish Schauder estimate for (1.4) with sublinear weights
(see Theorem 3.7). This solves the conjecture proposed in [PR19, Remark 1.1].
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Equation (1.1)
containing b, f and nonlinear term H

ecomposition
Equation (1.4) Equation (1.5)
without nonlinear term| without f
localization Zvonkin’s transform

Section 3 Section 4
Well-posedness of (1.4) Well-posedness of (1.6)
Solution: sublinear growth every term is a function

Section 5

Well-posedness of (1.1)

The difficulty to study (1.4) lies in the loss of weight for b part on the right hand
side. Tt is possible to use the technique in [HL18] to solve the problem. However, by
the technique in [HL18] the solution will stay in the Besov space with exponential
weight, which seems not easy to be used to obtain a uniform L% (ps) estimate for
solution to (1.5). The key idea is to use a new characterization of the weighted
Hélder space (see Lemma 3.8) to localize the problem with coefficient in unweight-
ed Besov spaces. To this end, we first establish the Schauder estimate with the
coefficient in unweighted Besov space in Section 3.2. Here we want to emphasize
that the estimate depends polynomially on the norm of the coefficient compared to
the exponential dependence by the usual Gronwall type argument. To obtain this,
we add a new damping term Aw to (1.4), for which a uniform estimate is easy to be
established by choosing A large enough. Then by a classical maximum principle, we
obtain the Schauder estimate for the solutions to (1.4) depending polynomially on
the coefficient. In Section 3.3 we establish global well-posedness of equation (1.4)
and a uniform estimate of solution to (1.4) in Besov space with sublinear weight.
We also mention that (1.4) on the torus has been studied in [CC18a], where the
difficulty of losing weight does not appear on the finite volume case.

We then study (1.5) in Sections 4 and 5. Compared to (1.1) the distribution-
valued f has been changed to function-valued. But we still have a singular transport
term b - Vu with distribution-valued b in (1.5). In the classical PDE theory (see
[LSUGS]) we may use De-Giorgi’s method to obtain better regularity. However, the
singularity of b makes it not easy. Instead, we use Zvonkin’s transform to transform
(1.5) to the following general HJB equation (see Section 5)

dyv = tr(a - V2v) + B - Vo + H(v, Vo), v(0) = ¢, (1.6)

where a € LC!~% is symmetric, uniformly elliptic, B € L3°(ps,) for some 6; €
(0,1]. All the coefficients of (1.6) are function-valued with the cost that (1.6) is
given as a non-divergence form. To be more precise, we use [GH19] to decompose b
into a less regular term b~ in the unweighted Besov space and a function-valued term
b<. Then we use Zvonkin’s transform to kill b-.. The idea comes from Zvonkin’s
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transform for SDEs, but our Zvonkin’s transform is different from the normal one
and to the best of our knowledge, it is the first time to be used for dealing with
nonlinear PDE (1.5). We emphasize that we need to construct a C*-diffeomorphism
by solving a linear equation similar as (1.4) with bs as the coefficient.

Section 4 is devoted to the global well-posedness of equation (1.6) (see Theorem
4.2). We first establish a maximum principle in Section 4.1 by Feymann-Kac formu-
la. For the subcritical case!, the global estimate follows from L (p;)-estimate and
LP theory of PDEs. For the critical case, the proof is more involved. We can only
treat d = 1 case. In this case by taking spatial derivative on both sides, we obtain a
divergence PDE. Then the L°(ps)-bound and energy estimate yield the H?p (pn)-
estimate of the solution to equation (1.6). By using this and Zvonkin’s transform
we finally establish global estimate for solutions to (1.5) and well-posedness of (1.1)
in Section 5.

Now we use the above picture to see our steps to solve the problem.

Section 6 is devoted to the application to the KPZ equation and the proof of
Theorem 1.2. Finally in Appendix A we give the uniqueness of solutions to (1.1)
based on the exponential weight approach developed in [HL18]. Appendix B is then
devoted to an exponential moment estimate for SDEs used in Section 4.

1.3. Conventions and notations. Throughout this paper, we use C or ¢ with
or without subscripts to denote an unrelated constant, whose value may change in
different places. We also use := as a way of definition. By A ¢ B and A <

or simply A < B and A < B, we mean that for some constant C' > 1

A< CB, C"'B<A<CB.

For convenience, we list some commonly used notations and definitions below.

€“(p): weighted Hélder space (Def. 2.3) €Y =%"(1)

Bj ,(p): weighted Besov space (Def. 2.5) B;, =B (1)
C%(p): weighted Holder-Zygmund space (Def. 2.5) C*:=C*(1)
S%(p): Paracontrolled solution space (2.3) S :=S%(1)
B%(p): Space of renormalized pair (Def. 2.14) BS :=B%(1)

f < ¢: Modified paraproduct (Sec. 2.3)

com(f,g,h):=(f <g)oh— f(goh) (Sec. 2.3)
Y5 f, V< f: Localization operator (Sec. 2.3)

P f(x) = (47rt y—4/2 Jra f( —le—yl*/(4t) gy
FLf( f P,_ Tf (r,z)dr
Commutator: [,;zf’l,,gzig]f = (e f) — oo (S f)

() = 1+|90| )12
Np := NU {0}

|
|
) |
|
|
f=g,f =g, fog: Paraproduct (Sec. 2.3) | f=g:=f=g+fog
|
|
| £
|

2. PRELIMINARIES
2.1. Weighted Besov spaces. We first recall the following definition about the
admissible weight introduced in [Tri06].

We refer to Section 4 for the meaning of subcritical and critical, which is different from the
meaning in [Hail4].
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Definition 2.1. A C>®-smooth function p : R? — (0,00) is called an admissible
weight if for each j € N, there is a constant C; > 0 such that

[V p(a)| < Cjp(x), Vo eRY,
and for some C,5 > 0,
p(x) < Cp(y)(L + |z —y|)?, Va,y € RY
The set of all the admissible weights is denoted by W .

Example 2.2. Let ps(z) = (x) 7% = (1 + |2]?)7%/2, where § € R. It is easy to see
that ps € W . Such a weight is called polynomial weight.

We introduce the following weighted Holder space for later use.

Definition 2.3. (Weighted Holder spaces) Let p € # and k € Ng. For a € [0,1),
we define the weighted Hélder space €%1(p) by the norm

. Vk _Vk
Ghta(p) = Z: IV (pf)|| e + 31;2 | (pf)(g;)_ e (rf) )l < 0.

I1f

Remark 2.4. By the properties of admissible weights and elementary calculations,
it is easy to see that for some C' = C(d, p) > 1,

((pV*)(@) = (pV* ) ()]

fllgr+ep) <c 1pV? fllL= + sup
|| ekt (p) jzzzo e yl<1 |x _ y|a
S p(x)|V* f () — VF f(y)]
=c Y PV fllL~ + sup . L2
=0 lz—y|<1 |z -yl

Let S(R?) be the space of Schwartz functions on R? and S’(R?) the space of
tempered distributions, which is the dual space of S(R?). The Fourier transform
of f € S'(R?) is defined through

f(z):=@2mn)~¥2 | f(z)e .
Rd

For 7 > —1, let A; be the usual block operator used in the Littlewood-Paley
decomposition so that for any f € &’(R?) ([BCD11]),

Ajf €S, supp(A;f) C Bysiz \ Byi1, j € N,

and

supp(A_1f) C B, =Y Af.
j=z—1

We also introduce the following weighted Besov spaces (cf. [Tri06]):

Definition 2.5. Let p € # and p,q € [1,00] and o € R. The weighted Besov space
B (p) is defined by

1/q

By, (p) =S F€S'®RY) : | fllBy, () = | D294 fllEsy | <o0¢,

J

1/p
1Fllzey o= oIl = (/ e |”dx) .

where
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The weighted Holder-Zygmund space is defined by

C%(p) =B ()

Remark 2.6. Let p € #. Forany 0 < 8 ¢ N and a € R, p,q € [1,00], it is well
known that (see [Tri06, Theorem 6.5, Theorem 6.9], [BCD11, page99])

Iflles o) = ooy, IflBg 000 = I fPllBY - (2.2)

For T > 0, o € R and an admissible weight p € #, let L C*(p) be the space
of space-time distributions with finite norm

||fHLoToCa(p) = sup [|f(t)|lcep < oo.
0<t<T

For o € (0,1) we denote by C$L>(p) the space of a-Hélder continuous mappings
f:0,T] = L*>(p) with finite norm

[£(t) = ()|l Loe
Ifllos o) == sup [If()llco(p) + sup LD,
0<tLT 0<s£t<T |t — s

The following space will be used frequently: for « € (0, 2),

S:(0) = {1+ 1flsg (o) = f g cmioy + 1 lgsropmy <00} (23)
We have the following simple fact (see [PR19, Lemma 2.11]): for o € (0,1),
19 llss) S 1l - (2.4)

Moreover, by interpolation it is easy to see that for 0 < kK < a,
1l mn < I3

For p € [1,00], k € Ny and T > 0, we also need the following Sobolev space:

B o= { ¢ 1l = 1 g + 19l < o0},

where, with the usual modification when p = oo,

T »
[ fllee, = (/0 /Rd|f(t,x)|pdxdt> .

For an admissible weight p, we also introduce the weighted Sobolev space

B (p) = {1 oy = 1 ollgsr < o0},

k.p.

and local space H -

loc

HFP = {f . fxr € HYP, VT,R > o},

where xgr is the usual cutoff function.

The following interpolation inequality will be used frequently, which are easy
consequence of Holder’s inequality and the corresponding definition. (see [GH18a,
Lemma A.3] for a discrete version).

Lemma 2.7. Let p € # and 0 € [0,1]. Let o, a1, € R and 8,481,852 € R satisfy
6 =006, + (1 — 9)52, o= 0o + (1 — 9)0&2,

and p, q,p1,q1,P2,q2 € [1,00] satisfy

1_ 6 4 1=6 1_ 6
I)7P1+P2’(l q1 q2
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Then we have
”fHBqu(p‘s) < ||f||]03;11q1 (p51)||f| ]13_‘;;[12(/)62)' (25)
Moreover, for any 0 < a < § < 2 with § = o/, we also have
Hf”S%(p‘s) 5 ||ng§,(p51)Hf||It%0(p52) (26)

2.2. Estimates of Gaussian heat semigroups. Fort > 0, let P, be the Gaussian
heat semigroup defined by

Puf@) = (amt) @ [ I g)ay,
Rd
Let p be an admissible weight. It is well know that there is a constant C' = C/(p, d) >
0 such that (see [MW17, Lemma 2.10])

o2 .
185 P fllLoe (o) Sc e 1A fllz(pys 4= =1t 2 0. (2.7)
We have the following estimates about the Gaussian heat semigroup.

Lemma 2.8. Let p be an admissible weight.
(i) For any 6 > 0 and a € R, there is a constant C = C(p,d, «,0) > 0 such that

1P fllo+a(py Sct™ 2] fllca(p, t> 0. (2.8)
1) For any m € Ny an < m, there is a constant C = C(p,d, m,0) > 0 suc
E N do h C =CC(p,d 0 0 h
that
IV Py fllzoe (o) Sc 7™ fllgeyys t > 0. (2.9)
1) For any 0 < 0 < 2, there is a constant C = C(p,d,0) > 0 such that
F 0<0<2, th C=C(p,d,0 0 h th
1P = Fllze o) So t2 1oy > 0. (2.10)

Proof. (i) By the definition and (2.7), we have
, g%
1P fllgo+o(p) = Sup 204V AP, fll s () S Sljl_p2(9+”‘)]e A F e o)

. 927 _
<sup27e 2 fllgo o) SN fll e (p)-
J

(ii) For m € Ny and 6 < m, by (2.7) we have
C 525
IV P fll ooy < 3 IV AjPifllise(y S D 2™ e 1A fll o)
J J

i —220¢0—0; —m
S Z(Qmje 2709700 |1 fllce (o) S O™ fll oy
J
(iii) By (2.9), we have

t
IS — flle i) = / AP, fds
0

t
N / s fllopyds S 72 fllco(,)-
L= (p) 0

The proof is complete. U

For given A > 0 and f € L*®(Ry;L>®(R?)), we consider the following heat

equation:
L= (0 — A+ Nu=f, u(0)=0.

The unique solution of this equation is given by

u(t,x) = /Ot e MNP (s, x)ds =: A\ f(t, z).
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In other words, .#) is the inverse of .%.
The following Schauder estimate is well known for ¢ = oo and 6 = 2 (see [GH19]).

Lemma 2.9. (Schauder estimates in weighted space) Let p € # and
€(0,1], 0¢€ (o,2].

For any q € [2 g,00], there is a constant C = C(p,d,c,0,q) > 0 such that for all
AT >0 and f € LIC%(p),

041 _
||f>\f||seT*a(p) SC ()‘ \ 1)2+q 1||f||L%C*”(p)' (2-11)

Proof. Let q € [5%5,00] and %Jr% = 1. For t € (0,7], by (2.7) and Holder’s

2-0°
inequality, we have

. ] 2J
20| Ay 75 (1) e ) S 2O / RN £ (5) e s
0

1
t . B t B
o (o) (e )
0

1
t . P
< 910 (/ e—p(A+22J)Sds) ||f||LqTC*"(P)
0
S 4N flgea) S OV DE I llgoego

which implies by the definition of Besov space

041
123 f |z co-o (o) S AV 1) 2F7H fll g c=o(p)- (2.12)
On the other hand, let u = #, f. For 0 < t; < to < T, we have

ty
u(ty) — ulty) = / (e AE=9) _ e AB=9)p, f(s)ds
0

to
+ (Pry—t, = ) I3[ (1) +/ e M= p, f(s)ds

t1
= Il + IQ + Ig.

For Iy, by (2.8) and Holder’s inequality, we have

1) < 02t 1 / N9\, F(5)] e s
t1
< (At —t)) A1) / ety — )7 [ f(8) o (s
0

. . t1 1/p
<Ot =)= F ([ as) o e
0
O—a  6_ 1
St —t1) 2 X277 fllpac-ap-
For I, by (2.10) and (2.12) we have

—a
12| oo () < (t2 —t1) 2 ||fAf||L°°c€—a(p)

1
<t —t) T (V)3T 7 fllLe.ca(p)-
For I5, by (2.9) and the change of variable, we have

/\(tzftl) ap %
[ e tas) oo
0

=

3] Lo (o) S A2
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O—a 6,1
Slta—t1) 7 A2 fllpacap),

ap (0—o)p _

where we used e *Ps~ 2 < s 2 ! for all s > 0. Therefore,
641
1Al =172 poe ) S (AV D2 Y fllpac-a o) (2.13)
which together with (2.12) yields (2.11). O

2.3. Paracontrolled calculus. In this subsection we recall some basic ingredients
in the paracontrolled calculus developed by Bony [Bon81] and [GIP15]. The first
important fact is that the product fg of two distributions f € C® and g € C# is
well defined if and only if a4+ 8 > 0. In terms of Littlewood-Paley’s block operator
Aj, the product fg of two distributions f and g can be formally decomposed as

fo=f<g+fog+fry,
where
F=g=g-f=7% Y AifAjg. fogi= Y AifAjg.
jz-li<j—1 li—j|<1

In the following we collect some important estimates from [GH19] about the
paraproducts in weighted Besov spaces, that will be used below.

Lemma 2.10. Let p1, p2 be two admissible weights. We have for any 8 € R,

1f < 9llcspip) S I llLeonllgllcs pa), (2.14)
and for any a < 0 and B € R,

If < gllcots(pips) S ||f||ca(p1)||g||cﬂ(pz)' (2.15)
Moreover, for any a, 5 € R with a + 8 > 0,

I1f o gllcatepips) S 1fllce o llgllcs o) (2.16)
In particular, if o+ 5 > 0, then

1f9llcars orpa) S 1 llceonllgllcs pn)- (2.17)

Proof. See [GH19, Lemma 2.14]. O

Lemma 2.11. Let p1, po, p3 be three admissible weights. For any a € (0,1) and
8,7 € Rwitha++v >0 and B+ < 0, there exists a bounded trilinear operator
com on C*(p1) x CP(pz) x C7(p3) such that

l[com(f, g, P)llcate+ (o1 paps) S Nl (on) 19llcs (pa) 1Pl (ps) (2.18)
where
com(f,g,h) = (f <g)oh— f(goh).
Proof. See [GH19, Lemma 2.16]. O

Moreover, we will make use of the time-mollified paraproducts as introduced in
[GIP15, Section 5]. Let @ : R — Ry be a smooth function with support in [—1, 1]
and [, Q(s)ds =1. For T > 0 and j > —1, we define an operator Q; : LFC*(p) —
L5 CR(p) by

Qif(0) = [ Q= ) f(sAT) v 0)ds,
R
and the modified paraproduct of f,g € LEC*(p) by
f=<g=> (S;21Q;/)A;g with S;f = Y Aif.

j>—1 i<j—1
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Note that for a <0, 8 € R and p1,p2 € 7/,

1f = gllLsecats(prpn) S [ fllLgecaonl9ll e cs(py)- (2.19)

Lemma 2.12. Let p1, p2 be two admissible weights. For any a € (0,1) and 8 € R,
there is a constant C = C(p1, p2,d, a, B) > 0 such that for all A\ >0 and T > 0,

||[$)\7f '« g||LOCCa+B 2(p1p2) NC ||f||S (p1)||g||L°°CB(p2)v (22())
and
1f =9 =F = gllegcarsiopm So 1fllcorzpm (o 19]lLs oo (o) (2.21)
Moreover, for any € > 0, we also have for some C = C(e, p1, p2,d, o, (),
IV, [ <19llLg corsri=c(pipa) S Ifllsg o9l o (on)- (2:22)

Proof. The estimates (2.20) and (2.21) can be found in [GH19, Lemma 2.17]. We
only prove (2.22). Without loss of generality, we assume A = 0. Recalling .# f(¢t) =

fot P,_.f(s)ds and by definition, we have
V.7, f <l /pts L g(s))ds — f /VPt e

_/ Pi_(Vf(s) < g(s ))ds+/0 [Pi—s, f(5) =]Vg(s)ds

0
t
+ / (F(5) — £(t) < Pr_oVg(s)ds = L (t) + Lo(t) + Is(t).
0
For I, by (2.12) with # = 2 and ¢ = co and (2.15), we have

1] Los catpti(pipe) S IV = gllLsecats—1(pipy) S I fllsecaon 9l Lo cs(pa)-

For I, by a modification of [CC18, Lemma A.1] we have

t
H2(8)]|gatat1-2(pa pa) 5/0 (t =) ENf(5)llco(on l9(5) o8 (payds

S Hf||L;°ca(p1)HQHL;OcB(pZ)-
For I3, by (2.14) and (2.8) we have

t
M)l gatat1-<(p1 pa) S/O 17(8) = F Ol Lo (o) IV Prmsg ()| gatatr-e(py)ds

S 17

t
_14¢€
s rmolallizesim [ (=97 ids

The proof is complete. O

Finally we recall the localization operators from [GH19]. Let >, -, wy =1bea
smooth dyadic partition of unity on R, where w_ is supported in a ball containing
zero and each wy, for k > 0 is supported on the annulus of size 2¥. Let (Vm)m>—1
be a smooth dyadic partition of unity on [0,00) such that v_; is supported in a
ball containing zero and each v,, for m > 0 is supported on the annulus of size 2.

For a given sequence (Lgm)k.m>—1 we define localization operators %5, ¥< as in
[GH19]

Y f = Zwkvm Z A f, V<f = Zwkvm Z Ajf. (2.23)

J>Lg,m J<Li,m



SINGULAR HJB EQUATIONS WITH APPLICATIONS TO KPZ ON THE REAL LINE 13

Lemma 2.13. Let p be an admissible weight. For given L > 0,T > 0, there exists
a (universal) choice of parameters (L m)k.m>—1 such that for all o, 8,k € R with
a+r>0%6>0and 0<t<T,

175 fll g cmoms -5y S 27 fllLge oo (o),

L
V< Fllngeamporerny S 20Tl oo e (o8,
where the proportional constant depends on «, 3,9, k but is independent of f.

Proof. See [GH19, Lemma 2.6]. O

2.4. Renormalized pairs. In this subsection we introduce the renormalized pairs,
which is one important part in Gubinelli-Imkeller-Perkowski’s paracontrolled theo-

ry. Fix o € (%, %) and an admissible weight p € #". For T > 0, let b = (b1, ,bq)
and f be (d + 1)-distributions in LFC~(p). First of all, we introduce two impor-
tant quantities for later use

U (p) = sup 160 VDl e c1-20(p2) + D170 -y + 1, (2.24)

and for ¢ € [1, o0],
b,
A (p) = sup [bo VAASllLscr-20(02) + IbllLsec-a(n I fllLac—agy.  (2:25)

By (2.16), except for o < %, in general, b(t) o V.#, f(t) is not well-defined since by
Schauder’s estimate, we only have (see Lemma 2.9)

VAL € LFCT(p).

However, in the probabilistic sense, it is possible to give a meaning for boV.#) f when
b, f belong to the chaos of Gaussian noise (see Section 6 below). This motivates us
to introduce the following notion.

Definition 2.14. We call the above (b, f) € LFC™*(p) a renormalized pair if
there exist by, fr, € LEE ™ (p) with sup,,ey (531‘ (p) +AbTOJ; (p)) < oo and such that

(bn, fn) converges to (b, f) in LEC~%(p), and for each A\ > 0, there are functions
gn, b € L CY2%(p?) such that

nhﬁnolo ||bn o VJAfn - g)\||L1090172a(p2) =0 (226)
and
nhango ||bn o Vﬂ)\bn - h)\||L7090172a(p2) =0. (227)

For notational convenience, we shall write
gn =: bo Vf)\f, h)\ =:bo Vﬂ)\b
The set of all the above renormalized pair is denoted by BF(p).

Remark 2.15. (i) Let b € L$®(p) and f € LPC~*(p). Let b, (¢, x) := b(¢, ) * pp ()
and f,(t,z) := f(t,-) * pn(z) be the mollifying approximation. By definition and
(2.16), it is easy to see that (b, f) € B%(p). Moreover, if (b, f) € B%(p) and
b e L¥(p), then (b+ 1V, f) € BE(p).

(ii) To make the convergence hold in (2.26) and (2.27), we may need to subtract
some terms containing renormalization constants in the approximation b, o V.2, f,
and b, o V#\b,. In Definition 2.14, we suppose the renormalization constants
are zero for simplicity, since in application we can choose symmetric mollifiers for

2Here the condition is slightly different from [GH19, Lemma 2.6], but the proof follows along
the same line.
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approximation, which makes the renormalization constant disappear. In general we
only use the uniform bounds sup,, ¢y (63?( )+ Ab"’f 2I*(p)) < oo and the convergence
(2.26), (2.27) and the renormalization constants do not affect our analysis and
calculations.

To eliminate the parameter A in (2.26) and (2.27), the following lemma is useful.

Lemma 2.16. Let ZL(f) = fst P;_.f(r)dr. For anyt >0, we have
ili}()) ||b(t) e} VJ)\f(t)chfza(p) g 2 Sl[lp] ||b(t) o} Vﬂ:(f)“clfmx(p) (228)
zZ s€[0,t

Proof. Note that by integration by parts formula,

t t ¢ s
/ e_A(t_s)Pt—sf(S)dS = / Pt—sf(S)dS — )\/ e_)‘(t_s) / Pt—rf(’r)drds
0 0 0 0

t t t
:e*”/ Pt_sf(s)ds+>\/ e*W*S)/ Py, f(r)drds.

0 0 s
Thus,
t
b(t) o VIF(t) = e Mb(t) o VILf + A / e M=9p(t) o V.IL(f)ds.
0
From this we get the desired estimate. O

The following localized property about the operation o is also useful.
Lemma 2.17. Let T >0, p,p€ #, ¢ € (0,1) and o € (3, 2). Suppose that

¢ € C = (pp™?), ¥ € ST, (b, f) € BE(p).

Then there is a constant C > 0 depending only on T, e, o, d, p, p such that for all
A>0andte[0,T],

1((60) 0 VAU Dl cr-20() S Iéllcore s l0llsor-ALL (0).  (2.29)

Proof. We only prove the estimate (2.29). For simplicity, we drop the time variable.
By using paraproduct, we have

(bp) o VIN(f9) = (bd) o VIA(Y 3= f) + (bg) o VIN(Y < f)
= (bg) o VI(Y 7 f) + (bd) o [VIX, ¥ < f

+ com(v, VI f,bd) + ((bd) o VI f)
= (b8) o VIL(Y 3= [) + (b8) o [VIx, ¥ <|f

+ com(¢), VIS, 00) + ¢((¢ = b) o VAL )
+ Yecom(d, b, VI f) + ¥d(bo VILf).

Let € > 0 being small enough. We estimate each term as following.

e By (2.16), (2.11) and (2.15), we have

[(6¢) o VAW = fllcop) S 169llc-a(po-1) VAW = F)llLzocate(p)
S vpllc-a(pp-1) 1Y = f+ o fllLeca-1+e(p)
S N9llcare(zo-2) 1blla= (o) | fll o o= (o) ¥ ]| Lgo cote.
e By (2.16), (2.17) and (2.22), we have
[(b¢) o [V AN, ¥ <]fllcop) S N00llc—a@p- ) I[VIn: ¥ < fllLzocate(p)
S Iellcotegp-2) 1l c=o (o) ¥ llgze—1+2¢ [ fll Lge c=a ) -
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By (2.18), (2.11) and (2.17), we have
[com(e), VIS, b)lco(p) S [1W0llcza-142[[VINSfl Lo cra(p 1Bl e (o1
S Wl aza-1+e (| fll L c=a () 1Bl c-a (o) |8l cate (5p—2)-
By (2.17), (2.16), (2.11) and (2.15), we have
(¢ = b) o VA )l cop) S W0l e[| = bllca—1+=(5p-1) [V IS lcr-a(p)
S 1Yl L l9llcate(po-2)l[bllc—a (o) | fll Loo e ()
By (2.17) and (2.18), we have
[bcom(, b, VIxfllcopy S 19l l|Pllcza—1+e5p-2)[1bllc—e (o) | fll Lo e () -
By (2.17), we have
[Yp(bo VIS ) lcr-20(5) S IVdllcza—14e(pp-2) 100 VI Fllcr-20(p2).

Combining the above calculations, we obtain the desired estimate. O

3. A STUDY OF LINEAR PARABOLIC EQUATION IN WEIGHTED HOLDER SPACES

In this section we consider the following linear parabolic equation:

L= 00— A+Nu=b-Vu+f, u(0)=up, (3.1)
where A > 0, b= (by,- - ,bg) is a vector-valued distribution and f is a scalar-valued
distribution. Suppose that for some a € (%, %) and admissible weight p € #/,

(b, ) €BG(p), T>0. (3.2)

The aim of this section is to show the well-posedness of PDE (3.1) under (3.2). We
first give the definition of the paracontrolled solutions to (3.1). We then establish
the Schauder estimate with the coefficient in unweighted Besov space by choosing
A large enough. Then by a classical maximum principle, we obtain the Schauder
estimate for (3.1) depending polynomially on the coefficient. In Section 3.3 we
establish global well-posedness of equation (3.1) under (3.2) and obtain a uniform
estimate of solution to (3.1) in Besov spaces with sublinear weights.

3.1. Paracontrolled solutions. To introduce the paracontrolled solution of PDE

(3.1), by Bony’s decomposition, we make the following paracontrolled ansatz as in
[GIP15]:

u=Vu < AHb+u'+ A, (3.3)
where uf solves the following PDE in weak sense
Lt =Vu <b—Vu <b+Vu>b+boVu—[L, Vu <].7b, (3.4)
u* (0) =up.

Note that b o Vu does not make a sense, whose meaning is given as follows: By
(3.3), we can write

boVu=boV(Vu < S\b)+boVul +boV.Af
=boV(Vu < F3b) + com; +bo Vuf +bo V.7 f
=bo (Vu < F\b) + (bo V.#\b) - Vu + com
+ com; 4 bo Vu + bo V.7, f, (3.5)

where
com; :=bo V[Vu <K Fb— Vu < Z)b]
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and
com := com(Vu, VI\b,b).

Definition 3.1. Let p,p € # be two bounded admissible weights and € > 0. For
given (b, f) € B(p), with notation (2.3), a pair of functions

(u,u) € S3(p) x S52(6*+4p) (3.6)

is called a paracontrolled solution of PDE (3.1) if (u,uf) satisfies (3.3) and (3.4)
with bo Vu given by (3.5), in the analytic weak sense.

Remark 3.2. Under (3.6), from the proof of Lemma 3.3 below, each term in (3.5)
is well-defined. Moreover, for b, f € L¥%?(p) with p(z) = (z)~1, it is well known
that PDE (3.1) has a unique classical solution. From Definition 3.1, it is not hard
to see that classical solutions are paracontrolled solutions.

The following lemma makes the above definition more transparent.

Lemma 3.3. Let T,c > 0 and (u,u*) be a paracontrolled solution of (3.1) in the
sense of Definition 3.1. For any v,8 € (a,2 — 2a], there is a constant C > 0
depending only on T, e, a,v,B,d, p, p such that for all X\ >0 and t € [0,T],
[[(bo Vu)(t)||cr—2ea(p2tep) Sc f?(P)HUHSyH(ﬁ) + A/ (P) IuF () o1 (prep)
(b0 VIAF)(B) 120 (poscp)- (3.7)
Proof. Below we drop the time variable ¢ and fix
v, 0 € (a,2 — 2a].
Recall 1 — 2 < 0. We now estimate each term in (3.5) as following.
e Since v > a, by (2.15), (2.16) and (2.11), we have

1bo (VU < 23b)|lci-20(p2) S [|bllc=a () |V < 2abll v (o)
S blla-a () IV ullgrra-2(p) | Zabllcz-a )

S Hb||2Lto°c—a(p)||U|\cv+a(ﬁ) S8 (o) |ullgot p)-

By (2.17), we have
||Vu(b o Vj)\b)”Cl—Qa(pZﬁ) Sj ||Vu||c—y+a—1(5) ||b o Vf)\bHcl—my(pz)
S fg(P)HUchv(py
Since v > «, by (2.18) and (2.11), we have

[[comllgr-2a(p25) < [Ibllc=e(p)[IVUllcrra—1(5) IV Irbl cr-a p)
S b0 oo lullcre ) S () l|ullcat (-
e By Lemma 2.10, (2.4) (2.21) and (2.11), we have
[comy [|cr-2a(p25) S bllc—e(p) VU < FIab — Vu < I\blcrir(pp)

< lbllco o |Vl 72 e g |70l i -

S Hb”%f"C*“‘(p)Hu||S§"+'Y(ﬁ) S ff(P)HuHs;*ﬂ(p)-

Since 8 > «, by (2.16), we have

10 Vb || Lo g2ty S [IBllc—a (o) | VU llco ooy < A/ L0 16Fllcotr(prtep)-

Combining the above calculations and by (3.5), we obtain the estimate. O
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3.2. Schauder’s estimate for paracontrolled solutions without weights. In
this section we assume (b, f) € B$ := B%(1), and for simplicity, we shall write

b, b,
Oy = (1), Azl = AR ().
Lemma 3.4. Assume ug = 0. For any 0 € (1+ 37",2), q € (ﬁ,oo) and T > 0,

there exist constants cg,c1 > 0 only depending on 0,a,d,q, T such that for all
A2 co(él%)l/(l_%_%) and any paracontrolled solution uy = u to PDE (3.1),

b,
luallgo— < c1Ap. (3.8)
Moreover, there is a constant co > 0 such that for all A > 0,
_4 b,

lurllgz-e + 164 a2 < ca(l) = (Jlunllz +A%L,)- (39)

Proof. Below we fix
0e(1+%.2, g€yl 7,6 € (a0 —2d].

By (2.11), (2.15) and (2.14), we clearly have

AV D' 0 uflgo-e S b= Vu+b= Vu+boVu+ flrco .10
. .
S llzgec-alVullps e +[[bo Vullps g-a JrAT,J;a

and by Lemma 2.12,
+ H[g)\, Vu -«}])\b”L%oc—y—l + ||b o V’U,”L%C—y—l
S ”u”g;f‘*HbHL%"C*a + 6o Vull g cr-2a,
where we used (2.4), (2.21), (2.22) and (2.15) in the second inequality. Moreover,
by (3.7), we also have
b b,
||b e} VU/HL%0172Q S, gTH“”S}*"‘ + fg«||uﬁ||[l%cﬁ+l + AT,];
Thus, we obtain that for all A > 0,
2]
OV D5 (ullggo + Il g )
(3.11)
b,
S llullggre +/Gllutll L cmn + AT

In particular, letting v = 0 — 2« and 8 = 20 — 2a — 2, we get for some ¢ =
6(67 a? d7 q? T)7
o1 b,
VD5 (ullgge + 10 sgp2or) Se 6 (ullgge + [0 lggo-as ) + A%,

Choosing A such that AT > ctb., we obtain (3.8).
On the other hand, letting # = 2 and ¢ = oo in (3.11), we obtain that for any
v, 8 € (a,2 — 2a],

b,
lullgzo + el S rllullggen + Gl + AR (312)

If « < B <75 < 2-=2q, then by (2.6) and Young’s inequality, we have for any
e € (0,1),

_2—a
||U||g’f‘;a + Huu”S;jrv < a(HuHSsz + Hu”HSlTM) +C(tp) == lullug (3.13)
b\ 35T |[ b.f -
+ Co(b7) 20 [[uf|lLge + CAT -
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Note that by (3.3),
[0 |lLee = [lu — Vu < Ixb — I fllLee
b,
< ullig (1 + Bellogoe) + I lizoe S lullug /6 + A%
Substituting it into (3.13) and taking € = 1/2, we obtain
2—« 14~ 1
||“||S2T*“ + IIUﬁIISITer < (gl%)izﬂfzaV(rm—T)ﬂ) (HU”L’%" + A%{m),
which, by choosing v = 2/3 and S close to «, yields that
f < ((b) s ALS
[ullgz-o + llutllgsrs < (€7) [ulluge + A )-

Moreover, by (3.12) with v =2 — 2« and 8 = 2/3, we get

T,00 ~

b, o b,
i lgg-an < Erllullz—n + /Bl oo + A%L, < (E) 75 (Jlullz +A%2,).
The proof is complete. O

Theorem 3.5. Let T > 0 and ug = 0. For any (b, f) € B, there is a unique
paracontrolled solution u to PDE (3.1) in the sense of Definition 3.1. Moreover,
there are ¢ > 1 large enough only depending on o and c1,co > 0 such that

5

9
lullege < e2 () =5 RS ullgan + [Ju gs-z0 < ea(8) =5 ALY

Proof. We first assume that
b,f € L¥E? VT > 0.

Fix A > 0. For any X > 0, it is well known that there is a unique classical solution
w to the following PDE:

Ow=Aw—N+Nw+b-Vw+ f, w(0)=0. (3.14)
In particular, for any 6 € (1 + %a,Q) and g € (ﬁ,oo), by (3.8), we have for
¥ > oty 04D,
oz < lwlgore <ei- AR

Now let u be the unique classical solution to PDE (3.1) with ug = 0. Let @ = u—w.
Then @ solves the following PDE:

O =Au— A u+0b-Vu+ Nw, u(0)=0.
By the classical maximum principle, we have
iz < Tz
Hence, by taking 6 close to 1 + ‘37‘1 and ¢ large enough, we obtain
_6_1 b, 5 b,
lully < VT + Dfwlug S (@) 7270 A% < (6h) =5 - AR,
which together with (3.9) yields

9 _ b,
lellgz o + [[ufllgs 20 < ca(€y)>5= AZL,. (3.15)

(Existence) Let b, and f, be the smoothing approximations of b and f in BS.
We consider the following approximation equation:

Optty, = Ay, — My + by, - Vg, + [, u,(0) =0.

By the assumption and (3.15), we have the following uniform estimate:

o Fllaa—za ) <
sup (Jlunllszoe + lllgg-=e ) S 1.
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Using this uniform estimate and by a standard compact and weak convergence
method, we can show the existence of a paracontrolled solution (see [GH19]).

(Uniqueness) Let u; and ug be two paracontrolled solution of PDE (3.1). Let
4 := uy — ug. Clearly, u is a paracontrolled solution of

ata:Aa—/\a+b-Va, u(0) = 0.
Let 0 € (14 «,2) and ¢ = 5%;. By (2.11), we have

||auggw <o [ 1e-vawls .o (3.10
0
On the other hand, by (2.14), (2.15) and Lemma 3.3 we have

16 Vi) D)l < (0 < Va)(#)llc-= + (b= Va)(t)c-« + [[(bo Va)(t)]lc-o
S 6@ le-a[IVa@) e + [I(b o Vu)(t)|cr-2a

SIVa@) o + llallg-« + 12 Loz S [Vl + [[allue-
Substituting this into (3.16) and by 8 — « > 1, we obtain

[ A—e / I

which in turn implies that « = 0. The uniqueness is proven. (I

Remark 3.6. The polynomial dependence on EbT in Theorem 3.5 is important to
establish the Schauder estimate in sublinear weighted Holder space since it together
with a new characterization for weighted Holder spaces in Lemma 3.8 below can be
used to solve the problem of weight loss (see [PR19, Remark 1.1]).

3.3. Schauder estimate for paracontrolled solutions with weights. In this
section we show the well-posednness of PDE (3.1) in weighted Holder spaces. Recall
that for § € R,

pa(@) = (14 [2[2) 72 = (2)~°.
Now we give the main result of this section.

2) and 9 :=

Theorem 3.7. Let a € (3 279304' Choose k > 0 so that

23
55
§:=(29+2)xk <1, & := (2—7194—4)&.

For any T >0, (b, f) € B3 (px) and ug € UzsoCLT e there is a unique paracon-
trolled solution (u,u*) to PDE (3.1) in the sense of Definition 3.1 with

[ullsz =,y + HUuHST;—%(p%) Sc A%,J;O(PH), (3.17)
where C = C(T,d, o, k,65(p,)) > 0.
To prove the result we introduce the following notations. Let x € C2°(R?) with
x(@) =1, [z[<1/8, x(x) =0, |2z[>1/4,
and for r > 0 and z € RY,
X (@) = x((@ = 2)/7), ¢7(2) = X714 (2)-

To show the existence of a paracontrolled solution, we need the following simple
characterization of weighted Holder spaces.
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Lemma 3.8. Let « > 0 and r € (0,1]. For any 6,k € R, there is a constant
C=0C(r,a,d,d,k) >0 such that

[ fll¢e (p5p) < sup (05(2) |07 fllga (o)) - (3.18)

Proof. Without loss of generality, we assume k = 0. In fact, we clearly have
sup (ps (2|97 fllge (o)) = sup (p5(2) |07 pifllwe) < [lpspr flwe-

By interpolation theorem (see e.g. [BL76, Theorem 3.11.8, Theorem 6.2.4]), it
suffices to prove (3.18) for @ € Ny. We first consider the case @« = 0. We use
B, (z) to denote the ball with radius r centered at z. For any § € R, since for

T € Bz /2(2),
p5 (@) <2001+ |2))® < 4PN(L + [2])° = 4PTp5 (),

we have

ps(2)87 (@) f ()] < 4P ps ()| £ ()] < 4V ps f| o= -
Hence,

sup (ps (2) 167 fll=) < 4195 fll Lo = 4PN £l o (pg) - (3.19)
On the other hand, since ¢%(z) = 1, we clearly have
o5 fllee = suplps(@)67 (@) f (@) < sup (ps(2)197 1<) - (3.20)
For a = 1, note that by (3.19),
sup (ps(2) [V (87 1) ) < sup (05 (2)(IV97 fl 2 + 679 F[12))
S sup (05 () (105, fll 2= + 1|67V f2<))

Slesfllzee +1psV il S I1fler ps)-
Moreover, by (3.20),

15l S sup (ps(2)67 2Vl ) S sup (ps(2)[105 Flle)
Thus (3.18) holds for « = 1. For a = 2, - - -, it follows by similar calculations.

The key point of using ¢Z is the following simple fact that for any m € Ny,
IV§illgn S (L4 |2))7! = sup V7

gty < 09 (3.21)

where we used 1+ |z| < 14 |z| on the support of ¢Z. This provides an extra weight
and helps us to obtain the a-priori estimate for the solutions in Besov space with
polynomial weight.

Now we can give

Proof of Theorem 3.7. (Existence). Without loss of generality we may assume
A =0and up = 0. In fact, for general initial data ug € U.~oC'T®*¢, by considering
U = u — up, we can reduce the nonzero initial value to zero initial value with f
replaced by f = f 4+ Aug+ b- Vug € C%(p,). In this case, by Lemma 2.10,
60 VI (Auo)llLsece(p) S 1
and by Lemma 2.17 with ¢ = Vug, f =b,¢0 = 1,p = pax, p = px,
Hb o V](b ' V’LLO)HL%ocl—2a(p%) ,S 1.

Hence, we still have

(b, f) € BF(px)-
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Now, let T > 0 and by, f, € L% (px) be as in the definition of B (p,). For
every n, define

bu(t, ) := bn(t,2)xn (), fult,x) = fult, 2)xn(2),
with X, being the usual cut-off functions. It is well known that there is a unique
classical solution u,, € L% ? solving (3.1) with (b, f) = (b, f). Our main aim is
to show that there is a constant C' > 0 independent of n such that
b, fn
letnlsz—o gy + 1 =20 ) S AR (00) (3.22)

On the other hand, by (2.29) with p = p? = pa. and ¢ = 1) = x,,, we also have for
some C' independent of n,

bu, fn by fn b b,
AT (o) So AT (o), 0 (pe) S 8 (pr).-
Hence,
0D ([t g ) + 16 g2 ) < 00

Thus, by a standard compact argument, we can show the existence of a paracon-
trolled solution (see [GH19]).

In the following, we devote to proving (3.22). For simplicity, we drop the bar
and subscript n and assume b, f € L¥%2. We fix 0 < r < 1/2. Note that ¢3. =1
on the support of ¢?. For each z € R?, it is easy to see that u, := u¢? satisfies the
following PDE:

Owu, = Au, + b, - Vu, + F,, u,(0)=0,
where b, := b¢3, and
F, = f¢Z —2Vu-VoZ —ulA¢Z —b- Voiu.

Let ¢ be the same as in Theorem 3.5. By Theorem 3.5, there are two constants
¢1,¢2 > 0 such that for all z € R,

loasllgzo < e2 (B )P A%, s g < ca(6r)” Al (3.23)

Let € > 0 be small enough. By the definition of F,, using ¢3,V¢Zu = VoZu and
(2.17), we have

[F:llc-o < [[fé7llc—o + 2[[Vu - VTLe + [[uAT| Lo + (|- VETullc—a
S oo 19l mse oty + 1Tl (o) 105 e ot
+ lullzoe (o) 1AG7 ] oo ooty + [1Bllc=o () IV Tl gocte (1)
S llc-eolldfllerpzry + luller (oo lIVErllg o) (3.24)
18l (oo 1l (o) 1962 g1 1 05, g
and also,
(b, o VILF,)|cr-20 < ||by 0 VIA(fD2)||cr-20 + ||br 0 VIL(D - Viu)||cr-2a
T b © VI (WAGE + 2V - V|| = I + TG + I5.
For I, by (2.29) with p =1, p = p, and ¥ = ¢Z, we have
z z z b, z b,
TS ||¢2r”ca+a(p;2)H¢r||ca+5At,c{o(Pn) < H¢2r”<€1(p;2)At,£o(pﬁ)’
For I3, by (2.29) with p =1, p = p, and ¥ = V¢Zu, we have
15 S 163, lgare oot IV 62Ul AL, (52)

S ||¢§r||<gl(p;2)||V¢i||<gl(p;1)HUHS}(pl)E?(Pn)-
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For I%, as in (3.24), we have
I3 S b=l - VI (AT + 2V - Vo) || cose
< Dbl oy l163 e ooty 1HAGE + 2V - V] 10 1o

lull Lgoigr (o) IV 7l g1 1y -

S 1Bl (o 165, g1 oy
Combining the above calculations, by the definition of Ag{;}Fz and (3.21), we get

b.,Fs
Apg™ = sgp [[b= o V]AFZHL‘}C“?” + ||bZHL7°SC*“ ”FZHL"Tc—“
S (1051 2y + 195l oty U162ty + 105 g (1))

1/q

T

where we have used

P Y RN 173 B
and by (3.24) and (3.21),

1P lsc-e S IFlzscmepoll9llgn oo

T
+ (14 (63,1 1)) ( / |u<t>|3gl(mdt>

By Lemma 3.8, we have

1/4q

sup pr(2)[| 05, 1 o1y S 1-
On the other hand, by Lemma 3.8 and (2.29) with p =1, p = p,, we have
sup ()65 < sup p2(2) (103, g () + 103,121, Br() S o).

which together with the above estimate implies that for § = (20 + 2)k < 1,

0
z bzsz z bZ!FZ
sup ps (2) (65 )ﬂAT,q < (sup P2 ()5 ) sup pi(z)AT’q
z z z
1/q

T
9+1
< o)™ (48t ([ it

Note that by (2.6) and Young’s inequality,

[ullszepy) < ellullsz=e,,) + Cellullgeon)-

(p1
Hence, multiplying both sides of (3.23) by ps(z) we arrive at

b,
[ullsz-e 5y < Ellullgz=o sy + CellullLge (or) + CAZ (px),
and

1/q

T
b
lullise (os) S Aff)o(pfi) + (/0 ||“||§§—a(p1)dt>

Both of the above two estimates implies that

T 1/‘1
b,
lullze (o) < lellige (o) S AT (pr) + Jullfsopydt | -
0 7 (p1)
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Finally, we use Gronwall’s inequality to conclude the first estimate in (3.22).
By (3.3), (2.19) and (2.12) we have for weight p,p € #
HuﬁHL,}CCQ*O‘(pﬁ) N ||UHL?CQ*°‘(pﬁ) +[[Vu < fAbHL;?C%a(pﬁ) + ||j>\f||L%°CZ*“(pﬁ)
N ”uHL"ToCz*"‘(ﬁ) + ”VUHL?(ﬁ)”bHL"ToC*”(p) =+ ||fHL%°C*”‘(p)
SVGONullLsce-a@) + 1 fllgc—a)- (3.25)

Next we estimate each term on the right hand side of (3.4) by using Lemma 2.10.
e By (2.21), (2.4) we have

HVU <b—Vu =< bHL%JCl—Qn(pﬁ) s ||UHS2T—Q(ﬁ)||bL%oc—a(p).

e By (2.15), we have
[Vu >~ b”L%OCl*m*(pﬁ) S HUHL%OCZ*D‘(ﬁ)”bHL%CC*“(p}
e By (2.20) and (2.12) we have
I-Z, Vu «]jb”L%’(ﬁ*?“(pﬁ) S ||u||S§f“(p)||b||L%°C*°‘(p)'
e By Lemma 3.3 with vy =2 — 2a, 8 € (o, 2 — 2a), we have
b,
bo V“||L;°le2a(p2+€ﬁ) < ||U||S2T*a(,s) + ||un||L§S’Cﬁ+1(p1+5ﬁ) + ATfoo(p)'

Combining the above calculations and by (3.4) and (2.11) with # = 2 and ¢ = oo,
we obtain

b,
gy 2o avepy S Nz oy + Il zrasn ey + A (). (326)
On the other hand, for £ > gigolu one can choose 3 close to « so that
— _ atp-1
0:=1 = e

Thus by interpolation inequality (2.5), Young’s inequality and (3.25), for any § > 0,
0 -0
0|l Lo cosr (i) S ||uﬁ||L;ch°»—2a(p2+sp)HuquL;oc%a(pp)
b,
< 8t oo gavepy + Os gz + A5L(0)).

Substituting this into (3.26), we obtain the second estimate by taking p = p.,p =

ps-
(Uniqueness). It follows by Theorem A.2 in the appendix. O

4. HAMILTON-JACOBI-BELLMAN EQUATIONS
In this section we consider the following HJB equation:
o = tr(a- V) + B - Vv + H(v, Vv), v(0) = vy, (4.1)

where a : R, x R? — RY® R? is a symmetric matrix-valued measurable function,
and B : R, x R? — R? is a vector-valued measurable function, and

H(t,z,v,Q) :RT xR x R xR - R

is a real-valued measurable function, and continuous in v, Q) for each ¢, z.
For instance, for any ¢ € [1,2], the equation

Lv=|Vv|*+B-Vuv+ f (4.2)
is a typical HJB equation. Note that for A\ > 0, if we define
oa(t, ) = v(\%t, \x), Ba(t,x) := AB(\?t,\x), fa(t,z) = N2 f(\*t, \x),
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then
Loy = )\2_C|VU)\|< + By - Vuy + f.

In particular, if ¢ = 2, then the nonlinear term has the same order as the Laplacian
term in scaling level. In this case, we shall say HIJB (4.2) being critical. While for
¢ < 2, the nonlinear term can be controlled well by the Laplacian term. In this
case, we shall say HIJB (4.2) being subcritical’.

Throughout this section we shall use the following polynomial weight function

ps(@) = (@)~ = (L+2[*) 7% = pJ = pys, 6,7 €R,

and make the following elliptic assumption on a:

(H$) a : Ry x RY — R? ® RY is a symmetric d x d-matrix-valued measurable
function and satisfies that for some ¢ € (0, 1),

d
ol < Y ay(t, w)&&; < o tf€?, Ve eRY, (4.3)

ij=1
and for some o € (0,1) and ¢; > 1,
la(t,z) = a(t,y)| < crlz —y|*

About the nonlinear term H, we separately consider two cases: subcritical case for
all d € N and critical case only for d = 1, and assume

(H5’<

sub

) Suppose that for some 4, ¢ € [0,2) and ¢ > 0,
[H(t,2,0,Q)] Ses (2)° +1QI° (4.4)
(H>P) Suppose that d = 1 and for some & € [0,2) and ¢y > 0,
[H(t,2,0,Q)| Sea (2)° + QP 10,H(t,2,0,Q)| Sea (@)° + 0] +1QI,  (4.5)
and for some 8 € (0,1] and all | —y| < 1,
[H(t,2,0,Q) = H(t,y,v,Q)| Se, l2 —yl”((2)° + (1)° + o> + Q). (4.6)
We introduce the following definition of strong solution to HJB equation (4.1).
Definition 4.1. We call a function v € ﬂp;QHiﬁ strong solution to (4.1) if for all
P € CX(RY) and t > 0,

(0(t),¥) = (vo, ¥) + /Ot <(tr(a V%) + B - Vo + H(v, Vo)) (s), ¢>ds,
where (vg, ) := f vot. In particular, for allt > 0 and Lebesque almost all & € R?,
v(t,z) = vo(z) + /Ot (tr(a V) + B - Vv + H(v, Vv)) (s, z)ds.
The aim of this section is to establish the following strong well-posedness for HJB

equation (4.1). For simplicity of notation, we introduce the following parameter set
for saying the dependence of a constant:

6 = (Tv dvaa/BaC75a Co,Cl,Cg).

3Here the critical and subcritical conditions are different from the meaning in [Hail4]
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Theorem 4.2. Let T > 0, § € ( 2) and o, 3,61 € (0,1]. Suppose that (HY),
B e L¥(ps,) and (Hmb) or (Hcm) hold. We let

n > 55V [201 + 6], under (H”S

sub

n>2 (%%ﬂ)& V(61 + 5)> , under (H‘w

crit

(4.7)

(Existence) For any initial value vo € €*(ps), there are po large enough and
strong solution v for HJB equation (4.1), which satisfies the following estimate: for
any p = po, there is a constant C = C(O,p,n, 61, | Bl|Lss (o5, ), V0l w2(p5)) > 0 such
that
[0llLge (o) + 100z () + I0llg2ip () < C- (4.8)
In particular, for any 0 < e’ < e < 2,
||U|| ,/202 E ]) g C'

(Uniqueness) If, in addition, for some C > 0,

|8UH(ta L, v, Q)|1/2 + |8QH(tv Z, U, Q)| Sc <£ZJ> + |U|1/5 + |Q|1/77’ (49)
then there is a unique strong solution with regularity (4.8).
Remark 4.3. When a € L¥%", the above regularity result could be obtained by
De-Giorgi’s iteration method since it can be written as the divergence form (cf.
[LSUG68]). However, for Holder diffusion a as we need, it seems not be studied in
the literature. Besides, the unbounded B and H also cause many difficulties for

obtaining the global estimates, which is crucial for a-priori estimate such as (1.4)
and KPZ equation. We believe that the above theorem is of its own interest.

In the following we first establish a maximum principle in Section 4.1. The
subcritical case is treated in Section 4.2 by using L (ps)-estimate and LP-theory
for PDEs. For the critical case, we take spatial derivative on both sides and obtain
a PDE of divergence form. Then using the L®(ps)-bound and energy estimate we
obtain the H2”(p,)-estimate in Section 4.3.

4.1. Maximum principle in weighted spaces. We first show the following max-
imum principle in weighted spaces.

Theorem 4.4. (Mazimum principle) Let T > 0 and 6 € (0,2). Suppose (4.3) and
for some co,c3 >0,

|H(t,m,v, Q)‘ < C2<x>5 + 63‘Q|27 B e L%O(pl)'
For any vy € L™ (ps), there is a function C(r) = Co(r) > 0 with C(0) = 0 such
that for any strong solution v € mp>2Hlch) NLF(ps) of (4.1) with initial value vo,
[0llLgs (ps) < Clea + [lvoll s (ps))- (4.10)
Proof. We use a probabilistic method. For A\ > 0, define
w(t, z) = D),
By the chain rule, it is easy to see that w satisfies
Oyw = tr(a - V2w) + B - Vw + \w (H(v, Vo) — Mr(a-Vo® Vv)).

For simplicity of notations, we write

Fs(z) := co(x)?, Uy := \w (H(v, Vv) — Mr(a- Vo ® Vo) — F5>.
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Next we reverse the time variable. For a space-time function f, we set

fr(t,z) = f(T —t,z).

It is easy to see that w’ (t,2) = w(T —t, z) solves the following backward equation:

orw” +tr(a” - V2wT) + BT - vl + UL + M F5 =0, (4.11)
with subjected to the final condition
wl (T, z) = w(0, ) = @), (4.12)

Under (4.3) and B € L3 (p1), for each (¢, z) € [0,T] x R4, it is well known that the
following SDE has a (probabilistically) weak solution starting from z at time ¢ (see
[Kry80, page 87, Theorem 1))

X :x—i—/ V2aT (r, Xf,’””)dWr+/ BT (r, Xt®)dr, Vs € [t,T),
t t

where W is a d-dimensional Brownian motion on some stochastic basis (€', 7', P).
For R > 0, define a stopping time

TR :=inf{s >t : | X"

> R}.

It is well known that the following Krylov estimate holds ([Kry80, page 52, Theorem
2]): for any p > d + 1,

TATR T 1/p
E (/t f(S,Xﬁ’w)ds> <Cg (/t /BR |f(s,x)|pd:vds> )

2,p

Since v € NpxoH.

NLF¥(ps), it is easy to see that

w” € mP>QH12<;€’ ath € mp>2]]"foc'
Thus, for each fixed (¢,z), by generalized It6’s formula (see [Kry80, page 122,
Theorem 1]), we have

dyw” (s, X07) = (Ow” +tr(a” - VZ0™T) + BT - Vw™)(s, X17)ds
+ (V24T - V™) (s, X5%)dW,
and by (4.11) and (4.12),
eftt/ ,\F,;(X;‘,’I)dsz(t/’ X:/z)
t/
=wl(t,r) + / J A (X drg )T (5, X 1)
¢
+ / elt XF‘S(Xﬁ"m)dr(/\Fng)(s, X5")ds
t

t
=wl(t,z) - / elt )‘F‘S(X:J)drUf(s, X5%)ds + My,
t

where

’

My = / i A (XA (/o T T (5, X7 )dW.
By (4.3) and |H(v, Q)| tg F5 + ¢3|Q|?, one can choose A = ¢3/cq so that
Ul < )\w(03|Vv|2 - )\CO|VU\2) =0.
Hence, for A = (¢3/co) V 1,

ANT—60) — T (¢ ) < ol )\F(;(XZ'””)dsz(t/’X:;z) — My,
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Since t' — My arp, is a martingale, we have

M (T=t7) < | (efTATR AFS (X T(T A 7, X5 )) .

TATR

On the other hand, by Lemma B.1 in appendix, for any v > 0 and « € [0, 2),

E (ewsupbe .11 (X7 > < C(y)eC2r (@

S
Since wl'(t,x) < Mvllige s (@) , letting R — oo and by the dominated convergence
theorem, we get

e)\v(T—t,z) <E (eftT AFg(Xz’w)dsz(T’ X;«’x)) —E (eftT )\FJ(X;"E)dS"‘)‘”O(X;I))
<E ( Lo supgcie 1) (xb® ) < C(EO) fo(@‘;’
where £y := A(ca + [|vo|| o (ps))- Hence,
u(T —t,2) < C(bo)(x)’.
By applying the above estimate to —v, we obtain the desired estimate. (I

4.2. Subcritical case. In this subsection we consider the subcritical case (H‘;ﬁ))
and prove some a priori regularity estimate. For this aim, we prepare the following
simple interpolation inequality in weighted spaces, which will play important roles
in treating the weights.

Lemma 4.5. (i) For anyp > 2 and r,p € [1,00] with 2 = ; %, and 0,601,020 € R
with §1 + 02 = 20, there is a constant C = C(p,r,q, 9, 61, d2) > 0 such that

1/2 1/2

T lopssalles. (4.13)
(ii) For any p,q € [2,00),r € [2,00] with % =1+ %, and 6,01,02 € R with

0= 546-12 + quZQ, there is a constant C = C(p,q,r,0,01,92) > 0 such that

IVvpslize Sc IV2vps, I llvps, I -

q+2

IVopsllin <o ( / |v2v|2|w|q2p§1> lops.l3

i+ llopsiallee. (4.14)
Proof. By definition and the integration by parts, we have
IVoeslis = [ 1Volps, = [(V0.90lV0 2ps,)
S [ 1l (I20l1ToP 208+ 190 Vpsl). (415)

(i) By Hélder’s inequality we have

/ ol [V20l|Vol? 25 < lupss|

92 0ps, e [V 552,
and by |Vps| < ps+1,
[ 10l176P 9 syl < [V0psls fopssaller (1.10
Therefore,
V08I S s e 192008, ol Vopsl® + [V epslEs fopsallo

Thus by Young’s inequality, we obtain (4.13).
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(ii) On the other hand, by Hélder’s inequality we also have

L

1/2 .
[ lwzlvep=os, < ( / |v2v2||W|“p51q) IVups 252 opsa|
which together with (4.15) and (4.16) yields (4.14). O

We now prove the following a priori regularity estimate.

Theorem 4.6. Let T > 0, § € (0,2) and o, 61 € (0,1]. Suppose (H}), B €
L% (ps,) and (HS). Then for any n > (26, +6) V % and vy € €2(ps), there is

sub

a po large enough so that for all p > py and any strong solution v of HJIB (4.1),
10:(vp) s + opalzn < C.
where C' = C(0,1,p, 61, | BllLss (s, ) V0]l %2 (ps) ) -
Proof. Multiplying both sides of (4.1) by p,,, we get
d(vpy) = tr(a-V(vp,)) =T, + (B - Vv)p, + H(v, Vv)p,, (4.17)

where
T, =tr(a- (2Vv ® Vp, +vV3p,)).
Fix
2-¢d |, d — o,
2-On—-0C¢ n—26-0
By the LP-theory of PDEs (see [Kry08]), there is a constant C' = C(0, p) such that

P>

10 (von)lis, + lvonllgze Sc lH (0, Vo)py + (B - Vo)py = Tyllir + [[vopy |l 2

Since p(n — &) > d, we have

1/p
leopullaes % oopsle: ([ ohsa)da) " < gy,
and by (4.4),
1H (v, Vo)pylles, S lon—sllee + [IV0l*pylle S 1+ ||van/<||Ii<Tp-
By interpolation inequality (4.13) and using |Vps| < ps+1, we have
2 2
IVopnscliep < IV2vmmlER omncesc-n gy + lopnscialiisp:

where ¢ = p(/(2 — {). Since p(n — (6/(2 —¢)) > d, by (4.10), we have
T
lopanscally = [ [ 106t2)0pgp(e)daat
S /]Rd pé(x)_pc/@_opnp(x)dl'

S [ lahEman s
Rd

and also,
||U/)n/g+1||]ich S ||Pn/c+175HHCJ<Tp S L
Thus, for any € € (0,1), by Young’s inequality,

1H (v, V) pyllus, < ellV2vpylles, + 1.
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Since B € L (ps,) and 1 > 261 + 6 and p(n — 261 — §) > d, we also have by (4.13)
and (4.10)

1/2 1/2
1B V0)ollg,  lon-a. 90l < 1V200m 12 0026, 142 + 0o s

< e V2upyllug, + 1.

Moreover, noting that

Tl S IVolIVpy] + [0][V2py| S oy V0l + pylol,
we have by (4.13) and (4.10)

1/2
ITollz S IV0pyllug + oyl S 19200, lls" + 1.
Combining the above calculations, by Young’s inequality, we get
||at(vpn)||]L§ + ||vpn||H§;P S 1

The result now follows. O

4.3. Critical one dimensional case. In this subsection we consider the critical
one dimensional case and prove the following a priori estimate.

Theorem 4.7. LetT > 0 and o, 01 € (0,1],6 € (0,2). Suppose (HY), B € L¥(ps, )
and (H>). For any n > 2(% V (014 6)) and vo € €*(ps), there is a py large

crit

enough so that for all p > py and any strong solution v of HJIB (4.1),
10c(won)lluy, + llvpgllgzy < C,
where C' = C(©,n,p, d1, ||B\|Lg?(p51)a HUOH%Z(W))-
To prove this result, we first show the following lemma.

Lemma 4.8. Under the assumptions of Theorem 4.7, for anyn > %\/(51 +9),

there is a po large enough so that for all p > pg and any strong solution v of HJB
(4.1),

T
vz + | [ 1020R 100020 < . (418)
Proof. Let p > 2 be fixed, whose value will be determined below. Define
w(t,z) = 0v(t,x), Ay := /|8ww|2|w|p72pf7.

For g € [§ +1,p+2] and v € R, by (4.14) and (4.10) and |Vps| < ps41 we have

/g 7 2
([1012ms) 5 ([ 10020 ) ™ Hops 7 + sz

aq

1 2,
S (A;U) p2 ||p52—5||£t2 + ||p1’”1+7+1_5||Lq;

q

where

Sy 1= (pt+2-g)pn 4 (p+2)y

57 5y 7= 29 ¢ [2,00).

T pt2—q
Recalling ps(z) = (2)~% and d = 1, we have for ¢ = p+2 and v = 2§, or q €

5+ 1L,p+2) and y > 24 4 (1 —pn)(1 - %5) =: %0,

L + Hpmz;ijlf(;HLq < OQ.

15,5
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Thus we always have

[ttop < {70 1mpEny e (4.19)
w < g 4.19
Prmn (Ay)v+z +1, qe[5+1,p+2),7> .

Now by (4.1), one sees that
0w = 0y (a - Opw) + 0y (Bw) + 0, H (v, w). (4.20)
Since 1 > (%)5 V (81 4 6), we can choose p large enough such that
41, pt2 1 2 1
n>([2”7+”ﬁ—p]6+;)V((1+;)61+;+6). (4.21)

Multiplying both sides of (4.20) by w|w|P~2p,, and integrating on R, we obtain

1
20 [[lupy = = [ adwd,wlop~20,) ~ [ Buos(ulul %)

_/H(U,w)az(wmw—?ppn)
=: 11 + IQ + 13.

For I, since a > ¢g and n > % + 90, by (4.19) with ¢ = p and v = 0, we have

h<*%/ﬁmﬂMV%m+C/WMWW4%n
Co \w Co \w
<-Day +C/|w|pppn <-Zavsc

For I, since |B| < ||B||L°TC(p51),0§11 andn > (1+ %)(51 + % + 6, by (4.19) with ¢ = p
and v = —2§;, we have

I2§/|a:rw||w|p_1ppn751 +/|w|pppn+1751

% 1/2
N (AZ)) (/|w|pppn251) +/|w‘p/’pn

5 (AZ)) (p+1)/(p+2) + 1.

Next comes to the hard term I3. Let ¢ (y) = e ¢ (y/e), where ¢ € C°((—1,1)) is
a smooth density function. Define for given ¢ € [0,7] and v, Q € R,

mmau@zjﬁw%umﬂwmmww@. (4.22)

We make the following decomposition for I3:
hzﬂmmw—ﬂmwmwmwmm
—@—D/HAMM@MM“%W

—/mmMMW”@m

=131 — Ip — I3.
For I3y, noting that by (4.6), (4.22) and (4.10),

LmWWWO—H%uwNS/ﬁﬂ%%M—HWWWM%MMMw—wM
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< % ps(2) / () + () + 10]2 + [0 beps o) (= — 1)y

S & psl@) (@) + (@) + [w]?) S p5 (@) + P psa) o,
we have
B S [ 05 0 (wlul? )|+ 27 [ psu?lOn(uwlol 2 ppn)] = vy + Tasa
For I311, noting that by the chain rule and [Vpp,| < ppn+1,
105 (P2 pp)| S w7 =2(00] Py + [10]P Py, (4.23)

since n > % + 9, we have by (4.19),

L < / P18yl oy s + / ol? ™ P15

1o 1/2
< (A7) </|wp2ppn_25) +/'uj\pilf’zpmrl—é

< (A;U)P/(P+2) 41,

where we used Holder’s inequality. For Isia, by (4.23) and (4.19) and n > % +9,
we have

Is12 S Eﬁ/|w|plaww|ppn+6 + /€ﬂ|w|p+1ppn+1+5
S Q210000 + 0+ ppns) + [ 0 s

< EHA;’ + (Ag)(p+1)/(p+2) 11,

where we used Hélder’s inequality and Young’s inequality. For I3s, noting that by
the chain rule,

HE(va)arw‘w|p72 = 5m</ HE(va)|r|p72dT)
0

—/ (0, Hc(v,7) +8vHs(v,r)w)|r|p72dr,
0

by the integration by parts, we have

% | ( / |He<v,r>|r|”dr) 19l
0
-/ ( / |axHe<v,r>||r|P2dr) oo
0
+/ (/ |8UHE(v,r)w||r|p_2dr) Ppn
0

=1 I301 + I322 + I323.
For I501, by (4.5) and (4.19) we have

w
fn s [ ( IR |r|2>r|p-2dr) P
0

< /(pgllw\”’l + W) ppn 1

S (AY)FE 41,
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For I395, noting that
|8£CHE($7’U”UJ)| 5 Eilpg_/lﬂ(x)«x)& + ’LU2),

we have
— — _ _ w p+1
Inpp e /(paia/glw\p "t 05w ooy S (A7) 4+ 1.

where we used n > {2”“ + p+2}6 + % and (4.19) with g =p+1, v = =6/ and
g=p—1,v=-6-6/B.
For I5a3, by (4.5), (4.10) we have

Tss < / (P + o5 | lP)pon < 1,

where we used (4.19) with ¢ = p, v = —¢. Finally, for I33, by (4.5), we similarly
use (4.19) to have

+1
B S [l 5"+ P o S (47)5 41
Combining the above calculations, choosing ¢ small enough and by Young’s inequal-
ity, we obtain
co
SOlwpl, S LAy 1.
Integrating both sides from 0 to T', we obtain the desired estimate. O

Now we can give the proof of Theorem 4.7.

Proof of Theorem 4.7. We follow the proof of Theorem 4.6. Fix p > d/(n — 0). By
the LP-theory of PDEs (cf. [Kry08]), we have

10c(wpn)llz, + lvonllgze So lH (0, Vo)py + (B - Vo)py = Tyl + l[vopn|l a2,

with I', defined in the proof of Theorem 4.6. Since p > d/(n —0), by |H(v,Q)| <
(r)? +|Q|?, we have

1 (v, Vo)pnlls, < llpn—sllee + (V0 opliis, S 1+ [Vopy2lifa-
We have by Holder’s inequality and Sobolev’s embedding,
V0o 2lluze <IVOPyIEe IV 0P5 1157

SIV(Vopn)lIEs IV von I 1 + IV 0Py lIEs [V 0on |2

where 6 € (0,1/2) and
= 2p(1 - G)a o = 21(1 22)77

Let po be as in Lemma 4.8. Since 7 > 2(%6 V(01 + (5)), one can choose 6 close
to zero and p large enough so that

Mo = 2(1 9)77 > 1+2/35 V(01 +6), 7m,p=po.
Thus by (4.18), we obtain

Vv Lo r + [Vvpylle < C,
and therefore,
[H (v, V) py Iz, < el V2 (vpy)llLs, + C.

Moreover, as in the proof of Theorem 4.6, one has

(B - Vv)py = Lypllz, < C
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Thus we obtain the desired estimate as in the proof of Theorem 4.6. ([l

4.4. Proof of Theorem 4.2. In this subsection we prove Theorem 4.2 by the
previous a priori estimates.

(Existence). Let T > 0. For fixed m € N, let x7"(z) := x"(z/n),n € N be
the cutoff function in R™, and o'(x) := n™e™(nz),n € N be the mollifiers in
R™, where x™ € C*(R™) with x™ =1 for |z| < 1 and x™ = 0 for |z| > 2, and
0" € CX(R™) is a density function. Define

Bn(t,2) = B(t,2)Lsj<n, ¢n(2) = vo(2)x7 ().

For nonlinear term H, we construct the approximation H,, as follows:

Hy(t,2,0,Q) = ((H(t, 2, )xi™) * 00 (v, Q)i (2). (4.24)
We consider the following approximation equation:
Ovn = tr(a - V?v,) + By - Vo, + Hy(vn, V), 0,(0) = ¢, (4.25)

Note that by the assumptions of Theorem 4.2,
By, € Npept,ools @ € Npefr ool 7,
and
[HnllLge + 0vHn|lLge + [|0@Hn ||Lge < o0
It is well known that the approximation equation (4.25) admits a unique strong

solution v,, € ﬂpggH%p (cf. [Kry08]). Moreover, by definition, we have the following
uniform estimates:

||Bnp51 ||]L%° < HBP51 ”]L%Oa
and for some C' independent of n, in the subcritical case,
[Ha(v, Q)] Sc (2)° +1QI°,
and in the critical case d = 1,
[Hu(t2,0,Q)] Se () +1QF, 10,Ha(t,z,v,Q)| Sc ()’ + |v] +1Ql,

[Ha(t,2,0,@) = Halt,,0,@)] Sc | — P (@) + (0)° + of? + |QP),
Thus by Theorems 4.4, 4.6 and 4.7, we have the following uniform estimate: for 7
being as in (4.7) and p large enough,
”UnP(S”]LEF + Hat(vnpn)n]lf} + ”UnanHg;P <G,
where C is independent of n. By Sobolev’s embedding (cf. [CZ16, Lemma 2.3]),
/ _2 —1-_8_1
for any 8" € (0,2 —3) and y=1- 5 — /,
”Unpn”c’;c:ﬁ’—d/p ,SHWnpn”c;Hﬁ’m S ”at(vnpn)HL’} + ”Unpn”HZ’T’P + llvopnll oo < C.
Thus by Ascolli-Arzela’s lemma, there are subsequence ny and v € L3(ps) N
H>"(p,,) such that for all ¢, z,
Vi, (t,z) = Viu(t,z), j=0,1, (4.26)
and for any R > 0,
V2v,, — VZ0 weakly in L2([0,T] x Bg). (4.27)

By taking limits for (4.25), one finds that v is a strong solution to (4.1) in the sense
of Definition 4.1. Indeed, for any ¢ € C2°(R?), by (4.27) we have
t

lim (tr(a - VZv,),1)ds = / {tr(a - V), 1)ds

n—=o0 Jo 0
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and by (4.26) and the dominated convergence theorem,
t

¢
lim (Br - Vg, )ds = / (B - Vv, )ds

Moreover, since for each (¢,z) € [0,7] x R? and R > 0,

lim sup |H,(t,z,v,Q)— H(t,z,v,Q)| =0,
"7 (v,Q)|<R

by (4.26) and the dominated convergence theorem, we also have

t t
lim <Hn(57‘7vmvvn)7¢>d5:/ <H(57'7v7vv)5w>d5'
0

n—oo 0

Thus we obtain the existence of a strong solution.

(Uniqueness). We prove the uniqueness on the time interval [0,1]. Let vy, v9
be two strong solutions of HJB (4.1) with the same initial value vy. By (4.8), we
have

v1,v2 € L®(ps) N LE (o). (4.28)
Let V :=wv; —va. Then V is a strong solution of the following linear PDE:
oV =tr(a-V*V)+B-VV+G-VV+ K-V, V(0) =0,
where .
G:= / O0gH (v1, Vui + 0V (vg — v1))d#,
and '

1
K = / OvH (v1 + 0(vy — v1), Vug)do.
0
By (4.28) and (4.9), there is a constant Cy > 0 such that for all (t,z) € [0,1] x R4,
G(t,2)] Sco (@), 1K ()| Seo (@) (4.29)
Let T € (0, 1] be fixed and determined below. For a space-time function F, let
FT(t,z):= F(T —t,x).
Thus under (H$) and B € L$°(ps, ), for each (t,x) € [0,T] x R?, the following SDE
admits a unique weak solution starting from z at time ¢ (see [Kry80]):
XbT =g —|—/ V2aT (r, X1*)dW, —|—/ (BT + GT)(r, X™)dr, Vs € [t,T).
¢ t
As in the proof of Theorem 4.4, by It6’s formula, we have
eftt KT(S,Xz'Z)dsvT(tle:;x) _ VT(If,IE) + My, e [t,T],

where My is a continuous local martingale. Note that by (4.29) and [Z10, Lemma
2.2], for T' = T(Cy, d, co, || BllLz(ps,)) small enough,

Ee2 jtT KT(37X:’1)ds < EQQCO SUPse[t,T] ‘X;’TP < 00.

By using stopping time technique as in the proof of Theorem 4.4 and taking expec-
tations, we find that for T" being small enough, 0 <t < T

VT (t,z) = Bele K (:X0dsy (0 xhe) =,

Thus we obtain the uniqueness on small time interval [0,7]. We can proceed to
consider [T,2T] and so on. The proof is complete.
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5. HJB EQUATIONS WITH DISTRIBUTION-VALUED COEFFICIENTS

In this section we fix a € (3, 2) and € (0,1) being small enough so that
di=a+rE(5,2), 0:=23% +r<1, (5.1)

where % = k'/4. We consider the following singular HJB equation:
Lu= (0 —A)u=>b-Vu+ H(u,Vu) + f, u(0) = ¢, (5.2)
where (b, f) € Nr=oBS(px) and
H(t,z,u,Q) :RT x RTx R x R - R

satisfies (Hgfb) or (H%?) with ¢ € [0,2), 8 € (0,1] and for some C > 0,

crit
0uH (t, 2,0, Q)| + [0 H (t, 2,u, Q)] So (x)° + [u] + Q. (5.3)
To understand HJB equation (5.2), we write it in the paracontrolled sense:
u=Vu<Ib+ If+u (5.4)

where u? solves the following equation
LU =Vu<b—Vu<b+Vurb+boVu
+ H(u,Vu) — [.Z, Vu <].#b, (5.5)
u#(0) = o,

with b o Vu being defined by (3.5) for A = 0.
Our aim of this section is to prove the following result.

Theorem 5.1. Let T > 0, 8 € (0,1 —@a], ¢ € [0,2) and o, @, K, be as in (5.1).
Suppose that (b, f) € B (px) and (Hgfb) or (Hi’riﬁt) as well as (5.3) hold. Let
e€(0,1—-a) and

N> 3%V [2F + 20], under (H%S):;

sub />’
crit/*

n>2 [2(1#6)6 V(K + 26)} . under (H>?

For any initial value ¢ € C*2 ¢(p_s) for some ¢ > 0, there is a paracontrolled
solution (u,u?) solving (5.4) and (5.5) with reqularity

u € ST%(py) NLF (pas),  uf € ST (p2g) NLF (p251r)-
Furthermore, suppose n < 1_70‘, the paracontrolled solution (u,u?) is unique.
Remark 5.2. Since k is arbitrary small, 1 could be arbitrary small.

To show the existence of a paracontrolled solution, we use the approximation
method. More precisely, since (b, f) € B$(px), by the very definition, there is a
sequence of (by, fn) € LFE ™ (p,) with

sup (¢4 (o) + AL (pi)) < co,
and such that for A > 0,

Jim (b = bz c-egon) + 1o = Fllzgc-e(n) =0,
||bn ] Vf)\bn —bo Vﬂ)\bHL%ockza(pn) = 07 (5.6)
|br, 0 VI5fr —bo V:]AfHL%oCFM(pK) =0.

lim
n—oo

lim
n—o0
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Moreover, let ¢,, be the mollifying approximation of ¢ so that

sup [[onllcrete(p.s) < llellcrvate(poy)-
n

We consider the following approximation equation:
Lup =by - Vup + H(up, Vup) + fn, un(0) = ¢p. (5.7)

By Theorem 4.2, it is well known that approximation equation (5.7) admits a unique
strong solution wu,, with

”un”]L"T"(ps) + ||8t“nHJL§(pn) + ||un||H§;P(p,,) < .

Our aim is of course to establish the following uniform estimate:
sup (||un||5§_5(pn) + ”un“L%o(Pzé) + ||u§1||S§-_25(pzn) + ||“§1||L;°(p25ﬂ)) < Ca (58)
n

where uf, is defined by (5.4) with (b, f) being replaced by (b, f»)-

To show the uniform estimate (5.8), our approach is to transform (5.7) into HJB
equation studied in Section 4. In the following, for simplicity, we shall drop the
subscript n and use the convention that all the constants appearing below only
depend on the parameter set

O := (T7 d7 a, ﬂan7 C? K, Co, &, ||s0||01+0‘+5(p55))-

First of all, by Lemma 2.13, one can make the following decomposition for the
initial value ¢ € C**T¢(p4): for g9 € (0,e/4),

=1+, @1 € CT0 0y € G2 (py).
Next we make the following decomposition for wu:
U =ui + U2,

where u; solves the following linear equation with non-homogeneous term f

ZLuy =b-Vur + f, ui1(0) =1, (5.9)
while us solves the following HJB equation
Lus =b~VUQ+H(U1 + ug, Vuy +VU2), UQ(O) = 2. (510)

Clearly, the linear equation (5.9) can be uniquely solved by Theorem 3.7 with the
solution u; € S2 *(ps). Thus it remains to solve (5.10). However, since b is a
distribution, to obtain the a priori estimate, we can not directly use Theorem 4.2.
We shall use (2.23) and Zvonkin’s transformation to kill the bad part of b.

5.1. Zvonkin’s transformation for HJB equations. In this subsection we in-
troduce a transformation of phase space to kill the distributional part in the drift
of HIB equation (5.10) so that we are in the situation of Section 4. Such a trans-
formation was first used by Zvonkin in [Z74] to study the SDE with bad drifts. In
the literature, it is also called Zvonkin’s transformation. Below we always assume

be LE(E=(px)), Ur(px) < co- (5.11)
Let us first recall the following decomposition introduced in (2.23):
b=bs +bg =750+ Vb,
Furthermore, we define

B:: b> OVﬂ,\(b>), B> = 7/>6,

Sl
N
I
N
S

(5.12)



SINGULAR HJB EQUATIONS WITH APPLICATIONS TO KPZ ON THE REAL LINE 37

Lemma 5.3. For any m € N and € > 0, it holds that
bs € LFE™, be € LEC™ (parte)-
For some C = C(d,a, k) > 0, it holds that

6>l Lesc-a—r + [[b<lLss (o) S \ 5 (Pr), (5.13)

14 and

where K = K
1Bl s @120 (o) + 105 2o 207 + lb<lLes (o) S L () (5.14)
Proof. (i) The first result follows by Lemma 2.13.

(ii) We use Lemma 2.13 for weight p,.1/2 to conclude

16>l c=or S b5 1l e gmamntrz S IBllgpe—e (o) </ €rlon)-
Since o < 1, we can choose € > 0 being small enough so that
Ri=rk+rY a+e) <kYP—k< 2% — k.

Noting that

p,g(l‘) _ <m>—m1/2(m1/2+a+5) _ pmiszraJre(x)
K b)
by Lemma 2.13 again, we have
10<lLse (o) < N0<lLge (or) = Hb<”m;<>(p:1jj+a+f)

Sx Hb”L%oc—a(p:i?i) = ||bHL%°C_a(p,.;)'

(iii) Note that by definition (5.12),

B =bo Vf,\b —bo Vﬂ)\(bg) - b< o Vﬂ)\(b>)
and

”b © vj)\blllz%ocl’z"‘(pu) < Kli;“(pn)
By (2.16), (2.12) and (5.13), we have for ¢ € (0,1 — «),
160 V(b Lseco(prsn) S IbllLsec—o (o) 10l L3 cote1(pn) S €1 (pr),
and
[[b< o v'])\(b>)||L%°Cl_"’_E(p,;) S |‘b<||L°T°(pR)||b>HL7°?C—”—E S ng(Pn)

Combining the above estimate we get

18]l Lge 0120 (o) S Bl L2 (o) S €7 ()

(iii) As for the other two estimates in (5.14), we use Lemma 2.13 for weight pz to
have

[z 0i-20s < 1B ganarge S [Bllier-2e(orn) S G(o0),

and for € > 0 small enough

< llLze (pr) < I<ILes (prsrsrizniiey) S IBllLseci=20(prsn) S C(pi)-

Now we complete the proof. O

Now we consider the following vector-valued parabolic equation:

Lu=(bs —bg)-(Vu+1), u(0)=0cR (5.15)



38 XICHENG ZHANG, RONGCHAN ZHU, AND XIANGCHAN ZHU

Remark 5.4. The reason of considering b~ — b< rather than b is the following:
in order to use Lemma 3.4 to construct a C'-diffemorphism, we have to require
ZbT> (1) < co. However, by (5.14), b = b o V., (bs) only stays a priorily in a weight
space. Thus the term b¢ will be used to cancel the weight term in renormalizing
b~ o Vu.

Notice that by (i) of Lemma 5.3, the above equation admits a unique smooth
solution u. Here our aim is to show the following a priori regularity estimate for u
so that u stays in an unweighted Besov space.

Lemma 5.5. Let o € (3,2) and k € (0,(3 — a)*). Under (5.11), for a = a + R,
there exist X = X\(O) large enough and C' = C(©) > 0 such that

aller <1/2, [uflgz-s < C. (5.16)

Proof. We use the paracontrolled ansatz as in (3.3) and write
u=Vu < 4 (bs) + 2 (bs) + v,
where
v =\ (Vu < bs — Vu < by + Vu = by +T% — [A, Vu <] (b))
with -
IY :=bs o Vu—be - (Vu+1).
Note that as in (3.5),
I% =bs 0 (V2u < Sy (b)) + com(Vu, V.7 (bs), bs)

+ com; 4 bs o Vuf + bs - (Vu +1),

where
com; = bs o V[Vu < £y (bs) — Vu < £ (bs)].
Let
’Yaﬂ € (5‘72 - 2d]'
Except for the last term bs - (Vu + 1), we estimate each term of I'%, as in Lemma
3.3 and obtain
HFZGHL?Cl—M S ||b>||%;scf&||11H§;+w + Hb>||L§?C—&||vuﬁ”L;°Cﬁ

+ o - (Va4 D) e cr-2a

< () (lullsger +1) + /(o) [0 0o + 1,

where we use (5.13), (5.14) and (2.17). As in Lemma 3.4, for any 6 € (1+ 3%,2),
there is a C' > 0 independent of A such that for all A > 1,
1-¢ ~
A 2||uHSeTfu <C.

Taking A being large enough, we get the first desired estimate. Then as in Lemma
3.4 we obtain the second estimate. (]

Now, let us define
O(t,z) ;== z + u(t,z).
By Lemma 5.5, it is easy to see that for each t € [0,7] and z,y € R?,
sle =yl <@t 2) — (t,y)| < Sl —y| (5.17)
and

0@ = A® — Mu+ (bs — bg) - VO. (5.18)
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In particular,
x — ®(t, ) is a C'-diffeomorphism.
Let ®~1(¢,z) be the inverse of z — ®(¢,x) and define
v(t, ) = ua(t,®7H(t, 2)) = v(t, ®(t,2)) = ua(t, x),

where uz solves HIB equation (5.10).
In the rest of this subsection, with a little of confused notations, we also use o
to denote the composition of two functions. By the chain rule, we have

oo ®+ 9@ - (Vvo®) =0, Vus =V (Vvod)

and
Aug = AD - (Vv o ®) 4 tr(@- VZvo ®),

where @;; 1= 2221(6k®i6k¢j), which implies by (5.10) and (5.18) that

(Ov) 0 ® = tr(a - Vv o ®) + H(uy + ug, Vuy + Vug)

+ ((bg +b<) - VO + Au) - (Vv o ®).

Thus we obtain the following key lemma for solving HJB equation (5.10).
Lemma 5.6. The v defined above solves the following HJB equation:

Opv = tr (a~V2U) —|—B-V1}—|—I§(U,V1}), v(0) = o, (5.19)
where a;j = 0_ (D' 0®7) 0 &1 and

B:=((bg +bg) - VO +Au)o @,

and for (t,z,v,Q) € [0,T] x R x R x R?,

H(t,x,0,Q) i= H(t,-, ur(t,) + v, Vui(t,-) + VO(L,-) - Q) 0 ®~L(¢, x).
Moreover, a satisfies (HL~%), B € L¥(pz), and under (Hbub) or (Hcm) for B <
1 —a, H still satisfies (Hﬁf) or (H22:y,

Proof. (i) By (5.17) and (5.16), we have I < a < 2I and
lalt, z) — a(t,y)| S [Vu(t, @7} (t,2)) — Vu(t, 27" (t,y))|
<1071t 2) — 07t p) [0 S o — yl' .
(ii) Note that for some C' > 1,
C~Hx) < (®(t,r)) < C{z), Vt € [0,T]. (5.20)
The assertion B € L3 (px) follows by (5.16) and Lemma 5.3.

(iii) We only check that under (H2% ), H satisfies (H>%7). For simplicity, we drop
the time variable. By (4.5), we have

|H (2, u1(x) + v, Vuy (z) + VO(z) - Q)|
<o)’ + S(1QF + [Vur()]?) < ch(2)* + 41QP,
where we used u; € S *(ps). By (4.6) and (5.3), we have for [z —y| < 1,3 < 1—a
|H (2, u1(x) + v, Vui (z) + VO(2) - Q) — H(y,u1(y) + v, Vur(y) + VO(y) - Q)]
Sle =yl (@) + (1) + ur (@) + v + |Vur (2) + VO(2) - Q)

+ lea () = wn )] () + o] + s @)] + Jur ()] + Ve ()] +1Q1)
+ (IVur (@) = Vur (9)] + V() — VE(y)[|Q))
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< (1) + lur ()] + o] + [V ()] + [Vua ()] +1Q1)
Sl =yl (@)% + @) + v + Q).
Furthermore, we have
|0,H (2, u1(z) + v, Vui (z) + VO(z) - Q)|
S (@) + s (@) + o] + [V (2)] + Q1 S (2)° + o] + 1.

Therefore, H satisfies (H>%) by definition and (5.17), (5.20). O
5.2. Proof of Theorem 5.1. We first use Lemma 5.6 and Theorem 4.2 to derive
the following a priori estimate.

Lemma 5.7. Under (5.11), there is a constant C = C(©) > 0 such that
ullig sy + lllgza(,., < C- (5.21)
Proof. By (5.9), (5.10) and Theorem 3.7, it suffices to prove that
e pas) + 2llsza ) S 1. (5.22)
By Lemma 5.6 and Theorem 4.2, for any p large enough and 7 depending on &, «, §
10]lLse (pas) + 190 llLz. (o) + N0ll2ir () S 1- (5.23)
which implies by [CZ16, Lemma 2.3],
”vHC(T?*@)/?Loo(pn) 5 1. (524)
By (5.20), we have
[u2llLse (pos) = V(@) p2sllLge = [[0(P)p25(P)llse = V]lLz0 (pos)>
and by (2.17), (5.23) and (5.16),
[VuzllLzcr-agp,) = [Vvo @ - VO Leci-a(,)
S ||VU(‘I>)||L3SCI*&(;;7,) |V‘I’|\L;°clf&
S IVollpsci-ap) lullpgece-a S 1.
Here we used (2.1) and (5.20), (5.17) to conclude that for |z —y| < 1,
Pn(2)[Vo(®(2)) = Vo(@(y)| S py(®(2))[Vo(®(2)) — Vu(D(y))|
Sle(z) = W) VUl Ly oi-agp,)-

Moreover, note that by (5.20),
[ua(t) = ua(s)l|L=(p,) S llo(t, @(t) = v(t, ()] Lo (o) + 10(E) = V()L (p,)
1
<190 = (5) i [ IVt TE m(ppdr
+ [lo(®) — v($)llL> (o)
where T't%(z) := r®(t,z) + (1 — r)®(s,x). Since for any r € [0,1] and ¢, s € [0, 7],
IS (x) =z +ru(t,z) + (1 — r)u(s,z),

by (5.16), we have

p(L7%(2)) =< py ().
Hence, by (5.16) and (5.24),

[[uz () — u2(s)llLoe(on) )
It — s|0-a)/2 ~

Combining the above estimates, we obtain (5.22). The proof is complete. O
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Next we apply (5.21), (5.4) and (5.5) to derive the following a priori estimate
for u! as done in Lemma 3.3.
Lemma 5.8. Under (5.11), there is a constant C = C(0) > 0 such that
1l (pas ) + llgs-2a,, ) < C- (5.25)
Proof. First of all, by (5.4) and (5.21), we have
16 (|9 (passn) + Nl zso a1y S 1. (5.26)

Next we estimate each term on the right hand side of (5.5) by using Lemma 2.10.
e By (2.21), (2.4), and & = a + K, we have

[Vu <b—=Vu<b|reci-2a(,,.) < HUHS?T*&(,;,?)||b||Lgscfa(pR) S L

e By (2.15) we have
[Vu = bl seci-2a(p,4,) S llullLsecz-a (oIl Lsec-a(p,) S 1.
e By (2.20) and (2.12) we have
112, T4 <l cr2s ) S lllgzs o [Bll e o) S 1
e By the growth of H and (5.21), we have
1H (u, Vi) [ (p) S 1+ VullEee ) S 1-

e By Lemma 3.3 with v =2 — 2a, 5 € (&,2 — 2&), we have

Ibo VUHL%o(pfza(p%) < HuHSzT—a(p%_%) + ||uﬁ||L,1°90/i+l(P2n—~) + 1,

and by interpolation inequality (2.5) with § = ’Zf%:, (5.26) and Young’s inequal-
ity,

1-60
‘Uﬂ HL%CCQ_&(pn+m)

1)l Lot (ony ) S N1 250 ca-26 ()
S gHUnHL?CB*?a(P%) +1,
where we choose 8 such that § < (1 — @)(0 + 1) since & is small enough.
Combining the above calculations and by (2.11) with 8 = 2 and ¢ = oo, we obtain

||uﬁ||ss%72a < 5||uﬁ||L%°C3*2@(p2n) +1,

(p2n)
which in turn implies the desired estimate. ([l

Now we are in a position to give

Proof of Theorem 5.1. (Existence) By (5.21) and (5.25), we obtain the uniform
estimate (5.8). Now by Ascoli-Arzeld’s lemma, there are a subsequence still denoted
by n and
(u,uf) € ST %(py) x ST (p2n)
such that for each v > 0,
(tn, ub) = (u,uf) in S (ppis) X So 2 (payn)-
By (5.6) and taking weak limits for approximation equation (5.4) and (5.5) with

(b, f) being replaced by (b, f.), one sees that (u,u?) solves (5.4) and (5.5) (see
[GH19] for more details).

(Uniqueness) Let u, % be two paracontrolled solutions to (5.2) in the sense of
Theorem 5.1 starting from the same initial value. Let U := u — @. It is easy to see
that U is a paracontrolled solution to the following linear equation

(U =AU+ (b+R)-VU+K-U, U(0)=0, (5.27)
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where

1
R:= / VoH (u,Vu+ sV (t — u))ds,
0

1
K = / OuH(u+ s(u — u), Va)ds.
0
Note that by (5.3) and u,@ € S5 %(p,),
(Rl + K|S p5 "+ lul + [al + |Va| + [Vul S o7

Then uniqueness follows from Theorem A.2. O

6. APPLICATION TO KPZ EQUATIONS

Consider the following KPZ equation:

ZLh = (0,h)* +¢, h(0) = hg (6.1)
where ¢ is a space-time white noise on R* xR on some stochastic basis (2, .7, ()0, P).
Here the nonlinear term (9,h)°% = “(9,h)? — 00” with oo = lim,, 0 ¢, for ¢ and

the approximation &, below. We define the 2n periodization of £ by
En(¥) = E(tbn) where P (t,@) = Ly () D W(t,z+y).

ye2NL

Let ¢ € C°(R) be even and such that ¢(0) = 1 and define the spatial regularization
of én
§n = W(nilaw)én = Fﬁl(@(nil')}_gn)'
The regularity of the space-time white noise £ is more rough than the coefficient f
given in (1.1). To apply Theorem 5.1 we need to introduce the following random
fields and use Schauder estimate to decompose (6.1) into (1.1) and the following
equations. This is the usual way for KPZ equation (cf. [Hail3, GP17, PR19]).
Define
LY, =&, LY =¢
LYY = (0,Y,)2— ! LY =20,Y,0,Y)
k¢ % \% \% \% (6.2)
2, =20,Y, 00,Y, +c, LY, =(0,Y)) —c,
LY = 0,Y,,
all with zero initial conditions except Y (0)(z) = Cz + B(x) and Y,,(0) defined
similarly as &, with £ replaced by Cx + B(z), where B is a two sided Brownian

motion, which is independent of space-time white noise &, and C' € R. The choice
of the initial condition is due to our interest in the KPZ equation starting from

its invariant measure (cf. [QS15, Section 1.4] and [FQ15]). Here ¢, and CY are
renormalization constants. We also set
Xy =0:Y,, X=0Y, XU=0,Y0,

where (-) stands for the above tree. In the following we draw a table for the
regularity of each Y'(). For 4 > 0 the homogeneities a; € R are given by

rl=| v |y Y v | y?
ar [=] 3-7 [1-7] S-~v 2—v [ 2~
rl=] x v oy ooy | 2y | oy?
ar [=]-3-7]5-"7 — — —
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Lemma 6.1. With the above notations, there exist random distributions
Y = {YV YUY YT Xyt oy ooy 2yt ey? }
v

n

and divergence constants !, , ¢, such that for every T € ¥,

T C ﬁn>OS§Y“T (pfi)7

for a, given in the above table. Moreover, for 7, defined in (6.2) 7, — T in

LP(Q,S77 (pr)) for every p € [1,00) and every k > 0. Furthermore, Y,, — Y in
1_

LP(Q,S27 " (p14s) for every p € [1,00). Moreover, there exist random distribution

VILHX) o X such that

sup [|[VIL(Xy) 0 Xp(t) = VIH(X) 0 X (1) c(p,) = 0 in LP(Q).
0<s<t<T

Proof. Most terms except .,?YY{’ ,2Y7 in (6.2) have been considered in [PR19,
Theorem 3.6]. These two terms can also been obtained by similar calculation as
n [GP17, Theorem 9.3] (see also [ZZ15, Section 3.3.1, Section A.2]). The last
convergence result for V.#!(X)oX (t) can be obtained similarly as in [PR19, Lemma
C.1]. O

We make the following decomposition
h=Y +Y" +Y 4R,
where £ satisfies the following equation

Lh=20,h(X + X" + X))+ (0.0)% + 2y +2v7
FXT)2 42X XY 4 2XXT —XoX ), (6.3)
h(0) = hg — Y (0).

Here we use (6.2).
Using Lemma 6.1, we obtain

Lemma 6.2. There exists a measurable set Qo with P(Qy) = 1 such that for every
k>0,7v>0andw e Qg

bi=20,(Y +Y" +Y ) e LEC37(p,),

Fe v oy® L x®2ox® xv LaxxY CxoxT) e L),
Proof. We use Lemma 2.10 and (2.11) to have that

1(x)?| T2,

et SIX T MIG1 e,

G v A v
X7 X oo SNX T gt ) 157 ler(os2)s

and
XX CXoXxt =X X' — X <X,
to have
*{r
[

XX =X o X Iy SIXlg s

p/) C27P/2)

Other terms follows directly from Lemma 6.1. |
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As a result h satisfies (1.1) with b, f given above. We say that h is a paracon-

trolled solution to (6.1) if A is a paracontrolled solution to (6.3) in the sense of (5.4)
and (5.5).
Since v can be arbitrary small, we apply Theorem 1.1 to obtain

Theorem 6.3. For every initial condition h(0) € C2+2(p_5) for e > 0,0 < & :=
40k < 1, there exists a unique paracontrolled solution

~ o~ 2—251/4 _ K/l/4
(h’ hﬁ) € (S’} (pn) N L%O ([)25)7 Sg“ ’ (/0277) n L?(p25+m))
to (6.3), where
1

2[(100/@) v (kY4 801@')} <n<y
Proof. In the following we check other conditions of Theorem 1.1. The condition for
H is satisfied easily. In the following we prove (b, f) € B$.(p.). The approximation
{(bn, fr)}n for (b, f) is given as in Lemma 6.2 with the corresponding tree T replaced
by 7, in Lemma 6.1. In the following we prove that for every x > 0

sup(£77 (pi) + AgL (pe)) < o0, (6.4)
with £%7 (p,) and AbTLO];" (pr)) defined in (2.25) and (2.24), respectively. In the

following we omit the subscript n for simplicity and all the following bounds are
uniform in n and A. We first consider

1
TVIAb) 0b =V DY +Y7 +Y 7))o (Y + Y +Y 7).
By the last result in Lemma 6.1 and Lemma 2.16 we deduce the first term
[V Ar(0:Y) 0 81'YHL°T°C*W(;J~) S L

Other terms on the right hand side can be calculated by Lemma 2.10 and (2.11) to
have

IVAA@: (Y +Y 7)) 0bll e
SUYY lpzecir(pn + IV

PZH)

<
L%"C%‘”(pn))HbHL?C_%_W(p”) > b
and
V.20 (0,Y) o agc(Yv + YY' )HL;S’C*”(

PZN)

A
S V¥ lrgcr— (o0 + 1Y 7l

S I
On the other hand, we know

VA(f) 0b=VIA(f1) o b+ VA(XT < X)o2(X + X" +X7),

<
Lot S L

with fi = f — X¢ < X € L¥C~2Y(p,.). By Lemma 2.10 and (2.11) we know
IVA512) 0 bl (un) S il e-21o Bl o3y S
and
VAKX < X)o(X¥ + X7
[V AA( < X)o (X" + X7 )|lrgc—(
SIXT|

PZN)
X" |y + 1X 7|
LEC—7(px)

X 1 < 1.
Lcd (o) K e o3, L (o) S

It remains to consider the term V.7, (X X ) o X and we use the commutator
introduced in Lemma 2.11 and Lemma 2.12 to have

VAXT < X)o X =([V.I, X <]X)oX
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+eom(X 7, VA (X), X) + X (VI (X) 0 X).
By Lemmas 2.12, 2.11 and Lemma 6.1
VAT < X) o Xlize0 S 1,

where we used time regularity of x% , which follows from (2.4). Combining all
the above estimates, we deduce (6.4) follows. Furthermore, we know that the
convergence in Definition 2.14 also holds by using Lemma 6.1 and Lemma 2.16,
which gives that (b, f) € BS(px). Then the result follows from Theorem 1.1. O

Remark 6.4. The exponent 7 of the weight could be arbitrary small since « is ar-
bitrary small. This result improves the weight for the solution of the KPZ equation
obtained in [PR19].

APPENDIX A. UNIQUENESS OF PARACONTROLLED SOLUTIONS

In this subsection we use Hairer and Labbé’s argument [HL18] to show the u-
niqueness of paracontrolled solutions. For this aim, we use the following time-
dependent exponential weight: for ¢ € (0, 1),

ef(z) := exp(—(1 +t)(x)"), t >0, = € R,
We can similarly define the Holder space with weight e’ (see [PR19]). For instance,

f oCa(el) ‘= Sup fta' a(ef)
[ fll L cor et ) [07T]H (e e

and for a € (0, 1),
1 (&) = f(s)ll Lo et )

0<sA<T |t — s|*

I fllcar=(ee == sup [ f(t)ef|r +
0<t<T
In particular, for « € (0,2), we also set
¢
S%(e ) = ”fHL%CC“(eZ) + ||fHC’;/2Loo(eé)'

By [MW17, Lemma 2.10], for any T > 0, there is a C = C(T,¢,d) > 0 such that
for all s,t € [0,7] and j > —1,

AP fll oo oty S €72 1A Fll oo et)- (A1)

Moreover, Lemmas 2.8, 2.10, 2.11 and 2.12 still hold for exponential weight ef (see
[PR19]). The following result corresponds to Lemma 2.9.

Lemma A.1. Let a,f € (0,1), k € (0,(1 — §)¢). For any q € (m, oo and
T > 0, there is a constant C = C(T,d, ., ¢,0,k,q) > 0 such that

\Iffllgi_g_h_a(ez) Sc llfllLgce(puen-

Proof. First of all we have the following simple observation:

ef(x) < () el () /|t — s|*/¢, 0< s <1< o0. (A.2)

~

Let %—i—% =1landt € (0,7]. By (A.1) and Holder’s inequality, we have for j > —1,
t
87 FOlmiapy S [ €018, 03] e ey

t e_22j(t—s)
5/0 WHAJ‘JC(S)HLw(Meg)dS
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» t o—p2% (t—s) p
S 2% / |t S|p’/”/[ ds Hf”LfC*"‘(pnel)
0 _

2 2x .
~ ‘ a)]”f”LfC*‘l(p,;ee)a

which in turn gives that

90 o3 gy S I 0y

On the other hand, for 0 < t; < to < T, we have
17 f(t2) = I f(E) L= of) < N(Promty = DI F ()l Lo e,

/t2 Py, —sf(s)ds

t1

"

L (ef,)

For I, by (2.10) and (A.3) we have

K

—_a_1_ &
LS (= 0) TE I ) ooz,

q 2(9

Stz — t1)17%757%||fHL‘1TC*‘*(pmeZ)'
For Iy, by (2.8), (A.2) and Hoélder’s inequality, we have
t2 o
S [ (2= s IO ome, 05

ty

¢
S [ = E o e ds
1
S (t2 =)' F T g 0mn et
Combining the above estimates, we obtain the desired estimate.
Now we consider the following linear equation:
ZLu=(b+0b)-Vu+hu, u(0)=0,
where b € Np=oB%(ps) and b, h € Nr=o LS (py,). Let
(u, uF) € NrsoST*(pn) X ST (p2y)
be the paracontrolled solution of PDE (A.4). That is,
w=Vu < Ib+ut,
with uf solving the following PDE in weak sense
Zut =Vu<b—Vu<b+Vu-b+boVu
+b-Vu+ hu— £, Vu <].9b,

where
boVu=bo (Vu =< Zb)+ (boV.Zb) - Vu+ com
+ comy eroVuﬁ7
and
com :=bo V[Vu < b — Vu < Jb]
and

com := com(Vu, V.Zb,b).

=: Il + IQ.

(A.3)

(A.6)
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Theorem A.2. Let £ € (0,1) and k € (0, W), n € (0, (170‘) Suppose that

b€ Nr>oBF(ps), bh € N0l (py),
2n
/Be( (2 2a0 — ) (1_7))7 7€(a72_2a_47n)'
The unique paracontrolled solution to PDE (A.4) in the sense of Definition 3.1 with

(u,uﬁ) € S%Jra(ee) X L%OC’BH(eZ)
18 zero.

Proof. Let T > 0. Choose ¢ large enough such that
2 4 2 6 2
a<y<L2— 204—6—7%, a<pf< (2—204—6—7&)/\(1——77).
First of all, by Lemmas A.1 and 2.10, we have
e : SIb < Vut+b=VutboVullpgc-a(pper) + 10Vt hull g 1 (e

[
P C

N ||bHL§’S’C—"(pN)HVUHL‘ZTLOO(eZ) +1[bo VU||L‘1Tc—ﬂ(pmaf)
F 110llLge (o) I VUell L2 Loe ety + N llLge (o) Ntll L8, o)
and by the corresponding version of Lemma 2.12 for exponential weight e’ (see
[PR19, Lemma 2.10]),

[0 || e et ety S VU < b= Vu < b+ Vu = b — [£, Vu T FNPR

£ (pret)
+ ||b o VUHL(ITleza(pMez) + Hb -Vu + h’u,”]l‘%o(pneq

S ||b © vu”ngCl_Qo‘(pznez) + Hu||g;7a7%7%(e£)

+ 1BllLze (o) I VellLes ety + [12lILse (o)
Slull oca2 a4 [boVullpgcr-2q(

e

|U||L;°(e1f)

P2r€e£) :
T

Moreover, by Lemma 3.3 with (p, p) = (ps,€}),
(b0 V) Dll e ety S Mtllsysa oty + (Ol ety
Combining the above three estimates, we obtain
ullgyo ety + Il cmbr oy
SIVullps poe ety + |l e Lo ) + 100 Vull g cr-20 4y )

T 1/q
5 <A (||UHS’Y+Q + ||u ( )|qcﬂ+1(pnef))dt) ’

which implies © = 0 by Gronwall’s inequality. |

APPENDIX B. EXPONENTIAL MOMENT ESTIMATES FOR SDES
In this section we consider the following SDE:
X, = b(t, X,)dt + o(t, X))dW,, Xo = z.
We have the following exponential moment estimates for X;.

Lemma B.1. Suppose that o is bounded and b is linear growth. Then for any
a €[0,2) and T, > 0, there is a constant C > 0 such that for all x € RY,

EeY SWPte(o,1) (Xe) < Ce
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Proof. Let 8 € (a,2). Recall (z)? = (1 + |z]|?)?/2. By Itd’s formula, we have

t t
Mt = e_>\t<Xt>’8 = <.’L‘>B +/ 7’]st+/ gdeS,
0 0
where
ne = e MB] X, - bls, X,) + tr(o0”) (s, X) /2] (X,)
+ 5(% - 1)67)\3‘0*(3,XS)XS|2<XS>B74 - )‘ei/\S<XS>ﬁa
and
& 1= Be M o* (s, X)X (X,)P 72
By the linear growth of b and the boundedness of o, there is a A large enough so
that

175 < 0
and )
|§S‘2 < Cef)\s<Xs>2(ﬁfl) < CMSQ_E.
Now by [Hu09, Theorem 1.1], we obtain the desired estimate. O
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