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ABSTRACT. In this paper we study the global boundedness for the solutions to
a class of possibly degenerate parabolic equations by De-Giorgi’s iteration. As
applications, we show the existence of weak solutions for possibly degenerate
stochastic differential equations with singular diffusion and drift coefficients.
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existence of the associated strong Markov family.

Keywords: Maximum principle, De-Giorgi’s iteration, Stochastic differential
equation, Krylov’s estimate, Markov selection.

AMS 2010 Mathematics Subject Classification: 35K10, 60H10

1. INTRODUCTION

Consider the following elliptic equation of divergence form in R? (d > 2):
div(a - Vu) =0, (1.1)

where a : RY — R¥*4 is a Borel measurable function and V := (0,,,- -+ ,0,,). We
introduce the following two functions:

. _ |a(z)¢?
Suppose that A\gp and g are nonnegative measurable functions. If Ay Land pg are
essentially bounded, that is, a is uniformly elliptic, then the celebrated works of
De-Giorgi [4] and Nash [13] said that any weak solutions of elliptic equation (1.1)
are bounded and Holder continuous. Moreover, Moser [12] showed that any weak
solutions of (1.1) satisfy the Harnack inequality.

(1.2)

In [17], Trudinger considered the non-uniformly elliptic equation (1.1) under the
following integrability assumptions:

)\61 € LP°, ug € LP* with pg, p1 € (1, 00] satisfying pio + p% < %,

and showed that any generalized solutions of (1.1) are locally bounded and weak
Harnack inequality holds. Recently, Bella and Schéffner [3] showed the same results
under the following sharp condition on pg, p1,

o= < g, pospr € (1,09, (1.3)
where the key point is a new Sobolev embedding inequality of variational type. In
this paper we are interested in a parabolic version of [3], and aim to establish the
global boundedness for the solutions of non-uniformly parabolic equations. More
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precisely, we shall consider the following parabolic equation of divergence form in
RA+1:
O =div(a-Vu) +b-Vu+ f, (1.4)
where
a: R 5 RXE bR S RYFLRITE SR
are Borel measurable functions. As in (1.2), we introduce
: la(t, z)¢]?
Az):= inf &-a(t,x), plx):= sup T alt2)E
(@) t20,[¢|=1 t,2) (=) t>0,/¢l=1 & a(t,z)§

and suppose that A\ and p are nonnegative Borel measurable functions.

(1.5)

First of all we introduce the following notion of weak solutions to PDE (1.4).

Definition 1.1. A continuous function u : R4 — R is called a Lipschitz weak
(super/sub)-solution of PDE (1.4) if Vu is locally bounded and for any nonnegative
Lipschitz function ¢ on R¥T with compact support,

*<<u,5ts0>> - <> / Q)= o Vo, Vo (b Vu, o) + (f0),  (16)
where (f,9) = [ Jga f(t,x)g(t, x)dzdt.
Throughout this paper, we fix py € (£, 0] and p; € [1, 00] with
-+ o < 2 (L.7)

and introduce the index set
Hgo = {(paQ) [1 OO] % (1*7)(%71%0)}'

Using the localized space introduced in (2.3) and (2.4) below, we make the following
assumptions about a and b:

(H) A po + llllpy < o0, where A, o are defined by (1.5).

(H") b= by + by, where if po € (£,d], by = 0, and if py > d, by € L{%"* for some
(p27q2) € [1,00]2 with

Aalod-olyz_1) (1)

2po
and by € igfgm and (divbe)~ € Lgfw’m for some (ps, q3) € I,

Remark 1.2. Note that condition (1.8) is satisfied for ps = g2 = oo if and only if
po > d. This is why we need to put by = 0 for pg < d. If pg = 00, i.e., a has a lower

bound, condition (1.8) reduces to the usual one z% + q% <1, and

¢ = {(p,q) €[1,00]?: % + % < 2}.
For simplicity of notations, we introduce the following parameter set
& = (51 655 TN s il Dot B Wl e DCOiVD2) g ) (19)
The main aim of this paper is to prove the following apriori estimate.

Theorem 1.3. Under (H%) and (HY), for any f € ]Lq“’p“ with (ps,qs) € 12 and
for any T > 0, there exists a constant C' = C’(T,@,p4,Q4) > 0 such that for any
Lipschitz weak solution u of PDE (1.4) in R¥ with u(t)|;<o = 0,

[ull L o.11xrety + el o, ll 7 < CHf Lo 1y llaa.rs,s (1.10)

where ¥ is defined by (3.2) below.
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Consider the following heat equation with divergence free drift b:
Ou=Au+b-Vu+ f, u(t)i<o =0. (1.11)

The following apriori global boundedness estimate is an easy consequence of The-
orem 1.3, which seems to be new.

Corollary 1.4. Letb e ]Eﬁ?o with divb = 0, where p € [1,00] N (452, 00]. For any
T>0andf € ng:f/, where p',q' € [1,00] satisfy g—i—% < 2, there exists a constant
C > 0 only depending on T, d,p,p',q and ||b||i5:<t>o such that for any Lipschitz weak
solution u of (1.11),

lull Lo (jo,71xre) < CllfLj0,7) ”lig';f" (1.12)

Remark 1.5. Note that when % + % <2andb e fﬁ;{f with divb = 0, it is well

known that (1.12) holds (cf. [14], [19]). When b does not depend on ¢, the current
condition p > % in Corollary 1.4 is clearly better than p > g.

In [3], the local boundedness of generalized solutions of elliptic equations is used
to establish the L°°-sublinearity of the corrector in stochastic homogenization in
non-uniformly case, which is a key step of proving quenched invariance principle
for random walks [1]. As in [3] and [2], Theorem 1.3 could be used to showing
a quenched invariance principle for random walks in time-dependent ergodic en-
vironment. This is not the purpose of the present paper, and will be studied in
future.

As one application of the global boundedness estimate (1.10), we shall establish
the existence of weak solutions to possibly degenerate SDEs with singular diffusion
and drift coefficients in this paper. Consider the following SDE:

dX; = V20 (t, X;)dW, + b(t, X;)dt, X, = , (1.13)

where W is a d-dimensional standard Brownian motion on some stochastic basis
(Q, 7 ,P;(Fi)i=0) and 0 : Ry x R - RY@R? and b : Ry x R? — R? are Borel
measurable functions. Note that the generator of SDE (1.13) is given by

LI f(x) = (0% 0I®) (L, 2)0;0; f (x) + b (¢, 2)0; f ().

Here and after we shall use the usual Einstein convention for summation: an index
appearing twice in a product will be summed automatically.

It is well known that if o and b are Lipschitz continuous in « uniformly in ¢, then
SDE (1.13) admits a unique strong solution. When ¢ is bounded measurable and
uniformly elliptic and b € L4 (R x R), recently, Krylov [11] showed the existence
of weak solutions to SDE (1.13) (see [10] for bounded measurable drift b). When o is
the identity matrix and b is divergence free and belongs to ]E?;ﬁ for some p, g € [1, 0]
with % + % < 2, utilizing the like-estimate (1.12), in a joint work [19] with G.
Zhao, we showed the existence of weak solutions to SDE (1.13). In particular, the
stochastic Lagrangian trajectories associated with Leray’s solutions of 3D-Navier-
Stokes equations are constructed. However, when diffusion coefficient ¢ is possibly
degenerate or singular, and b is irregular (saying only bounded measurable), to
the author’s knowledge, it seems that there are few results about the existence of
solutions to SDE (1.13) except for [18]. To show the existence of weak solutions,
the key step is to prove the following estimate of Krylov’s type: for any (p, q) € Hgo,

t
B ([ fex0as) < Clly (114)
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Note that if we let @ = oo™, then G,Sff’b can be written as the divergence form:
L7 f(x) = 0y(a (t,)9; f) (@) + (M — ;0" ) (¢, )0, f (¢, ).

Under suitable conditions, (1.14) will be a consequence of It6’s formula and (1.10)
(see Theorem 4.3 below).

Although we can show the existence of weak solutions for SDE (1.13) with singu-
lar coefficients, in many cases, the uniqueness is not easily obtained and even does
not hold for SDEs with measurable coefficients. In 1973, N.V. Krylov [9] proved a
Markov selection theorem from the family of solutions of SDE (1.13) when b and
o are bounded continuous. His method was presented in a different way in [16,
Chapter 12]. For applications in SPDEs, we refer to [5] and [6]. Here we shall
follow Stroock and Varadhan’s method [16] to select a strong Markovian solution
for SDEs (1.13) with singular coefficients when the uniqueness is not applicable.

We would like to mention the following examples to illustrate our main results
obtained in Sections 4 and 5.

Example 1.6. Let d = 3 and u(¢, z) be any Leray solutions of 3D-Navier-Stokes
equations. Consider the following SDEs:

dX; s = V2dW; +u(t, X, )dt, t > 5> 0, X, =z € R5.

In [19], the existence of weak solutions is obtained to the above SDE. By [19,
Theorem 1.1] and Theorem 5.5 below, one can select a family of probability mea-
sures (P 2)(s,z)er. xrs on the continuous function space C so that for each (s,z) €
R, x R3, P, , solves the martingale problem associated to the above SDE, and
(Ps,2) (s,0)er, xr3 forms a time-inhomoegenous strong Markovian family.
Example 1.7. Let d > 3 and @ € (0,(£ — 1) A (3 + 74)), B € (0,20). For
any A > 0 and # € R?, the following SDE admits a unique strong solution (see
Proposition 6.2 below):

dX; = | X;|74dW; + AX, | X777, X = .

Note that the starting point can be zero.

This paper is organized as follows: In Section 2, we prove a time-dependent
variational embedding theorem, which in particular extends the result obtained in
[3]. In Section 3, we prove our main Theorem 1.3 by De-Giorgi’s iteration (cf. [4]).
In Section 4, we apply our main result to SDEs with rough coefficients. In Section 5,
we use Krylov’s Markov selection theorem to select a strong Markov family from the
weak solution family. In Section 6, we present two examples to illustrate our result.
In the appendix, we recall some results about the regular conditional probability
distribution (abbreviated as r.c.p.d.) as well as the abstract time-inhomoegenous
strong Markov selection theorem.

Throughout this paper, we use the following conventions: The letter C' = C(---)
denotes a constant, whose value may change in different places, and which is in-
creasing with respect to its argument. We also use A < B to denote A < CB for
some unimportant constant C' > 0.

2. PRELIMINARIES

Let 2 := C°(R9*!) be the space of all smooth functions in R¥*! with compact
supports and 2’ the dual space of 2, which is also called the distribution space.
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The duality between 2’ and 2 is denoted by ((-,-)

. In particular, if f € 2’ is
locally integrable and g € 2, then

(f.9)

Juo.gwpar win q0.90) = [ feagtaa @)

For p,q € [1,00], let LYY := L9(R; LP(RY)) and LE'] := LP(R%; L?(R)) be the space
of spatial-time functions with norms, respectively,

1/q 1/p
gz o= ([ 1) Ufhzg o= ([ 1 atgas)

where || - ||, stands for the usual LP-norm. By Minkowskii’s inequality,

[fllLer <[ fllees i g = p; [ fllues < [ flluer if ¢ <p.

(2.2)
For r > 0 and (s,2) € R¥T! we define
Q== [-r*,1°] x B, CR™' Q%% :=Q, + (s,2), B :=DB.+z2,
and for p € [1, 00|, introduce the following localized LP-space:
D7 o= {f € Lo ®%) s Ul i= sup [15: £l < o0}, (2:3)
and for p,q € [1, ],
LEP = {f € Lige®™) : I flgss = sup [ 1gp=fllusr < oo}, (2.4)

and similarly for Ez‘tl Clearly, for p < p’ and ¢ < ¢,
£fe c g, D2 cizg
By a finite covering technique, it is easy to see that for any T, r > 0 (see [19]),
0,71 fller = sup 1f0,77x Bz fllLa»-

(2.5)

First of all, we have the following Gagliado-Nirenberge’s interpolation estimate.

Lemma 2.1. Fiz » € [2d/(d+2),2] and 0 € [0, 1] with exception § =1 and » = d.
For anyr > 2 and s > 1 with

02 2
2<E+1—;), s6 < 2,

[
3=

there is a constant C = C(s«

/]

r,0) > 0 such that

7d7
0 —0
]L;’; g C||Vf||1[‘?::||f| ]if‘(fllfé)s/(2739%2~

(2.6)
Proof. By Gagliado-Nirenberge’s interpolation inequality, we have
£l < CIV LI
Since sf < 2, by Holder’s inequality we further have
1fllsr < CHVfH]if::”ﬂ ]11137(3*9)5/(2—59),2‘
The proof is complete. O

Next for fixed s € [1, 2], we introduce the following index set

I, = {(ns) € [2,00) x [1,00) :%—%< %(%—Fl—%)}

The following lemma is an easy consequence of (2.6).



6 XICHENG ZHANG

Lemma 2.2. For any (r,s) € &, and e € (0,1), there are 8 € (1,00) and constant
C. = C(r,s,,d) >0 such that for any 1 <11 < 72 < 2,

., fllu;r <ellq, Vi + Ce(rz = m) itg,, fllLs2. (2.7)
Proof. Let n € C°(Qr,y;[0,1]) with
Mo, =1, [Vl <2(ro —m)~"
Since (r,s) € Z,., by (2.6), there are 6 € [0, 2 A 1) such that

Ly 5 ||V(Tlf)||L2 %H77f| 2(1 0)s/(2—50),2"

11q,, fllLsr < lnf

Moreover, we have

||v(77f)||1Lf;” ||V77f||m2 =+ ||77Vf||1[‘2 o S (o —11)7 1||1Q72f||L2 =+ ||1Q72 Vf||]L2 -

Since 6 € [0,1) and s6 < 2, the desired estimate follows by Young’s inequality. O
We need the following simple variational inequality.

Lemma 2.3. Let o > 1. For any 7 < § and v > 0, we have for f € L'([r,0]),
5
inf O )| F () |dr s £(7) = 1,£(5) = 0
ot { | 1ewriselar: o) = 1.46) }

; :
<(F-mot ( / If(r‘)l”dr>

Proof. The one dimensional variational problem in the lemma is clearly less than

T(f) = leclm]){/ 1( )| +e)dr: l(1) = 4(5)20}, e>0.

Let f, be the mollifying approximation of f and let us choose

5 5 -1
) = [ (Ufals) +2)777ds (/ (|fn(«9)+5)a11ds>
so that

5 5 @
J:(f) < (/ (fn(s)|+6)fl(|f(s)l+6)ds> (/ (Ifn(s)|+6)a11ds> :

Taking limits n — oo, by the dominated convergence theorem, we get

5 -«
J=(f) < (/ (If(8)|+8)_”i1d8> :

By the inverse Holder inequality, we obtain that for any 5 > 1,

T(f) < (6—7) 5 (/ (1f(r >|+e>51dr) .

The desired estimate follows by letting v = % and € | 0. O

The following lemma is a time-dependent version of [3, Lemma 2.1].
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Lemma 2.4. Let w : R x R = R be a measurable function with support in I x Bsy,
where I C R is a finite time interval. Let p,q > 1 and o > 1/p. For given
1 <7 <6 <2, consider the following variational problem

I (w) i=inf { ulVnl*llizs i1 € C3(Bs).n > 0,n =1 on B }.

For B > 1 with % = %+%, where 8 € [0, 1], there is a constant C = C(B,p, q,d) >
0 such that

T(w) < C6 - 1)~ ([1gVull sy I1qulsh +I1qulysy )
where Q =1 x (Bs \ B;).

Proof. Let p,g > 1 and o > 1/p. Let F(z) := ([, \w(t,m)|th)1/q. For given
radial test function n(z) = £(|z|), by Fubini’s theorem and the transform of polar
coordinates, we have

)
eVl 2 = / FP|Vg|o® = / ()] ( / F) ds.
R4 T S

s

where S, := {z € R?: |2| = s}. Thus, for any v > 0, by Lemma 2.3 we have

1

<@—r)ime (/5 (/S Fp)7d3>m. (2.8)

Now for 8 > 1 with l = l + %, by the Sobolev embedding in sphere S,, we have
1Fl o,y S IVFIGs @) I Fllzsts,) + IFlLs,) s € (L2

Substituting this into (2.8) and taking v = 5/p, we obtain

17l7a 4 'B %
T(w) S (6 —7)3 3 ( [ (I9P 1 P, + 1Pl ds>

S @ =TT (IVF I s 1150505, + IFls (5B, ) - (29)
On the other hand, let

Fie) = ( [+ e)dt)”q.

By the chain rule and Hoélder’s inequality, we have

VE.(2)] < ( [(wteop- e)dt) [t Tt < [Vt )z
I I
Letting € | 0, we obtain
VE@)] < [V, ) loao-

Substituting this into (2.9), we obtain the desired estimate. O
Remark 2.5. Suppose that w : R* — R is time-independent and % < % + %

Directly using Sobolev’s embedding, we have

T(w) < (=)l < €O =)~ IVl + lwllmom,) ).
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However, by Lemma 2.2, we have for % < % + d—il,

1,
T(w) <C@ =) 7T IVl oy + lwllos,) )
which clearly has better 8 than the above estimate.
We also need the following iteration lemma (cf. [7, Lemma 4.3]).

Lemma 2.6. Let h(7) > 0 be bounded in [y, 72] with 7'1 > 0. Let A,B > 0.
Suppose that for some a >0, 6 € (0,1) and any 11 <7 < 7" < 79,

h(t) < On(r")+ (7' —7)"*A+ B.
Then there is a C = C(«, 0) > 0 such that
h(m) < C((re — 1) “A+ B).
3. MAXIMUM PRINCIPLE FOR LINEAR PARABOLIC EQUATIONS
Let po > & be as in (H*). We define 5 € [1,2] by
Z=+1 (3.1)

For a set Q C R4, we also introduce

Yo = {f €L Iflvg 1= afllzn + 1@Vl lxz < o0}

and
7 1= {f € Lot 1flly = Wl + IVafllgez < oo} (3:2)
3.1. Energy type estimate. In this subsection we fix 1 <7 < 75 < 2 and
Qi = Qr, = [-77,7}] X Br,, i =1,2.
Let % be the class of all functions n € C°(Q2; [0,1]) with
Moy =1, nlag =0, [IVillee + [0mllec < 4(r2 —71)7" (3.3)

We first prepare the following important variational estimate.

Lemma 3.1. For any p € [1,00] with pio +% < %, there are vo, 71,72 > 0 and
constant C' > 0 only depending on p, d,po such that for any e € (0,1), w € Yo, and

€ LY (Q2),

Meugligd e~ +1

: 2 2
inf gVl Se ellwle, + Sl (B4)

gvo (

Proof. Let p = %. By Holder’s inequality, we have

lgw*Vall2s < 11Qugllipe lw*Vnllza ||1Q29H]L”°°||w|V77|2||L2p2 (3-5)

,t

Slncep——i— < %5, we have for some 6 € (0,1),

_ 1 [%
wmti=xTm e

Thus by Lemma 2.4, we have
inf [l Vol ¥z < (2 = )"0 (110, Vool 1o,wllis + ILgsullyz).

Substltutmg this into (3.5), we obtain

2(1-0)

inf [lgw? Tl S [Laagllp (2 = )~ F o, Va2 [ Loswl

dt1
+11quglhr (72 = )~ 1guuf
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- . .
By Young’s inequality and HlewHsz < Cd,x||1Q2w||ija we obtain (3.4). O

Recall © being the parameter set (1.9). Now we prove the following local energy
estimate by Lemma 3.1.

Lemma 3.2. Under (H*) and (H®), for any f € L{%"*(Q2) with (ps,qs) € IZ,,
there are (r;,s8;) € S, 1 =1,2,3,4, v = v(po,p1,d) = 1 and constant C = C(©) >

0 such that for any Lipschitz weak subsolution uw of PDE (1.4) and t > 0,

115, Se (=)™ 37 1w [Frir: +11f1qu IEosrs 1L wroyn@a T IEza. s
i=1,2,3
where T'(-) := 1 (oo y(-) and w := (u — k)" and k > 0.
Proof. We divide the proof into three steps.
(i) Fix n € € (see (3.3)). In this step we show that for all ¢ € R,
1) ()13 < (@sn*, w?T")) = 2(a - Vu, V(n*w)I") (3.6)

+2((b - Vu, 2w + 2((f, n*wI®).

Since we want to take the test function ¢ = wn? in (1.6), and dsu only makes sense
in the distributional sense, we shall first approximate u by its Steklov mean:

1 [k 1 [tth
Spu(t,x) = E/ u(t+ s,z)ds = E/ u(s,z)ds, h e (0,1). (3.7
0 t

Let up := Spu and S; be the adjoint operator of Sj,. Let ¢ be a nonnegative
Lipschitz function in R with compact support in Q2. By Definition 1.1 with
test function S} ¢, using integration by parts and Fubini’s theorem, one sees that

(Osun, o)) < —=(Sn(a- Vu), Vo) + (Su(b- Vu), o)) + (fn, ) (3.8)
Now fix t € R and define

(7 (8) = Lcoo(s) + (1 =M (s — 1)) L(p,0441(5), € € (0,1).
Let wy, := (up — k). Note that
2<88uh7 wh772<f> = 2<88wh’ whn2C§>
= outut i) - [ wb(G) - [ whoure).
Rd Rd
By (3.8) with ¢ = wpn?¢rc and [gu4, Os(wi, n*¢5) = 0, we get

=[Pty < [ whPe) - 2(Shla- Va), Vwnr))
Rd+1 Rd+1
+2((Sh(b - V), wn” G ) + 2( fa, wir* G-
Letting h | 0 and by the dominated convergence theorem, we obtain
= [Py < [ @) - 2a- Vu Vi)
Rd+1 Rd+1

+2(b - Vu, w7 ) + 2 f, wn* ¢ ).

Since lim. o (§ (s) = Z*(s) for each s € R, the right hand side of the above inequality
converges to the right hand side of (3.6) as € | 0. On the other hand, by the
Lebesgue differential theorem, we also have

t+e
[y =2 [ e 2 ol

Thus, we obtain (3.6).
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(ii) Recalling w = (u — k)T and noting that
Vu - Vw = |[Vw|?, (Vu)w = (Vw)w = Vw?/2, (3.9)
by the chain rule and Young’s inequality, we have

@ Vu V) = - [ g(Tuyave -z [

nw(Vn)*aVw
R4 R

1 laVw|?
<= 2 x A 21,2
5 /Rdn (Vw)*aVw + /Rdw |V Vw)yave

5 1 2 2 2 2
< —5 [ mIVwPA+4 [ wVn[p,
2 Rd Rd

which in turn gives that

—{(a- Vu, V(rw)T') < =§lInVwr>T'[F2 + 4wV’ |72, (3.10)

Due to b = by + ba, by (3.9) and the integration by parts, we have

(b Vu,PwI') = (nby - Vw2, A" 2w + L((bs - Vw?, n*T"))

< HIVOAT ez + AN b2
— (b Vi, wPTE) — b ((ivbyw?, P T,
Let (72, 82), (r3,s3) and (ry, s4) be defined by
D

and

142 1 L2 _q 1411 14,1 _q
P3+T3 ? LJ3+83 ’ P4+T4 27 + :

Since (ps, q2) satisfies (1.8) and (ps, g3), (ps, q4) € I% , one sees that
(r2,82), (r3,83), (ra,81) € S

Thus by Hélder’s inequality and Young’s inequality, we further have
1 _
(b Vu, i wI') < FnVwAT L'z + 4A 1, lpo b1 1, oo e [InwT”

2
$2:72
E‘t,m

2 VT s+ (| (divbe) L, 1 srs [T

2
53,73
Ly

1 —
< HIVON T s+ AN o I D2 o 7T

2
52,72
]Lt,.z

152 T s + SU(Civbs) Rggn o T 2o e, (3.11)

and also,
(I < [ fnlliasrs ! e 2 11 {wr0ynQa lise,rs
< M s + A0 i@ Z e (312
(iii) Combining (3.6) and (3.10)-(3.12), we obtain
)OI + HaTer TR, » < 20Ty + SVt .
+ C|lnwT?

]ifgﬂ,rz + C||InwT?| izgm,rs + 2||b2V77wQItH]L%,i

+ %Ilnwflliff + 8Hf77||12L§§P4 1 fw03n@.T" iqu.
Furthermore, we have for some C = C(0) > 0,
0T |72+ VWAL P22 Sc 10w’ s + [lwVnus T2 .
t,x t,x t,x t,x

+ ||b2VT]w2.'Zt||]L%,1 + H??'LUIt‘

[ of

2
s3,73
L
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+ ||f77||]ifjlf4 ||1{w760}ﬁszt‘ i:‘fgu- (313)

Now since 7/g, = 1 and n|g; = 0, by (3.1) and Holder’s inequality, we have
_ 1
10, VT[22 < InVuT!|22s < Xl 5. IV wAST 2,
and by (3.3),
0T 11 < Ol = 1) 1T 25
Substituting these into (3.13), we obtain that for any n € €,
_ 1
10T 2 + gy VoT |22 < T[22 + 1Al [V AT T 24
Sc (2 = 1) T 1guwI T2 + | (1l Vil + (b2 )w? [Vl Z']|p 1.1
+ ) guT|
i=2,3
Note that by (3.3) and the assumptions,
p| V| 4+ o] < (o — 1) 2u +4|ba|) =: (o — 1) " tg € Higft’oo. (3.15)
By (1.7) and Lemma 3.1, there are 49,71 > 0 such that for all ¢ > 0 and ¢ € (0,1),
Jnf, lgw?[ValT |l < w5, +Ce™ (12 = 1) " [1guuT![F22. (3.16)

(3.14)

2
54,74 -
Ly

Lo 110u g0 [ L gu0yn@u T'|

Let (r1,s1) = (2,2) € #,. By (3.14), (3.15) and (3.16), there are v = v(po,p1,d) >
1 and C' > 0 such that for all 1 <7 < 75 < 2,

T3, < SwTBe, +Cn—m)" 3 1guuT!Psn
1=1,2,3

+ £, [Ess,rs 11 w0ynQa ']

2
Lew™
Recall Q; = Q, for i = 1,2. If we let h(7) := ||wIt||?,/QT, then the above inequality

implies that for any 7 <7 < 7/ < 79,

h(r) < Sh(r) +C(7' = 7)7 > |1g,,wT|

i=1,2,3

2
84474
]Lt,:l;

2 2
+1f1q., ||1Lg41;1’4 11 {w01nq., 7| Li4ma-
The desired estimate now follows by Lemma 2.6. (I

3.2. Local maximum estimate. The following lemma is easy by Holder’s in-
equality.

Lemma 3.3. Let Q = I x D C RxR? be a bounded domain. For any p,q € [1,00),
there are constants Cy,Cy > 0 only depending on Q,p,q such that for any A C Q,
1/(pv
ILallps + I Lalles < CULAIGATY < CallLallgs + [ Lallzg) /.
We need the following simple De-Giorgi’s iteration lemma.

Lemma 3.4. Let (ap)nen be a sequence of nonnegative real numbers. Suppose that
for some Co, A >1 and d; >0, j=1,--- ,m,

a1 < CoX'an Y jay, n=12,--.
j=1
If a1 < (MCo A+ =10 yphere § = §1 A -+ A by, then

lim a, = 0.
n— 00
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Proof. We use induction to prove that if a; < (mCo)\(1+5)/5)_1/5 < 1, then
a, < al)f("*l)/‘s, Vn € N.
By the induction hypothesis, we have
Ant1 < rrLC’O)\”a,lfr‘s < mCOa%M)\"*("*1)(1“3)/‘S

= (mCoaf \IT/%) g A7/% L agA™"/°,
where the last step is due to mC’oa‘ls)\(1+5)/5 <1 O
Lemma 3.5. Let 1 <73 <79 <2 and0 < kg < k1. Define

[i:=Q,, w = wu-r)", i=0,1.

(i) For any r,s € [1,00], we have

Ler < Jwolryller /(K1 — ko). (3.17)

(i) For any r € [1,3) and s € [1,2), there is a universal constant C > 0 such that

” 1{71)1#0}(11_‘0 |

(3.18)

lwolrg 11y (F=3)A(5—3)
K1—K0o

I1r, Veorllis < Cllwnlve,

(iii) For any (r,s) € Z,., there are 6 € (0,1) and C = C(r,s,d, 3¢) > 0 such that

1 llwolroll 1.1\
Iyl < O =)~ Hwnlbe, - (—e ) (3.19)
Proof. (i) Noting that
Wolw,20 = (W — K1 + K1 — f@o)+|w17&0 Z K1 — Ko,
for given r, s € [1, 0], we have
lwolrg llLgr = llwolfw, zoynrollLs s 2 (K1 — ko)l Lw, 2oy, s
which implies (3.17).
(ii) Let £ =L 4+ L and 1 = 1 + L. By Hélder’s inequality, we have
Iro Veorllizs = 1ron w0y Veorlluzs < lItee Vou =zl Tron w0yl 7,

1/(s"vr!
S ol e, Itrongus orlpas s

which implies (3.18) by (3.17).
(iil) Since % — % < %(% — pio), we can choose r’, 3 > r and s’,6 > s so that

).

1 1 _ 1 1 1 _ 1 1 1 1
vte=n vt =s 3w <l

s? T s

ISUIN]
3|

By Holder’s inequality, we have

e fluzy < flwide o 1 gwzoyars oo e
and by Lemma 2.2 and (2.2),
lwile,flpe o So e Veorlyza + (7o = 71) 7 HiTrgws [l 2
Sc (0 = 71) " Hlwa [l

which in turn yields (3.19) by Lemma 3.3 and (3.17). d

Now we can show the following local maximum principle for PDE (1.4).



MAXIMUM PRINCIPLE FOR NON-UNIFORMLY PARABOLIC EQUATIONS 13

Theorem 3.6 (Local maximum estimate). Under the assumption of Lemma 3.2,
for any p > 0, there is a constant C = C(p,0) > 0 such that for any Lipschitz weak
subsolution u of PDE (1.4),

[t 1q, oo < € (It Laullipe + 1 1qullsnes ) (3.20)
where Q1 :=[—1,1] x By and Q2 := [—4,4] x Bs.
Proof. Fix 1 <7 < o < 2. Let k > 0, which will be determined below. For n € N,
define
Tw=T+(@—7)2""", Fi=7+3(—-7)27""", Kky,:=r(1-2'"7)

and
Wy = (4 — ky) T, Ty o= (=12, 72) x BT",,fn = (—72,72) x B;,.
Clearly,
kn Tk, Dhy1 C r,crl, i [—7’2,7'2] x B = Q.
Since Kp+1 — kp = k27", for any r, s € [1,00], by (3.17) we have

Ly S 2nﬁ71||11“nwn”ﬂqf;;7 (3.21)

||1{wn+1¢0}mr‘n‘
and by (3.19), for any (r, s) € .Z,., there is a ¢ € (0, 1) such that

< 2" |wn |l
Lya

5
< Trn . (2"5—1“1]7"10””]11;,1) . (322)
Now let (r;,s;),i=1,2,3,4 be as in Lemma 3.2. If we define
s i=1,2,34,

H 1Fn+1 Wn+1

then by (3.22), for some §; = d;(r;, 4, ) € (0,1) and C = C(ry, 84, 3¢,d) >0

2" |wp g1 |l v~ _ & .
E( na1 SC TF” . (QnK 1H1an"HL;’i) , 1= 1,2,3,4.

In particular, we have

4 4
1 2" |wnt1 [l _ 8
Gnl 3= Db S e > (2" e, wallp)
i=1 i=1 '
Plunilg o (D) e lwnssllsg.,
F7l
5 (o—7)k Z 7 S " (o-7T)r Za’n7 (323)
i=1

where the second inequality is due to ||11“nwn||]Ltl,1 < COl1r,wnllpsm.
On the other hand, note that 7
0 < wWng1 S wy = [Vwpgt| = [Vul|ly, 200 < [Vullpy, 20p = [Vw,].

By Lemma 3.2 with w = w41, Q1 = T, Q2 =T, and (3.17), we have for some
v =1,

[wntallve, Se2™ Y|
i=1,2,3
Se 20D + 0D+ 6D) + || Flg lones (27571,

s 1A ugsr [ Lgw, s 20por,

S4,T4
n E‘t,m

where C'= C'(©) > 0. This implies that for x > ||f1g, ||]Lq4 P4,

[wnt1llve, So 20D + £ + 62) + 2me() < 27 Z 09 = 2", k.

i=1



14 XICHENG ZHANG

Substituting this into (3.23), we obtain that for some Cy,vo > 1,

4
any1 K — af}, Vn € N.
i=1
Let 6 := 61 A --- A dy. Suppose that

1
4C, 2'70(1-‘,-5)/6 5
o> [] Y utie.l

g —T .
i=1,2,3,4

]L:ITQ v ||f1Q2 ”E‘fi’m .

Then a1 < (400270(1"’5)/5)_%, and by Fatou’s lemma and Lemma 3.4,

_ + N . . T . (1) RE _
[(u = #)"1q, [l;ym < liminf flwn 1, flpom = liminf £,7 < & limsup a,, =0,

which in turn implies that

1
4002”10(1+5)/5 5
lu*1q e < | | S e, s | Vgl

g7 i=1,2,3,4
To show (3.20), without loss of generality, we may assume

< = iy i}
P<7/2, yi= max {siri}

Thus by Holder’s inequality and Young’s inequality, we have
lut1g, [loo < Clo =) 75 [ut1g, |y + 1 £1q, llLsrs
< Clo =) Hlut g, w1, lifpy + 1/ 10s s
< 3lut1g, lloo + Clo = 7) 75 [t Loy llupr + [ FLqullonrs,
where C = C(0) is independent of o, 7. By Lemma 2.6, we conclude the proof. [

3.3. Proof of Theorem 1.3. Without loss of generality, we assume 7" =1 and
u(t,x) = f(t,z) =0, Vit<O0.

For z € R%, we write

Q:=Q%, i=1,2,3.
Let u be a Lipschitz weak solution of PDE (1.4) in the sense of Definition 1.1. By
translation and Lemma 3.2 with w = ut,u™, there is a constant C = C(©) > 0

such that for all ¢ € [0,1],

[uZ* [l Sc > [lgzu’|
i=1,2,3

Liri 1105 T lisams

where (r;,s;) are as in Lemma 3.2. By Lemma 2.2, we further have for some
B € (1,00) and any ¢ € (0,1),

0T gy < ell105 VT ez + Ce[1gguT g + Cll FLos T g
Taking supremum in z € R? for both sides and by (2.5), we obtain

Tl S sup T gy S eNVUT g + BT Iy + DT .

z ’ 5
Since [|VuZ'||z=2 < ||uZ'] ;, choosing € small enough, we obtain
x,t

W' 7 S T ligpz + 1T fugms. (3.24)
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Since 8 < oo and u(t) = 0 for ¢ < 0, the above inequality implies that for any
t €10,1],
1/8

|WNL¢</WLM ) 1T g
By Gronwall’s inequality we obtain

luZ" e < sup lu@llz < N luss;es-
N ,

)

which together with (3.24) yields
luloully So llf 1ol (3.25)
Finally, by (3.20) and (3.25), we also have
1wl Lo (0,1]xRe) < Sup (w467 )10 1) Bz [loo
S lluloy |||ij;§ + |||f1[0,1] |||ij%ij4 S o ”|JLZj§j”4-

The proof is complete.

4. WEAK SOLUTIONS OF SDES WITH ROUGH COEFFICIENTS

In this section we present an application of the global boundedness (1.10) in
SDEs, and show the existence of weak solutions to SDE (1.13) with rough coeffi-
cients. First of all, we recall the following notion of weak solutions to SDE (1.13).

Definition 4.1. Let § := (2, %, P;(ZF:)i>0) be a stochastic basis and (X,W) a
pair of Fi-adapted processes defined thereon. Given (s,z) € Ry x R, we call triple
(3, X, W) a weak solution of SDE (1.13) with starting point v € R? at time s if

(i) P(Xy =xz,t €[0,s]) =1 and W is an F#;-Brownian motion;
(ii) for allt > s, it holds that P-a.s.,

t
[ (o X0 + bt X)) <
and

t t
Xi=x+ \@/ o(r, X, )dW, +/ b(r, X, )dr

Recall pg,p1 from (1.7) and the convention that the repeated indices will be
summed automatically, for instances,

d d
aiaij = Z@iaij, 5‘z-8jaij = Z 81-6jaij.
i=1

i,j=1
We introduce the following assumptions on ¢ and b:
(ﬁ") Suppose that there are a sequence of dxd-matrix functions o,, € L>(R4; Cp°),
(p2,q2) € I¢, and ko > 0 such that for all n € N,
D3+l + 0l 108D g S50 (4

where a,, := 0,0, A\, and p, are defined as in (1.5) by a,. Moreover, for
some p3,q3 € [2,00] with (8,%) e I¢ and for any T, R > 0,

sup lonllzss.rs =: w1 <00, Tim |[(0n = 0)Ljo1)xBpllLisrs = 0. (42)

(H?) Let b = by + by satisfy (H?) and belong to ]L‘“’p“ for some (p4,qs) € IZ .
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Let © be defined by (1.9). Below we shall write
é = (@,ph qi, Koy, K1, |||bH|H~‘(Z4.ij4 ) .

We have the following existence result.

Theorem 4.2. Under (H®) and (H?), for any (s,x) € Ry x RY, there is a weak
solution (§, X, W) for SDE (1.13) starting from x at time s. Moreover, for any
(p,q) € Hgo and T > s, there are 6 € (0,1) and constant C = C(T,0,p,q) > 0 such

that for any s <tg <t <T and f € E?’ﬁ,
B( [ 1t xwr|7,) <t - 0 Uiy (1.3

In the following proof, we assume s = 0 and x € R%. Let o, be as in (ﬁ") and
b (t, ) = b* pp(t, z) be the mollifying approximation of b. In particular,
Onybn € L°°([0, T; C5° (RY)), (4.4)
and the following SDE admits a unique strong solution (cf. [16]):
AXP = b, (t, X)dt + V20, (t, X)AW;, X7 = 2. (4.5)
Note that the generator of SDE (6.1) is given by
L (@) = (201) (4,2)0:0; (2) + B (t,2)0 f ()

= 0i(a;] (t,)0; ) (x) + b}, (t, )0, f (),
where
al = ogglk bl = bl — 9;al.
In particular, by (H?), one sees that (H*) holds for a,, uniformly in n, and (H?)
holds for b, = by, + (b2, — 0;a%;) uniformly in n, where b; ,, 1= b; * py,.
We first show the following key Krylov estimate (see [19]).
Theorem 4.3. Under (ﬁ") and (ﬁb), for any (p,q) € Hgo and T > 0, there are
0 =06(p,q,d,po) € (0,1) and C = C(T,é P.q q) > 0 independent of starting point x
such that for any 0 <to <t1 <T and [ € Lg’;’,

t1
sup ([0, X000 74 ) < €t - 101y (1.6)

to
Proof. Below we drop the super and subscripts n for simplicity. Without loss of
generality, we may assume f € C5°(R?*!). Fixt; € (0, 7] and consider the following
backward PDEs:
du+ L7 u=f, u(ty) =0.
Under (4.4), it is well known that there is a unique solution u € L2 ([0, t1]; C2°(R?))
so that (cf. [16])

u(t,z) = /t 1(gfs"’bu — )(s,z)ds, t€]0,tq].

By It6’s formula, for any o < tl, we have

t1
u(ty, Xe,) — u(to, Xiy) = f(s, X)ds+ V2 [ (0"Vu)(s, X,)dW,.

to tO
Taking conditional expectations with respect to .%#;,, we obtain

ty
E (/ f(SaXs)dS‘e%o) < Jull Lo ([to,¢1] xR4Y - (4.7)
to



MAXIMUM PRINCIPLE FOR NON-UNIFORMLY PARABOLIC EQUATIONS 17

On the other hand, since (p, q) € ]Igo,

1 1y(2 _ 1
S<(-2)G )

Thus by the assumptions, (1.10) of Theorem 1.3, there exists a constant C' =

C(T,0,p,q) > 0 independent of n such that

we can choose ¢’ < ¢ so that

0
ull oo (20 011520y S 10,001y > S (1 = t0) I llugz,
where 0 = % and the second inequality is due to Holder’s inequality. Substi-

tuting it into (4.7), we obtain (4.6). O

_1
We need the following simple lemma.

Lemma 4.4. Let (X;)i>0 be a right continuous stochastic process on a filtered
probability space (Q, . F,P; (Ft)i>0). Suppose that for some Y € LY(Q) and A > 0,

|X:| <Y, E(XiF) <A P—as.
Then for any finite stopping time 7, it holds that
IE(XT|§T) S A, P—a.s.

Proof. Let 7, be a sequence of decreasing stopping times with values in D :=
{k-27":k,n € N} and so that 7,, — 7 as n — oo. Note that for each n € N,

E (X7, |#:,) =E (Z 1{m=t}Xt<%n> = L -nE(XG|F) <A
teD teD

By the dominated convergence theorem and %, C %, , we have

E(X,|%;) = nh_{r;OIE(XT|§T) = nlLH;oE(XTJyT"‘yT) < A.
The proof is complete. O
Remark 4.5. By this lemma, one sees that (4.6) is equivalent to that for any
stopping time 7 < T, § € (0,1) and f € L

t,x»

T+48
supE (/ f(s, X)ds

Lemma 4.6. Under (H°) and (HY), for any T > 0, there are § € (0,1) and
constant C = C(T,0) > 0 such that for all § € (0,1),

32) < O8Iy (43)

supE [ sup sup |X)?+S—Xt"|1/2 < CoY/? (4.9)
n t€[0,T] s€[0,6]
and
supIE< sup |th|> < C. (4.10)
n te[0,T]

Proof. We only prove (4.9). Let 7 be any stopping time less than 7. Notice that
T+t T+t
Xr, - X" = / bn(s, X™)ds + \@/ on(s, XM)AW,, t> 0.

By Burkholder’s inequality and (4.8), we have

T+ T+ 1/2
E ( sup X7, _Xm) 51@/ b (5, X™)dls + (E/ |Un(S,Xg)2ds>

te0,0]
< C8bnllggs rs + C&llonllzgn v < CF°,
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where C' is independent of n and §. Thus by [20, Lemma 2.7], we obtain (4.9). O

Let C be the space of all continuous functions from R, to R, which is endowed
with the locally uniformly metric so that C becomes a Polish space. Let Q, be
the law of (X™, W.) in product space C x C. For each z € R?, by Lemma 4.6 and
[16, Theorem 1.3.2], the law of X7 is tight in C. By Lemma 4.6 and Prokhorov’s
theorem, there are a subsequence still denoted by n and Q € P(C x C) so that

Q. — Q weakly.

Now, by Skorokhod’s representation the9rer~n, there are a probability space (Q, F , I@’)
and random variables (X", W) and (X, W) defined on it such that

(X", W) — (X, W), P—a.s. (4.11)
and
Po (X", W") 1=Q,=Po (X", W)™}, Po(X,W)'=Q (4.12)
Define .#* := (W™, X"; 5 < t). Notice that
P(Wy = Ws € | F) =P(W, =W, € )
implies that

P(W! — WP e | ZM) =P(Wr - W! e ).

S

In other words, W* is an .%;*-Brownian motion. Thus, by (6.1) and (4.12) we have
¢ ¢

X = x—i—/ bn(s,Xg)der/ on (s, X2 AW (4.13)
0 0

Moreover, by (4.6), we also have

ty

s ([0, X000 % ) < Ot = 101y (4.19
n to » T
In order to take the limits, we recall a result of Skorokhod [15, p.32].
Lemma 4.7. Let {fn(t),t = 0,n € N} be a sequence of measurable F'-adapted

processes. Suppose that for every T,e > 0, there is an M. > 0 such that

supP<{ sup |frn(t)] > M » <,
n te[0,T

and also,

lim I@{ sup |fn(t) — f(&)| > E} =0.

n—oo tG[O,T]
Then it holds that for every T > 0,
T ~ T ~
/ fan(@®)dW — / f(&)dWy in probability as n — oo.
0 0

Lemma 4.8. For each t > 0, the following limits hold in probability as n — oo,

t t
/bn(s,f(sn)ds%/ b(s,f(s)ds, (4.15)
0 0

¢ ¢
/ U,L(s,f(f)dVT/;‘ — / a(s,f(s)dWs. (4.16)
0 0
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Proof. We only prove (4.16). For simplicity, we shall write 0, := o and drop the
tilde. For each n € No, = NU {00}, let o5 (¢, z) := o, * p:(t,z) be the mollifying
approximation of o,,. It suffices to show the following two limits: for fixed £ > 0,

¢
/ S(s, X2 AW — / (s,Xs)dWj in probability n — oo, (4.17)
0
and
" 2
€ n\ _ n nl _
gl_r%nselllwp E /0 (o5 (s, X7) — on(s, XI))dW] 0. (4.18)

Clearly, limit (4.17) follows by Lemma 4.7. We look at (4.18). For R > 0, we define
TR = inf{t > 0:|X}'| > R}.
By (4.10), we have
1
lim supP(rp <t) < lim sup=E [ sup |X7|]| =0. 4.19
R—o0 np (i ) R—o0 np R (se[OI,)t] | |> ( )

For (4.18), by Itd’s isometry we have
2

e[ [ (a5, 2) — (s X200

(4.20)
/|a (5,X7) — 0 (5, XP)[2ds = I2(e) + J2(e),

where
t
IIT%((‘E) =E <1{T§>t}/ |U;(S7X;L) —On (SaX;L)|2dS> )
0
t
Jr(e) =E <1{r}g<t}/ lo% (s, X0) —on (S,Xg)|2ds> .
0
For I}(e), since (5, %) e I¢ , by (4.14) we have

t
130) < B ([ Lixoicnlas (5.X27) = (5, X7) s )
0

< 101x 82 (05 — 0) Pasura.
where the implicit constant is independent of n, e, R. For each R > 0, since

nlggosgzll’) ; 110.0% s (97 = 0%)llLgsps < T L1045 By5 (00 = 0)[lLgs s = 0,

and for each n € N,
hm ||10t]><BR( O'n)H]L“" P3 —O
it follows that for each R > 0,
. n < 1 e 2 _
liy sup T5(6) S i sup 1015 (75, — 020 = 0. (4.21)

For Jj(e), since (8, L) € Hgo, one can choose v > 1 being close to 1 so that

(gi, 27) € I¢ . By Holder’s inequality and (4.6) we have

t 3
The) < @k < )7 (B [ 1oa (o, XD) - on(s. XD

—1

a—2 a—2
S @ <) Jos - O'nIHng e S (P(rg <)),
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where the implicit constant is independent of €, n, R. By (4.19), we have
lim supsup Jj(e) = 0. (4.22)
R—o0 ¢

Combining (4.20), (4.21) and (4.22), we obtain (4.18). The proof is complete. O

Proof of Theorem 4.2. Tt follows by taking limits for both sides of (4.13) and Lemma
4.8. As for (4.3), it follows by taking limits for (4.14) with f € Co(Ry x RY). O

5. STRONG MARKOV SELECTION

In this section we use Krylov’s Markov selection theorem to show the existence of
a strong Markov solution under (H?) and (H?). Let w; be the coordinate process
on the continuous function space C and B; := o{ws : s < t} the natural o-filtration.
We first recall the following notion of local martingale solutions to SDE (1.13).

Definition 5.1. Let (s,z) € Ry x R%. A probability measure P € P(C) is called a
local martingale solution of SDE (1.13) starting from x at time s if

(i) P(w; = x,t €[0,s]) =1 and for each t > s,

P (v /:<|b<r,wr> +ll00") ) < o0 ) = 1.

(ii) For any f € C>(R?), the process

M (@)= fw) = )~ [ 220 fw)ir

S
is a continuous local Bi-martingale after time s.
The set of all the local martingale solutions of (1.13) is denoted by Mgﬁ C P(C).

By Ito’s formula, it is easy to see that the law of a weak solution in Definition
4.1 is a local martingale solution. Moreover, we also have the following opposite
conclusion (see [8, p314, Proposition 4.11]).

Theorem 5.2. For any P € M2, there is a weak solution (§, X, W) starting from

8,7
x at time s, where § = (Q, #,P; (F1)i>0) is a stochastic basis, and so that

P=PoX "
One also needs the following notion about Krylov’s estimate (see Theorem 4.3).

Definition 5.3. Let p,q € [1,00) and s = 0. We call a probability measure P €
P(C) satisfy the Krylov estimate with indices p,q and starting from s if for any
T > s, there are constants k,0 > 0 such that for any s < top < t1 < T and
f e Co(Ry xRY),

E]P’< " flryw.)dr

to

B, ) < wlts — o) 1l (5.1)
We shall denote by K¥'7. the set of all the above P.
Remark 5.4. By a standard approximation, (5.1) holds for all f € L{%.
Now we show the following main result of this section.
Theorem 5.5. Assume (H®) and (H®). For given (s,z) € Ry x R?, let

R P,q o,b
Cﬁ(s, :17) = m(p,q)EHZO,T>SICs,T n Ms,x'
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Then € (s,x) is a non-empty convex subset of P(C) and satisfies (C1), (C2) and
(C3) in appendiz. In particular, there is a measurable mapping

R, x R? 3 (s,2) = P, € €(s,2)

so that for each fived (s,x) € Ry x R? and finite stopping time T > s, there is a
P, -null set N € B, such that for allw ¢ N,

P (1Br) (W) = Prw),w, ) ()-

Proof. First of all, by Theorem 4.3, for each (s, x), € (s, x) is non-empty and convex,
and for given (p,q) € ]IZO, the constants k, 6 appearing in (5.1) are independent of
S, .

Verification of (C1) Let (s,,z,) converge to (s,z) and P € € (s, z,). We
want to show that (P™), ¢y is tight. By the equivalence between martingale solutions
and weak solutions, for each n € N, there exists a weak solution (F", X™, W™)
starting from z,, at time s,, where §, := (Q", F",P"; (%] )t>0), so that

Pn — Pn o (Xn)fl
Note that

t t
szxn+\/§/ a(nX?)de—i—/ b(r, X™)dr, t> s,.

Since P" € Np.g)eL,, 755, K5 7, and the constants &, appearing in (5.1) are in-
dependent of n, as in Lemma 4.6, one can show that for each T > sup s,, + 1,

supE, | sup sup |X7, — X7[V?) <082 5€(0,1),
n te[0,T] s€[0,5]

where E,, stands for the expectation with respect to P™. Thus (P"),ecn is tight.
Let P be any accumulation point of P™. If necessary, by substracting a subsequence,
without loss of generality we assume P" weakly converges to P. For given compact
support continuous function f, by taking weak limits for

EF» (/ flr,w, dT’Bto) K(ts —to)” Ml

one sees that
Pe m(p7q)6ﬂpovT>s,C§,’%'
Moreover, as in the proof in Section 4, one can show that P € Mg;ﬁ;
Verification of (C2) Let P € ¥(s,z) and 7 > s be a finite stopping time. Let
Q. be ar.c.p.d. of P(:|B;). By [16, Theorem 6.1.3], there is a P-null set Ny € B,
such that for all w ¢ Ny,

Qu € M7,

T(W),Wr(w) "

(5.2)

On the other hand, for fixed p,q € Hpm 6 €(0,1) and T > s + 9, since P € K7, we
have for all t € [s,T — §] and f € Co(R, x R?),

t+5
EF (/ f(r, wT)dr‘Bt> < /@(59||f|\u,p, P —a.s.
‘ t,x

By Lemma 7.4, there is a P-null set N = N(p,q, f,T) € B, such that for all w ¢ N
and T > 7(w )—1—6 te[r(w), T -3,

(/ Fron)dr| B

> /Q(S ||f||]Lq P w — a.s.,
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Since Cy(Ry x R?) and Hgo are separable, one can find a common P-null set N
such that for all w & Np and (p,q) € I, 6 € (0,1), T > 7(w) + 4, t € [7(w),T — ),
f S OQ(R+ X Rd),

9
EQ ( / o dr
t

In other words,

Bt) <R fllLer, Qu—as.

Qu € m(p,q)eﬂpo,T>r(w)’CIT)’(€J),T7
which together with (5.2) yields that there is a P-null set N such that for all w ¢ N,
Qu € C(T(w), wr(w))-
Verification of (C3) Let P € €(s,z) and 7 > s be a finite stopping time. For
any Br-measurable kernel C 5 w — @, € P(C) with
Qu € C(17(w),wr(w)), YweC.
By [16, Theorem 6.1.2], one knows that
P&, Qe MJL. (5.3)

For fixed p,q € Hgo and T > s, we want to show that there are k, 6 independent of
(s, ) such that for any s <t9 <1 < T,

ty
EFe-Q ( f(r, Wr)dT‘BtO) <ty —t0) | fllgr, P@r Q —as., (54)

to
which means that

P @; Q € Np.gyer,, 7K 7
We make the following decomposition:

t1
EF®-Q ( flr,w.)dr

to

Bt0> =L+ 1L+ I3+ 14,
where

ty
f(?", WT>dr‘Bto> ;

to

I1 o= 1y B9 9 (
Iy = 1{t0<7<t1}EP®TQ (/ f(r, Wr)dT‘Bto) )
to

31
I3 := 1{t0<7<t1}]EP®TQ (/ f(""y wr)dT‘Bt(,) )

Bt0> |
For 11, noting that

t1 VT
I, = 1{T<t0}EP®TQ (/ fr, wr)dT‘Bto\M') ;
¢

oVT

ty
I4 = 1{t1<T}EP®7Q < f(?”, wr)dr

to

by Lemma 7.3 below, there is a P ®, Q-null set N € B, so that for all w ¢ N,

tiVT tivr
EP®-Q (/ flr,w,)dr Bt“w) = K9« </ flryw)dr Bmw)
t toVT

oVT
<kt = t0)’|fllLor, Qu — aus.

Hence,
L < a(ty = t0)?||fllors PO Q- aus.
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For I, since P ®, Q|g. = P|s,, we have

I =1 <r<en) B < f(rywr)dr Bto) < w(t = t0)’[| fllLoe-
to

For I, since (P ®; Q)(:|B;)(w) = Qu, we have
Bto/\‘r)

= 1{tg<7<t1}EP (EQ' ( f(r, wr)dr) ‘Bto/\7'>
toNT
<kt = o)’ fllLee-
Lastly, for I, we have
ty
Iy =1, EF </ f(r,w,)dr Btu> < Kt — 750)0Hf||n_;1;;f-
to

Combining the above calculations, we obtain (5.4). The proof is competed by
Theorem 7.2 below. ]

ty
I3 = 1{t0<T§t1}EP®7Q < f(?“, wr)dr

T

6. EXAMPLES
For R > 1, let ¢p : [0,00) — [0,00) be a smooth increasing function with
or(r)=7r, "< R; ¢r(r)=R+1, r>2R.
For o € R and n € N, define

() = (Br(r)™, Fih(r) = (¢r(r+ 1))
Clearly,

)= forr <R and [N =0+ D) forr+ F<R
Below we provide two examples to illustrate the assumption (ﬁa)

Example 6.1. Let d >3 and 0 < o < (£ — 1) A (3 + 727)- Let

Q

o(@) = fiy 2 (2 Laxa.
We verify (H?) for o, (z) = 7% (|2|*)Igxq. Note that

oo (|21 Laxa-

an(r) = (Una';)(x)
Thus,
(@) = pin () = £330 (2]?).
In particular, we have
A (@) < gR(lnf? + 1) € Lo(RY),
and for p; < 2a,
pn(@) < 85" (J2*) € L7 (RY).
On the other hand, by the chain rule, we have
d,ail (x) = 225 (o) (1)
and
0,0503) () = Af g (|- P) @) = 2d(£4,7) (12%) + 4l (f,2) (12 ?).
Note that
(fiew V' (r) = —adr(r + )77 o+ 1)
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and
(Ffe)' (1) = —ar(r+ 577 (e + 5) + 6l + 1)
+alat Dér(r+ )" (9h(r + 7))

_d
2417

|0;a% (z)] < 2al2| 72 1 2comy € LP(RY),

It is easy to see that for p; <

zmdduetoa<g—17
8i8ja-zlj CL‘) < CQ’R.
1

d
) 2a+1

Hence, (4.1) holds for py = oo, p; € (4%
p3 < g, then

) and ps = g2 = oco. Moreover, if

0w (@) < 62 (|2]?) € LP* (RY).

Thus, (4.2) holds for ps € (d, g) and g3 = oo. Therefore, (ﬁ") is satisfied for the
above o, (z). In particular, by Theorem 4.3, there exists at least one solution for
the following singular SDE:

dX; = r(1 X, )~ 2dW, + b(X,)dt, X = a,
where a € (0, (4 —1)A (3 + 715)) and b € LP for some p > 4 satisfies (divb)~ = 0.

Proposition 6.2. Letd >3, a € (0,(2 —1) A (3 + 727)), B € (0,2a) and A > 0.
For each x € RY, the following SDEs admits a unique strong solution:

dXt = |Xt‘7ath =+ A)(,5|)(t|7ﬂ71dt7 XO = . (61)

Proof. Let b(x) := Az|z|~#~1, and for R € N, let op(x) = ¢r(|z|?)~*/?I. Since
A >0 and 8 < 2, it is easy to see that b € LP for any p € (%, %) and (divb)” = 0.
Let X[ solve the following SDE:

t t
XP=u+ / or(X)aw, + / b(X)ds.
0 0

Let @ : Ry — Ry be a smooth function with ®(r) =1 for |r| < 1 and ®(r) = r for
r > 2. By It&’s formula, it is easy to see that

supE | sup (| X)) | <C.
ReN te[0,T]

From this, by Chebyshev’s inequality, we derive that

lim P | sup |[XF|>R| =0,
R—o0 tels,T]

which together with Theorem 5.5 implies that the assumptions of Theorem 7.5 is
satisfied. So, there exists a solution to SDE (6.1). To show the pathwise uniqueness,
note that

Vb(z)| < Clz| 7771,

and for any R > 0,
/ ||~V det(g0*) 7! (x)da :/ ||~ (BrDd+20d gy o o,
Br B

Thus by [18, Theorem 1.1] and the computations in Example 1 of [18], we obtain
the uniqueness. O
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Example 6.3. Let d =2 and a € (0, ). Consider the following diffusion matrix:

£ (22 P?), 0
o(@) = (3) (112
0, I (lz1]?)
Let us define
2 (|22, 0 ) (o), 0
on(@) = O R (@) (2
0, fR?n(|I1| ) 0, R,n(|x1| )

Then

M(@) = o (lz2) A Fa(lz1?), () = Fia(2l?) v Fih(J2a]?).

Clearly, we have
At @) = S (el v i (e )
and
d;a (z) = 8-8-(1”( )=0.
Thus, (4.1) holds for py € (1,55), p1 = o0 and ps = g2 = co. Moreover, it is
easy to see that (4.2) holds for g3 = 0o and any p3 € (p "0, 00). Therefore, (H")
holds for the above o, (z). As in Proposition 6.2, by Theorems 5.5 and 7.5, for any

starting point X = = € R?, there exists at least one solution for the following two
dimensional degenerate SDE:

{Xm | XZ|*dW} + b (Xy)dt,

dX? = | X}H“dW? + b*(Xy)dt,
where a € (0, 3) and b = (b',b%) € LP(R?) for some p >
b(2)| < Clz], [z > K.

Tom 20” and for some K € N,

We would like to say some words about the range of p. Intuitively, when X; moves
to the unit ball, smaller o means stronger noise and so the drift b could be more
singular. While, the uniqueness for the above example is left open, even for b = 0.

7. APPENDIX
We first recall the following lemma (cf. [16, Theorem 6.1.2]).

Lemma 7.1. Let 7 be a finite stopping time and C > w — Q, € P(C) be a B,-
measurable probability kernel. Given a probability measure P € P(C), there exists
a unique probability measure P @, Q € P(C) so that

PR, Q)ls, =Pls,, (PerQ)(|Br)(w)=Qu()

In particular,
P, Q)T / Qu(D)P(dw), VI € B:= Vizob:.

For each (s,z) € Ry x R%, let €(s,z) be a non-empty convex subset of P(C)
with
P{w:ws =z} =1
We suppose that {€(s,z) : (s,z) € Ry x RY} satisfies
(C1) Let (sy,xy) converge to (s,z). For any sequence P,, € €(sn,x,), there is a
subsequence ny and P € €(s, z) so that P,, converges to P.
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(C2) (Disintegration) Let P € %(s,x) and 7 > s be a finite stopping time. For
any r.c.p.d. (P,)uec of EF(-|B,), there is a P-null set N € B, so that
P, € €(7(w),wr(w)), w & N.

(C3) (Reconstruction) Let P € € (s,z) and 7 > s be a finite stopping time. For
any B,-measurable kernel C 3 w — @, € P(C) with

Qw € %(T(W),WT(W)),VW € (Ca

it holds that
P®,Q € %(s,x).

We have the following strong Markov selection theorem, whose proofs are com-
pletely the same as in [16, Theorem 12.2.3] (see also [5] and [6, Theorem 2.7]). We
omit the details.

Theorem 7.2. Under (C1), (C2) and (C3), there is a measurable selection
Ry x R? 3 (s,2) = Py, € €(s,2)

so that for any (s,r) € Ry x R? and finite stopping time T > s, w Prw),2(r(w)w)
is a r.c.p.d. of P, with respect to B,. More precisely, there is a P ,-null set
N € B, such that for allw ¢ N,

P57$(~|BT)(w) = ]P)T(w),wT(w)(')'
The following two simple lemmas are used in the proof of Theorem 5.5 (see [6]).

Lemma 7.3. Let 4 C € be two countably generated sub o-algebras of B. Given
P € P(C), let Q. be a r.c.p.d. of P with respect to 4. Then there is a P-null set
N € ¥ depending on € and & such that for allw ¢ N,

E°(£]€) = B9 (%), Qu—as.
Proof. Let A € 4 and B € ¥. By definition, we have

/ EQ- (15E? (£€))P(dw) = / EP (1 5EP (¢%)|) () P(dw)
A A
:EP(1A1B§):/]EQw(lBg)P(dw)
A

= / EQ« (13E9 (£|7))P(dw).
A
Hence, for each B € €, there is a P-null set Np € ¢4 so that for all w ¢ N,
E9 (15E" (¢]%)) = E% (15E% (¢]%)).

Since ¢ is countably generated, one can find a common null set N¢  so that for
allw ¢ N and B € €,

E?~(15E"(¢]€)) = E% (15E% (7)),
which in turn yields the desired result. O

Lemma 7.4. Let 7 be a finite stopping time and Q,, be a r.c.p.d. of P with respect
to B,. Let X; be a bounded continuous process. Suppose that for any t > 0,

EF(Xy|B;) < A, P—a.s.
Then there is a P-null set N € B, such that for allw ¢ N and t > 7(w),
E9(XB;) < A, Q. — a.s.
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Proof. By Lemma 4.4, we have

E* (Xtvr|Bevr) < A, t20.
By Lemma 7.3, there is a P-null set N such that for all w ¢ N and all rational
number t > 0,

B9 (X7 |Bivr) <A, Qu — a.s.

For fixed w ¢ N, since (cf. [16, p34. (3.15)])

Quiw’: 7(W) =7(w)} =1,
we have for all rational number ¢t > 7(w),

E9 (X;|By) = E9* (Xpvr|Bivr) < 4, Qu —a.s.

Now for general ¢t > 7(w), let ¢, | t be rational numbers. By the dominated
convergence theorem, we have

EQ« (X,|B;) = Prﬁ E9« (X, |B;) = tlirft EQ«(X,, B, |B:) < A.
The proof is complete. O

The following result provides a way of constructing a global solution from local
solutions.

Theorem 7.5. Suppose that for each R € N and (s,x) € Ry x RY, there is at
least one local martingale solution ]P’gm € Mg@bﬂ so that (s,z) — sz 1s Borel
measurable, where

or(t,z) :=o(t,xr(x)x), br(t,z):=>b(t, xr(x)x),
and
xr(z) =1, 2] <2771 xgp(z) =0, |z > 2%
Fiz (so,70) € Ry x R, If for each T > s and any choice of PE _  from M7r;br

50,20 50,0
lim PE | sup |w|>R) =0, (7.1)
’ tels,T]
then there is at least one local martingale solution P € M‘S’C’fgco. In particular, there
is a global weak solution (§, X, W) for SDE (1.13).
Proof. Without loss of generality, we assume (sg,x0) = (0,0). Let 10 = 0. We
define a sequence of stopping times recursively by

T o= inf{t > 7,1 ¢ |we| > 2" =inf{t > 0: |w| > 2"}, neN.

Let Py, € M‘S”’ggb" be as in the assumptions. Define for n € N,

Qn .= prtl w € C.

w Tn(W),Wry, ()
Since (s,z) — IP’Q:;I is measurable, w — Q7 is a B, -measurable probability kernel
on C x B, ie., for each T € B, w+— QI(T) is B, -measurable, and for each w € C,
Qw € P(C). Let Py € Mg,lo’bl. Define for n > 2,
iFVanLl = ]Ffbl ®7‘1 Ql ®7’2 te ®7‘n Qn
By the construction and Lemma 7.1, one sees that
Pn-&-lle = (P, ®n, Qn)|87n = Pn|l’§’m7

and by [16, Theorem 1.2.10],
P, € Mgfo’b”.
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Moreover, by (7.1), for each T > 0,
lim P, (m, < T) = 0.

n— oo

Finally, by [16, Theorem 1.3.5], there is a unique P € P(C) so that for each n € N,

Pls,, =Puls,,-

The proof is complete. U
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