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Abstract

We prove the equivalence of the singular cubical homology and the path homology
on the category of cubical digraphs. As a corollary we obtain new relations between the
singular cubical homology of digraphs and simplicial homology.
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1 Introduction

The path homology theory and the singular cubical homology theory for the category of
digraphs were introduced recently in the papers [1], [2], [3], and [4]. In this category, there is
a natural transformation of the cubical homology theory to the path homology theory, that
induces an isomorphism of homology groups in dimensions 0 and 1. Additionally, in [1] is
given an example of a digraph for which the path homology are trivial in dimension 2 but
singular cubical homology are non-trivial in this dimension.

In this paper we prove the equivalence of the singular cubical homology and the path
homology theories on the category of cubical digraphs. As an intermediate result we prove
that the image of every map of a digraph cube to a cubical digraph is contractible. As
a corollary we obtain a relation of the singular cubical homology of digraphs to simplicial
homology.

The paper is organized as follows. In Section 2, we recall the basic definitions from graph
theory and describe some properties of singular cubical homology Hc

∗ and the path homology
Hp

∗ on the category of digraphs [1], [2], [3], and [4].
In Section 3, we recall the definition of cubical digraph from [4] and prove contractibility

of the image of a digraph cube in a cubical digraph for any digraph map. Then we state and
prove the main result of the paper:

Theorem 1.1. On the category of cubical digraphs the singular cubical homology theory is
equivalent to the path homology theory.

Then we obtain several corollaries that describe relation of the singular cubical homology
theory of digraphs to simplicial homology.
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2 Singular cubical and path homology theories

In this Section we give necessary preliminary material about digraphs and homology theories
on the category of digraphs. We shall consider only finite digraphs in the paper.

Definition 2.1. A digraph G is a pair (VG, EG) of a set V = VG of vertices and a subset
EG ⊂ {VG × VG \ diagonal} of ordered pairs (v, w) of vertices which are called arrows and
are denoted v → w. The vertex v = orig (v → w) is called the origin of the arrow and the
vertex w = end(v → w) is called the end of the arrow.

For two vertices v, w ∈ VG, we write v−→=w if either v = w or v → w.

A subgraph H of a digraph G is a digraph whose set of vertices is a subset of that of G
and set edges of H is the subset of edges of G. In this case we write G ⊂ H.

An induced subgraph H of a digraph G is a digraph whose set of vertices is a subset of
that of G and the edges of H are all those edges of G whose adjacent vertices belong to H.
In this case we write G @ H.

A directed path p = (a1, α1, a2, α2, . . . , αn, an+1) in a digraph G is a sequence of vertices
ai and arrows αi such that αi = (ai → ai+1). The number of arrows fitting in path is called
length of the path and is denoted by |p|. The vertex a1 is the origin of the path and the
vertex an+1 is the end of the path.

Definition 2.2. A digraph map (or simply map) from a digraph G to a digraph H is a map
f : VG → VH such that v−→=w in G implies f (v)−→=f (w) in H.

A digraph map f is non-degenerate if v → w on G implies f(v)→ f (w) on H.

The set of all digraphs with digraph maps form the category of digraphs that will be
denoted by D.

Definition 2.3. For digraphs G,H define their Box product Π = G�H as a digraph with a
set of vertices VΠ = VG × VH and a set of arrows EΠ given by the rule

(x, y)→ (x′, y′) if x = x′ and y → y′, or x→ x′ and y = y′,

where x, x′ ∈ VG and y, y′ ∈ VH .

Fix n ≥ 0. Denote by In a digraph with the set of vertices V = {0, 1, . . . , n} and, for
i = 0, 1, . . . n − 1, there is exactly one arrow i → i + 1 or i + 1 → i and there are no others
arrows. Such digraph we call a line digraph and a direct line digraph if additionally all arrow
have the form i→ i + 1. There are only two line digraphs with two vertices. We denote the
digraph 0→ 1 by I.

For n ≥ 0, a standard n-cube digraph In is defined as follows. For n = 0 we put I0 = {0}
— one-vertex digraph. For n ≥ 1, In is given by a set V of 2n vertices such that any vertex
a ∈ V can be identified with a sequence a = (a1, . . . , an) of binary digits so that a→ b if and
only if the sequence b = (b1, . . . , bn) is obtained from a = (a1, . . . , an) by replacing a digit
0 by 1 at exactly one position. The digraph 0 → 1 is an 1-cube and we call a square any
digraph that is isomorphic the standard 2-cube digraph.
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We shall call an n-cube digraph any digraph that is isomorphic to the standard n-cube.
Note an n-cube digraph is isomorphic to the digraph

In = I�I�I� . . .�I︸ ︷︷ ︸
n−times

.

The notion of homotopy in the category of digraphs was introduced in [2]. Now we recall
several definitions which we shall use in the paper.

Definition 2.4. Two digraph maps f, g : G → H are called homotopic if there exists a line
digraph In with n ≥ 1 and a digraph map

F : G�In → H

such that
F |G�{0} = f and F |G�{n} = g

where we identify G�{0} and G�{n} with G by the natural way. In this case we shall write
f ' g. The map F is called a homotopy between f and g.

In the case n = 1 we refer to the map F as an one-step homotopy.

Definition 2.5. Digraphs G and H are called homotopy equivalent if there exist maps

f : G→ H, g : H → G

such that
f ◦ g ' idH , g ◦ f ' idG .

In this case we shall write H ' G and the maps f and g are called homotopy inverses of
each other.

A digraph G is called contractible if G ' {∗} where {∗} is a one-vertex digraph.

Definition 2.6. [2, Def. 3.4] Let G be a digraph and H be its subgraph.
(i) A retraction of G onto H is a map r : G→ H such that r|H = idH .
(ii) A retraction r : G → H is called a deformation retraction if i ◦ r ' idG, where

i : H → G is the natural inclusion.

Proposition 2.7. [2, Corollary 3.7] Let r : G → H be a retraction of a digraph G onto a
sub-digraph H and

x−→=r (x) for all x ∈ VG or r (x) −→=x for all x ∈ VG. (2.1)

Then r is a deformation retraction, the digraphs G and H are homotopy equivalent, and i, r
are their homotopy inverses.

Now we recall the definitions of path homology groups from [4] and singular cubical
homology groups from [1] on digraphs with the group of coefficients Z. Let V be a finite
set, whose elements will be called vertices. An elementary p-path on a finite set V is any
(ordered) sequence i0, ..., ip of p + 1 vertices of V that will be denoted by ei0...ip . Denote by
Λp = Λp (V ) the free abelian group generated by all elementary p-paths ei0...ip . The elements
of Λp are called p-paths. Thus each p-path v ∈ Λp has the form

v =
∑

i0,...,ip∈V

vi0i1...ip ei0i1...ip ,

where vi0i1...ip ∈ Z are the coefficients of v.
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For p ≥ 0, define the boundary operator ∂ : Λp+1 → Λp on basic elements by

∂ei0...ip+1 =
p+1∑

q=0

(−1)q ei0...îq ...ip+1
, (2.2)

where k̂ means deleting of the corresponding index, and extend it to Λp+1 by linearity. Let
Λ−1 = 0, and define ∂ : Λ0 → Λ−1 by ∂v = 0 for all v ∈ Λ0. It follows from this definition
that ∂2v = 0. for any p-path v.

An elementary p-path ei0...ip (p ≥ 1) is called regular if ik 6= ik+1 for all k. For p ≥ 1,
let Ip be the subgroup of Λp that is spanned by all irregular ei0...ip and we set I0 = I−1 = 0.
Then ∂(Ip+1) ⊂ Ip for p ≥ −1. Consider the chain complex R∗ with

Rp = Rp (V ) = Λp/Ip

and with the chain map that is induced by ∂.
Now we define paths on a digraph G = (V,E). Let ei0...ip be a regular elementary p-path

on V . It is called allowed if ik−1 → ik for any k = 1, ..., p, and non-allowed otherwise.
For p ≥ 1, denote by Ap = Ap (G) the subgroup of Rp spanned by the allowed elementary
p-paths, that is,

Ap = span
{
ei0...ip : i0...ip is allowed

}
.

and set A−1 = 0. The elements of Ap are called allowed p-paths.
Consider the following subgroup of Ap (p ≥ 0)

Ωp = Ωp (G) = {v ∈ Ap : ∂v ∈ Ap−1} . (2.3)

The elements of Ωp are called ∂-invariant p-paths, and we obtain a chain complex

0 ← Ω0
∂
← Ω1

∂
← . . .

∂
← Ωp−1

∂
← Ωp

∂
← . . . (2.4)

The homology groups of the digraph G are defined as

Hp (G) := ker ∂|Ωp

/
Im ∂|Ωp+1 .

In what follows, we will refer to Hp(G) as the path homology groups of a digraph G.
We can define a natural augmentation

ε : Ω0 → Z by ε
(∑

kiei

)
=
∑

ki, ki ∈ Z

which is an epimorphism and ε ◦ ∂ = 0.
Now we recall the construction of the cubical singular homology theory of digraphs from

[1].
Let In be the standard n-cube digraph. A singular n-cube in a digraph G is a digraph

map φ : In → G.
Fix n ≥ 1. For any 1 ≤ j ≤ n and ε = 0, 1, consider the following inclusion of digraphs:

Fn−1
jε : In−1 → In,

Fn−1
jε (c1, . . . , cn−1) = (c1, . . . , cj−1, ε, cj , . . . , cn−1)

(2.5)

for n ≥ 2, and Fn−1
1ε (0) = (ε) for n = 1. We shall write shortly Fjε instead of Fn−1

jε if the

dimension n−1 is clear from the context. Denote by In−1
jε the image of Fn−1

jε . We shell write

Ijε instead In−1
jε if the dimension is clear from the context.
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Let Q−1 = 0. For n ≥ 0, denote Qn = Qn(G) the free abelian group generated by all
singular n-cubes in G, and denote φ� the singular n-cube φ as the element of the group Qn.
For n ≥ 1 and 1 ≤ p ≤ n, and

φ�pε = (φ ◦ Fpε)
� ∈ Qn−1. (2.6)

For n ≥ 1, define a homomorphism ∂c : Qn → Qn−1 on the basis elements φ� by the rule

∂c(φ�) =
n∑

p=1

(−1)p
(
φ�p0 − φ�p1

)
, (2.7)

and ∂c = 0 for n = 0. Then (∂c)2 = 0 and the groups Qn(G) form a chain complex which we
denote Q∗ = Q∗(G).

For n ≥ 1 and 1 ≤ p ≤ n, consider the natural projection T p : In → In−1 on the p-face
In−1 defined as follows. For n = 1, T 1 is the unique digraph map I1 → I0. For n ≥ 2, we
have on the set of vertices T p(in, . . . , i1) = (in, . . . , ip+1, ip−1, . . . , i1). The singular n-cube
φ : In → G is degenerate if there is 1 ≤ p ≤ n such that φ = ψ ◦ T p where ψ : In−1 → G
is a singular (n − 1)-cube. Then an abelian group Bn = Bn(G) that is generated by all
degenerated n-cubes is a subgroup Qn for n ≥ 1. We put also B0 = 0, B−1 = 0. Then the
quotient group

Ωc
p(G) = Qp(G)/Bp(G) (2.8)

is defined for p ≥ 0. We have ∂(Bn) ⊂ Bn−1 and, hence, B∗(G) ⊂ Q∗(G) . Hence the
factor complex Ωc

∗(G) = Q∗(G)/B∗(G) is defined. We continue to denote the differential in
this complex ∂c. The homology group Hk(Ωc

∗(G)) is called the singular cubical homology
group of digraph G in dimension k and is denoted Hc

k(G). We have a natural augmentation
homomorphism

ε : Ωc
0(G)→ Z, ε

(∑
kiφi

)
=
∑

ki, ki ∈ Z

which is an epimorphism and ε ◦ ∂c = 0.
Recall the basic properties of the path and the singular cubical homology groups (see [4]

and [1]).

• The groups Hc
∗(X) and H∗(X) are functors from the category D to the category of

abelian groups.

• Let f ' g : X → Y be two homotopic digraph maps. Then the induced homomorphisms
f∗, g∗ of homology groups are equal for k ≥ 0 for both theories.

3 Maps of cube to cubical digraph

In this section we reformulate slightly the definition of a cubical digraph from [4] and prove
that the image of a cube in a cubical digraph is contractible. Then we prove Theorem 1.1.

Recall, that any vertex of a a cube In is given by a sequence of binary numbers (a1, . . . , an).
For any arrow a→ b in a digraph cube In we have also the arrow

γi = (0, . . . , 0)→ (b1 − a1, . . . , bn − an) (3.1)

in In where right sequence of binary numbers presents a vertex in In which has only one
non-trivial element 1 on a place i. We say that two arrows α = (a→ b) and β = (c→ d) of
In are parallel and write α||β if

(b1 − a1, . . . , bn − an) = (d1 − c1, . . . , dn − cn).
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In the opposite case we shall call two arrows orthogonal.
An arrow α ∈ EIn defines two (n− 1) – faces of In: the face I0 = Iα

0 that contains origin
vertices of the arrows that are parallel to α and the face I1 = Iα

1 that contains end vertices
of the arrows that are parallel to α. Note that any arrow that is orthogonal to α lies in I0 or
in I1.

For the digraph cube Im there is a natural partial order on the set of its vertices VIm that
is defined as follows: we write a ≤ b if there exists a directed path with the origin vertex
a and the end vertex b. Now we introduce a distance Δ(a, b) for a pair of vertex a, b ∈ In

that is defined only for comparable pair of vertices. Let a ≤ b be two vertices then as follows
from definition of the cube digraph the length of the path p from a to b does not depend
on the choice of the path, and we put Δ(a, b) = Δ(b, a) : = |p|. We shall call the vertex
a = (0, . . . , 0) of a cube origin vertex and the vertex d = (1, . . . , 1) end vertex. It follows
immediately from the definition of a cube digraph that the for any vertex x the distances
Δ(a, x) and Δ(x, d) are well defined. For an arrow α = (x→ y) we define Δ(α, d) : = Δ(y, d)
where d is end vertex of the cube. Let a ≤ b be a pair of comparable vertices of In for which
there is a direct path p from a to b. Denote by Ia,b induced subgraph of In with the set
of vertices {c ∈ VIn |a ≤ c ≤ b}. Clearly, Ia,b is isomorphic to a digraph cube Ik, where
k = |p| = Δ(a, b).

Definition 3.1. A subgraph G of In is called cubical if for any two vertices a, b ∈ VG ⊂ VIn

with a ≤ b we have Ia,b @ G.

Note that the set of all paths from a to b in Ia,b coincides with the set of all paths from
a to b in G. It is easy to see that cubical digraphs with digraph maps form a category. Now
we prove that the image of a cube In in any cubical digraph is contractible. Note, that this
statement is not true in general case.

Example 3.2. Consider the nondegenerate map f presented on Fig. 1 of the cube I3 to
the cycle digraph G given on the set of vertices by f(1) = f(8) = x, f(2) = f(3) = f(5) =
y, f(4) = f(6) = f(7) = z.
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Figure 1: The map f : I3 → G with non-contractible image.

Theorem 3.3. Let f : In → G be a digraph map to a cubical digraph. Then the image
f(In) ⊂ G is contractible.

Proof. The image f(In) is connected as the image of the connected graph. Let s =
(0, . . . , 0) ∈ VIn be the origin vertex and z = (1, . . . , 1) ∈ VIn be the end vertex of In.
Then f(s) ∈ VG, f(z) ∈ VG and f(In) ⊂ If(s),f(z) ⊂ G where If(s),f(z) is isomorphic to
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a m-dimensional cube which we denote J = Jm ∼= Im where m = Δ(f(s), f(z)). Hence,
without loss of generality, we can suppose that G = If(s),f(z) = J that is f(s) = (0, . . . , 0) ∈
VJ , f(z) = d = (1, . . . , 1) ∈ VJ . We prove the statement of the Theorem using induction on
dimension m.

The base of induction by m. For m = 0, 1, 2 the statement is trivial since any connected
subgraph of the digraphs J0, J1, and J2 is contractible.

The step of induction by m. Suppose that the statement of the Theorem is proved for
every map In → Jm−1. Consider the case J = Jm where m ≥ 3 and d = (1, . . . , 1) ∈ VJ

is the end vertex of the cube J . Since d = f(z) ∈ Image(f), there exists a nonempty set of
arrows Γ ⊂ EJ defined as follows

[τ ∈ Γ] ⇔ [end(τ) = d & τ = f(α), α ∈ EIn ].

The set Γ consists of arrows in EJ with the end vertex d that are lying in the image of the
map f . Let γ = (c→ d) ∈ Γ be an arrow such that

f(α) = f(x→ y) = (c→ d) = γ and Δ(α, z) = Δ(y, z) = k ≥ 0 is minimal. (3.2)

Note that α is defined may be by a non unique way. For for ease of references we formulae
the following result.

Lemma 3.4. For every vertex v ∈ VIn with Δ(v, z) ≤ k we have f(v) = d. Hence the cube
Iy,z @ In is mapped by f into the vertex d.

Proof. Follows immediately from definition of k in (3.2).
The arrow γ defines two (m − 1) – dimensional faces J0 and J1 of the cube J with

c =∈ VJ0 , d ∈ VJ1 and we have the natural projection π : J → J0 along the arrow γ. Let
H be a subgraph of In. We define subgraphs K0,K1,K ⊂ J which depend on the map
f : In → J and H ⊂ In as follows:

K : = f(H) ⊂ J, K0 : = f(H) ∩ J0 ⊂ J0, and K1 : = f(H) ∩ J1 ⊂ J1. (3.3)

It is easy to see that for an arrow (v → w) ∈ EJ we have:

[(v → w)||γ] ⇔ [(v ∈ J0) & (w ∈ J1)]. (3.4)

For technical reasons we introduce the following definition.

Definition 3.5. Let H ⊂ In, f : In → J , γ is defined in (3.2), and the digraphs K,K0,K1 ⊂
J are defined in (3.3). We say that a subgraph H ⊂ In satisfies to the Π – condition if the
following properties are satisfied

(1) ∀ w ∈ VK1 there is a vertex v ∈ VK0 such that (v → w) ∈ EK .
(2) ∀ (w → w′) ∈ EK1 we have π(w → w′) ∈ EK0 . (3.5)

Proposition 3.6. Consider the map f : In → J = Jm with m ≥ 3. Let k and γ are defined
in (3.2) and let us consider the same designations as above. Then the cube In satisfies to
Π-condition.

Proof. Induction in k ≥ 0.
The base of induction, k = 0. Hence y = z = (1, . . . , 1) ∈ VIn is the end vertex of In

and n ≥ m ≥ 3. The arrow α = (x → z) ∈ EIn with f(α) = f(x → z) = γ = (c → d)
defines (n− 1)-face I0 = Is,x and opposite (n-1)-face I1 of the cube In. Let a = (0, . . . , 0) be
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the origin vertex of J (and hence origin vertex of J0) and b be the origin vertex of J1. Then
a→ b is parallel γ = (c→ d). We have

f(I0) = f(Is,x) ⊂ If(s),f(x) = Ia,c = J0 (3.6)

and, hence, by (3.3) for H = In, we have f(I0) ⊂ K0. Let t be a vertex of I1 such that
w = f(t) /∈ VK0 that is w ∈ VK1 ⊂ VJ1 . There exists an unique vertex r ∈ VI0 such that
(r → t) ∈ EIn is parallel to α and f(r) = v ∈ K0 ⊂ J0 by (3.6). Thus f(r → t) = v → w
with v ∈ VK0 and condition (1) of (3.5) is satisfied.

Now let τ = (w → w′) ∈ EK1 be an arrow such that f(t→ t′) = τ that is f(t) = w, f(t′) =
w′, t, t′ ∈ VI1 . The same line of arguments as above gives the vertices r, r′ ∈ VI0 such that
(r → t) and r′ → t′ are parallel to α and, hence, π(τ) = f(r → r′) since f(r), f(r′) ∈ VK0 .
This proves condition (2) of (3.5). Thus Π-condition is satisfied for the cube In and k = 0.

The induction step. By inductive assumption we have that any map f : In → J satisfies
the Π-condition if Δ(y, z) ≤ k − 1 ≥ 0. Consider the case Δ(y, z) = k ≥ 1 and, hence,
Δ(x, z) = Δ(y, z) + 1 = k + 1 ≥ 2 where z = (1, . . . , 1

︸ ︷︷ ︸
n

) ∈ VIn . Thus, without loss of

generality, we can suppose that

x = (1, . . . , 1,
︸ ︷︷ ︸

n−k−1

0, 0, . . . , 0,
︸ ︷︷ ︸

k+1

), y = (1, . . . , 1,
︸ ︷︷ ︸

n−k−1

1, 0, . . . , 0,
︸ ︷︷ ︸

k

). (3.7)

From now we put y0 = y ∈ VIn and let the vertex yi is obtained from y by replacing the last
coordinate ”1” in y by ”0”, and i-th coordinate ”0” of y by ”1” for 1 ≤ i ≤ k. For example,

y2 = (1, . . . , 1,
︸ ︷︷ ︸

n−k−1

0, 0, 1, 0 . . . , 0,
︸ ︷︷ ︸

k

), yk = (1, . . . , 1,
︸ ︷︷ ︸

n−k−1

0, 0, 0 . . . , 0, 1
︸ ︷︷ ︸

k

).

We define also αi = (x → yi) ∈ EIn for 0 ≤ i ≤ k. By Lemma 3.4 we have f(αi) = f(x →
yi) = (c → d) = γ for 0 ≤ i ≤ k. Let I0 = Is,x be (n − k − 1)-dimensional subcube of In.
Then, as before, f(I0) ⊂ K0 ⊂ J0.

Consider a vertex t ∈ VIn and t /∈ VI0 that has the form

t = (a1, . . . , an−k−1, b0, . . . , bk) /∈ I0 where ai, bj ∈ {0, 1}

where at least one coordinate bj is ”1”. If at least one coordinate bj is zero we obtain that
t ∈ Is,zj @ In where

zj = (1, . . . , 1
︸ ︷︷ ︸
n−k−1

, 1, . . . ,
j

0̂, . . . , 1
︸ ︷︷ ︸

k+1

).

The (n−1)-dimensional subcube Is,zj ⊂ In contains the vertices x and t. Moreover Δ(x, zj) =
k and there is an arrow αi = (x→ yi) ∈ EIs,zj

with f(αi) = γ and Δ(αi, zj) = k − 1. Hence,
by the inductive assumption, the map

f |Is,zj
: Is,zj → J

satisfies the Π-condition.
Now consider a vertex t for which all (k + 1)-coordinates bj are equal ”1” such that

t /∈ Ix,z. This means that at least one of the first (n − k − 1)-coordinates ai is ”0”. Recall
that (k + 1) ≥ 2. Thus consider the vertices

t = (a1, . . . , an−k−1, 1, . . . , 1
︸ ︷︷ ︸

k+1

) /∈ I0, r = (a1, . . . , an−k−1, 0, . . . , 0
︸ ︷︷ ︸

k+1

) ∈ I0 (3.8)
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where ai ∈ {0, 1}. Consider a directed path p in the digraph I0 from the vertex r ∈ VI0 to
the vertex x ∈ VI0 of the length l = |p| ≥ 1 (since t /∈ Ix,z). Write this path in the following
form

p = (r → x1 → x2 → . . . xl−1 → xl = x) ⊂ Ir,x ⊂ I0.

Consider a directed path q from the vertex r ∈ VI0 to the vertex t of the length k+1 = |q| ≥ 2.
Note that q lies in the digraph Ir,t of dimension k + 1. Write this path in the following form

q = (r → r1 → r2 → . . . rk → rk+1 = t) ⊂ Ir,t.

Any such two paths p and q defines an unique subgraph of the graph In that has the following
form

t = rk+1 −→ rk+1
1 −→ rk+1

2 −→ . . . −→ rk+1
l = z

↑ ↑ ↑ ↑ ↑
rk −→ rk

1 −→ rk
2 −→ . . . −→ rk

l

↑ ↑ ↑ ↑ ↑
. . . −→ . . . −→ . . . −→ . . . −→ . . .
↑ ↑ ↑ ↑ ↑
r1 −→ r1

1 −→ r1
2 −→ . . . −→ r1

l

↑ ↑ ↑ ↑ ↑
r −→ x1 −→ x2 −→ . . . −→ xl = x

(3.9)

Now we prove, using induction in the length l = |q| ≥ 1 the following statement.
(L): For every path q and every path p, as above, there is a path

p′ = (r → x′
1 → x′

2 → . . . x′
l−1 → x′

l = x) ⊂ Ir,x ⊂ I0.

(that may be is equal to p) such that q and p′ defines the subgraph (similarly above)

t = rk+1 −→ rk+1
1

′
−→ rk+1

2

′
−→ . . . −→ rk+1

l

′
= z

↑ ↑ ↑ ↑ ↑
rk −→ rk

1
′
−→ rk

2
′
−→ . . . −→ rk

l
′

↑ ↑ ↑ ↑ ↑
. . . −→ . . . −→ . . . −→ . . . −→ . . .
↑ ↑ ↑ ↑ ↑
r1 −→ r1

1
′ −→ r1

2
′ −→ . . . −→ r1

l
′

↑ ↑ ↑ ↑ ↑
r −→ x′

1 −→ x′
2 −→ . . . −→ x′

l = x

(3.10)

and at least one of the following conditions is satisfied

(i) f(t) = f(rk),
(ii) f(t) = f(rk

1),
(iii) f(t) = f(rk

1
′
).

(3.11)

The base of induction for (L), the case l = 1. Consider the unique path p = (r → x) ⊂ I0

9



of the length l = 1 an a path q as above. We have the following subgraph of the digraph In::

t = rk+1 −→ rk+1
1 = z

↑ ↑
rk −→ rk

1

↑ ↑
. . . −→ . . .
↑ ↑
r1 −→ r1

1

↑ ↑
r −→ x1 = x

(3.12)

where r, x ∈ VI0 , f(r), f(x) ∈ VK0 , and f(ri
1) = d for 1 ≤ i ≤ k + 1 since k ≥ 1. Hence

f(rk
1) = f(rk+1

1 ) = d and thus at least one of the conditions (i) or (ii) in (3.11) is satisfied
since there are no triangles in the digraph J . We put in this case p′ = p, and the base of
induction l = 1 is proved.

Inductive step of induction for (L). Consider vertices t, r ∈ VJ given in (3.8) where
Δ(t, r) = k + 1 ≥ 2 and Δ(r, x) ≥ 2. Let p be a path from r to x and q be a path from r to
t as the above. Recall that |p| = k + 1 ≥ 2, |q| = l ≥ 2. These paths define the subgraph
of In given on (3.9). By the inductive assumption, for the vertex rk+1

1 at least one of the
conditions

(i) f(rk+1
1 ) = f(rk

1),
(ii) f(rk+1

1 ) = f(rk
2),

(iii) f(rk+1
1 ) = f(rk

2
′′
).

(3.13)

that is similar to (3.11) is realized. In (3.13) we have a path rk → rk
1 → rk

2
′′
→ ∙ ∙ ∙ → rk

l that
is similar to the path rk → rk

1 → rk
2 → ∙ ∙ ∙ → rk

l from (3.9).
If condition (i) is realized, that is f(rk+1

1 ) = f(rk
1), then for f(t) at least one of the

conditions (i) or (ii) in (3.11) is satisfied since there are no triangles in the digraph J (similarly
to the case l = 1).

If condition (ii) is realized and condition (i) is not realized, that is f(rk+1
1 ) = f(rk

2) and
f(rk

1) 6= f(rk
2), we can consider the subcube of In given on Fig. 2 of In that is defined by the

subgraph of (3.9) given below in (3.14):

t = rk+1 −→ rk+1
1 −→ rk+1

2

↑ ↑ ↑
rk −→ rk

1 −→ rk
2 .

(3.14)

We have f(rk+1
1 ) = f(rk

2) and f(rk
1) 6= f(rk

2), that is f(rk
1 → rk+1

1 ) = f(rk
1 → rk

2) ∈ EJ is
an arrow. If f(rk) = f(rk

1) then the same line of above give that f(t) = f(rk
1) or f(t) = f(rk

2)
and the step of induction is proved. Let f(rk) 6= f(rk

1) then

f
(
Irk, rk

2

)
⊂ f

(
If(rk), f(rk

2)

)
and f

(
Irk, rk+1

1

)
⊂ f

(
If(rk), f(rk

2)

)

where If(rk),f(rk
2)

is the digraph square. Hence at least one of conditions f(rk+1) = f(rk
1) or

f(rk+1) = f(rk
1
′
) is satisfied and the inductive assumption is proved.

Consider the case when condition (iii) is realized and conditions (i) and (ii) are not
realized. This case is the same as the case (ii). We must to start the consideration from the

10
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Figure 2: The subcube of In that is defined by the digraph on (3.13).

path rk → rk
1 → rk

2
′′
→ ∙ ∙ ∙ → rk

l on the place of the path rk → rk
1 → rk

2 → ∙ ∙ ∙ → rk
l from

(3.9). This finishes the proof of the inductive step and, statement (L) is proved.
It follows from the statement (L) that image w = f(t) and images of all arrows with end

or origin t lay in the image of the subcube Ir,zj with Δ(x, zj) = Δ(r, zj) = k which satisfies
to Π-condition by the inductive assumption in k. Hence the cube In satisfies to Π-condition
and the Proposition is proved.

Now we finish the proof of Theorem 3.3. Since digraph In satisfies the Π-condition then
Proposition 2.7 and (3.5) implies that restriction π|K of the projection π : Jm → Jm−1

0 to the
image K of the map f is well defined deformation retraction to K0. But K0 is contractible
by the inductive assumption in m. Thus Theorem 3.3 is proved.

4 Equivalence of homology theories on cubical digraphs

In this section we prove our main result – Theorem 1.1, that is stated below as Theorem
4.5. For that we use the Acyclic Carrier Theorem from homology theory (see, for example,
[5, §3.4] and [6, §1.2.1]). Recall that a chain complex C∗ is called non-negative if Cp = 0 for
p < 0 and is called free if Cp are finitely generated free abelian groups for all p. We say that
C∗ is a geometric chain complex if it is non-negative, free, and if a basis Bp is chosen in the
group Cp for any p ≥ 0. For example, any finite simplicial complex gives rise to a geometric
chain complex, where Bp consists of all p-simplexes.

Let C∗ be a geometric chain complex with fixed bases Bp. For b ∈ Bp−1 and b′ ∈ Bp, we
write b ≺ b′ if b enters with a non-zero coefficient into the expansion of ∂b′ in the basis Bp−1.
The augmentation homomorphism ε : C0 → Z is defined as

ε

(
∑

i

kibi

)

=
∑

i

ki, ki ∈ Z, bi ∈ B0,

and we denote C̃∗ the augmented complex

Z
ε
←C0

∂
←C1

∂
←...

A geometric chain complex C∗ is called acyclic if all homology groups of the augmented
complex C̃∗ are trivial.

Let C∗ and D∗ be two geometric complexes with augmentation homomorphism ε and ε′,
respectively. A chain map φ∗ : C∗ → D∗ is called augmentation preserving if ε′φ0(c) = ε(c)
for any c ∈ C0.

11



Definition 4.1. Let C∗ and D∗ be two geometric chain complexes.
(i) An algebraic carrier function from C∗ to D∗ is a mapping E that assigns to any basis

element b in C∗ a subcomplex E∗ (b) := E (b) of D∗, such that b ≺ b′implies E∗(b) ⊂ E∗(b′).
(ii) An algebraic carrier function E is called acyclic if each complex E∗(b) is non-empty

and acyclic.
(iii) A chain map f∗ : C∗ → D∗ is carried by E if fn(b) ∈ E∗(b) for any basis element b in

Cn.

We state the Acyclic Carrier Theorem in the following form.

Theorem 4.2. Let C∗ and D∗ be two geometric chain complexes and E be an acyclic carrier
function from C∗ to D∗. If f∗, g∗ : C∗ → D∗ are augmentation preserving chain maps that are
carried by E, then f∗ and g∗ are chain homotopic.

Before the proof of Theorem 1.1, we state and prove some technical results. We use the
notations of [1, 4]. Let G be a cubical digraph. The free abelian groups Ωc

p = Ωc
p(G) and

Ωp = Ωp(G) defined in (2.3) and (2.8) are finitely generated.
Let I0 = {∗} be the one-vertex digraph. Any zero-dimensional singular cube φ : I0 =

{∗} → G is given by the vertex φ(∗) ∈ VG and thus we obtain the map τ0 : Ωc
0(G) → Ω0(G)

which preserve augmentation.
For any digraph cube In (n ≥ 1) denote by P the set of all directed paths of the length

n going from the origin vertex (0, . . . , 0
︸ ︷︷ ︸

n

) of the cube to the end vertex (1, . . . , 1
︸ ︷︷ ︸

n

). Every path

p ∈ P has the following form

p = (a0 → a1 → a2 → ∙ ∙ ∙ → an), ai ∈ VIn . (4.1)

In (4.1) for 1 ≤ i ≤ n the vertex ai differs from ai−1 only by one coordinate 1 ≤ π(i) ≤ n
that equals ”0” for ai−1 and ”1” for ai. Let σ(p) be a sign of the permutation

π(p) =




1 2 . . . n

π(1) π(2) . . . π(n)



 .

Consider the path wn ∈ Ωn(In) given by

wn =
∑

p∈P

(−1)σ(p)p (4.2)

that is the generator of the group Ωn(In) (see [1] and [4]). For any singular n-dimensional
cube φ : In → G, which gives a basic element φ� ∈ Ωc

n(G), we have a morphism of chain
complexes defined in [1]

τ∗ : Ωc
∗(G)→ Ω∗(G), τn(φ�) := φ∗(wn) (4.3)

where φ∗ : Ω∗(In)→ Ω∗(G) is the induced of φ morphism of chain complexes.
For n ≥ 0 consider the set Kn of all subcubes G of dimension n that have the form Is,t

with s, t ∈ VG. By [1, 4], for every cube Is,t ∈ Kn there is an isomorphism χs,t : In → Is,t

such that the set of elements {(χs,t)∗(wn) : Is,t ∈ Kn} give the basis of Ωn(G). For n ≥ 1,
define homomorphisms θn : Ωn(G)→ Ωc

n(G) on basic elements by

θn((χs,t)∗(wn)) = χ�s,t, (4.4)

and then extend it by linearity. It is clear that θ0 preserves the augmentation.
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Proposition 4.3. The homomorphisms θn define a morphism of chain complexes

θ∗ : Ω∗(G)→ Ωc
∗(G) (4.5)

that is a right inverse morphism to τ∗, that is

τ∗θ∗ = Id: Ω∗(G)→ Ω∗(G).

Proof. Let us first prove that τnθn = Id. For n = 0, 1 this is trivial. Let n ≥ 2 and
(χs,t)∗(wn) ∈ Ωn(G) be a basic element. By (4.4) and (4.3) we have

τnθn

(
(χs,t)∗(wn)

)
= τn(χ�s,t) = χs,t∗

(wn). (4.6)

Now consider the commutative diagram

Ωn(G)
θn−→ Ωc

n(G)
τn−→ Ωn(G)

∂ ↓ ∂
c ↓ ∂ ↓

Ωn−1(G)
θn−1−→ Ωc

n−1(G)
τn−1−→ Ωn−1(G)

(4.7)

where the horizontal compositions are identity homomorphisms by (4.6) and the right square
is commutative. It follows from [4, Lemma 4] that, for (φs,t)∗(wn) ∈ Ωn(G), we have

θn−1

(
∂
(
(φs,t)∗(wn)

))
= θn−1




∑

Is′,t′⊂Is,t

(−1)σ(I,I′)(φs′,t′)∗(wn−1)





=
∑

(−1)σ(I,I′)φ�s′,t′ (4.8)

where the sum is taken over all (n − 1)-cubes I ′ = Is′,t′ ⊂ Is,t = I. By (2.7) and (4.4) we
have for (φs,t)∗(wn) ∈ Ωn(G)

∂c
(
θ((φs,t)∗(wn))

)
= ∂c

(
φ�s,t

) n∑

p=1

(−1)p
(
(φ�s,t)p,0 − (φ�s,t)p,1

)
(4.9)

where the sum is taken over all (n − 1)-subcubes of the cube In. Since bottom row in (4.7)
is the identity homomorphism we conclude from (4.3), (4.8) and (4.9) that the left square in
(4.7) is commutative, which finishes the proof.

Proposition 4.4. There is a chain homotopy between θ∗ ◦ τ∗ : Ωc
∗(G) → Ωc

∗(G) and the
identity map Id : Ωc

∗(G)→ Ωc
∗(G).

Proof. The chain complex Ωc
∗(G) is geometric and the chain maps θ∗◦τ∗ and Id evidently

preserve augmentation. For a singular cube φ : In → G consider the subgraph Gφ ⊂ G that
is image of φ. This is a contractible cubical digraph by Theorem 3.3. Thus we assign to every
basic element φ� ∈ Ωc

∗(G) the subcomplex

E∗

(
φ�
)

def
= Ωc

∗(Gφ) ⊂ Ωc
∗(G) (4.10)

which is acyclic since Gφ is contractible.
Now we check that E is an algebraic carrier function, that is condition (i) of Definition 4.1

is satisfied. Let φ� ∈ Ωc
∗(G) be a basic element given by a singular cube φ : In → G with n ≥

0. By (2.6) and (2.7), the element ∂(φ�) is given by the sum of the basic elements (φ ◦ Vpε)
�
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with coefficients (±1) where the maps Vpε : In−1 → In are the inclusions. Hence the digraph
Gφ◦Vpε is a subgraph of Gφ and, hence, the chain complex E∗

(
(φ ◦ Vpε)�

)
= Ωc

∗

(
Gφ◦Vpε

)
is a

subcomplex of E∗(φ�). Thus for the basic singular cube b ∈ Ωc
n−1(G) and b ≺ φ� we obtain

that b = (φ ◦ Vpε)
�

E∗(b) = E∗

(
(φ ◦ Vpε)

�
)
≺ E∗(φ

�).

Hence we have the algebraic acyclic carrier function E from Ωc
∗(G) to itself.

Now we prove, that the chain maps θ∗ ◦ τ∗ and Id from Ωc
∗(G) to itself are carried by the

function E. Consider a basic element φ� ∈ Ωc
n(G). Then

Id
(
φ�
)
∈ φ� ∈ Ωc

∗(Gφ) = E∗(φ
�) (4.11)

since image of φ is the digraph Gφ. Hence the chain map Id: Ωc
n(G) → Ωc

n(G) is carried by
the algebraic carrier function E.

By (4.3) and (4.4), we have

θn ◦ τn

(
φ�
)

= θn (φ∗(wn)) , φ : In → G. (4.12)

We have only two different possibilities for the φ∗(wn). In the first case, φ is an isomorphism
on its image Gφ = Is,t

∼= In with s = φ(0, . . . , 0), t = φ(1, . . . , 1) where (0, . . . , 0) ∈ VIn is
the origin vertex, and (1, . . . , 1) ∈ VIn is the end vertex of the cube In. Note that for any
isomorphism ψ : In → In we have ψ∗(wn) = ±wn. Hence in this case subgraph Gφ ⊂ G
coincides with the subgraph cube Gχs,t

⊂ G and by (4.4) we have

θn ◦ τn(φ�) = θn (φ∗(wn)) = θn

(
±(χs,t)∗(wn)

)
= ±χ�s,t (4.13)

where χs,t : In → Ds,t = Gφ. That is

θn ◦ τn

(
φ�
)
∈ Ωc

n

(
Gχs,t

)
= Ωc

n(Gφ) = En

(
φ�
)

.

In the second case, the image of φ does not contain any cube of dimension n and, hence
φ∗(wn) = 0. Consequently, we have θn ◦ φ∗(wn) = 0 ∈ E∗(φ�). Then the claim follows from
the Acyclic Carriers Theorem 4.2.

Theorem 4.5. For any finite cubical digraph G, the chain maps τ∗ and θ∗ are homotopy
inverses and, hence, induce isomorphisms of homology groups

Hc
∗(G) ∼= H∗(G).

Proof. It follows from Propositions 4.3 and 4.4 that the chain maps τ∗ and θ∗ are
homotopy inverses. Now the statement of the Theorem follows.

Corollary 4.6. Let Δ be a finite simplicial complex. Consider a digraph GΔ (see [4]) with
the set of vertices given by the set of all simplexes from Δ, and

s→ t (t, s ∈ Δ) iff s ⊃ t and dim s = dim t + 1.

Then the graph GΔ is a cubical digraph and

Hc
∗(GΔ) ∼= H∗(Δ)

where H∗(Δ) are the simplicial homology groups of Δ.

Proof. Indeed, it is proved in [4] that path homology groups H∗(GΔ) are isomorphic to
simplicial homology groups H∗(Δ).
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