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Abstract

We prove the equivalence of the singular cubical homology and the path homology
on the category of cubical digraphs. As a corollary we obtain new relations between the
singular cubical homology of digraphs and simplicial homology.
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1 Introduction

The path homology theory and the singular cubical homology theory for the category of
digraphs were introduced recently in the papers [1], [2], [3], and [4]. In this category, there is
a natural transformation of the cubical homology theory to the path homology theory, that
induces an isomorphism of homology groups in dimensions 0 and 1. Additionally, in [1] is
given an example of a digraph for which the path homology are trivial in dimension 2 but
singular cubical homology are non-trivial in this dimension.

In this paper we prove the equivalence of the singular cubical homology and the path
homology theories on the category of cubical digraphs. As an intermediate result we prove
that the image of every map of a digraph cube to a cubical digraph is contractible. As
a corollary we obtain a relation of the singular cubical homology of digraphs to simplicial
homology.

The paper is organized as follows. In Section 2, we recall the basic definitions from graph
theory and describe some properties of singular cubical homology HY and the path homology
HY on the category of digraphs [1], [2], [3], and [4].

In Section 3, we recall the definition of cubical digraph from [4] and prove contractibility
of the image of a digraph cube in a cubical digraph for any digraph map. Then we state and
prove the main result of the paper:

Theorem 1.1. On the category of cubical digraphs the singular cubical homology theory is
equivalent to the path homology theory.

Then we obtain several corollaries that describe relation of the singular cubical homology
theory of digraphs to simplicial homology.
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2 Singular cubical and path homology theories

In this Section we give necessary preliminary material about digraphs and homology theories
on the category of digraphs. We shall consider only finite digraphs in the paper.

Definition 2.1. A digraph G is a pair (Vg, Eg) of a set V' = Vi of vertices and a subset
E¢ C {Vg x Vi \ diagonal} of ordered pairs (v,w) of vertices which are called arrows and
are denoted v — w. The vertex v = orig (v — w) is called the origin of the arrow and the
vertex w = end(v — w) is called the end of the arrow.

For two vertices v, w € Vg, we write v =w if either v = w or v — w.

A subgraph H of a digraph G is a digraph whose set of vertices is a subset of that of G
and set edges of H is the subset of edges of GG. In this case we write G C H.

An induced subgraph H of a digraph G is a digraph whose set of vertices is a subset of
that of G and the edges of H are all those edges of G whose adjacent vertices belong to H.
In this case we write G C H.

A directed path p = (a1, a1,a2,a2,...,0n,a,+1) in a digraph G is a sequence of vertices
a; and arrows «a; such that a; = (a; — a;41). The number of arrows fitting in path is called
length of the path and is denoted by |p|. The vertex aj is the origin of the path and the
vertex ani1 is the end of the path.

Definition 2.2. A digraph map (or simply map) from a digraph G to a digraph H is a map
f: Vg — Vg such that v=w in G implies f (v) =f (w) in H.
A digraph map f is non-degenerate if v — w on G implies f(v) — f (w) on H.

The set of all digraphs with digraph maps form the category of digraphs that will be
denoted by D.

Definition 2.3. For digraphs G, H define their Box product 11 = GLH as a digraph with a
set of vertices Vi1 = Vg X Vi and a set of arrows Ep given by the rule

(x,y) — (',y) fe=2"andy — 9, orz — 2’ and y =9/,
where x,2' € Vg and v,y € V.

Fix n > 0. Denote by I,, a digraph with the set of vertices V' = {0,1,...,n} and, for
1 =0,1,...n — 1, there is exactly one arrow ¢ — i+ 1 or ¢ + 1 — 4 and there are no others
arrows. Such digraph we call a line digraph and a direct line digraph if additionally all arrow
have the form ¢ — ¢ + 1. There are only two line digraphs with two vertices. We denote the
digraph 0 — 1 by I.

For n > 0, a standard n-cube digraph I™ is defined as follows. For n = 0 we put I° = {0}
— one-vertex digraph. For n > 1, I" is given by a set V of 2" vertices such that any vertex
a € V can be identified with a sequence a = (ay, ..., ay) of binary digits so that a — b if and
only if the sequence b = (by,...,b,) is obtained from a = (ay,...,a,) by replacing a digit
0 by 1 at exactly one position. The digraph 0 — 1 is an 1-cube and we call a square any
digraph that is isomorphic the standard 2-cube digraph.



We shall call an n-cube digraph any digraph that is isomorphic to the standard n-cube.
Note an n-cube digraph is isomorphic to the digraph

" =101010...01.
—_—

n—times

The notion of homotopy in the category of digraphs was introduced in [2]. Now we recall
several definitions which we shall use in the paper.

Definition 2.4. Two digraph maps f,g: G — H are called homotopic if there exists a line
digraph I, with n > 1 and a digraph map

F.G4ar, — H

such that
Flaofy = f and Fleopmy =9
where we identify GO{0} and GO{n} with G by the natural way. In this case we shall write

f =~ g. The map F is called a homotopy between f and g.
In the case n = 1 we refer to the map F' as an one-step homotopy.

Definition 2.5. Digraphs G and H are called homotopy equivalent if there exist maps
f:G—-H, ¢g:H-—>G(G

such that
fog~idgy, go f~idg.
In this case we shall write H ~ G and the maps f and ¢ are called homotopy inverses of

each other.
A digraph G is called contractible if G ~ {*} where {x} is a one-vertex digraph.

Definition 2.6. [2, Def. 3.4] Let G be a digraph and H be its subgraph.

(7) A retraction of G onto H is a map r: G — H such that |y = idy.

(73) A retraction r : G — H is called a deformation retraction if i o r ~ idg, where
1: H — (' is the natural inclusion.

Proposition 2.7. [2, Corollary 3.7] Let r : G — H be a retraction of a digraph G onto a
sub-digraph H and

x=r(x) forallz € Vg or r(x) =z foralze V. (2.1)

Then r is a deformation retraction, the digraphs G and H are homotopy equivalent, and i, r
are their homotopy inverses.

Now we recall the definitions of path homology groups from [4] and singular cubical
homology groups from [1] on digraphs with the group of coefficients Z. Let V be a finite
set, whose elements will be called vertices. An elementary p-path on a finite set V is any
(ordered) sequence iy, ..., i, of p + 1 vertices of V' that will be denoted by e;,. ;,. Denote by
A, = A, (V) the free abelian group generated by all elementary p-paths €ig...ip- L he elements
of A, are called p-paths. Thus each p-path v € A, has the form

v = g VO P €44y iy
10,...,ipEV

where vioii--i» € 7, are the coefficients of v.



For p > 0, define the boundary operator 9: Apy1 — A, on basic elements by

p+1

aeio"'iP‘Fl = Z (_1)q eio...lf;...ierl’ (22)

q=0

where k means deleting of the corresponding index, and extend it to A,41 by linearity. Let
A_1 =0, and define 9: Ay — A_1 by dv = 0 for all v € Ag. It follows from this definition
that 0%v = 0. for any p-path v.

An elementary p-path e, i, (p > 1) is called regular if iy # ipyq for all k. For p > 1,
let I, be the subgroup of A, that is spanned by all irregular €ip...i, and we set Iy = 11 = 0.
Then 0(I,+1) C I, for p > —1. Consider the chain complex R, with

Rp=TRp (V) = Ap/Ip

and with the chain map that is induced by 0.

Now we define paths on a digraph G = (V, E). Let e;,..;, be a regular elementary p-path
on V. It is called allowed if ip_1 — iy for any k = 1,...,p, and non-allowed otherwise.
For p > 1, denote by A, = A, (G) the subgroup of R, spanned by the allowed elementary
p-paths, that is,

A, = span {eio,,_ip D ig...p 1S allowed} )
and set A_1 = 0. The elements of 4, are called allowed p-paths.

Consider the following subgroup of A, (p > 0)

Q=0,(G)={veA,:0ve A,_1}. (2.3)
The elements of ), are called 0-invariant p-paths, and we obtain a chain complex

0 0 0

0 «— Qp <« Q@ «— ... < Q 9

& oo .. (2.4)

p—1 D

The homology groups of the digraph G are defined as

Hy (G) := ker 8], /Imd|q

p+1°

In what follows, we will refer to Hy(G) as the path homology groups of a digraph G.
We can define a natural augmentation

€: QO — 7 by 5 (Zklel) = Zki, k; € Z
which is an epimorphism and € o 9 = 0.
Now we recall the construction of the cubical singular homology theory of digraphs from
[1].
Let I™ be the standard n-cube digraph. A singular n-cube in a digraph G is a digraph
map ¢: I" — G.
Fixn > 1. Forany 1 < j <n and € =0, 1, consider the following inclusion of digraphs:

n—1. rn—1 n
FjE T — I",

- 2.5
Fﬁ 1(01,...,Cn,1):(Cl,...,ijl,E,Cj,...,Cnfl) ( )

for n > 2, and F{* 1(0) = (e) for n = 1. We shall write shortly Fjc instead of Fj’fl if the
dimension n — 1 is clear from the context. Denote by I;‘e_l the image of Fj’l_l. We shell write
I instead Iﬁ_l if the dimension is clear from the context.
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Let Q1 = 0. For n > 0, denote @, = @Q,(G) the free abelian group generated by all
singular n-cubes in G, and denote (bD the singular n-cube ¢ as the element of the group Q.
Forn>1and 1 <p<n,and

¢y = (¢ 0 Fpe)™ € Qu1. (2.6)

For n > 1, define a homomorphism 0¢: @), — @,_1 on the basis elements qSD by the rule

(o) = S (-1)7 (5 — b ) - (2.7)

p=1

and 9¢ = 0 for n = 0. Then (80)2 = 0 and the groups @, (G) form a chain complex which we
denote Qx = Q«(G).

For n > 1 and 1 < p < n, consider the natural projection T?: I™ — I"~! on the p-face
I defined as follows. For n = 1, T is the unique digraph map I' — I°. For n > 2, we
have on the set of vertices T?(iy,...,41) = (in,...,ip+1,%—1,-..,41). The singular n-cube
¢: I" — G is degenerate if there is 1 < p < n such that ¢ = 1 o TP where ¢: I"! — G
is a singular (n — 1)-cube. Then an abelian group B, = B,(G) that is generated by all
degenerated n-cubes is a subgroup @, for n > 1. We put also By = 0, B_; = 0. Then the
quotient group

0,(G) = @p(G)/Bp(G) (2.8)
is defined for p > 0. We have 9(B,) C B,_1 and, hence, B,(G) C Q.(G) . Hence the
factor complex Q$(G) = Q«(G)/B«(G) is defined. We continue to denote the differential in
this complex 9°. The homology group Hy(QS(G)) is called the singular cubical homology
group of digraph G in dimension k and is denoted Hf(G). We have a natural augmentation
homomorphism

e: Q5(G) — Z, E(Zkﬂpi) =Y ki kiez

which is an epimorphism and € o 3° = 0.
Recall the basic properties of the path and the singular cubical homology groups (see [4]
and [1]).

e The groups HS(X) and H,.(X) are functors from the category D to the category of
abelian groups.

o Let f ~ g: X — Y be two homotopic digraph maps. Then the induced homomorphisms
[+, g« of homology groups are equal for k£ > 0 for both theories.

3 Maps of cube to cubical digraph

In this section we reformulate slightly the definition of a cubical digraph from [4] and prove
that the image of a cube in a cubical digraph is contractible. Then we prove Theorem 1.1.

Recall, that any vertex of a a cube I" is given by a sequence of binary numbers (a1, ..., a,).
For any arrow a — b in a digraph cube I™ we have also the arrow

’)/Z-:(O,...,O)—>(bl—al,...,bn—an) (31)

in I™ where right sequence of binary numbers presents a vertex in I™ which has only one
non-trivial element 1 on a place i. We say that two arrows a = (@ — b) and § = (¢ — d) of
I are parallel and write «f|3 if

(bl—al,...,bn—an):(dl—cl,...,dn—cn).



In the opposite case we shall call two arrows orthogonal.

An arrow a € Er» defines two (n — 1) — faces of I"™: the face Iy = I§ that contains origin
vertices of the arrows that are parallel to o and the face I} = I{* that contains end vertices
of the arrows that are parallel to a. Note that any arrow that is orthogonal to « lies in Iy or
in Il.

For the digraph cube I there is a natural partial order on the set of its vertices Vim that
is defined as follows: we write a < b if there exists a directed path with the origin vertex
a and the end vertex b. Now we introduce a distance A(a,b) for a pair of vertex a,b € I"
that is defined only for comparable pair of vertices. Let a < b be two vertices then as follows
from definition of the cube digraph the length of the path p from a to b does not depend
on the choice of the path, and we put A(a,b) = A(b,a): = |p|. We shall call the vertex
a = (0,...,0) of a cube origin verter and the vertex d = (1,...,1) end vertex. It follows
immediately from the definition of a cube digraph that the for any vertex x the distances
A(a,x) and A(z,d) are well defined. For an arrow a = (z — y) we define A(a,d): = A(y,d)
where d is end vertex of the cube. Let a < b be a pair of comparable vertices of I™ for which
there is a direct path p from a to b. Denote by I,; induced subgraph of I"™ with the set
of vertices {¢ € Vin|la < ¢ < b}. Clearly, I, is isomorphic to a digraph cube I*, where
k= |p| = A(a,b).

Definition 3.1. A subgraph G of I" is called cubical if for any two vertices a,b € Vg C Vin
with a < b we have I,;, C G.

Note that the set of all paths from a to b in I, coincides with the set of all paths from
a to bin G. It is easy to see that cubical digraphs with digraph maps form a category. Now
we prove that the image of a cube I" in any cubical digraph is contractible. Note, that this
statement is not true in general case.

Example 3.2. Consider the nondegenerate map f presented on Fig. 1 of the cube I? to
the cycle digraph G given on the set of vertices by f(1) = f(8) =z, f(2) = f(3) = f(5) =
y, f(4) = f(6) = f(7) = =

Figure 1: The map f: I® — G with non-contractible image.

Theorem 3.3. Let f: I" — G be a digraph map to a cubical digraph. Then the image
f(I™) C G is contractible.

Proof. The image f(I") is connected as the image of the connected graph. Let s =
(0,...,0) € Vin be the origin vertex and z = (1,...,1) € Vi be the end vertex of I™.
Then f(s) € Vg, f(2) € Vg and f(I") C Iy, p(z) € G where If) f(.) is isomorphic to



a m-dimensional cube which we denote J = J™ = I™ where m = A(f(s), f(z)). Hence,
without loss of generality, we can suppose that G' = Iy ¢() = J that is f(s) = (0,...,0) €
Vi, f(z)=d=(1,...,1) € V;. We prove the statement of the Theorem using induction on
dimension m.

The base of induction by m. For m = 0,1, 2 the statement is trivial since any connected
subgraph of the digraphs J%, J', and J? is contractible.

The step of induction by m. Suppose that the statement of the Theorem is proved for
every map I" — J™~!. Consider the case J = J™ where m > 3 and d = (1,...,1) € V}
is the end vertex of the cube J. Since d = f(z) € Image(f), there exists a nonempty set of
arrows I' C E; defined as follows

[Tel] & lend(7) =d & 7 = f(a),a € Em].

The set I' consists of arrows in E; with the end vertex d that are lying in the image of the
map f. Let v = (¢ — d) € T be an arrow such that

fla)=f(zr —-y)=(c—d) =~ and A(x,z)=A(y,z) =k >0 is minimal. (3.2)

Note that « is defined may be by a non unique way. For for ease of references we formulae
the following result.

Lemma 3.4. For every vertex v € Vin with A(v,z) < k we have f(v) = d. Hence the cube
I,. C I" is mapped by f into the vertex d.

Proof. Follows immediately from definition of k in (3.2). m

The arrow ~ defines two (m — 1) — dimensional faces Jy and J; of the cube J with
¢ =€ Vy,, d € Vj and we have the natural projection 7: J — Jy along the arrow . Let
H be a subgraph of I™. We define subgraphs Ky, K1, K C J which depend on the map
f:I"— Jand H C I" as follows:

K: =fH)cJ, Kyo: =f(H)NJyC Jy, and K;: = f(H)NJ; C Jy. (3.3)

It is easy to see that for an arrow (v — w) € E; we have:
(v = w)[h] & [(veo) & (we )] (3.4)

For technical reasons we introduce the following definition.

Definition 3.5. Let H C I", f: I — J, ~y is defined in (3.2), and the digraphs K, Ko, K1 C
J are defined in (3.3). We say that a subgraph H C I" satisfies to the II — condition if the
following properties are satisfied

(1) V w e Vg, there is a vertex v € Vi, such that (v — w) € Ek.
(2) V (w— w') € Eg, we have 7(w — w') € Fg,. (3.5)

Proposition 3.6. Consider the map f: I"™ — J = J™ with m > 3. Let k and vy are defined
in (3.2) and let us consider the same designations as above. Then the cube I™ satisfies to
IT-condition.

Proof. Induction in k > 0.

The base of induction, & = 0. Hence y = z = (1,...,1) € V= is the end vertex of I"
and n > m > 3. The arrow a = (z — 2) € Em with f(a) = f(z — 2) = v = (¢ — d)
defines (n — 1)-face Iy = I, , and opposite (n-1)-face I; of the cube I". Let a = (0,...,0) be



the origin vertex of J (and hence origin vertex of Jy) and b be the origin vertex of J;. Then
a — b is parallel v = (¢ — d). We have

f(IO) = f(IS,z) C If(s),f(;z) = Ia,c =Jo (3~6)

and, hence, by (3.3) for H = I"™, we have f(Ip) C K. Let ¢t be a vertex of I; such that
w = f(t) ¢ Vi, that is w € Vi, C V. There exists an unique vertex r € Vj, such that
(r — t) € Erm is parallel to a and f(r) =v € Ko C Jp by (3.6). Thus f(r - t) =v — w
with v € Vi, and condition (1) of (3.5) is satisfied.

Now let 7 = (w — w') € FEk, be an arrow such that f(t — ¢') = 7 that is f(t) = w, f(¢') =
w', t,t" € Vi,. The same line of arguments as above gives the vertices r,7" € Vj, such that
(r — t) and " — t' are parallel to « and, hence, 7(7) = f(r — ') since f(r), f(r') € Vk,.
This proves condition (2) of (3.5). Thus II-condition is satisfied for the cube I" and k = 0.

The induction step. By inductive assumption we have that any map f: I™ — J satisfies
the II-condition if A(y,z) < k—1 > 0. Consider the case A(y,z) = k > 1 and, hence,
A(z,z) = Aly,z) +1 = k+1 > 2 where z = (1,...,1) € Vin. Thus, without loss of

~——

generality, we can suppose that

z=(1,...,1,0,0,...,0), y=(1,...,1,1,0,...,0,). (3.7)
——— ———— —— ———
n—k—1 k+1 n—k—1 k

From now we put yo = y € Vi» and let the vertex y; is obtained from y by replacing the last
coordinate ”1” in y by ”0”, and i-th coordinate ”0” of y by ”1” for 1 <+¢ < k. For example,

yo=(1,...,1,0,0,1,0...,0,), ye = (1,...,1,0,0,0...,0,1).
—_——  N——— —_——  — - —
n—k—1 k n—k—1 k

We define also a; = (x — y;) € E for 0 < i < k. By Lemma 3.4 we have f(«;) = f(z —
yi) = (¢ = d) =y for 0 < i < k. Let Iy = I;, be (n — k — 1)-dimensional subcube of I".
Then, as before, f(ly) C Ko C Jy.

Consider a vertex t € Vi and ¢ ¢ Vj, that has the form

t=(ai,...,apn—k—1,b0,...,b;) ¢ Iy where a;,b; € {0,1}

where at least one coordinate b; is ”17. If at least one coordinate b; is zero we obtain that
te Is,zj C I™ where

j

zi=(1,...,1,1,...,0,...,1).

j = )
n—k—1 k+1

The (n—1)-dimensional subcube I ., C I" contains the vertices z and t. Moreover A(z, z;) =
k and there is an arrow a; = (x — y;) € EIS’Z]_ with f(a;) =~ and A(wy,2j) = k — 1. Hence,
by the inductive assumption, the map

f|Is,zj : Is,Zj —J

satisfies the II-condition.

Now consider a vertex ¢ for which all (k + 1)-coordinates b; are equal ”1” such that
t ¢ I, .. This means that at least one of the first (n — k — 1)-coordinates a; is ”0”. Recall
that (k+ 1) > 2. Thus consider the vertices

t:(al,...,an,k,l,l,...,l)e,é[g, 7":(al,...,an,k,l,o,...,O)EIO (38)
—— ——
k+1 k+1



where a; € {0,1}. Consider a directed path p in the digraph Iy from the vertex r € Vi, to
the vertex z € Vj, of the length [ = |p| > 1 (since t ¢ I, ,). Write this path in the following
form

p=(r—x —x2—...0-1 —x=2) C L, Clp.

Consider a directed path ¢ from the vertex r € Vi, to the vertex ¢ of the length k+1 = |g| > 2.
Note that g lies in the digraph I,; of dimension k£ + 1. Write this path in the following form

g=(r—ri—ro—...15 = Tpp1 =1t) C L.

Any such two paths p and ¢ defines an unique subgraph of the graph I" that has the following
form

t=rktl r]fH — 7"2”1 — ... = rlk“ =z
1 7 T T T
rk — oy — oy — . —
T 7 T T T
— — — —_—
i i i i 1 (39)
rt — o — o — . — 7
i T 7 T 7
T — I — T2 —_— ... — Ty =T
Now we prove, using induction in the length [ = |g| > 1 the following statement.
(L): For every path ¢ and every path p, as above, there is a path
pP=r—ay—-2h—. 2, >z =x)ClL,Cl.
(that may be is equal to p) such that g and p’ defines the subgraph (similarly above)
t=rktt r]fH, — 7“]2“'1, — ... — rf“'l, =z
i 7 7 7 T
rk — r’f/ — r’z“/ — — rf/
7 T T T 7
— — — —
ot (3.10)
T T T T 7
rl — r%/ — r%/ — — rll,
T 7 T T T
T — oy — a2l — — oz =z
and at least one of the following conditions is satisfied
(1) ft)= f(T:%
t pu—
(7’1) f( ) f<r1)7 (311)

The base of induction for (L), the case | = 1. Consider the unique path p = (r — x) C I



of the length [ = 1 an a path ¢ as above. We have the following subgraph of the digraph I"::

k+1 k41

t=r — =z
T T
rk — r’f
T T
1 1 (3.12)
rl — 7‘%
T T
T — T =

where r,x € Vi, f(r), f(x) € Vk,, and f(ri) = d for 1 < i < k+ 1 since k¥ > 1. Hence
¥y = f(¥1) = d and thus at least one of the conditions (i) or (i) in (3.11) is satisfied
since there are no triangles in the digraph J. We put in this case p’ = p, and the base of
induction [ = 1 is proved.

Inductive step of induction for (L). Consider vertices ¢, € V; given in (3.8) where
A(t,r) =k+1>2and A(r,xz) > 2. Let p be a path from r to x and ¢ be a path from r to
t as the above. Recall that [p| = k+1 > 2, |¢| =1 > 2. These paths define the subgraph
of I given on (3.9). By the inductive assumption, for the vertex r’f“ at least one of the

conditions
((i)) fE zig E is
) f(r] Ty
i) k) = 78" 1

that is similar to (3.11) is realized. In (3.13) we have a path ¥ — r¥ — ré“” — -+ — 7F that

is similar to the path r* — ¥ — & — ... — 7k from (3.9).

If condition (i) is realized, that is f(ri*t1) = f(r¥), then for f(t) at least one of the
conditions (i) or (ii) in (3.11) is satisfied since there are no triangles in the digraph J (similarly
to the case [ = 1).

If condition (ii) is realized and condition (i) is not realized, that is f(r®™) = f(r5) and
f(rk) # f(r%), we can consider the subcube of I given on Fig. 2 of I" that is defined by the
subgraph of (3.9) given below in (3.14):

S e I
T T 7
rk —_— r’f —_— 7“’2“. (3.14)

We have f(r¥1) = f(7"2) and f(rF) # f(r§), that is f(rf — ¥ = f(rF — §) € B is
an arrow. If f(ry) = f(r¥) then the same line of above give that f(t) = (r{“) or f(t) = f(rk)
and the step of induction is proved. Let f(ry) # f(r¥) then

7 (Lo, 0t) € F (L), sopy) o0 T (e ) € F (D), sot))

where [ (7)1 (r) is the digraph square. Hence at least one of conditions f(r**+1) = f(r¥) or

fOrkh = f (r’f/) is satisfied and the inductive assumption is proved.
Consider the case when condition (iii) is realized and conditions (i) and (ii) are not
realized. This case is the same as the case (ii). We must to start the consideration from the

10
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Figure 2: The subcube of I" that is defined by the digraph on (3.13).

"
path r* — 7§ — r5" — ... — 7F on the place of the path r* — rf — r§ — ... — ¢k from

(3.9). This finishes the proof of the inductive step and, statement (L) is proved.

It follows from the statement (L) that image w = f(¢) and images of all arrows with end
or origin ¢ lay in the image of the subcube I, ., with A(z,2;) = A(r, z;) = k which satisfies
to II-condition by the inductive assumption in k. Hence the cube I satisfies to II-condition
and the Proposition is proved. =

Now we finish the proof of Theorem 3.3. Since digraph I™ satisfies the II-condition then
Proposition 2.7 and (3.5) implies that restriction 7|x of the projection m: J™ — JI"~! to the
image K of the map f is well defined deformation retraction to Ky. But Ky is contractible
by the inductive assumption in m. Thus Theorem 3.3 is proved. m

4 Equivalence of homology theories on cubical digraphs

In this section we prove our main result — Theorem 1.1, that is stated below as Theorem
4.5. For that we use the Acyclic Carrier Theorem from homology theory (see, for example,
[5, §3.4] and [6, §1.2.1]). Recall that a chain complex C. is called non-negative if C), = 0 for
p < 0 and is called free if C), are finitely generated free abelian groups for all p. We say that
C, is a geometric chain complex if it is non-negative, free, and if a basis B, is chosen in the
group C), for any p > 0. For example, any finite simplicial complex gives rise to a geometric
chain complex, where B, consists of all p-simplexes.

Let C, be a geometric chain complex with fixed bases B,. For b € B,_; and V' € B, we
write b < b if b enters with a non-zero coefficient into the expansion of 9V’ in the basis B,_1.
The augmentation homomorphism e: Cy — Z is defined as

€ (Z /ﬁb@> = Zki, k; € Z, b; € By,
i i
and we denote C, the augmented complex

750,208

A geometric chain complex C, is called acyclic if all homology groups of the augmented
complex C., are trivial.

Let C, and D, be two geometric complexes with augmentation homomorphism ¢ and ¢,
respectively. A chain map ¢,: Cx — D, is called augmentation preserving if '¢y(c) = &(c)
for any ¢ € Cj.

11



Definition 4.1. Let C, and D, be two geometric chain complexes.

(i) An algebraic carrier function from Cy to D, is a mapping F that assigns to any basis
element b in C, a subcomplex FE, (b) := E (b) of D, such that b < bt/implies E,(b) C E«(b).

(ii) An algebraic carrier function E is called acyclic if each complex E,(b) is non-empty
and acyclic.

(iii) A chain map f.: Cx — D, is carried by E if f,(b) € E.(b) for any basis element b in
Ch.

We state the Acyclic Carrier Theorem in the following form.

Theorem 4.2. Let C, and D, be two geometric chain complexes and E be an acyclic carrier
function from Cy to Dy. If fi, g« Cs — Dy are augmentation preserving chain maps that are
carried by E, then f. and g. are chain homotopic.

Before the proof of Theorem 1.1, we state and prove some technical results. We use the
notations of [1, 4]. Let G be a cubical digraph. The free abelian groups 25 = Q7(G) and
), = Q,(G) defined in (2.3) and (2.8) are finitely generated.

Let I° = {%} be the one-vertex digraph. Any zero-dimensional singular cube ¢: I® =
{*} — G is given by the vertex ¢(x) € Vi and thus we obtain the map 7¢: Q§(G) — Qo(G)
which preserve augmentation.

For any digraph cube I"™ (n > 1) denote by P the set of all directed paths of the length
n going from the origin vertex (0, ..., 0) of the cube to the end vertex (1,...,1). Every path

—— ~——

n n

p € P has the following form
p=(ap—a —ay— - —ay), a €V, (4.1)

In (4.1) for 1 < i < n the vertex a; differs from a;_; only by one coordinate 1 < 7(i) < n
that equals ”70” for a;—1 and ”1” for a;. Let o(p) be a sign of the permutation

Consider the path w,, € Q,(I™) given by

wy = 3 (~1)7P)p (4.2)

peP

that is the generator of the group ,(I™) (see [1] and [4]). For any singular n-dimensional
cube ¢: I" — @, which gives a basic element ¢~ € QF(G), we have a morphism of chain
complexes defined in [1]

7o 1 Q(G) = Qu(G), Ta(d") = b, (wy) (4.3)

where ¢, : Q,(I") — Q,(G) is the induced of ¢ morphism of chain complexes.

For n > 0 consider the set K, of all subcubes G of dimension n that have the form I,
with s,t € V. By [1, 4], for every cube Is; € K, there is an isomorphism x,;: I" — Is;
such that the set of elements {(x,,) (wn): Is: € Ky} give the basis of Q,(G). For n > 1,
define homomorphisms 6,,: 2, (G) — Q(G) on basic elements by

971(<Xs,t)*(wn)) = Xsm,tv (4.4)

and then extend it by linearity. It is clear that 6y preserves the augmentation.

12



Proposition 4.3. The homomorphisms 0,, define a morphism of chain complexes
0.: Q. (G) — Q(G) (4.5)
that is a right inverse morphism to T, that is
7«0 = 1d: Qu(G) — Q(G).

Proof. Let us first prove that 7,60, = Id. For n = 0,1 this is trivial. Let n > 2 and
(Xs,0), (wn) € Qn(G) be a basic element. By (4.4) and (4.3) we have

Tl ((Xar), (0a)) = T = X, (10): (4.6)

Now consider the commutative diagram

0. Pmoec@) T ,(G)
ol ) 0%l ol (4.7)

Lot (G) 5 Q8 1(G) ™5 Q,(G)

where the horizontal compositions are identity homomorphisms by (4.6) and the right square
is commutative. It follows from [4, Lemma 4] that, for (¢;,) (wn) € Q2,(G), we have

001 (9 (000, (w))) = bucr | D (17 (Bg0), (wam)

IS/,t/Cls,t
= Y (~1)7"H e, (4.8)

where the sum is taken over all (n — 1)-cubes I’ = Iy y C I,y = I. By (2.7) and (4.4) we
have for (¢,,) (wn) € Qn(G)

0 (0((650),wn)) = 7 (62.) S -1 (6300 — (501 (4.9)

p=1

where the sum is taken over all (n — 1)-subcubes of the cube I"™. Since bottom row in (4.7)
is the identity homomorphism we conclude from (4.3), (4.8) and (4.9) that the left square in
(4.7) is commutative, which finishes the proof. m

Proposition 4.4. There is a chain homotopy between 0, o T,: QS(G) — Q(G) and the
identity map 1d: Q$(G) — QS(G).

Proof. The chain complex Q¢(G) is geometric and the chain maps 6,07, and Id evidently
preserve augmentation. For a singular cube ¢: I"™ — G consider the subgraph Gy C G that
is image of ¢. This is a contractible cubical digraph by Theorem 3.3. Thus we assign to every
basic element ¢~ € Q¢(G) the subcomplex

B, (7)€ as(ay) c 22(6) (4.10)
which is acyclic since G is contractible.
Now we check that E is an algebraic carrier function, that is condition (i) of Definition 4.1

is satisfied. Let ¢ € Q¢(G) be a basic element given by a singular cube ¢: I — G with n >
0. By (2.6) and (2.7), the element (¢") is given by the sum of the basic elements (¢ o V;,e)D
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with coefficients (£1) where the maps Vpe: I"™1 — I" are the inclusions. Hence the digraph
Ggov,,. is a subgraph of G and, hence, the chain complex F ((gb o Vpe)D) = Q¢ (G¢0Vpé) is a
subcomplex of E,(¢"). Thus for the basic singular cube b € Q¢ (G) and b < ¢~ we obtain
that b= (¢ o Vo)~

E.(0) = B (60 V7)< Bu(e").

Hence we have the algebraic acyclic carrier function E from QS(G) to itself.
Now we prove, that the chain maps 0, o 7, and Id from QS(G) to itself are carried by the
function E. Consider a basic element ¢= € Q¢ (G). Then

1d (¢D) € o7 € 0°(Gy) = E.(¢P) (4.11)

since image of ¢ is the digraph Gg. Hence the chain map Id: Qf(G) — QF(G) is carried by
the algebraic carrier function FE.
By (4.3) and (4.4), we have

9, 01, (¢>D) = 0, (6, (wp)), &: 1" — G. (4.12)

We have only two different possibilities for the ¢, (w,). In the first case, ¢ is an isomorphism
on its image Gy = I,; = I" with s = ¢(0,...,0), t = ¢(1,...,1) where (0,...,0) € Vn is
the origin vertex, and (1,...,1) € Vin is the end vertex of the cube I". Note that for any
isomorphism ¢: I" — I"™ we have v, (w,) = *w,. Hence in this case subgraph G4 C G
coincides with the subgraph cube Gy , C G and by (4.4) we have

O 0 T(67) = 00 (8. (wn)) = 0 (£00a1), (wn)) = x5, (4.13)

where x,: I" — Dst = Gg. That is

O 0Tn (¢D> eqe (GXM) = Q°(Gy) = By <¢D) .

In the second case, the image of ¢ does not contain any cube of dimension n and, hence
¢, (wp) = 0. Consequently, we have 6, o ¢, (w,) = 0 € E,(¢7). Then the claim follows from
the Acyclic Carriers Theorem 4.2. =

Theorem 4.5. For any finite cubical digraph G, the chain maps 7, and 0, are homotopy
inverses and, hence, induce isomorphisms of homology groups

HE(G) = HL(G).

Proof. It follows from Propositions 4.3 and 4.4 that the chain maps 7, and 6, are
homotopy inverses. Now the statement of the Theorem follows. m

Corollary 4.6. Let A be a finite simplicial complex. Consider a digraph Ga (see [4]) with
the set of vertices given by the set of all simplexes from A, and

s—t(t,seA) iff sOt and dims =dimt+ 1.
Then the graph Ga is a cubical digraph and
H{(Ga) = Ho(A)
where H,(A) are the simplicial homology groups of A.

Proof. Indeed, it is proved in [4] that path homology groups H,(GAa) are isomorphic to
simplicial homology groups H.(A). m
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