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Abstract

In [KLW], we formulated a class of Gromov hyperbolic graphs (expansive hyperbolic

graphs) arising from iterated function systems (IFS) in fractal geometry, and studied the

relations of the hyperbolic boundaries and the attractors in a wide setup beyond IFS. In

this paper, we extend the scope of our study to general hyperbolic graphs via some near-

isometries (that is, the graph distances are altered by at most some additive constants).

Using the properties of expansive hyperbolic graphs, we investigate the connection of the

near-isometries between hyperbolic graphs and the Lipschitz equivalences between their

boundaries, and provide a combinatorial characterization of all bi-Lipschitz embeddings

of hyperbolic boundaries. We further apply the hyperbolic techique developed to produce

some “good distances” on spaces of homogeneous type.
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1 Introduction

The notion of hyperbolic graphs, along with hyperbolic groups, was invented and remark-

ably developed by M. Gromov in geometric group theory [Gr]. Every infinite hyperbolic

graph or group X possesses a boundary ∂X, known as the (Gromov) hyperbolic boundary,

which consists of all “ends at infinity”. This boundary has a very rich structure, and plays

an extremely important role in the study of hyperbolic groups (see the survey [KaB]).

Without reference to any group structure, there are also interesting hyperbolic graphs

arising from various mathematical subjects. One of the examples is the Elek’s cone CK [E]

associated to a compact set K in a Euclidean cube I: the vertices are the dyadic subcubes

of I that meet K; hierarchically they constitute an infinite tree, and each intersected pair

of subcubes in the same size are jointed by an extra “horizontal” edge. It has been proved

that such CK is a hyperbolic graph, and the boundary ∂CK is homeomorphic to K. This

construction was extended by Bourdon and Pajot [BP], and further adapted by Carrasco

Piaggio [P] for studying the conformal gauges and dimensions of compact metric spaces.

In fractal geometry, a counterpart is the augmented tree associated to a contractive

iterated function system (IFS), where the tree structure is naturally from the symbolic

space of IFS, and each additional horizontal edge represents a pair of neighboring cells in

the attractor with approximately equal sizes. This notion was initiated by Kaimanovich

[Ka] on the Sierpinski gasket, and was carried out by the authors [LW1,LW3] on general

IFS. In most common cases, the hyperbolicity of augmented trees has been proved to be

valid, and it derives a Hölder equivalence of the hyperbolic boundary and the attractor.

It has also found important applications in the study of the bi-Lipschitz classification as

well as the probabilistic potential theory of fractal sets [LL,DLL,KLW1,KL,KLLW].

Motivated by this, in a recent paper [KLW], we formulated a broad class of hyperbolic

graphs, called expansive hyperbolic graphs, to capture the essential properties which were

used extensively in the previous study. This class embraces not only the graphs mentioned

(Elek’s cones, Bourdon-Pajot’s and Carrasco Piaggio’s graphs, augmented trees), but also

the ones that the vertical parts are not trees (e.g. the quotients of augmented trees [Wa]).

Based on some properties abstracted from the IFS and refinement systems, we introduced

a more flexible setup of index maps, and investigated two types of expansive graphs, AI∞-

graphs and AIa-graphs, to carry out the idea of augmentation much further. Our results

involved the hyperbolicity of these graphs, the identification of the hyperbolic boundaries

with the attractors, and the relation of the bounded degree property versus the separation

conditions on the index maps. Moreover, using this hyperbolic technique, we constructed

some new metrics closely related to the self-similar energy forms on p.c.f. fractals.

In this paper, we broaden the scope of our investigation to general hyperbolic graphs.

For this, the key concept is the near-isometry ϕ between two graphs X and X ′ (endowed

with graph distances d, d′), that is, a map from X to X ′ that satisfies supx,y∈X |d(x, y)−
d′(ϕ(x), ϕ(y))| < ∞ and supz∈X′ d

′(z, ϕ(X)) < ∞ (without the latter ϕ is called a near-

isometric embedding); it is also known as the quasi-isometry in [Gr] with multiplicative
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constant 1. Associated to a hyperbolic graph (X,E), we define the auxiliary graph (X, Ê)

to be the “minimal” expansive graph with E ⊂ Ê (Definition 3.1 and Proposition 3.2).

We conclude that (Theorem 3.5)

Theorem 1.1. For a hyperbolic graph (X,E), the identity map idX : (X,E)→ (X, Ê) is

a near-isometry, and (X, Ê) is an expansive hyperbolic graph.

The result yields a classification of hyperbolic graphs according to the (m, k)-departing

property of the auxiliary graphs ((m, k)-hyperbolic graphs, see Corollary 3.6). We also have

another near-isometry idX : (X, Ê)→ (X, Êk), where (X, Êk) enlarges (X, Ê) by adding

horizontal edges to all the pairs with horizontal distances of at most k (Definition 3.8 and

Corollary 3.9). By these transforms, we are able to associate every hyperbolic graph with

an expansive (m, 1)-hyperbolic graph.

An important fact is that near-isometrically transforming a hyperbolic graph (X,E)

distort the boundary ∂X bi-Lipschitzly (Theorem 4.1); here ∂X is always equipped with a

quasi-metric %a, a > 0 (Gromov distance, see Definition 2.4). Recall that a quasi-metric ρ

on a set M is a symmetic function from M×M to [0,∞) that vanishes if and only if ξ = η,

and satisfies the quasi-triangle inequality with some Cρ ≥ 1: ρ(ξ, η) ≤ Cρ(ρ(ξ, ζ)+ρ(ζ, η))

for all ξ, η, ζ ∈ M (it is a metric if Cρ = 1). Such (M,ρ) is called a quasi-metric space,

and it is endowed with a canonical topology

Tρ := {Ω ⊂M : ∀ ξ ∈ Ω, ∃ r > 0 such that Bρ(ξ, r) ⊂ Ω},

where Bρ(ξ, r) := {η ∈ M : ρ(ξ, η) < r} denotes the ball centered at ξ with radius r; the

compactness of (M,ρ) is equivalent to the one of (M, Tρ). We say that (M,ρ) is doubling

if there exists a positive integer ` such that for any ξ ∈ M and r > 0, each ball Bρ(ξ, r)

can be covered by a union of at most ` balls of radii r/2. It is known that the hyperbolic

boundary (∂X, %a) is a compact quasi-metric space. Using the near-isometry in Theorem

1.1, we improve a result in [KLW] by (Theorem 3.11)

Theorem 1.2. For a hyperbolic graph (X,E) with bounded degree, (∂X, %a) is doubling.

A map τ from a quasi-metric space (M,ρ) to another quasi-metric space (M ′, ρ′) is said

to be a bi-Lipschitz embedding if ρ′(τ(ξ), τ(η)) � ρ(ξ, η) for all ξ, η ∈ M (here by f � g

we mean that there exists C ≥ 1 such that C−1f(x) ≤ g(x) ≤ Cf(x) for all variables x in

a given domain). Furthermore if τ is bijective, we call τ a Lipschitz equivalence. For the

relation of the near-isometries between hyperbolic graphs and the Lipschitz equivalences

between their boundaries, we provide a detailed result through the technique on expansive

hyperbolic graphs (Theorems 4.1 and 4.3).

Theorem 1.3. Let (X,E), (X ′, E′) be two hyperbolic graphs. Then

(i) every near-isometric embedding (or near-isometry) ϕ : (X,E)→ (X ′, E′) induces

a unique bi-Lipschitz embedding (or Lipschitz equivalence resp.) ϕ̂ : (∂X, %a)→ (∂X ′, %′a);
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(ii) for a bi-Lipschitz embedding (or a Lipschitz equivalence) τ : (∂X, %a)→ (∂X ′, %′a),

there exists a near-isometric embedding (or a near-isometry resp.) ϕ : (X,E)→ (X ′, E′)

such that ϕ̂ = τ .

We remark that previously, Bonk and Schramm [BS] have obtained some similar results

on hyperbolic boundaries in the setting of Gromov hyperbolic spaces. Compared to their

methods, our combinatorial proofs on hyperbolic graphs are more straightforward.

With the intension to study the embeddings of hyperbolic boundaries, we restate the

index map and the admissibility introduced in [KLW] as purely topological concepts: an

index triple (X,E,Φ) over a Hausdorff space M is a rooted graph (X,E) with a map Φ

(index map) on X such that (i) each Φ(x) is a nonempty compact subsets of M ; (ii) for any

geodesic ray x = [xi]
∞
i=0 from the root ϑ, the sequence {Φ(xi)}∞i=0 is decreasing and the

intersection is a singleton {κ0(x)}. We call this triple admissible if (X,E) is hyperbolic,

and for two rays x,y as in (ii), κ0(x) = κ0(y) if and only if x,y have the same limit in

∂X. Every admissible index triple (X,E,Φ) defines a boundary map κ : ∂X →M as the

quotient of κ0, which turns out to be a (topological) embedding, i.e., a homeomorphism

from ∂X to the attractor K = κ(∂X) (Proposition 5.5). Using the intrinsic index map J∂
(G-cell, see (2.7)) on a hyperbolic graph (X,E), we also obtain a converse result which

characterizes all embeddings of ∂X (Theorem 5.6):

Theorem 1.4. Let (X,E) be a hyperbolic graph. A map τ from ∂X to a Hausdorff space

M is an embedding if and only if (X,E,Φ) is an admissible index triple over M , where

Φ := τ ◦ J∂. In this case, τ is the boundary map of Φ.

When the underlying space is a quasi-metric space (M,ρ), we define the AIa-triple

(index triple of augmented type-(a), a > 0) to be an index triple (X,E,Φ) over M that

satisfies the diameter |Φ(x)|ρ = O(e−a|x|) as |x| → ∞, and for some γ2 ≥ γ1 > 0,

|x| = |y|, distρ(Φ(x),Φ(y)) ≤ γ1e
−a|x| ⇒ (x, y) ∈ Eh ⇒ distρ(Φ(x),Φ(y)) ≤ γ2e

−a|x|,

where |x| is the graph distance from the root ϑ to x ∈ X, and Eh is the set of horizontal

edges in (X,E). This notion is extended from the AIa-graphs in [KLW] so that a similar

result still holds (Theorem 6.3), and it also provides a characterization of all bi-Lipschitz

embeddings of ∂X (Theorem 6.4, here Φ := τ ◦ J∂ as above):

Theorem 1.5. Every AIa-triple over a quasi-metric space (M,ρ) is admissible, and the

boundary map κ : (∂X, %a)→ (M,ρ) is a bi-Lipschitz embedding.

Moreover for an (m, k)-hyperbolic graph (X,E), a map τ from (∂X, %a) to (M,ρ) is a

bi-Lipschitz embedding if and only if (X, Êk,Φ) is an AIa-triple over (M,ρ).

From a construction inspired by Christ’s dyadic cubes [Ch], we see that every compact

quasi-metric space (K, ρ) can be the attractor of some AIa-triple (Example 6.8). Moreover,

as a consequence of Theorem 1.2, 1.5 and the Assouad’s theorem [A] on bi-Lipschitz
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embeddings, we can associate any (m, k)-hyperbolic graph (X,E) of bounded degree to

an AIa-triple (X, Êk,Φ) over some Euclidean space (with small a > 0, Proposition 6.9).

We also continue to investigate the AI∞-triples (augmented index triples of intersection

type, Definition 5.7) as in [KLW], and present an application on the space of homogeneous

type [CW], i.e., a quasi-metric space (M,ρ) that carries a volume doubling (VD) measure

µ: for an index triple (X,E,Φ) over (M,ρ), by regrouping the vertices in X according to

the µ-volume of Φ(x), we obtain a new coding space X(µ). For the associated AI∞-triple

(X(µ), E(∞),Φ), we have (Theorem 7.2)

Theorem 1.6. Suppose the index triple (X,E,Φ) over (M,ρ) satisfies some mild as-

sumptions, and µ is a (VD)-measure on (M,ρ). Then the AI∞-triple (X(µ), E(∞),Φ) is

admissible.

Via the boundary map on ∂(X(µ), E(∞)), the Gromov distance %a defines a new quasi-

metric %̃a on the attractor K. Under a separation condition on µ, it turns out that the

graph (X(µ), E(∞)) has bounded degree, and (K, %̃a, µ) is Ahlfors regular (Theorem 7.3).

For the organization of the paper, we recall some definitions and preliminary results on

expansive hyperbolic graphs in Section 2. We investigate the notion of near-isometry with

two transforms on hyperbolic graphs in Section 3, and prove Theorems 1.1 and 1.2. The

relation of near-isometries on graphs and Lipschitz equvalences on boundaries (Theorem

1.3) is detailed in Section 4. In Section 5, we present the topological setup of admissible

index triples as well as a proof of Theorem 1.4. We show the duality of AIa-triples and

bi-Lipschiz embeddings of boundaries (Theorem 1.5), and revisit some conditions on the

admissibility of AI∞-triples in Section 6. This technique is applied in Section 7 to prove

Theorem 1.6 and produce some “good” quasi-metrics on spaces of homogeneous type.

2 Preliminaries

We will briefly summerize some notions and background results on expansive hyperbolic

graphs; in the case of unexplained notations, the reader can refer to [KLW] for details. Let

(X,E) be a locally finite connected (undirected simple) graph. We use a vertex ϑ ∈ X as

the root, and call such (X,E) a rooted graph. We denote by d(·, ·) the graph distance of

(X,E); write |x| := d(ϑ, x) for x ∈ X, and Xn = {x ∈ X : |x| = n} for the n-th level set.

For x ∈ X and an integer m ≥ 0, let Jm(x) = {y ∈ X : |y| − |x| = d(x, y) = m} and

J−m(x) = {z ∈ X : x ∈ Jm(z)} be the m-th descendant set and the m-th predecessor

set of x respectively. We also let J∗(x) =
⋃∞
m=0 Jm(x). Throughout this paper, we only

consider the rooted graph (X,E) that satisfies

J1(x) 6= ∅, ∀ x ∈ X. (2.1)
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We can decompose the edge set E into the vertical edge set Ev = {(x, y) ∈ E : |x| =

|y| ± 1} and the horizontal edge set Eh = {(x, y) ∈ E : |x| = |y|}. A vertical graph

is a rooted graph (X,E) satisfying E = Ev, denoted by (X,Ev) usually. The horizontal

distance dh(·, ·) is the graph distance of the subgraph (X,Eh) (by convention dh(x, y) =∞
if x, y are not connected by paths in (X,Eh)). A geodesic in (X,E) is called a horizontal

geodesic if it lies entirely in (X,Eh).

The Gromov product of x, y ∈ X is defined as

(x|y) :=
1

2
(|x|+ |y| − d(x, y)).

Definition 2.1. [Gr] A rooted graph (X,E) is said to be (Gromov) hyperbolic if there is

a constant δ ≥ 0 such that

(x|y) ≥ min{(x|z), (z|y)} − δ, ∀ x, y, z ∈ X. (2.2)

On a hyperbolic graph (X,E), for fixed a > 0, we define %a(x, y) = e−a(x|y), x 6= y ∈ X
and = 0 if x = y. It is direct to check that

%a(x, y) ≤ eaδ max{%a(x, z), %a(z, y)}, ∀ x, y, z ∈ X.

Definition 2.2. [KLW] We call a rooted graph (X,E) expansive if for x, y ∈ X,

dh(x, y) > 1 ⇒ dh(u, v) > 1, ∀ u ∈ J1(x), v ∈ J1(y), (2.3)

and call it (m, k)-departing with two integers m, k ≥ 1 if

dh(x, y) > k ⇒ dh(u, v) > 2k, ∀ u ∈ Jm(x), v ∈ Jm(y). (2.4)

One important property of an expansive graph (X,E) is that any two vertices x, y ∈ X
can be connected by a convex geodesic π(x, u, v, y) [KLW, Proposition 2.3], which consists

of two vertical geodesics π(x, u), π(v, y) and a horizontal geodesic π(u, v). This simple

form allows us to effectively handle the geodesics in (X,E). We also proved that (1, 1)-

departing implies (m, 1)-departing, and (m, 1)-departing implies (m, k)-departing for all

m, k ≥ 1. A simple example of a (1, 1)-departing graph is the SG-graph (X,E) where X is

the symbolic space representing the Sierpinski gasket K, Ev is the natural tree structure

on X, and Eh consists of all pairs (x, y) that |x| = |y| and the corresponding cells Kx,Ky

meet (cf. [Ka] and [KLW, Example 2.8]).

Concerning the hyperbolicity of expansive graphs, we have the following useful criteria.

Theorem 2.3. [KLW, Theorem 2.11] For an expansive graph (X,E), the following are

equivalent.

(i) (X,E) is hyperbolic;

(ii) ∃ L <∞ such that the lengths of all horizontal geodesics are bounded by L;

(iii) (X,E) is (m, k)-departing for some integer m, k ≥ 1.
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Properties (ii) and (iii) give us constructive ways to check the hyperbolicity, and will

be used throughout the paper.

LetRv := {[xi]∞i=0 : x0 = ϑ, and xi+1 ∈ J1(xi), ∀ i ≥ 0} denote the family of (geodesic)

rays starting from the root ϑ, and write x,y, z, · · · for the rays [xi]i, [yi]i, [zi]i · · · in Rv
respectively. For x ∈ X, we also denote by Rv[x] the subclass of rays in Rv that pass

through x (which is not empty by the assumption (2.1)).

By the triangle inequality of the graph distance d(·, ·), it is seen that for x,y ∈ Rv, the

Gromov product (xi|yi) is increasing in i. We set (x|y) := limi→∞(xi|yi) = supi≥0(xi|yi),
and write x ∼ y if and only if (x|y) = ∞. When (X,E) is hyperbolic, by (2.2), we see

that this ∼ is an equivalence relation in Rv.

Definition 2.4. For a hyperbolic graph (X,E), the hyperbolic boundary is defined as the

quotient set ∂X = ∂(X,E) := Rv/ ∼. For a > 0, define the Gromov distance on ∂X by

%a(ξ, η) := e−a(ξ|η), ξ, η ∈ ∂X

(e−∞ = 0 by convention), where (ξ|η) is the extended Gromov product on ∂X given by

(ξ|η) := sup{(x|y) : x ∈ ξ, y ∈ η}. (2.5)

By using (2.2), it is easy to check that (ξ|η) ≤ (x|y) + 2δ for all x ∈ ξ and y ∈ η, and

the extended Gromov product satisfies (ξ|η) ≥ min{(ξ|ζ), (ζ|η)} − 3δ for all ξ, η, ζ ∈ ∂X.

This implies

%a(ξ, η) ≤ e3aδ max{%a(ξ, ζ), %a(ζ, η)}, ∀ ξ, η, ζ ∈ ∂X, (2.6)

hence %a is a quasi-metric on ∂X; moreover, the quasi-metric space (∂X, %a) is compact.

For x ∈ X and an integer k ≥ 0, we call

J∂(x) := {ξ ∈ ∂X : ξ ∩Rv[x] 6= ∅}, J k∂ (x) :=
⋃
{J∂(y) : dh(x, y) ≤ k} (2.7)

the G-cell and k-shadow of x in ∂X respectively. Under the assumption (2.1), it is known

that every G-cell (or k-shadow) is a nonempty compact subset of ∂X. Intuitively, J∂(x)

is the quotient of the descendants of x run to infinity. Also note that for y, z ∈ J∗(x),

(y|z) ≥ |x|. By Definition 2.4, for ξ, η ∈ J∂(x), we have %a(ξ, η) = e−a(ξ|η) ≤ e−a|x|. Hence

we have the following estimate for the diameter of a G-cell:

|J∂(x)|%a := sup{ρ(ξ, η) : ξ, η ∈ J∂(x)} ≤ e−a|x|.

There are some alternative definitions of hyperbolic boundary (all are equivalent); the

reader can refer to [CDP, Gr, GH, Wo]. In [KLW], we used ∂X = X̂ \ X, where X̂ is

the completion of X under another equivalent metric θa on X. The %a fulfills the same

estimates as θa in [KLW]. Consequently, we have
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Proposition 2.5. [KLW, Propositions 3.2, 3.3] Let (X,E) be an (m, k)-departing expan-

sive graph. Then there exist constants γ = γ(m, k, a) > 0 and C = C(m, k, a) ≥ 1 such

that

(i) dist%a(J∂(x),J∂(y)) > γe−a|x| for all x, y ∈ X with |x| = |y| and dh(x, y) > k;

(ii) B%a(ξ, C−1e−a|x|) ⊂ J k∂ (x) ⊂ B%a(ξ, Ce−a|x|) for all x ∈ X and ξ ∈ J∂(x).

It follows from (ii) that |J k∂ (x)|%a � e−a|x| for all x ∈ X, where the involved constant

in � depends on m, k, a only.

In Section 4, the family of G-cells will play an important role in the Lipschitz equiv-

alence of the hyperbolic boundaries. Let (X,E) be a hyperbolic graph, and let c > 0 be

fixed. Under the Gromov distance %a on ∂X, the G-cells induce a new horizontal edge set

E
(c)
h =

⋃∞
n=1
{(x, y) ∈ Xn ×Xn \∆ : dist%a(J∂(x),J∂(y)) ≤ ce−a|x|} (2.8)

as well as a new edge set E(c) = Ev ∪ E(c)
h on X. It was shown in [KLW, Theorem 4.5]

that (X,E(c)) is expansive and (m, 1)-departing for some m ≥ 1, hence is also hyperbolic.

Lemma 2.6. Let (X,E) be an (m, 1)-departing expansive graph. Then E
(γ)
h ⊂ Eh ⊂ E

(C)
h

where the constants γ and C are as in Proposition 2.5.

Proof. Let x, y ∈ X with |x| = |y| and dh(x, y) > 1, by Proposition 2.5(i) with k = 1, we

have dist%a(J∂(x),J∂(y)) > γe−a|x| for some constant γ > 0, this yields E
(γ)
h ⊂ Eh. On

the other hand, for (x, y) ∈ Eh, using Proposition 2.5(ii) with k = 1,

J∂(y) ⊂ J 1
∂ (x) ⊂ B%a(ξ, Ce−a|x|), ∀ ξ ∈ J∂(x),

which implies dist%a(J∂(x),J∂(y)) ≤ Ce−a|x|, and hence Eh ⊂ E
(C)
h .

3 Expansion of graphs and near-isometries

In this section we aim to extend the scope of our study from expansive hyperbolic graphs

to the more general ones, and to investigate the notion of near-isometry. First we provide

a simple way to “expand” an arbitrary rooted graph (X,E) to possess the expansive

property. For nonempty sets F,G ⊂ X, we shall write d(F,G) := inf{d(x, y) : x ∈ F, y ∈
G}, and the same for dh.

Definition 3.1. For a rooted graph (X,E) with graph distance d, we define a new hori-

zontal edge set by

Êh :=
⋃∞

n=1
{(x, y) ∈ Xn ×Xn \∆ : d(J∗(x),J∗(y)) ≤ 1}. (3.1)

We call (X, Ê) with Ê = Ev ∪ Êh the auxiliary graph of (X,E) (see Figure 1).
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# #

Figure 1: A rooted graph and its auxiliary graph.

Clearly Eh ⊂ Êh. The following is the main purpose of the auxiliary graph (X, Ê).

Proposition 3.2. For a rooted graph (X,E), its auxiliary graph (X, Ê) is an expansive

graph. Moreover, Ê is “minimal”, in the sense that if an expansive graph (X,E′) satisfies

Ev = E′v and Eh ⊂ E′h, then Ê ⊂ E′.

Proof. For x, y ∈ X, u ∈ J1(x), v ∈ J1(y) with d̂h(u, v) ≤ 1 (where d̂h is the horizontal

distance of (X, Ê)), we have

d(J∗(x),J∗(y)) ≤ d(J∗(u),J∗(v)) ≤ 1 in (X,E).

It follows that d̂h(x, y) ≤ 1. This proves the expansive property of (X, Ê).

For the minimality, it follows from Ev = E′v that every vertex x has the same descen-

dant set J∗(x) in (X,E) as in (X,E′). For (x, y) ∈ Êh, by the definition in (3.1), there

exist u ∈ J∗(x) and v ∈ J∗(y) satisfying (u, v) ∈ Eh ∪∆ ⊂ E′h ∪∆. Hence d′h(u, v) ≤ 1.

By the expansive property of (X,E′), we have (x, y) ∈ E′h. Hence Ê ⊂ E′.

We recall the notion of quasi-isometry, which was originated in geometric group theory

(cf. [CDP, Gr, GH, Ha]): let (X, d), (X ′, d′) be two metric spaces. A map ϕ : X → X ′ is

called a quasi-isometry if there are constants C ≥ 1 and D ≥ 0 such that

C−1d(x, y)−D ≤ d′(ϕ(x), ϕ(y)) ≤ Cd(x, y) +D, ∀ x, y ∈ X,

and supz∈X′ d
′(z, ϕ(X)) <∞. In this case we say that (X, d) is quasi-isometric to (X ′, d′).

Here we concern only that (X,E), (X ′, E′) are two rooted graphs endowed with graph

distances d, d′ respectively. We shall denote such ϕ by ϕ : (X,E) → (X ′, E′), and study

the following sharper notion of near-isometry.

Definition 3.3. A map ϕ : (X,E) → (X ′, E′) is called a near-isometric embedding if

there is a constant D ≥ 0 such that

d(x, y)−D ≤ d′(ϕ(x), ϕ(y)) ≤ d(x, y) +D, ∀ x, y ∈ X. (3.2)

If further D′ := supz∈X′ d
′(z, ϕ(X)) <∞, then we call ϕ a near-isometry. Particularly if

D = D′ = 0, i.e., ϕ is a bijection such that d(x, y) = d′(ϕ(x), ϕ(y)) for all x, y ∈ X, we

call ϕ a (graph) isomorphism.

Furthermore, ϕ is called v-invariant if ϕ(ϑ) = ϑ′ (here ϑ ∈ X,ϑ′ ∈ X ′ are roots), and

ϕ is an isomorphism from the vertical part (X,Ev) to another vertical part (X ′, E′v).
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It is well known that the hyperbolicity is preserved by quasi-isometry (cf. [GH, Section

5.2]). Note that the composition of quasi-isometries is also a quasi-isometry, and for

every quasi-isometry ϕ : X → X ′, a quasi-isometry ϕ̄ : X ′ → X exists as its rough

inverse [Wo, p.28]. Therefore, to be quasi-isometric is an equivalence relation between

rooted graphs. The same statements remain true if we replace “quasi-” by “near-” in the

above.

In the rest of this section, we start the investigation for the v-invariant near-isometries

of hyperbolic graphs. First, we prove a lemma to strengthen v-invariant quasi-isometries

to near-isometries by using the convex geodesic property of expansive hyperbolic graphs

[KLW, Proposition 2.3].

Lemma 3.4. Let (X,E), (X ′, E′) be two rooted graphs. Suppose that (X,E) is expansive

and hyperbolic, and there is a v-invariant map ϕ : (X,E)→ (X ′, E′) such that

d′(ϕ(x), ϕ(y)) ≤ Cd(x, y) +D, ∀ x, y ∈ X

for some C,D > 0. Then there is a constant D′ ≥ 0 such that d′(ϕ(x), ϕ(y)) ≤ d(x, y)+D′

for all x, y ∈ X.

Proof. By Theorem 2.3(ii), let L < ∞ be the maximal length of horizontal geodesics in

(X,E). For x, y ∈ X, let π(x, u, v, y) be a convex geodesic connecting x and y in (X,E).

As x ∈ J∗(u) and ϕ is v-invariant, it follows that d(x, u) = d′(ϕ(x), ϕ(u)). Similarly, we

have d(v, y) = d′(ϕ(v), ϕ(y)). Hence

d′(ϕ(x), ϕ(y)) ≤ d′(ϕ(x), ϕ(u)) + d′(ϕ(u), ϕ(v)) + d′(ϕ(v), ϕ(y))

≤ d(x, u) + (Cd(u, v) +D) + d(v, y)

= d(x, y) + (C − 1)d(u, v) +D ≤ d(x, y) + (C − 1)L+D.

This proves the statement with D′ = (C − 1)L+D.

Our first main result in this section is

Theorem 3.5. For a hyperbolic graph (X,E), the identity map idX : (X,E)→ (X, Ê) is

a near-isometry, and (X, Ê) is an expansive hyperbolic graph.

Proof. The expansive property of (X, Ê) is proved in Proposition 3.2. For (x, y) ∈ Êh, by

(3.1) there exist u ∈ J∗(x) and v ∈ J∗(y) such that d(u, v) ≤ 1. Note that (x|u) = |x| =
|y|, and

(u|y) =
1

2
(|u|+ |y| − d(u, y)) ≥ 1

2
(|v|+ |y| − d(v, y)− 2) = (v|y)− 1 = |y| − 1.

Using (2.2), we have

|y| − 1

2
d(x, y) = (x|y) ≥ min{(x|u), (u|y)} − δ ≥ |y| − 1− δ,
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which implies that d(x, y) ≤ 2(1 + δ). This provides an estimate on the graph distance d̂

of (X, Ê) by

d̂(x, y) ≤ d(x, y) ≤ 2(1 + δ) · d̂(x, y), ∀ x, y ∈ X,

which says that idX : (X,E)→ (X, Ê) is a quasi-isometry, hence (X, Ê) is also hyperbolic.

Clearly idX is v-invariant. Applying Lemma 3.4 to idX : (X, Ê)→ (X,E), the above

inequality can be enhanced to d(x, y) ≤ d̂(x, y) +D for some constant D ≥ 0. Hence idX
is a near-isometry from (X,E) to (X, Ê).

Remark. A rooted graph may not be hyperbolic even when its auxiliary graph is hyper-

bolic. For example, we consider the two-dimensional lattice (X,E), where X = Z2 with

root ϑ = (0, 0), and E = {(x,y) ∈ X ×X : x− y = (±1, 0) or (0,±1)}. Then it is direct

to check that E = Ev, and the n-th level set Xn consists of all boundary vertices of the

square Ān as the convex hull of An := {(0,±n), (±n, 0)}.
For n ≥ 1 and x ∈ Xn \ An (or x ∈ An), let C(x) be the quadrant (or the half-plane

respectively) translated from ϑ to x that intersects Xn only at x (see Figure 2(a)). Then

the descendant set J∗(x) consists of all vertices lying in C(x). It follows that for distinct

x,y ∈ Xn, J∗(x) ∩ J∗(y) 6= ∅ (i.e., (x,y) ∈ Êh) if and only if x,y lies on the same side

of the square Ān. This shows that d̂h(x,y) ≤ 3 whenever |x| = |y| (see Figure 2(b)). By

Theorem 2.3(ii), the auxiliary graph (X, Ê) is hyperbolic. Moreover, all geodesic rays are

equivalent in (X, Ê), thus the hyperbolic boundary is a singleton.

On the other hand, it is well-known that (X,E) is not hyperbolic. A direct check of

the Gromov hyperbolic condition (2.2) is: for x = (n, 0),y = (0, n), z = (n, n) with n ≥ 1,

0 = (x|y) ≥ min{(x|z), (z|y)} − δ = n− δ.

Hence the δ in the definition does not exist as n is arbitrary.
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Figure 2: (a) The lattice and the descendant sets; (b) the subgraph (X3, Êh|X3×X3
).

A direct corollary of Theorems 2.3, 3.5 and Proposition 3.2 is
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Corollary 3.6. For a rooted graph (X,E), the following are equivalent.

(i) (X,E) is hyperbolic;

(ii) the auxiliary graph (X, Ê) is near-isometric to (X,E), and is (m, k)-departing

for some integer m, k ≥ 1.

We shall call the graph (X,E) in (ii) an (m, k)-hyperbolic graph. In particular for

an expansive graph, to be (m, k)-hyperbolic is the same as to be (m, k)-departing.

As another consequence of above, we have the following improvement of v-invariant

quasi-isometries to near-isometries.

Proposition 3.7. Let (X,E), (X ′, E′) be two hyperbolic graphs. If ϕ : (X,E)→ (X ′, E′)

is a v-invariant quasi-isometry, then it is a near-isometry.

Proof. By Theorem 3.5, the identity maps idX : (X,E) → (X, Ê) and idX′ : (X ′, E′) →
(X ′, Ê′) are v-invariant near-isometries.

(X,E)
ϕ−→ (X ′, E′)

idX

xy idX′

xy
(X, Ê)

ϕ−→ (X ′, Ê′)

By composition, ϕ : (X, Ê) → (X ′, Ê′) is a v-invariant quasi-isometry. As both auxil-

iary graphs (X, Ê) and (X, Ê′) are expansive (Proposition 3.2) and hyperbolic, applying

Lemma 3.4 to ϕ and its inverse, it follows that ϕ : (X, Ê) → (X ′, Ê′) is a near-isometry,

so is the one from (X,E) to (X ′, E′) by composition.

We present another useful enlargement of a graph for which the near-isometry applies.

Definition 3.8. For a rooted graph (X,E) and an interger k ≥ 1, we enlarge the hori-

zontal edge set by letting

Ekh := {(x, y) ∈ X ×X \∆ : dh(x, y) ≤ k} (3.3)

and call (X,Ek) with the edge set Ek = Ev∪Ekh the (horizontal) k-fuzz of (X,E) (cf. [Wo,

Section 3.A]).

It is straightforward to check that the k-fuzz of an expansive graph is still expansive,

and a rooted graph is (m, k)-departing if and only if the k-fuzz is (m, 1)-departing. We

shall denote the graph distance of (X,Ek) by d(k). As d(k)(x, y) ≤ d(x, y) ≤ kd(k)(x, y),

the identity map idX from (X,E) to (X,Ek) is a v-invariant quasi-isometry. Applying

Proposition 3.7, we have

Corollary 3.9. Let (X,E) be a hyperbolic graph. Then for any k ≥ 1, the identity map

idX : (X,E)→ (X,Ek) is a near-isometry.
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Next we turn to consider the relations of hyperbolic boundaries. It is known that

(cf. [Gr, Theorem 7.2.H], [BS, Theorem 6.5]) if ϕ is a quasi-isometry between two hyper-

bolic graphs (X,E), (X ′, E′), then ϕ induces a homeomorphism ϕ̂ from ∂X to ∂X ′. Here

we consider the case that ϕ is a v-invariant near-isometry.

Proposition 3.10. Suppose (X,E), (X ′, E′) are hyperbolic graphs, and ϕ : (X,E) →
(X ′, E′) is a near-isometry and is v-invariant. Then the induced map ϕ̂ : (∂X, %a) →
(∂X ′, %′a) is a Lipschitz equivalence, i.e., ϕ̂(∂X) = ∂X ′, and

%′a(ϕ̂(ξ), ϕ̂(η)) � %a(ξ, η), ∀ ξ, η ∈ ∂X. (3.4)

Consequently, ∂(X,E) = ∂(X, Ê) = ∂(X,Ek), on which the corresponding Gromov dis-

tances %a, %̂a, %
(k)
a are Lipschitz equivalent.

Proof. For x ∈ Rv, the sequence ϕ(x) := [ϕ(xi)]
∞
i=0 is also a ray in R′v. By near-isometry,

we have |(ϕ(x)|ϕ(y))′ − (x|y)| = 1
2 |d
′(ϕ(x), ϕ(y)) − d(x, y)| ≤ D

2 for all x, y ∈ X. Taking

limit, we have |(ϕ(x)|ϕ(y))′ − (x|y)| ≤ D
2 for all x,y ∈ Rv. This implies that x ∼ y in

Rv if and only if ϕ(x) ∼ ϕ(y) in R′v, thus ϕ naturally induces a bijection ϕ̂ : ∂X → ∂X ′.

Moreover, by taking the supremum (as in (2.5)), it follows that |(ϕ̂(ξ)|ϕ̂(η))′− (ξ|η)| ≤ D
2

for all ξ, η ∈ ∂X. This implies

%′a(ϕ̂(ξ), ϕ̂(η)) � e−a((ϕ̂(ξ)|ϕ̂(η))′) � e−a(ξ|η) � %a(ξ, η). (3.5)

Taking ϕ = idX , the last statement follows from Theorem 3.5 and Corollary 3.9.

Remark. In the next section, we will show by more elaborate proofs that the v-invariant

assumption on ϕ can be removed (Theorem 4.1), and the existence of the near-isometry

is necessary and sufficient for the Lipschitz equivalence of boundaries (Theorem 4.3).

It has been proved in [KLW, Theorem 3.6] that an expansive hyperbolic graph (X,E)

with bounded degree (i.e., supx∈X deg(x) <∞) has a doubling hyperbolic boundary. Now

in view of Theorem 3.5 and Proposition 3.10, we can extend this result for the hyperbolic

graphs without assuming the expansive property.

Theorem 3.11. Suppose (X,E) is a hyperbolic graph of bounded degree. Then (∂X, %a)

is a doubling quasi-metric space.

Proof. By Theorem 3.5, the auxiliary graph (X, Ê) is near-isometric to (X,E), hence

is an expansive hyperbolic graph with bounded degree. This yields that (∂(X, Ê), %̂a)

is doubling [KLW, Theorem 3.6]. As the doubling property is preserved by Lipschitz

equivalence, the boundary (∂X, %a) of (X,E) is also doubling (by Proposition 3.10).

To conclude this section, we establish a near-isometry of (X,E) and the graph (X,E(c))

introduced in (2.8), which will be applied in the next section (Theorem 4.3).
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Proposition 3.12. Suppose (X,E) is a hyperbolic graph. Then for any c > 0, the identity

map idX : (X,E)→ (X,E(c)) is a near-isometry.

Consequently, there exists a constant D̃c ≥ 0 (depends on c) such that for x, y ∈ X,

|x| = |y| and dist%a
(
J∂(x),J∂(y)

)
≤ ce−a|x| ⇒ d(x, y) ≤ D̃c. (3.6)

We first prove for the case that (X,E) is expansive and (m, 1)-departing.

Lemma 3.13. Suppose (X,E) is an expansive (m, 1)-departing graph. Then the identity

map idX : (X,E)→ (X,E(c)) is a near-isometry.

Proof. Denote the graph distances of (X,E), (X,E(c)) by d, d(c) respectively. By Lemma

2.6, we have E
(γ)
h ⊂ Eh ⊂ E

(C)
h for some constants γ,C > 0. Let n be the smallest

nonnegative integer such that e−an ≤ c−1γ. Suppose (x, y) ∈ E(c)
h . If |x| = |y| ≤ n, then

d(x, y) ≤ d(x, ϑ) + d(ϑ, y) = 2n; if |x| = |y| > n, taking u ∈ J−n(x) and v ∈ J−n(y), it

follows that

dist%a(J∂(u),J∂(v)) ≤ dist%a(J∂(x),J∂(y)) ≤ ce−a|x| ≤ γeane−a|x| = γe−a|u|,

so that dh(u, v) ≤ 1 in (X,E), and d(x, y) ≤ d(x, u) + dh(u, v) + d(v, y) ≤ 2n + 1. This

yields that d(x, y) ≤ (2n + 1)d(c)(x, y) for all x, y ∈ X. Similarly we use E
(C)
h to obtain

d(c)(x, y) ≤ (2n′+1)d(x, y) for all x, y ∈ X, where n′ is a nonnegative integer that depends

on a, c, C only. Therefore, idX : (X,E)→ (X,E(c)) is a quasi-isometry.

Note that the graph (X,E(c)) is hyperbolic (by [KLW, Theorem 4.5]). As idX is

v-invariant, it follows from Proposition 3.7 that idX is actually a near-isometry.

Proof of Proposition 3.12. By Corollary 3.6, (X,E) is (m, k)-hyperbolic for some integers

m, k ≥ 1, and it follows that the k-fuzz (X, Êk) of the auxiliary graph (X, Ê) is expansive

and (m, 1)-departing. For c > 0, define the horizontal edge set Ẽ
(c)
h (and Ẽ(c)) as in (2.8)

with %a replaced by %̂
(k)
a , the Gromov distance on ∂(X, Êk). Applying Lemma 3.13, the

identity map idX : (X, Êk)→ (X, Ẽ(c)) is a near-isometry. So is idX : (X,E)→ (X, Ẽ(c))

by Theorem 3.5 and Corollary 3.9.

By Proposition 3.10, %a, %̂
(k)
a are Lipschitz equivalent, i.e., there is C0 ≥ 1 such that

C−1
0 %a(ξ, η) ≤ %̂(k)

a (ξ, η) ≤ C0%a(ξ, η), ∀ ξ, η ∈ ∂(X,E) = ∂(X, Êk).

Thus we have Ẽ
(C−1

0 c)
h ⊂ E(c)

h ⊂ Ẽ
(C0c)
h , and the corresponding graph distances satisfy

d̃(C0c)(x, y) ≤ d(c)(x, y) ≤ d̃(C−1
0 c)(x, y), ∀ x, y ∈ X.

Then it follows that

D := supx,y∈X |d(x, y)− d(c)(x, y)|

≤ max
{

supx,y∈X |d(x, y)− d̃(C0c)(x, y)|, supx,y∈X |d(x, y)− d̃(C−1
0 c)(x, y)|

}
,
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which is finite since both idX : (X,E)→ (X, Ẽ(C0c)) and idX : (X,E)→ (X, Ẽ(C−1
0 c)) are

near-isometries. This proves that idX : (X,E)→ (X,E(c)) is also a near-isometry.

For the last statement, the condition in (3.6) means (x, y) ∈ E(c)
h , and it follows that

d(x, y) ≤ d(c)(x, y) +D = 1 +D =: D̃c.

4 On Lipschitz equivalences

In this section, we investigate more closely the connection of the near-isometries between

two hyperbolic graphs and the Lipschitz equivalences between the hyperbolic boundaries.

First we give an improvement of Proposition 3.10 by eliminating the v-invariant assump-

tion on the near-isometry ϕ : (X,E)→ (X ′, E′).

Theorem 4.1. Suppose (X,E), (X ′, E′) are hyperbolic graphs, and ϕ : (X,E)→ (X ′, E′)

is a near-isometric embedding. Then for any ξ ∈ ∂X, there is a unique ζ ∈ ∂X ′ such that

limn→∞(ϕ(xn)|yn)′ =∞, ∀ x ∈ ξ, y ∈ ζ. (4.1)

Hence we can define ϕ̂(ξ) = ζ, and this ϕ̂ : (∂X, %a)→ (∂X ′, %′a) is a bi-Lipschitz embed-

ding. Furthermore if ϕ is a near-isometry, then ϕ̂ is a Lipschitz equivalence.

Proof. Let D ≥ 0 be the constant such that |d′(ϕ(x), ϕ(y))−d(x, y)| ≤ D for all x, y ∈ X,

as in Definition 3.3. Denote ` := |ϕ(ϑ)|′. Then∣∣|ϕ(x)|′ − |x|
∣∣ ≤ ∣∣d′(ϕ(ϑ), ϕ(x))− d(ϑ, x)

∣∣+ |ϕ(ϑ)|′ ≤ D + `, ∀ x ∈ X. (4.2)

It follows that for any x, y ∈ X,

|(ϕ(x)|ϕ(y))′ − (x|y)| = 1

2

∣∣(|ϕ(x)|′ − |x|
)

+
(
|ϕ(y)|′ − |y|

)
−
(
d′(ϕ(x), ϕ(y))− d(x, y)

)∣∣
≤ 1

2

(
(D + `) + (D + `) +D

)
=

3

2
D + ` := D̄. (4.3)

To prove (4.1), we first fix ξ ∈ ∂X and x ∈ ξ. Note that the sequence {ϕ(xi)}i may

not be a ray in (X ′, E′). However, it follows from (4.2) that |ϕ(xi)|′ ≥ |xi|− (D+ `)→∞
as i → ∞; using the local finiteness of (X ′, E′v) and a diagonal argument, we can choose

a ray y ∈ R′v and an infinite subsequence {ϕ(xjn)}n such that ϕ(xjn) ∈ J ′∗(yn) for all

n ≥ 0. Clearly jn ≥ n. Using (2.2) and (4.3), we have for n ≥ 0,

(ϕ(xn)|yn)′ ≥ min{(ϕ(xn)|ϕ(xjn))′, (ϕ(xjn)|yn)′} − δ′

≥ min{(xn|xjn)− D̄, n} − δ′ = n− D̄ − δ′. (4.4)

Taking n→∞, we get limn→∞(ϕ(xn)|yn)′ =∞.

Next let ζ ∈ ∂X ′ be the equivalence class of y. Then for any x′ ∈ ξ and y′ ∈ ζ, it

follows from the same technique as in (4.4) (with intermediate terms ϕ(xn) and yn) that

limn→∞(ϕ(x′n)|y′n)′ =∞. This proves (4.1).
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To prove that ζ is unique, we take a ray y′′ ∈ Rv satisfying limn→∞(ϕ(xn)|y′′n) = ∞.

Similarly we have

(yn|y′′n)′ ≥ min{(yn|ϕ(xn))′, (ϕ(xn)|y′′n)′} − δ′ →∞ as n→∞.

Hence y′′ also belongs to the equivalence class ζ, and this proves the uniqueness. Therefore

ϕ̂ is well-defined.

We prove that ϕ̂ is a bi-Lipschitz embedding. Suppose ξ, η ∈ ∂X with ξ 6= η. For rays

v ∈ ξ, t ∈ η, and v′ ∈ ϕ̂(ξ), t′ ∈ ϕ̂(η), using (4.3) and (2.2) again, we have

(vn|tn) ≥ (ϕ(vn)|ϕ(tn))′ − D̄
≥ min{(ϕ(vn)|v′n)′, (v′n|t′n)′, (t′n|ϕ(tn))′} − 2δ′ − D̄.

As limn→∞(ϕ(vn)|v′n)′ = limn→∞(t′n|ϕ(tn))′ = ∞ (by (4.1)), we have (v|t) ≥ (v′|t′)′ −
2δ′ − D̄. Similarly, we also have (v′|t′)′ ≥ (v|t) − 2δ′ − D̄. Taking supremums over v, t,

and v′, t′ as in (2.5), it follows that

|(ϕ̂(ξ)|ϕ̂(η))′ − (ξ|η)| ≤ 2δ′ + D̄,

and this implies the bi-Lipschitzness of ϕ̂ as in (3.5).

For the last statement, we suppose D′ = supz∈X′ d
′(z, ϕ(X)) <∞ and show that ϕ̂ is

surjective. Let z ∈ R′v. Then there exists a sequence {ui}i in X such that d′(zi, ϕ(ui)) ≤
D′ for all i ≥ 0 (by the second assumption on near-isometry). Using (4.2), we have

|ui| ≥ |ϕ(ui)|′ − (D + `) ≥ |zi|′ − (D +D′ + `) = i− (D +D′ + `)→∞ as i→∞.

As in the second paragraph, we can choose a ray w ∈ Rv and an infinite subsequence

{ukn}n such that ukn ∈ J∗(wn) for all n ≥ 0. Using a similar technique as in (4.4) (with

intermediate terms ϕ(ukn) and zkn), we have limn→∞(ϕ(wn)|zn)′ =∞. By the uniqueness

of ϕ̂(·) just proved, the ray z belongs to the class ϕ̂(η), where η ∈ ∂X is the equivalence

class of w. This shows that ϕ̂(∂X) = ∂X ′.

Corollary 4.2. With the same assumption as in Theorem 4.1, and let ϕ̂ be the induced

map defined there. Then there is γ0 > 0 such that

dist%′a
(
J ′∂(ϕ(x)), ϕ̂(J∂(x))

)
≤ γ0e

−a|x|, ∀ x ∈ X.

Proof. We use the same notations as in the proof of Theorem 4.1. Let x ∈ Xn, and denote

n′ := |ϕ(x)|′. Then n′ = |ϕ(x)| ≥ |x| − (D + `) = n− (D + `) by (4.2).

We choose two rays x ∈ Rv[x], y ∈ R′v[ϕ(x)] (i.e., xn = x and yn′ = ϕ(x)), and let

ξ ∈ ∂X, η ∈ ∂X ′ be the equivalence classes of x,y respectively. Then ξ ∈ J∂(x) and
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η ∈ J ′∂(ϕ(x)). For a ray z ∈ ϕ̂(ξ), note that limi→∞(zi|ϕ(xi))
′ =∞ (by (4.1)). Together

with (2.2) and (4.3), we have for sufficiently large i,

(zn′ |ϕ(x))′ ≥ min{(zn′ |zi)′, (zi|ϕ(xi))
′, (ϕ(xi)|ϕ(xn))′} − 2δ′

≥ min
{

(zn′ |zi)′, (zi|ϕ(xi))
′, (xi|xn)− D̄

}
− 2δ′

≥ min
{
n′, n− D̄

}
− 2δ ≥ n− D̄ − 2δ′.

Hence it follows from (2.5) that

(ϕ̂(ξ)|η)′ ≥ (z|y)′ ≥ (zn′ |yn′)′ = (zn′ |ϕ(x))′ ≥ n− D̄ − 2δ′.

This implies

dist%′a
(
ϕ̂(J∂(x)),J ′∂(ϕ(x))

)
≤ %′a(ϕ̂(ξ), η) = e−a(ϕ̂(ξ)|η)′ ≤ γ0e

−an,

where γ0 := ea(D̄+2δ′).

In the following we show that the converse of Theorem 4.1 is also true.

Theorem 4.3. Let (X,E), (X ′, E′) be two hyperbolic graphs. Then a map τ : (∂X, %a)→
(∂X ′, %′a) is a bi-Lipschitz embedding (or a Lipschitz equivalence) if and only if there exists

a near-isometric embedding (or a near-isometry, respectively) ϕ : (X,E)→ (X ′, E′) such

that ϕ̂ = τ .

We need a lemma to estimate the distance of the G-cells in the hyperbolic boundaries.

Lemma 4.4. Let (X,E) be a hyperbolic graph, and let A,B be two subsets in ∂X. Then

for a sequence of “intermidate sets” A1, A2, · · · , An ⊂ ∂X (n ≥ 1), we have

dist%a(A,B) ≤ e6naδ max{N1, N2}, (4.5)

where N1 := max1≤i≤n+1{dist%a(Ai−1, Ai)}(here A0 := A and An+1 := B), and N2 :=

max1≤i≤n{|Ai|%a}.

Proof. Let ξ ∈ A, η ∈ B and ξi, ηi ∈ Ai for 1 ≤ i ≤ n. By applying (2.6) repeatedly to

the sequence {ξ =: ξ0, η1, ξ1, η2, · · · , ξn−1, ηn, ξn, ηn+1 := η}, we have

dist%a(A,B) ≤ %a(ξ, η) ≤ e6naδ max
{

max1≤i≤n+1{%a(ξi−1, ηi)},max1≤i≤n{%a(ηi, ξi)}
}

≤ e6naδ max
{

max1≤i≤n+1{%a(ξi−1, ηi)}, N2

}
.

By taking infimum on the variables ξi−1 ∈ Ai−1, ηi ∈ Ai, 1 ≤ i ≤ n+ 1, (4.5) follows.
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Proof of Theorem 4.3. For simplicity, we write δ(·, ·) := dist%a(·, ·), δ′(·, ·) := dist%′a(·, ·),
J := J∂ and J ′ := J ′∂ . In view of Theorem 4.1, we need only the proof of the necessity.

For τ : ∂X → ∂X ′, we can choose a map ϕ : X → X ′ that satisfies

|ϕ(x)|′ = |x|, and J ′(ϕ(x)) ∩ τ(J (x)) 6= ∅, ∀ x ∈ X. (4.6)

In fact, for x ∈ Xn, since τ(J (x)) ⊂ ∂X ′ = J ′(X ′n), there exists y =: ϕ(x) ∈ X ′n (the

choice is not unique) such that J ′(y) ∩ τ(J (x)) 6= ∅, and this ϕ : X → X ′ satisfies (4.6).

The main proof is to show that such ϕ is a near-isometric embedding (or a near-isometry

when τ is bijective). It will be done by three steps, and an additional step for ϕ̂ = τ .

Let Cτ ≥ 1 be the constant for the bi-Lipschitzness of τ , i.e.,

C−1
τ %a(ξ, η) ≤ %′a(τ(ξ), τ(η)) ≤ Cτ%a(ξ, η), ∀ ξ, η ∈ ∂X.

Step I. We show that supx,y∈X{d′(ϕ(x), ϕ(y)) − d(x, y)} < ∞. Without loss of gen-

erality, we assume that (X,E) is expansive (otherwise we can prove the statement for

the auxiliary graph (X, Ê) first, and then use d̂(x, y) ≤ d(x, y) to make the conclusion).

For x, y ∈ X, we consider the convex geodesic π(x, u, v, y) in (X,E). Since (X,E) is an

expansive hyperbolic graph, the lengths of horizontal geodesics in (X,E) are bounded by

some constant L <∞ (Theorem 2.3). In particular, d(u, v) ≤ L, and this yields

δ
(
J (u),J (v)

)
≤ e−a(u|v) = e−a(|u|−d(u,v)/2) ≤ eaL/2e−a|u| (4.7)

(the first inequality holds since %a(ξ, η) = e−a(ξ|η) ≤ e−a(u|v) for all ξ ∈ J (u), η ∈ J (v)).

Let n := |u| = |ϕ(u)|′. Note that J (x) ⊂ J (u), thus τ(J (u)) intersects J ′(ϕ(x)) as

τ(J (x)) does. Also, we have τ(J (u)) ∩ J ′(ϕ(u)) 6= ∅ by the choice of ϕ in (4.6). Hence

δ′
(
J ′(ϕ(x)),J ′(ϕ(u))

)
≤ |τ(J (u))|%′a ≤ Cτ |J (u)|%a ≤ Cτe−an. (4.8)

We choose u′ ∈ X ′n such that ϕ(x) ∈ J ′∗(u′). Then J ′(ϕ(x)) ⊂ J ′(u′). Similarly, we

choose v′ ∈ X ′n such that ϕ(y) ∈ J ′∗(v′) (See Figure 3). Making use of Lemma 4.4 on ∂X ′,

we obtain the following estimates:

(i) δ′
(
J ′(u′),J ′(ϕ(u))

)
≤ c1e

−an by using an intermediate set J ′(ϕ(x)) and (4.8);

(ii) δ′
(
J ′(ϕ(u)),J ′(ϕ(v))

)
≤ c2e

−an by using intermediate sets τ(J (u)), τ(J (v)), the

bi-Lipschitzness of τ and (4.7).

It follows from (i) and Proposition 3.12 that there exists a constant D1 := D̃c1 such

that d′(u′, ϕ(u)) ≤ D1. Therefore

d′(ϕ(x), ϕ(u)) ≤ d′(ϕ(x), u′) + d′(u′, ϕ(u)) ≤
∣∣|ϕ(x)|′ − |ϕ(u)|′

∣∣+D1

=
∣∣|x| − |u|∣∣+D1 = d(x, u) +D1. (4.9)

By symmetry, we also have

d′(ϕ(y), ϕ(v)) ≤ d(y, v) +D1. (4.10)
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Figure 3: The near-isometry ϕ : (X,E)→ (X ′, E′).

By (ii) and Proposition 3.12 with D2 := D̃c2 , we have

d′(ϕ(u), ϕ(v)) ≤ D2. (4.11)

Combining (4.9), (4.10) and (4.11), we have

d′(ϕ(x), ϕ(y)) ≤ d′(ϕ(x), ϕ(u)) + d′(ϕ(u), ϕ(v)) + d′(ϕ(v), ϕ(y))

≤ d(x, u) + d(v, y) + 2D1 +D2 ≤ d(x, y) + 2D1 +D2

(the last inequality follows as d(x, y) is the length of the convex geodesic π(x, u, v, y)).

Step II. We prove the other direction: supx,y∈X{d(x, y)− d′(ϕ(x), ϕ(y))} <∞. The

proof uses a similar idea as in Step I. Without loss of generality, we assume that (X ′, E′)

is expansive (otherwise we use Ê′ and observe that d̂′(ϕ(x), ϕ(y)) ≤ d′(ϕ(x), ϕ(y))). For

x, y ∈ X, consider the convex geodesic π(ϕ(x), ũ, ṽ, ϕ(y)) in (X ′, E′). Let L′ be the upper

bound of the lengths of horizontal geodesics in (X ′, E′) (which is finite by Theorem 2.3).

Analogous to (4.7), we obtain

δ′
(
J ′(ũ),J ′(ṽ)

)
≤ eaL′/2e−an′ , (4.12)

where n′ = |ũ| = |ṽ|. We choose ū, v̄ ∈ Xn′ such that x ∈ J∗(ū) and y ∈ J∗(v̄). Note that

τ(J (ū)) ∩ J ′(ũ) ⊃ τ(J (x)) ∩ J ′(ϕ(x)) 6= ∅.

Using the same argument as in (4.8), we obtain

δ′
(
J ′(ũ), J ′(ϕ(ū))

)
≤ |τ(J (ū))|%′a ≤ Cτe

−an′ . (4.13)

Applying Lemma 4.4 with intermediate sets J ′(ϕ(ū)),J ′(ũ),J ′(ṽ),J ′(ϕ(v̄)) and (4.12),

(4.13), we have δ′
(
τ(J (ū)), τ(J (v̄))

)
≤ c3e

−an′ . This and the bi-Lipschitzness of τ imply

δ(J (ū),J (v̄)) ≤ Cτ c3e
−an′ .
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By Proposition 3.12, there is a constant D3 := D̃Cτ c3 such that d(ū, v̄) ≤ D3. Hence

d(x, y) ≤ d(x, ū) + d(ū, v̄) + d(v̄, y) ≤
∣∣|x| − |ū|∣∣+D3 +

∣∣|y| − |v̄|∣∣
=
∣∣|ϕ(x)|′ − |ũ|′

∣∣+D3 +
∣∣|ϕ(y)|′ − |ṽ|′

∣∣ ≤ d′(ϕ(x), ϕ(y)) +D3

(the last inequality follows from the convex geodesic π(ϕ(x), ũ, ṽ, ϕ(y))). Therefore, ϕ is

a near-isometric embedding.

Step III. We suppose τ is bijective in this step. To show that ϕ : (X,E) → (X,E′)

is a near-isometry, it remains to verify that supz∈X′{d′(z, ϕ(X))} < ∞. For z ∈ X ′n, as

τ(J (Xn)) = τ(∂X) = ∂X ′, there exists x ∈ Xn such that τ(J (x)) intersects J ′(z). By

the same argument as in (4.8), we have

δ′
(
J ′(ϕ(x)),J ′(z)

)
≤ |τ(J (x))|%′a ≤ Cτe

−an.

It follows from Proposition 3.12 that d′(ϕ(x), z) ≤ D4 := D̃Cτ . Hence ϕ is a near-isometry.

Step IV. Note that ϕ̂ is bi-Lipschitz by Theorem 4.1. We need to show that ϕ̂ = τ .

By Corollary 4.2, we have

δ′
(
J ′(ϕ(x)), ϕ̂(J (x))

)
≤ γ0e

−a|x|, x ∈ X. (4.14)

Using Lemma 4.4 with an intermediate set J ′(ϕ(x)) and (4.14), we have

δ′
(
ϕ̂(J (x)), τ(J (x))

)
≤ c4e

−a|x|. (4.15)

For ξ ∈ ∂X, let x ∈ Rv be a ray in the equivalence class ξ. As ξ ∈ J (xn), it follows

from Lemma 4.4 with an intermediate set τ(J (xn)) and (4.15) that

%′a
(
ϕ̂(ξ), τ(ξ)

)
≤ e6aδ max

{
|ϕ̂(J (xn))|%′a , δ

′(ϕ̂(J (xn)), τ(J (xn))
)
, |τ(J (xn))|%′a

}
≤ e6aδ max

{
Cϕ̂, c4, Cτ

}
e−an,

where Cϕ̂ ≥ 1 is the bi-Lipschitz constant of the map ϕ̂ (Theorem 4.1). By taking n→∞,

we obtain ϕ̂(ξ) = τ(ξ), and this completes the proof.

For a Lipschitz equivalence τ of two hyperbolic boundaries, the above proof constructs

a near-isometry ϕ of two hyperbolic graphs so that τ = ϕ̂. In the following, we show that

the proof can be modified slightly to characterize all such ϕ.

Proposition 4.5. Suppose (X,E), (X ′, E′) are two hyperbolic graphs, and τ : (∂X, %a)→
(∂X ′, %′a) is a Lipschitz equivalence. For a mapping ϕ : X → X ′, the following assertions

are equivalent.

(i) ϕ is a near-isometry from (X,E) to (X ′, E′), and the induced mapping ϕ̂ (as in

Theorem 4.1) equals τ .

(ii) There exist D0, γ0 ∈ [0,∞) such that for any x ∈ X,∣∣|ϕ(x)|′ − |x|
∣∣ ≤ D0, (4.16)

and dist%′a
(
J ′∂(ϕ(x)), τ(J∂(x))

)
≤ γ0e

−a|x|. (4.17)
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Remark. Note that the ϕ in the proof of Theorem 4.3 satisfies D0 = γ0 = 0. If we replace

“Lipschitz equivalence” and “near-isometry” in the above by “bi-Lipschitz embedding”

and “near-isometric embedding” respectively, the conclusion still holds.

Proof. (i) ⇒ (ii): Suppose ϕ is a near-isometry with the constant D ≥ 0 as in Definition

3.3, and denote ` := |ϕ(ϑ)|′. Then the inequality (4.16) is given by (4.2) with D0 = D+ `.

Moreover, (4.17) follows from Corollary 4.2.

(ii) ⇒ (i): The proof will be done by the same four steps as in Theorem 4.3. We only

provide the main adjustments in Step I here.

Note that for the convex geodesic π(x, u, v, y) in (X,E), unlike Theorem 4.3, |ϕ(u)|′

may not equal |u|, and it is possible that |ϕ(x)|′ < |ϕ(u)|′. Let n := |ϕ(u)|′. We choose

u′ ∈ X ′n such that ϕ(x) ∈ J ′∗(u′) if |ϕ(x)|′ ≥ n and u′ ∈ J ′∗(ϕ(x)) otherwise. Using (4.16),

we have

|ϕ(x)|′ ≥ |x| −D0 ≥ |u| −D0 ≥ |ϕ(u)|′ − 2D0 = n− 2D0, (4.18)

and d′(ϕ(x), u′) =
∣∣|ϕ(x)|′ − |ϕ(u)|′

∣∣ ≤ ∣∣|x| − |u|∣∣+ 2D0 = d(x, u) + 2D0. (4.19)

The estimate of d′(ϕ(x), ϕ(u)) (similar to (4.9)) follows from (4.19) and the estimate of

δ′
(
J ′(u′),J ′(ϕ(u))

)
(using Lemma 4.4 with intermediate sets J ′(ϕ(x), τ(J (x)), τ(J (u))

and (4.17), (4.18)). The same is for d′(ϕ(v), ϕ(y)).

It remains to estimate d′(ϕ(u), ϕ(v)). Note that ϕ(u), ϕ(v) may not be on the same

level as in Theorem 4.3. Similarly, we choose v′ ∈ X ′n such that ϕ(v) ∈ J ′∗(v′) if |ϕ(v)|′ ≥ n
and v′ ∈ J ′∗(ϕ(v) otherwise. Also, we have

|ϕ(v)|′ ≥ n− 2D0, and d′(v′, ϕ(v)) ≤
∣∣|u| − |v|∣∣+ 2D0 = 2D0.

These together with the estimate of δ′(J ′(ϕ(u)),J ′(v′)) (applying Lemma 4.4 with inter-

mediate sets τ(J (u)), τ(J (v)),J ′(ϕ(v)) and (4.17)) imply that d′(ϕ(u), ϕ(v)) is bounded

by some constant. Combining these three estimates, Step I is completed.

The similar adjustments can be applied to other steps, and we omit the details.

5 Index maps and admissibility

In this section, we will present the notion of index maps, introduced in [LW2,KLW], into

a purely topological framework. Let M be a Hausdorff (topological) space, and let CM
denote the family of nonempty compact subsets of M .

Definition 5.1. Let (X,E) be a rooted graph. A map Φ : X → CM is called an index

map on (X,Ev) over M if it satisfies

(i) Φ(y) ⊂ Φ(x) for all x ∈ X and y ∈ J1(x);

(ii)
⋂∞
i=0 Φ(xi) is a singleton for all x = [xi]i ∈ Rv.
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We call such (X,E,Φ) an index triple (over M). In particular, such Φ (or (X,E,Φ)) is

called saturated if the above (i) is strengthened to Φ(x) =
⋃
y∈J1(x) Φ(y).

The motivation of this definition is from fractal consideration. For a contractive iter-

ated functions system (IFS) {Si}Ni=1 with attractor K, let (X,Ev) be the symbolic space

(coding space) used as indices. For x ∈ X, take Φ(x) = Sx(F ), where F is a nonempty

compact set such that
⋃N
i=1 Si(F ) ⊂ F . This Φ satisfies (i) and (ii), hence (X,Ev,Φ) is

an index triple. In particular, if F = K, then Φ(x) equals Kx, the x-cell of the attractor

K. As Kx is the union of its offspring cells, the index triple is saturated [Ki1,Ka,LW1].

Example 5.2. (A fundamental intrinsic index triple) Let (X,E) be a hyperbolic

graph, and let M = ∂X be equipped with the Gromov distance %a. Consider the map

J∂ : X → C∂X defined by the G-cells J∂(x) as in (2.7). Clearly, J∂(x) =
⋃
y∈J1(x) J∂(y),

and for a ray x in an equivalence class ξ ∈ ∂X, the intersection
⋂∞
i=0 J∂(xi) = {ξ}. It

follows that (X,E,J∂) is a saturated index triple.

The index map Φ defines a map κΦ
0 : Rv →M by {κΦ

0 (x)} =
⋂∞
i=0Φ(xi) for x = [xi]i ∈

Rv. We denote the image of κΦ
0 by KΦ and call it the attractor of Φ. Clearly KΦ ∈ CM .

We say that two index maps Φ and Ψ behave the same at infinity if κΦ
0 = κΨ

0 . For an

index map Φ, we define

Φ̃(x) :=
⋂∞

n=0

(⋃
y∈Jn(x)

Φ(y)
)
, x ∈ X.

Then Φ̃ : X → CKΦ is a saturated index map; we call it the saturated part of Φ. It is clear

that Φ̃(x) ⊂ Φ(x), and Φ̃ behaves the same as Φ at infinity.

Recall that when (X,E) is hyperbolic, the hyperbolic boundary ∂X is defined as the

quotient set Rv/ ∼ (Definition 2.4). In this case, if an index map Φ on (X,Ev) satisfies

κΦ
0 (x) = κΦ

0 (y) ⇔ x ∼ y, (5.1)

then it induces an injection κΦ : ∂X →M via the quotient; we call κΦ the boundary map

of Φ. For simplicity we shall omit the superscript Φ in κΦ
0 , κ

Φ,KΦ if no confusion occurs.

Definition 5.3. An index triple (X,E,Φ) is said to be admissible if it satisfies

(i) the graph (X,E) is hyperbolic;

(ii) the boundary map κ : ∂X →M is a well-defined injection, i.e., (5.1) holds.

Remark. In Example 5.2, it is clear that the intrinsic index triple (X,E,J∂) is admissible

with κ = id∂X .

We will see in Proposition 5.5 that the κ in (ii) is actually a (topological) embedding,

i.e., a homeomorphism from ∂X to the image K. For an admissible index triple (X,E,Φ),

it is easy to check that

κ(J∂(x)) = κ0(Rv[x]) = Φ̃(x) ⊂ Φ(x), ∀ x ∈ X, (5.2)
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and the inclusion is an “=” for all x ∈ X if and only if (X,E,Φ) is saturated. If an index

map Ψ on (X,Ev) behaves the same as Φ at infinity, we know from (5.1) that the index

triple (X,E,Ψ) is also admissible.

For an integer k ≥ 1, define

Φk(x) :=
⋃
{Φ(y) : dh(x, y) ≤ k}, x ∈ X. (5.3)

Note that by (5.2), Φk(x) contains the κ-image of the k-shadow of x (see (2.7)).

Lemma 5.4. Let (X,E,Φ) be an admissible index triple. Suppose (X,E) is expansive.

Then for an integer k ≥ 1, the Φk in (5.3) is an index map that behaves the same as Φ,

hence (X,E,Φk) is also an admissible index triple.

Proof. For x ∈ X and u ∈ J1(x), using the expansive property (2.3), each vertex v with

dh(u, v) ≤ k satisfies dh(x, y) ≤ k for all y ∈ J−1(v). This shows that Φk(u) ⊂ Φk(x).

For a ray x ∈ Rv, we have

{κ0(x)} =
⋂∞

i=0
Φ(xi) ⊂

⋂∞
i=0

Φk(xi).

Let ξ ∈
⋂∞
i=0 Φk(xi). Then there is a sequence {yi}∞i=0 such that ξ ∈

⋂∞
i=0 Φ(yi) and

dh(xi, yi) ≤ k for all i ≥ 0. This {yi}∞i=0 may not be a ray; however, using the local finite-

ness of (X,Ev) and a diagonal argument, we can choose a ray z ∈ Rv and a subsequence

{yin}∞n=0 with yin ∈ J∗(zn) for all n ≥ 0. As ξ ∈ Φ(yin) ⊂ Φ(zn), we get ξ = κ0(z). Using

the expansive property (2.3) we have

dh(xn, zn) ≤ dh(xin , yin) ≤ k, ∀ n ≥ 0.

Therefore x ∼ z, and it follows from (5.1) that κ0(x) = κ0(z) = ξ. Hence the intersection⋂∞
i=0 Φk(xi) is the singleton {κ0(x)}, i.e., Φk : X → CM is an index map with κΦk

0 = κ0,

and this completes the proof.

Proposition 5.5. Let M be a Hausdorff space. For an admissible index triple (X,E,Φ)

over M , the boundary map κ : ∂X →M is a (topological) embedding.

Proof. First we assume that (X,E) is expansive. Then by Theorem 2.3, (X,E) is (m, k)-

departing for some integers m, k ≥ 1. Let C ≥ 1 be as in Proposition 2.5(ii). Suppose

ξ ∈ ∂X is the equivalence class of a ray x = [xi]
∞
i=0 ∈ Rv. For a sequence {ηn}∞n=1 in ∂X

with %a(ηn, ξ) < C−1e−an, it follows from Proposition 2.5(ii) that ηn ∈ J k∂ (xn). Using the

definition of k-shadow (2.7), (5.2) and (5.3), we have

κ(ηn) ∈ κ(J k∂ (xn)) = κ
(⋃
{J∂(y) : dh(xn, y) ≤ k}

)
⊂ Φk(xn).

By Lemma 5.4, the sequence {κ(ηn)}∞n=1 converges to κΦk
0 (x) = κ0(x) = κ(ξ). This shows

that κ : ∂X → M is continuous, hence is closed by the compactness of ∂X and the
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Hausdorff property of M . Since κ is injective by definition, it is a topological embedding,

i.e, a homeomorphism from ∂X to the image K.

For the (X,E) that is not expansive, by Proposition 3.2, Theorem 3.5, the auxiliary

graph (X, Ê) is expansive and hyperbolic, and by Corollary 3.10, the hyperbolic boundary

∂(X, Ê) = ∂(X,E) (where the identity map is a homeomorphism). Hence the embedding

κ from ∂(X, Ê) to M is also an embedding from ∂(X,E) to M .

As a consequence, for an admissible index triple (X,E,Φ), the attractor K ⊂ M is

metrizable. More precisely, the Gromov distance %a on ∂X defines a quasi-metric %̃a on

K by

%̃a(ξ, η) = %a(κ
−1(ξ), κ−1(η)), ξ, η ∈ K, (5.4)

and the induced topology equals the one inherited from M .

The following is the main conclusion of this section. We use the above considerations

to characterize all embeddings of hyperbolic boundaries by admissible index triples.

Theorem 5.6. Let (X,E) be a hyperbolic graph, and let M be a Hausdorff space. Then

a map τ : ∂X → M is an embedding if and only if (X,E, τ ◦ J∂) is an admissible index

triple over M . Moreover in this case, we have κτ◦J∂ = τ .

Proof. Let Φ := τ ◦ J∂ . For a ray x = [xi]i that belongs to an equivalence class ξ ∈ ∂X,

we have

{τ(ξ)} = τ
(⋂∞

i=0
J∂(xi)

)
⊂
⋂∞

i=0
τ(J∂(xi)) =

⋂∞
i=0

Φ(xi). (5.5)

For the necessity, as J∂(x) =
⋃
y∈J1(x) J∂(y), we have Φ(x) =

⋃
y∈J1(x) Φ(y). On the

other hand, note that τ is an injection, the inclusion in (5.5) is actually an ”=”. Hence

Φ is a saturated index map, and the boundary map κΦ is well-defined and equals τ . It

follows that (X,E,Φ) is an admissible index triple over M .

For the sufficiency, as Φ = τ◦J∂ is an index map, it follows from (5.5) that
⋂∞
i=0Φ(xi) =

{τ(ξ)} whenever x ∈ Rv belongs to ξ ∈ ∂X, hence κΦ
0 satisfies (5.1), and the boundary

map κΦ = τ . By Proposition 5.5, such τ is an embedding from ∂X to M .

For an index map Φ fixed on a vertical graph (X,Ev) (e.g. the family of cells indexed by

the symbolic spaces of a contractive IFS), if we can augment the graph by adding a set Eh
of horizontal edges on each level Xn such that the index triple (X,E,Φ) with E = Ev∪Eh
is admissible, then the attractor K and the hyperbolic boundary ∂X will be (topologically)

identified (Proposition 5.5). The following is a natural choice of augmentation which uses

the intersecting pairs in {Φ(x)}x∈Xn , n ≥ 1 [Ka,LW1].

Definition 5.7. An AI∞-triple (augmented index triple of type-∞, or intersection type)

is an index triple (X,E,Φ) in which the horizontal edge set Eh equals

E
(∞)
h :=

⋃∞
n=1

{
(x, y) ∈ Xn ×Xn \∆ : Φ(x) ∩ Φ(y) 6= ∅

}
. (5.6)

Such (X,E) is called an AI∞-graph (associated to Φ) [LW1,LW2,KLW].
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Clearly everyAI∞-graph is expansive, and it was proved in [KLW, Proposition 4.6] that

the hyperbolicity of AI∞-graph is sufficient for the admissibility of AI∞-triple. However,

AI∞-graphs are not always hyperbolic (e.g. [KLW, Example 6.1]). In Section 6, we give

more discussion of this type of triples when the underlying spaces are quasi-metric spaces.

6 AIa-triples and bi-Lipschitz embeddings

In this section, we consider some specific index triples for which the underlying space M

is equipped with a quasi-metric ρ, and explore the bi-Lipschitz property of the boundary

maps.

Let Φ be an index map on a vertical graph (X,Ev) over (M,ρ). For a ∈ (0,∞), we

say that Φ is of exponential type-(a) (under ρ) if |Φ(x)|ρ = O(e−a|x|) as |x| → ∞. As we

will see in Example 6.8, every K ∈ CM is the attractor of some index map of exponential

type-(a).

Similar to (2.8), for γ ∈ (0,∞) and fixed a > 0, we define a horizontal edge set by

E
(γ)
h (= E

(a,γ)
h ) :=

⋃∞
n=1

{
(x, y) ∈ Xn ×Xn \∆ : distρ(Φ(x),Φ(y)) ≤ γe−an

}
, (6.1)

and let E(γ) := Ev ∪ E(γ)
h . It is known that (X,E(γ)) is expansive (m, 1)-hyperbolic for

some integer m > 0 [KLW, Theorem 4.5].

Definition 6.1. For a ∈ (0,∞), we say that an index triple (X,E,Φ) is of augmented

type-(a) (AIa-triple) over (M,ρ) if it satisfies

(i) Φ is of exponential type-(a) under ρ;

(ii) there exist γ1, γ2 ∈ (0,∞) such that E
(a,γ1)
h ⊂ Eh ⊂ E

(a,γ2)
h .

In this case, we call (X,E) an AIa-graph (associated to Φ).

Remark 1. In [KLW], we called only the (X,E(γ)) defined by (6.1) an AIa-graph, which

augments (X,Ev) by explicit horizontal edges in E
(γ)
h . This is generalized to the present

definition that brings more flexible choices of Eh. By a slight abuse of notation, we still

use AIa to denote such graph (X,E). Unlike (X,E(γ)), this (X,E) is not always expansive

(unless γ2/γ1 ≤ ea). Nevertheless, by using a near-isometry in the following proposition,

we are still able to prove that (X,E) is (m, 1)-hyperbolic.

Remark 2. Suppose (X,E) is an expansive (m, 1)-hyperbolic graph. In view of Lemma

2.6, the intrinsic index triple (X,E,J∂) (see Example 5.2) is an AIa-triple. This is also a

motivation to extend the definition of AIa-graph into the present setting.

Proposition 6.2. Let (X,E,Φ) be an AIa-triple. Then

(i) the identity map idX : (X,E)→ (X,E(1)) is a near-isometry;

(ii) the AIa-graph (X,E) is (m, 1)-hyperbolic for some integer m ≥ 1.
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Proof. The assertion (i) follows from the same argument as in Lemma 3.13 (in which we

replace the Gromov distance %a by ρ, and the constants c, γ, C by 1, γ1, γ2 respectively).

For (ii), note that (X,E(1)) is hyperbolic, so is (X,E) via the near-isometry in (i). It

remains to show that the auxiliary graph (X, Ê) is (m, 1)-departing for some m ≥ 1.

We claim that E
(γ1)
h ⊂ Êh ⊂ E

(γ2)
h , thus (X, Ê) is also an AIa-graph. Indeed, since

Eh ⊂ E
(γ2)
h , and (X,E(γ2)) is expansive, by using the minimality of Ê (Proposition 3.2),

we have Êh ⊂ E
(γ2)
h . This together with E

(γ1)
h ⊂ Eh ⊂ Êh proves the claim.

The remaining proof is similar to the one in [KLW, Theorem 4.5], so we omit it.

Theorem 6.3. Suppose (X,E,Φ) is an AIa-triple over a quasi-metric space (M,ρ). Then

(X,E,Φ) is an admissible index triple, and the boundary map κ : (∂X, %a)→ (M,ρ) is a

bi-Lipschitz embedding, i.e.,

ρ(κ(ξ), κ(η)) � %a(ξ, η), ∀ ξ, η ∈ ∂X. (6.2)

Proof. The hyperbolicity of (X,E) is proved in Proposition 6.2. From the near-isometry

in Proposition 6.2(i), we see that x ∼ y in (X,E) if and only if it holds in (X,E(1)).

Hence the boundary map κ is well-defined, so that (X,E,Φ) is admissible. Also we have

∂(X,E) = ∂(X,E(1)), on which the corresponding Gromov distances %a, %
(1)
a are Lipschitz

equivalent by Proposition 3.10. Now applying [KLW, Theorem 4.5] to (X,E(1)), we see

that the boundary map κ is a bi-Lipschitz embedding from ∂(X,E(1)) to (M,ρ), so is the

one from ∂(X,E).

It is straightforward to check that to be an AIa-triple is preserved by bi-Lipschitz maps:

for an AIa-triple (X,E,Φ) over (M,ρ) and a bi-Lipschitz embedding τ : (M,ρ)→ (M ′, ρ′),

(X,E, τ ◦ Φ) is an AIa-triple over (M ′, ρ′).

Recall that a hyperbolic graph (X,E) is (m, k)-hyperbolic for some integers m, k ≥ 1

(Corollary 3.6). This means that the auxiliary graph (X, Ê) is (m, k)-departing, and the

k-fuzz (X, Êk) is (m, 1)-departing. Analogous to Theorem 5.6, we are able to characterize

all bi-Lipschitz embeddings of hyperbolic boundaries by AIa-triples.

Theorem 6.4. Let (X,E) be an (m, k)-hyperbolic graph, and let (M,ρ) be a quasi-metric

space. Then a map τ : (∂X, %a) → (M,ρ) is a bi-Lipschitz embedding if and only if

(X, Êk, τ ◦ J∂) is an AIa-triple over (M,ρ).

Proof. By Theorem 3.5, Corollary 3.9 and Proposition 3.10, (X, Êk) is a hyperbolic graph

with the boundary ∂(X, Êk) = ∂(X,E), and the corresponding Gromov distance %̂
(k)
a is

Lipschitz equivalent to %a on ∂X.

Let Φ := τ ◦J∂ . Suppose τ : (∂X, %a)→ (M,ρ) is a bi-Lipschitz embedding, then it is

also bi-Lipschitz when %a is replaced by %̂
(k)
a . It follows from Remark 2 that (X, Êk,J∂) is

an AIa-triple over (∂X, %̂
(k)
a ), and so is (X, Êk,Φ) over (M,ρ). This proves the necessity.
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For the sufficiency, note that the boundary map κΦ = τ (by Theorem 5.6). Applying

Theorem 6.3, the map τ : (∂X, %̂
(k)
a )→ (M,ρ) is a bi-Lipschitz embedding. As %a, %̂

(k)
a are

Lipschitz equivalent on ∂X, the assertion in the theorem follows.

As a consequence, we have that in some sense, every admissible index triple can be

viewed as an AIa-triple.

Corollary 6.5. Suppose (X,E,Φ) is an admissible index triple, and (X,E) is (m, k)-

hyperbolic. Then (X, Êk, Φ̃) is an AIa-triple over (K, %̃a), where Φ̃ is the saturated part

of Φ, and %̃a is the quasi-metric defined by (5.4).

Proof. We observe from (5.2) and (5.4) that Φ̃ = κ ◦ J∂ , and κ : (∂X, %a)→ (K, %̃a) is an

isometry. The conclusion follows from Theorem 6.4 with τ = κ.

It follows from Theorems 4.3 and 6.3 that two AIa-triples possess Lipschitz equivalent

attractors if and only if the AIa-graphs are near-isometric. More precisely, we have

Proposition 6.6. Suppose (X,E,Φ), (X ′, E′,Φ′) are two AIa-triples over quasi-metric

spaces (M,ρ), (M ′, ρ′) with attractors K,K ′ respectively. Then a map τ : (K, ρ)→ (K ′, ρ′)

is a Lipschitz equivalence if and only if there is a near-isometry ϕ : (X,E)→ (X,E′) that

satisfies

κΦ′ ◦ ϕ̂ = τ ◦ κΦ.

Proof. By Theorem 6.3, both κΦ : (∂X, %a) → (K, ρ) and κΦ′ : (∂X ′, %′a) → (K ′, ρ′) are

Lipschitz equivalences.

For the sufficiency, it follows from Theorem 4.1 that the map ϕ̂ : (∂X, %a)→ (∂X ′, %′a)

induced by the near-isometry ϕ is a Lipschitz equivalence, and so is τ = κΦ′ ◦ ϕ̂ ◦ (κΦ)−1 :

(K, ρ)→ (K ′, ρ′) by composition.

(∂X, %a)
κΦ

−→ (K, ρ)

ϕ̂

y τ

y
(∂X ′, %′a)

κΦ′

−→ (K ′, ρ′)

To prove the necessity, note that τ ′ := (κΦ′)−1 ◦ τ ◦ κΦ : (∂X, %a) → (∂X ′, %′a) is a

Lipschitz equivalence by composition. By applying Theorem 4.3 to this τ ′, we obtain the

desired near-isometry ϕ : (X,E)→ (X ′, E′).

Now we turn to revisit the AI∞-triples (X,E,Φ) (Definition 5.7) over a quasi-metric

space (M,ρ) (in which (X,E) may not be hyperbolic). Compared with AIa-triples, it is

clear that E
(∞)
h ⊂ E(a,γ)

h for all a, γ > 0. Consequently if the index map Φ is of exponential

type-(a) and the associated AI∞-graph is hyperbolic, then the boundary map κ is a (one-

sided) Lipschitz embedding [KLW, Corollary 4.7], but may not be bi-Lipschitz (e.g. [KLW,

Example 6.2]). Particularly for saturated Φ, we have the following characterization of the

(m, k)-hyperbolicity of AI∞-graph together with the bi-Lipschitzness of κ.
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Theorem 6.7. Suppose (X,E,Φ) is a saturated AI∞-triple over a quasi-metric (M,ρ).

Then for a ∈ (0,∞) and an integer k ≥ 1, the following assertions are equivalent.

(i) The AI∞-graph (X,E) is (m, k)-hyperbolic for some m ≥ 1, and the boundary

map κ : (∂X, %a)→ (M,ρ) is a bi-Lipschitz embedding;

(ii) Φ is of exponential type-(a) under ρ, and there exists γ > 0 such that (X,E)

satisfies for x, y ∈ X,

|x| = |y|, and distρ(Φ(x),Φ(y)) ≤ γe−a|x| ⇒ dh(x, y) ≤ k; (6.3)

(iii) (X,Ek,Φ) is an AIa-triple over (M,ρ).

Proof. (i) ⇔ (ii) has been proved in [KLW, Theorem 4.8].

(ii) ⇒ (iii): It suffices to show that E
(γ)
h ⊂ Ekh ⊂ E

(γ2)
h for some γ2 ≥ γ. The first

inclusion is straightforward by (6.3). For the second inclusion, let δ0 := supz∈X e
a|z||Φ(z)|,

which is finite as Φ is of exponential type-(a). For (x, y) ∈ Ekh, there is a horizontal path

[x = x0, x1, · · · , x`−1, x` = y] in (X,E) with ` ≤ k. Using the quasi-triangle inequality,

dist(Φ(x),Φ(y)) ≤ C`−2
ρ

∑`−1

j=1
|Φ(xj)| ≤ Ck−2

ρ (k − 1)δ0e
−a|x|.

Hence (x, y) ∈ E(a,γ2)
h with γ2 := max{Ck−2

ρ (k − 1)δ0, γ}.
(iii)⇒ (i): By Proposition 6.2(ii), the k-fuzz (X,Ek) is (m, 1)-hyperbolic for some m ≥

1. This implies that (X,E) is (m, k)-hyperbolic. Moreover, we have ∂(X,E) = ∂(X,Ek)

on which two Gromov distances %a and %
(k)
a are Lipschitz equivalent (Proposition 3.10). It

follows from Theorem 6.3 that κ : (∂(X,Ek), %
(k)
a )→ (M,ρ) is a bi-Lipschitz embedding,

and so is the one from (∂(X,E), %a). This completes the proof.

We conclude this section with two statements on the existence of AIa-triples. The first

one is under a given attractor, for which we provide an example posted in the beginning of

the section. The construction arises from the dyadic cubes in spaces of homogeneous type

introduced by Christ [Ch] (see also Example 7.1), where the following concept is needed:

for F ⊂ M and r > 0, a discrete subset Ξ ⊂ F is called an r-net on F if ρ(ξ, η) ≥ r

whenever ξ, η ∈ Ξ are distinct, and F ⊂
⋃
ξ∈ΞBρ(ξ, r). By Zorn’s lemma, one can easily

show that such Ξ always exists. Clearly, any r-net on F is a finite set provided that (F, ρ)

is compact.

We need to use the following result proved by Maćıas and Segovia [MS] (see also [He,

Proposition 14.5]): for a quasi-metric space (M,ρ), there exist ε > 0 and a metric θ on

M such that θ(ξ, η) � ρ(ξ, η)ε for all ξ, η ∈M .

Example 6.8. (The existence of AIa-triples under a given attractor) Let (M,ρ)

be a quasi-metric space. For arbitrary K ∈ CM and a ∈ (0,∞), there exists an index map

Φ of exponential type-(a) with attractor KΦ = K. Furthermore, the associated AIa-graph

(or AI∞-graph) has bounded degree provided that (K, ρ) is doubling.
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Suppose K ∈ CM . Without loss of generality, we assume that |K|ρ = 1. Fix a, c0 ∈
(0,∞). For n ≥ 0, let Ξn be an e−an-net on (K, ρ), and let Xn = Ξn×{n} (by convention

X0 = {ϑ}). Let X =
⋃∞
n=0Xn, and define ι : X → K to be the natural projection of each

Xn onto Ξn. Then by the definition of e−an-net,

K ⊂
⋃

z∈Xn
Bρ(ι(z), e

−an) and ρ(ι(x), ι(y)) ≥ e−an, x 6= y ∈ Xn. (6.4)

We choose the vertical edge set Ev on X with root ϑ to be a subset of⋃∞
n=0
{(x, y), (y, x) : x ∈ Xn, y ∈ Xn+1, ρ(ι(x), ι(y)) < e−an} (6.5)

such that J1(x) 6= ∅ for all x ∈ X. Define

Φo(x) =
⋃

z∈J∗(x)
Bρ(ι(z), c0e

−a|z|), and Φ(x) = (Φo(x))−, x ∈ X. (6.6)

We claim that Φ is an index map on (X,Ev) of exponential type-(a).

Clearly, Φ(y) ⊂ Φ(x) for all y ∈ J1(x). We show that |Φ(x)|ρ = O(e−a|x|). From the

above, we have a metric θ on K satisfying C−1ρ(·, ·)ε ≤ θ(·, ·) ≤ Cρ(·, ·)ε for some ε > 0

and C ≥ 1. Let x ∈ Xn and ζ ∈ Φo(x). By (6.6), there is a ray x = [xi]
∞
i=0 ∈ Rv such

that xn = x and ζ ∈ Bρ(ι(xn+m), c0e
−a(n+m)). It follows from (6.5) that

C−1ρ(ι(x), ζ)ε ≤ θ(ι(x), ζ) ≤
∑m

i=1
θ(ι(xn+i−1), ι(xn+i)) + θ(ι(xn+m), ζ)

<
∑m

i=1
Ce−aε(n+i−1) + Ccε0e

−aε(n+m) <
C(1 + cε0)

1− e−aε
e−anε,

that is, ρ(ι(x), ζ) <
(
C2(1+cε0)
1−e−aε

)1/ε
e−an =: C1e

−an. Hence Φ(x) is covered by the closure

of the ball Bρ(ι(x), C1e
−an), and this proves the claim.

Moreover, the attractor of Φ equals K. Indeed, for a ray y ∈ Rv, we have κΦ
0 (y) ∈

Φ(yn) ⊂ Bρ(ι(yn), C1e
−an)− for all n ≥ 0, thus the sequence {ι(yn)}∞n=0 converges to

κΦ
0 (y). By the compactness of K, the limit κΦ

0 (y) belongs to K, and hence KΦ =

κΦ
0 (Rv) ⊂ K. On the other hand, for ξ ∈ K and i ≥ 0, by (6.4) there exists zi ∈ Xi

such that ξ ∈ Bρ(ι(zi), e−ai). This {zi}∞i=0 may not be a ray; using the local finiteness of

(X,Ev) (by the compactness of K) and a diagonal argument, we can choose a ray w ∈ Rv
and a subsequence {zin}∞n=0 such that zin ∈ J∗(wn) for all n ≥ 0. Let η := κΦ

0 (w). Using

the quasi-triangle inequality, we have

ρ(ξ, η) ≤ Cρ
(
ρ(ξ,Φ(wn)) + |Φ(wn)|ρ

)
≤ Cρ

(
ρ(ξ, ι(zin)) + |Φ(wn)|ρ

)
≤ Cρ(1 + δ0)e−an,

where δ0 := supz∈X e
a|z||Φ(z)|ρ is finite as Φ is of exponential type-(a). Taking n → ∞,

ξ = η follows. Therefore, KΦ = K.

If (K, ρ) is doubling, then Φ satisfies the separation condition (Sa) in [KLW, Definition

5.1]. In this case, both the AIa- and AI∞-triples are admissible, and the corresponding

graphs are of bounded degree (by Theorems 6.3 and [KLW, Theorems 5.4, 5.5]). �
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Another issue is on the existence of AIa-triples over a Euclidean space. We say that

an index map Φ is Euclidean if the underlying space M = Rn for some n ≥ 1. In metric

geometry, a related question is to characterize the metric spaces that can be bi-Lipschitz

embedded into some Euclidean space. An elegant and well-known result for this is the

Assouad’s theorem [A] (see also [He, Theorem 12.2]), which states that for any doubling

metric space (M,ρ) and ε ∈ (0, 1), there is a bi-Lipschitz embedding τ from (M,ρ(·, ·)ε)
to some Rn. From this we conclude that

Proposition 6.9. Let (X,E) be an (m, k)-hyperbolic graph with bounded degree. Then

there exists a set of Euclidean index maps {Φ(a)}a∈(0,a0) with some a0 > 0 such that each

(X, Êk,Φ(a)) is an AIa-triple.

Proof. As (X,E) is of bounded degree, it follows from Theorem 3.11 that the hyperbolic

boundary (∂X, %a) is doubling. Note that %a(·, ·)b/a = %b(·, ·) for a, b > 0. Using the result

by Maćıas and Segovia [MS], there exists a0 > 0 such that %a0 is Lipschitz equivalent to

some metric θ on ∂X, and the metric space (∂X, θ) is also doubling.

Applying the Assouad’s theorem [A] to this (∂X, θ), we have a bi-Lipschitz embedding

τε : (∂X, θ(·, ·)ε)→ Rn for each ε ∈ (0, 1) (here n depends on ε). Let Φ(a) := τε ◦ J∂ with

a = a0ε. By Theorem 6.4, the statement follows.

7 On spaces of homogeneous type

Let µ be a nonnegative measure on a quasi-metric space (M,ρ) that is regular Borel with

respect to the canonical topology Tρ. We say that µ is volume doubling (VD) if there

exists C > 0 such that for any ξ ∈M and r > 0,

0 < µ(Bρ(ξ, 2r)) ≤ Cµ(Bρ(ξ, r)) <∞.

It was observed by Coifman and Weiss [CW] that the existence of (VD)-measure µ implies

the doubling property of (M,ρ). Conversely, Luukkainen and Saksman [LuS] proved that

every complete doubling metric space carries a (VD)-measure; in view of the result by

Maćıas and Segovia [MS], the same holds true for a complete doubling quasi-metric space.

In this section, we assume that (M,ρ, µ) is a space of homogeneous type [CW], i.e.,

a quasi-metric space (M,ρ) equipped with a volume doubling (VD) measure µ. In [Ch],

Christ showed that such space admits a partition system (dyadic cubes) that can be

represented by a tree. In the following we give a brief outline of his construction, slightly

adapted to compact sets. Much of the basic setup is in Example 6.8.

Example 7.1. (Christ’s dyadic cubes) Let (M,ρ, µ) be a space of homogeneous type.

We fix a nonempty compact set K ⊂M , and two constants a, c0 ∈ (0,∞) such that

C3
ρe
−a

1− Cρe−a
+ C2

ρc0 ≤
1

2
. (7.1)
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where Cρ ≥ 1 is the constant in the quasi-triangle inequality.

Define the vertex set X and the projection ι : X → K as in Example 6.8. For n ≥ 0

and x ∈ Xn+1, we choose x− ∈ Xn such that ι(x−) is the nearest point from ι(x) among all

points in Ξn = ι(Xn) (if there are two or more nearest points, we select an arbitrary one

from them). Let Ev = {(x, x−), (x−, x) : x ∈ X, x 6= ϑ}. We claim that all assumptions

in Example 6.8 are fulfilled by (X,Ev).

Indeed, from the choice of x−, we see that ρ(ι(x), ι(x−)) ≤ e−an, thus Ev is a subset of

the set in (6.5). Clearly (X,Ev) is a tree with root ϑ. It remains to show that J1(x) 6= ∅
for any x ∈ Xn. For this, as Ξn+1 is an e−a(n+1)-net on K, the point ι(x) must lie in some

ball Bρ(ι(y), e−a(n+1)) with y ∈ Xn+1. For this y and any x′ ∈ Xn\{x}, the quasi-triangle

inequality implies that

ρ(ι(x′), ι(y)) ≥ C−1
ρ ρ(ι(x′), ι(x))− ρ(ι(x), ι(y))

> C−1
ρ e−an − e−a(n+1) = (C−1

ρ ea − 1)e−a(n+1)

> 2e−a(n+1) > ρ(ι(x), ι(y))

(the third inequality holds since (C−1
ρ ea − 1)−1 =

Cρe−a

1−Cρe−a ≤
C3
ρe
−a

1−Cρe−a <
1
2 by (7.1)). This

means that x = y−, and complete the proof for J1(x) 6= ∅ for any x ∈ Xn.

We define Φo and Φ as in (6.6), and call {Φ(x)}x∈X a set of (Christ’s) dyadic cubes.

The assumption (7.1) implies that Φo(x) and Φo(y) are disjoint for any distinct x, y ∈ X
with |x| = |y| [Ch, Lemma 15]. As (M,ρ) is doubling, so is the attractor (K, ρ). It follows

that both the AIa- and AI∞-triples are admissible, and the corresponding graphs are of

bounded degree.

Finally we remark that by using the Lebesgue differentiation theorem on metric spaces

with (VD)-measures, it was proved in [Ch] that µ(
⋃
x∈Xn Φo(x)) = µ(K) for all n. This

implies that the {Φ(x)}x∈X is µ-separated, i.e., µ(Φ(x)∩Φ(y)) = 0 for any distinct x, y ∈ X
with |x| = |y|; such µ-separation property was used in [KLW2] to investigate the random

walks on a class of AIa-graphs over compact spaces of homogenous type. �

In the study of fractals through the augmented trees, we initially started with a mod-

ified symbolic space X of the IFS, where each level set Xn consists of indices x that the

corresponding cells Kx are of approximately equal sizes, then added the horizonal edges

on each Xn to form the augmented tree [LW1, LW3]. In [KLW], we considered the IFS

associated with weights, and we formulated the augmented tree by regrouping the indices

such that the weights are approximately equal on each level. This works fine for the class

of post critical finite (p.c.f.) sets equipped with self-similar measures.

To extend this consideration, the family of (VD)-measures can provide a broad class of

examples. Note that for self-similar sets satisfying the open set condition, Yung [Y] gave

a necessary and sufficient condition for a self-similar measure µs to be volume doubling;

in particular, for the IFS {Sj}8j=1 of two-dimentional Sierpinski carpet, where the Sj ’s
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are arranged in the counterclockwise direction starting from one of the four corners, the

condition is that the weight s satisfies s1 = s3 = s5 = s7, s2 = s6 and s4 = s8.

Motivated by this, we consider a general counterpart on spaces of homogeneous type.

Let (X,Ev) be a rooted tree such that J1(x) 6= ∅ for all x ∈ X . Write J−1(x) = {x−}. Let

Φ be an index map on (X,Ev) over (M,ρ), and let K be the attractor. For convenience

of notions, we set Φ(x) = Kx(= Φ(x) ∩K), and denote the ball Bρ(ξ, r) ∩K simply by

Bρ(ξ, r) (that is, consider the case that M = K without loss of generality). Let ν be a

probability measure on K with supp(ν) = K and ν({ξ}) = 0 for all ξ ∈ K. Suppose

c∗(= c∗(ν)) := inf{ν(Kx)/ν(Kx−) : x ∈ X, x 6= ϑ} > 0. (7.2)

Consider a regrouping of vertices in X by setting X0(ν) := {ϑ}, and for n ≥ 1,

Xn(ν) := {x ∈ X : ν(Kx) ≤ cn∗ < ν(Kx−)}. (7.3)

Let X(ν) :=
⋃∞
n=0Xn(ν) be the new coding space. The initial rooted tree (X,Ev) natu-

rally induces a vertical edge set on X(ν) as⋃∞
n=0
{(x, y), (y, x) : x ∈ Xn(ν), y ∈ Xn+1(ν), y ∈ J∗(x) in (X,Ev)},

and we denote it by the same Ev for simplicity. Then it is easy to check that (X(ν), Ev)

is a tree with root ϑ that satisfies J1(x) 6= ∅ for all x ∈ X(ν) (note that X(ν) ⊂ X, and

each ray [xi]i in X contains a unique subsequence [xin ]n that is a ray in X(ν) by (7.3)).

Moreover, Φ restricted on X(ν) is an index map on (X(ν), Ev) over (K, ρ), and K is still

the attractor.

In the rest of this section, we will make two assumptions on Φ and (K, ρ):

(A1). The index map Φ is of exponential type-(a) and satisfies condition (Ba) for some

a ∈ (0,∞), i.e., there exist 0 < c0 < 1 and a projection ι : X → K such that

Bρ(ι(x), c0e
−an) ⊂ Kx ⊂ Bρ(ι(x), c−1

0 e−an), ∀ x ∈ Xn, n ≥ 1. (7.4)

(A2). The attractor (K, ρ) is uniformly perfect, i.e., there is a constant t ≥ 1 such that

for ξ ∈ K and r > 0,

K \Bρ(ξ, r) 6= ∅ ⇒ Bρ(ξ, r) \Bρ(ξ, r/t) 6= ∅.

Intuitively, the assumption (A2) implies that K cannot have “arbitrarily thick” empty

annulus (i.e., the ratio of two radii is bounded). It is known that the class of uniformly

perfect sets includes connected sets, self-affine sets, conformal attractors, and Julia sets

of rational maps or rational semigroups with a common Lipschitz constant [HM,MR,St1,

St2,XYS].

We consider a (VD)-measure µ on (K, ρ), and assume without loss of generality that

µ(K) = 1. Clearly supp(µ) = K. By the uniform perfectness (assumption (A2)), we see
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that there are no isolated points in K, and thus µ({ξ}) = 0 for all ξ ∈ K [KaW, Lemma

2]. Using (7.4), the quasi-triangle inequality and the volume doubling property of µ, for

any x ∈ Xn(µ) with n ≥ 1, we have

µ(Kx−) ≤ µ(Bρ(ι(x
−), c−1

0 e−a(n−1))) ≤ µ(Bρ(ι(x), 2Cρc
−1
0 e−a(n−1)))

≤ C · µ(Bρ(ι(x), c0e
−an)) ≤ Cµ(Kx).

This implies that the constant c∗ in (7.2) is positive, and hence (X(µ), Ev) is well-defined.

Consider the AI∞-triple (X(µ), E(∞),Φ) as defined in (5.6), and we have

Theorem 7.2. Suppose the index map Φ on (X,Ev) over (K, ρ) satisfies (A1) and (A2),

and µ is a (VD)-measure on (K, ρ). Then the AI∞-graph (X(µ), E(∞)) is hyperbolic, and

hence the AI∞-triple (X(µ), E(∞),Φ) is admissible.

Proof. We define a new quasi-metric qµ on K via µ by setting

qµ(ξ, η) := µ
(
Bρ(ξ, ρ(ξ, η)) ∪Bρ(η, ρ(ξ, η))

)
, ξ, η ∈ K. (7.5)

It is easy to check that qµ is a quasi-metric. By [He, Proposition 14.14] (where the uniform

perfectness is used), the identity map idK : (K, ρ)→ (K, qµ) is a quasisymmetry. As the

doubling property is a quasisymmetric invariant [He, Theorem 10.18], we know that the

quasi-metric space (K, qµ) is also doubling.

We will consider the AI∞-triple (X(µ), E(∞),Φ) over (K, qµ). Let a = | log c∗|. First,

we claim that Φ is of exponential type-(a) under qµ. Indeed, for x ∈ Xn and ξ, η ∈ Kx,

from the quasi-triangle inequality and (7.4) we have

Bρ(ξ, ρ(ξ, η)) ⊂ Bρ(ξ, 2Cρc−1
0 e−an) ⊂ Bρ(ι(x), 3C2

ρc
−1
0 e−an).

Similarly, Bρ(η, ρ(ξ, η)) ⊂ Bρ(ι(x), 3C2
ρc
−1
0 e−an). Suppose x ∈ Xm(µ). It follows that

qµ(ξ, η) ≤ 2µ(Bρ(ι(x), 3C2
ρc
−1
0 e−an))

≤ Cµ(Bρ(ι(x), c0e
−an)) ≤ Cµ(Kx) ≤ Ccm∗ = Ce−am.

This proves the claim.

On the other hand, for x ∈ Xn ∩Xm(µ) and ζ ∈ K \Bρ(ι(x), c0e
−an), we have

qµ(ι(x), ζ) ≥ µ(Bρ(ι(x), ρ(ι(x), ζ))) ≥ µ(Bρ(ι(x), c0e
−an))

≥ c1µ(Bρ(ι(x), c−1
0 e−an)) ≥ c1µ(Kx) ≥ c1c

m+1
∗ = c2e

−am,

where c2 = c1c∗. Therefore Bqµ(ι(x), c2e
−am) ⊂ Bρ(ι(x), c0e

−an) ⊂ Kx. This shows that

the index map Φ on (X(µ), Ev) satisfies the ball condition (Ba) in [KLW, Definition 5.1]

under qµ. Now by [KLW, Theorem 5.4], the AI∞-graph (X(µ), E(∞)) is hyperbolic, and

hence the AI∞-triple is admissible.
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Remark 1. We cannot replace the assumption (A1) by c∗(µ) > 0 in the above theorem.

For this, a counterexample is the binary partition on K = [0, 1]2 in [KLW, Example 6.1]:

let µ be the Lebesgue measure on K. Then c∗(µ) = 1/2. However, the index map Φ is

not of exponential type under the Euclidean metric, and it is known that the associated

AI∞-graph is not hyperbolic.

As in (5.4), via the homeomorphism κΦ : ∂(X(µ), E(∞)) → K, the Gromov distance

%a defines a new quasi-metric %̃a on K.

In the next theorem, we need to use the following result in [KLW, Proposition 5.3]:

for an index map Φ of exponential type-(a) with doubling attractor (K, ρ), condition (Sa)

is satisfied if and only if there exist a projection ι : X → K, c > 0 and ` > 0 such that

#{x ∈ Xn : ρ(ι(x), ι(y)) < ce−an} ≤ `, ∀ n ≥ 0, y ∈ Xn. (7.6)

Theorem 7.3. With the same assumptions as in Theorem 7.2, suppose there exists an

` > 0 such that

#{x ∈ Xn(µ) : µ(Kx ∩Ky) > 0} ≤ `, ∀ n ≥ 0, y ∈ Xn(µ). (7.7)

Then the AI∞-graph (X(µ), E(∞)) has bounded degree. Furthermore if Φ is saturated, then

for any a > 0, the measure µ is Ahlfors-regular with exponent (− log c∗/a) on (K, %̃a), i.e.,

µ(B%̃a(ξ, r)) � r− log c∗/a, ∀ ξ ∈ K, r ∈ (0, 1). (7.8)

Proof. We first take a = | log c∗|. In the proof of Theorem 7.2, with the quasi-metric qµ in

(7.5), we have observed that (K, qµ) is doubling, and the index map Φ on (X(µ), Ev) over

(K, qµ) is of exponential type-(a) and satisfies the condition (Ba). For x, y ∈ Xn(µ) with

qµ(ι(x), ι(y)) < ce−an (here c is the constant in the condition (Ba)), as supp(µ) = K, we

have

µ(Kx ∩Ky) ≥ µ(Bqµ(ι(x), ce−an) ∩Bqµ(ι(y), ce−an)) > 0. (7.9)

It follows from (7.7) that

#{x ∈ Xn(µ) : qµ(ι(x), ι(y)) < ce−an} ≤ `, ∀ n ≥ 0, y ∈ Xn(µ).

This shows that Φ on (X(µ), Ev) satisfies the condition in (7.6) under qµ, and hence the

separation condition (Sa) in [KLW, Definition 5.1]. As a consequence, the AI∞-graph has

bounded degree (by [KLW, Theorem 5.5]).

Now suppose Φ is saturated, and a > 0 is arbitrary. The proof of (7.8) is similar to the

one in [KLW, Proposition 6.5]. Using Theorems 7.2 and 2.3, we know that (X(µ), E(∞))

is (m, k)-hyperbolic for some integers m, k > 0. For x ∈ X(µ), set

Φk(x) :=
⋃
{Ky : dh(x, y) ≤ k in (X(µ), E(∞))}

as in (5.3). Using Proposition 2.5(ii), (5.4) and (5.2), there is a constant C0 ≥ 1 such that

B%̃a(ξ, C−1
0 e−a|x|) ⊂ κΦ(J k∂ (x)) = Φk(x) ⊂ B%̃a(ξ, C0e

−a|x|), ∀ x ∈ X(µ), ξ ∈ Kx,
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(here the “=” holds since Φ is saturated). As c
|x|+1
∗ < µ(Kx) ≤ µ(Φk(x)) ≤ ηkc

|x|
∗ where

η := supx∈X(µ) deg(x), it follows that{
µ(B%̃a(ξ, C−1

0 e−an)) ≤ ηkcn∗ ,
µ(B%̃a(ξ, C0e

−an)) ≥ cn+1
∗ ,

∀ ξ ∈ K, n ≥ 0,

and this proves (7.8).

Remark 2. Under the assumption (A1), the separation condition in (7.7) is equivalent

to the one in (7.6) (the necessity follows from the same estimate as in (7.9)), and also to

condition (Sb) (this sufficiency is straightforward). Also note that if Φ is µ-separated (i.e.,

µ(Kx ∩Ky) = 0 for all x 6= y with |x| = |y| in (X,Ev)), then (7.7) is satisfied for ` = 0.

In the study on self-similar sets, the µ-separation property is satisfied for all self-similar

measures where the IFS has the OSC.
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