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Abstract11

We consider a dynamic duopoly game where firms choose both the timing and size of their investments.12

The default is that firms have a single option to invest, which is generally seen as an unrealistic feature of13

the real options literature. This paper relaxes this assumption by giving Firm A multiple options to invest14

while Firm B just keeps one option. In this asymmetric setting we get the surprising result that Firm B15

invests first. If Firm A would invest first it invests inefficiently early as a result of the preemption game.16

Moreover, Firms A and B keep on being involved in preemption games for the subsequent investments17

moments until B undertakes the investment. The intuition why Firm B invests first in equilibrium is18

that then only one preemption game is played. Afterwards, Firm A is free to choose its unrestricted19

optimal investment moments. This implies that Firm A’s first investment takes place relatively late,20

which gives Firm B a long monopoly period, generating Firm B’s high incentive to invest first.21
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1 Introduction24

Firms operating in an uncertain economic environment can build up capacity at once or by undertaking25

several investments over time. The operational flexibility of multiple investments has advantages. On the26

one hand, more could be learned about the demand evolution and the firm adjusts its sequential investments27

with updated anticipation of future demand. On the other hand, the incumbent firm also preempts its28

potential rivals entering the market (see e.g. Masson and Shaanan (1986), Swinney et al. (2011), and29

Huberts et al. (2019)). Most of the literature about competitive capacity expansion under uncertainty is30
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under a static framework, and distinguishes the stages before and after the uncertainty is resolved (see e.g.31

Maggi (1996)).32

More recent contributions consider the competitive capacity accumulation also in a dynamic setting.33

By assuming symmetric firms and endogenous investment orders, Boyer et al. (2012) investigate duopoly34

firms with multiple investments and find a preemption pattern in Markov Perfect Equilibrium (MPE), i.e.,35

firms invest at different times but have equal values. However, Boyer et al. (2012) consider incremental36

investments, whereas we consider lumpy investments. In that light, Huberts et al. (2019) analyze a scenario37

where a market incumbent and a potential entrant are the players. They show that the incumbent invests38

a small amount to preempt the potential entrant and prolong its monopoly period. Their model is related39

to ours in the sense that the framework is asymmetric. However, where in our model one firm has more40

investment options than the other, in Huberts et al. (2019) one of the firms is an active producer from the41

start and the other one is a potential entrant. These studies build on Fudenberg and Tirole (1985) who42

establish the rent equalization mechanism for preemption games.43

The contribution of this research to the literature is to address, the impact of multiple investment options44

on the endogenous investment order. We study the preemption game between two firms: one firm has45

multiple investment options and the other firm has only one option. Both firms choose their investment46

timing and size for every investment in a market with uncertain future demand. An intuitive equilibrium47

outcome would be, given the equilibrium in the incumbent-entrant game by Huberts et al. (2019) and due48

to the attractiveness of monopoly profits, that the multi-option firm invests first in MPE and prolongs its49

monopoly privilege by preempting the one-option firm. However, this paper shows that, on the contrary, the50

one-option firm wins the preemption game and invests first. The intuition is as follows. If the one-option firm51

is not the first investor, the firms will also compete to be the first in subsequent investment races, which will52

continue as long as the one-option firm has not undertaken its investment. The implication is that multiple53

preemption games are played, and investments resulting from such games occur inefficiently early with54

correspondingly small capacity expansions. Alternatively, if the one-option firm invests first, afterwards the55

multi-option firm is able to choose its unrestricted optimal investment times and corresponding investment56

sizes. This explains why the multi-option firm’s incentive to be the first investor is not so high, implying57

that the one-option firm can win the race. Moreover, since the second investment then is not the result of58

a preemption game, after its investment the one-option firm enjoys monopoly profits for a long time, which59

makes it especially attractive for this firm to be the first investor.60

The structure of this paper is as follows. Section 2 builds up the theoretical model, whereas Section 361

determines the preemption equilibrium for the scenario where one firm has one investment option and the62

other two or more investment options. Section 4 concludes.63

2 Model64

By allowing one of the firms to undertake multiple investments, this paper extends the recent stream of65

papers that studies oligopoly games from a real options perspective where both investment timing and66

size are chosen. Our set-up is close to Huisman and Kort (2015) and Huberts et al. (2019). Since the67

exact specification of strategy profiles is elaborately described in previous literature and is identical to the68

profiles considered in our set-up, we refer to the extensive literature for in-detail description of profiles and69

the technical description of equilibrium strategies in dynamic games.1 In this section, we will outline the70

fundamentals of our model, necessary to build our set-up.71

1Most notably Huberts et al. (2019) give a full specification of the profiles for the set-up very similar to ours, based on Riedel
and Steg (2017), Thijssen et al. (2012), and Fudenberg and Tirole (1985).
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2.1 Set-up Fundamentals72

Following Huisman and Kort (2015), consider a framework with two risk-neutral, rational firms i = A,B,73

that can undertake lump-sum irreversible investments to enter a market. At the outset both firms are74

entrants and have therefore yet to build any capacity. Time is assumed to be continuous and the considered75

horizon is infinite. Both firms aim to maximize their payoff through investment at discount rate r > 0.76

The inverse demand at time t ≥ 0 is given by77

p (t) = x(t) (1− ηQ (t)) ,

where p(t) is the market-clearing price, Q (t) is the market output and η > 0 is a constant elasticity parameter.78

Firms are assumed to operate using full capacity. x = (x(t))t≥0 is an exogenous stochastic process and follows79

a geometric Brownian motion,80

dx (t) = µx(t)dt+ σx(t)dw (t) ,

in which µ is the drift rate, σ > 0 is the uncertainty parameter, and dw (t) is the increment of a Wiener81

process. The usual assumption is made that r > µ to ensure investments to happen in finite time. Through-82

out, we also assume that x(0) is sufficiently low such that it is not optimal for firms to invest at t = 0. The83

corresponding natural filtration is denoted by F = (Fxt )t≥0 and we denote byM the set of F-stopping times.84

Denote the conditional expectation operator by EX , i.e., EX{·} = E{·|Fxt }, t ≥ 0. Each firm can build up85

or expand its current production in the market by investing in productive capacity. The new characteristic86

of our model is that, although otherwise identical, the firms differ in one aspect: Firm A has a series of87

options to build capacity, whereas Firm B has only one option. The unit cost of capacity investment is δ,88

so that a firm investing with capacity q incurs sunk investment costs δq. The firms engage in a game where89

the investment order is endogenously determined.90

2.2 Pay-off Functions91

Assume that Firm i ∈ {A,B} has Ni (compound) options to undertake investment. Specifically we assume92

that NB = 1 and NA ∈ N, 2 ≤ NA < ∞. The order of investment is determined endogenously and93

therefore NA + 1 investment orders are possible. Figure 1 visualizes all potential outcomes of the game94

through the presentation of the sequential-move game in extensive form. As such we will be considering95

Markovian strategies. At the outset both firms can exercise their investment option(s), which facilitates the96

preemptive behavior of the firms so that investment is undertaken applying the rent equalization mechanism97

à la Fudenberg and Tirole (1985). For subsequent investments the same principle applies as long as both98
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Figure 1: Stylized game.
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firms hold an option. From the moment Firm B has chosen to exercise its option, this no longer applies and99

successive future investments are undertaken by Firm A only. Firm A’s exercise strategy then involves the100

maximization of an American style perpetual (real) option (see, e.g, Dixit and Pindyck (1994)).101

In order to solve the sequential game illustrated in Figure 1, at each node it is not only decided which of102

the two firms undertakes investment but also the investment timing and size are decided. Thereto, let {τ, ξ}103

denote a set of controls, where τ denotes the moment of investment and ξ the amount by which the firm104

installs (additional) capacity. To formulate the value functions that correspond to each node and to each105

subgame, as illustrated in Figure 1, we distinguish between segments of the tree where Firm B has previously106

exercised its investment option and segments of the tree where B has not yet undertaken investment. In107

what follows, the optimization problems are subject to {τ, ξ} ∈ M×R+. Figure 2 features an example with108

NA = 3 to illustrate the following 3 cases.109

Case I: B has invested Assume Firm A has invested k − 1 times, 1 ≤ k ≤ NA, and has built up a

capacity of size q0 ≥ 0 and assume Firm B has invested 1 time with capacity qB = ξB . In this case, Firm B

has no options left and the next investment is undertaken by Firm A. This means that Firm A can choose

its investment strategy without being disturbed by potential actions of Firm B. By the property of dynamic

programming, we reset time at the start of the subgame to t = 0 and let X = x(0). Then Firm A’s problem

is to decide the stochastic investment timing τk and its corresponding size ξAk to maximize the expected

value for its k-th investment, which is defined as follows. If k = NA, then

V ANA
(X, q0, qB) = sup

τNA
,ξANA

EX
{∫ τNA

0

e−rtx(t)(1− η(qB + q0))q0dt

+

∫ ∞
τNA

e−rtx(t)(1− η(qB + q0 + ξANA
))(q0 + ξANA

)dt− δξANA

}
.

If k < NA, then110

V Ak (X, q0, qB) = sup
τk,ξAk

EX
{∫ τk

0

e−rtx(t)(1− η(qB + q0))q0dt+ e−rτk(V Ak+1(x(τk), q0 + ξAk , qB)− δξAk )

}
.

To formally write down Firm B’s value for the node under consideration, let QA(t, q0) denote Firm A’s111

total output at each time t, where at time t = 0, QA(t, q0) = q0. Then,112

QA(t, q0) = q0 +

NA∑
m=k

ξAm1{τm≤t},

where 1{ν} = 1 if ν is true and 0 otherwise, and where ξAm and τm follow from Firm A’s m-th investment113

problem, m ≥ k, so that114

V Bk (X, q0, qB) = EX
{∫ ∞

0

e−rtx(t)(1− η(qB +QA(t, q0)))qBdt

}
is Firm B’s value when Firm A has already undertaken k − 1 investments and is now facing the option of115

the k-th investment.116

Case II: B has not invested Assume Firm A has already installed capacity k − 1 times, k < NA, and117

has built up a capacity of size q0 ≥ 0 and assume Firm B has not invested yet. For this part of the tree, the118
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Figure 2: Example, with NA = 3, labeling all subgames.

preemption mechanism comes in play with rent equalization. Thereto, we denote the value functions for the119

leader and follower roles by Lik and F ik, i = A,B, respectively (see Fudenberg and Tirole (1985)). Denote120

the subgame-perfect equilibrium timing that follows from the principle of rent equalization for preemption121

games by τPk . If, in equilibrium, Firm A is the investment leader, then its value at this stage of the game is122

given by123

V P,Ak (X, q0) = EX

{∫ τP
k

0

e−rtx(t)(1− ηq0)q0dt+ e−rτ
P
k LAk (x(τPk ), q0)

}
.

The value for Firm B as follower in this scenario is given by V P,Bk (X, q0) = EX
{
e−rτ

P
k FBk (x(τPk ), q0)

}
. If,124

in equilibrium, Firm A takes the follower role, then the value for Firm A is given by125

V P,Ak (X, q0) = EX

{∫ τP
k

0

e−rtx(t)(1− ηq0)q0dt+ e−rτ
P
k FAk (x(τPk ), q0)

}

and Firm B’s value can be found analogously.126

For the scenario where Firm B assumes the leader role, if it installs ξB ≥ 0 all subsequent investments

are made by Firm A. The optimal timings of those investments are determined as described in Case I and

thus the stopping time of the next investment by Firm A is known and is equal to τk(ξB) for a given ξB .

Then the value function of Firm B in the leader role for investing at the start of the subgame is given by

LBk (X, q0) = sup
ξB

EX

{∫ τk(ξ
B)

0

e−rtx(t)(1− η(q0 + ξB))ξBdt− δξB + e−rτk(ξ
B)V Bk (x(τk(ξB)), q0, ξ

B)

}
,

where V Bk is defined in Case I. The value of ξB also appears in the value of Firm A in the follower role,

FAk (X, q0) = EX

{∫ τk(ξ
B∗

(X,q0))

0

e−rtx(t)(1− η(q0 + ξB
∗
(X, q0)))q0dt

+ e−rτk(ξ
B∗

(X,q0))V Ak (x(τk(ξB
∗
(X, q0))), q0, ξ

B∗(X, q0))

}
.

The alternative case where Firm A assumes the leader role and B the follower role, leads in the next stage to127

a new preemption game. Therefore, this stage lasts until τPk+1, which denotes the timing of the subsequent128

investment, so that LAk (X, q0) = supξAk V
P,A
k+1 (X, q0 + ξAk ) and FBk (X, q0) = V P,Bk+1 (X, q0 + ξAk ).129
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Case III: A has invested NA times The only case remaining is the scenario where A has exercised all130

its options and B still has its option left unexercised. In this scenario, Firm B’s optimization problem is131

analogous to Firm A’s optimization problem as described in Case I, k = NA and Firm B has not invested.132

2.2.1 Stopping Times133

The (stochastic) optimal investment time is related to the level of the underlying demand shock process

(x(t))t. As customarily done for the investment strategies under consideration, the optimal investment time

can be characterized as the first hitting time of a threshold. For the preemption games (Case II) these

thresholds are determined as the maximum of the two preemption points, where the preemption point for

each firm is such that its value as leader equals its value as follower, i.e.

Xi
P = inf{X > 0 | Li(X, q0) ≥ F i(X, q0)}

for any k and for a given q0 ≥ 0. Investment is then undertaken by the firm with the smallest preemption point134

and will do so at the time corresponding to the maximum of the two preemption points (see also Pawlina and135

Kort (2006)). For Cases I and III, the threshold is derived using sufficient conditions determining a trigger136

X∗ such that for X < X∗ investment is delayed and for X ≥ X∗ investment is undertaken immediately.2137

Throughout, we will assume that x(0) is sufficiently low, i.e., it is below any threshold.138

3 Equilibrium Analysis139

The following two sections describe the outcome when NA = 2 and NA > 2. Key in these results will be that140

the preemption mechanism accelerates investment such that the investment is undertaken at a relatively low141

level of X, which in turn implies a low output price. Therefore, the firm invests in a relatively low capacity142

size. The firms only engage in a preemption run if both have options left unexercised.143

3.1 The Case of NA = 2144

In the scenario where NA = 2, only two preemption games need to be studied, as illustrated by Figure 3.145

For the subgame where the first investment was undertaken by A, we refer to Huberts et al. (2019). They146

found that in equilibrium Firm A preempts Firm B, and thus the outcome of A-B-A as a subgame-perfect147

equilibrium investment order is ruled out. Therefore, in the subgame-perfect equilibrium for NA = 2,148

either Firm B will undertake the first investment and become a monopolist temporarily, or Firm B’s single-149

investment option is the last option to be exercised.150

The intuition behind Huberts et al.’s result that Firm A preempts Firm B in the subgame is the following.151

An investment by Firm A or B will reduce the output price and thus Firm A’s revenue of its already installed152

capacity. What Firm A will do therefore is to delay Firm B’s investment by investing a small amount. This153

will not reduce the revenue associated with Firm A’s first investment too much. In addition it will delay154

the investment of Firm B so that Firm A will be a monopolist for a longer time. Moreover, the advantage155

for Firm B to invest last is that it is not bothered by a further action of Firm A. This implies that Firm B156

invests at its unrestricted optimal investment time and therefore can choose a considerable capacity size.157

The following example illustrates what happens for the first preemption game, i.e. for the stage where158

both firms are entrants. For the investment in the first stage neither firm suffers from cannibalization, which159

2For proofs showing optimality and uniqueness, see McDonald and Siegel (1986), Smets (1991), Dixit and Pindyck (1994),
and Huberts et al. (2019). For more technical details see, e.g., Peskir and Shiryaev (2006).
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Figure 3: Equilibrium in the subgame with NA = 2.

thus bring a different dynamic to this preemption game.3160

Example 1 As an illustrative example, we consider the same baseline parametrization as in Huberts et al.161

(2019), i.e., r=0.1, µ=0.02, η=0.1, σ=0.1, and δ = 1000. For the preemption game where no firm has162

invested yet, it holds that XA
P = 122.23 and XB

P = 118.97. This means that for X < 118.97 both firms prefer163

to wait, for 118.97 ≤ X < 122.23 Firm B prefers to be leader and Firm A prefers to wait, and for X ≥ 122.23164

both firms prefer to be the first to exercise their option. As a result, assuming X < 122.23, Firm B will165

undertake investment first when x(t) hits the preemption point of Firm A, i.e., when x(t) = 122.23, and166

sets quantity qB = 1.53. The first timeline in Figure 4 summarizes the investment thresholds and quantities167

for the Markov Perfect Equilibrium and gives Firm A’s and Firm B’s value. The second timeline shows168

the alternative case where A is assumed to undertake the first investment and the third timeline provides a169

summary of the optimal investment strategy for a scenario where 2 firms (the leader L and the follower F )170

have only 1 option each as in Huisman and Kort (2015).171

-
L-F VL = 133.6

VF = 133.6
x(t)

L

123.3
ξL = 1.59

F

180.9
ξF = 1.99

-
A-A-B VA = 154.2

VB = 106.8
x(t)

A

122.2
ξA1 = 1.12

B

190.8
ξB = 1.89

A

138.4

ξA2 = 0.90

-
B-A-A VA = 154.2

VB = 118.7
x(t)

B

122.2
ξB = 1.53

A

250.7
ξA2 = 1.44

A

159.6
ξA1 = 1.20

Figure 4: Timelines.

In the example, it is Firm B that preempts Firm A. For the subgame we saw that Firm A installs a small172

capacity level: small in order not to make the cannibalization effect too large, but large enough to delay173

investment of Firm B. For the MPE, Firm B’s preemption point is below Firm A’s preemption point so174

that Firm B undertakes the first investment.175

3Appendix A provides detailed description of solutions where the solution to the integrals are studied.
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In the alternative scenario where A exercises its option first, A will also undertake the second investment.176

This scenario has disadvantages for both firms. From Firm B’s perspective, if Firm A undertakes investment177

first, Firm B’s investment will be delayed twice. As illustrated by Figure 4, the monopoly period for Firm A178

is longer, which leads to a relatively low present value for Firm B so that B has a stronger incentive to179

undertake investment first.180

Firm B’s early investment comes at a cost of a lower capacity being installed but this is compensated181

by the early exercise. From Firm A’s perspective, a long monopoly period in A-A-B might be interesting,182

however, delaying Firm B’s entry comes at a high cost. In order to preempt Firm B twice, A would have to183

install a small capacity twice since both investments are taking place early: as a result of potential erosion of184

revenue resulting from the initial installment, in the subgame, A is forced to preempt B again and “sacrifices”185

its second option. The latter would not happen if A chooses to undertake investment secondly and thirdly.186

By comparing B-A-A and A-A-B with L-F, we gain further insight into the impact of Firm A’s extra187

investment option. The extra investment opportunity gives Firm A the flexibility to expand its production188

after the initial installment, which thus yields more value for A. Being able to expand capacity in the future189

allows the firm to initially set a lower capacity, only incorporating expected demand in the short run. This190

makes the first investment cheaper. A larger value and a smaller size prompts the firm to invest earlier, which191

is illustrated in Figure 4 by comparing F’s investment timing in L-F with A’s first investment threshold in192

B-A-A.193

0.02 0.04 0.06 0.08 0.10 0.12

105

110

115

120

125

(a) The effect of σ on preemption points.

0.02 0.04 0.06 0.08 0.10 0.12
1.0

1.5

2.0

2.5

3.0

(b) Firms’ quantities in preemption equilibrium.

Figure 5: Influence of the level of uncertainty σ on the equilibrium of the preemption game. Default parameter
values are r=0.1, µ=0.02, η=0.1, σ=0.1, δA = δB = 1000 and X0 = 100.

To identify which firm acts as leader in the first preemption game for a wider range of parameterizations,194

Figure 5 depicts the preemption points of Firm A and Firm B for different values of σ as well as the resulting195

quantities. This figure shows that the result that Firm B is the first investor stays in all these cases. We also196

conduct a robustness study where for wide ranges of parameter values of other parameters the investment197

order is determined. Table 1 summarizes our robustness analysis and illustrates that our result of having198

the investment order B-A-A holds in (at least) all the checked intervals for r, η, and the symmetric unit199

investment cost δ. The only exception is for µ when µ is close to r. The intuition is that if µ has a relatively200

high value, firms set large quantities and the period between investments is long, which erodes A’s incentive201

to invest secondly.202
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Parameter Description Baseline Tested Interval Robustness

r Discount rate 0.1 [0.05,0.3] X

µ Drift rate 0.02 [0.002,0.09] [0.002,0.077]

η Elasticity parameter 0.1 [0.01,0.15] X

δ Unit investment cost 1000 [100,1500] X

Table 1: Range of parameter values for which one-option firm preempts two-option firm. A checkmark indicates
this result is robust.

3.2 The Case of NA > 2203

Without further elaborate numerical exploration we present the result for NA = 3. In this case, the subgame204

where A has undertaken investment once, leads to the result, similar to the subgame for NA = 2, that for q0205

sufficiently different from q0 = 0, Firm A preempts Firm B’s investment. Figure 6a illustrates the order of206

the preemption points XA
P and XB

P for the case k = 2. Note that for our parametrization q0 typically exceeds207

q0 = 1. Figure 6a is in line with what was found for the subgame where A undertakes the first investment208

with NA = 2: only if Firm A has no capacity installed, or a capacity level sufficiently close to zero to make209

the cannibalization effect insignificant, Firm B will take the leader role in the preemption game. Otherwise,210

the incumbent delays Firm B’s entry. This is, consequently, exactly what we find as a MPE when both firms211

are entrants: Firm B undertakes investment first and becomes a monopolist ahead of Firm A’s entry on the212

market, as shown in Figure 6b.213

0.00 0.02 0.04 0.06 0.08 0.10 0.12
108

110

112

114

116

118

120

122

(a) Preemption points for Firm B and Firm A’s
second investment (incumbent A with capacity
q0)

0.02 0.04 0.06 0.08 0.10 0.12

95

100

105

110

115

(b) Preemption points for Firm B and Firm A

Figure 6: Three investment options for Firm A. Default parameter values are r=0.1, µ=0.02, η=0.1, σ=0.1, and
δA = δB = 1000.

Panel (b) illustrates the effect of the level of uncertainty on the preemption points and shows that the214

investment order is robust again for different values of σ. Similarly, a robustness check can be performed for215

other parameter constellations and the same conclusion is drawn: Firm B undertakes investment first.216

In a similar fashion one can analyze cases where NA ≥ 4.217

4 Conclusion218

This paper studies the preemption game between a one-option firm and a multi-option firm and concludes219

that, ceteris paribus, the one-option firm preempts the multi-option firm and is the first investor in the220

9



market. By allowing firms to invest more than once, we detect the strategic implications of having additional221

options, thus flexibility in investment. Our intuition follows that the multi-option firm does not see its222

capacity negatively affected from the preemption run and the single-option firm has the advantage of a large223

monopoly period due to the fact that the timing of the second investment in the market is not determined224

by the outcome of a preemption game. Our result extends and contrasts Huberts et al. (2019) in a scenario225

in which one firm is already an active producer and both firms have one investment option, the incumbent226

invests before the entrant.227

Future extensions of this work include the study of economies of scale and/or learning curves, differenti-228

ation of products, and firms’ potential to innovate.229
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Appendix: Preemption Analysis and Calculation254

In this appendix, we analyze the Markov Perfect Equilibria of the preemption type by illustrating the255

concept to analyze firms’ preemption points, especially for the first investment. Please note that calculations256

for the complete game and to determine whether Firm A or Firm B carries out the first investment are257

in general complex. This is because by backward induction, the input when analyzing a subgame depends258

on the result (subgame equilibrium) from the subsequent subgame analysis.4 We illustrate the complexity259

by Figure 7 with the game tree for NA = 4. All the possible game outcomes shown in the figure can be260

characterized into two groups. One group is defined as the strategies above the blue line, where B is the261

first investor, and the other group is all strategies given below the blue line, where A is the first investor. In262

order to conduct the preemption analysis for the first investment in this example, it is necessary to derive263

players’ values as leader and as follower, and the details are as follows.264

According to the backward induction mechanism, our analysis starts with the subgame SANA−1 and is to265

determine whether B preempts A’s NA-th investment, given that A has already exercised NA−1 investment266

options. Subgame SANA−1 is analogous to the model in Huberts et al. (2019), and they find that if A is267

already an incumbent in the market, Firm A would rather cannibalize than to be preempted by Firm B for268

its last investment. So the investment order A-A-A-B-A can be ruled out as an equilibrium.269

The result from analyzing subgame SANA−1, i.e., the investment order A-A-A-A-B, is then used when270

analyzing the subgame SANA−2, where Firm A is still an incumbent in the market. This analysis is also to271

decide whether Firm A prefers cannibalization over being preempted by Firm B. If A prefers cannibalization,272

then the result is the same as in the subgame SANA−1, i.e., the investment order A-A-A-A-B. If not, then273

the result in subgame SANA−2 is the investment order A-A-B-A-A. The result then enters the analysis of274

the subgame SANA−3.275

Again, the analysis in subgame SANA−3 is to determine whether Firm A as an incumbent prefers canni-276

balization to being preempted by Firm B, and the result of the subgame enters the next round of analysis.277

Preference for cannibalization leads to the same result as in subgame SANA−2, i.e., the order A-A-B-A-A278

in case it is also the result in subgame SANA−2, or A-A-A-A-B in case it is the result in subgame SANA−2.279

Preference for being preempted by Firm B leads to the result of investment order A-B-A-A-A in the analysis280

of subgame SANA−3.281

B

A A A A

A B

A A A

A B

A A

A B

A

A

BSANA−1SANA−2SANA−3

Figure 7: Example case of NA = 4.

In the end for our example of NA = 4, the result of subgame SANA−3 is used to determine whether A’s first282

4The result from analyzing a subgame is an investment order that cannot be ruled out as an equilibrium for the whole game.

11



investment is preempted by Firm B. For the implementation, it is necessary to derive explicit expressions283

for both firms’ value functions as leader and as follower. It is easy to calculate the value functions when Firm284

B takes the leader role for the first investment and Firm A takes the follower role, i.e., the investment order285

is B-A-A-A-A. However, it is complicated to specify Firm A’s value as leader and B’s as the corresponding286

follower. There are three possible scenarios (results from subgame SANA−3), i.e., the investment order A-B-287

A-A-A, A-A-B-A-A, and A-A-A-A-B. Without knowledge of specific parameter values, we cannot rule out288

any investment order as a possible equilibrium. Furthermore, the preemption analysis for the first investor289

becomes more challenging as NA increases because there will be more possible investment orders resulted290

from the subgame analysis. For the rest of the appendix, we abstract from showcasing for larger NA, but291

focus on the example case of NA = 2 in the main text. Cases with NA ≥ 3 can be analyzed and calculated292

by similar techniques.293

A Example Case of NA = 2294

When NA = 2, Huberts et al. (2019) rule out A-B-A as an equilibrium outcome for the whole game. Thus,295

we only have the investment order A-A-B as the outcome for subgame SANA−1. Note that we need to specify296

Firm A’s and B’s value functions in the investment order A-A-B and B-A-A to compute and compare their297

preemption points for the first investment. In the exogenously given investment order A-A-B, A’s second298

investment, denoted as A2, happens at Firm B’s preemption point in the subgame. Denote this preemption299

point as Xp2
B , which can be derived by comparing B’s values in the exogenous investment orders A-A-B and300

A-B-A, where Firm A is an incumbent.301

A.1 Derivation of Xp2
B302

Assume the incumbent Firm A is active with a capacity size qA1. In the investment order A-B-A, according303

to the backward induction, we need to derive the investment decisions for A2 in order to calculate the value304

function for B. Firm A’s instantaneous profit after A2 depends on the overall production capacity in the305

market and the value of the realized stochastic process x(t),306

πA(qA1, q
aba
B , x(t), qA2) = (qA1 + qA2)x(t)

(
1− η

(
qbaaB + qA1 + qA2

))
,

where qabaB and qA2 represent Firm B’s and A2’s capacity sizes. Let Xaba
A2

∗
be A2’s investment threshold

where Firm A is indifferent between carrying out A2 and waiting to invest, and denote the corresponding

investment size as qabaA2 (qA1, q
aba
B , Xaba

A2

∗
). Given X = x(0), then if X ≥ Xaba

A2

∗
, Firm A is in the stopping

region and it is optimal to carry out A2 immediately. If X < Xaba
A2

∗
, then Firm A is in the continuation

region and it is optimal to wait with the investment option for A2. Similar as Huisman and Kort (2015),

the derivation of investment decisions has two steps. First, reset t = 0 to a time point in the stopping region

and derive A2’s investment size qA2(qA1, q
aba
B , X), which is the solution of

SFabaA2 (qA1, q
aba
B , X) = max

qA2>0
EX

[∫ ∞
0

πA(qA1, q
aba
B , x(t), qA2) exp(−rt)dt− δqA2

]
= max
qA2>0

[
X

r − µ

(
1− ηqA1 − ηqbaaB − ηqA2

)(
qA1 + qA2

)
− δqA2

]
.

Thus, it holds that

qabaA2 (qA1, q
aba
B , X) =

1

2η
− 1

2
qabaB − qA1 −

δ (r − µ)

2ηX
.
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Secondly, reset t = 0 to a point in time between investments B and A2, i.e., the continuation region, and307

derive A2’s investment threshold Xaba
A2 (qA1, q

aba
B , qA2) for a given qA2. Note that Firm A’s expected value308

function in this region is given by309

CFabaA2 (qA1, q
aba
B , X) = CA2(qA1, q

aba
B )

(
X

Xaba
A2

)β
+

X

r − u
(
1− ηqabaB − ηqA1

)
qA1,

where the first term corrects for the change in A’s net present value because of the second investment option310

A2, and the second term is the expected payoff generated by the profit flow of its first investment from time311

0 and on. β is the positive root of a quadratic equation312

σ2β2

2
+

(
µ− σ2

2

)
β − r = 0.

The value matching and smooth pasting conditions at Xaba
A2 imply that313

SFabaA2 (qA1, q
aba
B , Xaba

A2 ) = CFabaA2 (qA1, q
aba
B , Xaba

A2 ),

∂SFabaA2 (qA1, q
aba
B , X)

∂X

∣∣∣
X=Xaba

A2

=
∂CFabaA2 (qA1, q

aba
B , X)

∂X

∣∣∣
X=Xaba

A2

,

which yield the threshold Xaba
A2 (qA1, q

aba
B , qA2) and the expression for CA2(qA1, q

aba
B ). Combining Xaba

A2 (·) and314

qA2(·) gives the optimal investment decisions for A2 as315

qabaA2

∗ (
qA1, q

aba
B

)
=

1− ηqabaB − 2ηqA1

(1 + β) η
,

Xaba
A2

∗ (
qA1, q

aba
B

)
=

δ (1 + β) (r − µ)

(β − 1)
(
1− 2ηqA1 − ηqabaB

) .
In this continuation region of A2, B’s leader value function is given by

LabaB (qA1, X) = max
qaba
B

{
X

r − µ

(
1− η

(
qA1 + qabaB

))
qabaB − δqabaB −

(
X

Xaba
A2

∗
(·)

)β
ηXaba

A2

∗
(·)qabaA2

∗
(·)

r − µ
qabaB

}
.

Subsituting Xaba
A2

∗ (
qA1, q

aba
B

)
and qabaA2

∗ (
qA1, q

aba
B

)
into LabaB (·) yields

LabaB (qA1, X) = max
qaba
B

{
X

r − µ

(
1− η

(
qA1 + qabaB

))
qabaB − δqabaB −

(
X(β − 1)(1− 2ηqA1 − ηqabaB )

(r − µ) δ(β + 1)

)β
δqabaB

β − 1

}
.

In the exogenous investment order A-A-B, we anayze B’s investment decision in a similar way as analyzing316

for A2 in A-B-A. Suppose that the incumbent Firm A is active in the market with a capacity size qA1 + qaabA2 ,317

where qaabA2 is the investment size for A’s second investment, denoted also as A2. Reset t = 0 to a time point318

in B’s stopping region, then Firm B’s value is319

SFaabB

(
qA1, q

aab
A2 , X

)
= max

qB

{
X

r − µ

(
1− ηqA1 − ηqaabA2 − ηqB

)
qB − δqB

}
.
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Thus, it can be derived that for a given X, Firm B’s investment size is given by320

qaabB

(
qA1, q

aab
A2 , X

)
=

1

2η
− 1

2
qA1 −

1

2
qaabA2 −

δ (r − µ)

2ηX
.

Reset t = 0 to a time point between A2 and B’s investments, then B’s value in its continuation region321

is assumed to be CFaabB (qA1, q
aab
A2 , X) = CB(qA1, q

aab
A2 )Xβ . By the value matching and smooth pasting322

conditions at the investment threshold Xaab
B we could derive Xaab

B (qA1, q
aab
A2 , qB) for a given qB and CB(·) as323

well. Combining qaabB (·) and Xaab
B (·) yields Firm B’s optimal investment decision that reads324

qaabB

∗ (
qA1, q

aab
A2

)
=

1− ηqA1 − ηqaabA2

η (1 + β)
and Xaab

B

∗ (
qA1, q

aab
A2

)
=

δ (1 + β) (r − µ)

(β − 1)
(
1− ηqA1 − ηqaabA2

) .
Thus, Firm B’s value as follower in its continuation region equals325

CFaabB (qA1, q
aab
A2 , X) =

(
X (β − 1)

(
1− ηqA1 − ηqaabA2

)
(β + 1) δ (r − µ)

)β
1− ηqA1 − ηqaabA2

η (β + 1)

δ

β − 1
.

Furthermore, analogous to the analysis for LabaB (·), the incumbent FirmA’s expected value inB’s continuation

region is equal to

LaabA2 (qA1, X) = max
qA2

{
X
(
qA1 + qA2

) (
1− η

(
qA1 + qA2

))
r − µ

− δqA2

−

(
X

Xaab
B

∗
(·)

)β
ηXaab

B

∗
(·)qaabB

∗
(·)

r − µ

(
qA1 + qA2

)}
.

Substituting Xaab
B

∗
(qA1, qA2) and qaabB

∗
(qA1, qA2) into LaabA2 (·) leads to

LaabA2 (qA1, X) = max
qA2

{
X
(
qA1 + qA2

)(
1− η (qA1 + qA2)

)
r − µ

− δqA2

−

(
X(β − 1)

(
1− η

(
qA1 + qA2

))
(r − µ) (β + 1)δ

)β
(qA1 + qA2)δ

β − 1

}
.

So the preemption point Xp2
B (qA1) can be derived by solving CFaabB (qA1, q

aab
A2 (qA1, X), X) = LabaB (qA1, X),326

with qaabA2 (qA1, X) implicitly given in LaabA2 (qA1, X).327

A.2 Preemption Analysis for the First Investment328

Denote Firm A’s first investment as A1. The preemption analysis of the first investment requires to calculate329

Firm A’s and B’s value functions as the leader and the follower in A-A-B, and as the follower and the leader330

in B-A-A, respectively.331

Investment order B-A-A: First note that for the given capacity qbaaB of B and qbaaA1 of A1, the optimal332

investment decisions of A2 in B-A-A are such that333

qbaaA2

∗ (
qbaaB , qbaaA1

)
= qabaA2

∗ (
qbaaA1 , q

baa
B

)
and Xbaa

A2

∗ (
qbaaB , qbaaA1

)
= Xaba

A2

∗ (
qbaaA1 , q

baa
B

)
.

In what follows, we derive A’s value as follower and B’s value as leader. Reset t = 0 to a point in time
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between investments A1 and A2, i.e., the stopping region of A1. Firm A’s value is assumed to be

SFbaaA1 (qbaaB , X) = max
qA1≥0

CFabaA2 (qA1, q
baa
B , X),

which further implies that the investment capacity qbaaA1 (qbaaB , X) satisfies the following implicit equation334

X
(
1− 2ηqA1 − ηqbaaB

)
r − µ

− δ − 2δ

β − 1

(
X(β − 1)

(
1− 2ηqA1 − ηqbaaB

)
(β + 1)δ(r − µ)

)β
= 0.

Reset t = 0 to a time point between B’s investment and investment A1, i.e., A1’s continuation region. Then

Firm A’s value in this region is assumed to be given by

CFbaaA1 (qbaaB , X) = CA1(qbaaB )×Xβ .

The value matching and smooth pasting conditions at A1’s investment threshold Xbaa
A1 lead to the expression335

of CA1(·) and336

Xbaa
A1

∗
(qbaaB ) =

βδ(r − µ)

(β − 1)
(
1− ηqbaaA1 (·)− ηqbaaB

) .
Substituting Xbaa

A1

∗
(qbaaB ) into qbaaA1 (·) yields A1’s optimal investment capacity size qbaaA1

∗
(qbaaB ). Therefore,

Firm B’s value equals

LbaaB (X) = max
qB

{
X (1− ηqB) qB

r − µ
− δqB −

(
X

Xbaa
A1

∗
(qB)

)β
ηqBX

baa
A1

∗
(qB)× qbaaA1

∗
(qB)

r − µ

−

(
X

Xbaa
A2

∗
(qB , qbaaA1

∗
(qB))

)β
ηqBX

baa
A2

∗
(qB , q

baa
A1

∗
(qB))× qbaaA2

∗
(qB , q

baa
A1

∗
(qB))

r − µ

}
.

Investment order A-A-B: We have calculated in Subsection A.1 Firm B’s optimal investment decision

qaabB

∗ (
qaabA1 , q

aab
A2

)
and Xaab

B

∗ (
qaabA1 , q

aab
A2

)
for a given qaabA1 and qaabA2 . The optimal investment threshold for

investment A2 is given by Xaab
A2

∗
(qaabA1 ) := Xp2

B (qaabA1 ), and the corresponding optimal capacity is qaabA2

∗
(qaabA1 ) :=

qaabA2 (qaabA1 , X
p2
B (qaabA1 )). Reset t = 0 to a point between Firm A’s first investment A1 and second investment

A2, then Firm A’s value equals

LaabA1 (X) = max
qA1

{
X (1− ηqA1) qA1

r − µ
−

(
X(β − 1)

(
1− ηqA1 − ηqaabA2

∗
(qA1)

)
δ(β + 1)(r − µ)

)β
δ
(
qA1 + qaabA2

∗
(qA1)

)
β − 1

+

(
X

Xaab
A2

∗
(qA1)

)β ((
1− 2ηqA1 − ηqaabA2

∗
(qA1)

)
Xaab
A2

∗
(qA1)

r − µ
− δ

)
qaabA2

∗
(qA1)− δqA1

}
.

Preemption results: Based on the calculation in the exogenous investment orders B-A-A and A-A-B, we337

can derive Firm A’s preemption point Xp1
A by solving LaabA1 (X) = CFbaaA1 (qbaaB (X), X) with qbaaB (X) implicitly338

given in LbaaB (X), and FirmB’s preemption pointXp1
B by solving LbaaB (X) = CFaabB (qaabA1 (X), qaabA2

∗
(qaabA1 (X)), X)339

with qaabA1 (X) implicitly given in LaabA1 (X). In case Xp1
A ≥ Xp1

B , it can be concluded that Firm B preempts340

Firm A in the first investment. Otherwise, it can be concluded the Firm A preempts Firm B.341
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