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In this paper, we address the stochastic representation problem in discrete time 
under (non-linear) g-expectation. We establish existence and uniqueness of the 
solution, as well as a characterization of the solution. As an application, we 
investigate a new approach to the optimal stopping problem under g-expectation 
and the related pricing of American options under Knightian uncertainty. Our 
results are also applied to a (non-linear) Skorokhod-type obstacle problem.
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1. Introduction

The stochastic representation problem under linear expectations was first investigated by Bank and El 
Karoui [2] (2004) for the continuous time case, and by Bank and Föllmer [3] (2003) for the discrete time 
case.

For a given real-valued optional process X = {Xt}t∈[0,T ] (which is required to have certain regular-
ity properties), the stochastic representation problem (in continuous time) aims at constructing a unique 
progressively measurable process L = {Lt}t∈[0,T ] such that the given process X can be written as:

Xt = Et[
T∫
t

f(s, sup
t≤v≤s

Lv)ds], 0 ≤ t ≤ T,

where f = f(t, l) is a given function, assumed to be continuous and strictly decreasing with respect to l
(from +∞ to −∞) and Et[·] denotes the (linear) conditional expectation with respect to the information 
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available at time t. Bank and El Karoui [2] show that there exists a unique solution L to the stochastic 
representation problem. Moreover, the solution is characterized by the following: for every stopping time 
σ < T ,

Lσ = ess inf
τ∈Tσ

lσ,τ , P -a.s., (1.1)

where Tσ is the set of all stopping times τ such that τ > σ on the set {σ < T}, P -a.s. and lσ,τ is the unique 
Fσ-measurable random variable satisfying

Eσ[Xσ −Xτ ] = Eσ[
τ∫

σ

f(t, lσ,τ )dt].

The stochastic representation results have been successfully applied to various stochastic control problems in 
mathematical finance and mathematical economics, such as optimal consumption choice with Hindy-Huang-
Kreps-type preferences (see [4], [12]), irreversible investment (see [9], [10], [19]), dynamic allocation problems 
(see [11]), or a variant of Skorokhod’s obstacle problem (see [16]). Roughly speaking, finding the optimal 
consumption plan with intertemporal substitution, the base capacity policy of the irreversible investment 
problem and the solution to a certain obstacle problem of the Skorokhod type amounts to finding the 
solution of a specific stochastic representation problem. More recently, [1] extend further the framework for 
validity and applications of the stochastic representation problem by using some fine notions and techniques 
from the general theory of processes.

Since, in the above framework, stochastic representation is considered under one probability measure P , 
it cannot be applied to address financial or economic problems involving ambiguity/Knightian uncertainty. 
Uncertainty typically leads to non-linearity of the “expectation” operators. It is well-known that the (non-
linear) g-expectation (cf. Peng [18]) is a powerful tool to study problems with ambiguity. In this paper, we are 
interested in the stochastic representation problem under g-expectation; formally, this amounts to replacing 
the classical conditional expectation Et[·] in the formulation of the problem by the conditional g-expectation 
Et[·]. It is worth pointing out that the construction of the solution to the representation theorem studied by 
Bank and El Karoui [2] heavily depends on the linearity of the classical conditional expectation which means 
that their construction method is not effective for the non-linear g-expectation case. In the current work, we 
focus on the non-linear representation problem in discrete time. In order to prove the existence, we apply 
the method of backward induction. The uniqueness is proved by using the fact that the function f is strictly 
decreasing (in the last component) and the property of strict monotonicity of the g-expectation. Unlike the 
continuous time case (cf. [2]), we do not need to establish a characterization of the solution (Lt) analogous 
to (1.1) to obtain the uniqueness. However, a non-linear analogue of this characterization still holds true in 
our framework. We provide moreover a construction of a stopping time τ∗t which is optimal, in the sense 
that Lt = lt,τ∗

t
. It is worth pointing out that the conditions on the driver g to guarantee the existence and 

uniqueness result are weaker than those made to guarantee the characterization of the solution.
The second part of this paper provides several applications of the stochastic representation problem under 

g-expectation, namely to optimal stopping, to optimal exercise of American put options under Knightian 
uncertainty, and to a variant of Skorokhod’s obstacle problem.

It is well known that the stochastic representation problem under linear conditional expectations has 
strong connections with the (classical) optimal stopping problem (cf. [3]). It provides an alternative approach 
to the celebrated Snell envelope approach to optimal stopping, with fruitful applications in pricing of 
American options. In this alternative approach, the solution L of the stochastic representation for the given 
reward (or pay-off) process X takes over the role of the Snell envelope of X. When applied to American 
options, this approach allows to find a universal process not depending on the strike price through which 
optimal exercise times can be characterized. For the non-linear case, the Snell envelope approach to optimal 
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stopping under g-expectation is well-studied (see, e.g., [8], [5], [13] for the continuous time case, or [14] for 
the discrete time case). The stochastic representation results from the first part of our paper give a new 
approach to the non-linear optimal stopping problem under g-expectations. This approach is then applied to 
derive an optimality criterion for American put options under Knightian uncertainty in terms of a universal 
process independent of the strike price k of the option. In the third application, the solution of our stochastic 
representation problem is used to solve a variant of Skorokhod’s obstacle problem. More specifically, we show 
that the increasing process η from the Skorokhod-type condition in this problem coincides with the running 
supremum of the solution L to the stochastic representation problem for the obstacle process X.

The paper is organized as follows. In Section 2, we first formulate the non-linear stochastic representation 
problem in discrete time under g-expectations and establish the existence and uniqueness result, as well as 
the characterization of the solution. In Section 3, we present the three applications: to optimal stopping, to 
the class of American put options with strike prices k > 0, and to an obstacle problem of Skorokhod type.

2. The non-linear stochastic representation problem in discrete time: formulation, existence and 
uniqueness

We place ourselves on the canonical space. Let Ω = Cd
0 ([0, ∞)) be the space of all continuous, Rd-valued 

functions on [0, ∞) starting from the origin (i.e., ω0 = 0), equipped with the distance:

d(ω1, ω2) =
∞∑

n=1

1
2n max

0≤t≤n
(|ω1

t − ω2
t | ∧ 1).

The σ-algebra is the Borel σ-algebra. Let P be the Wiener measure, under which the canonical process 
B is a d-dimensional Brownian motion. Let F = (Ft) be the filtration generated by the Brownian motion 
B. Let N ∈ N be a fixed terminal horizon. We denote by L2(FN ) the space of all FN -measurable and 
square-integrable random variables. In the sequel, the notation g : [0, N ] × Ω × Rd → R will stand for a 
driver satisfying the following standard assumptions (unless specified otherwise):

(i) {g(t, ω, z), (t, ω) ∈ [0, N ] × Ω} is progressively measurable for each z ∈ Rd and for any z ∈ Rd,

E[
N∫

0

|g(t, z)|2dt] < ∞;

(ii) There exists a constant K > 0, such that

|g(t, ω, z) − g(t, ω, z′)| ≤ K|z − z′|

holds for any (s, ω) ∈ [0, N ] × Ω and any z, z′ ∈ R;
(iii) For any (s, ω), g(s, ω, 0) = 0.

By a well-known result of Pardoux and Peng [17], for any terminal condition X ∈ L2(FN ), the Backward 
SDE

Yt = X +
N∫
t

g(s, Zs)ds−
N∫
t

ZsdBs,

has a unique adapted solution (Y, Z). The non-linear expectation operator, induced by a BSDE of the above 
form, is known as conditional g-expectation, and is defined by
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Et[X] := Yt.

Some of the main properties of the conditional g-expectation are recalled in the following proposition:

Proposition 2.1. Under the above assumptions on the driver g, the conditional g-expectation satisfies the 
following properties:

(1) (monotonicity and strict monotonicity) If X ≤ Y , then Et[X] ≤ Et[Y ].
If, in addition P (X < Y ) > 0, then Et[X] < Et[Y ];

(2) (translation invariance) If Z ∈ L2(Ft), then for all X ∈ L2(FN ), Et[X + Z] = Et[X] + Z;
(3) (tower property) For any 0 ≤ s ≤ t ≤ T , Es[Et[X]] = Es[X];
(4) (zero-one law) For an event A ∈ Ft, it holds Et[XIA + Y IAc ] = Et[X]IA + Et[Y ]IAc .
(5) (monotone convergence) For a monotone sequence {Xn}n∈N ⊂ L2(FN ) such that Xn ↑ (↓)X, where 

X ∈ L2(FN ), we have Et[Xn] ↑ (↓)Et[X];
(6) Let ξ ∈ L2(FN ) with ξ < 0. Then we have for any t ∈ [0, N ],

lim
λ↑∞

Et[λξ] = −∞.

Proof. For the convenience of the reader, we give a short proof for Property (6). Let us consider the following 
auxiliary BSDE parameterized by λ ∈ (0, ∞):

Y λ
t = λξ +

N∫
t

K|Zλ
s |ds−

N∫
t

Zλ
sdBs, (2.1)

where K > 0 is the Lipschitz constant of the driver g. By the comparison theorem for BSDEs, we have: for 
each λ > 0 and each t ∈ [0, N ], Et[λξ] ≤ Y λ

t . Indeed, by the Lipschitz property of g (property (ii)) and by 
the property g(t, z) = 0 (property (iii)), we have g(t, z) ≤ |g(t, z) − g(t, 0)| ≤ K|z|; hence, the comparison 
theorem applies. By the strict comparison theorem, we have that Y 1

t < 0, since ξ < 0.
On the other hand, by the positive homogeneity of the driver of the auxiliary BSDE (2.1), we have 

Y λ
t = λY 1

t . From the above, it follows that

Et[λξ] ≤ Y λ
t = λY 1

t ↓ −∞ as λ ↑ ∞. �

Remark 2.2. Note that Property (6) above also holds true for a standard Lipschitz driver g(t, ω, y, z) satis-
fying the additional assumption g(ω, t, 0, 0) = 0, often imposed in the literature. The proof follows the same 
lines, with the auxiliary BSDE (2.1) being replaced by

Y λ
t = λξ +

N∫
t

K(|Y λ
s | + |Zλ

s |)ds−
N∫
t

Zλ
sdBs.

Let X = {Xt}Nt=0 be a given real-valued, adapted and square-integrable process and let f : Ω ×
{0, 1, · · · , N} ×R → R be a given function satisfying the following two conditions:

(1) For each ω ∈ Ω and each t = 0, 1, · · · , N , the function f(ω, t, ·) : R → R is continuous and strictly 
decreasing from +∞ to −∞;
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(2) For any l ∈ R, the process f(·, ·, l) : Ω × {0, 1, · · · , N} → R is adapted with

E[
N∑
t=0

|f(t, l)|2] < ∞.

The non-linear stochastic representation problem in discrete time is formulated as follows:
Find an adapted process L = {Lt}t=0,1,··· ,N such that 

∑N
u=t f(u, maxt≤v≤u Lv) is square-integrable for all 

t = 0, 1, · · · , N , and such that the following equation holds:

Xt = Et[
N∑
u=t

f(u, max
t≤v≤u

Lv)], for all t = 0, 1, · · · , N. (2.2)

A process (Lt) satisfying these properties will be called a solution to the non-linear stochastic represen-
tation problem (2.2). We now state and prove the main result of this section.

Theorem 2.3 (Existence and Uniqueness). Under the Assumptions (1)-(2) on the function f and Assump-
tions (i)-(iii) on the driver g, there exists a unique solution (Lt) to the non-linear stochastic representation 
problem (2.2).

Proof. We first prove the uniqueness. Suppose that L1 and L2 are two solutions of the stochastic repre-
sentation problem (2.2). We have to show that L1

t = L2
t , for all t = 0, 1, . . . , N . We proceed by backward 

induction. It is easy to check that L1
N = L2

N = f−1(N, XN ). Let t ∈ {0, · · · , N}. Assume that for all 
k = t + 1, · · · , N , we have shown L1

k = L2
k =: Lk. Let us show that L1

t = L2
t . Set A = {L1

t < L2
t} and 

A′ = {L1
t > L2

t}. Suppose, by way of contradiction, that P (A) > 0. Since A ∈ Ft, we have, for i = 1, 2,

XtIA =IAEt[f(t, Li
t) +

N∑
k=t+1

f(k, Li
k ∨ ( max

t+1≤v≤k
Lv))]

=Et[f(t, Li
t)IA +

N∑
k=t+1

IAf(k, Li
k ∨ ( max

t+1≤v≤k
Lv))],

where we have used the zero-one law for conditional g-expectation (property (4)). On the set A, since f is 
strictly decreasing, we have f(t, L1

t ) > f(t, L2
t ) and

N∑
k=t+1

f(k, L1
k ∨ ( max

t+1≤v≤k
Lv)) ≥

N∑
k=t+1

f(k, L2
k ∨ ( max

t+1≤v≤k
Lv)).

By the strict comparison theorem for conditional g-expectations, we get that, on the set A,

Et[f(t, L1
t )IA +

N∑
k=t+1

IAf(k, L1
k ∨ ( max

t+1≤v≤k
Lv))]

>Et[f(t, L2
t )IA +

N∑
k=t+1

IAf(k, L2
k ∨ ( max

t+1≤v≤k
Lv))],

which is a contradiction. We conclude that P (A) = 0. By interchanging the roles of L1 and L2 in the above 
reasoning, we get that P (A′) = 0. Hence, the uniqueness is shown.
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We now show the existence. We proceed by backward induction. It is easy to check that LN defined by 
LN = f−1(N, XN ) is a solution to the stochastic representation problem at the terminal time N and that 
f(N, LN ) is square-integrable. Let t ∈ {0, . . . , N}. Suppose that we have shown the existence of an adapted 
process {Lk}k=t+1,··· ,N such that 

∑N
u=k f(u, maxk≤v≤u Lv) is square-integrable, for all k = t + 1, · · · , N

and such that

Xk = Ek[
N∑

u=k

f(u, max
k≤v≤u

Lv)], for all k = t + 1, · · · , N.

For k = t, we set Ht := {ξ|ξ is Ft-measurable, f̃(t, N, ξ) is square-integrable and Et[f̃(t, N, ξ)] ≤ Xt}, where

f̃(t,N, ξ) = f(t, ξ) +
N∑

u=t+1
f(u, ξ ∨ ( max

t+1≤v≤u
Lv)).

By assumption on f , for each fixed t, ω, f(t, ω, ·) is strictly decreasing from +∞ to −∞. Hence, supω f(t, ω, ·)
is decreasing and its limit is negative, that is, limn→∞ supω f(t, ω, n) < 0. Then, there exists an integer 
M > 0 (which can be chosen independent of ω due to the above argument), such that ξ̃M < 0, where 
ξ̃M := f̃(t, N, M). By Lusin’s theorem, for any n ≥ M , f̃(t, N, n)IOc

1 is continuous, where O1 is an open set 
with sufficiently small probability. For any n ≥ M , set

λn = min
ω

f̃(t,N, n)
f̃(t,N,M)

IOc
1 .

Then, we have λn ↑ ∞ as n goes to ∞ and f̃(t, N, n) = f̃(t, N, n)(IO1 + IOc
1) ≤ ξ̃n := λnξ̃MIOc

1 for any 
n ≥ M . By the comparison theorem and Proposition 2.1 (6), we have

Et[f̃(t,N, n)] ≤ Et[ξ̃n] ↓ −∞ as n ↑ ∞.

Therefore, the set Ht is non-empty. We define

Lt := ess inf
ξ∈Ht

ξ.

We will show that Lt is a solution to the representation problem at time t. For this purpose, we first show 
that the set Ht is downward directed. Let ξi ∈ Ht, for i = 1, 2. Set

ξ = ξ1IB + ξ2IBc ,

where B = {ξ1 ≤ ξ2} ∈ Ft. It is easy to check that

Et[f̃(t,N, ξ)] = Et[f̃(t,N, ξ1)]IB + Et[f̃(t,N, ξ2)]IBc ≤ Xt,

which yields that ξ ∈ Ht. Hence, the set Ht is downward directed. Therefore, there exists a decreasing 
sequence {ξn} ⊂ Ht such that Lt = limn→∞ ξn. By the monotone convergence theorem, we deduce that

Et[
N∑
u=t

f(u, max
t≤v≤u

Lv)] = Et[f̃(t,N, Lt)] = lim
n→∞

Et[f̃(t,N, ξn)] ≤ Xt,

which implies that Lt ∈ Ht. Set C = {Et[f̃(t, N, Lt)] < Xt} ∈ Ft. In order to conclude, it is sufficient to show 
that P (C) = 0. In fact, we only need to prove that for any closed set K ⊂ C, we have P (K) = 0. Without 
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loss of generality, we assume that C is a closed set. Suppose, by way of contradiction, that, P (C) = ε > 0. 
For each n ∈ N, we define

ζn = LtICc + (Lt −
1
n

)IC .

It is easy to check that ζn ↑ Lt and

Et[f̃(t,N, ζn)]IC ↓ Et[f̃(t,N, Lt)]IC < XtIC .

By Lusin’s theorem, there exist some Ft-measurable open sets {Oε
n}∞n=1 and Oε with P (Oε

n) ≤ ε
2n+2 and 

P (Oε) ≤ ε
8 , such that Et[f̃(t, N, ζn)]ICI(Oε

n)c , Et[f̃(t, N, Lt)]ICI(Oε)c and XtICI(Oε)c are continuous. Set 
O = (∪∞

n=1O
ε
n) ∪Oε. It is easy to check that P (O) ≤ 3

8ε and Et[f̃(t, N, ζn)]ICIOc , Et[f̃(t, N, Lt)]ICIOc and 
XtICIOc are continuous. Set

δ := inf
ω∈C∩Oc

(Xt(ω) − Et[f̃(t,N, Lt)](ω)) > 0.

Besides, by Dini’s theorem, there exists an M(δ) ∈ N only depends on δ (and independent on ω) such that 
for any n ≥ M(δ),

|Et[f̃(t,N, ζn)]1C∩Oc − Et[f̃(t,N, Lt)]1C∩Oc | < δ

2 .

It follows that for any n ≥ M(δ),

Et[f̃(t,N, ζn)]1C∩Oc < Et[f̃(t,N, Lt)]1C∩Oc + δ

2 ≤ XtIC∩Oc .

Now let

ζ̃n = LtICc∪O + (Lt −
1
n

)IC∩Oc = LtICc∪O + ζnIC∩Oc .

It is easy to check that for n ≥ M(δ),

Et[f̃(t,N, ζ̃n)] = Et[f̃(t,N, Lt)]ICc∪O + Et[f̃(t,N, ζn)]IC∩Oc ≤ Xt,

which implies that ζ̃n ∈ Ht. We claim that P (C ∩Oc) > 0, which leads to a contradiction with the fact that 
Lt is the essential infimum of Ht. To show that P (C ∩Oc) > 0, we notice that, if P (C ∩Oc) = 0, then

P (C ∪Oc) = P (C) + P (Oc) ≥ ε + 1 − 3
8ε > 1,

which is impossible; hence, the claim holds and this completes the proof. �

Remark 2.4. Consider a non-linear operator Et,N : L2(FN ) → L2(Ft) satisfying the following properties

(I) For any ξ, η ∈ L2(FN ) with ξ ≤ η, then we have Et,N [ξ] ≤ Et,N [η]. Furthermore, if P (ξ < η) > 0, then 
Et,N [ξ] < Et,N [η];

(II) For any {ξn} ⊂ L2(FN ) such that ξn ↑ (↓)ξ, then we have Et,N [ξn] ↑ (↓)Et,N [ξ].
Furthermore, if ξ ∈ L2(FN ) with ξ < 0, then, for any t ∈ [0, N ], limλ↑∞ Et[λξ] = −∞.

(III) For any Ft-measurable partition {An}Mn=1 and {ξn}Mn=1 ⊂ L2(FN ), we have Et,N [
∑M

n=1 ξnIAn
] =∑M Et,N [ξn]IAn

.
n=1
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By a similar analysis to that of the proof of Theorem 2.3, it can be shown the stochastic representation 
problem with Et,N [·] satisfying the above properties (I), (II), and (III), has a unique solution. This applies, 
in particular, to the following two examples:

(a) Et,N [ξ] := Eg
t,N [ξ] = Y N,ξ

t , where (Y N,ξ, ZN,ξ) is the solution of the following BSDE:

Y N,ξ
t = ξ +

N∫
t

g(s, Y N,ξ
s , ZN,ξ

s )ds−
T∫
t

ZN,ξ
s dBs.

Here, g : [0, N ] × Ω ×R ×Rd → R is a standard driver satisfying the following conditions:
(i’) For each fixed y ∈ R and z ∈ Rd, (g(t, ω, y, z))t∈[0,N ] is progressively measurable and

E[
N∫

0

|g(t, y, z)|2dt] < ∞;

(ii’) There exists a constant K > 0, such that

|g(t, ω, y, z) − g(t, ω, y′, z′)| ≤ K(|y − y′| + |z − z′|).

(iii’) For any (t, ω), g(t, ω, 0, 0) = 0.
(b) Et,N [ξ] := αtEg

t,N [ξ] + (1 − αt)E−g
t,N [ξ], where α is a given adapted process taking values in [0, 1]. In this 

case, Et,N [·] can be seen as an extension of the alpha-maxmin conditional expectation (cf., e.g., [6]).

Remark 2.5. In some applications, we need to consider the stochastic representation problem in a slightly 
different formulation, where equation (2.2) is replaced by the following equation:

Xt = Et[
N−1∑
u=t

f(u, max
t≤v≤u

Lv) + XN ].

Here, and in the sequel, we use the following convention: if s < t, for any process h, we define 
∑s

u=t h(u) = 0. 
By similar arguments to those of the proof of Theorem 2.3, we can show that there exists a unique adapted 
solution L = {Lt}t=0,1,··· ,N−1 to this problem.

We now establish a characterization of the solution L to the stochastic representation problem (2.2). To 
this purpose, we define the following sets of stopping times:

T0,N = {τ |τ is a stopping time taking values a.s. in {0, 1, · · · , N}},
Tσ = {τ ∈ T |τ > σ a.s. on {σ < N}}, where σ ∈ T0,N .

Proposition 2.6. Under the Assumptions (i)-(iii) on the driver g and (1)-(2) on the function f , the solution 
L to the stochastic representation problem (2.2) satisfies: For any stopping time σ ∈ T0,N−1,

Lσ = ess inf
τ∈Tσ

lσ,τ , a.s., (2.3)

where lσ,τ is the unique Fσ-measurable solution of the following equation

Xσ = Eσ[
τ−1∑

f(u, lσ,τ ) + Xτ ]. (2.4)

u=σ
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Proof. Preliminary Step. By modifying the proof of Theorem 2.3, we can show that there exists a unique 
solution lσ,τ to Equation (2.4). Thus, it remains to prove (2.3).

Step 1. Let σ ∈ T0,N−1 be a given stopping time and let τ ∈ Tσ. By Equation (2.2), the decreasing 
property of f , the tower property and translation invariance of g-expectation, we get

Xσ = Eσ[
τ−1∑
u=σ

f(u, sup
σ≤v≤u

Lv) + Eτ [
N∑

u=τ

f(u, sup
σ≤v≤u

Lv)]]

≤ Eσ[
τ−1∑
u=σ

f(u, Lσ) + Eτ [
N∑

u=τ

f(u, sup
τ≤v≤u

Lv)]]

= Eσ[
τ−1∑
u=σ

f(u, Lσ) + Xτ ].

By Equation (2.4), it follows that

Eσ[
τ−1∑
u=σ

f(u, lσ,τ ) + Xτ ] ≤ Eσ[
τ−1∑
u=σ

f(u, Lσ) + Xτ ].

We set A = {lσ,τ < Lσ} ∈ Fσ. We claim that P (A) = 0. Suppose, by way of contradiction, that P (A) > 0. 
By the strictly decreasing property of f , we have that

Eσ[
τ−1∑
u=σ

f(u, lσ,τ ) + Xτ ]IA > Eσ[
τ−1∑
u=σ

f(u, Lσ) + Xτ ]IA,

which is a contradiction. We deduce that P (A) = 0, that is, Lσ ≤ lσ,τ a.s. As τ is arbitrary in Tσ, we get

Lσ ≤ ess inf
τ∈Tσ

lσ,τ .

Step 2. We now show the converse inequality. For each fixed σ ∈ T0,N−1, and for each n ∈ N∗, consider 
the following stopping time

τn := inf{t ≥ σ| sup
σ≤v≤t

Lv > Ln
σ} ∧N,

where

Ln
σ := (Lσ + 1

n
)I{Lσ>−∞} − nI{Lσ=−∞}.

It is easy to check that τn ∈ Tσ. Besides, note that on the set {τn < N}, we have Lτn = supσ≤v≤τn Lv, 
which yields that for any t ∈ {τn, τn + 1, · · · , N}

sup
σ≤v≤t

Lv = sup
τn≤v≤t

Lv.

Therefore, we obtain that

Xσ = Eσ[
τn−1∑
u=σ

f(u, sup
σ≤v≤u

Łv) + Eτn [
N∑

u=τn

f(u, sup
τn≤v≤u

Lv)]]

≥ Eσ[
τn−1∑
u=σ

f(u, Ln
σ) + Xτn ].



10 M. Grigorova, H. Li / J. Math. Anal. Appl. 518 (2023) 126703
Combining with Equation (2.4), it follows that

Eσ[
τn−1∑
u=σ

f(u, lσ,τn) + Xτn ] ≥ Eσ[
τn−1∑
u=σ

f(u, Ln
σ) + Xτn ].

Similar analysis to that of Step 1 shows that

Ln
σ ≥ lσ,τn ≥ ess inf

τ∈Tσ

lσ,τ .

Letting n → ∞, we get the desired result. �

The following proposition establishes that an optimal stopping time exists.

Proposition 2.7. For any k = 2, · · · , N , set

τ∗N−k(ω) =

⎧⎪⎪⎨⎪⎪⎩
N − k + 1, ω ∈ {LN−k < LN−k+1};
N − k + i, ω ∈ {maxj=1,··· ,i−1 LN−k+j ≤ LN−k < LN−k+i}, i = 2, · · · , k − 1;
N, ω ∈ {maxj=1,··· ,k−1 LN−k+j ≤ LN−k}.

And let τ∗N−1 = N . For each t = 0, 1, · · · , N − 1, the stopping times τ∗t is optimal in the sense that

Lt = ess inf
τ∈Tt

lt,τ = lt,τ∗
t
.

Proof. The result is trivial for the case when t = N − 1. For the other cases, it is sufficient to prove that 
P (Lt < lt,τ∗

t
) = 0. By the definition of τ∗t , we can check that

max
t≤v≤u

Lv(ω) =
{

maxτ∗
t ≤v≤u Lv(ω), ω ∈ {τ∗t ≤ u},

Lt(ω), ω ∈ {u < τ∗t }.

Therefore, we have

Et[
τ∗
t −1∑
u=t

f(u, lt,τ∗
t
) + Xτ∗

t
] = Xt =Et[

τ∗
t −1∑
u=t

f(u, max
t≤v≤u

Lv) + Eτ∗
t
[

N∑
u=τ∗

t

f(u, max
t≤v≤u

Lv)]]

=Et[
τ∗
t −1∑
u=t

f(u, Lt) + Eτ∗
t
[

N∑
u=τ∗

t

f(u, max
τ∗
t ≤v≤u

Lv)]]

=Et[
τ∗
t −1∑
u=t

f(u, Lt) + Xτ∗
t
].

By a similar analysis as in the proof of Proposition 2.6, we finally have P (Lt < lt,τ∗
t
) = 0. Hence, the result 

follows. �

Remark 2.8. Modifying the proof slightly, similar results still hold (e.g., existence and uniqueness, charac-
terization) if, instead of being strictly decreasing, f(t, ω, ·) is strictly increasing from −∞ to +∞ for each 
fixed t and ω.
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3. Applications

In this section, we present some applications of the stochastic representation problem under g-expectation. 
Throughout this section, we assume that the driver g satisfies conditions (i)-(iii).

3.1. Optimal stopping under g-expectation

We present a new approach to the non-linear optimal stopping problem in discrete time. This approach 
is based on the stochastic representation of the given reward process X, established in the previous section. 
This approach can be seen as a non-linear analogue of the approach presented by Bank and Follmer [3] in 
the linear case.

The following theorem provides a level-crossing principle and an optimality criterion for stopping times.

Theorem 3.1. (Level-crossing principle and optimality criterion) Let X = {Xn}n=0,1,··· ,N be an adapted and 
square-integrable sequence and L = {Lt}t=0,1,··· ,N−1 be the solution of the following backward equation

Xt = Et[
N−1∑
u=t

max
t≤v≤u

Lv + XN ].

Then, the level-passage times

τ := min{v ≥ 0|Lv ≥ 0} ∧N and τ̄ := min{v ≥ 0|Lv > 0} ∧N

are optimal for the problem

V = sup
τ∈T0,N

E [Xτ ].

Furthermore, if τ∗ ∈ T0,N satisfies

τ ≤ τ∗ ≤ τ̄ , and max
0≤v≤τ∗

Lv = Lτ∗ , (3.1)

then, τ∗ is an optimal stopping time.

Proof. For any τ ∈ T0,N , it is easy to check that

E [Xτ ] =E [
N−1∑
u=τ

max
τ≤v≤u

Lv + XN ] ≤ E [
N−1∑
u=τ

( max
0≤v≤u

Lv) ∨ 0 + XN ]

≤E [
N−1∑
u=τ̄

( max
0≤v≤u

Lv) ∨ 0 + XN ] = E [
N−1∑
u=τ̄

max
0≤v≤u

Lv + XN ].

(3.2)

Noting that for any τ̄ ≤ N − 1 and u ≥ τ̄ , we have

max
0≤v≤u

Lv = max
τ̄≤v≤u

Lv = max
τ≤v≤u

Lv ≥ 0. (3.3)

Combining Equation (3.2) and (3.3) yields that

E [Xτ ] ≤ E [Xτ̄ ], for any τ ∈ T0,N .
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Therefore, τ̄ is optimal. Besides, the Equation (3.2) and (3.3) show that for any τ ∈ T0,N ,

E [Xτ ] ≤ E [
N−1∑
u=τ̄

max
τ̄≤v≤u

Lv + XN ] ≤ E [
τ̄−1∑
u=τ

max
τ≤v≤u

Lv +
N−1∑
u=τ̄

max
τ≤v≤u

Lv + XN ] = E [Xτ ],

which implies that τ is also optimal.
Now if τ∗ satisfies (3.1), we claim that

I :=
N−1∑
u=τ̄

max
0≤v≤u

Lv ≤
N−1∑
u=τ∗

max
0≤v≤u

Lv =: II. (3.4)

If τ = N , then τ∗ = τ̄ = N , which means that I = II = 0. If τ̄ = τ∗, it is obvious that I = II. For the case 
that τ ≤ N − 1 and τ∗ < τ̄ , we derive that

τ̄−1∑
u=τ∗

max
0≤v≤u

Lv ≥
τ̄−1∑
u=τ∗

Lτ ≥ 0.

Consequently, we obtain that I ≤ II. Hence the claim holds true. By the condition that max0≤v≤τ∗ Lv = Lτ∗

and combining Equations (3.2), (3.4), it follows that for any τ ∈ T0,N ,

E [Xτ ] ≤ E [
N−1∑
u=τ∗

max
0≤v≤u

Lv + XN ] = E [
N−1∑
u=τ∗

max
τ∗≤v≤u

Lv + XN ] = E [Xτ∗ ].

Thus we get the optimality of τ∗. �

3.1.1. Optimal stopping with g-expectation on an infinite horizon
Here, we present a similar result to Theorem 3.1 for the infinite time case. To this purpose, we first 

recall some properties of BSDEs with infinite time horizon. Consider the following BSDEs with infinite time 
horizon:

Yt = ξ +
∞∫
t

ĝ(s, Zs)ds−
∞∫
t

ZsdBs, (3.5)

where ξ ∈ L2(F∞), which is the collection of all F∞-measurable and square-integrable random variables 
and ĝ is a map from [0, ∞) × Ω ××Rd onto R satisfying the following two conditions

(a) ĝ(·, z) is progressively measurable and ĝ(t, 0) = 0 for any t ∈ [0, ∞);
(b) There exists a positive deterministic function u(t) such that, for any z, z′ ∈ Rd,

|ĝ(t, z) − ĝ(t, z′)| ≤ u(t)|z − z′|, t ∈ [0,∞),

and 
∫∞
0 u2(t)dt < ∞.

By [7], there exists a unique solution (Y, Z) ∈ S2 ×H2 satisfying the BSDE (3.5), where

S2 := {Y |Yt, 0 ≤ t ≤ ∞, is an Ft-adapted process such that E[ sup
t∈[0,∞]

|Yt|2] < ∞},

H2 := {Z|Zt, 0 ≤ t ≤ ∞, is an Ft-adapted process such that E[
∞∫
0

|Zt|2dt] < ∞}.
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We define the ĝ-conditional expectation of ξ ∈ L2(F∞) as follows

Êt[ξ] = Yt,

where Y is the solution to BSDE (3.5). For simplicity, we denote Ê0[ξ] by Ê [ξ]. By the results in [15], 
comparison theorem still holds for Ê. Besides, it is easy to check that ĝ-expectation also satisfies tower 
property and translation invariance property. Similar analysis to that of the proof of Theorem 3.1 leads to 
the following result.

Proposition 3.2. Suppose that the adapted process X = {Xn}n∈N with E[supn∈N |Xn|2] < ∞ has the follow-
ing representation:

Xτ = Êτ [
∞∑

u=τ

sup
τ≤v≤u

Lv], for any τ ∈ T∞,

where L = {Ln}n∈N is adapted and 
∑∞

u=τ supτ≤v≤u Lv is square-integrable for any τ ∈ T∞. Here, T∞ is 
the collection of all stopping times taking values in N. Then, the level passage times

τ = inf{t ≥ 0|Lt ≥ 0}, τ̄ = inf{t ≥ 0|Lt > 0}

maximize the expected reward Ê[Xτ ] over all τ ∈ T∞.
Furthermore, if the stopping time τ∗ satisfies the following condition

τ ≤ τ∗ ≤ τ̄ and sup
0≤v≤τ∗

Lv = Lτ∗ on {τ∗ < ∞},

then τ∗ also maximize Ê [Xτ ] over all τ ∈ T∞.

3.2. A variant of Skorokhod’s obstacle problem

Let f satisfy conditions (1) and (2) from Section 2. Let us now consider the given stochastic sequence 
X = {Xn}Nn=0 as a given obstacle. We wish to find a pair of adapted sequences Y = {Yn}Nn=0 and η =
{ηn}N−1

n=0 , with η an increasing process, such that

Yt = Et[
N−1∑
u=t

f(u, ηu) + XN ],

and such that Y never falls below the obstacle X. It is easy to check that there are infinitely many processes 
Y and η satisfying the above condition. The goal is to find the process η which acts in a minimal way, in 
the sense that it only increases when necessary (Skorokhod-type condition). This means, if Yτ = Xτ , then 
τ should be a point of increase of η, that is, ητ > ητ−1. If Yτ > Xτ , the process η should remain the same. 
We show our result for the case where f(t, l) = l. The case of f satisfying conditions (1) and (2) can be 
proved similarly.

Remark 3.3. In order to obtain the uniqueness of the solution to the obstacle problem, we assume that 
η−1 = −∞. Therefore, the initial time 0 is a point of increase.

Theorem 3.4. Let X = {Xn}n=0,1,··· ,N be an adapted and square-integrable sequence and L = {Lt}t=0,1,··· ,N−1
be the unique solution of the following backward equation
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Xt = Et[
N−1∑
u=t

max
t≤v≤u

Lv + XN ].

(i) There exists a unique adapted square-integrable process Y = {Yn}Nn=0 and a unique adapted square-
integrable and nondecreasing process η = {ηn}N−1

n=0 satisfying

Yτ = Eτ [
N−1∑
u=τ

ηu + XN ], τ ∈ T0,N ,

and such that Y dominates X, and Yτ = Xτ , P -a.s. for any point of increase τ for η and τ = N . In 
fact, η has the following representation

ηt = max
0≤v≤t

Lv, for all t = 0, 1, · · · , N − 1.

(ii) If the stopping time τ∗ satisfies the following conditions

τ ≤ τ∗ ≤ τ̄ , Yτ∗ = Xτ∗ ,

where τ and τ̄ are the level passage times

τ := min{v ≥ 0|ηv ≥ 0} ∧N and τ̄ := min{v ≥ 0|ηv > 0} ∧N,

then τ∗ maximizes E [Xτ ] over all τ ∈ T0,N .

Proof. (i) We first show that the process Y associated with the process η defined by L dominates X and 
Yτ = Xτ , P -a.s. for any point of increase τ of η and τ = N . It is easy to check that Yτ ≥ Xτ and YN = XN . 
Now if τ is a point of increase for η, we have ητ > ητ−1, which implies that Lτ > max0≤v≤τ−1 Lv. Therefore, 
for any u ≥ τ , it follows that

max
0≤v≤u

Lv = max
τ≤v≤u

Lv,

which yields that Yτ = Xτ .
We are now in a position to show the uniqueness. Suppose that ζ = {ζt}t=0,1,··· ,N−1 is another adapted, 

square-integrable and nondecreasing process such that the corresponding adapted process

Zτ = Eτ [
N−1∑
u=τ

ζu + XN ]

dominates X with Xτ = Zτ for any point of increase τ for ζ and τ = N . For any ε > 0, define the following 
two stopping times

σε = min{t ≥ 0|ηt > ζt + ε} ∧N, τε = inf{t ≥ σε|ζt ≥ ηt} ∧N.

It is easy to check that on the set {σε ≤ N−1}, σε < τε and σε is a point of increase for η. Furthermore, on the 
set {τε ≤ N−1}, τε is a point of increase for ζ. By simple calculation, on the set {σε ≤ N−1} ∩{τε ≤ N−1}, 
we have
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Xσε
= Yσε

= Eσε
[
τε−1∑
u=σε

ηu +
N−1∑
u=τε

ηu + XN ] > Eσε
[
τε−1∑
u=σε

ζu + Eτε [
N−1∑
u=τε

ηu + XN ]]

= Eσε
[
τε−1∑
u=σε

ζu + Yτε ] ≥ Eσε
[
τε−1∑
u=σε

ζu + Xτε ] = Eσε
[
τε−1∑
u=σε

ζu + Zτε ]

= Eσε
[
τε−1∑
u=σε

ζu +
N−1∑
u=τε

ζu + XN ] = Zσε
≥ Xσε

.

On the set {σε ≤ N − 1} ∩ {τε = N}, we obtain that

Xσε
= Yσε

= Eσε
[
N−1∑
u=σε

ηu + XN ] > Eσε
[
N−1∑
u=σε

ζu + XN ] = Zσε
≥ Xσε

.

The contradiction implies that σε = N almost surely, i.e. ηt ≤ ζt + ε for any t = 0, 1, · · · , N − 1. Since ε can 
be arbitrarily small, this implies that η ≤ ζ. Consequently, we have ζ ≤ η. Thus we get the uniqueness.

(ii) Since η = {ηt} = {max0≤v≤t Lv} is an increasing process, we derive that

Yt = Et[
N−1∑
u=t

ηu + XN ] = Et[
N−1∑
u=t

max
t≤v≤u

ηv + XN ].

By Theorem 3.1, τ̄ maximizes E [Yτ ] over all τ ∈ T0,N . Noting that on the set {τ̄ ≤ N − 1}, τ̄ is a point of 
increase for η, we obtain that Xτ̄ = Yτ̄ , which implies that

sup
τ∈T0,N

E [Xτ ] ≥ E [Xτ̄ ] = E [Yτ̄ ] = sup
τ∈T0,N

E [Yτ ].

Since Y dominates X, it is obvious that supτ∈T0,N
E [Xτ ] ≤ supτ∈T0,N

E [Yτ ]. Therefore, the value of the 
optimal stopping for X equals to the one for Y . It is easy to check that max0≤v≤τ∗ ηv = ητ∗ . Theorem 3.1
shows that E [Yτ∗ ] = supτ∈T0,N

E [Yτ ]. We finally get that

E [Xτ∗ ] = E [Yτ∗ ] = sup
τ∈T0,N

E [Yτ ] = sup
τ∈T0,N

E [Xτ ].

The proof is complete. �

We state the result for f satisfying conditions (1) and (2).

Corollary 3.5. Assume that the function f satisfies conditions (1) and (2). Let X = {Xt}t=0,1,··· ,N be an 
adapted and square-integrable sequence and L = {Lt}t=0,1,··· ,N−1 be the solution of the following backward 
equation

Xt = Et[
N−1∑
u=t

f(u, max
t≤v≤u

Lv) + XN ].

Then, there exists a unique adapted square-integrable process Y = {Yn}Nn=0 and a unique adapted, square-
integrable and nondecreasing process η = {ηn}N−1

n=0 satisfying

Yτ = Eτ [
N−1∑

f(u, ηu) + XN ], τ ∈ T0,N ,

u=τ
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such that Y is dominated by X and Yτ = Xτ , P -a.s. for any point of increase τ for η and τ = N . In fact, 
η has the following representation

ηt = max
0≤v≤t

Lv, for any t = 0, 1, · · · , N − 1.

3.3. Exercising optimally American puts under Knightian uncertainty

It is well known that (superhedging) pricing of American options is closely related to optimal stopping. 
More precisely, the superhedging price of the American option corresponds (up to discounting) to the value 
of an optimal stopping problem and the first time the discounted Snell envelope hits the discounted payoff 
process is an optimal exercise time. The shortcoming of this approach, when applied to American put 
options, is that, in order to derive optimal exercise times for different strike prices, we need to calculate 
the associated Snell envelopes first. This would turn into a tedious task as the strike prices may take values 
in a wide range. One may wonder whether there is a universal process to determine the optimal exercise 
times simultaneously for different strike prices. With the help of the stochastic representation problem, the 
answer is affirmative.

In this sub-section, we focus on American put options with different strike prices k, where k > 0. 
We place ourselves in an arbitrage-free market model in discrete time with two primary assets: a risky 
asset with price process denoted by (Pt)t=0,1,··· ,N and a risk-free asset with price process modelled by 
((1 + r)−t)t=0,1,··· ,N , where r is a given positive constant, modelling the risk-free interest rate. We consider 
an agent whose preferences are numerically represented by a utility of the form of a non-linear expectation 
E . If an American put option with strike price k > 0 on the risky asset is exercised at time τ , then the 
pay-off is (k−Pτ )+. We consider an agent who aims at maximizing the utility of the (discounted) terminal 
pay-off of the put option over all possible exercise times τ . Thus, the agent aims at solving the following 
non-linear optimal stopping problem:

v = sup
τ∈T0,N

E [(1 + r)−τ (k − Pτ )+].

The following two theorems provide an optimality criterion for constructing optimal exercise times for 
the non-linear optimal stopping problem in terms of a universal process (Kt), which is “independent” of the 
strike price k of the put option. The first theorem gives the existence of the universal process (Kt) via the 
non-linear stochastic representation. The universal process (Kt) depends on the discounted price process 
of the underlying risky asset (and hence on the primary assets in the market model) and on the agent’s 
preferences via E , but is independent of the strike of the American put.

Theorem 3.6. Assume that the discounted price process {(1 + r)−tPt}t=0,1,··· ,N is adapted and square-
integrable. Then, for any τ ∈ T0,N , the discounted price process admits a unique representation

−(1 + r)−τPτ = Eτ [
N−1∑
u=τ

r

1 + r
(1 + r)−u max

τ≤v≤u
(−Kv) + (1 + r)−N max

τ≤v≤N
(−Kv)] (3.6)

for some adapted and square-integrable process K = {Kt}t=0,1,··· ,N .
For any k ≥ 0, consider the following two stopping times

τk = min{0 ≤ t ≤ N |Kt ≤ k}, τ̄k = min{0 ≤ t ≤ N |Kt < k}

and the optimal stopping problem
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V = sup
τ∈TN∪+∞

E [(1 + r)−τ (k − Pτ )I{τ≤N}], (3.7)

where TN∪{+∞} is the set of all stopping times taking values in {0, 1, · · · , N, +∞}. If a stopping time τk

satisfies the following

τk ≤ τk ≤ τ̄k and min
0≤v≤τk

Kv = Kτk on {τk ≤ N}, (3.8)

then τk is optimal for the problem (3.7).

Proof. The proof will be divided into the following three parts.
Step 1. For any k ≥ 0, we define the following process Xk = {Xk

t }t∈N∪{+∞}, where

Xk
t = (1 + r)−t(k − Pt∧N ).

Consider the following optimal stopping problem

V ′ = sup
τ∈T∞

Ê [Xk
τ ], (3.9)

where Ê [·] is the ĝ-expectation for the infinite time case with

ĝ(t, z) = g(t, z)I{t≤N} + e−tzI{t>N}.

Clearly, for any FN -measurable and square-integrable random variable ξ, we have Ê[ξ] = E [ξ]. We claim 
that V = V ′ and the optimal stopping times for (3.7) and (3.9) are the same. Since r > 0, we derive that if 
τ∗ is optimal for (3.9), then τ∗ takes values in {0, 1, · · · , N, +∞}. Therefore, we have

sup
τ∈T∞

Ê [Xk
τ ] = Ê [Xk

τ∗ ] = Ê [(1 + r)−τ∗
(k − Pτ∗∧N )]

= E [(1 + r)−τ∗
(k − Pτ∗)I{τ∗≤N}]

≤ sup
τ∈TN∪+∞

E [(1 + r)−τ (k − Pτ )I{τ≤N}].

Besides, for any τ ∈ TN∪{+∞}, it is easy to check that

E [(1 + r)−τ (k − Pτ )I{τ≤N}] = E [(1 + r)−τ (k − Pτ∧N )] = Ê [Xk
τ ].

It follows that

sup
τ∈TN∪+∞

E [(1 + r)−τ (k − Pτ )I{τ≤N}] ≤ sup
τ∈TN∪+∞

Ê [Xk
τ ] ≤ sup

τ∈T∞

Ê [Xk
τ ].

Consequently, we obtain that V = V ′ and the optimal stopping problems (3.7) and (3.9) have the same set 
of maximizers.

Step 2. For any t ∈ N, set

Lk
t = k −Kt∧N .

We claim that
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Xk
τ = Êτ [

∞∑
u=τ

r

1 + r
(1 + r)−u sup

τ≤v≤u
Lk
v ].

Indeed, by simple calculation, we obtain that

Êτ [
∞∑

u=τ

r

1 + r
(1 + r)−u sup

τ≤v≤u
Lk
v ]

=Êτ [
∞∑

u=τ

r

1 + r
(1 + r)−u sup

τ≤v≤u
(k −Kv∧N )]

=k(1 + r)−τ + Êτ [
∞∑

u=τ

r

1 + r
(1 + r)−u sup

τ≤v≤u
(−Kv∧N )]

=k(1 + r)−τ + Êτ [
N−1∑

u=τ∧N

r

1 + r
(1 + r)−u sup

τ∧N≤v≤u
(−Kv) +

∞∑
u=τ∨N

r

1 + r
(1 + r)−u sup

τ∧N≤v≤N
(−Kv)]

=k(1 + r)−τ + Êτ [
N−1∑

u=τ∧N

r

1 + r
(1 + r)−u sup

τ∧N≤v≤u
(−Kv) + (1 + r)−τ∨N sup

τ∧N≤v≤N
(−Kv)].

Denote by the second term in the last equality by I. Then on the set {τ ≤ N − 1}, by Equation (3.6), we 
have I = −(1 + r)−τPτ . Besides, on the set {τ ≥ N}, again by (3.6), we derive that I = (1 + r)−τ (−KN ) =
−(1 + r)−τPN . The above analysis shows that

Êτ [
∞∑

u=τ

r

1 + r
(1 + r)−u sup

τ≤v≤u
Lk
v ] = k(1 + r)−τ + I = (1 + r)−τ (k − Pτ∧N ) = Xk

τ .

Step 3. By Proposition 3.2, if τk satisfies the following condition

σk ≤ τk ≤ σ̄k and sup
0≤v≤τk

Lk
v = Lk

τk on {τk < +∞}, (3.10)

where σk = min{t ≥ 0|Lk
t ≥ 0} and σ̄k = min{t ≥ 0|Lk

t > 0}, then τk is optimal for the problem (3.9). By 
Step 1, we know that {τk < ∞} = {τk ≤ N}. By the definition of Lk, it is easy to check that σk = τk and 
σ̄k = τ̄k and all these stopping times belong to TN∪{+∞}. It follows that condition (3.10) is equivalent to 
condition (3.8). Finally, we conclude that for any stopping time τk satisfying condition (3.8), τk is optimal 
for problem (3.9), hence optimal for problem (3.7) by Step 1. �

Theorem 3.7. For any τ ∈ T0,N , the solution K of Equation (3.6) satisfies Kτ ≥ Pτ , a.s. Besides, the 
restriction τk ∧N of any optimal stopping time τk defined by Theorem 3.6 is also optimal for the following 
problem

v = sup
τ∈T0,N

E [(1 + r)−τ (k − Pτ )+].

Proof. For any τ ∈ T0,N , it is easy to check that

−(1 + r)−τPτ =Eτ [
N−1∑
u=τ

r

1 + r
(1 + r)−u max

τ≤v≤u
(−Kv) + (1 + r)−N max

τ≤v≤N
(−Kv)]

≥Eτ [
N−1∑ r

1 + r
(1 + r)−u(−Kτ ) + (1 + r)−N (−Kτ )]
u=τ
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= − (1 + r)−τKτ ,

which implies that Pτ ≤ Kτ . We claim that on the set {τk ≤ N}, Kτk ≤ k. Otherwise, P ({τk ≤ N} ∩{Kτk >

k}) > 0. Since τk ≤ τk ≤ N , we have Kτk ≤ k. Therefore, on the set {τk ≤ N} ∩ {Kτk > k}, we obtain 
that

min
0≤v≤τk

Kv ≤ k �= Kτk ,

which leads to a contradiction. It follows that Pτk ≤ Kτk ≤ k on the set {τk ≤ N}. Thus,

E [(1 + r)−rτk

(k − Pτk)I{τk≤N}] = E [(1 + r)−rτk∧N (k − Pτk∧N )+]

and then τk ∧N maximizes E [(1 + r)−rτ (k − Pτ )+] over all τ ∈ T0,N . �
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