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Willem van Zwet made deep and influential contributions to probabil-
ity and statistics which we review in this paper. Bickel and Götze collaborated
with him on his major contributions to higher order asymptotics of non-linear
statistics and on resampling and the bootstrap. We relate this work to his re-
markable development of the properties of the Hoeffding expansion for sym-
metric statistics as well as Fourier analytic tools. Fiocco and De Gunst were
his students. We describe how in their theses and subsequent papers with him
they developed statistical inference in two subtle stochastic models, the con-
tact process and cell development under a plausible regime. We also touch on
his solutions of intriguing problems not related directly to his main interests.

The beginnings. Willem (Bill) van Zwet’s first significant piece of research was his
thesis "Convex transformations of random variables", carried out under the supervision of
Jan Hemelrijk, but quite unlike any other work that Hemelrijk had done previously. The
thesis was published as a Math. Center tract [Zwe64] and has been cited some 500 times.
It is a completely original analysis of various stochastic orderings of distributions and their
consequences in terms of inequalities for various functions of the data. The main type of
ordering introduced, which was motivated by consideration of probability plots is F ≤G if
and only if G−1(F (x)) is convex. This ordering implies stochastic ordering and much else.

As a consequence of this work, he was appointed as an Associate Professor of Mathemat-
ics at the University of Leiden in 1965, first going abroad as a visiting faculty member at the
University of Oregon in 1965 and as a visiting researcher at UC, Berkeley in 1967. In Berke-
ley he worked with Richard Barlow and made substantial contributions to isotonic regression
which were published between 1969 and 1971.

Second order inference. Bill was drawn to a problem posed in Hodges and Lehmann’s
paper on Deficiency [HL70]. In it, Hodges and Lehmann studied a novel aspect of the old
measure of Pitman efficiency of test A, based on n observations, to test B having the same
level and power, but based on n′ > n observations. This efficiency is (when it exists) the limit
of n′/n as n→∞. Hodges and Lehmann noted in various examples where n′/n→ 1, that
n′ − n tended to a finite limit which they called the deficiency of A to B. For instance, they
showed that this happened if one samples N(µ,σ2) and the null hypothesis is µ= 0, when A
is the Z-test requiring knowledge of σ and B is the t-test which does not. They studied this
idea in a number of other examples, extending it also to estimation and confidence bounds.
At the end, they asked if this could be done comparing parametric and rank tests under the

*Research funded in part by the German Research Foundation: CRC 1283/2 2021 - 317210226
MSC2020 subject classifications: Primary 01A70; secondary 62-03.

1

https://imstat.org/journals-and-publications/annals-of-statistics/
mailto:bickel.peter@gmail.com
mailto:m.fiocco@math.leidenuniv.nl
mailto:m.c.m.de.gunst@vu.nl
mailto:goetze@math.uni-bielefeld.de
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


2

appropriate assumptions. For instance, could the normal scores test be compared in this way
to the t-test for Gaussian data? In general, they asked could one compare optimal paramet-
ric tests, with hypothesis and alternative in the simple vs. simple form, and the alternatives
converging to the hypothesis at rate n−1/2 to rank based tests known to have Pitman effi-
ciency 1 under the same circumstances. They noted that this would require going beyond
Gaussian limit theorems to asymptotic expansions to order n−1 for rank test statistics. For
these statistics such expansions were quite unknown.

Bill was drawn to this challenge.
At the same time, one of us, Peter Bickel, in his second year on the faculty of Univer-

sity of California Berkeley, was independently drawn to the same problem. Van Zwet and
Bickel discovered their common interest and started a collaboration on this and other circles
of problems which lasted 30 years or more. The first two major papers that resulted from this
collaboration were [ABZ76] (1976) and [BZ78] (1978), in which they studied asymptotic ex-
pansions of the power of one- and two-sample rank statistics and more generally permutation
test statistics under contiguous shift alternatives and compared them to the more classical
expansions for most powerful simple vs simple tests. The results in the first paper were sta-
tistically interesting: for instance, the permutation t-test had 0 deficiency with respect to the
t-test under the Gaussian model, which in turn had been shown in [HL70] to have bounded
deficiency with respect to the most powerful Z-test. The normal scores test had deficiency
tending to infinity in the same situation, but the deficiency was of the order of log(n). The
rank test results corresponded to similar comparisons of estimates based on rank tests, as pro-
posed in [HL70]. This work in part originated in the thesis of W. Albers who was a coauthor
of [ABZ76]. The second paper [BZ78] obtained similar results for two-sample tests and re-
lated these, in part unexpected results, to the general work of J. Pfanzagl [Pfa79]. Both papers
were long and technical, requiring some novel Fourier analysis using and extending results of
Berry and Esseen and, in the second paper, of Erdős and Rényi [Rén70]. Both papers showed
that the deficiency of estimates defined by such tests, using the ideas of Hodges and Lehmann
[HL70], coincided with that of the tests, though the property for tests was defined through
power and for estimates through mean squared error. A phenomenon observed in the second
paper was that, unlike in the one-sample case, where only terms of order n−1 needed to be
compared, power expansions could have terms of order n−1/2, but these always agreed when
one compared first order efficient procedures. This phenomenon, under the name "first order
efficiency implies second order efficiency", has been extensively studied, in the parametric
context by J. Pfanzagl and his students in [Pfa82].

During the period 1965-1972, before the work on deficiency was in gestation, Bill worked
with students and other collaborators on a number of unrelated but highly interesting ques-
tions. An example was [ZO67] with J. Oosterhoff, a delicate and rigorous examination of
methods proposed for the combination of test statistics (now called meta-analysis), due to
Fisher, Pearson and other writers. Others included work on the likelihood ratio test for the
multinomial distribution, nonparametric tests for independence and topics in reliability the-
ory.

At an Oberwolfach meeting in 1977, Van Zwet and Bickel met F. Götze, who had just com-
pleted his Ph.D. thesis with Pfanzagl in which he established the possibility of Edgeworth-
like expansions for the expectations of very general statistics. This meeting led to collabora-
tions on a variety of topics which we shall now discuss.

There had been growing interest in asymptotic expansions of Edgeworth type for a variety
of non-linear statistics, estimates or test statistics, which are asymptotically normal, and of
classes of goodness of fit and likelihood tests of weighted χ2 type limit as described in a
1974 review by one of us [Bic74].
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Centered versions of such statistics for i.i.d. samples, when arising in parametric mod-
els, can in many cases be approximated by a Taylor series in variables that are averages of
i.i.d. vectors. In that case, as shown by Linnik and Mitrofanova, see [Bic74] for a review, ex-
pansions of the distributions of the statistics may be obtained using multivariate Edgeworth
expansions for the distributions of the vector averages. Even if the statistics are not smooth
functions of such averages, such as the L1 or L∞ norms, the results in the monograph of
Bhattacharya and Ranga Rao [BR10] enable us to get expansions. However, statistics aris-
ing from i.i.d. nonparametric models can only be expressed as functions of the empirical
distribution, which can be thought of as an average of i.i.d. variables in a function space.
The empirical distribution, when suitably centered and scaled, obeys a central limit theorem
and converges weakly to a Gaussian process. The limiting process, like all genuinely high-
dimensional Gaussian processes (with fixed trace of covariance), has marginal distributions,
which are extremely singular in some directions with a non-existent or bad joint Lebesgue
density. This still allows for expansion for expectations of very smooth functions but not for
distribution functions, see [Göt81]. Thus for approximations of distribution functions one is
led to the hard approach of Fourier inversion of an expansion of the characteristic function
of a non-linear statistic as used in the papers [ABZ76] and [BZ78], and for general classes of
statistics we describe now.

Statistics which are functions of n independent random variables and have second mo-
ments, can be represented by a stochastic expansion into a sum of linear, quadratic and higher-
order functions of the observations which are orthogonal in L2. The series and its terms called
U -statistics were introduced by Hoeffding in 1948 [Hoe48]. This expansion, usually called
Hoeffding’s expansion, and occasionally ANOVA expansion (Efron-Stein), bears the same
relation to the von Mises expansion [Mis47] as Ito integrals do to Stratonovich integrals. The
von Mises expansion may be thought of as a form of Taylor series for smooth functions of
the empirical distribution. For asymptotically normal statistics, the first term is usually de-
terminative, as shown by Hajek [Háj68] while for goodness-of-fit statistics under the null
hypothesis the second term leading to weighted χ2 statistics is asymptotically dominant. Bill
was fascinated by Hoeffding’s insight that symmetric statistics could be decomposed in this
way and the uses of this expansion for understanding normal and higher approximations to
their distribution. In [HZ82], with Helmers, he proved that Berry-Esseen type error bounds
of order O(n−1/2) were valid for asymptotically normal statistics with a two-term expansion
(U -statistics of order 2). This followed a more restrictive result in [Bic74]. Then, in a seminal
paper, [Zwe84], Bill proved the validity of this bound for arbitrary symmetric statistics, and
hence approximate normality, under appropriate conditions on the terms of the Hoeffding
expansion.

To study statistics at the deficiency level, as in the previous work on rank tests and esti-
mates, Edgeworth expansions up to an error o(n−1), rather than just Berry-Esseen bounds
are needed. Van Zwet, Bickel and Götze in [BGZ86] derived such Edgeworth expansions
up to an error of o(n−1) for U-statistics of degree two under the condition of a strong non-
lattice assumption for the first-order term. This classical smoothness condition had been in-
troduced by Cramér. Moment conditions on Hoeffding expansion terms combined with the
requirement of a minimum number of non-zero eigenvalues for the bivariate U -statistic ker-
nel (second term in the Hoeffding expansion) had to be added. A decade later Bill showed in
a joint paper [BGZ97a] with Bentkus and Götze that this result could be extended to arbitrary
symmetric and asymptotically normal statistics. By very intricate Fourier arguments it was
shown that the two-term Hoeffding expansion condition could be dropped with error bounds
of order O(n−1) still retained. Simple examples showed that this was best possible. The in-
teraction of a smooth first-order term with an appropriate second-order term in the U -statistic
could indeed create lattice-type jumps of the distribution of order O(n−1) for the distribution



4

function. The final answer as to minimal conditions for errors of order o(n−1) requires even
deeper analytic arguments and appeared in a recent preprint of Bloznelis and Götze [BG21].

Revisiting the one-sample statistic [ABZ76], where an expansion up to an error O(n−3/2)
was derived for the lattice-valued Wilcoxon statistic, Van Zwet and Götze studied Student’s
statistic for symmetric Rademacher-type observations and found in [GZ06] that, apart from
the center, the distribution function had jumps of order O(n−1) only. The papers [ABZ76],
[BZ78] (1978) discussed above for the one- and two-sample problem led Bill to study in
detail related validity problems for Edgeworth expansions for linear combinations of order
and rank statistics and likelihood ratios. This resulted in a series of papers from 1977 till
1985 with various coauthors including several students and Chibisov, Bickel and Götze, see
[Zwe77], [Zwe79], [Zwe80],[Zwe82], [CZ84a] and [CZ84b]. In addition to a revisit with
Götze in [GZ06], looking at studentization in the one-sample problem, Bill, Götze, and Bickel
turned to another area where the Hoeffding expansion and Edgeworth expansions also proved
to be of great value.

Bootstrap and resampling methods. In [PZ96] Van Zwet and his student Putter stud-
ied the consistency of estimates of parameters τ(P ) obtained by plugging in estimates of
P based on resampling methods. They concluded that choosing the estimate successfully is
extremely model dependent. In [BGZ97b] Van Zwet, Bickel and Götze were trying to un-
derstand the effectiveness and the limitations of resampling methods compared to Efron’s
bootstrap. This was done in light of the observation independently made by Politis and Ro-
mano [PR94] and Götze [Göt93] that if one used resampling distributions based on samples
of size m < n without replacement, one could obtain consistent estimates of limiting dis-
tributions of many statistics, such as the properly centered and scaled maximum of an i.i.d.
sample from a distribution on an interval, for which Efron’s bootstrap failed.

In [BGZ97b] they qualitatively addressed the following question:
Given X1, . . . ,Xn, an i.i.d. sample from a distribution P , let Pn be the empirical distribu-
tion of the sample and Tn(Pn, P ) be a function of both the data and P . Let us call such a
Tn a mixed statistic. Let P ∗m be the empirical distribution of a resample of size m from Pn.
They asked: when is the distribution of Tm(P ∗m, Pn) an approximation to first order, to that of
Tn(Pn, P ) form,n large? They showed that such an approximation was valid for many situa-
tions (including the ones for which Efron’s method worked, such as X̄−µ(P ), where µ(P ) is
the expectation of X̄ .) Specifically, they started with a mixed statistic Sn(Pn, P ) which con-
verges to 0 in probability and then considered a rescaling, say Tn(Pn, P ) := σn Sn(Pn, P ),
such that Tn converges in law to a non-trivial limit law. For all P in the model of interest they
assumed:
1. The renormalization scale, σn, at which convergence to a non-trivial limiting distribution
occurs, is known or consistently estimable.
For instance X̄ − µ(P ) renormalized by σn =

√
n, gives a Gaussian limit for P which have

a finite second moment. For convenience, from now on assume Tn are of this type.
It was shown that if the following further conditions hold
2. m→∞ and m/n→ 0 and for such sequences
3. D(Tm(P ∗m, Pn)) =D(Tm(P ∗m, P )) + oP (1),
then,

D(Tm(P ∗m, Pn)) =D(Tn(Pn, P )) + oP (1).

That is, m-out-of-n-resampling works. D here means distribution and the convergence is in
Prokhorov or some other distance for weak convergence.

Van Zwet, Bickel and Götze also noted the (usual but not inevitable) connection between
the situations where Efron’s method worked and mixed statistics being a smooth function
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of the empirical process. Finally, they showed that bootstrapping (resampling with replace-
ment) essentially would do as well as sampling without replacement as long as m= o(

√
n).

This partly qualitative work, including extensive comparisons using simulations of various
methods, including the jacknife, led Bill and Putter to consider resampling further in the
framework of Hoeffding and Edgeworth expansions. They introduced what they called called
empirical Edgeworth expansions for such mixed statistics in [PZ98]. These were based on
cumulants estimated using the jacknife. Using an unpublished extensive analysis of the Ho-
effding expansion which Bill presented in part in his 1997 Wald lectures and [Zwe84], they
proved that these expansions gave higher-order Edgeworth approximations under natural con-
ditions on the terms of this Hoeffding expansion.

Other questions. A persistent feature of Bill’s work was solving hard problems only
distantly related to his main interest, often with students or collaborators. One example is
[BZ80] in which he and Bickel asked the question: for what class of functions φ is E(φ(X1 +
. . . + Xn)) with X1, ..,Xn independent with distributions F1, . . . , Fn maximized when the
Xi are identically distributed with common distribution F̄ = (F1 + . . .+Fn)/n? The class of
convex φ was shown by Hoeffding [Hoe56] to have this property for Bernoulli variables. Bill
and Bickel showed among other results, that for general variables this holds only for the class
of Laplace transforms of non-negative distributions. The result was picked up by members of
the algebraic community and pushed in several general directions [CR81].

Other examples include [Zwe94], [DZTD96], [LZ04] and [DHKZ04]. Bill often returned
and picked up threads left in his early papers. There is, for instance, the case of the Kakutani
conjecture about which he learnt from Dudley who challenged the audience of a joint Statis-
tics and Probability meeting in 1976 at Oberwolfach for a proof. Bill solved it shortly after in
[Zwe78] only to return to it 26 years later in a joint paper with Ron Pyke [PZ04] where they
studied variants of this phenomenon via weak convergence.

During the 1986/87 visits of David Mason in Leiden, Bill worked with him on improved
versions of the KMT strong approximation methods as well as on strong approximations for
renewal processes in [MZ87b] and [MZ87a].

Inference for cell population growth. In the late 1980s with his student Mathisca de
Gunst, Bill turned to a series of problems that originated from biology.

The phenomenon of interest was the growth of a population of plant cells in a liquid
medium. In collaboration with biologist Kees Libbenga, Bill and De Gunst developed a
stochastic model for the population growth that takes into account the influence of two spe-
cific medium components. A key ingredient of the model is that the cell population consists
of two types of cells: type-A cells, which are actively cycling and finally divide, and type-B
cells, which are differentiating and don’t divide. At time t= 0, the population is assumed to
consist of type-A cells only. After a certain time period, the first cell divisions occur and pro-
duce either two A-cells or two B-cells, or one of each type. Depletion of one of the medium
components decreases the division rate, while depletion of the other decreases the birth rate
of the A-cells. As a consequence of such depletion the population will eventually stop grow-
ing. Because the cells compete for the components whose concentration decreases at random
times, there is a complicated type of dependence between the division times for different
cells.
The total cell number Nn(t) as predicted by the model is a non-Markovian counting pro-
cess. In [GZ92] Bill and De Gunst investigated the asymptotic behavior of the population
growth when the initial cell number n tends to infinity. Conditioning on the number of A-
cells born at each division and making use of a random time change based on the integrated
conditional intensity process of Nn(t)− n, they proved that the relative growth of the pop-
ulation, n−1(Nn(t) − n) converges almost surely to a nonrandom function X , and proved
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a central limit theorem. The uniform convergence depends heavily on the boundedness of
n−1(Nn(t) − n), and the representation of the limit distribution in terms of two indepen-
dent Wiener processes and its covariance structure were obtained by going into the special
structure of the underlying model. A statistical analysis of experimental data showed that for
appropriate parameter values, X describes actual population growth quite well [GZ93].

In [DZHVL90] Bill and De Gunst determined the order of magnitude of the duration of the
growth process and the tail behavior of the limit process X(t) as t tends to infinity. A striking
discontinuity was found in the tail behavior of the two processes. As there are two possible
causes for the process Nn to stop growing, and, correspondingly, the limit process X(t) has
a derivative X ′(t) which is the product of two factors, there are three different cases: one of
the two or both factors may tend to zero as t tends to infinity. It turned out that if only one
factor of X ′(t) tends to zero, then

X(∞)−X(t)∼Ae−at as t→∞, Tn
logn

→ 1

a
in prob. as n→∞.

If both factors tend to zero, this happens when the two medium components are exhausted at
approximately the same time, a very different tail behavior occurs: X

X(∞)−X(t)∼ 1

at
as t→∞, Tn

n1/2 logn
= 1 + oP (1), as n→∞.

The expressions for a in the three cases are different.

Inference for the contact process. This major interest started in the late 1990’s with
Bill’s student Marta Fiocco. A d-dimensional contact process is a model for the spread of
an infection on the lattice Zd. At each time t ≥ 0, each site can be in one of two possible
states: infected or healthy. The state of the site x ∈ Zd at time t will be indicated by a random
variable ξt(x) given by

ξt(x) =

{
1 if x is infected,
0 if x is healthy.

The function ξt : Zd→ {0,1} gives the state of the process at time t. It is a {0,1}-valued
random field over Zd. The evolution of this random field in time is described by the following
dynamics. A healthy site is infected at rate λ by each of its 2d immediate neighbours which
is itself infected; an infected site recovers at rate µ > 0. Given the configuration at time t, the
processes involved are independent until a change occurs. If λ is sufficiently small, infection
dies out (subcritical process), whereas if λ is sufficiently large infection tends to be permanent
(supercritical process).
Bill and Fiocco provided in [FZ98] a generalization for the shape theorem for the supercritical
contact process ξAt starting with an arbitrary, possibly random, set A of infected sites. Before
this work, the shape theorem for the supercritical contact process was generally presented
for the process that starts with a single infected site at the origin. This process is denoted
by ξ{0}t . In [FZ00] Bill and Fiocco studied the estimation problem for the parameter λ of
the supercritical contact process starting with a single infected site at the origin, and given
that the process survives forever. Based on an observation of this process at a single time
t, they obtained an estimator for the parameter λ which is consistent and asymptotically
normal as t→∞. The probabilistic results needed to establish these facts were taken from a
companion paper [FZ03a] where the authors studied the convex hull of the set of infected sites
for the conditional ξ{0}t process as well as its spatial correlation. They found that under some
restrictions this correlation decays faster that any negative power of the distance. Results
were extended in [FZ03b] to the process ξAt which starts with a set A⊂ Zd of infected sites
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at time t= 0. Consistency and asymptotic normality were proved.
Maximum likelihood estimation for the case where the process is supercritical, starts with a
single infected site at the origin and is observed during a long time interval [0,1], is discussed
in [FZ04] and [FZ06]. The estimators are constructed and their consistency and asymptotic
normality as t→∞ are proven. The relation with the estimation problem for the process
observed at a single large time is also discussed.

The Figure below shows that process started with a single infected site at the origin with
λ= 0.7 and µ= 1 after 50000 steps, i.e. 50000 infections and recoveries. Infected sites are
indicated by gray 1× 1 squares. An additional feature of this figure is that for each infected
site, the number of steps since it was last infected is recorded. It is indicated by the gray level
at that site: the darker the gray level, the older the present infection at a site.

The process ξ{0}t for λ= 0.7 and µ= 1, after 50000 steps.

To conclude. Bill’s research life was as rich and varied as his contributions to the profes-
sion. All of us remember the pleasure of our collaborations with him and mourn his passing.

Acknowledgements. The authors would like to thank Nick Fisher and the Editors for
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References.

[ABZ76] W. Albers, P. J. Bickel, and W. R. van Zwet. “Asymptotic expansions for the
power of distribution free tests in the one-sample problem”. In: Ann. Statist.
4.1 (1976), pp. 108–156.

[BG21] M. Bloznelis and F. Götze. Edgeworth approximations for distributions of
symmetric statistics. 2021. eprint: arXiv:/2102.03589[math.ST].

[BGZ86] P. J. Bickel, F. Götze, and W. R. van Zwet. “The Edgeworth expansion for
U -statistics of degree two”. In: Ann. Statist. 14.4 (1986), pp. 1463–1484.

[BGZ97a] V. Bentkus, F. Götze, and W. R. van Zwet. “An Edgeworth expansion for
symmetric statistics”. In: Ann. Statist. 25.2 (1997), pp. 851–896.

[BGZ97b] P. J. Bickel, F. Götze, and W. R. van Zwet. “Resampling fewer than n ob-
servations: gains, losses, and remedies for losses”. In: vol. 7. 1. Empirical
Bayes, sequential analysis and related topics in statistics and probability (New
Brunswick, NJ, 1995). 1997, pp. 1–31.

[Bic74] P. J. Bickel. “Edgeworth expansions in non parametric statistics”. In: Ann.
Statist. 2 (1974), pp. 1–20.

[BR10] R. N. Bhattacharya and R. Ranga Rao. Normal approximation and asymp-
totic expansions. Vol. 64. Classics in Applied Mathematics. Updated reprint
of the 1986 edition [ MR0855460], corrected edition of the 1976 original
[ MR0436272]. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 2010, pp. xxii+316.

arXiv:/2102.03589 [math.ST]


8

[BZ78] P. J. Bickel and W. R. van Zwet. “Asymptotic expansions for the power of
distribution free tests in the two-sample problem”. In: Ann. Statist. 6.5 (1978),
pp. 937–1004.

[BZ80] P. J. Bickel and W. R. van Zwet. “On a theorem of Hoeffding”. In: Asymp-
totic theory of statistical tests and estimation (Proc. Adv. Internat. Sympos.,
Univ. North Carolina, Chapel Hill, N.C., 1979). Academic Press, New York-
London-Toronto, Ont., 1980, pp. 307–324.

[CR81] Jens Peter Reus Christensen and Paul Ressel. “A probabilistic characterisation
of negative definite and completely alternating functions”. In: Z. Wahrsch.
Verw. Gebiete 57.3 (1981), pp. 407–417.

[CZ84a] D. M. Chibisov and W. R. van Zwet. “On the Edgeworth expansion for the
logarithm of the likelihood ratio. I”. In: Teor. Veroyatnost. i Primenen. 29.3
(1984), pp. 417–439.

[CZ84b] D. M. Chibisov and W. R. van Zwet. “On the Edgeworth expansion for the
logarithm of the likelihood ratio. II”. In: Asymptotic statistics, 2 (Kutná Hora,
1983). Elsevier, Amsterdam, 1984, pp. 451–461.

[DHKZ04] A. Di Bucchianico, M. Hušková, P. Klášterecký, and W. R. van Zwet. “Perfor-
mance of control charts for specific alternative hypotheses”. In: COMPSTAT
2004—Proceedings in Computational Statistics. Physica, Heidelberg, 2004,
pp. 903–910.

[DZHVL90] M. De Gunst, W. R.van Zwet, P. Harkes, J. Val, and K. Libbenga. “Modelling
the growth of a batch culture of plant cells: a corpuscular approach”. In: En-
zyme Microb. Technol. 12 (1990), pp. 61–71.

[DZTD96] C. Diks, W. R. van Zwet, F. Takens, and J. DeGoede. “Detecting differ-
ences between delay vector distributions”. In: Phys. Rev. E (3) 53.3 (1996),
pp. 2169–2176.

[FZ00] M. Fiocco and W. R. van Zwet. “Statistics for the contact process”. In: Sym-
posium in Honour of Ole E. Barndorff-Nielsen (Aarhus, 2000). Vol. 16. Mem-
oirs. Univ. Aarhus, Aarhus, 2000, pp. 102–109.

[FZ03a] M. Fiocco and W. R. van Zwet. “Decaying correlations for the supercritical
contact process conditioned on survival”. In: Bernoulli 9.5 (2003), pp. 763–
781.

[FZ03b] M. Fiocco and W. R. van Zwet. “Parameter estimation for the supercritical
contact process”. In: Bernoulli 9.6 (2003), pp. 1071–1092.

[FZ04] M. Fiocco and W. R. van Zwet. “Maximum likelihood estimation for the con-
tact process”. In: A festschrift for Herman Rubin. Vol. 45. IMS Lecture Notes
Monogr. Ser. Inst. Math. Statist., Beachwood, OH, 2004, pp. 309–318.

[FZ06] M. Fiocco and W. R. van Zwet. “Maximum likelihood for the fully observed
contact process”. In: J. Comput. Appl. Math. 186.1 (2006), pp. 117–129.

[FZ98] M. Fiocco and W. R. van Zwet. “On the shape theorem for the supercritical
contact process”. In: Prague Stochastics. Union of Czech Mathematicians and
Physicists, Prague, 1998.

[Göt81] F. Götze. “On Edgeworth expansions in Banach spaces”. In: Ann. Probab. 9.5
(1981), pp. 852–859.

[Göt93] F. Götze. In: IMS Bulletin (1993). Special Invited Lecture in Annual joint
IMS/ASA meeting on Statistics and Probability, San Francisco, Aug. 1993.

[GZ06] F. Götze and W. R. van Zwet. “An expansion for a discrete non-lattice distri-
bution”. In: Frontiers in statistics. Imp. Coll. Press, London, 2006, pp. 257–
274.



VAN ZWET: SCIENTIFIC WORK 9

[GZ92] M. de Gunst and W. R. van Zwet. “A non-Markovian model for cell popula-
tion growth: speed of convergence and central limit theorem”. In: Stochastic
Process. Appl. 41.2 (1992), pp. 297–324.

[GZ93] M. de Gunst and W. R. van Zwet. “A non-Markovian model for cell popula-
tion growth: tail behavior and duration of the growth process”. In: Ann. Appl.
Probab. 3.4 (1993), pp. 1112–1144.

[Háj68] Jaroslav Hájek. “Asymptotic normality of simple linear rank statistics under
alternatives”. In: Ann. Math. Statist. 39 (1968), pp. 325–346.

[HL70] J. L. Hodges Jr. and E. L. Lehmann. “Deficiency”. In: Ann. Math. Statist. 41
(1970), pp. 783–801.

[Hoe48] W. Hoeffding. “A class of statistics with asymptotically normal distribution”.
In: Ann. Math. Statistics 19 (1948), pp. 293–325.

[Hoe56] Wassily Hoeffding. “On the distribution of the number of successes in inde-
pendent trials”. In: Ann. Math. Statist. 27 (1956), pp. 713–721.

[HZ82] R. Helmers and W. R. van Zwet. “The Berry-Esseen bound for U -statistics”.
In: Statistical decision theory and related topics, III, Vol. 1 (West Lafayette,
Ind., 1981). Academic Press, New York, 1982, pp. 497–512.

[LZ04] Nelly Litvak and Willem R. van Zwet. “On the minimal travel time needed to
collect n items on a circle”. In: Ann. Appl. Probab. 14.2 (2004), pp. 881–902.

[Mis47] R. v. Mises. “On the asymptotic distribution of differentiable statistical func-
tions”. In: Ann. Math. Statistics 18 (1947), pp. 309–348.

[MZ87a] D. Mason and W. R. van Zwet. “A note on the strong approximation to the
renewal process”. In: Publ. Inst. Statist. Univ. Paris 32.1-2 (1987), pp. 81–91.

[MZ87b] D. Mason and W. R. van Zwet. “A refinement of the KMT inequality for the
uniform empirical process”. In: Ann. Probab. 15.3 (1987), pp. 871–884.

[Pfa79] J. Pfanzagl. “First order efficiency implies second order efficiency”. In:
Contributions to statistics. Reidel, Dordrecht-Boston, Mass.-London, 1979,
pp. 167–196.

[Pfa82] J. Pfanzagl. Contributions to a general asymptotic statistical theory. Vol. 13.
Lecture Notes in Statistics. With the assistance of W. Wefelmeyer. Springer-
Verlag, New York-Berlin, 1982, pp. vii+315.

[PR94] D.N. Politis and J. P. Romano. “Large sample confidence regions based
on subsamples under minimal assumptions”. In: Ann. Statist. 22.4 (1994),
pp. 2031–2050.

[PZ04] R. Pyke and W. R. van Zwet. “Weak convergence results for the Kakutani
interval splitting procedure”. In: Ann. Probab. 32.1A (2004), pp. 380–423.

[PZ96] H. Putter and W. R. van Zwet. “Resampling: consistency of substitution esti-
mators”. In: Ann. Statist. 24.6 (1996), pp. 2297–2318.

[PZ98] H. Putter and W. R. van Zwet. “Empirical Edgeworth expansions for symmet-
ric statistics”. In: Ann. Statist. 26.4 (1998), pp. 1540–1569.

[Rén70] A. Rényi. Probability theory. Translated by László Vekerdi, North-Holland
Series in Applied Mathematics and Mechanics, Vol. 10. North-Holland Pub-
lishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc.,
New York, 1970, pp. iii+666.

[ZO67] W. R. van Zwet and J. Oosterhoff. “On the combination of independent test
statistics”. In: Ann. Math. Statist. 38 (1967), pp. 659–680.

[Zwe64] W. R. van Zwet. Convex transformations of random variables. Vol. 7. Mathe-
matical Centre Tracts. Mathematisch Centrum, Amsterdam, 1964, pp. vi+116.

[Zwe77] W. R. van Zwet. “Asymptotic expansions for the distribution functions of lin-
ear combinations of order statistics”. In: Statistical decision theory and re-
lated topics, II (Proc. Sympos., Purdue Univ., Lafayette, Ind., 1976). 1977,
pp. 421–437.



10

[Zwe78] W. R. van Zwet. “A proof of Kakutani’s conjecture on random subdivision of
longest intervals”. In: Ann. Probability 6.1 (1978), pp. 133–137.

[Zwe79] W. R. van Zwet. “The Edgeworth expansion for linear combinations of uni-
form order statistics”. In: Proceedings of the Second Prague Symposium on
Asymptotic Statistics (Hradec Králové, 1978). North-Holland, Amsterdam-
New York, 1979, pp. 93–101.

[Zwe80] W. R. van Zwet. “A strong law for linear functions of order statistics”. In:
Ann. Probab. 8.5 (1980), pp. 986–990.

[Zwe82] W. R. van Zwet. “On the Edgeworth expansion for the simple linear rank
statistic”. In: Nonparametric statistical inference, Vol. I, II (Budapest, 1980).
Vol. 32. Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam, 1982,
pp. 889–909.

[Zwe84] W. R. van Zwet. “A Berry-Esseen bound for symmetric statistics”. In: Z.
Wahrsch. Verw. Gebiete 66.3 (1984), pp. 425–440.

[Zwe94] W. R. van Zwet. “The asymptotic distribution of point charges on a conducting
sphere”. In: Statistical decision theory and related topics, V (West Lafayette,
IN, 1992). Springer, New York, 1994, pp. 427–430.


	The beginnings
	Second order inference
	Bootstrap and resampling methods
	Other questions
	Inference for cell population growth
	Inference for the contact process
	To conclude
	Acknowledgements
	References

