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Abstract. We show that if the Hardy-Littewood maximal operator M is
bounded on a reflexive variable exponent space Lp(·)(Rd), then for every

q ∈ (1,∞), the exponent p(·) admits, for all sufficiently small θ > 0, the

representation 1/p(x) = θ/q + (1 − θ)/r(x), x ∈ Rd such that the operator

M is bounded on the variable Lebesgue space Lr(·)(Rd). This result can be

applied for transferring properties like compactness of linear operators from

standard Lebesgue spaces to variable Lebesgue spaces by using interpolation
techniques.

1. Introduction

Let L0(Rd) denote the space of all (equivalence classes of) Lebesgue measurable
complex-valued functions on Rd with the topology of convergence in measure on
sets of finite measure. Let p(·) : Rd → [1,∞] be a measurable a.e. finite function.
By Lp(·)(Rd) we denote the set of all functions f ∈ L0(Rd) such that

Ip(·)(f/λ) :=

∫
Rd
|f(x)/λ|p(x)dx <∞

for some λ > 0. This set becomes a Banach space when equipped with the
Luxemburg-Nakano norm

‖f‖p(·) := inf
{
λ > 0 : Ip(·)(f/λ) ≤ 1

}
.

It is easy to see that if p(·) = p is constant, then Lp(·)(Rd) is nothing but the
standard Lebesgue space Lp(Rd). The space Lp(·)(Rd) is referred to as a variable
Lebesgue space.

Let 1 ≤ q <∞. Given f ∈ Lqloc(Rd), the q-th maximal operator is defined by

(Mqf)(x) := sup
Q3x

(
1

|Q|

∫
Q

|f(y)|qdy
)1/q

,

where the supremum is taken over all cubes Q ⊂ Rd containing x (here, and
throughout, cubes will be assumed to have their sides parallel to the coordinate
axes). Note that M := M1 is the usual Hardy-Littlewood maximal operator. By
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BM (Rd) denote the set of all measurable a.e. finite functions p(·) : Rd → [1,∞]
such that the Hardy-Littlewood maximal operator is bounded on Lp(·)(Rd).

We will use the following standard notation:

p− := ess inf
x∈Rd

p(x), p+ := ess sup
x∈Rd

p(x).

It is well known that the space Lp(·)(Rd) is reflexive if and only if 1 < p− ≤ p+ <∞.

In this case, its dual space is isomorphic to Lp
′(·)(Rd), where

1/p(x) + 1/p′(x) = 1, x ∈ Rd

(see, e.g., [5, Chap. 3]).
Suppose that 1 < p− ≤ p+ <∞ and there exist constants c0, c∞ ∈ (0,∞) and

p∞ ∈ (1,∞) such that

|p(x)− p(y)| ≤ c0
log(e+ 1/|x− y|)

, x, y ∈ Rd, (1.1)

|p(x)− p∞| ≤
c∞

log(e+ |x|)
, x ∈ Rd. (1.2)

Then p(·) ∈ BM (Rd) (see [3, Theorem 3.16] or [5, Theorem 4.3.8]). Following [5,
Section 4.1] or [3, Section 2.1], we will say that p(·) is globally log-Hölder continuous
if conditions (1.1)–(1.2) are satisfied. The class of all globally log-Hölder continuous
exponents will be denoted by P log(Rd).

Conditions (1.1) and (1.2) are optimal for the boundedness of M in the sense
of modulus of continuity; the corresponding examples are contained in [16] and [2].
However, neither (1.1) nor (1.2) is necessary for p(·) ∈ BM (Rd). Thus

P log(Rd) $ BM (Rd).

Here we mention results by Nekvinda [14, 15] and Lerner [13] and further discus-
sion in the monographs [3, Chap. 4] and [5, Chaps. 4–5].

The following result was obtained in a somewhat more complete form by the
first author (see [4, Theorem 8.1] or [5, Theorem 5.7.2]).

Theorem 1.1. Let p(·) : Rd → [1,∞] be a measurable function satisfying
1 < p− ≤ p+ <∞. The following statements are equivalent:

(a) M is bounded on Lp(·)(Rd);
(b) M is bounded on Lp

′(·)(Rd);
(c) there exists an s ∈ (1/p−, 1) such that M is bounded on Lsp(·)(Rd);
(d) there exists a q ∈ (1,∞) such that Mq is bounded on Lp(·)(Rd).

Rabinovich and Samko [17] (see also [12, Section 9.1.2]) observed that if a
variable exponent p(·) ∈ P log(Rd) satisfies 1 < p− ≤ p+ < ∞, then it can be
decomposed as

1

p(x)
=
θ

2
+

1− θ
r(x)

, x ∈ Rd, (1.3)

where θ ∈ (0, 1) and r(·) satisfies 1 < r− ≤ r+ <∞ and belongs to P log(Rd). This
observation was important in the “transfer of the compactness techniques” from
L2(Rd) to Lp(·)(Rd) by means of the one-sided interpolation of the compactness
property between the spaces Lr(·)(Rd) (where an operator is merely bounded) and
L2(Rd) (where an operator is compact).
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The second author and Spitkovsky [11] exploited this idea for more general
variable exponents p(·) ∈ BM (Rd) based on the following result obtained by the
first author and published in [11, Theorem 4.1].

Theorem 1.2. Let p(·) : Rd → [1,∞] be a measurable function satisfying
1 < p− ≤ p+ < ∞. If p(·) ∈ BM (Rd), then there exist numbers q ∈ (1,∞) and
θ ∈ (0, 1) such that the variable exponent r(·) defined by

1

p(x)
=
θ

q
+

1− θ
r(x)

, x ∈ Rd, (1.4)

belongs to BM (Rd).

The above theorem has the disadvantage that the constant q depends on the
variable exponent p(·). It is desirable to avoid such a dependence and to find,
for a given p(·) ∈ BM (Rd), a θ ∈ (0, 1) such that (1.3) holds and r(·) belongs to
BM (Rd). This would allow one to simplify formulations of several results in the
literature, where it was supposed that p(·) is of the form (1.3) with r(·) ∈ BM (Rd)
and some sufficiently small θ ∈ (0, 1) (see, e.g., [7, Corollary 2.1, Theorem 3.2],
[8, Theorem 1.2], [9, Theorem 2.1]). The second author asked in [10, Section 4.4]
whether for a given p(·) ∈ BM (Rd) satisfying 1 < p− ≤ p+ < ∞, one can find a
number τp(·) ∈ (0, 1] such that the variable exponent r(·) defined by (1.3) belongs

to BM (Rd) for every θ ∈ (0, τp(·)].
Our main result is the following refinement of Theorem 1.2, which gives positive

answers to the above questions.

Theorem 1.3 (Main result). Let p(·) : Rd → [1,∞] be a measurable function
satisfying 1 < p− ≤ p+ < ∞. Then p(·) ∈ BM (Rd) if and only if for every
q ∈ (1,∞), there exists a number Θp(·),q ∈ (0, 1) such that for every θ ∈ (0,Θp(·),q]

the variable exponent r(·) defined by (1.4) belongs to BM (Rd).

Note that representation (1.4) implies that 0 < θ/q ≤ 1/p(x) ≤ θ/q+ 1− θ < 1
for θ > 0, whence 1 < p− ≤ p+ <∞.

The paper is organized as follows. In Section 2, we formulate an interpolation
lemma due to Cruz-Uribe [1], which immediately implies the proof of the sufficiency
portion of Theorem 1.3. In Section 3, we show that if p(·) ∈ BM (Rd) satisfies

1 < p− ≤ p+ <∞, then the variable exponents

(
1
t

(
p(·)
s

)′)′
belong to BM (Rd) for

all s, t ≥ 1 sufficiently close to 1. Based on this result, we complete the proof of
the necessity portion of Theorem 1.3 in Section 4.

2. Proof of the sufficiency portion of Theorem 1.3

The sufficiency portion is an immedte corollary of the following result obtained
by Cruz-Uribe [1, Corollary 3] (see also [6, Corollary 2.5] for the case 1 < (pj)− ≤
(pj)+ < ∞, j = 0, 1) and the boundedness of the Hardy-Littlewood maximal
operator M on the standard Lebesgue space Lq(Rd) with q ∈ (1,∞).

Lemma 2.1. If pi(·) ∈ BM (Rd) for i = 0, 1, then for every θ ∈ (0, 1), the
variable exponent pθ(·) defined by

1

pθ(x)
=

θ

p0(x)
+

1− θ
p1(x)

, x ∈ Rd, (2.1)
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belongs to BM (Rd) and

‖M‖Lpθ(·)→Lpθ(·) ≤ 96‖M‖θLp0(·)→Lp0(·)‖M‖1−θLp1(·)→Lp1(·) . (2.2)

Note that inequality (2.2) is stated in [1] with the constant 48, which seems to
be a typo. This result was obtained as a consequence of the pointwise inequality
|Tff | ≤ Mf ≤ 2Tf |f |, where each Tf is a linear integral operator with a positive
kernel. On the other hand, it was shown in [1, Theorem 1] that if T is a linear
integral operator with a positive kernel that satisfies ‖Tf‖pi(·) ≤ Bi‖f‖pi(·) for

i = 0, 1 and all f ∈ Lpi(·)(Rd) with Bi independent of f , then

‖Tf‖pθ(·) ≤ 48Bθ0B
1−θ
1 ‖f‖pθ(·).

3. Doubly iterated “left-openness and then duality” trick

Our construction is similar to that of the proof of [11, Theorem 4.1]. It is
based on the consecutive application of the “left-openness” of the class BM (Rd) (see
Theorem 1.1(c)) and then the “duality” of the class BM (Rd) (see Theorem 1.1(b)).
In order to succeed, we repeat this procedure two times. The main novelty is
that we can guarantee that the constructed exponents belong to BM (Rd) in certain
ranges of parameters.

Lemma 3.1. If p(·) ∈ BM (Rd) satisfies 1 < p− ≤ p+ < ∞, then there exist
s0, t0 ∈ (1,∞) such that(

1

t

(
p(·)
s

)′)′
∈ BM (Rd) for all s ∈ [1, s0], t ∈ [1, t0]. (3.1)

Proof. By Theorem 1.1(c), there exists a number s0 ∈ (1,∞) such that
p(·)/s0 ∈ BM (Rd). Then it follows from Theorem 1.1(b) that p′(·) and (p(·)/s0)′

belong to BM (Rd). Applying Theorem 1.1(c) once again, we see that there exist
t1, t2 ∈ (1,∞) such that

p′(·)
t1
∈ BM (Rd),

1

t2

(
p(·)
s0

)′
∈ BM (Rd).

It follows from Lemma 2.1 (one can employ also a more elementary argument using
Jensen’s inequality as in [6, p. 43]) that

p′(·)
t
∈ BM (Rd) for all t ∈ [1, t1],

1

t

(
p(·)
s0

)′
∈ BM (Rd) for all t ∈ [1, t2].

Put

t0 := min{t1, t2}.
Then it is clear that t0 ∈ (1,∞) and

p′(·)
t
∈ BM (Rd),

1

t

(
p(·)
s0

)′
∈ BM (Rd) for all t ∈ [1, t0]. (3.2)

Take any s ∈ [1, s0] and set θ := s0−s
s0−1 ∈ [0, 1]. Then s = θ+ (1− θ)s0. Further, for

x ∈ Rd, we have(
1

t

(
p(x)

s

)′)−1
= t

(
p(x)/s

p(x)/s− 1

)−1
= t

p(x)− s
p(x)
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= t
p(x)(θ + (1− θ))− (θ + (1− θ)s0)

p(x)

= tθ
p(x)− 1

p(x)
+ t(1− θ)p(x)− s0

p(x)

= θ

(
p′(x)

t

)−1
+ (1− θ)

(
1

t

(
p(x)

s0

)′)−1
. (3.3)

It follows from (3.2)–(3.3) and Lemma 2.1 that

1

t

(
p(·)
s

)′
∈ BM (Rd) for all s ∈ [1, s0], t ∈ [1, t0].

Applying Theorem 1.1(b) one more time, one arrives at (3.1). �

4. Proof of the necessity portion of Theorem 1.3

Suppose that q ∈ (1,∞) and p(·) satisfies 1 < p− ≤ p+ < ∞ and belongs
to BM (Rd). We need to prove that r(·) defined by (1.4) belongs to BM (Rd) for
all sufficiently small positive values of θ. We will show that one can choose s

and t in such a way that r(·) = ( 1
t (
p(·)
s )′)′, and use Lemma 3.1 to conclude that

r(·) ∈ BM (Rd).
Now, (1.4) is equivalent to

1

r(x)
=

1

1− θ
1

p(x)
− θ

1− θ
1

q
, x ∈ Rd,

while
1

( 1
t (
p(x)
s )′)′

= 1− t
(

1− s

p(x)

)
= st

1

p(x)
− (t− 1), x ∈ Rd.

So, we need to take s and t such that

st =
1

1− θ
and t− 1 =

θ

1− θ
1

q
.

An easy calculation shows that these equations are equivalent to

θ = 1− 1

st
and t =

q − 1

q − s
.

Let s0 ∈ (1,∞) and t0 ∈ (1,∞) be such that (3.1) holds. Put

t(s) :=
q − 1

q − s
, 1 < s < q. (4.1)

Since 1 < t(s)→ 1 as s→ 1, there exists s1 ∈ (1, s0] such that

1 < t(s) ≤ t0 for all s ∈ (1, s1],

Let

θ(s) := 1− 1

st(s)
= 1− q − s

s(q − 1)
=
q(s− 1)

s(q − 1)
=

q

q − 1

(
1− 1

s

)
. (4.2)

Then 0 < θ(s)→ 0 as s→ 1. So, there exists s2 ∈ (1, s1] such that

Θp(·),q := θ(s2) ∈ (0, 1).

It is clear from (4.2) that θ(·) is an increasing continuous function. Then

θ((1, s2]) = (0,Θp(·),q].
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Take any θ ∈ (0,Θp(·),q]. It follows from the above that there exists a unique
s ∈ (1, s2] such that θ(s) = θ. For this s and t := t(s),

rθ(·) :=

(
1

t

(
p(·)
s

)′)′
∈ BM (Rd) (4.3)

according to (3.1).
It follows from (4.1) that

q =
st− 1

t− 1
. (4.4)

Combining (4.2), (4.3), (4.4), we get for x ∈ Rd,

θ

q
+

1− θ
rθ(x)

=
θ

q
+ (1− θ)

1− 1

1
t

(
p(x)
s

)′


=

(
1− 1

st

)
t− 1

st− 1
+

1

st

(
1− t

(
1− s

p(x)

))
=
t− 1

st
+

1

st
(1− t) +

1

st
· ts

p(x)

=
1

p(x)
.

Thus rθ(·) satisfies (1.4) for every θ ∈ (0,Θp(·),q]. �
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