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Let U ∈ (0,2) and 3 ∈ N. We consider the stochastic differential equation (SDE) driven by an U-stable process

d-C = 1(-C )dC + f(-C−)d!UC , -0 = G ∈ R3 ,

where 1 : R3→ R3 and f : R3→ R3 ⊗R3 are locally W-Hölder continuous with W ∈ (0∨ (1−U)+,1], and !UC is
a 3-dimensional symmetric rotationally invariant U-stable process. Under certain dissipative and non-degenerate
assumptions on 1 and f, we show the +-uniformly exponential ergodicity for the semigroup %C associated with
{-C (G), C > 0}. Our proofs are mainly based on the heat kernel estimates recently established in [33] to demonstrate
the strong Feller property and irreducibility of %C . Interestingly, when U tends to zero, the diffusion coefficient f
can increase faster than the drift 1. As an application, we put forward a new heavy-tailed sampling scheme.
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1. Introduction

Let c(G) ∝ e−* (G) be a probability density function, where* : R3→ R represents a potential function
used in the field of physics. The classical Langevin Monte Carlo (LMC) method uses Langevin diffu-
sion processes to approximate the target distribution `(dG) = c(G)dG. More precisely, we consider the
SDE

d-C = −∇* (-C )dC +
√

2d�C , -0 = G, (1)

where (�C )C>0 is a 3-dimensional standard Brownian motion. The solution - describes the trajectory
of a particle motion in the potential field * (G). Under certain regularity assumptions on *, it is well
known that the SDE above admits a unique solution -C = -C (G) and that ` is an invariant probability
measure of semigroup %C generated by -C (G). Moreover, based on the dissipativity assumption

〈G,∇* (G)〉 > 20 |G |2 − 21,

where 20, 21 > 0, it is well known that the law of -C exponentially converges to the unique stationary
distribution ` in a certain sense as C→∞ (cf. [5,34]), that is, %C is exponentially ergodic. In particular, a
method is provided for generating samples from ` through the Euler discretization for SDE (1) (cf. [5]).
Numerous studies have analyzed the performances of LMC algorithms (see [12,13,20] and references
therein).

However, in statistical physics, Langevin diffusion -C represents the position of a particle at time C
which is influenced by a random force, where the random force is usually the sum of many i.i.d. random
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pulses with finite variance. According to the central limit theorem, the sum of the pulses converges to
a Gaussian distribution. If the random pulses have infinite variance, then the sum of the pulses could
converge to an U-stable distribution with U ∈ (0,2), a typical class of heavy-tailed distributions. In fact,
let -1, -2, · · · be i.i.d. random variables with common distribution

P(-1 > G) = P(-1 < −G) = G−U/2, G > 1,

where U ∈ (0,2). Considering the random walk (= = -1 + · · · + -=, by CLT (see [16, p. 158]), we have

(=/=1/U⇒.,

where . is a random variable with U-stable distribution, and⇒ represents weak convergence. More-
over, it is well known that heavy-tailed distributions appear in many stochastic systems. For example,
they are used to model inputs to computer and communications networks, they are used to describe
many risk processes, they also occur naturally in models of epidemiological spread, and as statisti-
cal evidence for their appropriateness in physics, geoscience and economics (see [19] and references
therein). Note that the important Pareto distributions in economics and their generalizations do indeed
provide a very flexible family of heavy-tailed distributions that may be used to model income distribu-
tions as well as a wide variety of other social and economic distributions (see [2]). We refer to [4] and
[17] for more details on the classes of heavy-tailed distributions and their applications in the insurance
and finance fields.

Now, for 3 = 1 and * (G) = |G |V in (1), it was previously shown in [37] that the diffusion process
defined by SDE (1) is exponentially ergodic if and only if V > 1. Therefore, the use of a continuous
Langevin diffusion (1) to simulate the heavy-tailed distribution is no longer a proper choice. Instead of
SDE (1), it is quite natural to consider the SDE

d-C = 1(-C )dC + d!UC , U ∈ (0,2), (2)

where (!UC )C>0 is a 3-dimensional rotationally invariant U-stable process with the usual fractional
Laplace generator Δ

U
2 , and

1(G) = −
Γ( 3−2+U

2 )

c
3
2 22−UΓ( 2−U2 )

e* (G)
∫
R3

e−* (H)∇* (H)
|G − H |3−(2−U)

dH = e* (G)Δ
U−2

2 (∇e−* ) (G),

where 3 > 2 and Δ
U−2

2 is the Riesz potential (cf. [40, page117]). Formally, one sees that

Δ
U
2 e−* − div(1e−* ) ≡ 0,

which implies that ` is an invariant measure of SDE (2). Rigorous theoretical results for the exponential
ergodicity of the above SDE (2) are given in [23, Theorem 1.1], and therein, some explicit conditions
on* are provided. This approach called the fractional Langevin Monte Carlo method was firstly intro-
duced in [35,38] and has been demonstrated to be useful in modern machine learning in terms of both
optimization and heavy-tailed sampling (see [22,39,45]).

Motivated by the studies above, we consider the SDE driven by multiplicative U-stable noises

d-C = 1(-C )dC + f(-C−)d!UC , -0 = G, (3)

where 1 : R3→ R3 and f : R3→ R3 ⊗R3 are two Borel measurable functions. The main contributions
of this study are twofold:
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(i) Under certain dissipativity, non-degeneracy and locally Hölder regularity assumptions on 1 and
f, we establish the exponential ergodicity of SDE (3) for all U ∈ (0,2), which covers the super-
critical regime U ∈ (0,1) in particular.

(ii) To simulate a large class of heavy-tailed distributions, we propose a new ergodicity SDE driven
by multiplicative stable processes. Compared with the recent study [23], our conditions on the
potential functions are simpler and easier to implement by computer.

Now we make certain assumptions on 1 and f:

(Hloc) For any < ∈ N, there is a constant �< > 1 such that for all |G | 6< and b ∈ R3 ,

�−1
< |b | 6 |f(G)b | 6�< |b |.

Moreover, there are W ∈ ((1 − U)+,1] and locally bounded measurable functions ℓ1 and ℓ2 on R3

such that for all G ∈ R3 and |ℎ| 6 1,

|1(G + ℎ) − 1(G) | 6 ℓ1 (G) |ℎ|W , ‖f(G + ℎ) − f(G)‖ 6 ℓ2 (G) |ℎ|W . (4)

(HA ,@glo ) For a given A > −U, there is a sufficiently small Y0 ∈ (0,1] and 20, 21 > 0 such that for all
|G | > 1,

〈G, 1(G)〉 + Y0ℓ1 (G) |G | + @(‖f(G)‖ + Y0ℓ2 (G))U |G |2−U 6 −20 |G |2+A + 21, (5)

where @ is defined by (22) below.

Remark 1.1. Notice that (4) is equivalent to the local W-Hölder continuity of 1 and f. If 1 and f are
locally Lipschitz, that is, W = 1 in (4), then one can take Y0 = 0 in (5). When W < 1, in order to adopt the
stopping time to localize the coefficients, we must use the pathwise uniqueness of the strong solutions.
Thus we must mollify the coefficients and require Y0 > 0 in (5) to have some uniform estimates for the
approximation coefficients. Examples of 1 and f satisfying (HA ,@glo ) are provided below. In particular,
1 and f can achieve a polynomial growth. Interestingly, when U ∈ (0,1), f can increase faster than 1
(see Example 1.4 below).

Under the above assumptions, and according to [9, Theorem 1.1] and by a standard localization
technique (see [18, p.216, Section 4.6]), there is a unique weak solution to SDE (3). The semigroup
associated with the Markov process -C (G) is defined by

%C 5 (G) := E 5 (-C (G)), 5 ∈ �1 (R3).

By Itô’s formula, one sees that the generator of %C is given by

L 5 (G) := Lf 5 (G) + 〈1(G),∇ 5 (G)〉, (6)

with

Lf 5 (G) = 23,U
∫
R3

5 (G + f(G)I) + 5 (G − f(G)I) − 2 5 (G)
|I |3+U

dI, 23,U :=
U2U−2Γ( 3+U2 )

c
3
2 Γ( 2−U2 )

. (7)

In particular,

Δ
U
2 5 (G) = 23,U

∫
R3

5 (G + I) + 5 (G − I) − 2 5 (G)
|I |3+U

dI, (8)
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which is the usual fractional Laplacian (see [26, Theorem 1.1]). We call SDE (3) supercritical for
U ∈ (0,1), because from the view point of PDE, the drift term in this case plays a dominant role
compared with the diffusion term Lf (see [9]).

The main result of this paper is as follows:

Theorem 1.2. Let A > −U and ? ∈ ((−A) ∨ 0, U). Define +? (G) := 1 + |G |? . Suppose that (Hloc) and
(HA ,@glo ) hold. Then there is a unique invariant probability measure ` associated with (%C )C>0. Moreover,

(i) if A > 0, then %C is +?-uniformly exponentially ergodic, i.e., there are constants _,�? > 0 such
that for all C > 0 and G ∈ R3 ,

‖%C (G.·) − `‖Var;+? := sup
‖i/+? ‖∞61

|%Ci(G) − `(i) | 6�?e−_C+? (G);

(ii) if A > 0, then %C is uniformly exponentially ergodic, i.e., there are constants _,� > 0 such that
for all C > 0 and G ∈ R3 ,

‖%C (G.·) − `‖Var := sup
‖i ‖∞61

|%Ci(G) − `(i) | 6�e−_C .

Remark 1.3. Let ? > 1. Since the usual Wasserstein-? metric W? is dominated by the weighted total
variation distance ‖ · ‖Var;+? (see [41, Theorem 6.15]), in case (i) of Theorem 1.2, when U ∈ (1,2), we
also have the exponential convergence of %C in the W1-distance.

We provide two examples below to illustrate our main result.

Example 1.4. The example presented below shows that 1 and f can undergo polynomial decay and
growth:

1(G) = −G(1 + |G |2)V/2, f(G) = (1 + |G |2)W/2I, V ∈ (−U,∞), W ∈ (−∞,1 + V
U
).

For |G | > 1, by Young’s inequality, we have

〈G, 1(G)〉 + @‖f(G)‖U |G |2−U = −|G |2 (1 + |G |2)
V

2 + @(1 + |G |2)
UW

2 |G |2−U

6 −2
V

2 ∧0 |G |2+V + 2
U(W∨0)

2 @ |G |2−U+U(W∨0) 6 −2(
V

2 ∧0)−1 |G |2+V + 21.

In particular, when U > 1, V can be less than −1 such that 1 undergoes polynomial decay. Moreover,
for a fixed V > 0, when U ↓ 0, W can go toward infinity. In other words, f can grow faster than 1.
This is not surprising because for the SDE driven by compound Poisson processes (in a certain sense,
corresponding to U = 0), f can present arbitrary growth.

Example 1.5. The example below shows that 1 and f can increase exponentially:

1(G) = −Ge |G | , f(G) = e |G |/VI, V ∈ (U,2).

It is easy to see that for |ℎ | 6 1,

|1(G + ℎ) − 1(G) | 6 (1 + |G |)e |G |+1 |ℎ| =: ℓ1 (G) |ℎ|,

‖f(G + ℎ) − f(G)‖ 6 e( |G |+1)/V |ℎ| =: ℓ2 (G) |ℎ|.
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Thus for any |G | > 1 and @ > 1, by Young’s inequality, a sufficiently small Y0 can be chosen such that

〈G, 1(G)〉 + Y0ℓ1 (G) |G | + @(‖f(G)‖ + Y0ℓ2 (G))U |G |2−U

= −|G |2e |G | + Y0 (1 + |G |) |G |e |G |+1 + @(e |G |/V + Y0e( |G |+1)/V)U |G |2−U

6 −|G |2e |G | + 1
4 |G |

2e |G |+1 + 2@eU |G |/V |G |2−U 6 − 1
2 |G |

2e |G | + 21.

However, when U ↓ 0, the diffusion f can increase faster than the drift 1.

The ergodicity of SDE (3) has been extensively studied for Brownian noise (cf. [3,8,14,42,44]), and
dissipativity condition (5) usually takes the form (for example, see [44, (7.1)])

2〈G, 1(G)〉 + ‖f(G)‖2 6 −20 |G |2 + 21.

In recent years, there has also been significant interest in the ergodicity of SDEs driven by Lévy pro-
cesses, see [25,28,43,44] and the references therein. To the best of our knowledge, there are at least three
well-developed methods for studying the exponential ergodicity of a Markov process defined through
an SDE, namely, Coupling method (cf. [23,25,27–30]), Functional inequality method (see [3,7,42]),
and Meyn-Tweedie’s minorization condition (cf. [15,21,31,32,34]). Each method has its own merits
and can be adapted to different situations. To construct a successful coupling when applying a coupling
method, it is usually assumed that the one-sided monotone condition holds (see [29]), that is, for some
' > 0,

〈G − H,∇* (G) − ∇* (H)〉 > −! |G − H |21 |G−H |<' +  |G − H |21 |G−H |>' . (9)

For the functional inequality method, it is usually assumed that the potential function * is at least �2-
smooth and that the associated process is reversible, that is, the associated generator is symmetric with
respect to its invariant measure ` (see [3,42]). As the obvious advantage of this method, the quantitative
convergence rate can be calculated from the parameters. Finally, Meyn-Tweedie’s approach is based on
the Lyapunov estimates and verifying the strong Feller property and irreducibility for the associated
semigroup.

To prove our main theorem, we adopt the Meyn-Tweedie method. It is known that the strong Feller
property reflects the regularization effects of the noise and is usually related to the continuity of the
transition density of a Markov process with respect to the starting point. There are many ways to estab-
lish the strong Feller property, such as, the gradient estimates and Harnack’s inequalities, etc.. For the
irreducibility, when the driving noise is Brownian motion, there are several methods, i.e., by solving
the control problem [32], by using Girsanov’s transformation [44], or by applying the classical sup-
ported theorem of an SDE [6]. However, when the driven noise is an U-stable noise, the above method
for irreducibility is no longer effective. In [44], we directly verified the positivity of the Dirichlet heat
kernel using a localization method. Therein, this is restricted to U ∈ (1,2) because the heat kernel of
the operator in this case is comparable with that of the fractional Laplacian Δ

U
2 . In a recent study

[33], when the conditions in (Hloc) hold globally, that is, the constant �< does not depend on < and
ℓ1 (G), ℓ2 (G) are constants, we obtain the following two-sided estimates for the density of SDE (3), i.e.,
for any ) > 0 and a certain � > 1, and for all C ∈ (0,)] and G, H ∈ R3 ,

�−1C (C
1
U + |\C (G) − H |)−3−U 6 ?(C, G, H) 6�C (C

1
U + |\C (G) − H |)−3−U, (10)

where \C (G) solves the following regularized ODE

¤\C (G) = 1 ∗ qC1/U (\C (G)), \0 (G) = G, (11)
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where (qY)Y>0 represents a family of standard mollifiers. The above estimates still allow us to demon-
strate the irreducibility of %C by localization. For the existence of invariant measures, we use the stan-
dard Krylov-Bogoliubov’s theorem by showing certain Lyapunov’s type estimates.

The remainder of this paper is organized as follows. In Section 2, we recall some basic notions
regarding the ergodicity of the Markov processes. These notions used are standard in the literature
(see [14,36]). Moreover, we also prove a general criterion for the irreducibility of a Markov process
in terms of the heat kernel estimates, which is motivated by the studies in [11] and [44]. In Section
3, we prove our main result Theorem 1.2. For the existence of invariant measures, using the classical
Krylov-Bogoliubov’s method, we show the Lyapunov type estimates for -C (G). For the uniqueness of
the invariant measure as well as the exponential ergodicity, we show the strong Feller property and
the irreducibility of %C based on the heat kernel estimates and suitable localization and smoothing
arguments. In Section 4, we present an application of our main results to the heavy-tailed sampling. In
the Appendix, the proof of weak convergence for mollifying SDEs is provided for convenience.

We conclude this introduction by mentioning the following conventions: With or without a subscript,
letter � denotes an unimportant constant, whose value may change in different places. In addition,
we use � �� � and � .� � to denote �−1� 6 � 6 �� and � 6 �� for a certain constant � > 1
respectively. Moreover, for 0, 1 ∈ R, we denote 0 ∧ 1 :=min{0, 1} and 0 ∨ 1 :=max{0, 1}.

2. Preliminaries

In this section, we prepare some notions and criterions about the ergodicity and irreducibility of general
Markov processes in Euclidean spaces. Fix # ∈ N. Let D be the space of all cádlág functions from
[0,∞) to R# , which is endowed with the Skorokhod topology so that D becomes a Polish space. Let
-C (l) := lC be the coordinate process over D. For B > 0, let \B :D→D be the shift operator:

\B (l) (C) = l(C + B), C > 0.

Let (PG)G∈R# be a family of probability measures over D so that M := {(-C )C>0, (PG)G∈R# } forms a
family of Markov processes with regard to the natural filtration (FC )C>0. More precisely,

(i) For each G ∈ R# , PG (-0 = G) = 1.
(ii) For each � ∈B(D), G ↦→ PG (�) is Borel measurable.
(iii) For any B > 0 and � ∈B(D), it holds that

PG (� ◦ \B |FB) = P-B (�). (12)

Let B1 (R# ) be the space of all bounded measurable functions over R# . For C > 0 and 5 ∈ B1 (R# ),
the semigroup associated with M is defined by

%C 5 (G) := EG 5 (-C ), G ∈ R# ,

where EG denotes the expectation with respect to PG . The following notions are standard and can be
found in [14, Chapter 11] or [34, Chapter 16].

(1) A probability measure ` ∈ P(R# ) is called an invariant probability measure of (%C )C>0, if

`(%C 5 ) = `( 5 ), ∀C > 0, 5 ∈ B1 (R# ).
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(2) We call (%C )C>0 ergodic, if there exists a unique invariant probability measure ` of (%C )C>0,
equivalently, (see [14, Theorem 11.9]), for any G ∈ R# and 5 ∈ B1 (R# ),

lim
C→∞

1
C

∫ C

0
%B 5 (G)dB = `( 5 ).

(3) Let + : R# → [1,∞) be a measurable function. We call (%C )C>0 be +-uniformly exponentially
ergodic if there are constants �,_ > 0 and an invariant probability measure ` such that

sup
‖q/+ ‖∞61

|%Cq(G) − `(q) | 6�e−_C+ (G), C > 0, G ∈ R# .

In particular, if + ≡ 1, then we call (%C )C>0 be uniformly exponentially ergodic.
(4) (%C )C>0 is said to be strong Feller, if %C 5 ∈ �1 (R# ) for any C > 0 and 5 ∈ B1 (R# ).
(5) (%C )C>0 is called irreducible, if for any C > 0, open ball � and G ∈ R# , %C1� (G) > 0.

The following general result is taken from [21, Theorem 2.5].

Theorem 2.1. Suppose that (%C )C>0 is strong Feller and irreducible. If there are ?, _ > 0 and �1,�2 >

0 such that

EG |-C |? 6�1 |G |?e−_C +�2, C > 0, G ∈ R# ,

then (%C )C>0 is +-uniformly exponentially ergodic with + (G) = 1 + |G |? . If there are ?,)0,�3 > 0 such
that

EG |-C |? 6�3, C > )0, G ∈ R# ,

then (%C )C>0 is uniformly exponentially ergodic.

Next we present a general criterion for irreducibility in terms of the heat kernel estimates. We believe
that it could be used in other cases. Let d : (0,∞) × (0,∞) → (0,∞) be a continuous function with the
properties that for any C > 0, A ↦→ d(C, A) is decreasing on (0,∞), and for any 0 < X < ) <∞,

sup
C ∈[X,) ]

sup
A>0

d(C, A) <∞. (13)

We make some assumptions about the Markov process M :

(A1) We suppose that for each C > 0, with respect to PG , -C admits a family of transition probability
density function ?(C, G, H) in R# so that

PG (-C ∈ �) =
∫
�

?(C, G, H)dH, ∀� ∈B(R# ), C > 0, G ∈ R# . (14)

Moreover, C ↦→ -C is stochastically continuous, equivalently,

PG (-C ≠ -C−) = 0, ∀C > 0, G ∈ R# . (15)

(A2) We suppose that for any ) > 0, there are constants _0,�0 > 1 such that for any C ∈ (0,)] and
G ∈ R# , and for Lebesgue almost all H ∈ R# ,

�−1
0 d(C, _0ΓC (G, H)) 6 ?(C, G, H) 6�0d(C,ΓC (G, H)/_0), (16)
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where ΓC (G, H) : (0,∞) ×R# ×R# → (0,∞) is a measurable function, and for each H ∈ R# ,

(C, G) ↦→ ΓC (G, H) is continuous.

Remark 2.2. In (A2), for the standard Gaussian case, one usually takes d(C, A) = C−3/2e−A
2/C and

ΓC (G, H) = |G − H |. For the U-stable case, if U ∈ [1,2), one takes d(C, A) = C (C1/U + A)−3−U and
ΓC (G, H) = |G − H |; and if U ∈ (0,1), one takes ΓC (G, H) = |G − \C (H) |, where \C (H) is the ODE flow
associated with drift 1 (see (11) above). We would like to emphasize that we do not make any con-
tinuity assumption about H ↦→ ?(C, G, H). Usually, the regularity of the density requires more regular
coefficients in the theory of SDEs.

Let � be an open subset of R# . The exit time of -C from � is defined by g� := inf
{
C > 0, -C ∉ �

}
.

We have a general result on irreducibility.

Theorem 2.3. Let �0 b � be two connected domains of R# so that � has Lebesgue-zero measure
boundary. Suppose that (A1) and (A2) hold, and the above ΓC (G, H) and d(C, A) satisfy the following
conditions stating that there are C0, X0 > 0 small enough and functions ℓ0 (C), ℓ1 (C) defined on (0, C0]
such that for all C ∈ (0, C0], H0 ∈ �0, G, H ∈ �X0 (H0) ⊂ �0 and G′ ∉ �,

ΓC (G, H) 6 ℓ0 (C), ΓC (G′, H) > ℓ1 (C), (17)

and for the �0, _0 in (16), C ↦→ d(C, ℓ1 (C)/_0) is increasing on (0, C0], and

�−1
0 d

(
C, _0ℓ0 (C)

)
> 2�0d

(
C, ℓ1 (C)/_0). (18)

Then for any G0, H0 ∈ �0 and A1, A2 < dist(�0, �
2),

inf
G∈�A1 (G0)

PG

(
-C ∈ �A2 (H0); C < g�

)
> 20 > 0, (19)

where 20 only depends on d, _0,�0, C0, X0 and A1, A2, G0, H0, �0, �.

Proof. Let C0 and X0 be as in the assumptions. We divide the proofs into two steps.
(i) In this step we show that for all H0 ∈ �0, X ∈ (0, X0

2 ] and C ∈ (0, C0],

inf
G∈�2X (H0)

PG

(
-C ∈ �X (H0); C < g�

)
>�0d

(
C, ℓ1 (C)/_0

)
|�X (H0) | > 0. (20)

Fix B ∈ (0, C) and = ∈ N. We define a stopping time )= as follows:

)= =

{
:B2−= if (: − 1)B2−= 6 g� < :B2−=, : = 1,2, . . . ,2=,
∞ if g� > B.

Clearly, on {g� < B},

B> )= ↓ g� as =→∞.

For any bounded � ∈B(�), by the Markov property and (14), we have

PG (-C ∈ �; g� < B) =
2=∑
:=1

PG (-C ∈ �; (: − 1)B2−= 6 g� < :B2−=) =
2=∑
:=1

PG (-C ∈ �;)= = :B2−=)
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=

2=∑
:=1

EG

(
P-)= (-C−)= ∈ �);)= = :B2

−=
)

=

2=∑
:=1

EG

(∫
�

?(C −)=, -)= , H)dH;)= = :B2−=
)

= EG

(∫
�

?(C −)=, -)= , H)dH; g� < B
)

(16)
6 �0EG

(∫
�

d
(
C −)=,ΓC−)= (-)= , H)/_0

)
dH; g� < B

)
.

Letting =→∞ and by (13) and the dominated convergence theorem, we get

PG (-C ∈ �; g� < B) 6�0EG

(∫
�

d
(
C − g� ,ΓC−g� (-g� , H)/_0

)
dH; g� < B

)
.

Below we take � = �X (H0). For H ∈ �X (H0), since -g� ∉ � and A → d(C − g� , A) is decreasing, C ↦→
d(C, ℓ1 (C)/_0) is increasing, by (17) we have

d
(
C − g� ,ΓC−g� (-g� , H)/_0

)
6 d

(
C − g� , ℓ1 (C − g�)/_0

)
6 d

(
C, ℓ1 (C)/_0

)
.

Hence, for any B < C,

PG

(
-C ∈ �X (H0); g� < B

)
6�0

∫
�X (H0)

d
(
C, ℓ1 (C)/_0

)
dH.

By (15) and (16), we have

PG (g� = C) = PG (g� = C, -C ∈ m�) + PG (g� = C, -C ∉ m�, -B ∈ �, B < g�)

6 PG (-C ∈ m�) + PG (-C ≠ -C−) = 0.

Thus, by the lower bound in (16) and the above estimates, we arrive at

PG

(
-C ∈ �X (H0); C < g�

)
= PG

(
-C ∈ �X (H0)

)
− PG

(
-C ∈ �X (H0); g� < C

)
=

∫
�X (H0)

?(C, G, H)dH − lim
B↑C
PG

(
-C ∈ �X (H0); g� < B

)
>

∫
�X (H0)

(
�−1

0 d
(
C, _0ΓC (G, H)

)
−�0d

(
C, ℓ1 (C)/_0

) )
dH.

For G ∈ �2X (H0), H ∈ �X (H0), since A→ d(C, A) is decreasing, by (17), we obtain

PG

(
-C ∈ �X (H0); C < g�

)
>

(
�−1

0 d
(
C, _0ℓ0 (C)

)
−�0d

(
C, ℓ1 (C)/_0

) )
|�X (H0) |

(18)
> �0d

(
C, ℓ1 (C)/_0

)
|�X (H0) |,

and then get (20).
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(ii) By (14), there is a density ?� (C, G, H) so that for each � ∈B(�),∫
�

?� (C, G, H)dH = PG (-C ∈ �; C < g�).

Moreover, by the Markov property, we have for each 0 < B < C,∫
�

?� (C, G, H)dH =
∫
�

?� (B, G, I)dI
∫
�

?� (C − B, I, H)dH. (21)

Indeed, by B + g� ◦ \B = g� on {B < g�} and (12),

PG (-C ∈ �; C < g�) = EG
(
PG

(
-C ∈ �; C < g� |FB

) )
= EG

(
PG

(
-C−B ◦ \B ∈ �; C < B + g� ◦ \B , B < g� |FB

) )
= EG

(
P-B

(
-C−B ∈ �; C − B < g�

)
; B < g�

)
=

∫
�

?� (B, G, I)
∫
�

?� (C − B, I, H)dHdI.

Let G0 ∈ �0. Since �0 is connected, there is a continuous curve C ⊂ �0 connecting G0 and H0. Let

X := (dist(�0, m�) ∧ X0)/4.

It is easy to see that there exists = ∈ N large enough and {G8 , 8 = 0,1, · · · , = + 1} ⊂ C such that

C 6 =C0, G8 ∈ �X (G8−1), 8 = 1, · · · , = + 1, �X (G=+1) ⊂ �A2 (H0).

For each 9 = 1, · · · , = + 1, since �X (G 9−1) ⊂ �2X (G 9 ), by what we have proved in Step (i),

inf
H 9−1∈�X (G 9−1)

∫
�X (G 9 )

?� ( C
=
, H 9−1, H 9 )dH 9 > inf

H 9−1∈�2X (G 9 )

∫
�X (G 9 )

?� ( C
=
, H 9−1, H 9 )dH 9

>�0d
(
C
=
, ℓ1 ( C= )/_0

)
|�X (H0) | > 0.

Hence, for all G ∈ �X (G0), by (21),∫
�A2 (H0)

?� (C, G, H)dH =
∫
�

?� ( C
=
, G, H1)dH1 · · ·

∫
�

?� ( C
=
, H=−1, H=)dH=

∫
�A2 (H0)

?� ( C
=
, H=, H)dH

>
∫
�X (G1)

?� ( C
=
, G, H1)dH1 · · ·

∫
�X (G=)

?� ( C
=
, H=−1, H=)dH=

∫
�X (G=+1)

?� ( C
=
, H=, H)dH

>
(
�0d

(
C
=
, ℓ1 ( C= )/_0

)
|�X (H0) |

)=+1
.

Thus,

inf
G∈�X (G0)

PG

(
-C ∈ �A2 (H0); C < g�

)
>

(
�0d

(
C
=
, ℓ1 ( C= )/_0

)
|�X (H0) |

)=+1
> 0,

which implies (19) by the finitely covering technique.
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3. Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by verifying the conditions in Theorem 2.1. Below we fix

A > −U, ? ∈ ((−A) ∨ 0, U),

and define

+? (G) := (1 + |G |2)?/2, @ :=
23+2UΓ( 3+U2 )
Γ( 32 )Γ(

2−U
2 )

(
U

2 − U +
U

(U − ?)?

)
. (22)

First of all, we show that +? is a Lyapunov function of the operator L .

Lemma 3.1. Suppose that 1, f are locally bounded and for some 20, 21 > 0,

@‖f(G)‖U |G |2−U + 〈G, 1(G)〉 6 −20 |G |2+A + 21, |G | > 1. (23)

Then there are ^0, ^1 > 0 such that for all G ∈ R3 ,

L+? (G) = Lf+? (G) + 〈1(G),∇+? (G)〉 6 −^0+? (G)1+
A
? + ^1. (24)

Proof. It suffices to prove (24) for |G | > 1. By (7), we make the following decomposition:

2−1
3,ULf+? (G) =

∫
|I |6 |G |

2‖f (G) ‖

[
+? (G + f(G)I) ++? (G − f(G)I) − 2+? (G)

] dI
|I |3+U

+
∫
|I |> |G |

2‖f (G) ‖

[
+? (G + f(G)I) ++? (G − f(G)I) − 2+? (G)

] dI
|I |3+U

=: �1 + �2.

For �1, denoting by �(G) := (1 + |G |2)I − (2 − ?)G ⊗ G, we have

∇2+? (G) = ?(1 + |G |2)
?

2 −2�(G).

Note that for any b ∈ R3 ,

〈b, �(G)b〉 6 (1 + |G |2) |b |2.

By Taylor’s expansion, for |I | 6 |G |
2‖f (G) ‖ , we have

+? (G + f(G)I) ++? (G − f(G)I) − 2+? (G) 6 ? |f(G)I |2
∫ 1

0

∫ 1

−1
(1 + |G + A1A2f(G)I |2)

?

2 −1dA1dA2

6 2?‖f(G)‖2 |I |2
(
1 + |G |

2

4

) ?
2 −1

.

Hence, for (3 := 2c
3
2 /Γ( 32 ),

�1 6 2?‖f(G)‖2
(
1 + |G |

2

4

) ?
2 −1

∫
|I |6 |G |

2‖f (G) ‖

|I |2−3−UdI
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= 2?(3 ‖f(G)‖2
(
1 + |G |

2

4

) ?
2 −1

∫ |G |
2‖f (G) ‖

0
A1−UdA

6
?2U−?+1(3

2 − U ‖f(G)‖U |G |?−U .

For �2, noting that

| (1 + |G + I |2)
?

2 − (1 + |G |2)
?

2 | 6 | |G + I |2 − |G |2 |
?

2 6 2
?

2 |G |
?

2 |I |
?

2 + |I |? ,

we have

�2 6 2
∫
|I |> |G |

2‖f (G) ‖

[
2
?

2 |G |
?

2 |f(G)I |
?

2 + |f(G)I |?
] dI
|I |3+U

6
23+U(3
U − ? ‖f(G)‖

U |G |?−U .

Combining the above calculations and recalling (22), we get for |G | > 1,

Lf+? (G) 6 23,U(3

(
?2U−?+1

2 − U + 23+U

U − ?

)
‖f(G)‖U |G |?−U 6 ?2

?

2 −1@‖f(G)‖U |G |?−U .

Thus by (23) and ∇+? (G) = ?G(1 + |G |2)
?

2 −1, we have

Lf+? (G) + 〈1(G),∇+? (G)〉 6 ?2
?

2 −1@‖f(G)‖U |G |?−U + ?(1 + |G |2)
?

2 −1〈G, 1(G)〉

6 ?(1 + |G |2)
?

2 −1
(
@‖f(G)‖U |G |2−U + 〈G, 1(G)〉

)
6 ?(1 + |G |2)

?

2 −1 ( − 20 |G |2+A + 21
)

6 −^0 (1 + |G |2)
?+A

2 + ^1 = −^0+? (G)1+
A
? + ^1,

where in the second inequality we use (1 + |G |2)1−
?

2 6 21− ?2 |G |2−? with |G | > 1 , and ^0 = ?20.

As a consequence of the above Lyapunov-type estimate, we have (see [44, Lemma 7.1]):

Lemma 3.2. Let -C (G) be any weak solution of SDE (3) starting from G. Under the assumptions of
Lemma 3.1, there exists a constant � > 0 such that for all G ∈ R3 and C > 0,[

E

(
sup
B∈[0,C ]

+? (-B (G))
1
2

)]2

+ E
(∫ C

0
+? (-B (G))1+

A
? dB

)
.� +? (G) + C, (25)

and for the ^0 in (24),

E+? (-C (G)) 6


e−^0C+? (G) +�, A = 0,

� (e−^0C/2C−?/A + 1), A > 0.
(26)

Proof. Let # (C,dI) be the Poisson random measure associated with !UC , i.e.,

# (C,Γ) :=
∑

B∈(0,C ]
1Γ (!UB − !UB−), Γ ∈B(R3).
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Let #̃ (C,dI) := # (C,dI) − 223,UC |I |−3−UdI be the compensated Poisson random measure, where 23,U
is the same constant as in (7). By Lévy-Itô’s decomposition, one can write

!UC =

∫
|I |<1

I#̃ (C,dI) +
∫
|I |>1

I# (C,dI).

Thus SDE (3) can be written as

d-C = 1(-C )dC +
∫
|I |<1

f(-C−)I#̃ (dC,dI) +
∫
|I |>1

f(-C−)I# (dC,dI). (27)

By Itô’s formula (see [1, Theorem 4.4.7]) and (24), we have

+? (-C ) =+? (G) +
∫ C

0

[
〈∇+? (-B), 1(-B)〉 + Lf+? (-B)

]
dB +"C (28)

6+? (G) +
∫ C

0

[
− ^0+? (-B)1+

A
? + ^1

]
dB +"C , (29)

where "C is a local cádlág martingale. Let g= be a sequence of stopping times localizing "C , i.e., "C∧g=
is a martingale and g= ↑∞ as =→∞. Then we have

E+? (-C∧g= ) + ^0E

∫ C∧g=

0
+? (-B)1+

A
? dB6+? (G) + ^1C.

In particular, letting =→∞ and by Fatou’s lemma, we obtain that for all C > 0,

E+? (-C ) + ^0E

(∫ C

0
+? (-B)1+

A
? dB

)
6+? (G) + ^1C.

Moreover, starting from (29), by stochastic Gronwall’s inequality ([44, Lemma 3.7]), we also have[
E

(
sup
B∈[0,C ]

+? (-B (G))
1
2

)]2

.� +? (G) + C,

and starting from (28), as above,

E+? (-C ) =+? (G) +
∫ C

0
E
[
〈∇+? (-B), 1(-B)〉 + Lf+? (-B)

]
dB.

For A > 0, by (24) and Jensen’s inequality, we have

d
dC
E+? (-C ) 6 −^0E

[
+? (-C )1+

A
?

]
+ ^1 6 −^0

[
E+? (-C )

]1+ A? + ^1.

Let 5 (C) := E+? (-C ). The above inequality implies

5 (C) ′ 6 −^0 5 (C)1+
A
? + ^1.

Since 5 (C) > 1, by the chain rule we have

(e^0C 5 (C)) ′ = (^0 5 (C) + 5 ′(C))e^0C 6 (^0 5 (C) − ^0 5 (C)1+
A
? + ^1)e^0C 6 ^1e^0C

⇒ 5 (C) 6 e^0 (B−C) 5 (B) + ^1
^0
(1 − e^0 (B−C) ), C > B> 0,

(30)
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which in particular gives the first estimate in (26) for A = 0 by taking B = 0. If A > 0, then by the chain
rule and Young’s inequality we also have

(C
2?
A 5 (C)) ′ 6 2?

A
C

2?
A −1 5 (C) − ^0C

2?
A 5 (C)1+

A
? + ^1C

2?
A

=
2?
A
C
?−A
?+A C

2?2
A (?+A ) 5 (C) − ^0C

2?
A 5 (C)1+

A
? + ^1C

2?
A

6�C
?
A −1 + ^1C

2?
A .

Integrating both sides from 0 to C, we obtain

C
2?
A 5 (C) 6 A�

?
C
?
A + A ^1

A+2? C
2?
A +1⇒ 5 (C) 6 A�

?
C−
?
A + A ^1

A+2? C. (31)

Combining (30) and (31), we obtain

5 (2C) 6 e−^0C 5 (C) + ^1
^0

6 e−^0C ( A�
?
C−
?
A + A ^1

A+2? C) +
^1
^0
,

which in turn gives the second estimate in (26) for A > 0.

Let q : R3→ R+ be a smooth density function with support in the unit ball. We define

qY (G) := Y−3q(Y−1G), G ∈ R3 , Y ∈ (0,1),

1Y (G) := 1 ∗ qY (G), fY (G) := f ∗ qY (G).

By (Hloc), it is easy to see that for any < ∈ N and all Y ∈ (0,1),

|1Y (G) − 1Y (H) | + ‖fY (G) − fY (H)‖ 6�<+1 |G − H |W , ∀G, H ∈ �<, (32)

and for some Y1 ∈ (0,1) depending on <, and for all Y ∈ (0, Y1),

�−1
< |b | 6 |fY (G)b | 6�< |b |, ∀G ∈ �<, b ∈ R3 . (33)

Moreover, note that by (4),

|1Y (G) − 1(G) | 6
∫
R3
|1(G − H) − 1(G) |qY (H)dH 6 YWℓ1 (G),

‖fY (G) − f(G)‖ 6
∫
R3
‖f(G − H) − f(G)‖qY (H)dH 6 YWℓ2 (G).

Hence, by (HA ,@glo ), for any Y ∈ (0, Y1/W
0 ),

〈G, 1Y (G)〉 + @ |fY (G) |U |G |2−U 6 〈G, 1(G)〉 + YW |G |ℓ1 (G) + @(‖f(G)‖ + ℓ2 (G)YW)U |G |2−U

6 〈G, 1(G)〉 + Y0 |G |ℓ1 (G) + @(‖f(G)‖ + ℓ2 (G)Y0)U |G |2−U

6 −20 |G |2+A + 21. (34)

Now, we consider the approximation SDE

d- YC = 1Y (- YC )dC + fY (- YC−)d!UC , - Y0 = G. (35)
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Since the coefficients are smooth, but, may be not bounded, by (34) and a standard localization tech-
nique, there is a unique global strong solution - YC (G) to the above SDE. Moreover, for any 5 ∈ �1 (R3),
we have

lim
Y→0
E 5 (- YC (G)) = E 5 (-C (G)), (36)

which is proven in Appendix. Notice that if 1 and f are locally Lipschitz, then it is not necessary to
mollify 1 and f, and it suffices to consider the truncated 1 and f as done below.

Let j ∈ �∞0 (R
3) be a cutoff function with

j(G) = 1, |G | 6 1, j(G) = 0, |G | > 2.

For < ∈ N, set

j< (G) := j(G/<), 1Y< (G) := 1Y (G)j< (G), fY< (G) := fY (Gj< (G)).

By (32) and (33), it is easy to see that 1Y< and fY< satisfy the following global assumptions:

|1Y< (G) − 1Y< (H) | + ‖fY< (G) − fY< (H)‖ 6�< |G − H |W , ∀G, H ∈ R3 , (37)

�−1
< |b | 6 |fY< (G)b | 6�< |b |, ∀G, b ∈ R3 , (38)

where the constant does not depend on Y. Let \C (G) solve the ODE

¤\C (G) = (1Y< ∗ qC1/U ) (\C (G)), \0 (G) = G. (39)

We also consider the SDE with cutoff coefficients

d- Y,<C = 1Y< (-
Y,<
C )dC + fY< (-

Y,<
C− )d!UC , -

Y,<

0 = G. (40)

Let - Y,<C (G) be the unique strong solution of the above SDE. By [33, Theorem 1.1], - Y,<C (G) admits
a density ?Y< (C, G, H) enjoying the estimates that for any ) > 0 and < ∈ N, there is a constant �0 > 1
depending on <, but independent of Y ∈ (0, Y1), such that for all C ∈ (0,)] and G, H ∈ R3 ,

?Y< (C, G, H) ��0 C (C
1
U + |G − \C (H) |)−3−U, (41)

|∇ log ?Y< (C, G, ·) | (H) 6�0C
− 1
U . (42)

For any < ∈ N and G ∈ �<, we define the exit time of - Y,<C (G) from �< by

g
Y,G
�<

:= inf
{
C > 0 : - YC (G) ∉ �<

}
.

By the uniqueness of strong solution, we have

- YC (G) = -
Y,<
C (G), C < g

Y,G
�<

. (43)

Lemma 3.3 (Strong Feller property). For any C > 0 and bounded measurable function 5 , the function
G ↦→ %C 5 (G) is bounded continuous.
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Proof. By Lusin’s theorem, it suffices to show that for any C > 0,

lim
G→H

sup
5 ∈�1 (R3) , ‖ 5 ‖∞61

|E( 5 (-C (G)) − 5 (-C (H))) | = 0. (44)

Indeed, for fixed H ∈ R3 and any Y > 0, by (44), there is a X > 0 such that for all |G − H | 6 X,

sup
5 ∈�1 (R3) , ‖ 5 ‖∞61

|E( 5 (-C (G)) − 5 (-C (H))) | 6 Y. (45)

For any bounded measurable function 5 with ‖ 5 ‖∞ 6 1, by Lusin’s theorem, there is a continuous
function 5Y ∈ �1 (R3) with ‖ 5Y ‖∞ 6 1 (possiblly depending on G, H) such that

|E( 5 (-C (G)) − 5Y (-C (G))) | 6 Y, |E( 5 (-C (H)) − 5Y (-C (H))) | 6 Y,

which together with (45) yields that for all |G − H | 6 X,

|E( 5 (-C (G)) − 5 (-C (H))) | 6 3Y.

Thus we obtain the strong Feller property. Since for any 5 ∈ �1 (R3),

lim
Y→0
E( 5 (- YC (G)) − 5 (- YC (H)))

(36)
= E( 5 (-C (G)) − 5 (-C (H))),

for (44), we only need to prove that

lim
G→H

sup
Y∈(0,1)

sup
5 ∈�1 (R3) , ‖ 5 ‖∞61

|E( 5 (- YC (G)) − 5 (- YC (H))) | = 0. (46)

Given G, H ∈ R3 , let < > |G | ∨ |H |. For given 5 ∈ �1 (R3) with ‖ 5 ‖∞ 6 1, we have

|E( 5 (- YC (G)) − 5 (- YC (H))) | 6
��E[( 5 (- YC (G)) − 5 (- YC (H)))1C<gY,G

�<
∧gY,H
�<

] �� + 2P
(
C > g

Y,G
�<
∧ gY,H

�<

)
(43)
=

��E[( 5 (- Y,<C (G)) − 5 (- Y,<C (H)))1C<gY,G
�<
∧gY,H
�<

] �� + 2P
(
C > g

Y,G
�<
∧ gY,H

�<

)
6

��E[( 5 (- Y,<C (G)) − 5 (- Y,<C (H))
] �� + 2P

(
C > g

Y,G
�<
∧ gY,H

�<

)
.

By (42), we have

|E( 5 (- Y,<C (G)) − 5 (- Y,<C (H))) | =
����∫
R3

5 (I) (?Y< (C, G, I) − ?Y< (C, H, I))dI
����6�<C

− 1
U |G − H |.

Moreover, by Chebyshev’s inequality and (25) with ? ∈ (0, U),

P(C > g
Y,G
�<
) 6 P

(
sup
B6C
|- YB (G) | ><

)
6 E

(
sup
B6C
|- YB (G) |?/2

)
/<?/2 6� (+? (G) + C)1/2/<?/2. (47)

Combining the above calculations, we obtain that for any 5 ∈ �1 (R3) with ‖ 5 ‖∞ 6 1,

|E( 5 (- YC (G)) − 5 (- YC (H))) | 6�<C
− 1
U |G − H | +�0 (+? (G) ++? (H) + C)1/2/<?/2,

where �0 does not depend on <. Thus we obtain (46) by first letting G→ H and then <→∞.
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Lemma 3.4 (Irreducibility). For any G0, H0 ∈ R3 and A, C > 0, we have

inf
G∈�A (G0)

P(-C (G) ∈ �A (H0)) > 0. (48)

Proof. Since - YC (G) weakly converges to -C (G) as Y ↓ 0, for any open set � ⊂ R3 , we have

P(-C (G) ∈ �) > lim inf
Y→0

P(- YC (G) ∈ �). (49)

Below we fix Y ∈ (0,1) small enough, and G, H0 ∈ R3 , A > 0. Let < > 2 be big enough such that {G} ∪
�A (H0) ⊂ �<−2. Then we have

P(- YC (G) ∈ �A (H0)) > P
(
- YC (G) ∈ �A (H0); C < gY,G�<

)
(43)
= P

(
-
Y,<
C (G) ∈ �A (H0); C < gY,G�<

)
. (50)

In order to use Theorem 2.3, we choose d(C, A) = C (C1/U + A)−3−U . Clearly, by (41), estimate (16) is
satisfied for ΓC (G, H) = |G − \C (H) |. It remains to find C0 and X0 small enough as well as functions ℓ0 (C)
and ℓ1 (C) so that the conditions in Theorem 2.3 are satisfied for domains �0 = �<−2 and � = �<. Note
that by (39) and the definition of 1Y<, for all C ∈ [0,1] and H ∈ R3 ,

|\C (H) − H | 6
∫ C

0
| (1Y< ∗ qB1/U ) (\B (H)) |dB6 sup

|G |6<+1
|1(G) | · C =:�1C.

Let

X0 6
1
2 ∧ dist(H0, �0), C0 6 1

2�1
∧ X0
�1
. (51)

For G′ ∉ � and H ∈ �X0 (H0) ⊂ �0, we have for C ∈ (0, C0],

ΓC (G′, H) = |G′ − \C (H) | > |G′ − H0 | − |H − H0 | − |\C (H) − H | > 2 − X0 −�1C > 1.

On the other hand, for G, H ∈ �X0 (H0), we have

ΓC (G, H) = |G − \C (H) | 6 |G − H | + |\C (H) − H | 6 2X0 +�1C 6 3X0. (52)

Now, for the �0 in (41), one can choose X0, C0 > 0 small enough such that (51) holds and

C ↦→ C/(C1/U + 1)3+U is increasing on (0, C0],

and

�−1
0 C

(C1/U + 3X0)3+U
>

2�0C

(C1/U + 1)3+U
, C ∈ (0, C0] . (53)

In particular, (18) is satisfied. Thus by Theorem 2.3, we conclude

P
(
-
Y,<
C (G) ∈ �A (H0); C < gY,G�<

)
> 20,

where 20 is independent of Y. This, together with (49) and (50), yields

P(-C (G) ∈ �A (H0)) > 20.

The proof is thus complete by the strong Feller property that G ↦→ P(-C (G) ∈ �A (H0)) is continuous.
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Now, we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. First of all, by (25) and the standard Krylov-Bogoliubov method (see [14, The-
orem 11.7]), there is an invariant probability measure ` associated with (%C )C>0. The uniqueness fol-
lows by the strong Feller property and irreducibility. The exponential convergence (i) and (ii) follow by
(26), Theorem 2.1 and Lemmas 3.3 and 3.4.

4. Application to heavy-tailed sampling

In this section, we introduce an application of Theorem 1.2 to the heavy-tailed sampling. Let `(dG) =
e−* (G)dG/

∫
R3

e−* (G)dG, where* : R3→ R is a continuous function. We suppose that there are V,�0 >

0 such that for all |G | > 1,

* (G) > (3 + V) log |G | −�0. (54)

The above assumption means that e−* (G) has a polynomial decay rate as |G | →∞, which characterizes
a heavy-tailed distribution, as opposed to the exponential or light-tailed one. Below we want to find an
ergodic SDE so that the law of the solution -C exponentially converges to ` in some sense as C→∞.
Thus, one can sample ` theoretically from -C when C is large.

Fix U ∈ (0,2). To construct an ergodic SDE driven by U-stable processes, we introduce a vector field
� : R3→ R3 by

�(G) := 2̃3,U

∫
R3
H[rU (G + H) − rU (G − H)] |H |−3−UdH,

where 2̃3,U = 23,U/U and 23,U is the same constant as (7), and

rU (G) := (1 + |G |2)−
3+U

2 .

The vector field � enjoys the following important properties.

Lemma 4.1. (i) � ∈ �∞0 satisfies that for some ^0 = ^0 (3, U) > 0,

|�(G) | 6 ^0 |G |1−3−U, |∇�(G) | 6 ^0 |G |−3−U . (55)

(ii) There is a constant ^1 > 0 only depending on 3, U such that for all |G | > 1,

〈G, �(G)〉 6 −^1 |G |2−3−U . (56)

(iii) div�(G) = Δ U
2 rU (G).

Proof. (i) Since rU ∈ �∞0 (R
3) and for any 9 ∈ N, ‖∇ 9 rU/rU‖∞ < ∞, we clearly have � ∈ �∞0 . To

show the bounds (55), let j : [0,∞) → [0,1] be a cutoff function with

j(A) = 1, A ∈ [0, 1
4 ], j(A) = 0, A ∈ [0, 1

2 ]
2 .

Define

i |G | (H) := H |H |−3−Uj
( |H |
|G |

)
, ĩ |G | (H) := H |H |−3−U

(
1 − j

( |H |
|G |

) )
.
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For 9 = 0,1, by definition we have

∇ 9�(G) = 2̃3,U
∫
R3
H

(
∇ 9 rU (G + H) − ∇ 9 rU (G − H)

)
|H |−3−UdH = 2̃3,U (�1 + �2),

where

�1 :=
∫
R3
i |G | (H)

(
∇ 9 rU (G + H) − ∇ 9 rU (G − H)

)
dH,

�2 :=
∫
R3
ĩ |G | (H)

(
∇ 9 rU (G + H) − ∇ 9 rU (G − H)

)
dH.

For �1, we have

|�1 | 6
∫
R3
i |G | (H) |H |

(∫ 1

−1
|∇ 9+1rU (G + BH) |dB

)
dH

.
∫
|H |6 |G |2

|H |2−3−U
(∫ 1

−1
(1 + |G + BH |)−(3+U+1+ 9)dB

)
dH

. (1 + |G |)−(3+U+1+ 9)
∫
|H |6 |G |2

|H |2−3−UdH

. (1 + |G |)−(3+U+1+ 9) |G |2−U . |G |1− 9−3−2U .

For �2, by the change of variable, we have

�2 =

∫
R3

(
ĩ |G | (G − H) − ĩ |G | (G + H)

)
(∇ 9 rU) (H)dH

= |G |3
∫
R3

(
ĩ |G | ( |G | (Ḡ − H)) − ĩ |G | ( |G | (Ḡ + H))

)
(∇ 9 rU) ( |G |H)dH

= |G |1−U
∫
R3

(
ĩ1 (Ḡ − H) − ĩ1 (Ḡ + H)

)
(∇ 9 rU) ( |G |H)dH,

where Ḡ = G/|G | and in the last step we have used

ĩ |G | ( |G |H) = |G |1−3−UH |H |−3−U
(
1 − j

(
|H |

) )
= |G |1−3−U ĩ1 (H).

For 9 = 0, since |ĩ1 (H) | 6 |H |1−3−U1 |H |>1/4 6 43+U−1, it is easy to see that

|�2 | 6 2 · 43+U−1 |G |1−U
∫
R3
| (1 + |G | |H |)−(3+U)dH . |G |1−U−3 .

For 9 = 1, since ‖divH ĩ1‖∞ <∞, using the integration by parts, we also have

|�2 | = |G |−U
����∫
R3

(
ĩ1 (Ḡ − H) − ĩ1 (Ḡ + H)

)
∇H rU ( |G |H)dH

����
= |G |−U

����∫
R3

(
divH ĩ1 (Ḡ − H) − divH ĩ1 (Ḡ + H)

)
rU ( |G |H)dH

����
6 2‖divH ĩ1‖∞ |G |−U

∫
R3
| (1 + |G | |H |)−(3+U)dH . |G |−U−3 .
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Combining the above estimates we obtain (55).
(ii) By definition and the symmetry, we have

−〈G, �(G)〉 = 2̃3,U
∫
R3
〈G, H〉[rU (G − H) − rU (G + H)] |H |−3−UdH

= 22̃3,U

∫
〈G,H〉>0

〈G, H〉[rU (G − H) − rU (G + H)] |H |−3−UdH.

For |G | > 1 and 〈G, H〉 > 0, by the mean-valued formula, we have

rU (G − H) − rU (G + H) = (1 + |G − H |2)−
3+U

2 − (1 + |G + H |2)−
3+U

2

= 2(3 + U)〈G, H〉
∫ 1

0

(
1 + B( |G − H |2 − |G + H |2) + |G + H |2

)− 3+U2 −1dB

= 2(3 + U)〈G, H〉
∫ 1

0

(
1 − 4B〈G, H〉 + |G + H |2

)− 3+U2 −1dB

= 2(3 + U)〈G, H〉
∫ 1

0

(
1 + 4B〈G, H〉 + |G − H |2

)− 3+U2 −1dB

> 2(3 + U)〈G, H〉
∫ |G |−2

0

(
1 + 4B〈G, H〉 + |G − H |2

)− 3+U2 −1dB

> 2(3 + U)〈G, H〉
(
1 + 4|G |−2〈G, H〉 + |G − H |2

)− 3+U2 −1 |G |−2.

Hence,

−〈G, �(G)〉 >
4(3 + U)2̃3,U
|G |2

∫
〈G,H〉>0

〈G, H〉2
(
1 + 4|G |−2〈G, H〉 + |G − H |2

)− 3+U2 −1 |H |−3−UdH

>
4(3 + U)2̃3,U
|G |2

∫
〈G,H〉>0, |G−H |61

〈G, H〉2
(
1 + 4|G |−2〈G, H〉 + |G − H |2

)− 3+U2 −1 dH
|H |3+U

.

Since for |G | > 1, |G − H | 6 1 implies |H |
2

2 6 〈G, H〉 6 |G |2 + |G |, we further have

−〈G, �(G)〉 >
4(3 + U)2̃3,U
|G |2

∫
|G−H |61

〈G, H〉2
(
2 + 4(1 + |G |−1)

)− 3+U2 −1 |H |−3−UdH

>
4(3 + U)2̃3,U
|G |210

3+U
2 +1

∫
|G−H |61

〈G, H〉2 |H |−3−UdH > ^1 |G |2−3−U,

where ^1 > 1 only depends on 3, U. Thus we obtain (56).
(iii) By definition and the integration by parts, we have

div�(G) = 2̃3,U
∫
R3
〈H,∇G [rU (G + H) − rU (G − H)]〉|H |−3−UdH

= 2̃3,U

∫
R3
〈H,∇H [rU (G + H) + rU (G − H) − 2rU (G)]〉|H |−3−UdH
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= −2̃3,U
∫
R3

div(H |H |−3−U) [rU (G + H) + rU (G − H) − 2rU (G)]dH.

Since for H ≠ 0,

div(H |H |−3−U) = 3 |H |−3−U + 〈H,∇|H |−3−U〉 = −U |H |−3−U,

we have by (8),

div�(G) = U2̃3,U
∫
R3

[rU (G + H) + rU (G − H) − 2rU (G)]
|H |3+U

dH = Δ
U
2 rU (G).

The proof is complete.

Figure 1. Pictures of �(G) and 〈G, �(G)〉 for 3 = 1.

Now we take f and 1 in SDE (3) as follows:

f(G) := (rU (G)e* (G) )
1
U I, 1(G) := �(G)e* (G) . (57)

We have the main result of this section.

Theorem 4.2. Suppose that * is locally Lipschitz continuous and satisfies (54). Then with the above
choices of f and 1, `(dG) = e−* (G)dG/

∫
R3

e−* (G)dG is the unique invariant probability measure of
SDE (3) and the conclusions in Theorem 1.2 hold with A = V − U.

Proof. Let f and 1 be defined by (57). By (7) and the change of variable, we can write

Lf 5 (G) = 23,U
∫
R3

5 (G + f(G)I) + 5 (G − f(G)I) − 2 5 (G)
|I |3+U

dI = rU (G)e* (G)Δ
U
2 5 (G).



22

Thus,

L 5 (G) = Lf 5 (G) + 1 · ∇ 5 (G) = rU (G)e* (G)Δ
U
2 5 (G) + �(G)e* (G) · ∇ 5 (G), (58)

and by (iii) of Lemma 4.1,∫
R3

L 5 (G)e−* (G)dG =
∫
R3

(
rU (G)Δ

U
2 5 (G) + �(G) · ∇ 5 (G)

)
dG

=

∫
R3
(Δ

U
2 rU (G) − div�(G)) 5 (G)dG = 0,

which implies that `(dG) = e−* (G)dG/
∫
R3

e−* (G)dG is an invariant probability measure of SDE (3).
In order to check (Hloc) and (HA ,@glo ), by Remark 1.1, it suffices to verify (5) for Y0 = 0. By (56) and

(54), for any |G | > (2@/^1)1/U ∨ 1, we have

〈G, 1(G)〉 + @‖f(G)‖U |G |2−U =
[
〈G, �(G)〉 + @rU (G) |G |2−U

]
e* (G) )

6
[
− ^1 |G |2−3−U + @ |G |2−3−2U]e* (G)

6 − ^1
2 |G |

2−3−Ue* (G) 6 − ^1
2e�0
|G |2+V−U .

So, Theorem 1.2 is applicable to complete the proof.

Remark 4.3. Suppose that* (G) = − ln rU (G). By (55), ‖∇(�/rU)‖∞ <∞. Let -C be the unique solu-
tion of the following SDE:

d-C = (�/dU) (-C )dC + d!UC , -0 = G. (59)

Then `0 (dG) = rU (G)dG/
∫
rU (G)dG is the unique invariant probability measure of -C . It should be

noticed that the distributional density ?U (G) of !U1 is comparable with rU (G) (cf. [44]), i.e., there is a
constant ^ = ^(3, U) > 1 such that for all G ∈ R3 , ^−1rU (G) 6 ?U (G) 6 ^rU (G). Let L0 be the infinites-
imal generator of SDE (59), i.e., L0 = Δ

U
2 + �/rU · ∇. Then by (58), one sees that L = (rUe* )L0.

In particular, the solution of SDE (3) with coefficients (57) is just a time change of SDE (59) (see [3,
Section 1.15.2]).

Remark 4.4. The locally Lipschitz assumption on * can be relaxed as locally W-Hölder continuity
with W ∈ ((1 − U)+,1). If it is so, we need to check (5) for some Y0 > 0.

5. Appendix

In this appendix, we sketch the proof of weak convergence (36). First of all, by (34) and (25), there is
a constant � > 0 such that for all Y ∈ (0,1) and any G ∈ R3 and ) > 0,[

E

(
sup

B∈[0,) ]
+? (- YB (G))

1
2

)]2

.� +? (G) +). (60)
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For \ ∈ (0,)), let [, [′ be two stopping times with 0 6 [ 6 [′ + \ 6 ) . For any < ∈ N, we have

P
(
|- Y[ − - Y[′ | > X

)
6 P

(
|- Y[ − - Y[′ | > X;) < gY,G

�<

)
+ P

(
) > g

Y,G
�<

)
= P

(
|- Y,<[ − - Y,<

[′ | > X;) < gY,G
�<

)
+ P

(
) > g

Y,G
�<

)
6 P

(
|- Y,<[ − - Y,<

[′ | > X

)
+ 2P

(
) > g

Y,G
�<

)
.

By SDE (40) and (37), (38), it is by now standard to derive that for fixed < ∈ N,

lim
\↓0

sup
Y∈(0,1)

sup
06[6[′+\6)

P
(
|- Y,<[ − - Y,<

[′ | > X

)
= 0,

which together with (47) yields that for any ), X > 0,

lim
\↓0

sup
Y∈(0,1)

sup
06[6[′+\6)

P
(
|- Y[ − - Y[′ | > X

)
= 0.

Thus, by Aldous’ criterion (see [24, p.356, Theorem 4.5]), the law QY of (- Y· , !U· ), Y ∈ (0,1) in D×D
is tight. Let Q be any accumulation point of (QY)Y∈(0,1) . Without loss of generality, we assume that for
some subsequence Y: → 0, (Q: ):∈N := (QY: ):∈N weakly converges to Q as :→∞. By Skorokhod’s
representation theorem, there is a probability space (Ω̃, F̃ , P̃) and D × D-valued processes ( -̃: , !̃: )
and ( -̃, !̃) such that

( -̃: , !̃: ) → ( -̃, !̃) in D ×D, P̃ − 0.B.,

and

P̃ ◦ ( -̃: , !̃: )−1 =Q: , P̃ ◦ ( -̃, !̃)−1 =Q.

Moreover, !̃: and !̃ are still U-stable Lévy processes, and

-̃:C = G +
∫ C

0
1Y: ( -̃:B )dB +

∫ C

0
fY: ( -̃:B )d!̃:B .

By [24, Theorem 6.22, p.383] and taking limits, one sees that

-̃C = G +
∫ C

0
1( -̃B)dB +

∫ C

0
f( -̃B)d!̃B ,

and ( -̃, !̃) is a weak solution of SDE (3). Finally, by the weak uniqueness of [9] we obtain the weak
convergence (36).
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