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Abstract

An infinite system of point particles placed in R? is studied. The particles are of two
types; they perform random walks in the course of which those of distinct type repel
each other. The interaction of this kind induces an effective multi-body attraction of the
same type particles, which leads to the multiplicity of states of thermal equilibrium in
such systems. The pure states of the system are locally finite counting measures on R¢.
The set of such states I'? is equipped with the vague topology and the corresponding
Borel o-field. For a special class Pexp of probability measures defined on I, we prove
the existence of a family {P;, : t > 0, p € Pexp} of probability measures defined
on the space of cadlag paths with values in I'?, which is a unique solution of the
restricted martingale problem for the mentioned stochastic dynamics. Thereby, the
corresponding Markov process is specified.
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1 Introduction

The stochastic dynamics of infinite systems of interacting particles placed in a
continuous habitat is an actual and highly demanding subject of modern probability
theory. In its comprehensive version, one deals with stochastic processes. Thus far,
Markov processes have been constructed only for those particle systems where one
cannot expect phase transitions, i.e., multiplicity of states of thermal equilibrium existing
at the same values of the external parameters. In the present work, we deal with a
system, for which such phase transitions are possible [6, 13, 15, 19], that ought to have
an essential impact on its stochastic dynamics, cf. [14]. Namely, the object we study
is an infinite collection of point particles of two types placed in X = R¢, d > 1. The
particles perform random walks (jumps) in the course of which those belonging to the
same type (component) do not interact, whereas different type particles repel each
other. This model can be viewed as a jump version of the Widom-Rowlinson model or
the continuum two-state Potts model, see [6, 15] and [13, 19], respectively, as well as
the literature quoted in these publications. By integrating out the coordinates of one
of the components, one obtains a single-component particle system with a multi-body
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attraction (cf. subsect. 4.3.1 below), responsible for phase transitions — the multiplicity
of states of thermal equilibrium, see [17] for more on this issue.

Similarly as in [16], we construct the process in question by solving a restricted
martingale problem, cf. [9, page 79]. The basic aspects of this construction can be
outlined as follows. The starting point is the evolution of states pg — u; of the considered
model obtained in [1, Theorem 3.5]; whereas the final outcome is the family of cadlag
path measures that solves the mentioned martingale problem. The one-dimensional
marginals of these path measures coincide with the corresponding u; constructed in [1].

Let us now present the main ingredients of our theory. First, we set the state space
- the collection I'? of all possibly infinite configurations in X, by which we mean the
following. Let v be an integer valued Radon measure on X. For each ball B,(z) :=
{y € X : |z —y| <r}, r >0, one thus has v(B,(z)) € INy. For z € X, we set n,(z) =
inf,~ov(Br(z)), and also p(y) = { € X : n,(x) > 0}. Each such v can be associated
with a locally finite system of point ‘particles’ such that each x € p(y) is occupied by
n(z) of them, cf. [18]. Keeping this in mind, we will call v and p(y) configuration and
ground configuration, correspondingly. The set of all such configurations v is denoted by
I'. Since we are going to consider a two-component system, its state spaceis > =T x T,
consisting of the pairs v = (70,71), 7 € I'. In the sequel, v without indices will always
denote such a pair, whereas ~v; will stand for the configuration of particles of type
i = 0,1. Then the ground configuration of v = (v9,71) is p(¥) = p(70) U p(71). We also
set n(z) = ny,(x) + n, (z). If ny(x) = 1 for each = € p(y), then v is called a simple
configuration. The set of all simple configurations is then

[?={yel?:Vz€p(y) ny(z) =1} (1.1)

As mentioned above, the configurations are assumed to be locally finite, i.e., each ~;
takes finite values on every compact A C X. Let x1,22,..., be an enumeration of a
given 7;. Then by >° . g(z) we mean }; g(z;), where g : X — R is a suitable function.
Obviously, this interpretation of ) __ - ( ) is independent of the enumeration used in
the second sum. Note also that erv g(z fX g(z)7vi(dx), see (3.2) below as well as
[18] for more on this subject. Then I is equlpped with the vague topology, which is the
weakest topology that makes continuous the maps v; — >, ... 9(z), g € Ces(X), where
the latter is the collection of all continuous compactly supported numerical functions.
Correspondingly, the set I'> =T x I is equipped with the product topology, and thereby
with the Borel o-field B(I'?). This allows us to employ probability measures defined
thereon, the set of which is denoted by P(I'?). Their evolution is described by the
Fokker-Planck equation

to
ity (F) = pgy (F) —|—/ ps(LF)ds, ta >t >0, (1.2)
t1

see [2] for a general theory of such and similar objects. In (1.2), we use the notation
p(F) = [ Fdp and L is the Kolmogorov operator, which in the considered case has the
following form

(LF Z/aofc— eXP( > do(z—y ) F(y\zUoy) — F(7)]dy (1.3)

TEYo zE

+ Z/ale exp< Z(blZ* ) F(y\zUyy) — F(v)]dy.

TEYL Z€70

Here and in the sequel, by writing v U; ¥y we mean the element of I'> obtained from ~y
by adding y € X to its component v;, i = 0,1. Likewise, by writing v \ « we mean the
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configuration obtained from ~ by subtracting « from the corresponding v; if it is clear
which ¢ is meant. Otherwise, we indicate it explicitly, see the next section for more detail.

The first summand in (1.3) describes the following elementary act: a particle located
at x € v instantly changes its position (jumps) to y € X with rate

co(,y;7) = ao(x — y) exp (— > ¢o(z—y)>- (1.4)

zZEY1

It depends on v; through the multiplier exp <— > ey Polz — y)>, ¢o > 0, the role of
which is diminishing the free jump rate ag(z — y) if the target point is ‘close’ to ;. In
view of this, we shall call a; and ¢;, « = 0,1, jump and repulsion kernels, respectively.

As is typical for infinite particle systems, among the states P(I'?) one distinguishes a
proper subset to which the evolution described by (1.2) is restricted. In [1], there was
introduced a subset P, C P(I'?), cf. Definition 3.1 below, consisting of sub-Poissonian
measures, and then constructed a map ¢t — p; € Peyp corresponding to (1.2) in the
following sense. For a certain class of (unbounded) functions F': I'? > R, it was shown
that: (a) LF belongs to this class; (b) each such F'is p-integrable for all p € Pexp; (€)
the mentioned map satisfies (1.2). Our present results are essentially based on this
construction. In a sense, we ‘superpose’ the mentioned map ¢ — p; € Pexp and obtain
a family of cadlag path measures {P; ,, : s > 0, 1 € Pexp}, Which is the unique solution
of the restricted initial value martingale problem corresponding to (1.3), see [9, page
79], and is such that the one dimensional marginal of P; , corresponding to ¢ > s is y; if
s = p. This construction consists of the following steps:

(a) We pick a subset I'> C I'? and equip it with a topology that makes this set a Polish
space, continuously embedded in I'?, and such that u(I'?) = 1 for all y1 € Pexp. This
enlarges the set of continuous functions F : I'? — R and allows us to redefine the
members of Py, as measures on I‘z. Then we construct a sufficiently massive set
D(L) of bounded continuous functions F : I'? — R, which will serve as the domain
of the Kolmogorov operator. Its crucial property is that LF' remains bounded for all
F e D(L).

(b) We prove that any solution ¢ — p; € P(I'?) of the Fokker-Planck equation (1.2) with
F € D(L) and 19 € Pexp is such that p; € Peyp for all ¢t > 0. Thereby, we prove that
there is only one such solution given by the map ¢ — p; € Peyp constructed in [1].

(c) Then we introduce auxiliary models described by L?, o € [0, 1] obtained by replacing
a;(x —y) = aZ(z,y), in such a way that L° = L, whereas L° with ¢ € (0, 1] admits
constructing transition functions p7, by means of which we obtain Markov processes
X° with values in I'2.

(d) Thereafter, we prove that the finite-dimensional distributions of X' satisfy Chentsov-
like estimates, uniformly in o € (0, 1]. By this we get that: (i) each X'? has a cadlag
modification, which corresponds to the existence of families {P7, : s > 0,1 € Pexp},
o € (0,1], of cadlag path measures; (ii) as ¢ — 0, the measures Pgﬂ have accu-
mulation points which solve the restricted initial value martingale problem for
(L,D(L), Pexp)- Then we prove that all these accumulation points coincide as their
one-dimensional marginals solve (1.2), which has a unique solution, that was proved
in (b). Thereby, we obtain the unique solution of the mentioned martingale problem
{Ps,:52>0, 1 € Pexp}-

(e) Finally, we prove that the constructed Markov process with probability one takes
values in I'2 N T2, see (1.1).

The structure of this paper is as follows. In Sect. 2, we collect the notations used herein.
In Sect. 3, we introduce the main ingredients of our construction, among which are
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the spaces of tempered configurations I'?, f‘f the basic classes of bounded continuous

functions F : I'? — R, and the set of sub-Poissonian measures Pex, C P(I'?), see
Definition 3.1. In Sect. 4, we formulate our assumptions concerning the properties of the
parameters a; and ¢; that appear in (1.3), (1.4). Next, we introduce the corresponding
spaces of cadlag paths and the very notion of a solution of the restricted initial value
martingale problem for our model, see Definition 4.3. Then the result of this work is
formulated in Theorem 4.5, followed by a number of comments. The remaining sections
are dedicated to the proof of Theorem 4.5. In Sect. 5, we reformulate the corresponding
results of [1] in the form adapted to the present context, as well as develop a number
of additional technicalities. The basic result of Sect. 6 is Lemma 6.1 which states that
every solution of the Fokker-Planck equation (1.2) for our model lies in P, whenever
o s in Peyp,. Its proof is mostly based on combinatorial estimates obtained in [16] and
those derived here in subsect. 5.2. Then we prove that (1.2) has a unique solution ¢ — p,
constructed in fact in [1], see Lemma 6.3. By means of Lemmas 6.1 and 6.3 we then prove
that the martingale problem can have at most one solution. In Sect. 7, we introduce L°
and show that the solution ¢ — uf of the Fokker-Planck equation for L°, o € (0,1], has
the property uf = u; as o — 0, where p; is the solution corresponding to the main model
and = denotes weak convergence. In Sect. 8, we obtain the evolution of states t — (7,
o € (0,1], by constructing stochastic semigroups S° = {57(¢) };>o acting in the Banach
space of signed measures on I'?, see Lemma 8.3. This construction becomes possible
due to the modification a;(z — y) — af(x,y) and is based on a perturbation technique
developed in [23]. By construction, ¢ — [i7 solves the Fokker-Planck equation for L?,
which by Lemma 6.3 yields 4f = 7. At the same time, by means of the semigroups 5% we
get the corresponding transition functions pJ, and thus Markov processes X7 with values
in I'2. Thereafter, in Lemma 8.6 we show that these processes satisfy Chentsov-like
estimates, uniform in o € (0, 1]. By means of this result, in Sect. 9 we complete the proof
of Theorem 4.5, including the property mentioned in item (e) above.

2 Notations

In view of the size of this work, for the reader convenience we collect here essential
notations and notions used throughout the paper.

2.1 Sets and spaces

+ The considered particle system dwells in X = R¢, d > 1. By A we always denote a
compact subset of X, its Euclidean volume is denoted |A|; Ry = [0, +00); IN - the
set of natural numbers, Ny = NU {0}; B,.(y) = {x € R?: |z — y| < r}, B, = B,(0),
r > 0and y € RY. For a finite set A, by |A| we mean its cardinality.

* A Polish space is a separable topological space, the topology of which is consistent
with a complete metric, see, e.g., [8, Chapt. 8]. Subsets of such spaces are
usually denoted by A, B, whereas A, B (with indices) are reserved for denoting
linear operators. For a Polish space E, by Cy,(E) and By, (E) we denote the sets of
bounded continuous and bounded measurable functions g : £ — R, respectively;
B(FE) denotes the Borel o-field of subsets of E. By P(F) we denote the set of all
probability measures defined on (E, B(E)). For a suitable set A, by 1, we denote
the indicator of A.

» T" stands for the set of all locally finite counting measures on X, interpreted also
as configurations of point particles with possible multiple locations, see [18] and
(3.1) below. By I'y we mean the subset of I' consisting of finite configurations,
i.e., such that v(X) < oo; by I'> we denote the set of configurations of the two-
component particle system which we consider. That is, I'> = I' x I' consists of
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v = (70,71), 7 € T with ¢ = 0,1 always indicating the particle type. The set of
simple configurations I'2 is defied in (1.1). The set of tempered configurations I,
is defined in (3.32) by means of ¥)(z) = (1 + |z|9*1)~!; then I'2 =T, x I',, see also
(3.31). The metric properties of I'2 are described in Lemma 3.4. Finally, ff stands
forI'2 N I'2, see (3.31). The relationships between these sets (Polish spaces) are
described in Corollary 3.5.

* By Pexp we denote the set of sub-Poissonian measures, see Definition 3.1, which is
one of the basic notions of this research. Their essential properties are given in
Proposition 3.2 and (3.34). By M (with indices) we denote the Banach spaces of
signed measures on I'2, see also (8.1), (8.2), (8.4).

* By D[ 100)(I'?) and ’D[S’Jroo)(ff), s > 0, we denote the spaces of cadlag maps
v :[s,+00) = T2 and v : [s,+o0) — I'2, respectively. Equipped with Skorohod’s
metric they become Polish metric spaces, see subsect. 3.2.

2.2 Functions, measures, operators

+ By z,y, 2 we always denote elements (points) of X = R%; for k € IN, we write x* =
(x1,...,7) € X*. By small letters f, g, u,v, 0,1, ¢ we denote numerical functions
defined on X or X*. Important classes of such functions O, 9;: are defined in
(3.38). By means of the function 1, (z) = (1 + o|x|?*!)~! we modify the model (1.3).
For v;1,...v; 1 € Cp(X), i = 0,1 and k € IN, we write v;(x) = v;1(x1) - v k(2g),
see (3.54) and also (3.4). For an integrable 6 : X — R, we write (§) = [, 6(x)dz.
Numerical functions defined of I'> or I'? are denoted by capital letters F, H, etc. By
F with indices we usually denote functions on F2, Ff, whereas G (with indices) are
defined on finite configurations. Significant examples of such functions are F?, see
(3.16), ¥ (3.30), ﬁf, see (3.49) and Proposition 3.8, ﬁ;” (3.55). The class of functions
D(L) is introduced in Definition 4.1, its properties are given in Proposition 4.2. By
F, G, K we denote numerical functions defined on the path spaces.

+ Measures on I'?> and I'? are usually denoted by p with indices. Their correlation
measures Xﬁm) are defined in (3.7). By 7, we denote the Poisson measure, see
(3.31). Probability measures on the path spaces D ;) (I'2) are denoted by P with
indices. For suitable measure and function, we write x(f) = [ fdp.

* By L and L° we denote the Kolmogorov operator (1.3) and its modifications. By
LT we denote the operators dual to L7, see (8.13), (8.14). Their domains are set
in (8.16). By L and LA with indices we denote the counterparts of L acting on
functions G and correlation functions, respectively, see (5.23) and (5.9).

3 Preliminaries

3.1 Configurations spaces and correlation measures

By I we denote the standard set of Radon counting measures on X, i.e., y(A) € Ny
for each v € T' and a compact A C X. Then we also define n,(z) = inf,~ov(B(z))
and p(y) = {z € X : ny(xz) > 0}. Thus, p(y) is a locally finite subset of X, see (1.1).
For x € p(7v), by 7\ z we denote the element of I' such that n.\,(z) = n,(z) — 1 and
n\z(y) = n,(y) whenever y # x. Similarly, vy Uz, 2 € X, denotes the measure such that
nyuz () = ny(x) + 1 and n,uz(y) = ny(y) for y # x. For simplicity, with a certain abuse
of notations we write

D g@) = | g@)y(de) = > ny(2)g(x), (3.1)
zEY /X zep(y)

where g is a positive numerical function. Note that the left-hand side of (3.1) can also be
interpreted as }_; g(z;) for a certain enumeration IN > j — z; of the elements of p(7), in
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which each z € p(7) is repeated n,(z) times, see [18] for more detail. In the same way,
we will understand sums

>3 slew = [ [ stwni@n) - [ o),

rey yey\z

that can also be generalized to all m € IN

Z Z Z g(x1,. .. Tm) (3.2)

21€Y z2€y\71 Tm €Y\{T1,. ;T 1}

> (—1)lG/ 91, -+ Yne)V(dyr) - - V(dyng)

GEK,y Xne
= > DY Y geln - yne),
GeKy, y1€Y Yng €Y
where KK,, is the collection of all graphs with vertices {1,2,...,m}, g and ng are the num-
ber of edges and the connected components of G, respectively, whereas g¢(y1, - - -, Yng)
is obtained from g(z1,...,z) by setting the arguments z;,,...x;, of the latter equal y;

where [y, ..., are the vertices of the j-th connected component of G.

Since the particles which we consider are of two types, their pure states are set to be
pairs v = (y9,v1) such that 4; € ', i = 0, 1. Thus, I'> =T x I is the set of all pure states
of the system. Correspondingly, we set n,(z) = n+,(z) + n, (z) and p(y) = p(yo0) U p(11).
We will call p(v) the ground configuration for .

For v € T2 and m = (mg,m;) € IN2, the counting measure Q™ on X™o x X™
is defined by its values on compact subsets A C X™0 x X" in the following way.
For mg = m; = 0, we set Q(Wm) = 1 for each v. For mg > 0, m; = 0 and A C X™o,
ng)(A) is equal to the number of different ordered strings (ii,...,%mn,) such that
x = (¥, .., Ti,,) € A. Likewise one defined Q(Vm) for mg = 0 and m; > 0. For m € IN?,
nym) (A) is equal to the number of different ordered strings (i1, . .. ,im,) and (ji, ..., jm,)
such that (x,y) € A, where x = (24,,...,%m,), ©1 €70, andy = (Yjys - Ym ), Y1 € 11 It
is obvious that this definition is independent of the enumerations of both ~;. Then we
get, cf. (3.2),

QUM(A) (3.3)

-y ¥ .. 3 >Ny - > LIa(x,y).

T1E€Y0 2E€70\T1 Tmg €Y \{T1,--sTmg—1} Y1€71 y2€71\y1 Ymq €V1\{Y1,--sYm; -1}

To simplify notations, for suitable g, ¢, k € N and m € IN2, we write

Z wo(xk): Z Z Z wol(x1,...,x), (3.4)

xFevo T1€%0 z2€v0\21 zr€vo\{Z1, s p—1}
§ : m miy _ § : § :
SD(X 07y 1)_ So(xlw'~axm07y1>"‘7ym1)~
(x™0,y™1)Ey X™0 Exp Y™ €1

As above, we will write x instead of x* if the dimension k is clear from the context. For a
compact A C X and ; €T, : = 0,1, we let Nj(v;) be the number of the elements of ~;
contained in A. Then

Na(y) = 3 La(e) = %(A), (3.5)

xTEY;
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that is, Na(y;) = (Vm)(A) for the corresponding m, see (3.3). For p € IN, we have, cf. [16
page 8],

NP(v;) = [Z Ta(z 1 = S(p,1) > Aa(xr) - Lalx), (3.6)

TEYq =1 xley;

where S(p, 1) is Stirling’s number of second kind = the number of ways to divide p labeled
items into [ unlabeled groups. Below, expressions like that on the right-hand side of (3.6)
with p = 0 are set to be identically equal to one.

It can be shown, cf. [18, Theorem 1], that the map v ng)(A) is measurable for
all compact A and m € IN3. However, it may be unbounded. Let P(I'?) be the set of all
probability measures defined on the Polish space I'2. For a given p € P(I'?) and m € IN3,
set

Xy = /F ) QU™ (dy), (3.7)

which exists for at least m = (0,0). If it does for a given positive m, we call it correlation
measure corresponding to these p and m. If X(m)(A) < oo for all m € N2 and compact
A, we say that i has finite correlations. In this case, each Xffn) is a Radon measure on

X™Mo x X™1,

3.2 Sub-Poissonian measures

We begin by recalling that C(X) is dense in L'(X) := L!(X,dz), see e.g., [5,
Theorem 4.12, page 97].

For k € IN and 0 € C(X), by %% we denote the function such that 6%%(x,..., 2;) =
O(x1) - - - 0(x,), which we extend to k = 0 by setting §%° = 1. Likewise, for 6y, 6; € Ces(X)
and m € IN2, we set

09 (x,y) = Oo(z1) -+ 00 (Tmg )01 (1) -+ - 01 (Yimy)- (3.8)

Definition 3.1. The set of sub-Poissonian measures Peyx,, consists of all those p € P(I?)
that have finite correlations such that, for each m € N3 and 6,0, € Ccs(X), the following

holds
‘Xyn) (9®m)

<ol 101 ey Il = mo + (3.9)
with some p-dependent » > 0.

The aforementioned density and the estimate in (3.9) imply that the map (6o, 6:1) —
XLm)(9®m) can be extended to a continuous homogeneous polynomial on L*(X) x L*(X).

In this case, there exists a unique positive and symmetric k&m) € L (X™o x X™) such
that, see (3.8),

Xibm)(e(@m) = / k‘fjn)(xla---7xmo;y1a"'aym1) (3.10)
Xmo x X™m1
X Oo(x1) - 00(Tmg)01(y1) - 01(Ym, )dz1 -+ - Ty dyn - - - dym,
S My )y = (k0.
The mentioned symmetricity means that

kl(tm)(xh sy Tmgs Y1, - 7ym1) = kl(l,m)(xao(l)v <9y Log(me)s Yor (1)y -+ - - 7y01(m1)>7 (311)

holding for all corresponding permutations oy, o1, whereas the positivity and the bound
in (3.9) yield
0< k™ (x,y) < ™ (3.12)

EJP 28 (2023), paper 67. https://www.imstat.org/ejp
Page 8/59


https://doi.org/10.1214/23-EJP952
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

A Markov process for a particle system with attraction

holding for Lebesgue-almost all (x,y) € X™° x X™:, The upper estimate in (3.12) is
known as Ruelle’s bound [20]. Noteworthy, for each u,

KOO =1, (3.13)

which readily follows by the very definition of the counting measure @), and (3.7).
For m = (mg, m1) € N2, 8 = (00, 01), 0; € Ces(X), i = 0,1, we set, cf. (3.3),

1" () = Hy o)™ (), (3-14)

SOY Y b)),

T1E€Yi x2€7; \T1 Ty €Yi\{Z 130Ty —1}

Hy™ (v;)

= ) 6P™(x), mi>1,  i=01,

XEYi
and Hé?)(yi) = 1. Then by means of (3.7) we rewrite (3.10) as follows
X (09™) = p(HS™).

Now for n = (ng,n1) € IN3, let us consider

no ny
" =33 1™ (9),

mglmy!
m0:0m1:0 0 1

which is obviously finite for all v € I'. For every p € Pexp, by (3.9) we have that

p(H™M) < exp [5(160]| 11 (x) + 11621121 x))] » (3.15)
where s is as in (3.9). By (3.15), for § = (6p,6;) € L'(X) x L*(X), the sequence

{H, én) (7)}nenz is p-almost everywhere convergent to

F'(y) = F%(y)F%(m), (3.16)

Foi(y;) = H<1+0i<x>)=exp(Zlog(lw(x))).

z€Y; z€vi
Moreover, by (3.15) it follows that each F?, § € L'(X) x L!(X) is y-integrable and
p(F%) < exp [%(HHOHLl(X) + H91||L1(X))] : (3.17)

This means that the map L!'(X) x L*(X) 2 6 — u(F?) € R is an exponential type real
entire function, which is reflected in the notation P.y,. Then borrowing terminology
from the theory of entire functions, we will call the type of i the least s that verifies
(3.9), (3.12). For the homogeneous Poisson measure ., £ = (ko, k1), Ko, k1 > 0, we have

) (x,y) = kO, (x,y) € XM x X, (3.18)

Tr

which yields, see (3.10) and (3.17),

7o (FY) = exp (HO/XQO(a?)dx—FIﬁ/X@l(l‘)dx) . (3.19)

Hence, the type of 7 € Pexp is s = max{ko; k1}. In general, a Poisson measure, Ty, is
completely characterized by the pair x = (xo, x1) of its intensity measures in such a way
that, see (3.10),

e = ([ oonatan) ([ o)

EJP 28 (2023), paper 67. https://www.imstat.org/ejp
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Note that 7, is sub-Poissonian in the sense of Definition 3.1 if and only if x;(dz) = ¢;(z)dx
with o; € L®(X), i =0, 1.
For a symmetric G("™) ¢ Ces(X™0 x X™1), see (3.11), by (3.3) we have, cf. (3.4),

QUM(G™M) = 3" GM(x,y) = molmi(KG™)(y), (3.20)

(x,y)€v

which by (3.7) yields
XELm)(G(m)) _ / k[(Lm) (x,y)G(m) (X,y)dmOdely (3.21)
X™ox X™1

= molmil(KG™) = molma (K™, G™).

In view of (3.12), this can be continued to all G(™) € L'(X™0 x X™). For positive G(™),
by (3.12) one also gets

wW(KG™) < 7 (KG™), kg =Ky = 2, (3.22)

which, in particular, justifies the name sub-Poissonian. Let us now consider the following
important version of (3.22). For a compact A C X, we let No(y) = Na(v) + Na(71), see
(3.5). Then for n € IN, by (3.6) we have

NR(7) Z()Zi (plo)S(n—p, ) Y, La(x",y"),

p=0 (xlo,yl1)ey

which for i € Peyp yields

n p n—p
=y (Z) 33 S 10)S(n—p,1) (3.23)
p=0 lo=111=1

X/ kit (x0, y ) 1a (x, y'dxlody"
Xlox X1
n n p n—p
<3 ( ) S 3 S0, 10)S(n — py 1) (<A
=0 b lo=110=1
p 0 1
_ Z ( ) (e ATy (]A]) = T (2],

where |A] is the Euclidean volume (Lebesgue measure) of A and 7},, n € IN, are Touchard’s
polynomials, attributed also to J. A. Grunert, S. Ramanujan, and others, see [3, page 6].
Along with the already mentioned ones, sub-Poissonian measures have the following
significant property. Recall that the set of simple configurations I'? is defined in (1.1).

Proposition 3.2. For each i € Py, it follows that w(I?) =1.

Proof. For a compact A C X, N € Nand ¢ € (0,1), we set

han(z,y) = 1a(x)1a(y) min{N; |z — y|~%*}, zyeX, (3.24)
HanM) =Y > han(@y)+ Y, Y, han@y)+ Y. > han(z,y).
TEY0 yEvo\T TEYL yEvi\z TEY YET1
EJP 28 (2023), paper 67. https://www.imstat.org/ejp
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According to (3.21) and (3.12) we have

WHAN) = /2 (’f,(f’o)(x, y) + k5D (@, y) + £ ($79)> han (@, y)dwdy < 35T N,
A
(3.25)

Towi= [ haweodedy = I () + PN 0,
A

where, for a certain » > 0, we set and then get

d(1—e¢)
(1) / / / </ dz ) cqr
7 r) = h x,y)dy | dx < —— |de = ——|A|, (3.26)
A’N( ) A( ANB,.(z) AN (2:Y) y) A B, | 2| d(1—e) 1A

1
I/(\Ziv(r) :/ (/ hA’N(ac,y)dy> dx < e ‘A|2.
A ANBE(x)

Here BS(x) = X \ B,(z), and |A| and ¢4/d denote the Euclidean volume of A and the unit
ball in X, respectively. We apply these estimates in (3.25) and obtain that

p(HAN) < Cpn,

for a suitable C}, 4 that is independent of N. Clearly, 0 < pu(Ha n) < p(Ha n41), which
by the monotone convergence theorem yields that the pointwise limit

Ngrfrloo Ha,n(v) = Ha(7) (3.27)
is finite for y-almost all v, i.e., for all v belonging to some f“i A such that u(fi A) = 1. For
C>0,wesetl'2 = {y: Hy(y) < C}. Then [z—y| > C~/4 foreach z,y € (7oNA)U(y1NA)
and each v € F2 That is, 75 :== 7N A = (v N A, 71 N A) is simple whenever 7 € I'2,. This
yields that UkelNoFc+k - FS)A, where the latter is the set of all those v € I'? for which
7 is simple. At the same time, Ugen,I%,, D I2 ,; hence, u(I'2 ) = 1. Note that I'2
is an open subset of I'2, cf. the proof of Lemma 3.4 below. Now we take an ascending
sequence {A;} that exhausts X, and obtain

ﬂFs A (3.28)

which completes the proof. O

3.3 Tempered configurations

Since we are going to essentially exploit the sub-Poissonian measures, it might be
reasonable to restrict our consideration to subsets of I'> the complements of which
are null-sets for each 1 € Peyp,. To this end, we introduce the following function of
re X :=R?

1
3.29
and also
T(y) = V() +T(y) = > v@) + > b). (3.30)
TE€Y0 yeEMM

Then we define

W ={yer?:w(y) <n}, 2= 1", IM2=r2nr (3.31)
nelN
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Elements of I'? (resp. f‘f) are called tempered configurations (resp. tempered simple
configurations). Clearly, I'? € B(I'?) as r ¢ B(I'?) for all n € N. According to (3.31),
we can also write

=T, xT,, T,i={yecl:¥(y) <o}, i=0,1. (3.32)

By (3.21), for u € Pexp, we then have

n() = [ (@) + K0 @) d(a)de < 25200), .39
X
which by Proposition 3.2 yields
Vi € Pep  p(T2) = p(T2) = 1. (3.34)

This crucial property of the elements of Py, will allow us to consider mostly configura-
tions belonging to I'2. In particular, this means that we will use the following sub-fields
of B (FQ):

A.={AeB(I?):AcT?}, A, ={AcB(I?:AcT?. (3.35)

Performing the same calculations as in obtaining (3.23) one readily gets
p(¥") < T, (5()), n €N, (3.36)

which can be used to get the following estimate

[, 0 (B0 ud) < exp ((0)e” < 1), B >0, (3:37)

holding for j1 € Peyp of type < se.
Now we recall that C,(X) (resp. By, (X)) stands for the set of all bounded continuous
(resp. bounded measurable) functions g : X — R. For 1 defined in (3.29), we then set

Oy = {0(z)=g(x)Y(z): g€ Cr(X), g(z) >0}, (3.38)
0f = {0€06y,:0(z)>0}

Clearly, each 0 € O, is integrable. For such 6, we also define

cp = sup — log (1 + 6(z)), cp:=e” — 1. (3.39)
zeX ’(/)( )
Then
0 < 8(z) < épp(x), 0 € Oy. (3.40)

Next we define the following measures on X

(1/)71)(d1') = w(fﬂ)%(dﬂc)n i € P*» i = 0, 1. (341)
Then
T(y) = (70)(X) + (1) (X),  @w)(X) =D v(x w), i=0,1.  (3.42)
TEYi

Let NV be the set of all positive finite Borel measures on X. In view of (3.42) and (3.32),
we have that ¢y; € N for each y; € I',, i = 0, 1. Consider

o
CL(X) = {g € Col(X) : gl < oo}, Ilgllz:= sup 4@ =90W)I
z,y€X, z#Y |z — yl

)
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and then define

lgllzz = lgllz + sup lg(@)l, g€ Cr(X),
x€
and also
vy, V') =max<1; sup |v(g) —V'(9)| ¢, v, eN. (3.43)
g:llgllsL <1

Proposition 3.3. [10, Theorem 18] The following three types of the convergence of a
sequence {v,} C N to a certain v € N are equivalent:

(i) vn(g) — v(g) forall g € Cp,(X);
(ii) vn(g) — v(g) forall g € CE(X);
(iii) v(vp,v) — 0.

That is, v metrizes the weak convergence of the elements of A/. Our aim now is to
metrize I‘i. In view of (3.32), to this end it is enough to metrize I',. Set

05" ={0(z) = g(z)v(z) : lgllsL <1}, (3.44)
and then define
v (7,7") = v(¥y0, ¥h) + v(v1, ¥p). (3.45)
Note that
v, yf) =max q 1; sup (Y O(x)— > 0(z)| o, v, v €T., i=0,1. (3.46)
9695)”4 €Y €]

Before going further, we recall that the set of simple configurations is defined in (1.1),
see also (3.28) and (3.31).

Lemma 3.4. The metric space (I'2,v*) is complete and separable. Its metric topology is
the weakest topology that makes continuous all the maps I'2 > v Doim01 2wy 0i(@),
0o, 01 € Oy. The set I'? defined in (3.31) is a G subset of the Polish space I'2, and hence
is also a Polish space. Its completion in the metric defined in (3.45) is T'2.

Proof. The completeness of (I'2,v*) follows from the completeness of (', v.), which
was obtained in [16, Lemma 2.7]. The second part of the statement follows by the
corresponding property of I', obtained ibid. O

The following formula summarizes the relationship between the configuration sets
I2cr?crz (3.47)

Recall that each of them is a Polish space with the topology as discussed above. Let
B(I'2) and B(I'?) be the corresponding Borel o-fields, that can be compared with the
o-fields introduced in (3.35).

Corollary 3.5. The embeddings in (3.47) are continuous. Therefore, B(I'2) = A, = {A €
B(T'%): A Cc I'?} and B(I'?) = A..

Proof. The continuity of I'? C I'? follows by the fact that C.s(X) is a proper subset of
©,. The other one follows by Lemma 3.4. The stated equality of the o-fields follows by
Kuratowski’s theorem [22, Theorem 3.9, page 21]. O

Remark 3.6. The aforementioned equality of the o-fields allows one to redefine each
u € P(I'?) possessing the property ;(I'?) = 1 as a probability measure on (I'2, B(I'2)) or
(I'2, B(I'2)). By (3.34) this relates to all 1 € Pexp.-
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3.4 Families of test functions
For 0 € ©,, see (3.38), we set

1
U(x)
where ¢y is as in (3.39). Then ¥ C C},(X) and its elements are separated away from zero.

It is closed with respect to pointwise addition since 6 + 6’ + 66’ belongs to ©,, whenever
0,0 € O©y. For 7; > ¢y, and y; € ', i = 0,1, we define, see (3.41),

)y =7—- log(1+ 0(x)), 2={L:0c06, m>c} (3.48)

Fo (i) = J] @+ 0ix)e ™) = exp (—(i)(s2)) (3.49)

rEY;
Fi(y) = ﬁfﬁ(%)ﬁff (71)s

and also B B
F={FY:17=(10,7), 7 > co,, 0i €Oy, i =0,1}, (3.50)

which includes the case ff = 1 corresponding to the zero 7 and ¢. Note that in
expressions like those in (3.49), (3.50), by § we understand (6, 61), 0; € Oy.

Definition 3.7. [11, page 111] A sequence {®,},en C By, (I'?) is said to boundedly and
pointwise (bp-) converge to a given ® € By, (I'2) if it converges pointwise and

sup sup |@(y)| < .
n€N vyel2

The bp-closure of a set M C By, (I'?) is the smallest subset of By, (I'?) that contains M
and is closed under the bp-convergence. In a similar way, one understands also the
bp-convergence of a sequence of functions ¢, : X — R.

It is quite standard, see [11, Proposition 4.2, page 111] or [9, Lemma 3.2.1, page
41], that C,(X) contains a countable family of nonnegative functions, {g;};cn, which is
convergence determining and such that its linear span is bp-dense in By, (X). This means
that a sequence {v,,} C N weakly converges to a certain v if and only if v,(g;) — v(g;),
n — +oo for all j € IN. One may take such a family containing the constant function
g(z) = 1 and closed with respect to pointwise addition. Moreover, one may assume that

VjeN mlg’(g](a:) =:¢; > 0. (3.51)

If this is not the case for a given g;, in place of it one may take g;(z) = g;(x) + ¢; with
some (; > 0. The new set {g;} has both mentioned properties and also satisfies (3.51).
Then assuming the latter we conclude that

o= {gj}jE]N C E, (3.52)

where the latter is defined in (3.48). To see this, for a given g;, take 7; > sup,, ¢;(x) and
then set

6;(x) = exp ([n— - gj<:c>1w<x>) . (3.53)

Clearly, 6;(z) > 0. Since ¥"(z) < ¢(z), n € IN, we have that §;(z) < e™¢(z), and hence
{0;}jenx C Oy, see (3.38). At the same time, gfj = g;j and ¢y, = sup,(7; — g;(z)) < 75 in
view of (3.51). By (3.53), (3.52) and [11, Theorem 3.4.5, page 113], see also [9, page 43],
one readily proves the following statement.

Proposition 3.8. The set F defined in (3.50) is closed with respect to pointwise multi-
plication. Additionally:
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(i) It is separating: pi(F) = us(F'), holding for all F € f implies puy = po for all
p1, p2 € P(L2).

(i) It is convergence determining: if a sequence { i, }nen C P(I'2) is such that u, (F) —
w(F), n — +oo for all F € F and some . € P(I'2), then p,(F) — u(F) for all
Fe Ob(Fi).

(iii) The set By, (I'?) is the bp-closure of the linear span of F.

Now we introduce another class of functions F' : I'? — R which we then use to define
the domain of L. For k € IN, v; 1,...,v, % € Cp,(X) and y; € 'y, i = 0, 1, we write

vi(x") =v1(x1) v p(xg), i\ x* =5\ {z1,..., 21}, (3.54)

see subsect. 3.1. As is (3.3), we will omit £ if the dimension of x is known from the
context. Then for m = (mg, m;) € IN3, Vi € @:; (see (3.38)) and 7 = (19, 71), ;. > 0, we
set, see also (3.4) and (3.18),

Fr(vily) = >0 vilx™)exp (—m¥(y; \x™)),  i=0,1, (3.55)

xMi €y
EI(vly) = Fio(volwo) Fr* (vilm), v €T3,
F={F"(v|):me N2, Vi € @i, 7, >0,4i=0,1}.

Here F\T(o,o) = 0, which is also an element of ]?
Proposition 3.9. For each m = (mg,m1) € N3, 7 = (10,71) > 0 and v; ; € @;f, j=
1,....,m;, i =0,1, it follows that F™(v|-) € Cy,(T'2).

Proof. Clearly, it suffices to show that ﬁ;” (vi]-) € Cp(I'y). To prove the continuity in
question we rewrite the first line of (3.55) in the form

FTT:%(VZHZ) =exp (-1 V() Z Z Z wp (1) -+ U, (T, ),
T1€Yi x2€v;\T1 T, €Y \{®1, Tm; —1}

(3.56)
uj(z) == v j(2)e™ @ =1, m,.

Obviously, every u; belongs to 9:;. For each m;, by (3.2) the sum in (3.56) can be written
as the sum of the products of the functions

Vi Uy, (i) = > i () -+ ug, ().

YEYi

Each such U;, . ;, is continuous as @$ is closed under pointwise multiplication. Obviously,
~v; — U(~;) is also continuous, which yields the continuity of the function defined in
(3.56). To prove its boundedness, we use the estimate u;(z) < ci(x)e™¥®) < ceTi(z).
Then, see (3.4),

Fm(vily) < exp (79 (7)) Z u®m (x) < ™™ exp (=1 () (Z %/1(50))

XEY; TEY:
(3.57)
em; \T
—emm pyenp (=) < mi]) < (L) em,
K2
which yields the proof. O
EJP 28 (2023), paper 67. https://www.imstat.org/ejp

Page 15/59


https://doi.org/10.1214/23-EJP952
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

A Markov process for a particle system with attraction

4 The statement

4.1 The Kolmogorov operator

Regarding the parameters of the Kolmogorov operator introduced in (1.3), we will
assume that a;, ¢;, © = 0,1, are measurable functions taking nonnegative values. We also
assume that the following holds

mgxsupaz( x) =:|la|| < oo, 4.1)
max/ (1 — e_¢i($)) dr =: ¢ < 00, 4.2)
i=0,1 J
and
/ |lz|'a;(x)dx =: dl(-l) < o0, for i=0,1and [ =0,1,...,d+ 1. (4.3)
X

Definition 4.1. By D(L) we denote the linear span of the set FUF, where F and F are
defined in (3.50) and (3.55), respectively.

Our aim now is to show that LZ?T’" (v]-) € By(I'?) holding for each ﬁm(v|«) € F. To this
end, for x € v;, y € X and a suitable F, we define

(VV"F)(vi) = F(yi \ 2 Uy) — F(v). (4.4)
By (3.55) we can write

Fm (vilvi) = Z v;.1( Fm7 (vi1|fyi \ 2), (4.5)

zZEY;
where v} is obtained by setting j = 1 in the formula
mifl)

vl (x =vi,1(21) i -1(Tj—1)Vi 41 (1) - Vi, (T ), (4.6)

see (3.54), and

Brolhi = Y v e (<rl((p )\ )\ X ).

xmi~ley;\z

According to (4.4) and (4.5) we then get

VYTET (vilyi) = [via(y) —via @) FP N v \ o)+ Y 0ia(2) VIR T (v \ 2).

z€vi\x
4.7)
By iterating the latter we arrive at, see also (4.6),
VI (vilv) = Z[Uz',j (y) — vy (@) Fm = (v \ @) (4.8)
j=1
+ <€nw(y) _ eT'ilb(a:))F\;?i (vilyi \ z).
For 0 € ©4 and a; as in (4.1), (4.3), we set
(a; x 0)(z) = / ai(z —y)0(y)dy = / ai(y)0(z —y)dy, i=0,1. (4.9)
X X
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Then a; *x 0 € C,(X). Moreover, by (3.40) and (4.3) we obtain

(@+0)@) < avla) [ (™) oo - n)uidy (4.10)
< aw(o) [a”+ [ o=l )™ alo - vy
= ) _a£°>+§(djl) /. |x—y|d+1—l|ylw<y>ai<x—y>dy]
< 591#(%)- +d§(d“) “’] =: Goauth(x),

where we have used also the fact that |y|'(y) < 1foralll =0,...,d + 1. Therefore, for
each 0 € O, it follows that

(@i0)(z) = (a;%0)(x)+0(z) <cp(a; + 1)(z) < Egcatp(x), (4.11)
¢q = max{ap;ai}+ 1.

At the same time,

eV W) — TV < (y)ep(a) || — i=0,1, (4.12)
which after calculations similar to those in (4.10) yields
/ a;(x — y)|677“’[’(y) - 677i¢(x)’dy < Ticap (), (4.13)
X

where ¢, is as in (4.11). For v; as in (3.54) and q;f as in (4.11), we set, cf. (4.6),
(alvi)(x™) = via (1) - vi o1 (2i-1) (@ivi ) ()01 11 (1) -+ Vi, (Tm,). (4.14)

Then by (3.55), (4.7), (4.8) and also by (4.11), (4.13), (4.14) we arrive at

‘Lﬁ;”(vh/)‘ < (/ Z ap(z —y ‘Vy’ F;O”O(voho)‘ dy) ﬁffl (vilm) (4.15)
TE€Y0
+ (/ Z ar(r —y ‘Vy Frmy( V1|71)‘dy> ET (o)
TEM
mo . ) N N
< ZFTTO(G%VOWO)+TOCa5(V0)F:§°H(70) Fr(viln)
j=1
ma . ) =R
+ | Do ER (@vilm) +mcae(v) EE T () | ER (volo).
j=1

where ¢(v;) = max; ¢,, ;, see (3.39), and
E(y) = F(vily),  with vi(x) = (@) -+ 9 (@m,), (4.16)
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see the first line of (3.55). Then the boundedness of LF™(v|-) follows by Proposition 3.9.
Let us prove now that LF? € By, (T,), holding for all §; € Oy and 7; > ¢y, 1 = 0,1, see
(3.49). According to (4.4) we have

VIR E () = ([0 = O] 4 ()0 ()] FL o).
Then by means of (4.12) and (4.10) we obtain
(Lff(v)‘ <QMF! o (v),
QM) = (ot eg)eac™U(r0)e V) 4 (11 48, Jeue™ () O
To + Cey T1 + Co,

< e t+ele o
erg eTy

where 7° = (70, 70), 70 > 0, is chosen in such a way that 7; — 70 > ¢y,, which is possible

since 7; > cp,. Then the boundedness in question follows by (3.49). The next statement
summarizes the properties of D(L).

Proposition 4.2. The set D(L) introduced in Definition 4.1 has the following properties:

(a) D(L) C Cy(T?); L:D(L) — By(T?).

(b) The set By,(I'?) is the bp-closure of D(L).

(c) D(L) is separating for Pexp.

(d) For each F € F, the measure Fu/u(F) belongs to Pexp.

Proof. Claim (a) has been jllst proved. Claims (b) and (c) follow by Proposition 3.8. Claim
(d) holds true since F' € F is positive and bounded, and thus multiplication does not
affect the property defined in (3.7), (3.9). O

4.2 Formulating the result

Following [9, Chapter 5] - and similarly as in [16] - we will obtain the Markov process
in question by solving a restricted initial value martingale problem for (L, D(L), Pexp)-
Here we explicitly employ the complete metric v* of I'?, defined in (3.46). Since the
elements of P.,, “do not distinguish” between multiple and single configurations, see
Proposition 3.2, one may expect that the constructed Markov process has the correspond-
ing property. We will show that it does. Note that the direct construction of the process
with values in f“f is rather impossible in this way as the latter space is not complete in
v*.

To proceed further, we introduce the corresponding spaces of cadlag paths. By
g, (I'?) and D, (I'?) we denote the spaces of cadlag maps [0, +00) =: Ry 3t + v, € ['2
and R, > t — ~, € I'2, respectively. Then the evaluation maps are w;(y) = v, v €
Or, (T'%), t € Ry; hence,

@ H(A) ={y€Dr, () :m(y) =n €A},  AeBI2).

Analogously one defines D, o) (I2), Ds 1) ([?), s > 0. For s,t > 0, s < t, by §2, we
denote the o-field of subsets of D, | )(I'?) generated by the family {w, : u € [s,]}.
Then we set
ss,t = ﬂ Sg7t+5a Ss,-‘roo = \/ Ss,s-‘ﬂv
e>0 nelN
In the next definition — which is an adaptation of the corresponding definition in [9,
Section 5.1, pages 78, 79] - we deal with families of probability measures {P; , : s >
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0, it € Pexp} defined on (D [s7+oo)(Fi), §s.+00). Depending on the context, each p € Peyp is
considered as a measure either on I'2 or I'2, see Remark 3.6. Since I'2 and I'? are Polish
spaces, both D[, | (fz) and ©[57+oo)(1“§) are also Polish. The latter one is complete
in Skorohod’s metric, see [11, Theorem 5.6, page 121]. Then a probability measure
P on (D5 160)(I'2), §s,+00) With the property P(D[S7+w)(f§)) = 1 can be redefined as a
measure on D[S,Jroo)(fz), that holds for all s > 0.

Definition 4.3. A family of probability measures {P, , : s > 0, i € Pexp} is said to be
a solution of the restricted initial value martingale problem for (L, D(L), Pexp) if for all
s > 0 and p € Pexp, the following holds: (a) Ps ,, o w;l =p; (b) Ps 0 w;l € Pexp for all
t > s; (c) for each F € D(L), to > t; > s and any bounded function G : ©[S7+OO)(F§) — R
which is ¥ ;, -measurable, the function

H(y) o= [F@M)me» / (L) (@u)du| G() @17)

ty

is such that
/ H(9) Py () = 0.
Dis,+00)(T'2)

The restricted initial value martingale problem is well-posed if for each s > 0 and
i € Pexp, there exists a unique path measure P; , satisfying conditions (a), (b) and (c)
mentioned above.

Remark 4.4. Instead of taking all G as in claim (c) of Definition 4.3, it is enough to take
in the form

G(v) = Fi(ws, (7)) -+ Fin(ws,,, (7)), (4.18)
with all possible choices of m € N, Fy,..., F,, € F (see Proposition 3.8), and s < s1 <
S9 < -+ < 8, < t1, see [11, eq. (3.4), page 174].

Now we can formulate our result.

Theorem 4.5. For the model defined in (1.3) and satisfying (4.1) - (4.3), the following is
true:

(i) The restricted initial value martingale problem for (L, D(L), Pexp) is well-posed in
the sense of Definition 4.3.
(ii) Its solution has the property PS,#(CD[S#OO)(f‘f)) = 1, holding for all s > 0 and
1 € Pexp-
(iii) The stochastic process related to the family

(9[5,+oo)(F3),3s,+ooa {Sst 1t =8k {Psut 1 € Pexp})szo
is Markov. This means that, for allt > s and B € §; 1, the following holds
P, ,(B|Fs,) = Ps u(B|F:), P, ,, — almost surely.
Here § is the smallest o-field of subsets of D[, | «)(I'7) that contains all w; H(A),
A € B(I?).

In the proof of Theorem 4.5, we crucially use the Fokker-Planck equation (1.2).

Definition 4.6. For a given s > 0, a map [s,+>) > t — u; € P(I'?) is said to be
measurable if the maps [s, +00) 5 t — u;(A) € R are measurable for all A € B(I'?). Such
a map is said to be a solution of the Fokker-Planck equation for (L, D(L)) if for each
F € D(L) and any to > t1 > s, the equality in (1.2) holds true.
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Note that LF € By, (T',); hence, the integral in the right-hand side (1.2) is well defined
for measurable t — ;.

Remark 4.7. By taking G = 1 in (4.17) one comes to the following conclusion. Let
{Ps, : 5> 0,1 € Pexp} be a solution as in Definition 4.3. Then for each s and p € Pexp,
the map [s,+00) 2t +— P, , 0 wt_l solves (1.2) for all t5 > t; > s.

4.3 Comments

4.3.1 Concerning the model

In statistical physics, the first model where attraction is induced by an inter-component
repulsion was proposed by Widom and Rowlinson in [24]. A mathematically rigorous
proof that the Gibbs states in this model can be multiple was done by Ruelle in [21]. In
both these works, the repulsion is of the hard-core type, which in our case corresponds to
¢po(x) = ¢1(x) = £.-(|z]), » > 0, with ¢, (p) = 0 for p > r, and ¢, (p) = +oo for p < r. In the
single-component version of the Widom-Rowlinson model, the energy of the multiparticle
attraction induced by the hard core repulsion in a finite configuration 7y C I is given by
the formula, see [6, eq. (1.1)],

U(no) = V(no) — |mol| Bl (4.19)

where |B, | is the volume of B, and V(1) is the volume of U,cy, B, (x). The relationship
between the single- and the two-component versions was analyzed in detain in [6],
see also [15] where the interaction of the Curie-Weiss type (in place of the hard-core
repulsion) was studied. A significant feature of (4.19) is that this interaction is super-
stable in the sense of [20], see [6, eq. (1.2)]. For such interactions, the states of thermal
equilibrium (Gibbs states) have correlation functions that satisfy (3.12), see [20], which
means that the Gibbs states are sub-Poissonian. This is one more argument in favor of
using such states. Note that our assumption (4.2) covers the case of hard core repulsion
mentioned above. In [1], the results of which we will use in the remaining part of this
work, the repulsion kernels ¢; were assumed bounded and integrable, which is a stronger
version of (4.2) that does not cover the hard core repulsion. However, the boundedness
was used there only in the part where the mesoscopic limit of the model was studied.
That is, the part of [1] the results of which we will use here remains valid if one assumes
only (4.2).

4.3.2 Concerning the method

In this work, we mostly follow the scheme elaborated by us in [16]. It has two basic
ingredients: (a) proving existence and uniqueness for the Fokker-Planck equation, where
existence is obtained by means of the corresponding results of [1]; (b) approximating the
initial model by some models for which the process can be constructed directly by means
of the corresponding transition functions. Of course, here we faced some additional
technical problems related to a more complex nature of the model.

Another type of stochastic dynamics in infinite particle systems which is even more
popular in the literature than the systems with ‘conservation of the number of particles’
is the so called ‘birth-and-death’ dynamics. Here the particles appear and disappear,
also under the influence of the existing members of the population. Up to the best of our
knowledge, by now uniqueness for the corresponding Markov processes was obtained
only for infinite particle systems with independent disappearance, see [12]. We plan to
modify our methods to cover also the case of systems with a logistic-type disappearance
repulsion.
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5 The evolution of sub-Poissonian states

As mentioned above, in [1] there was constructed a map ¢ — pu; € Pexp Which
describes the evolution of states of the model (1.3). Here we show that this map is the
unique solution of the Fokker-Planck equation (1.2), which is then used in the proof
of Theorem 4.5. In this section, we outline the construction realized in [1] in the form
adapted to the present context, which includes also passing to states on the space of
multiple configurations I'2. This is possible since x(I'2) = x(I'2) = 1, that holds for all
it € Pexp, see Remark 3.6.

The key idea of [1] may be described as follows. Since each p € Pey,, is fully charac-
terized by its correlation functions kg”), m € IN2, see Definition 3.1 and (3.10), instead
of solving (1.2) directly one can pass to the evolution equation for the corresponding
correlation functions defined in appropriate Banach spaces. An addition task, however,
will be to prove that its solutions are correlation functions — an analog of the classical
moment problem in this setting.

5.1 The evolution of correlation functions

For m € INZ, let a symmetric G™) be in Ces(X™0 x X™1), see (3.20). As above,
m = (0,0) corresponds to constant functions. Let G := {G(m)}memg be a collection of
such functions. We equip the set of all such collections with the usual (member-wise)
linear operations and then write G(n) = G (x,y) for n = (19,m1), 70 = {Z1,- -+, Tmy },
m = {y1, -, Ymy }» @and (X,¥) = (1, s Tmg; Y1, - Ym, ), cf. (3.8), (3.10). Each n =
(n0,m1) is a pair of finite configurations, and thus n € I'2. That is, 7, is a finite configuration
of particles of type ¢« = 0, 1; by I'y we denote the subset of I" consisting of all finite (possibly
multiple) configurations. Let Gg, denote the set of all aforementioned collections G
verifying G("™) = 0 for all mo + m; =: |m| > Ng for some Ng € IN. Then the map K as in
(3.20) can be defined on Gg, by the formula

(KG)(v) = ZG(U) = Z Z G(10,m) (5.1)

ncy M0 Cv0 M1 Cy1
oo oo 1
_ (m)
=3 Y s Y @™y
mo=0m1=0 (x,y)€v

For 1 € Pexp and G € Ggy, by (3.22) KG is p-integrable and the following holds, cf.
(3.10),

1
m0!m1!

WKG) = >

melN2

/ K™ (x,y)GT (x,y)d™oxd™y  (5.2)
Xm0 x X™1

1 m m
=Y (™, G = (1, G)
me]N(ZJ 0-HreL:

= /F pk‘u(ﬁo,771)G(770,771)/\(d770))‘(d771)‘

Here k, is the collection of the correlation functions kf]"), m € INZ, that can also be
considered as a function k, : I'; — R such that

kﬂ(n) = ku(nmnl) = k(m) (x,y), Tlo = {xla ce axnz,o}7 m = {y1, ce ayml}- (5.3)

The integrals in (5.2) are understood in the following way, cf. (3.21),

/ Eu(no,m )G (no, m)A(dno) A(dnr) (5.4)
To JTo
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1
= > / k(™ (x, y) G (x, y)d"Oxd ™y
meN2 Mo:m1: J xmox xmo

In (5.3) and (5.4), k, - similarly as G in (5.2) - is the collection of symmetric k&m) €
Lo°(X™o x X™1), considered as an element of the corresponding real linear space, which
we denote by K. Keeping in mind that we deal with p(LF) = u(LKG), see (1.2), assume
that we are given L® such that

WILKG) = (L%, G)). (5.5)
This L? can be calculated explicitly, see [1, eq. (2.23)]. To present it here, we define
i) =e 4TV () =7i(y)—1, xyeX, i=0,1, (5.6)

and

(TO8)(oy 1) = jf K10, 71 U €)e(t2; €)A(dE), 5.7

(TY) oy ) = A:MmuamkﬁbﬂM%%

where, for an appropriate 6 : X — R and £ € I'y, we write

= H 0(x)

€€

The expressions in (5.7) are to be understood in the following way. For a given m € IN3,
one sets

(Tok) ™ (x,y) = k™ (x,y) (5.8)

n

+ § n'/ k(mo,mlJrn) Ilv"'7Im0;yla"'7ymlyzla"'7 H Z] le Zn-

The convergence of the series and the integrals will be shown below. In the same way,
one defines also the second line of (5.7). Now the operator satisfying (5.5) presents in
the following form

(L2k)(no,m) = Z/ ao(z — y)e(ry;m)(Tyk) (o \ y Uz, m)dx (5.9)

YE€MNo

- Z/ ao(z — y)e(ry;m)(Yyk) (no, m)dy

TENo

+ Z/ ar(z — y)e(ry;n0) (Tyk) (0, m \ y U x)da

YyeEN

- Z / ar(z — y)e(ry; 10) (T k) (10, m ) dy.
TEN
Ford € Rand k € K, see (5.3), we set
Il = esssup [6o. &) exp ( — dlel +ler) ) (5.10)

0,§1€l0
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= sup e Ylmotmi) ( ess sup |k(m)(X7Y)> ;
(

melN2 X,y)EX ™0 x X™1

and then introduce
Ky ={keK:|k|s < oo}, ¥ € R, (5.11)

which is a real Banach space of weighted L>°-type. By (5.10) one readily gets that
k[l < k|9 whenever ¢’ > ¥, which yields

]Cﬂ‘—>l<:19/, 19/>’L9, (5.12)

where — denotes continuous embedding.

Let us turn now to the following issue. Given k£ € K, under which conditions is this &
the correlation function for some p € P(I‘2)? By (5.10) and Definition 3.1 one concludes,
that k,, € Ky with ¥ = log s for j1 € Peyp, Wwhere i is the type of p. At the same time, if
G € gy is such that (KG)(y) > 0, by (3.12) and (5.2) it follows that {(k,,G)) > 0. Set
Gt ={G € Gan : (KG)(7) >0, v € I'?}, and also

K*={kek:k®Y =1and (k,G) > 0VG € G;,}. 5=K*NKy, 9€R. (5.13)

It is known [1, Proposition 2.2], see also [18] for a more comprehensive discussion, that
each k € K} is the correlation function of a unique p € Pe, the type of which does not
exceed e”. That is, k € Ky is the correlation function of a unique sub-Poissonian state p
if and only if k € KCj.

Proposition 5.1. Let k € K. Then ||k||y- = 1 for each ¢ > 9.

Proof. Firstly, we note that ||k||y > 1 for each 9 € R since k(2, @) = k(*9) = 1, see (3.13).
By (3.12) and the fact that k € Ky, it follows that ||k(™1:™2)|| Lo < e?(m1+m2) which yields
the proof. O

By (5.9) and (5.10) for ¥ € R we then have, see [1, eq. (3.10)] for more detail,

(LK) (no, m)| < 4a||k||ge” ol +ImD) (Ino - |m> exp (pe”) (5.14)
where ¢ is as in (4.2) and
o = max al”, (5.15)

see (4.3). This estimate settles the convergence issue in (5.8). It also implies

dal|klls

LAkl < — MY
| [l < W — 1)

exp (pe?), ¥ >0, (5.16)

which allows one to define the corresponding bounded linear operators acting from Ky
to Ky/. Along with them, we define an unbounded linear operator Lﬁ,, 1 € R, which acts
in [Cy/ according to (5.9) with domain

D(L5) ={k e K: L € Ly} (5.17)
By (5.16) one concludes that
Ky c D(LS), 0<v. (5.18)

Now we fix 9 € R and consider the following Cauchy problem in the Banach space Ky

d
Ekt = L5k, kili—o = ko. (5.19)
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Definition 5.2. By a solution of (5.19) on the time interval, [0,T), T > 0, we mean a
continuous map [0,T) > t — k; € D(L5) C Ky such that the map [0,T) > t > dk;/dt € Ky
is also continuous and both equalities in (5.19) are verified.

In view of the complex structure of (5.9), as well as of the fact that Iy is a weighted
L*>-type Banach space, it is barely possible to solve (5.19) with all ky € D(Lﬁ), ed.,
by employing Cy-semigroup techniques. In [1], the solution was constructed for kg
taken from Ky, with ¥y < ¥, see (5.18). Its characteristic feature is that k, lies in some
t-dependent Ky, such that, cf. (5.12),

]Cgo — IC19/ — IC/,g. (5.20)

More precisely, the main result of [1] can be formulated as follows, see Theorem 3.5 ibid.

Proposition 5.3. For each 1 € Pexp, and T' > 0, the Cauchy problem in (5.19) with
¥ =9(T) := log » + oT has a unique solution k; € ICg(T), where 3 is the type of i and «
is asin (5.15).

Remark 5.4. The proof of Proposition 5.3 is performed in the following three steps.
First one shows that the Cauchy problem (5.19) with ky € Ky,, Y99 < ¥, has a unique local
solution k; € Ky, see (5.20), i.e., existing for t € [0, (¢, o)) with

v -9
T(9,9) = ia % exp (—goeﬂ) . (5.21)

The next (and the hardest) step is showing that, given £y € K*, the solution k; lies in
K* and hence is the correlation function of a unique p; € Peyp. Finally, by means of the
positivity as in (5.13) one makes continuation of the local solution k; to all £ > 0 in such
a way that k; € Ky with 9(t) = 9o + at, cf. (5.18).

5.2 The predual evolution

Along with the evolution ¢ — k; described in Proposition 5.3 we will need the following
one. Assume that we are given L such that, cf. (5.5),

(L2, GY = (k, LGY, (5.22)

holding for all appropriate £ € K and G € Gg,. This operator can be derived similarly as
A given in (5.9). It has the following form

o~

(LG) (1m0, m) (5.23)

2/ S e(rlim \ et €) [Glno \ Uy, mi \ €) — Glio,m \ €)] dy

TEMo ECm

+ 30 [ elrhim \ elehi ) (Glm \ m \w Uy) = Glom \ )]

TEN £Cno

with ¢ and 7, given in (5.6). Obviously, L is defined for each G € Gg,. Our aim now is to
extend it to GG taken from the spaces predual to those defined in (5.11). To this end, we
introduce the norm

|G|z9=/F /F G (&0, &1)| exp (19(|50|+|§1|)>>\(d§0))\(d§1)7 (5.24)

and then define, cf. (5.11),
Gy = {G: ‘G|19 < OO}
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Thus, each Gy is a weighted L!-type Banach space. Noteworthy, cf. (5.12),
Gy — Gy, 9 <. (5.25)
By employing (5.23), similarly as in (5.16) we get

40&|G|19/

LGy < —— 12
ILGs < e(0 — 1)

exp (gpeﬂ) , Y >0 (5.26)

The latter formula allows one to define (by induction in n) the iterations of f, cf. (5.25),
(Z);’;ﬂ/ . gﬂ/ — g’ﬂa n e ]N,

the operator norms of which obey

~ 4 " ,
[(L)gg |l <n™ (ﬂ) exp (71(@619 - 1)) : (5.27)

Then we introduce the operators

[e%¢) mo
Sopr(t) =1+ —(L)59, (5.28)

n=1

where the series converges in the norm of the Banach space £(Gy/, Gy) of bounded linear
operators acting from Gy to Gy — uniformly on compact subsets of [0,7(¢,)), with
T(¥,9) defined in (5.21). The latter fact readily follows by (5.27). Then, for ¢ < T(¢,9),
we can set

Gy = Yo (1)G, G € Gy (5.29)

For a given 9, let k € Ky be the correlation function of a certain ;1 € Peyp,. According to
Proposition 5.3, see also Remark 5.4, there exists the map ¢t — k;, kg = k, that solves
(5.19) and is such that k; € ICg(t) with ¥(¢t) = ¢ + at. Let ¢ and ¢’ be as in (5.29). For
t <T(¢¥,9), by (5.21) it follows that

I(t) <9+ aT (W, 9) <,

which means that Ky) C Ky/. The continuation mentioned in Remark 5.4 was done in
[1] by showing that the solution - a priori lying in ICy/ - is in fact in KCy (). Fort < T'(¢', ),
it can be obtained similarly as in (5.29). By induction in n one defines bounded operators
(LAY, : Ky — Ky, n > 2, the norms of which are estimated as in (5.27). Then one sets

o0 tn
ko= SgoOko,  Spo(t) =1+ —(L*)5y,  t<T(@,9). (5.30)
ne1 n.

For each ¢ < T'(¢, ), one finds ¥’ € (J,¢') such that ¢t < T(¢’,9), see (5.21), which
means that =y (t) maps Ky to D(L5)), see (5.12), (5.17). Furthermore, by the absolute
convergence of the series in (5.30) - in the norm of the Banach space £L(Ky,Ky/) - it
follows that the map ¢ — Zyy(t) is continuously differentiable in this norm and the
following holds

d _ — — =
ﬁzg/ﬁ(t) = =y (t)L?//,& = L?/,&//;:ﬂ//ﬁ(t) = Lgl.:ﬁ/ﬁ(t), t < T(ﬁ/, ’19), (5.31)
which yields that k; as in (5.30) solves (5.19). Then the steps mentioned in Remark 5.4
amount to the following. For fixed 9,v, one constructs Zy»(t), t < T(¥,4), and shows
by (5.31) that k; as in (5.30) solves the corresponding Cauchy problem. Then one
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takes ko = k, € K}, and shows that k;, ¢t < T'(9,7) for some ¥ > 1y, obtained as just
mentioned, lies in *. Finally, by the positivity as in (5.13) one proves that this k; lies in
K@y, 9(t) = Yo + at <9 for t <T'(d,7). The continuation to s > ¢ is then performed by
applying Zyy1)(s) to k¢, see [1, Lemma 5.5] fore more detail.

Complementary information concerning the operator norms of the maps ¢ — Yy (1)
and ¢t — Zyy(t) is given by the following estimates

R
TW,9) -t

T, 9)

’ < 7
| Zo0 () < T

|Z9r0(t)] < t< T, 9), (5.32)
which readily follow by (5.27) and the corresponding estimate of (LA)SW, respectively.

By means of (5.31) and (5.30) we also obtain the following.

Proposition 5.5. Given 9 and ¢ > 9, let kg € Ky be the correlation function of a certain
1t € Pexp and then k; be the solution as in Proposition 5.3. Let also G be in Gy/. Then for
eacht < T(¥,v) the following holds

(e, @) = (Ko, Ge)), (5.33)

where G, is as in (5.29).

We end up this section by producing appropriate extensions of the map G — KG
defined in (5.1) for G € Gg,. Set Goo = NyerGy. As is usual, we do not distinguish
between the elements of G, and the measurable functions G : '} — R for which the
integrals in the right-hand side of (5.24) are finite for all ¥ € R. Then Gg, C Goo. We
recall that each measurable G : ['2 — R is a collection {G(m)}memg of symmetric (cf.
(3.11)) Borel functions. Similarly as in [18, Theorem 1], one can show that, for each such
G and m € IN2, the map

Msye Y GM(xy)
(x,y)€y

is B(I'?)-measurable. Then also the functions (possibly taking infinite values)
1 m
FG(PY) = Z Ao | Z |G( )(x,y)\, Gegooa ’761—37

m0!m1 !
meN3 (x,y)€y

enjoy this property; hence, the sets

Ig=J{reT?: Foly) <n}, G € Gu,
nelN

are B(I'7)-measurable. Moreover, I'} itself is I'; for Gy, such that Gfpl’o)(q;) = fo’l)(q;) -

Y(r) and GE;”) = 0 whenever |m| # 1, see (3.31). Let yu € Pex, be of type e’ for some
¥ € R. By (5.2) we thus have

w(Fea) < |Gly.

Similarly as in (3.33) and (3.34) we then get that u(l%) = 1. Therefore, for each p € Peyp
and G € G, the series in

(K&)() = ﬁ > GMi(xy) (5.34)

ma.
meNg (x,y)€Y

absolutely converges, u-almost everywhere on I'2. This includes also the Poisson mea-
sures m,, with all k > 0, see (3.19). By means of these argument we obtain the following
conclusion.
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Proposition 5.6. Let u € P.y, be of type e’ for some ¥ € R. Then the map G — KG as
in (5.34) gives rise to the bounded linear operator K acting from the Banach space Gy to
the Banach space L' (I'2, 1), such that

WKG) = (ku, G).
Moreover, if G belongs to Gy for some ¥ > ¥, then
WLEG) = w(KLG) = (ky, LG)),

where L : Gy — Gy is the linear operator defined in (5.26).

6 Uniqueness

6.1 Solving the Fokker-Planck equation
We begin by recalling Definition 4.6, in which we mention maps ¢ — yu; € P(I'2).

Lemma 6.1. Let 1o € Pexp be of type 3y = €% and consider the Fokker-Planck equation
(1.2) with the initial condition p|;—o = po and all choices of F' € ]?, see (3.55) and
Definition 4.1. Assume that t — u; is a solution of (1.2) with such po and F. Then
1t € Pexp; moreover, for each T' > 0, there exists 91 > 1 such that the type of j; does
not exceed €T forallt <T.

Note that in this lemma we assume that only pg is sub-Poissonian, and that ¢ — py
solves (1.2) only with a part of D(L). Before proceeding further, we recall that the
families of functions F and F were introduced in (3.50) and (3.55), respectively.
Proposition 6.2. Set F,, = {F = KG : G € G}, see (5.34). Then both F and F are
subsets of F..

Proof. By (3.49) and then by (5.1) one readily gets that

FE(PY) = Z Z Gs—gfzi(mla"'axmo) Z Z GS—Téz(ylavyml)
mo=0 {x1,....xmq, }CY0 m1=0 {y1,....,ym; }Cn
= (KGr0)(7),  Gro(no,m) = Gry00(110)Gry 0, (), (6.1)
where

mi
G @, m) = [[ 07 (2)), 07 (2) == 0;(2)e ™ @ 4 ™) 1 i =0,1. (6.2)
j=1

Clearly, 07 € L*(X) for each 7 > 0, 6; € ©,, i = 0,1. Hence, G, 4 € Gy for any ¥ € R,

which yields F C Foo.
Now by the first line in (3.55) we have, see (3.4),

Erivily) = Y vix™) [ (Q+a@) (6.3)
XM €y, TEy; \x™i
= Y R™vilm) J] (Q+s@),
n: CYi TEv; \x™i

where ¢;(z) = e~ 7%(*) — 1, and, see (3.54),

- ZUES’"?‘ ’Ui,l(-ro'(l))"'vi,mi (xa(mi)% if i = {xlw-'?mmi}a
R™ (viln:) =
0, otherwise.
(6.4)
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Now we open the brackets in the product in (6.3) and get

Erivily) = Y GO (vilm), (6.5)
i Cvi

Gro(viln) = Y R™wil&) [ <«
&iCni z€ni\&i

To complete the proof we have to show the corresponding integrability of @SZ””(VZ»H.
Since v; ; € 8$ and 7; > 0, we have

< > R™MilG) [ @),

&iCni zeNi\&:

G i)

and hence

GO (1) | 21 IE pmi (v €) P 1Ml rab(x .
/FO G0 (vif) | 71 M) < / / R (vi[€)e T [ @) AdEAdn)  (6.6)

xen

_ em,ﬂ<vl7i> o (U, i) €Xp (Ti€19<1/}>) )

where (v;;), j =1,...,m;, and () are the L'(X)-norms of these functions. Similarly as
in (6.1) we then have

' (viy) = (KGI'(v[)(y),  GP(vIn) = G (volno) G (vilm), (6.7)
which completes the proof. O

Lemma 6.3. For each 1 € Pqp, the Fokker-Planck equation (1.2) with o = p has exactly
one solution.

Proof. Existence: Let ¢t — k; be as in Proposition 5.3 with ky = k,. Since k; solves (5.19),
it follows that .
2
ki, — Ky, :/ Lgiryksds, (6.8)
ty
holding for all t; > t; > 0 and T > t5. Let j; € Pexp be the unique measure for which k;
is the correlation function, see Remark 5.4. Then for each G € G.,, we have

pe,(KG) = (key, G, =12

For each ¥ € R, the map Ky > k — ((k,G)) is linear and bounded - hence continuous.
Then by (6.8) and Proposition 5.6 for F' = KG we get

p(F) = iy (F) = ([ L3yheds,G) = [ (L Ghds (69

t1 t1

2 ta

= [ (nEG)ds= [ p(LF)as,
t1 ty

Now we can take G = @T(v -), see (6.7), or G = 67,9, see (6.1), (6.2), and conclude that

the map ¢ — u; is a solution of (1.2) according to Definition 4.6.

Uniqueness: Let ¢t — [i; be another solution satisfying fi;|;—o = u. Let also ¥y be such
that kg = k, € Ky,. For a fixed T' > 0 and each t < T, by Lemma 6.1 it follows that
it € Pexp and its type does not exceed €T . That is, the correlation function I?:t of this
measure f[i; lies in Ky,.. Without any harm we may take ¥r big enough so that

sup ks, =1, (6.10)
s€[0,T]
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see Proposition 5.1, and also J7 > J(T') = ¥y + oT, see Proposition 5.3.
It is known, see [1, egs. (4.6) - (4.8)], that the map [O1,+00) 2 9 — T(9,97), see
(5.21), attains maximum 7 () at ¥ = 91 + §(9r), where

T,(97) = 5(55) exp (6<;T)) , (6.11)

and §(97) is the unique solution of the equation
6e = exp (=7 — log ) .

According to our assumption k; € Ky, C D(LQT), see (5.18), and

i (KG) — p(KG) = (s — ko, G)) = /0 t<<L§T/;S, GYds, 6.12)

holding for all ¢t < T and G such that KG € FUPF. That is, GG is either éT’g (6.1) or
G™(v|-) (6.7). The integrations in (6.12) were interchanges for the same reasons as in
(6.9). Let us prove that (6.12) holds for all G € G,. By (5.16) and (6.10) we have

IL5 kollg, < 1/eTu(d7), (6.13)
holding for all s < T. Now we fix
t < min{T; T, (d7)}, (6.14)
and set .
q =k —ko— /0 L3 kyds.
By Proposition 5.1, and then by (6.10) and (6.13), we get
lallg, <2+t/eT(Ir). (6.15)

Then for G = G™(v|-) with ; < 1, i = 0,1, by (6.12) it follows that (¢, G)) = 0. At the
same time, by (6.7), (6.6), (6.5) and (6.15), we have

(g, G

IA

lalls, |Gl (6.16)

(2+t/eTw (V7)) exp ((mo +my)dr + 2<7/1>61§T> ﬁ l_i (vji)-

Jo=1j1=1

IN

Let G. denote @Z‘(v|-) with 79 = 71 = ¢ < 1. Then by the dominated convergence
theorem and (6.16) we get

(g, Go))

where Gy is the pointwise limit of G, as ¢ — 0. That is, see (6.5) and (6.4),

m (¢, Ge)) =0, (6.17)

=1
e—0

Go(n) = Gy (volno)Gg™ (vilm) = R™ (volno) R™ (vi|m). (6.18)

Now we use this G in (6.17) and obtain, see (3.54),

[ amymbn sy 619)
X™o x X™1
= / q(mo’ml)(zla sy Tmgy Y1y - - ayM1)v071(x1) ©V0,mo (xmo)
X’VYLO ><X’VYI1
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le,l(yl) ©rU1,my (xml)dzl e dImodyl ce dyml = Oa

holding for all m = (mg,m;) € NZ and v; ; € Qg. For each m € INZ, the set of functions
(x,¥) = vo(x)vi(y), vi,; € @:g, is closed with respect to the pointwise multiplication and
separates the points of X x X™. Such functions vanish at infinity and are everywhere
positive, see (3.38). Then by the corresponding version of the of the Stone-Weierstrass
theorem [4], the linear span of this set is dense (in the supremum norm) in the algebra
Co(X™o x X™) of continuous functions that vanish at infinity (recall that X = R?, hence
X™o x X™ is locally compact). At the same time, Co(X™° x X™1) N LY(X™0 x X™) is
dense in L1 (X™o x X™1) as its subset C.s(X™ x X™1) has this property. Thus,

(g™, Gy =0,
holding for all G™) € L'(X™0 x X™1). The extension of the latter to

is standard, which yields the validity of (6.12) for all such G. By (5.22), (6.9) and (6.12)
we have

(. G) = (k0. G) + [ (15, FurGds (6.20)

= ({ko, G) + /0 (ks, Ly, 5,GNds G € Gu.

~

Note that, for G € G, LﬁTéTG € Gy,, where the latter space is predual to Ky,, and
155 € Ky, forall s <t <T. For G € G, the action of Eﬁw% on G is the same as in (5.23),
that by (5.26) yields G; := L, - Ge G~. Therefore, one can write (6.20) also for G;.

79T79T
Repeating this procedure n times we arrive at the following

(ks G) = (ko G + k0, Ly, 5, + 5 (o (Ey,5,0°G) .21

" =

ot o o By, G+ [ [T By g, Gt -t

Let k; be the solution as in (6.8). Our choice of ¥ is such that k; € Ky,, hence (6.21)
can also be written for this k;, which yields

(ky — ke, G) = /Ot /Otl ~--/0t“<<7ctn s (B 5. )" Gty - dby.

Now by (5.27) we obtain from the latter, see (6.14),

~ n" t "
(ke — kt,G»‘ < QW <T(19T)) |Glo, =0,  asn — +oo.

Thus, k; = k; for ¢ satisfying (6.14). The continuation of this equality to all ¢ can be made
by repeating this construction, similarly as in [1, the proof of Theorem 3.5, pages 659,
660]. Now the equality ji; = u; follows by the fact that each 1 € Pey,, is identified by its
correlation function, see Remark 5.4. O
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6.2 Useful estimates

The aim of this subsection is to prepare the proof of Lemma 6.1. A priori a solution
u: need not be a sub-Poissonian state, so one can speak of y;(F) only for bounded F, in
particular of y, (F,(v|-)). At the same time, F (v|-) is bounded for positive 7; only, see the
proof of Proposition 3.9. Assume that we have obtained an estimate of ut(ﬁT(v| --+)) that
is uniform in 7, which might allow for passing to the limit max; 7; — 0. Assume further
that this limit satisfies an estimate similar to (3.8) with a certain ¢t-dependent . Then
the proof will follow with the help of Definition 3.1. Let us then turn to obtaining such
estimates. Here we will mostly follow the way elaborated in [16].

Our starting point is the estimate obtained in (4.15) the right-hand side of which is
an element of D(L). Significantly, it is independent of the interaction terms ¢;, i = 0,1,
where both components appear in a multiplicative form, similarly as in ﬁr(v\-) in (3.55).
Another observation is that in the latter function all v; ; with the same i = 0,1 can be
different, whereas (3.9) is based on just two functions 0y, ;. Keeping this fact in mind,
we introduce the following functions. Fix 6,60, € @;’ and set, cf. (3.55),

DI (Oili) = I (Vilyi)lo, =0, = > 07 (x™ ) exp (-7 (y; \ x™), i=0,1. (6.22)

xnz%e,yi
Along with this, we also introduce
ST Oily) = FT Vi) os st vyt (6.23)
o7 (Oilvi) = mi® o7 (9 i) + Ticao, LM (1),

where 0} := a;0; and ¢y, are as in (4.11) and in (3.39), respectively; ﬁ}?i“(%) is as in
(4.16). Now we set

T (0ly) = D7.°(00lv0)P7 (01|71), (6.24)
for which by the estimate in (4.15) we then get
ILOT(O17)] < P70 (Oo|7v0) D7 (B1]71) + P70 (Oo|v0) D7 (O1]71) =: @71 (0]).  (6.25)

Each of the summands above is a linear combination of the corresponding functions
Fi(v|-). Hence @7 (0|-) € D(L), and one can estimate L7 (f|-) by repeating the
above procedure based on (4.15). This yields

Lo, (01 ()| < (/ S aola —y) [V4EEm( eowo)\dy)@:zl(elm) (6.26)

TEY0

+ (/ Z ar(z —y) [V D7 (61]71) |dy> o1 (Bol0)
rEY1L

+ (/ Z agp(x — Vy’qumo (Bolv0) |dy> o7 (O1]n)
TEY0

( [ e —n [vrran @) dy) @7 (Boho).

rEY1L

Each of the summands of the right-hand side of (6.26) can be estimated in the same way
as in the last two lines of (4.15). This procedure was systematically elaborated in [16],
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which we are going to use now. To describe it, we introduce the following notions. First,
forl € N and 0;, i = 0,1, we define, see (4.11),

0l = a0l 00 =0, (6.27)

K2

Then as in [16, page 28], for p € IN and ¢q € Ny, by C,, , we denote the set of all integer-
valued sequences ¢ = {¢; };en, C INg such that

cot+eci+---+eg+---=p, c1+2c+--+lg+---=q. (6.28)

For instance, Cp is a singleton consisting of ¢ = {p,0,...,0,...}, Cp 2 consists of ¢ =
{r—-1,0,1,0,...}and ¢ = {p — 2,2,0,...} for p > 2. Thereafter, we set

_ plg!
Crald) = iaT ol (e @ ¢ €Cpy, (6.29)

k
wi(p.g) = Akpq,i,ZuW(’j)(pH)% ke N,

T 1=0
Note that A is the step-one forward difference operator for which

AFp? =0,  fork >q. (6.30)

mg

Next, for ¢ € Cpn,,q, Wwe write v(x™) =[]/ vi,;(z;), see (3.54), where the number of
v;,; equal to 0; is ¢y, the number of v; ; equal to 91 is ¢, see (6.27), the number of v; ;
equal to 93 is ¢o, etc, cf. (6.23). Thereafter, for 0; € (9 , 1 =0,1, such that

cp, = 1, (6.31)

see (3.39), we set

Oy (Oilvi) = Z Con, g (€) F2 (vE]i) chT wi(mi, ) F (), (6.32)
c€Cy,

see (4.16). Forq =10 (resp. q = 1), this function coincides with that given in the first
(resp. second) line of (6.23). Let us now denote, cf. (4.8), (4.15),

LT (0i]yi) = / Z ai(x —y) |[VVTO (0;]y:)| dy, i=0,1.
TEY;
In [16, Appendix], the following was proved, see also (5.24) ibid.

L@fjjq(@m) < @Z:qu_i_l(@i"yi), 1 =0,1, (6.33)
holding for all §; € 9;5 satisfying (6.31), m; € IN, ¢ € Ny and 7; € (0,1]. By means of
(6.33) we then get from (6.26) the following estimate

[LOTL(0y)| < P70 (00[v0) D7 (01]71) + 28700 (Bolv0) D7 (61]71)

+  @0(00|v0) P 5 (01]1)-

The estimates obtained in (6.25), (6.26) can be summarized as follows. Set

q
22,0m = Y- (1) 212, 0o ), ©.34)

1=0
Then the main result of this subsection is the following estimate

|Lo7 (0]7)] < P71 (6]7), (6.35)

holding for all ¢ € Ng, m € N3, 7 = (79, 71), 7 € (0,1], and 6 = (6g,61), 0; € @;/)" satisfying
(6.31). The first step in the proof of (6.35) is made as in (4.15), first estimate. Next, one
applies (6.33).
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6.3 Proving Lemma 6.1

By (6.34) and (6.32), and then by Proposition 3.9, ", (f|-) is a bounded continuous
function of v € I'2. However, the upper bound of it may depend on ¢q. Our aim is to
estimate this dependence.

Proposition 6.4. For each ¢ € (0, 1), T = (T(),Tl), T0,T1 € (07 1], and m = (mo,ml) € IN%,
there exists C' > 0, dependent on ¢, 7 and m, such that the following holds

_C, Pe 1= i log(1 +¢€), (6.36)

Ca

Vg € INg (9|7) <

2%\*2

uniformly iny € TZ and 6 = (6o, 61), 60,0, € O} satisfying (6.31).

Proof. Introduce
() = Z @ L0, p>0, (6.37)

where m, 7 and 0 are as assumed. Let us estimate the growth of this function. By (6.27)
and (4.11), (6.31), we have

0(z) < chip(),
which we use to get the following
Er(vily) < cg 2ot B () = cAER (), ¢ € Cinyg,

where we used the second equality in (6.28). Now we employ the fact, see (6.29), that

37 Cpgle) = p? = A% = wo(p,q), (6.38)
c€Cp q

which was proved in [16, Appendix], and obtain from (6.32) the following estimate

T1,q 9 |'7L S ZZ m’ta le+k(’yl)'
k=0

We use the latter in (6.34) and then in (6.37) to get the following

V™ply) < Z(C“f’ S ”(qqi ol (6.39)

xS e we, (mo, g — Dwg, (ma, D ERo TR (y0) FI e (1)
ko=0k1=0

o ko k1

Tn T
- Y oW (o) W, (),

ko=0k1=0

where we also used the fact that w(p, ¢) = 0 whenever k > ¢, see (6.30). The functions
that appear in the last line of (6.39) are

m; L - (cap)l ) omi+ki (A,
W (o) = D0 gk (mi, 1) | () (6.40)

1=0
= (eor = 1) e Fth ),
where the second line was derived by means of the second line of (6.29). Then we have

VMply) < elmotmaeary o (plag) Y (pln), (6.41)
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oo

T .
Y"'ml 'Dh/l = z : k' 7Tl+k(’y/)7 1=0,1,
k=0

where /(p) = e®*? — 1. By means of the estimate obtained in (3.56), (3.57) with u;(z) =
Y(z)e™ (@) < eTigh(z) and 7; < 1, we then obtain

ﬁ;:’bz-i-k(,yl) < (mz + k) 7

Ti

which yields that both series in (6.41) converge whenever e“? — 1 < 1. Take € € (0,1)
and p. as in (6.36), then set

Y;:
"

Zk'(mﬁk)m itk i=0,1.
=0

Now (6.36) follows by
VIM0Oly) < (14 )"t Yoy =: C,

see (6.37) and (6.41). O
Proof of Lemma 6.1. By (6.34), each ¢7(f|-) is a linear combination of the elements of

F, and hence o7 (0]-) € D(L), see (3.55) and Definition 4.1. If ¢ — p; solves (1.2), see
Definition 4.6, then

@2, (01) = po @2, 010) + [ 10,107, 01)ds

< (@201 + [ (@261}

see (6.35). Now we repeat this estimate due times and arrive at the following one

ty tn—1
@) < 3 (@, (61) / Lo [ @z o )ty

:O

< S mon+ (L) e

e p=

where we also used (6.36) and the fact that y; is a probability measure. For ¢ € (0, p.),
the second summand in the last line vanishes as n — +o0o, which yields

o0

H(D7(6]")) Z o(P(0]),  t<log(l+e)/cqa. (6.42)
O

Now we recall that ﬁTm (v;|-) can be written as the K@Zjﬁ( i|), see (6.5). Since ﬁ;?’?(-) is
a particular case of [/ (v;|-), see (4.16), we can also write it as KG7"/(-), where G (-)
is obtained by the corresponding choice of v; in (6.4), (6.5). This allows us to write

T Oy = Y T (Giln),  i=0,1,
n: Cvi
~ q ~
I Oiln) = Y Con, (@GR (vVEIm) + ¢ > fwi(mi, )G (),
c€Cm; q k=1
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where v{ is as in (6.32). Then by (6.34) we obtain

o) = Y > Z( )H:Z‘]q 1(Bo10) I, (61 ]m1).

N0Cv0 N1 Cy1 1=0
Now we may use the fact that ug is sub-Poissonian and write, see (5.1), (5.2),

q

(@01 = (2) [ o1z, ol 1z 6 N ).

Let e”0 be the type of jo. Then by (3.22) we have

q
ém Z ( )‘QZ)LOq l )Qn l(el)

=0

which yields in (6.42),

e (@7(0]) < Qo (Ool) (01]t), ¢ < log(1 +€)/ca, (6.43)
where
L e
Qi (9,]t) = 27 Qmi0;),  i=0,1, (6.44)
:O

and, see (6.6),

Q70 (0:) = /6””'”"' T, (63 n) | Adim) (6.45)
To
<X Cunle) [ e |G viln) | Aano)
cECmqn Lo
+ CZZTikwk(mi7n)/ ePolmil Gm’+k( )‘)\(dnz)
k=1 To

< exp (mﬂ?o + 7 19" Z Cony n(€)(0:)0(OF)C - - COREEE

c€Cm;,n

3

+ wak(mi, n)<1/)>mi+k exp ((ml + k)do + Ti<¢>€ﬁ0) .
k=1

By (6.27) and (4.9), (4.11), for 0; € @,;r, we have, see (5.15),

(05) < (a+1)0:)

K2

since
— [ [ o= @)dody + 617 < (@ -+ )67,
X JX

Then, see (6.28),
<9i>CU <911>c1 . <0l>cl < <91',>CO+CI+W(OZ + 1)61+2c2+--. _ <9i>m1 (OL + 1)71

7

We use this in (6.45) and obtain, see also (6.38),

Q74,(6,) < exp (mido + mo{)e™) | ()™ [yl + 1))

Ti,N
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"o " k
L™ Y () (m)e™)” |
k=1
Now we use this in (6.44), and finally arrive at the following estimate

Q’T’“ 0:]t) < exp (mﬂ?o + Tiw}eﬂo) [e(aﬂ)mit(ﬁi)mi (6.46)

by S D S e 0) ()™ ]

q=0 T k=1

where we took into account that wg(m;,q) = 0 for k > ¢, see (6.30). By (6.29) we have

> (eat)? > wi(mi, ) (ri()e’)" (6.47)

0o k oo q
=5 et S (7) 30 el sy

|
=0 q:

b
Il
—_
i
=]
=)

< mie(1+ €)™ exp ((9)e™),
where tisasin (6.43) and 7; < 1, ¢ < 1. We use now (6.47) in (6.46) and then turn (6.43)
into the following estimate

pe(P7(6]) < exp ((mo 4+ m1)do + (10 + 7'1)<w>e‘9°) (6.48)

X {e(a+1)m°t<90>m0 + 7oe(1 + €)™ exp ((1/J>e‘90)]

o [e(a+1>m1t<91>m+Tlg(1+g)mlexp(<¢>eﬂo)], t < log(l +¢)/cq.

For each v € I'? and a decreasing sequence of positive 7, — 0, the sequence ¢™(0]y),
=1k i= 0,1, is nondecreasing, see (6.32) and (3.55). By (6.48) and the Beppo Levi
monotone convergence lemma we conclude that the pointwise limit, see (6.24), (6.22)
and (3.8), (3.14),

m _ : m _ m _ XKm m m
O (Oh) = lim PL(0)) = Hi'(v) = Y 6%, y™), (6.49)
(x’”O ,y"ll )G’Y

is u¢-integrable. Moreover, by the same lemma and (6.48) it follows that

(B (01)) = X (0™) < s ™ 16075 10 174 (6.50)
with

3 = elotlatt, (6.51)
which by (3.9) yields the property in question for ¢ < log(1 + €)/¢,. Since this length of

the validity interval is independent of y, the further continuation can be done by the
literal repetition of the procedure above. O

Remark 6.5. According to Proposition 5.3, see also [1, Theorem 3.5], the type of the
solution y; obtained in Lemma 6.3 does not exceed exp(¥g + at), which is a more precise
estimate than that given in (6.50), (6.51).
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7 Existence: approximating models

The aim of this section is introducing approximating models, for which the corre-
sponding processes can be constructed by employing explicitly derived Markov transition
functions. By this result the process in question will be obtained as the limit of such
approximating processes. Similarly as in [16], the Kolmogorov operators for the approxi-
mating models are obtained from that in (1.3).

7.1 The models
We begin by introducing the basic function, cf. (3.29)

1

S 0,1 X = R4 7.1
T ola T € (0,1}, z € ; (7.1)

%(90) =

and then define
ai (z,y) = ai(z — y)Yo(x), i=0,1, (7.2)

where q; are the jump kernels that appear in (1.3). It is clear that these a] satisfy, cf.
(4.1), (4.3),

max  sup aj (v, y) < |lal, (7.3)
=01 (z,y)ex2

max{sup/ |lz|'ag (z,y)da; sup/ |lz|'ag (y, x dx}gagl), 1=0,...,d+1, i=0,1.
yeEX
The Kolmogorov operator corresponding to the approximation model is obtained by
replacing in (1.3) a;(z — y) with af(z,y), i = 0, 1; that is, it has the form

(L7F) Z/aoxyeXp< > dolz—y ) Fy\zUoy) — F(v)]dy (7.4)

TEY0 zZEY1

+ Z/alwyeXp< > pilz—y) > Fy\zUry) — F(v)] dy.

TEYL z€%0

Noteworthy, in the approximating model the kernels corresponding to the jumps from z to
y get smaller if z goes away from the origin. Now we introduce L+ by replacing in (5.9)
a;(x—y) with a? (z,y), i = 0, 1, where one should take into account that af (z,y) # a (y, ).
Then, cf. (5.5),

wW(L°KG) = (LA7k,,GY),  o€l0,1], (7.5)

holding for each i1 € Peyp and G € G. For o =0, LA coincides with the operator given
in (5.9). Clearly, for all o € [0, 1], LA satisfies (5.16) and similar estimates, which allows
one to define bounded operators (LA"’)S,ﬂ, n € N, and thus construct, cf. (5.30),

t?’l
559 _1+Z (LA, t< T, 09), (7.6)

where the latter is the same as in (5.21). Similarly, one obtains L by making the
aforementioned replacements in (5.23), and then defines, cf. (5.28),

o _ — 1" To\n /
29(t) =1+ Z:l (L7, t<T',0), (7.7)
Thereafter, one sets
K =E295(Dko, GI = X5,(0)Go,  t < T(9,0), (7.8)
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holding for each kg € Ky, Gy € Gy, ¥ > J. For o = 0, both &y and GY coincide with
those that appear in (5.29), (5.32), etc. Let us now consider the Fokker-Planck equation

ta

o (F) = pyg, (F) +/ s (L F)ds, F eD(L), (7.9)
t1

where the latter is as in Definition 4.1. Since L satisfies all the estimates used in the

proof of Lemma 6.3, see, e.g., (7.3), we have the following.

Proposition 7.1. For each ;1 € Pe, and o € [0,1], the Fokker-Planck equation (7.9)
with p1o = p has exactly one solution t — uf € Peyx, defined by the map t — k7 € K*
constructed with the help of (7.6), (7.8), similarly as in the case o = 0, see Remark 5.4.
Let also ¥ be such that ky € Ky. Then for each o € [0,1], 9" > ¥ and G € Gy, the following
holds, see (5.33),

(k7 ,GY = ((ko, GY ), t<TW,9), (7.10)

where G{ = X5,,(t)G, see (7.7), (7.8).

7.2 The weak convergence

Our aim is to prove that u7 = u; as 0 — 0. We begin by proving the following
statement.

Proposition 7.2. Let {1, }new C Pexp be such that the type of each p,, does not exceed

e?, ¥ € R, and p,, = p for some p € P(I'2). Then p € Pex, and its type < e”. Moreover,
for each G € Gy, it follows that

(K, G) = (K, Gy 1= o0 (7.11)

Proof. Since F™(v|-) € Cp(I'2), see Proposition 3.9 and (3.55), the assumed convergence
yields p,(F) — wp(F), holding for all F € F, including F = &7, see (6.24), (6.22).
Therefore, by (6.49), (6.50) we have

PP < sup 1 (B < ™17 0]175, 101175

holding for all 6, 0, € @Jj. As in the proof of Lemma 6.1, this yields ;1 € Peyp, and its type
does not exceed V. The validity of (7.11) follows by the fact just mentioned. O

Now we prove that the solutions of the Fokker-Planck equations (1.2) and (7.9) have
the property u? = u: as o — 0, holding for each ¢ > 0. We obtain this result by proving a
bit more general statement, which will be used in the subsequent part of this paper.

Lemma 7.3. Let {117 }5e(0,1) C Pexp be such that the type of each pi° does not exceed e”°
for some ¥y € R, and u° = paso — 0. Let alsot — uf, o € (0,1], uf|t=0 = u°, be the
solution of the Fokker-Planck equation (7.9) mentioned in Proposition 7.1. Then for each
t > 0, it follows that uf = p: as o — 0, where i, is the solution of (1.2) with pit|t—o = .

Noteworthy, by Proposition 7.2 it follows that the limiting measure p in Lemma 7.3 is
sub-Poissonian and its type does not exceed e?°. The proof of Lemma 7.3 is based on the
following statement.

Lemma 7.4. Fora givent > 0, let k7 and k; be the correlation functions of the measures
wg and u; mentioned in Lemma 7.3. Then there exists ¥(t) € R such that

VG €Gy,  (K7,G) — (ke G),  as 0 —0. (7.12)

Proof. As the type of each u” does not exceed e”, both kY and k; lie in Kty with
J(t) = Yo + ot, see Remark 5.4 and the proof of Proposition 7.1. Moreover, k7 and
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G satisfy (7.10) with appropriate ¥,79'. Recall that the map ¢/ — T(¥',9) attains its
maximum 7, () given in (6.11).

Let now the convergence stated in (7.12) hold for a given ¢ > 0. By the assumed
convergence ;° = p and Proposition 7.2 this certainly holds for ¢ = 0. Our aim is to
prove that it holds also for all ¢t + s, s < sg, with a possibly t-dependent sy > 0. Set
0; = 9(t) + 6(9(t)), see (6.11). For s < T, (¥(t)), the norm of 5, 4, (s) satisfies

- T,(9(1))
=590 ()]l < T.(0(0) — s’

see (5.32). In the same way, one estimates also the norm of EEtﬂ(t)(s), o € (0,1] since

the norms of the corresponding (LAV")gt 8(t) have the same bounds as for ¢ = 0. For
o € (0,1], we write

@ =kirs — k] g = E5,00)(8)ke — 55,5y ($)k7, s <T(I(2)). (7.13)

Note that
VG € Gy (45.G) =0 as o —0. (7.14)

At the same time, (7.13) can be written in the form

qg = E*m(t)(s)qg — Hs,ﬁ(t)(s)ktg’ (715)

o *d - —o
Hﬁm(t)(s) = /O ™ [: 5,0(5 — u):w(t)(u)} du,
where s and ¥ € (Y(t),J;) are chosen in such a way that
s < min{T(J¢,9); T(9,9(t))}, (7.16)

and hence the Bochner integral in the second line of (7.15) makes sense, see (7.6). Since
the map (9,9) — T(¢¥,9) is continuous, see (5.21), one can pick ©; < ¢ and ¥ > ¥, ¢
being as in (7.16), such that

s < min{T(Vy,92); T(91,9(t))}. (7.17)

Keeping this in mind, we use an evident identical extension of (5.31) to all ¢ < 1 and
obtain

o ° = TA0 —o
H@m(t)(s) = —/0 E5,0,(5 — u)Lﬂgﬁlzﬁlﬁ(t)(u)du, (7.18)

TAoO _ 1A Ao
L’l92’l91 T L192'191 - L’l92191'

We apply this in (7.15) and get
o — o 3 = TA0 1.0
q; = = _tﬁ(t)(s)qo + /0 Z9,0 (s — U)Lﬁ2ﬂ1kt+udu~

Note that LA+ can be written in the same form as L2, see (5.9), in which a;(z — y),
i = 0,1, ought to be replaced by a? (z,y) := a;(x—y)(1—1,(z)). Now let us turn to picking
sp and ¥;, j = 1,2, such that (7.17) holds for s < so. First we set ¥, = 9(t) + §(J(t))/2,
see (6.11). By (5.21) and (6.11) we then get

T(dy,01) = To(9(1))/2 < T(91,9(t)).
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Now we fix some € € (0, 1) and set
so = €T (V(t))/2 = €T(Vy,01). (7.19)

Since the map ¥ — T(¢',9) is continuous, one can pick ¥ € (J1,7;) such that sy <
T(ﬁt,ﬁg), see (7.19). Then (7.17) holds for these 1¥;, j = 1,2, and s < so. Now we take
G € Gg, and set

Gs = 54,5,(5)G. (7.20)

Note that G5 € Gy, C Gy(;); that is, G5 can be considered as an element of Gy;) since
Gs = lyyv, Xo,0,(5)G,

where Ty)9, = Yyt)v, (0) is the embedding operator. For these G and Gy, by (7.17) and
(7.10) we then have

{47, G) = (a5, Gs) + R (s), (7.21)

R (s) = /O (LSS k7,0 G du.

In view of (7.14), it remains to prove that R?(s) — 0 as o — 0. To this end, we split R (s)
into four terms in accord with the structure of L2, see (5.9). Thus, we write

4
R7(s) =Y _ RY(s), (7.22)
j=1
with

o = UL

X Gs—u(no,m)A(dno)A(dm))dU, (7.23)

_ /( / /( [ [ @m0k Uz m)

x GuulioU, m)dmdy) A(dm)A(dnl)) du

o = [ (] 0 /( [ [ ag et (e, ) uon)

X Gulo Uz, m)dmdy) A(dno>A<dm>) du,

2(s) = /( [ /( [ [ a5 e e, ) )

X Gy_y(no,m U y)dwdy) /\(dno)A(dm)> du,

me = [ /. /( [ [ @ et (k7w m)

X Gs—y(no,m U x)dxdy) )\(dno)/\(d7]1)> du.

> [ a§temelrsm) (T3 \yUx,n1>dx>

YE€Mo
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By (5.10), (5.6), (5.7) and (4.2) for each ¥ € R, ¢ = 0,1, s > 0 and (19, m) € F%, we have

(TR (0, m0)| < 11K 1o exp (19(|770| + |m|>) / eMEle (|61 ;) A(de) (7.24)
_ o - l nY _ 7(1)1‘(1;—() "
= ks exp (19<|n0|+|m|>);me (/X 1 0]

< K 1o exp (19(|770| i) + weﬁ).

By (7.18) we know that k7, , € K}, ) C K, which by (3.12) implies [|k7, [y, < 1. We

take this into account in (7.23), and also that T;(l‘) < 1, see (5.6), and then estimate the
summands in (7.22) as follows

|R7(s)] < /X r7 (y)g;(y)dy, (7.25)
with
70) = [ (= br@asle—n)de, 156) = [ (= vr@)are—y)ds, (720
r5(y) = (1= e (y))ag,  r4(y) = (1 —vo(y))al,
see (4.3). It is clear that r7(y) < rj(y), j =1,...,4, and
VyeX 19(y) =0 o0, =1,....4 (7.27)

J

Furthermore,

91(y) = g2(y) = 0(191)/ / G0 Uy, )| e UmIHmD X dng)\(dny ) du, — (7.28)
0 I'g JTg

03(y) = 9a(y) = e(d) / / (G100 U )] €% 001 11D X () Ay s,
0 I'g JTg

where c(91) = exp(1 + ¢e”?). Let us show that each g;, j = 1,...,4, is integrable for all
s < sp. Since G, € Gy,, by (5.32) and (7.20) for u < s < s¢, see (7.19), we have

T (¢, 92)
Gulyg, < =—————1|Gl; =:Cqg. 7.29
By (7.28) we then have

[ away < oo [ ( / 0 / 0 /. |Gu<nwy,m>|eﬂl<"°+'”1'>A<dno>A<dm>dy) du

C(’“e%/ </p A |770|Gu(no,m)|6§1(|”°|+m)/\(dﬁo)A(dm)>du
0 0 0

IA

se(t)

< W G- (7.30)

Clearly, the same estimate holds for the remaining g;. Then by the dominated conver-
gence theorem and (7.27), (7.25) it follows that R°(s) — 0 as ¢ — 0, holding for all
s < sg, see (7.19). By (7.14) and (7.21) this yields (¢, G)) — 0 as o — 0.
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To complete the proof of this statement, let us consider the following sequences, cf.
(7.19),
t; =11+ S0, So = ET*(ﬁtl_l)/Q, to=0, €. (7.31)

Now we may use the construction just made and the induction in [, which yields (7.12)
holding for all ¢ < t;. Thus, the proof will follow if we show ¢; — 400 as | — +oco. Set
sup; t; =: t«. By (7.31) we have t; = so1 + - - - + so;. Hence, . < oo yields so; = 0, I = +o00.
By passing to the limit in the second formula in (7.31) we then get T, (¢;,) = 0, which is
impossible, see (6.11). O

Proof of Lemma 7.3. By Lemma 7.4 it follows that uf (F) — w(F), o — 0, holding for all
F € F.,, which by Proposition 6.2 yields that uf (F) — p(F), 0 — 0, for all F' € F. Then
the property in question follows by claim (ii) of Proposition 3.8. O

We end up this subsection with the following complement to Lemma 7.3. For F' € F,
see (3.49), and a sequence {py, }nen C Pexp as in Proposition 7.2, consider

fin(dy) = C ' F()pa(dy),  m €N, (7.32)

where
On = /’LT)(F) > 07 (733)

since each F € F is strictly positive.

Proposition 7.5. Let [i,, and u,, be as in (7.32) and assume that p, = p asn — +oo.
Then [i, = [i, where
fi(dy) = CT ' F(p(dy),  C = p(F).

Proof. By assumption, C, — C. Take any F’ € F and set F” = F'F, which is an
element of F since the latter is closed under multiplication, see Proposition 3.8. Then
fin(F') = C;tpn (F") — C~'u(F") as n — +oc. Since F is convergence determining,
see claim (ii) of Proposition 3.8, the sequence {/i, }»cn converges to some [ € Pexp (by
Proposition 7.2), such that ji(F’) = C~'x(F"). This implies that /i is as stated since F is
separating. O

8 Existence: approximating processes

The aim of this section is proving Theorem 4.5 by constructing path measures for the
model described by L? introduced in the preceding section. This will be done in a direct
way by means of the corresponding Markov transition functions.

8.1 The transition function

We start by introducing the real linear space of signed measures on I'2, see [8, Chapter
4], which we denote by M. That is, each u € M is a o-additive map p : B(I'2) — R taking
finite values only. Let M be the set of u € M such that u(A) > 0 forall A € B(I'?). Then
the Jordan decomposition of a given p € M is the unique representation p = u™ — u~,
p* € MT, in view of which the cone M™ is generating. Set |u| = ut + ~. Then

il = 1l (12) (8.1)

is a norm, additive on the cone M™. According to [8, Proposition 4.1.8, page 119], M is
a Banach space with this norm. Set ¥; = 1 + ¥, where the latter was defined in (3.30),
and then define

M, ={peM:|pl, = |p|(¥}) <0}, nelN. (8.2)
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By the same [8, Proposition 4.1.8, page 119] M,, with the norm ||u/|,, is also a real Banach
space. In the sequel, we extend (8.2) to n = 0 by setting Mo = M and ||ullo = ||zl
Additionally, for n € Ny, we set

on(p) = p(¥r). (8.3)
Now for 5 > 0, define
lulls = /Fz exp (BY(7)) |ul(dy), Mg ={ne M:|pulls < oo}, (8.4)
and also
pp(n) = /F2 exp (BY(7)) pu(dy). (8.5)
It is clear that
Ve My plln = onlp),  lulls = s(w), (8.6)

holding for all n € INy and 8 > 0. In our construction, we essentially use the cones of
positive elements

M =M, O MY, ME=Msgn M,  B>0 neN. (8.7)

For a given ' C M, by A/ we denote the closure of N in || - || defined in (8.1). The proof
of the next statement is completely analogous to that of [16, Lemma 7.4 and Corollary
7.5 pages 39, 40], and thus is omitted here.
Proposition 8.1. For eachn € IN and § > 0, it follows that Mg = M,, = M and also
ME =M =M.

Finally, we denote M ™! = P(I'?) and also

MGt =MD AMg, MPT=MPIAM,. (8.8)
By (3.37) it follows that

V>0 YneN Pesp C MEH C ML (8.9)
Now for o € (0, 1], we set, cf. (7.4),

() = Y /Xag(fv,y)eXp ( > ¢o(zy)> dy

TEY0 Z€EM

+ Y /Xa‘f(%y) exp (— > iz - y)) dy, yeT.

TEYL ZE€70

By (3.29) and (7.1) it follows that ¢(z) < ¢, (x) < ¢(z)/0, o € (0, 1]. For these values of
o, by (3.30) and (4.3), (5.15) we then have

Vo (y) < (a/o)W(y), ~yeTl?2 (8.10)

As mentioned above, the transition function in question will be constructed directly, i.e.,
by the formula
Py () = S7()d, (), >0, yel?, (8.11)

where ¢, is the Dirac measure centered at v and S7 = {S7(¢)};+>¢ is the stochastic
semigroup of bounded linear operators acting in M, generated by the dual L7 of L°
defined in (7.4). The mentioned duality means that

w(L°F) = (L™ u)(F), FeD(L). (8.12)
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Recall that the domains of all L%, o € [0, 1] are the same, i.e., are as in Definition 4.1. By
(7.4) and (7.2) we then get

(LY p)(A) = —/Fz Ta()¥7 (v)u(dy) + . Q27 (Aly)u(dy) (8.13)

— (An)(A) + (Bu)(A), A € BIY).

Here

27(Aly) = Z /Xag(x,y) exp <— Z ¢0(Z—y)> La(yo \zUoy,11)dy (8.14)

TE€Y0 zZEY1

+ Z /X ai (x,y) exp <— Z $1(z — y)> Ta(v0,71 \ @ U1 y)dy.

TEM ZE€70

Note that A in (8.13) is just the multiplication operator by ¥, and the following holds
02°(T2y) =¥ (v). (8.15)

Now we set
D(L") = {p € M : |u|(¥°) < oo}, (8.16)

which might have sense if we show that B can act on y € D(LT7). By writing p = pu* —pu~
we conclude that it is enough to show Bu € M for positive ;4 € D(L"7) only. Since B
itself is positive, by (8.6) and (8.15) we have that

|Bull = (Bu)(T?) = /

- U (y)u(dy) = || Apll, (8.17)

which yields LT : D(L:?) — M. Clearly, (A, D(L"7)) is closed and the following holds
My C D(LT), (8.18)

see (8.10) and (8.2).
Remark 8.2. Note that 6, € D(L"7), since 4, (¥7) = ¥ () < oo, holding for all v € I'?,
see (8.10) and (3.32). At the same time, J, is evidently not sub-Poissonian.

Along with constructing the semigroup S, see (8.11), in Lemma 8.3 below we obtain
a number of complementary results, which we then exploit for proving Theorem 4.5. To
this end, for n € IN and a positive p, let us consider, cf. (8.3), (8.13) and (8.14),

¢n(Bu) /F2 U1 () (Bu)(dy) = /F2 /Fz U1 (7) 027 (dy 1y ) (') (8.19)

/1"2 ( Z /X ag (w,y) exp (- Z ¢o(z — y)) (v \ z Up y)dy) p(dy)

* TEYo zZE€EY1

+

/1“2 ( Z /Xa(f(ﬂﬂ,y) exp ( Z $1(z — y)) TP (y\ z Uy y)dy>u(d'y).

* N TEYL ZEY0
Since V1 (y\ 2z U;y) =1+ P(y\zU; y) = (y) + ¥(y) — ¥(x), i = 0,1, see (3.30), then

I (y\z Uy y) <207 (), (8.20)
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which by (8.10) yields in (8.19) the following estimate
Vpe Mi [IBulln = @n(Bp) < 2"ao™ |pllnia, (8.21)

and hence
vneNy B: M} — Mt (8.22)

In a similar way, one shows that || Aull, < (a/0)||p]ln+1 and
— A M = M, (8.23)

which finally yields that L ./\/lnJrl — M, holding for all n € INg. By means of (8.21)

n’

and the corresponding estimate for A we then define bounded linear operators
(LYY it s M = Moy, LEN, (8.24)

the norms of which satisfy
a l
NEMall < (5) @+ DE 1) (27 1), (8.25)

Next, similarly as in (5.27) we also define bounded operators (LL)’(?B)l Mg — Mg,
B > ' >0, see (8.4). To estimate their norms, for a given yu = ut — u= € D(L17), we
write

LYo =(A+B)(u" —p~) = (But — Ap™) — (Bp~ — Ap®) = pf — iy
It is clear that uf € M*. Then
1LY ulls < i Nl + Ny s = 1Ap™ o + 1A~ o + 1Bt llgr + 1Bu~ g (8.26)

Here we used the additivity of the norms on the positive cone as well as the positivity of
B and —A, see (8.22), (8.23). Now by (8.10) we have

PO (y) exp (B'¥(7)) < exp (B¥(v)),

(ﬁ ea(B—B)
which for i € Mg yields
a
Aullg < ————m—— . (8.27)
4l < oo il

Next, similarly as in (8.19), (8.21) by (8.10) we have

/ exp (B'(7)) (By)(dn) = / / exp (89(+')) 28 (dv |7) ()
r2 r2 Jr2

:/erxpﬁw (Z/aoxyeXp< D bolz—y)+ B (WU(y) — (= )))dy

TEY0 zZE€EY1

+Z/a1 T,y eXp< Y hiz—y)+ 8 (Wy) - ¢(m))> dy)u(dv)

TEYL zZ€70

LI
— =~ |lullgs
D
We combine now this estimate with (8.27) and obtain in (8.26) the following, cf. (5.27)

<o [ 0 exp (B0 uldy) < pe M.

I l
.0\l
L5 < <eTg(6,,8’)> . leN, (8.28)
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with ,
78,8 = =) _ﬁﬁ 5 (8.29)
oe
By (8.24)), for each | € N and 1 € Mg, we have that (L) € Mg, ' < 3, and the
following holds

W= W, Lex 30

In the next statement, we employ a perturbation technique for constructing stochastic
semigroups of bounded linear operators in ordered Banach spaces with norms additive
on the cones of positive elements. Note that the spaces defined in (8.2), (8.4) have this
property, see (8.6), (8.7). The details of this technique can be found in our previous work
[16, subsect. 7.1.1]. Here we just recall that a semigroup S = {S(t) };>¢ of such operators
is called stochastic (resp. substochastic) if each S(¢) is positive and ||S(¢)u|| = ||u|| (resp.
|S(t)u|| < ||ul|) for each positive u and ¢ > 0. Also, for a given n € IN and

Dy i={peM,: |p|@7P) < o}, (8.31)

cf. (8.2), (8.16), by the trace of A in M,, we mean the operator (A4, D?) acting therein.

Lemma 8.3. Foreacho € (0, 1], the closure of (LT7, D(L"7)), see (8.16), is the generator
of a stochastic semigroup, S = {S?(t) }+>0, in M such that S°(t) : M,, - M,,, holding
for eacht > 0 and n € IN. For each n € NN, the restrictions S7(t)|nm, constitute a
Cy-semigroup on M,. Additionally, for each 8 > 0 and 8’ € (0,), S?(¢) : Mg — ME/ for
t<T,(8,5), see (8.29).

Proof. We basically follow the way of proving [16, Lemma 7.6], based on the Thieme-
Voigt theorem [23] in the form adapted to the context of the present work, see [16,
Assumption 7.1 and Proposition 7.2]. Thus, we begin by mentioning that all the items of
Assumption 7.1 ibid are satisfied. That is: (i) each M,, is dense in M, see Proposition 8.1;
(ii) each M,, is a Banach space (by the aforementioned [8, Proposition 4.1.8, page 119]);
(iii) each cone M}, n € IN, is M N M,, and || - ||,, is additive on this cone, see (8.6); (iv)
each M. is dense in M ™, see Proposition 8.1. Now we can apply [16, Proposition 7.2],
which amounts to checking that:

(i) —A and B map D(L"?) N M+ to M™*, which follows by the very definition of A and
(8.17);

(ii) (A,D(L"7)) generates a substochastic semigroup, S§ = {Sg(t)}:>0, such that (a)
Sg(t) : M,, — M,, (b) the restrictions Sg (t)| s, constitute a Cp-semigroup on M,,
generated by the trace of A in M,;

(iii) B:DJ — M, and ¢((A+ B)u) = 0, holding for all u € D(L") N M*;

(iv) there exist positive ¢, and ¢,, such that the following holds

Yue Dy NMT 0u((A+ B)p) < cnpnlp) — enllApll. (8.32)

The semigroup S§ mentioned in item (ii) consists of the multiplication operators

(S5 (H)p)(dv) = exp (=107 (7)) p(dy), (8.33)

which is certainly such that (a) holds for each n € IN. To check the strong continuity
of S§, we take u € M* and £ > 0, and then show that ||z — SJ(t)u|| < € whenever ¢ is
smaller than an e-specific § > 0. The validity of such estimates for an arbitrary yu € M
then simply follows by the Jordan decomposition. Since D(L?) is dense in M, see (8.18)
and Proposition 8.1, one finds y/ € D(L™7) N M™ such that || — /|| < £/3. By (8.33) and
(8.10) we then have

[ = Sg @) pll < Nl = 'l + 115 () (e — p")I + " = Sg ()| (8.34)
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- 2 to
<2l w4t [ W) < ge+ il <,
r2

for t < oe/3al|/'||1. Moreover, (8.33) can be considered as the definition of bounded
linear operators acting in a given M,,. These operators constitute a Cjy semigroup, which
can be proved similarly as in (8.34). Its generator is then obviously the trace of A in M,,,
see (8.31). Thus, it remains to prove the validity of (8.32), that is, the validity of

/ AR @) <, /

v (y)uldy) < e / () (), (8.35)
r2

T2+

holding for all 1 € DS N M™ and certain positive ¢, and &,. This clearly amounts to
proving that each of the summands in the left-hand side of (8.35) is < (¢, /2)u(¥7") with
a properly chosen c,,. We begin by proving this for the first summand. By (8.12) we have
that

/ 7 () (L 1) (d) = / (L0 () () (8.36)
r2 r2
Similarly as in obtaining (8.20) we have
P2\ & U ) — T2 ()] < (27 — 1) [ib(y) — ()| 72 (). (8.37)
Set
bi(z) = / ai(@ —y) [W(y) — (@) dy,  i=0,1. (8.38)
X

Assume first that |z| > |y|. Then
() = ¥(@)] = ¥ly) = ¥lx) = [l2" = [y ] (@)(y) (8.39)
< 0(@) [l =yl + )™ = 1™ viw)

d+1
S ) R EETIVEt)

=1
d+1
<u@)y. (dj 1) o — yl! = w(e)h(z — 1),
=1

where we have used the fact that |y|9"' !y (y) < 1foralll > 1and y € X. For |z| < |y
we have

’

() = (@) = (g = ol e)(y)
< 6(@) [(y = ol + o)™ = 217 w(y)

d+1
<o 3 (17l - ol )

=1
< P(@)h(z —y).

Now we use these two estimates in (8.38) and obtain

bi(z) < ¢¥(x)a, a = mg}i/ a;(z)h(zx)dz, (8.40)
i=0,1 Jx
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cf. (5.15) and (4.3). By (8.37) and the latter estimate we obtain

(EACIED S A R AT (8.41)

TEY0

+Z/ (x =) [T (v \ 2 U1 y) — ¥ (7)| dy

rEYL

< (2" = ad (v (Zw )+ Y W ) (2" — Dawt (v),

TEY0 rEYL

holding for all o € [0,1], including o = 0. By (8.41) and (8.36) we then have
/F2 WP () (L1 ) (dy) < (27 — 1)07/F2 P () (). (8.42)

By (8.10) we have ¥°(v) < (a/o)¥(v) holding for all n» € N and ~ € I'2, which then

yields
/ 0 (y)p(dy) < = / 1 (y)p(dry).
r2 0 Jr2

The latter estimate together with (8.42) yields the validity of (8.35) with ¢, = 1 and
cn=02"-1)a+a/o.

It remains now to prove the concluding statement of the lemma. We proceed by
defining the following bounded operators

tl
S5.6(t) =Ip s+ D 7 (LE),  t<T,(5.6), (8.43)

acting from Mg to Mg/, see (8.29). Here the powers (Lg’,‘fﬂ)l satisfy (8.28) and Iz g is
the embedding operator. By (8.43) and (8.30), for each ;1 € Mg, one has

855t =57 (D), (8.44)

where 57(t) is the same as in the first part of the lemma. Then the positivity of 5%, 5(t)
follows by the positivity of the latter. This completes the whole proof. O

Thus, the lemma just proved yields the existence of the semigroup S? which we use
in (8.11) to obtain the Markov transition function p{. The fact that ¢ — p{ satisfies the
corresponding conditions, see [11, eqs. (1.3)-(1.6), page 156], follows directly by (8.11).
We will use this function to construct the finite dimensional marginals of the stochastic
process corresponding to the approximating model described by L. This will be done in
the next subsection.

8.2 Constructing path measures

By means of the semigroup S constructed in Lemma 8.3 we may have

A7 () = (S (B)() = / PO uldy),  peM. (8.45)

T2

¥

Recall that here o € (0,1] and S° is stochastic. The latter means that /¢ is in P(I'2) when-
ever 4 has this property. Moreover, /i may be in M,, N P(I'2) under the corresponding
condition. However, so far we do not know whether S preserves Pep.
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Lemma 8.4. For given ji € Pexp, lett — uf € Pexp, t > 0, be the solution of (7.9), see
Proposition 7.1. Let also i be as in (8.45) with the same p. Then, for all t > 0, it follows
that uf = if.

Proof. By (8.9) and (8.18) it follows that Pey, C D(LT’”), which means that ¢t — 7 is the
classical solution of the initial value problem

d ~no o o ~no
=LV, =0 = p, (8.46)

which by (8.12) yields that ¢ — jif solves (7.9). Then the proof follows by Proposition 7.1.
O

It is a standard fact that the transition function p{ determines the finite dimensional
distributions of a Markov process, X°, with values in I'?, see [11, Theorem 1.1, page 157].
Our aim now is to prove that it has cadlag paths. To this end, we employ Chentsov-like
arguments, cf. [7] and [16, Proposition 7.8], and thus the metric v*, see (3.45), (3.46).
By Lemma 3.4 it is complete. Set

wi) = [ vy ), 3.47)

Wa () = /2 v (7, Y )wi (Y )pg (v, dy'), w0 > 0.
F*
Thereafter, for a triple t3 > t2 > t; > 0, consider
W2t ta, ts) = /F Wttt (DA, (dy) = /F Wt B (dY). (8.48)

Note that this W7(t1, t2,t3) depends also on u = pf|t—o, see Lemma 8.4. By combining
[7, Theorem 1] and [11, Theorems 8.6-8.8, pages 137-139] we obtain the following
statement.
Proposition 8.5. Given T > 0, 0 € (0,1], s > 0 and p1 € Pexp, assume that there exist
C, > 0 and 6 > 0 such that, for each triple that satisfiest, > s, t3 < T and t3 —t; < 0,
the following holds

WO (t1,ta,t3) < Cylts — t1|% (8.49)

Then

(i) There exists a probability measure P, on D[O,Jroo)(l“f) uniquely determined by

its finite dimensional marginals, cf. [11, eq. (1.10), page 157], expressed by the
formula

P;#({'V : Wty (’7) € An’wtnq(f)/) €Ap_1,..., (’7) €Ay, wO(’Y) € A0})(8'50)
B / o / pgn—tn,—l (’yn—h A’n)pgn—l—tn—Q(,y”_Q’ d'}/n—l) o 'pgz—tl (717 d'}/Q)
Ap_g Ao

xp7 (Yo, dy1)p(dyo),

holding for alln € N, t,, > t,_1---t; and A; € B(I'?), j =0,...,n.
(ii) If the estimate in (8.49) holds for all o € (0, 1] with one and the same C > 0,and
the family {/if } ;¢ (0,1) is tight for allt > 0, then the family {P{,,},c(0,1] of measures

mentioned in (i) is also tight, and hence has accumulation points in the weak
topology.
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Note that the tightness mentioned in item (ii) of the latter statement follows by
Prohorov’s theorem and Lemmas 7.3 and 8.4.

Lemma 8.6. Forevery s > 0 and u € Poxp, the estimate as in (8.49) holds for all o € (0, 1]
with one and the same C' > 0, dependent on T only.

Proof. For convenience, we take here s = 0 - the proof for s > 0 is completely analogous.
Then we begin by recalling that ., is in D(L?), see Remark 8.2. Thus, by (8.11) and the
corresponding formulas, see e.g., [11, eq. (1.16), page 9], we have

t
Py (7:) :5“7(')4’/ L17p7 (v, -)ds. (8.51)
0

We use this in (8.47), which yields

wy (7)

wS(WH/ </ v*(%v’)LT’”pZ(%dv’)> ds (8.52)
0 r2

= / (/ v*(%v’ﬂ*’“pi(v@v’)) ds
0 r2

= / (/ L"U*(%’V’)Z?Z(%W)) ds,
0 2

see (8.12). The second equality in (8.52) follows by the fact that wi(vy) = v*(v,v) =0 as
v* is a metric. The function o' +— L7v*(v,7') =: JJ (') has the following form, see (3.45),
(3.46),

50 = Z/Xag(axy)eXp <—Z ¢o(z—y)>[v*(%7’\ony)—v*(%V')]dy (8.53)

z€Y Z€71

+ D / af (z,y) exp (— > ¢i(z - y)) [v* (7,7 Nz U1 y) — v (7,7)] dy.

) J X
TEY; Z2€70

By the triangle inequality for the metric v, we then get

FCIIEED /X ao(z — Y \ z Uy), 75 dy (8.54)

;1:6"/(',
s / a1 (z — Y, \ U y), ) )dy.
wE’y{ X

By (3.44) and (3.46) it follows that

v (i \zUy),vy) < sup  [g(x)Y(x) — g(y)v(y)] . (8.55)

g:llgllsL <1

Proceeding similarly as in (8.39) we obtain

9(000(2) ~ s = wlahol) | ) — 50
< U0 |15 50| + 0@ lato) - )
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K (d+1
< ¥(2) [u— I+ o - V].
y ;( l ) y

We apply the latter in (8.55), (8.54) and then arrive at the following, see (8.40) and
(5.15),
1J7(Y)| < (a+a)@(v), (8.56)

which is uniform in ¢. By (8.56) we then get from (8.52) the following estimate
W) lara) [ weids,  w0) = [ W@, @)
0 rs

By (8.51), similarly as in (8.52) we have

RI(Y) =¥ () + /O </F2 LW(V’)%(%W)) dv (8.58)
Proceeding as in (8.41) we obtain
L7 ()| < aw(y),
by which we obtain from (8.57), (8.58) the following
rI(7) S¥(y) + a/o iy (7)dv, (8.59)

which by the Gronwall inequality and (8.57) leads to

wy(7) < (@ + &)ue®™ ¥ (y). (8.60)
Now we may pass to estimating Wy (7). By the second line in (8.47) and (8.60) we have
WEL )< (a+ @uem™ V() Vi) = [ v Wi nd). @6

Here we again apply (8.51) and then get, cf. (8.52),

Vy(v) = / </ [L7@ (v )™ (7,7")] pZ(%Uh’)) ds (8.62)
0 r2
Proceeding as in (8.53) we get, see also (8.38),

weanl < X[ ao(x—y)‘W(W’\ony)v*(%v'\ony)

ZEE’Yé

V() (v,7)|dy

+ 3 [t - nlpe e uneen \su

TEY]
—T(y)*(7,7)|dy
< 2( PIRCOES bl(:v)>
TEY) z€Y]
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+-WWﬁ<§:Aﬁdx—thwaym%w

TEY0

+)° /X ar(z —y)v*' (v \z Uy y, 7')d9>

TEY0

< 2a¥(y) + (a+ a)P?(y),

where we used also (8.40) and (8.54). Now we apply the latter estimate in (8.62) and

obtain
v

Vi) < 2a/

k2 (y)ds + (a+6¢)/ K7 (vy)ds, (8.63)
0 0

where k7(v) is the same as in (8.57) and

K20 = [ P60 6uan).

*

By (8.51) we have, cf. (8.58), (8.59),

K?W):Qﬂ0ﬂ4iés(l;UFW%VUWZWﬁhq>dM (3.64)

Similarly as in (8.41) it follows that
[(L7P?*)(v)] < 3aw*(v"),
by which and the Gronwall inequality we get from (8.64) the following estimate
K7 (v) < W (y)e**. (8.65)
Now we use (8.59) and (8.65) in (8.63) and arrive at
V7 (7) < v (200 (y) + (o + @)™ T2 () (8.66)

Now we may turn to (8.48) where we use the estimate, see (3.36),
/2 T (Y, (dy) < T (), n=1,2,
F*

and the fact that p;, € Pexp of type not exceeding exp(dy + at1) < exp(do +aT') =: s, see
Proposition 5.3 and Remark 5.4. Here ¢”° is the type of x. By (8.61) and (8.66) we then
conclude that W7 (1, to, t3) satisfies (8.49) with

C = 2a(a+ a)e** Ty (5(y)) + (o + @)e* T T ((y)),
which ends the proof. O

9 Completing the proof

Here the hardest part is the proof of item (i), whereas the validity of (iii) is rather
standard, see cf. [9, Theorem 5.1.2, claim (iv), page 80].
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9.1 Proving item (i)

First we prove existence by employing the fact that, for a given ;1 € Pey, and s > 0, the
measure in question, P; ,, is obtained as an accumulation point of the family {Pg #}06(071].
Our aim now is to prove that such accumulation points have properties (a), (b), (c)
mentioned in Definition 4.3.

To check (a), we note that P, , o w;' = u since P7, ow,' = p forall o € (0,1].
Furthermore, by Lemmas 8.4 and 7.3 it follows that P7, o @, ' = j; as 0 — 0, which
yields P; , o w; ! = 44, holding for all accumulation points in view of Lemma 6.3. These
facts yield the validity of (b) of Definition 4.3.

To check (c), we take G as in (4.18) with fixed t5 > t; >s, me INand s1 < s9 < --- <
Sm, 81 > 8, 8, < 1. Then we recall that uJ = 47, = S?(s1 — s)u, the type of which does
not exceed e?(517%), J(t) = Yo + at, see Lemma 8.4, and set x7, = CiiFlp;’l, that is,

XS, (dy) = CroFi(Mug, (dy),  Cio:=pd (F1). (9.1)

Note that C'; , > 0 since each F' € Fis strictly positive, see (3.49) and (7.33). By claim
(d) of Proposition 4.2 it follows that xg, € Pexp, and its type does not exceed that of us,,
and hence exp(?¥(s; — s)). Then we define recursively

R2(d) = (5% (s1 — s1-1)xG,., ) () = /

2p;’,fs,,l(7’,dv)xé’,,1(dv'), (9.2)
I

*

X% (dy) = CLrR(XS,(dy),  Cio =X (R), 1<m.

As above, for all [ < m, xg, is sub-Poissonian of type < exp(d(s; — s)). Now we take
F € D(L), see Definition 4.1, t € [s,,, t2], set

Ft :Fowt, Kt = (LF)OW{;, K? = (L"F)owt, RS (01], (93)
and then consider P7, (F;G) with G as just discussed. By (8.50) it follows that

P2 (FIG) = Co Py, (Fi) = CoPlye (Fomy) = Copl ™" (F), 9.4)

ENTS

with C, = P?,(G) > 0. By (8.50)

S,
p = ST (E = swXT, (9.5)

and the type of pJ*™ is < ¢?(!=*). By (9.5) it follows that

t2 t2
W (B = i (F) = [ e (2o Fyae= [P, (FiG)dt,
tl tl
see (9.4), which yields P¢ ,(H) = 0, holding for all o € (0, 1].

Now let P, be an accumulation point of the family {P;’) M}UG(O,I]- By Lemmas 7.3
and 8.4, all such accumulation points have the same one dimensional marginals coin-
ciding with y,. For this P; ,, let {0y, }nen C (0,1], 0,, = 0, be such that PJv = Ps, as
n — +o0o. Then set, cf. (9.4),

C, =C,, =P (G), Coo = Ps ,(G), (9.6)

5,
e (A) = O Py (Gl g o wy), A € B(T?), t € [Sm, ta].

Let us show that the assumed convergence P’r = P, , implies puf™*™ = pi™, as

S,

n — +oo. To this end, by ¥,, we denote ys. ', where ;' ™', t > s, is the solution of (1.2)
with the initial condition x,, := 017_11700571)@,,_1, 1 =2,...m, where C} o = Xs,(F1), cf.
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(9.2), and X5, = pts;, = Ps 0 w;l, which solves (1.2) on [s, s1] with the initial condition
p. The assumed convergence of the path measures implies x7» = Xs,, see (9.1). By
Lemma 7.3 this yields X = Xs,, and thus yJ» = X, for all | < m. Since u;™ defined in
(9.6) is the solution of (1.2) on [s,,, t] with the initial condition x;,, := C,,.. F;nXs,,, this
yields the convergence in question. By Proposition 7.2 this yields in turn that ™ € Pexp
and the type of u;™ is < exp(¥(t — s)). Note that C'», defined in (9.6) is C), .

Keeping the aforementioned facts in mind we write, see (4.17),

to
Py y(H) = Py yu(F1,G) — Pou(FuuG) — / P, (K/G)dt, 9.7)

t
and also set
an(t) = Ps u(F:G) — PJr.(F:G), (9.8)
bn(t) = Ps (KiG) — P77 (K G),
en(t) = P ((Ky = K7")G)

Since PS"’M(H) =0, by (9.7) and (9.8) it follows that

P,

END

to to
—/ by, (t)dt — / cn(t)dt =: ap, — by, — cp.

t1 t1

(H) = Psu(H) = P75 (H) = [an(t2) — an(t1)]

By Pg;; = P, , we have a,, — 0 as n — +o00. However, the same conclusion for b,, and ¢,
does not follow in so simple way as LF and L? F' need not be continuous. To settle this
case, by means of (9.6) we write

1o ta
by = C,, / (™ (LF) — u0*™ (LF)) dt + (Cou — i) / o (LEYE.  (9.9)
t1 ty

By item (a) of Proposition 4.2, LF' is a bounded function; hence, the second summand in
(9.9) vanishes as n — +oo since C,, — C, by the assumed weak convergence, see (9.6).
To prove the same for the first summand - denote it bg,l) - we employ the fact that gt
and u;™ are sub-Poissonian and each F' € D(L) can be written as KG with G € G, see

Proposition 6.2. Then
;" (LF) — p " (LF) = (kyem — kyonem, LG) =0, n— 400, (9.10)

where we have taken into account that EG S 500 whenever G € 500, see (5.26), and
also the fact that py™*™ = p;™ implies the convergence of the integrals in (9.10),
see Proposition 7.2. As mentioned above, LF' is a bounded function (by claim (i) of
Proposition 4.2), which means that both terms of the left-hand side of (9.10) are bounded
by sup.cr2 [(LF)(7)|. Together with the convergence C,, — Cx this yields b — 0 as
n — +o0o.

Now we turn to ¢,,. By (9.3) and (9.4), and then by (7.5), we have

nlt) = Co [ (LKG) — i ™ (L KG)
=C, <<(LA - LA’an)ku:"’s"" s G>> =Cy <<ZA,Un kuf"’sm ’ G>>a

On,Sm

cf. (7.21). Here we have also taken into account that p; € Pexp, that was established
above, and the operator L2~ is the same as in (7.21). To make precise in which spaces
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Ky it acts, we will take into account that G € G, = NyerGy, see Proposition 6.2, and that

the type of each u{"*™ does not exceed exp(d(ts — s)) =: ¢”. Then we write, cf. (7.21)
and (7.22),
4
(L& kygnam, G) =t Ru(t) = > R (1),
j=1
where
Ros) = [ [ (S [ o et (18 )om \ g Ui )
R
X G(no,n)A(dno)A(dn1)
= / / (/ / ag™ (x, y)e(ry; m) (Tykyon=m ) (no Uz, m)G(no Uy, n1)dxdy>
INAN)
X )\(dno))\(dm),

and likewise

Ros(t) = /F /F ( / / y,mxrgkugmxmUx,mG(now,m)dxdy)

X Xdno)A(dm),

R, 3(t) = /F/F<// on yvno)(Tyku”"sm)(ﬁomlUI)G(UO,ThUy)dzdy)
X /\(d’l]o))\(d’lh),

Rna(t) = /F/F (// 7 (@, y)e(7y:10) (T ykyzn-am ) (110, M1 Uz)G(nmmUx)dxdy)

X A(dno)A(dn1).

Now we take into account that ku«;nmm € Ky and G € G, see above, employ (7.24), and
then get, cf. (7.25),

Ry (1)] < /X gy, G =14 ©.11)

with 77" (y) given in (7.26) and

91(y) = 92(y) = 6(19)/F g |G (1o Uy, m)|exp (Inol + I|nil) AMdno)A(dn), (9.12)

93(y) = gay) = 0(19)/F g |G (10, m Uy)|exp (Inol + I|mi]) A(dno) A(dm),

where ¢(¥) is the same as in (7.28). Note that the bound in (9.11) is uniform in ¢ € [s,,, t2],
for which kﬂgn,m € Ky. Now, similarly as in (7.30), we get

/ )y < c(@)e / 90l |G (os 1) exp (90| + 9 ]) Acdo) ALy
X I'g JTg

Sc(ﬁ)e—ﬂ—l—logs/

Ty JTo

G0, 1)) exp (w o) (Il + |771|)>/\(d770)/\(d771)
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= ¢(9)e 71785 Gy, . < 00

that holds for all ¢ > 0 as G € G. Similar estimates can be obtained for the remaining

|R,, ;(t)|. By the dominated convergence theorem we then get that R,,(t) — 0 as n — 400,

uniformly in ¢ € [s,,, t2], which together with the aforementioned convergence C,, — C,

yields ¢,, — 0 as n — +4o00. Therefore, for each limiting point P; ,, it follows that

= M(H) = 0, that yields the proof of item (c), and thus the existence in question.
Now we turn to uniqueness. To this end we employ the following fact.

Proposition 9.1. Assume that two solutions {Ps(,]ﬁ) 18>0, p € Pexp, j = 1,2}, see
Definition 4.3, satisfy Ps(lu) o wt_l = PS(Z,E o wt_l, holding for allt > s, s > 0, and 1 € Pexp.
Then they coincide, i.e., P{}) = P?) forall s > 0 and ji € Pexp.

The proof of this statement — based on Lemma 6.3 — is completely analogous to that
of [16, Lemma 5.4], and thus can be omitted here. Then the uniqueness in question is
straightforward. This completes the proof of item (i) of the theorem.

9.2 Proving item (ii)

We begin by recalling that X = R?. Let {rj}jenw C R4 be a strictly increasing
sequence such that lim;_, o 7; = +00. Set A; ={x € X : |z| <r;}and v;; =y N A4,
i=0,1,7 €N, v=(y,7) € I'2. We also will use the notation ~; for (v ,71,;). Then we
define

2 2, 2
I‘*?j:{'yGI‘*.'ijF 1.

That is, v € I'2 belongs to Fij if and only if ng(z) +n1(z) = 1, holding for all z € p(y)N A4,
see (1.1). By (3.31) we then have

M2 _ 2
r2=r, (9.13)
JEN

Similarly as in [16, Lemma 2.7], one proves that each Ff’j is an open subset of I'2, see
also Lemma 3.4. Define, cf. (3.24),

hy(z,y) = YP@)(y) min{N;|z —y|"*}, NEeN,

SN @y + Y. D Ay + Y Y hv(ay),

TEY0 yEvo\z TEYL yEv1\T TEY YETL

Hy(v)

where € € (0,1) and ¢ (x) is as in (3.29). Now for y € Pey;, of type s, similarly as in (3.25)
we get

/L(HN) § 3%211\/, (914)
where, cf. (3.26),

Ty = [ wGeandsir < [ v ([ vwle = olay ) as

< [ ([, e )= g 0+ 5

Then, similarly as in (3.27), we have that

H(y) = Jim Hy(y) <oo

for p-almost all v € I'2. At the same time,
—de 2
Hj(y) == H(y;) <% (o N A + 1 n 457,
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holding for all v € I'2 %,j- Here r,, is the minimal distance between two distinct z,y €
(70 M A;) U (0 N 4;), which is positive since the number of pairs of such points is finite
and -y; is simple.

Let {P;s, : s >0, 1t € Pexp} be the solution which exists and is unique according to
item (i). Fix some s > 0 and i € Py, 0f type s, and let & be the process corresponding
to P ,. For N € N, we define the stopping time, cf. [11, page 180],

TNJ' = 1nf{t Z S HJ(X(t)) > N}
Then for a fixed j € N and T ; At := min{t; T ;}, we set Z(t) = limy_, 400 X (Tv; A )
and Tj = limy_, 4o Tn,;. Both limits exist as T ; < Tn+1,;- Let fi; be the law of Z(¢).
For ¢7*(6]-) € D(L) defined in (6.24),
t
ST (O|X(t)) — / LoT (01X (u))du (9.15)

is a right-continuous martingale. Then, similarly as in [11, page 180], by the optional

sampling theorem, we can write
TN, ;N
[ werea).,
0

where we pass to the limit V — 400 and get, see also (6.25),

E[@7(0|X(Tn ; A 1))] = E[27(0]X (s))] + E

TN,j/\t
(@) = @)+ jin B [ Laﬁww(u»dul ©.16)
Tn,j At
< p@re)+ Jim B [ |L¢T(9|X(U))IdU]
< u@pp) | [ oo
<

uere) | [ t 2201 ()

t
(@ (0]) + / (87 (0]))du

Here 97", (0]-) € D(L) is as in (6.25) and (6.34), and ji,, = P, , o @, ' is the law of X'(u).
Similarly as in (6.42), by (9.16) we then obtain

= (1= s
|
q=0 &

(@7 (6]) < W (@7, 01),  t—s <log(l+e)/e,.

Now we proceed here as in obtaining (6.48), which finally yields, see (6.50), (6.51,
A @ 01) = lim (@ 0]) < A" 0l 10117 . (9.17)

max{7g,71 }—0

where t — s < log(1+¢)/c, and s, = »e(®tD(=5) By Definition 3.1 (9.17) yields fi; € Pexp
and hence Z(t) € I'? (almost surely) for this ¢, see (3.34). Thus, T; > t. Now we take
9 €(0,1) and then s; = s+ dlog(1 +¢)/c,, take into account that ps, = P; 0 ws‘ll € Pexp,
and repeat the above procedure with s replaced by s;. Since the type of p;, is e (t=s)
- and hence is finite for all ¢ — the construction can be repeated ad infinitum to cover
the whole [s, +-00). This implies that the paths of X remain in Dy ;o) (T'7 ;) forall j € IV,
which by (9.13) yields the proof of item (ii).
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