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Abstract

An infinite system of point particles placed in Rd is studied. The particles are of two
types; they perform random walks in the course of which those of distinct type repel
each other. The interaction of this kind induces an effective multi-body attraction of the
same type particles, which leads to the multiplicity of states of thermal equilibrium in
such systems. The pure states of the system are locally finite counting measures onRd.
The set of such states Γ2 is equipped with the vague topology and the corresponding
Borel σ-field. For a special class Pexp of probability measures defined on Γ2, we prove
the existence of a family {Pt,µ : t ≥ 0, µ ∈ Pexp} of probability measures defined
on the space of càdlàg paths with values in Γ2, which is a unique solution of the
restricted martingale problem for the mentioned stochastic dynamics. Thereby, the
corresponding Markov process is specified.
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1 Introduction

The stochastic dynamics of infinite systems of interacting particles placed in a
continuous habitat is an actual and highly demanding subject of modern probability
theory. In its comprehensive version, one deals with stochastic processes. Thus far,
Markov processes have been constructed only for those particle systems where one
cannot expect phase transitions, i.e., multiplicity of states of thermal equilibrium existing
at the same values of the external parameters. In the present work, we deal with a
system, for which such phase transitions are possible [6, 13, 15, 19], that ought to have
an essential impact on its stochastic dynamics, cf. [14]. Namely, the object we study
is an infinite collection of point particles of two types placed in X = Rd, d ≥ 1. The
particles perform random walks (jumps) in the course of which those belonging to the
same type (component) do not interact, whereas different type particles repel each
other. This model can be viewed as a jump version of the Widom-Rowlinson model or
the continuum two-state Potts model, see [6, 15] and [13, 19], respectively, as well as
the literature quoted in these publications. By integrating out the coordinates of one
of the components, one obtains a single-component particle system with a multi-body
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attraction (cf. subsect. 4.3.1 below), responsible for phase transitions – the multiplicity
of states of thermal equilibrium, see [17] for more on this issue.

Similarly as in [16], we construct the process in question by solving a restricted
martingale problem, cf. [9, page 79]. The basic aspects of this construction can be
outlined as follows. The starting point is the evolution of states µ0 → µt of the considered
model obtained in [1, Theorem 3.5]; whereas the final outcome is the family of càdlàg
path measures that solves the mentioned martingale problem. The one-dimensional
marginals of these path measures coincide with the corresponding µt constructed in [1].

Let us now present the main ingredients of our theory. First, we set the state space
– the collection Γ2 of all possibly infinite configurations in X, by which we mean the
following. Let γ be an integer valued Radon measure on X. For each ball Br(x) :=

{y ∈ X : |x − y| ≤ r}, r > 0, one thus has γ(Br(x)) ∈ N0. For x ∈ X, we set nγ(x) =

infr>0 γ(Br(x)), and also p(γ) = {x ∈ X : nγ(x) > 0}. Each such γ can be associated
with a locally finite system of point ‘particles’ such that each x ∈ p(γ) is occupied by
nγ(x) of them, cf. [18]. Keeping this in mind, we will call γ and p(γ) configuration and
ground configuration, correspondingly. The set of all such configurations γ is denoted by
Γ. Since we are going to consider a two-component system, its state space is Γ2 = Γ× Γ,
consisting of the pairs γ = (γ0, γ1), γi ∈ Γ. In the sequel, γ without indices will always
denote such a pair, whereas γi will stand for the configuration of particles of type
i = 0, 1. Then the ground configuration of γ = (γ0, γ1) is p(γ) = p(γ0) ∪ p(γ1). We also
set nγ(x) = nγ0(x) + nγ1(x). If nγ(x) = 1 for each x ∈ p(γ), then γ is called a simple
configuration. The set of all simple configurations is then

Γ̆2 = {γ ∈ Γ2 : ∀x ∈ p(γ) nγ(x) = 1}. (1.1)

As mentioned above, the configurations are assumed to be locally finite, i.e., each γi
takes finite values on every compact Λ ⊂ X. Let x1, x2, . . . , be an enumeration of a
given γi. Then by

∑
x∈γi g(x) we mean

∑
j g(xj), where g : X → R is a suitable function.

Obviously, this interpretation of
∑
x∈γi g(x) is independent of the enumeration used in

the second sum. Note also that
∑
x∈γi g(x) =

∫
X
g(x)γi(dx), see (3.2) below as well as

[18] for more on this subject. Then Γ is equipped with the vague topology, which is the
weakest topology that makes continuous the maps γi 7→

∑
x∈γi g(x), g ∈ Ccs(X), where

the latter is the collection of all continuous compactly supported numerical functions.
Correspondingly, the set Γ2 = Γ× Γ is equipped with the product topology, and thereby
with the Borel σ-field B(Γ2). This allows us to employ probability measures defined
thereon, the set of which is denoted by P(Γ2). Their evolution is described by the
Fokker-Planck equation

µt2(F ) = µt1(F ) +

∫ t2

t1

µs(LF )ds, t2 > t1 ≥ 0, (1.2)

see [2] for a general theory of such and similar objects. In (1.2), we use the notation
µ(F ) =

∫
Fdµ and L is the Kolmogorov operator, which in the considered case has the

following form

(LF )(γ) =
∑
x∈γ0

∫
X

a0(x− y) exp

(
−
∑
z∈γ1

φ0(z − y)

)
[F (γ \ x ∪0 y)− F (γ)] dy (1.3)

+
∑
x∈γ1

∫
X

a1(x− y) exp

(
−
∑
z∈γ0

φ1(z − y)

)
[F (γ \ x ∪1 y)− F (γ)] dy.

Here and in the sequel, by writing γ ∪i y we mean the element of Γ2 obtained from γ

by adding y ∈ X to its component γi, i = 0, 1. Likewise, by writing γ \ x we mean the
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configuration obtained from γ by subtracting x from the corresponding γi if it is clear
which i is meant. Otherwise, we indicate it explicitly, see the next section for more detail.

The first summand in (1.3) describes the following elementary act: a particle located
at x ∈ γ0 instantly changes its position (jumps) to y ∈ X with rate

c0(x, y; γ) = a0(x− y) exp

(
−
∑
z∈γ1

φ0(z − y)

)
. (1.4)

It depends on γ1 through the multiplier exp
(
−
∑
z∈γ1 φ0(z − y)

)
, φ0 ≥ 0, the role of

which is diminishing the free jump rate a0(x− y) if the target point is ‘close’ to γ1. In
view of this, we shall call ai and φi, i = 0, 1, jump and repulsion kernels, respectively.

As is typical for infinite particle systems, among the states P(Γ2) one distinguishes a
proper subset to which the evolution described by (1.2) is restricted. In [1], there was
introduced a subset Pexp ⊂ P(Γ2), cf. Definition 3.1 below, consisting of sub-Poissonian
measures, and then constructed a map t 7→ µt ∈ Pexp corresponding to (1.2) in the
following sense. For a certain class of (unbounded) functions F : Γ2 → R, it was shown
that: (a) LF belongs to this class; (b) each such F is µ-integrable for all µ ∈ Pexp; (c)
the mentioned map satisfies (1.2). Our present results are essentially based on this
construction. In a sense, we ‘superpose’ the mentioned map t 7→ µt ∈ Pexp and obtain
a family of càdlàg path measures {Ps,µ : s ≥ 0, µ ∈ Pexp}, which is the unique solution
of the restricted initial value martingale problem corresponding to (1.3), see [9, page
79], and is such that the one dimensional marginal of Ps,µ corresponding to t > s is µt if
µs = µ. This construction consists of the following steps:

(a) We pick a subset Γ2
∗ ⊂ Γ2 and equip it with a topology that makes this set a Polish

space, continuously embedded in Γ2, and such that µ(Γ2
∗) = 1 for all µ ∈ Pexp. This

enlarges the set of continuous functions F : Γ2 → R and allows us to redefine the
members of Pexp as measures on Γ2

∗. Then we construct a sufficiently massive set
D(L) of bounded continuous functions F : Γ2

∗ → R, which will serve as the domain
of the Kolmogorov operator. Its crucial property is that LF remains bounded for all
F ∈ D(L).

(b) We prove that any solution t 7→ µt ∈ P(Γ2
∗) of the Fokker-Planck equation (1.2) with

F ∈ D(L) and µ0 ∈ Pexp is such that µt ∈ Pexp for all t > 0. Thereby, we prove that
there is only one such solution given by the map t 7→ µt ∈ Pexp constructed in [1].

(c) Then we introduce auxiliary models described by Lσ, σ ∈ [0, 1] obtained by replacing
ai(x− y)→ aσi (x, y), in such a way that L0 = L, whereas Lσ with σ ∈ (0, 1] admits
constructing transition functions pσt , by means of which we obtain Markov processes
X σ with values in Γ2

∗.

(d) Thereafter, we prove that the finite-dimensional distributions of X σ satisfy Chentsov-
like estimates, uniformly in σ ∈ (0, 1]. By this we get that: (i) each X σ has a càdlàg
modification, which corresponds to the existence of families {Pσs,µ : s ≥ 0, µ ∈ Pexp},
σ ∈ (0, 1], of càdlàg path measures; (ii) as σ → 0, the measures Pσs,µ have accu-
mulation points which solve the restricted initial value martingale problem for
(L,D(L),Pexp). Then we prove that all these accumulation points coincide as their
one-dimensional marginals solve (1.2), which has a unique solution, that was proved
in (b). Thereby, we obtain the unique solution of the mentioned martingale problem
{Ps,µ : s ≥ 0, µ ∈ Pexp}.

(e) Finally, we prove that the constructed Markov process with probability one takes
values in Γ2

∗ ∩ Γ̆2, see (1.1).

The structure of this paper is as follows. In Sect. 2, we collect the notations used herein.
In Sect. 3, we introduce the main ingredients of our construction, among which are
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the spaces of tempered configurations Γ2
∗, Γ̆2

∗, the basic classes of bounded continuous
functions F : Γ2

∗ → R, and the set of sub-Poissonian measures Pexp ⊂ P(Γ2), see
Definition 3.1. In Sect. 4, we formulate our assumptions concerning the properties of the
parameters ai and φi that appear in (1.3), (1.4). Next, we introduce the corresponding
spaces of càdlàg paths and the very notion of a solution of the restricted initial value
martingale problem for our model, see Definition 4.3. Then the result of this work is
formulated in Theorem 4.5, followed by a number of comments. The remaining sections
are dedicated to the proof of Theorem 4.5. In Sect. 5, we reformulate the corresponding
results of [1] in the form adapted to the present context, as well as develop a number
of additional technicalities. The basic result of Sect. 6 is Lemma 6.1 which states that
every solution of the Fokker-Planck equation (1.2) for our model lies in Pexp whenever
µ0 is in Pexp. Its proof is mostly based on combinatorial estimates obtained in [16] and
those derived here in subsect. 5.2. Then we prove that (1.2) has a unique solution t 7→ µt,
constructed in fact in [1], see Lemma 6.3. By means of Lemmas 6.1 and 6.3 we then prove
that the martingale problem can have at most one solution. In Sect. 7, we introduce Lσ

and show that the solution t 7→ µσt of the Fokker-Planck equation for Lσ, σ ∈ (0, 1], has
the property µσt ⇒ µt as σ → 0, where µt is the solution corresponding to the main model
and⇒ denotes weak convergence. In Sect. 8, we obtain the evolution of states t 7→ µ̂σt ,
σ ∈ (0, 1], by constructing stochastic semigroups Sσ = {Sσ(t)}t≥0 acting in the Banach
space of signed measures on Γ2

∗, see Lemma 8.3. This construction becomes possible
due to the modification ai(x − y) → aσi (x, y) and is based on a perturbation technique
developed in [23]. By construction, t 7→ µ̂σt solves the Fokker-Planck equation for Lσ,
which by Lemma 6.3 yields µ̂σt = µσt . At the same time, by means of the semigroups Sσ we
get the corresponding transition functions pσt , and thus Markov processes X σ with values
in Γ2

∗. Thereafter, in Lemma 8.6 we show that these processes satisfy Chentsov-like
estimates, uniform in σ ∈ (0, 1]. By means of this result, in Sect. 9 we complete the proof
of Theorem 4.5, including the property mentioned in item (e) above.

2 Notations

In view of the size of this work, for the reader convenience we collect here essential
notations and notions used throughout the paper.

2.1 Sets and spaces

• The considered particle system dwells in X = Rd, d ≥ 1. By Λ we always denote a
compact subset of X, its Euclidean volume is denoted |Λ|; R+ = [0,+∞); N – the
set of natural numbers, N0 = N ∪ {0}; Br(y) = {x ∈ Rd : |x− y| ≤ r}, Br = Br(0),
r > 0 and y ∈ Rd. For a finite set ∆, by |∆| we mean its cardinality.

• A Polish space is a separable topological space, the topology of which is consistent
with a complete metric, see, e.g., [8, Chapt. 8]. Subsets of such spaces are
usually denoted by A,B, whereas A,B (with indices) are reserved for denoting
linear operators. For a Polish space E, by Cb(E) and Bb(E) we denote the sets of
bounded continuous and bounded measurable functions g : E → R, respectively;
B(E) denotes the Borel σ-field of subsets of E. By P(E) we denote the set of all
probability measures defined on (E,B(E)). For a suitable set ∆, by 1∆ we denote
the indicator of ∆.

• Γ stands for the set of all locally finite counting measures on X, interpreted also
as configurations of point particles with possible multiple locations, see [18] and
(3.1) below. By Γ0 we mean the subset of Γ consisting of finite configurations,
i.e., such that γ(X) < ∞; by Γ2 we denote the set of configurations of the two-
component particle system which we consider. That is, Γ2 = Γ × Γ consists of
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γ = (γ0, γ1), γi ∈ Γ with i = 0, 1 always indicating the particle type. The set of
simple configurations Γ̆2 is defied in (1.1). The set of tempered configurations Γ∗
is defined in (3.32) by means of ψ(x) = (1 + |x|d+1)−1; then Γ2

∗ = Γ∗ × Γ∗, see also
(3.31). The metric properties of Γ2

∗ are described in Lemma 3.4. Finally, Γ̆2
∗ stands

for Γ2
∗ ∩ Γ̆2, see (3.31). The relationships between these sets (Polish spaces) are

described in Corollary 3.5.
• By Pexp we denote the set of sub-Poissonian measures, see Definition 3.1, which is

one of the basic notions of this research. Their essential properties are given in
Proposition 3.2 and (3.34). ByM (with indices) we denote the Banach spaces of
signed measures on Γ2

∗, see also (8.1), (8.2), (8.4).
• By D[s,+∞)(Γ

2
∗) and D[s,+∞)(Γ̆

2
∗), s ≥ 0, we denote the spaces of càdlàg maps

γ : [s,+∞) → Γ2
∗ and γ : [s,+∞) → Γ̆2

∗, respectively. Equipped with Skorohod’s
metric they become Polish metric spaces, see subsect. 3.2.

2.2 Functions, measures, operators

• By x, y, z we always denote elements (points) of X = Rd; for k ∈ N, we write xk =

(x1, . . . , xk) ∈ Xk. By small letters f, g, u, v, θ, ψ, φ we denote numerical functions
defined on X or Xk. Important classes of such functions Θψ, Θ+

ψ are defined in

(3.38). By means of the function ψσ(x) = (1 + σ|x|d+1)−1 we modify the model (1.3).
For vi,1, . . . vi,k ∈ Cb(X), i = 0, 1 and k ∈ N, we write vi(x) = vi,1(x1) · · · vi,k(xk),
see (3.54) and also (3.4). For an integrable θ : X → R+, we write 〈θ〉 =

∫
X
θ(x)dx.

Numerical functions defined of Γ2 or Γ2
∗ are denoted by capital letters F,H, etc. By

F with indices we usually denote functions on Γ2,Γ2
∗, whereas G (with indices) are

defined on finite configurations. Significant examples of such functions are F θ, see
(3.16), Ψ (3.30), F̃ θτ , see (3.49) and Proposition 3.8, F̂mτ (3.55). The class of functions
D(L) is introduced in Definition 4.1, its properties are given in Proposition 4.2. By
F, G, K we denote numerical functions defined on the path spaces.

• Measures on Γ2 and Γ2
∗ are usually denoted by µ with indices. Their correlation

measures χ(m)
µ are defined in (3.7). By πκ we denote the Poisson measure, see

(3.31). Probability measures on the path spaces D[s,+∞)(Γ
2
∗) are denoted by P with

indices. For suitable measure and function, we write µ(f) =
∫
fdµ.

• By L and Lσ we denote the Kolmogorov operator (1.3) and its modifications. By
L†,σ we denote the operators dual to Lσ, see (8.13), (8.14). Their domains are set
in (8.16). By L̂ and L∆ with indices we denote the counterparts of L acting on
functions G and correlation functions, respectively, see (5.23) and (5.9).

3 Preliminaries

3.1 Configurations spaces and correlation measures

By Γ we denote the standard set of Radon counting measures on X, i.e., γ(Λ) ∈ N0

for each γ ∈ Γ and a compact Λ ⊂ X. Then we also define nγ(x) = infr>0 γ(Br(x))

and p(γ) = {x ∈ X : nγ(x) > 0}. Thus, p(γ) is a locally finite subset of X, see (1.1).
For x ∈ p(γ), by γ \ x we denote the element of Γ such that nγ\x(x) = nγ(x) − 1 and
nγ\x(y) = nγ(y) whenever y 6= x. Similarly, γ ∪ x, x ∈ X, denotes the measure such that
nγ∪x(x) = nγ(x) + 1 and nγ∪x(y) = nγ(y) for y 6= x. For simplicity, with a certain abuse
of notations we write ∑

x∈γ
g(x) =

∫
X

g(x)γ(dx) =
∑
x∈p(γ)

nγ(x)g(x), (3.1)

where g is a positive numerical function. Note that the left-hand side of (3.1) can also be
interpreted as

∑
j g(xj) for a certain enumeration N 3 j 7→ xj of the elements of p(γ), in
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which each x ∈ p(γ) is repeated nγ(x) times, see [18] for more detail. In the same way,
we will understand sums∑

x∈γ

∑
y∈γ\x

g(x, y) =

∫
X

∫
X

g(x, y)γ(dx)γ(dy)−
∫
X

g(x, x)γ(dx),

that can also be generalized to all m ∈ N∑
x1∈γ

∑
x2∈γ\x1

· · ·
∑

xm∈γ\{x1,...,xm−1}

g(x1, . . . xm) (3.2)

=
∑
G∈Km

(−1)lG
∫
XnG

gG(y1, . . . , ynG)γ(dy1) · · · γ(dynG)

=
∑
G∈Km

(−1)lG
∑
y1∈γ
· · ·

∑
ynG∈γ

gG(y1, . . . , ynG),

whereKm is the collection of all graphs with vertices {1, 2, . . . ,m}, lG and nG are the num-
ber of edges and the connected components of G, respectively, whereas gG(y1, . . . , ynG)

is obtained from g(x1, . . . , xm) by setting the arguments xl1 , . . . xlsj of the latter equal yj
where l1, . . . lsj are the vertices of the j-th connected component of G.

Since the particles which we consider are of two types, their pure states are set to be
pairs γ = (γ0, γ1) such that γi ∈ Γ, i = 0, 1. Thus, Γ2 = Γ× Γ is the set of all pure states
of the system. Correspondingly, we set nγ(x) = nγ0(x) + nγ1(x) and p(γ) = p(γ0) ∪ p(γ1).
We will call p(γ) the ground configuration for γ.

For γ ∈ Γ2 and m = (m0,m1) ∈ N2
0, the counting measure Q

(m)
γ on Xm0 × Xm1

is defined by its values on compact subsets ∆ ⊂ Xm0 × Xm1 in the following way.
For m0 = m1 = 0, we set Q(m)

γ ≡ 1 for each γ. For m0 > 0, m1 = 0 and ∆ ⊂ Xm0 ,

Q
(m)
γ (∆) is equal to the number of different ordered strings (i1, . . . , im0) such that

x := (xi1 , . . . , xim0
) ∈ ∆. Likewise one defined Q(m)

γ for m0 = 0 and m1 > 0. For m ∈ N2,

Q
(m)
γ (∆) is equal to the number of different ordered strings (i1, . . . , im0

) and (j1, . . . , jm1
)

such that (x,y) ∈ ∆, where x = (xi1 , . . . , xm0
), xl ∈ γ0, and y = (yj1 , . . . , ym1

), yl ∈ γ1. It
is obvious that this definition is independent of the enumerations of both γi. Then we
get, cf. (3.2),

Q(m)
γ (∆) (3.3)

=
∑
x1∈γ0

∑
x2∈γ0\x1

· · ·
∑

xm0
∈γ0\{x1,...,xm0−1}

∑
y1∈γ1

∑
y2∈γ1\y1

· · ·
∑

ym1
∈γ1\{y1,...,ym1−1}

1∆(x,y).

To simplify notations, for suitable ϕ0, ϕ, k ∈ N and m ∈ N2
0, we write∑

xk∈γ0

ϕ0(xk) =
∑
x1∈γ0

∑
x2∈γ0\x1

· · ·
∑

xk∈γ0\{x1,...,xk−1}

ϕ0(x1, . . . , xk), (3.4)

∑
(xm0 ,ym1 )∈γ

ϕ(xm0 ,ym1) =
∑

xm0∈γ0

∑
ym1∈γ1

ϕ(x1, . . . , xm0 , y1, . . . , ym1).

As above, we will write x instead of xk if the dimension k is clear from the context. For a
compact Λ ⊂ X and γi ∈ Γ, i = 0, 1, we let NΛ(γi) be the number of the elements of γi
contained in Λ. Then

NΛ(γi) =
∑
x∈γi

1Λ(x) = γi(Λ), (3.5)
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that is, NΛ(γi) = Q
(m)
γ (Λ) for the corresponding m, see (3.3). For p ∈ N, we have, cf. [16,

page 8],

Np
Λ(γi) =

[∑
x∈γi

1Λ(x)

]p
=

p∑
l=1

S(p, l)
∑
xl∈γi

1Λ(x1) · · ·1Λ(xl), (3.6)

where S(p, l) is Stirling’s number of second kind = the number of ways to divide p labeled
items into l unlabeled groups. Below, expressions like that on the right-hand side of (3.6)
with p = 0 are set to be identically equal to one.

It can be shown, cf. [18, Theorem 1], that the map γ 7→ Q
(m)
γ (∆) is measurable for

all compact ∆ and m ∈ N2
0. However, it may be unbounded. Let P(Γ2) be the set of all

probability measures defined on the Polish space Γ2. For a given µ ∈ P(Γ2) and m ∈ N2
0,

set

χ(m)
µ =

∫
Γ2

Q(m)
γ µ(dγ), (3.7)

which exists for at least m = (0, 0). If it does for a given positive m, we call it correlation

measure corresponding to these µ and m. If χ(m)
µ (∆) <∞ for all m ∈ N2

0 and compact

∆, we say that µ has finite correlations. In this case, each χ(m)
µ is a Radon measure on

Xm0 ×Xm1 .

3.2 Sub-Poissonian measures

We begin by recalling that Ccs(X) is dense in L1(X) := L1(X, dx), see e.g., [5,
Theorem 4.12, page 97].

For k ∈ N and θ ∈ Ccs(X), by θ⊗k we denote the function such that θ⊗k(x1, . . . , xk) =

θ(x1) · · · θ(xk), which we extend to k = 0 by setting θ⊗0 ≡ 1. Likewise, for θ0, θ1 ∈ Ccs(X)

and m ∈ N2
0, we set

θ⊗m(x,y) = θ0(x1) · · · θ0(xm0
)θ1(y1) · · · θ1(ym1

). (3.8)

Definition 3.1. The set of sub-Poissonian measures Pexp consists of all those µ ∈ P(Γ2)

that have finite correlations such that, for each m ∈ N2
0 and θ0, θ1 ∈ Ccs(X), the following

holds ∣∣∣χ(m)
µ (θ⊗m)

∣∣∣ ≤ κ|m|‖θ0‖m0

L1(X)‖θ1‖m1

L1(X), |m| := m0 +m1, (3.9)

with some µ-dependent κ > 0.

The aforementioned density and the estimate in (3.9) imply that the map (θ0, θ1) 7→
χ

(m)
µ (θ⊗m) can be extended to a continuous homogeneous polynomial on L1(X)× L1(X).

In this case, there exists a unique positive and symmetric k(m)
µ ∈ L∞(Xm0 ×Xm1) such

that, see (3.8),

χ(m)
µ (θ⊗m) =

∫
Xm0×Xm1

k(m)
µ (x1, . . . , xm0 ; y1, . . . , ym1) (3.10)

× θ0(x1) · · · θ0(xm0
)θ1(y1) · · · θ1(ym1

)dx1 · · · dxm0
dy1 · · · dym1

=:

∫
Xm0×Xm1

k(m)
µ (x,y)θ⊗m(x,y)dm0xdm1y =: 〈〈k(m)

µ , θ⊗m〉〉.

The mentioned symmetricity means that

k(m)
µ (x1, . . . , xm0

; y1, . . . , ym1
) = k(m)

µ (xσ0(1), . . . , xσ0(m0); yσ1(1), . . . , yσ1(m1)), (3.11)

holding for all corresponding permutations σ0, σ1, whereas the positivity and the bound
in (3.9) yield

0 ≤ k(m)
µ (x,y) ≤ κ|m|, (3.12)
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holding for Lebesgue-almost all (x,y) ∈ Xm0 × Xm1 . The upper estimate in (3.12) is
known as Ruelle’s bound [20]. Noteworthy, for each µ,

k(0,0)
µ = 1, (3.13)

which readily follows by the very definition of the counting measure Qγ and (3.7).
For m = (m0,m1) ∈ N2

0, θ = (θ0, θ1), θi ∈ Ccs(X), i = 0, 1, we set, cf. (3.3),

H
(m)
θ (γ) = H

(m0)
θ0

(γ0)H
(m1)
θ1

(γ1), (3.14)

H
(mi)
θi

(γi) =
∑
x1∈γi

∑
x2∈γi\x1

· · ·
∑

xmi∈γi\{x1,...,xmi−1}

θi(x1) · · · θi(xmi),

=
∑
x∈γi

θ⊗mii (x), mi ≥ 1, i = 0, 1,

and H(0)
θi

(γi) ≡ 1. Then by means of (3.7) we rewrite (3.10) as follows

χ(m)
µ (θ⊗m) = µ(H

(m)
θ ).

Now for n = (n0, n1) ∈ N2
0, let us consider

H̄
(n)
θ (γ) =

n0∑
m0=0

n1∑
m1=0

1

m0!m1!
H

(m)
θ (γ),

which is obviously finite for all γ ∈ Γ. For every µ ∈ Pexp, by (3.9) we have that

µ(H̄
(n)
θ ) ≤ exp

[
κ(‖θ0‖L1(X) + ‖θ1‖L1(X))

]
, (3.15)

where κ is as in (3.9). By (3.15), for θ = (θ0, θ1) ∈ L1(X) × L1(X), the sequence

{H̄(n)
θ (γ)}n∈N2

0
is µ-almost everywhere convergent to

F θ(γ) = F θ0(γ0)F θ1(γ1), (3.16)

F θi(γi) :=
∏
x∈γi

(1 + θi(x)) = exp

(∑
x∈γi

log(1 + θi(x))

)
.

Moreover, by (3.15) it follows that each F θ, θ ∈ L1(X)× L1(X) is µ-integrable and

µ(F θ) ≤ exp
[
κ(‖θ0‖L1(X) + ‖θ1‖L1(X))

]
. (3.17)

This means that the map L1(X) × L1(X) 3 θ 7→ µ(F θ) ∈ R is an exponential type real
entire function, which is reflected in the notation Pexp. Then borrowing terminology
from the theory of entire functions, we will call the type of µ the least κ that verifies
(3.9), (3.12). For the homogeneous Poisson measure πκ, κ = (κ0, κ1), κ0, κ1 > 0, we have

k(m)
πκ (x,y) = κm0

0 κm1
1 , (x,y) ∈ Xm0 ×Xm1 , (3.18)

which yields, see (3.10) and (3.17),

πκ(F θ) = exp

(
κ0

∫
X

θ0(x)dx+ κ1

∫
X

θ1(x)dx

)
. (3.19)

Hence, the type of πκ ∈ Pexp is κ = max{κ0;κ1}. In general, a Poisson measure, πχ, is
completely characterized by the pair χ = (χ0, χ1) of its intensity measures in such a way
that, see (3.10),

χ(m)
πχ (θ⊗m) =

(∫
X

θ0(x)χ0(dx)

)m0
(∫

X

θ1(x)χ1(dx)

)m1

.
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Note that πχ is sub-Poissonian in the sense of Definition 3.1 if and only if χi(dx) = %i(x)dx

with %i ∈ L∞(X), i = 0, 1.
For a symmetric G(m) ∈ Ccs(X

m0 ×Xm1), see (3.11), by (3.3) we have, cf. (3.4),

Q(m)
γ (G(m)) =

∑
(x,y)∈γ

G(m)(x,y) =: m0!m1!(KG(m))(γ), (3.20)

which by (3.7) yields

χ(m)
µ (G(m)) =

∫
Xm0×Xm1

k(m)
µ (x,y)G(m)(x,y)dm0xdm1y (3.21)

= m0!m1!µ(KG(m)) =: m0!m1!〈〈k(m)
µ , G(m)〉〉.

In view of (3.12), this can be continued to all G(m) ∈ L1(Xm0 ×Xm1). For positive G(m),
by (3.12) one also gets

µ(KG(m)) ≤ πκ(KG(m)), κ0 = κ1 = κ, (3.22)

which, in particular, justifies the name sub-Poissonian. Let us now consider the following
important version of (3.22). For a compact Λ ⊂ X, we let NΛ(γ) = NΛ(γ0) +NΛ(γ1), see
(3.5). Then for n ∈ N, by (3.6) we have

Nn
Λ(γ) =

n∑
p=0

(
n

p

) p∑
l0=1

n−p∑
l1=1

S(p, l0)S(n− p, l1)
∑

(xl0 ,yl1 )∈γ

1Λ(xl0 ,yl1),

which for µ ∈ Pexp yields

µ(Nn
Λ) =

n∑
p=0

(
n

p

) p∑
l0=1

n−p∑
l1=1

S(p, l0)S(n− p, l1) (3.23)

×
∫
Xl0×Xl1

k(l0,l1)
µ (xl0 ,yl1)1Λ(xl0 ,yl1)dxl0dyl1

≤
n∑
p=0

(
n

p

) p∑
l0=1

n−p∑
l1=1

S(p, l0)S(n− p, l1)(κ|Λ|)l0+l1

=

n∑
p=0

(
n

p

)
Tp(κ|Λ|)Tn−p(κ|Λ|) = Tn(2κ|Λ|),

where |Λ| is the Euclidean volume (Lebesgue measure) of Λ and Tn, n ∈ N, are Touchard’s
polynomials, attributed also to J. A. Grunert, S. Ramanujan, and others, see [3, page 6].
Along with the already mentioned ones, sub-Poissonian measures have the following
significant property. Recall that the set of simple configurations Γ̆2 is defined in (1.1).

Proposition 3.2. For each µ ∈ Pexp, it follows that µ(Γ̆2) = 1.

Proof. For a compact Λ ⊂ X, N ∈ N and ε ∈ (0, 1), we set

hΛ,N (x, y) = 1Λ(x)1Λ(y) min{N ; |x− y|−dε}, x, y ∈ X, (3.24)

HΛ,N (γ) =
∑
x∈γ0

∑
y∈γ0\x

hΛ,N (x, y) +
∑
x∈γ1

∑
y∈γ1\x

hΛ,N (x, y) +
∑
x∈γ0

∑
y∈γ1

hΛ,N (x, y).
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According to (3.21) and (3.12) we have

µ(HΛ,N ) =

∫
Λ2

(
k(2,0)
µ (x, y) + k(1,1)(x, y) + k(0,2)

µ (x, y)
)
hΛ,N (x, y)dxdy ≤ 3κ2IΛ,N ,

(3.25)

IΛ,N :=

∫
Λ2

hΛ,N (x, y)dxdy =: I(1)
Λ,N (r) + I(2)

Λ,N (r),

where, for a certain r > 0, we set and then get

I(1)
Λ,N (r) =

∫
Λ

(∫
Λ∩Br(x)

hΛ,N (x, y)dy

)
dx ≤

∫
Λ

(∫
Br

dz

|z|dε

)
dx =

cdr
d(1−ε)

d(1− ε)
|Λ|, (3.26)

I(2)
Λ,N (r) =

∫
Λ

(∫
Λ∩Bcr(x)

hΛ,N (x, y)dy

)
dx ≤ 1

rdε
|Λ|2.

Here Bcr(x) = X \Br(x), and |Λ| and cd/d denote the Euclidean volume of Λ and the unit
ball in X, respectively. We apply these estimates in (3.25) and obtain that

µ(HΛ,N ) ≤ Cµ,Λ,

for a suitable Cµ,Λ that is independent of N . Clearly, 0 ≤ µ(HΛ,N ) ≤ µ(HΛ,N+1), which
by the monotone convergence theorem yields that the pointwise limit

lim
N→+∞

HΛ,N (γ) =: HΛ(γ) (3.27)

is finite for µ-almost all γ, i.e., for all γ belonging to some Γ̆2
µ,Λ such that µ(Γ̆2

µ,Λ) = 1. For

C > 0, we set Γ̆2
C = {γ : HΛ(γ) ≤ C}. Then |x−y| ≥ C−1/dε for each x, y ∈ (γ0∩Λ)∪(γ1∩Λ)

and each γ ∈ Γ̆2
C . That is, γΛ := γ ∩ Λ = (γ0 ∩ Λ, γ1 ∩ Λ) is simple whenever γ ∈ Γ̆2

C . This
yields that ∪k∈N0

Γ̆2
C+k ⊂ Γ̆2

s,Λ, where the latter is the set of all those γ ∈ Γ2 for which

γΛ is simple. At the same time, ∪k∈N0
Γ̆2
C+k ⊃ Γ̆2

µ,Λ; hence, µ(Γ̆2
s,Λ) = 1. Note that Γ̆2

s,Λ

is an open subset of Γ2, cf. the proof of Lemma 3.4 below. Now we take an ascending
sequence {Λk} that exhausts X, and obtain

Γ̆2 =
⋂
k

Γ̆2
s,Λk

, (3.28)

which completes the proof.

3.3 Tempered configurations

Since we are going to essentially exploit the sub-Poissonian measures, it might be
reasonable to restrict our consideration to subsets of Γ2 the complements of which
are null-sets for each µ ∈ Pexp. To this end, we introduce the following function of
x ∈ X := Rd

ψ(x) =
1

1 + |x|d+1
, 〈ψ〉 :=

∫
X

ψ(x)dx, (3.29)

and also
Ψ(γ) = Ψ(γ0) + Ψ(γ1) =

∑
x∈γ0

ψ(x) +
∑
y∈γ1

ψ(y). (3.30)

Then we define

Γ
(n)
∗ = {γ ∈ Γ2 : Ψ(γ) ≤ n}, Γ2

∗ =
⋃
n∈N

Γ
(n)
∗ , Γ̆2

∗ = Γ2
∗ ∩ Γ̆2. (3.31)
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Elements of Γ2
∗ (resp. Γ̆2

∗) are called tempered configurations (resp. tempered simple

configurations). Clearly, Γ2
∗ ∈ B(Γ2) as Γ

(n)
∗ ∈ B(Γ2) for all n ∈ N. According to (3.31),

we can also write

Γ2
∗ = Γ∗ × Γ∗, Γ∗ := {γi ∈ Γ : Ψ(γi) <∞}, i = 0, 1. (3.32)

By (3.21), for µ ∈ Pexp, we then have

µ(Ψ) =

∫
X

(
k(1,0)
µ (x) + k(0,1)

µ (x)
)
ψ(x)dx ≤ 2κ〈ψ〉, (3.33)

which by Proposition 3.2 yields

∀µ ∈ Pexp µ(Γ̆2
∗) = µ(Γ2

∗) = 1. (3.34)

This crucial property of the elements of Pexp will allow us to consider mostly configura-
tions belonging to Γ2

∗. In particular, this means that we will use the following sub-fields
of B(Γ2):

Ă∗ = {A ∈ B(Γ2) : A ⊂ Γ̆2
∗}, A∗ = {A ∈ B(Γ2) : A ⊂ Γ2

∗}. (3.35)

Performing the same calculations as in obtaining (3.23) one readily gets

µ(Ψn) ≤ Tn(κ〈ψ〉), n ∈ N, (3.36)

which can be used to get the following estimate∫
Γ2

exp (βΨ(γ))µ(dγ) ≤ exp
(
2κ〈ψ〉(eβ − 1)

)
, β > 0, (3.37)

holding for µ ∈ Pexp of type ≤ κ.
Now we recall that Cb(X) (resp. Bb(X)) stands for the set of all bounded continuous

(resp. bounded measurable) functions g : X → R. For ψ defined in (3.29), we then set

Θψ = {θ(x) = g(x)ψ(x) : g ∈ Cb(X), g(x) ≥ 0}, (3.38)

Θ+
ψ = {θ ∈ Θψ : θ(x) > 0}.

Clearly, each θ ∈ Θψ is integrable. For such θ, we also define

cθ = sup
x∈X

1

ψ(x)
log (1 + θ(x)) , c̄θ := ecθ − 1. (3.39)

Then
0 ≤ θ(x) ≤ c̄θψ(x), θ ∈ Θψ. (3.40)

Next we define the following measures on X

(ψγi)(dx) = ψ(x)γi(dx), , γi ∈ Γ∗, i = 0, 1. (3.41)

Then

Ψ(γ) = (ψγ0)(X) + (ψγ1)(X), (ψγi)(X) =
∑
x∈γi

ψ(x) = Ψ(γi), i = 0, 1. (3.42)

Let N be the set of all positive finite Borel measures on X. In view of (3.42) and (3.32),
we have that ψγi ∈ N for each γi ∈ Γ∗, i = 0, 1. Consider

CLb (X) = {g ∈ Cb(X) : ‖g‖L <∞}, ‖g‖L := sup
x,y∈X, x 6=y

|g(x)− g(y)|
|x− y|

,
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and then define
‖g‖BL = ‖g‖L + sup

x∈X
|g(x)|, g ∈ CLb (X),

and also

υ(ν, ν′) = max

{
1; sup
g:‖g‖BL≤1

|ν(g)− ν′(g)|

}
, ν, ν′ ∈ N . (3.43)

Proposition 3.3. [10, Theorem 18] The following three types of the convergence of a
sequence {νn} ⊂ N to a certain ν ∈ N are equivalent:

(i) νn(g)→ ν(g) for all g ∈ Cb(X);

(ii) νn(g)→ ν(g) for all g ∈ CLb (X);

(iii) υ(νn, ν)→ 0.

That is, υ metrizes the weak convergence of the elements of N . Our aim now is to
metrize Γ2

∗. In view of (3.32), to this end it is enough to metrize Γ∗. Set

ΘBLψ = {θ(x) = g(x)ψ(x) : ‖g‖BL ≤ 1}, (3.44)

and then define
υ∗(γ, γ′) = υ(ψγ0, ψγ

′
0) + υ(ψγ1, ψγ

′
1). (3.45)

Note that

υ(ψγi, ψγ
′
i) = max

1; sup
θ∈ΘBLψ

∣∣∣∣∣∣
∑
x∈γi

θ(x)−
∑
x∈γ′i

θ(x)

∣∣∣∣∣∣
 , γi, γ

′
i ∈ Γ∗, i = 0, 1. (3.46)

Before going further, we recall that the set of simple configurations is defined in (1.1),
see also (3.28) and (3.31).

Lemma 3.4. The metric space (Γ2
∗, υ
∗) is complete and separable. Its metric topology is

the weakest topology that makes continuous all the maps Γ2
∗ 3 γ 7→

∑
i=0,1

∑
x∈γi θi(x),

θ0, θ1 ∈ Θψ. The set Γ̆2
∗ defined in (3.31) is a Gδ subset of the Polish space Γ2

∗, and hence
is also a Polish space. Its completion in the metric defined in (3.45) is Γ2

∗.

Proof. The completeness of (Γ2
∗, υ
∗) follows from the completeness of (Γ∗, υ∗), which

was obtained in [16, Lemma 2.7]. The second part of the statement follows by the
corresponding property of Γ̆∗ obtained ibid.

The following formula summarizes the relationship between the configuration sets

Γ̆2
∗ ⊂ Γ2

∗ ⊂ Γ2. (3.47)

Recall that each of them is a Polish space with the topology as discussed above. Let
B(Γ̆2

∗) and B(Γ2
∗) be the corresponding Borel σ-fields, that can be compared with the

σ-fields introduced in (3.35).

Corollary 3.5. The embeddings in (3.47) are continuous. Therefore, B(Γ̆2
∗) = Ă∗ = {A ∈

B(Γ2
∗) : A ⊂ Γ̆2

∗} and B(Γ2
∗) = A∗.

Proof. The continuity of Γ2
∗ ⊂ Γ2 follows by the fact that Ccs(X) is a proper subset of

Θψ. The other one follows by Lemma 3.4. The stated equality of the σ-fields follows by
Kuratowski’s theorem [22, Theorem 3.9, page 21].

Remark 3.6. The aforementioned equality of the σ-fields allows one to redefine each
µ ∈ P(Γ2) possessing the property µ(Γ̆2

∗) = 1 as a probability measure on (Γ2
∗,B(Γ2

∗)) or
(Γ̆2
∗,B(Γ̆2

∗)). By (3.34) this relates to all µ ∈ Pexp.
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3.4 Families of test functions

For θ ∈ Θψ, see (3.38), we set

ςθτ (x) = τ − 1

ψ(x)
log(1 + θ(x)), Σ = {ςθτ : θ ∈ Θψ, τ > cθ}, (3.48)

where cθ is as in (3.39). Then Σ ⊂ Cb(X) and its elements are separated away from zero.
It is closed with respect to pointwise addition since θ + θ′ + θθ′ belongs to Θψ whenever
θ, θ′ ∈ Θψ. For τi > cθi and γi ∈ Γ∗, i = 0, 1, we define, see (3.41),

F̃ θiτi (γi) =
∏
x∈γi

(1 + θi(x))e−τiψ(x) = exp
(
−(ψγi)(ς

θi
τi )
)
, (3.49)

F̃ θτ (γ) = F̃ θ0τ0 (γ0)F̃ θ1τ1 (γ1),

and also
F̃ = {F̃ θτ : τ = (τ0, τ1), τi > cθi , θi ∈ Θψ, i = 0, 1}, (3.50)

which includes the case F̃ θτ ≡ 1 corresponding to the zero τ and θ. Note that in
expressions like those in (3.49), (3.50), by θ we understand (θ0, θ1), θi ∈ Θψ.

Definition 3.7. [11, page 111] A sequence {Φn}n∈N ⊂ Bb(Γ2
∗) is said to boundedly and

pointwise (bp-) converge to a given Φ ∈ Bb(Γ2
∗) if it converges pointwise and

sup
n∈N

sup
γ∈Γ2

∗

|Φn(γ)| <∞.

The bp-closure of a set M ⊂ Bb(Γ2
∗) is the smallest subset of Bb(Γ2

∗) that contains M
and is closed under the bp-convergence. In a similar way, one understands also the
bp-convergence of a sequence of functions φn : X → R.

It is quite standard, see [11, Proposition 4.2, page 111] or [9, Lemma 3.2.1, page
41], that Cb(X) contains a countable family of nonnegative functions, {gj}j∈N, which is
convergence determining and such that its linear span is bp-dense in Bb(X). This means
that a sequence {νn} ⊂ N weakly converges to a certain ν if and only if νn(gj)→ ν(gj),
n → +∞ for all j ∈ N. One may take such a family containing the constant function
g(x) ≡ 1 and closed with respect to pointwise addition. Moreover, one may assume that

∀j ∈ N inf
x∈X

gj(x) =: ζj > 0. (3.51)

If this is not the case for a given gj , in place of it one may take g̃j(x) = gj(x) + ζj with
some ζj > 0. The new set {g̃j} has both mentioned properties and also satisfies (3.51).
Then assuming the latter we conclude that

Σ0 := {gj}j∈N ⊂ Σ, (3.52)

where the latter is defined in (3.48). To see this, for a given gj , take τj ≥ supx gj(x) and
then set

θj(x) = exp

(
[τj − gj(x)]ψ(x)

)
− 1. (3.53)

Clearly, θj(x) ≥ 0. Since ψn(x) ≤ ψ(x), n ∈ N, we have that θj(x) ≤ eτjψ(x), and hence

{θj}j∈N ⊂ Θψ, see (3.38). At the same time, ς
θj
τj = gj and cθj = supx(τj − gj(x)) < τj in

view of (3.51). By (3.53), (3.52) and [11, Theorem 3.4.5, page 113], see also [9, page 43],
one readily proves the following statement.

Proposition 3.8. The set F̃ defined in (3.50) is closed with respect to pointwise multi-
plication. Additionally:
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(i) It is separating: µ1(F ) = µ2(F ), holding for all F ∈ F̃ , implies µ1 = µ2 for all
µ1, µ2 ∈ P(Γ2

∗).

(ii) It is convergence determining: if a sequence {µn}n∈N ⊂ P(Γ2
∗) is such that µn(F )→

µ(F ), n → +∞ for all F ∈ F̃ and some µ ∈ P(Γ2
∗), then µn(F ) → µ(F ) for all

F ∈ Cb(Γ2
∗).

(iii) The set Bb(Γ2
∗) is the bp-closure of the linear span of F̃ .

Now we introduce another class of functions F : Γ2
∗ → R which we then use to define

the domain of L. For k ∈ N, vi,1, . . . , vi,k ∈ Cb(X) and γi ∈ Γ∗, i = 0, 1, we write

vi(x
k) = vi,1(x1) · · · vi,k(xk), γi \ xk = γi \ {x1, . . . , xk}, (3.54)

see subsect. 3.1. As is (3.3), we will omit k if the dimension of x is known from the
context. Then for m = (m0,m1) ∈ N2

0, vi,j ∈ Θ+
ψ (see (3.38)) and τ = (τ0, τ1), τi > 0, we

set, see also (3.4) and (3.18),

F̂miτi (vi|γi) =
∑

xmi∈γi

vi(x
mi) exp (−τiΨ(γi \ xmi)) , i = 0, 1, (3.55)

F̂mτ (v|γ) = F̂m0
τ0 (v0|γ0)F̂m1

τ1 (v1|γ1), γ ∈ Γ2
∗,

F̂ = {F̂mτ (v|·) : m ∈ N2
0, vi,j ∈ Θ+

ψ , τi > 0, i = 0, 1}.

Here F̂ (0,0)
τ ≡ 0, which is also an element of F̂ .

Proposition 3.9. For each m = (m0,m1) ∈ N2
0, τ = (τ0, τ1) > 0 and vi,j ∈ Θ+

ψ , j =

1, . . . . ,mj , i = 0, 1, it follows that F̂mτ (v|·) ∈ Cb(Γ2
∗).

Proof. Clearly, it suffices to show that F̂miτi (vi|·) ∈ Cb(Γ∗). To prove the continuity in
question we rewrite the first line of (3.55) in the form

F̂miτi (vi|γi) = exp (−τiΨ(γi))
∑
x1∈γi

∑
x2∈γi\x1

· · ·
∑

xmi∈γi\{x1,...,xmi−1}

u1(x1) · · ·umi(xmi),

(3.56)

uj(x) := vi,j(x)eτiψ(x), j = 1, . . . ,mi.

Obviously, every uj belongs to Θ+
ψ . For each mi, by (3.2) the sum in (3.56) can be written

as the sum of the products of the functions

γi 7→ Ul1,...ls(γi) =
∑
y∈γi

ul1(y) · · ·uls(y).

Each such Ul1,...ls is continuous as Θ+
ψ is closed under pointwise multiplication. Obviously,

γi 7→ Ψ(γi) is also continuous, which yields the continuity of the function defined in
(3.56). To prove its boundedness, we use the estimate uj(x) ≤ cψ(x)eτiψ(x) ≤ ceτψ(x).
Then, see (3.4),

F̂miτi (vi|γi) ≤ exp (−τiΨ(γi))
∑
x∈γi

u⊗mi(x) ≤ cmiemiτi exp (−τiΨ(γi))

(∑
x∈γi

ψ(x)

)mi
(3.57)

= cmiΨmi(γi) exp

(
− τi[Ψ(γi)−mi]

)
≤
(
cmi

τi

)mi
emi(τi−1),

which yields the proof.
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4 The statement

4.1 The Kolmogorov operator

Regarding the parameters of the Kolmogorov operator introduced in (1.3), we will
assume that ai, φi, i = 0, 1, are measurable functions taking nonnegative values. We also
assume that the following holds

max
i=0,1

sup
x
ai(x) =: ‖a‖ <∞, (4.1)

max
i=0,1

∫
X

(
1− e−φi(x)

)
dx =: ϕ <∞, (4.2)

and ∫
X

|x|lai(x)dx =: ā
(l)
i <∞, for i = 0, 1 and l = 0, 1, . . . , d+ 1. (4.3)

Definition 4.1. By D(L) we denote the linear span of the set F̃ ∪ F̂ , where F̃ and F̂ are
defined in (3.50) and (3.55), respectively.

Our aim now is to show that LF̂mτ (v|·) ∈ Bb(Γ2
∗) holding for each F̂mτ (v|·) ∈ F̂ . To this

end, for x ∈ γi, y ∈ X and a suitable F , we define

(∇y,xi F )(γi) = F (γi \ x ∪ y)− F (γi). (4.4)

By (3.55) we can write

F̂miτi (vi|γi) =
∑
z∈γi

vi,1(z)F̂mi−1
τi (v1

i |γi \ z), (4.5)

where v1
i is obtained by setting j = 1 in the formula

vji (x
mi−1) = vi,1(x1) · · · vi,j−1(xj−1)vi,j+1(xj+1) · · · vi,mi(xmi), (4.6)

see (3.54), and

F̂mi−1
τi (v1

i |γi \ z) =
∑

xmi−1∈γi\z

v1
i (x

mi−1) exp
(
−τiΨ((γi \ z) \ x

mi−1)
)
.

According to (4.4) and (4.5) we then get

∇y,xi F̂miτi (vi|γi) = [vi,1(y)− vi,1(x)]F̂mi−1
τi (v1

i |γi \ x) +
∑

z∈γi\x

vi,1(z)∇y,xi F̂mi−1
τi (v1

i |γi \ z).

(4.7)
By iterating the latter we arrive at, see also (4.6),

∇y,xi F̂miτi (vi|γi) =

mi∑
j=1

[vi,j(y)− vi,j(x)]F̂mi−1
τi (vji |γi \ x) (4.8)

+

(
e−τiψ(y) − e−τiψ(x)

)
F̂miτi (vi|γi \ x).

For θ ∈ Θψ and ai as in (4.1), (4.3), we set

(ai ∗ θ)(x) =

∫
X

ai(x− y)θ(y)dy =

∫
X

ai(y)θ(x− y)dy, i = 0, 1. (4.9)

EJP 28 (2023), paper 67.
Page 16/59

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP952
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A Markov process for a particle system with attraction

Then ai ∗ θ ∈ Cb(X). Moreover, by (3.40) and (4.3) we obtain

(ai ∗ θ)(x) ≤ c̄θψ(x)

∫
X

(
1 + |x|d+1

)
ai(x− y)ψ(y)dy (4.10)

≤ c̄θψ(x)

[
ā

(0)
i +

∫
X

(|x− y|+ |y|)d+1
ai(x− y)ψ(y)dy

]

= c̄θψ(x)

[
ā

(0)
i +

d+1∑
l=0

(
d+ 1

l

)∫
X

|x− y|d+1−l|y|lψ(y)ai(x− y)dy

]

≤ c̄θψ(x)

[
ā

(0)
i +

d+1∑
l=0

(
d+ 1

l

)
ā

(l)
i

]
=: c̄θᾱiψ(x),

where we have used also the fact that |y|lψ(y) ≤ 1 for all l = 0, . . . , d+ 1. Therefore, for
each θ ∈ Θψ, it follows that

(aiθ)(x) := (ai ∗ θ)(x) + θ(x) ≤ c̄θ(ᾱi + 1)ψ(x) ≤ c̄θcaψ(x), (4.11)

ca := max{ᾱ0; ᾱ1}+ 1.

At the same time,

e−τiψ(y) − e−τiψ(x) ≤ τiψ(y)ψ(x)
∣∣|x|d+1 − |y|d+1

∣∣, i = 0, 1, (4.12)

which after calculations similar to those in (4.10) yields∫
X

ai(x− y)
∣∣e−τiψ(y) − e−τiψ(x)

∣∣dy ≤ τicaψ(x), (4.13)

where ca is as in (4.11). For vi as in (3.54) and aiθ as in (4.11), we set, cf. (4.6),

(ajivi)(x
mi) = vi,1(x1) · · · vi,j−1(xj−1)(aivi,j)(xj)vi,j+1(xj+1) · · · vi,mi(xmi). (4.14)

Then by (3.55), (4.7), (4.8) and also by (4.11), (4.13), (4.14) we arrive at

∣∣∣LF̂mτ (v|γ)
∣∣∣ ≤ (∫

X

∑
x∈γ0

a0(x− y)
∣∣∣∇y,x0 F̂m0

τ0 (v0|γ0)
∣∣∣ dy) F̂m1

τ1 (v1|γ1) (4.15)

+

(∫
X

∑
x∈γ1

a1(x− y)
∣∣∣∇y,x1 F̂m1

τ1 (v1|γ1)
∣∣∣ dy) F̂m0

τ0 (v0γ0)

≤

m0∑
j=1

F̂m0
τ0 (aj0v0|γ0) + τ0cac̄(v0)F̂m0+1

τ0 (γ0)

 F̂m1
τ1 (v1|γ1)

+

m1∑
j=1

F̂m1
τ1 (aj1v1|γ1) + τ1cac̄(v1)F̂m1+1

τ1 (γ1)

 F̂m0
τ0 (v0|γ0),

where c̄(vi) = maxj c̄vi,j , see (3.39), and

F̂miτi (γi) = F̂miτi (vi|γi), with vi(x) = ψ(x1) · · ·ψ(xmi), (4.16)

EJP 28 (2023), paper 67.
Page 17/59

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP952
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A Markov process for a particle system with attraction

see the first line of (3.55). Then the boundedness of LF̂mτ (v|·) follows by Proposition 3.9.
Let us prove now that LF̃ θτ ∈ Bb(Γ∗), holding for all θi ∈ Θψ and τi > cθi , i = 0, 1, see
(3.49). According to (4.4) we have

∇y,xi F̃ θiτi (γi) =

([
e−τiψ(y) − e−τiψ(x)

]
+ [θi(y)e−τiψ(y) − θi(x)e−τiψ(x)]

)
F̃ θiτi (γi \ x).

Then by means of (4.12) and (4.10) we obtain∣∣∣LF̃ θτ (γ)
∣∣∣ ≤ Q̃(γ)F̃ θτ−τ0(γ),

Q̃(γ) := (τ0 + c̄θ0)cae
τ0Ψ(γ0)e−τ

0
0 Ψ(γ0) + (τ1 + c̄θ1)cae

τ1Ψ(γ1)e−τ
0
1 Ψ(γ1)

≤ eτ0ca
τ0 + c̄θ0
eτ0

0

+ eτ1ca
τ1 + c̄θ1
eτ0

1

,

where τ0 = (τ0
0 , τ

0
1 ), τ0

i > 0, is chosen in such a way that τi − τ0
i > cθi , which is possible

since τi > cθi . Then the boundedness in question follows by (3.49). The next statement
summarizes the properties of D(L).

Proposition 4.2. The set D(L) introduced in Definition 4.1 has the following properties:

(a) D(L) ⊂ Cb(Γ2
∗); L : D(L)→ Bb(Γ2

∗).

(b) The set Bb(Γ2
∗) is the bp-closure of D(L).

(c) D(L) is separating for Pexp.

(d) For each F ∈ F̃ , the measure Fµ/µ(F ) belongs to Pexp.

Proof. Claim (a) has been just proved. Claims (b) and (c) follow by Proposition 3.8. Claim
(d) holds true since F ∈ F̃ is positive and bounded, and thus multiplication does not
affect the property defined in (3.7), (3.9).

4.2 Formulating the result

Following [9, Chapter 5] – and similarly as in [16] – we will obtain the Markov process
in question by solving a restricted initial value martingale problem for (L,D(L),Pexp).
Here we explicitly employ the complete metric υ∗ of Γ2

∗, defined in (3.46). Since the
elements of Pexp “do not distinguish” between multiple and single configurations, see
Proposition 3.2, one may expect that the constructed Markov process has the correspond-
ing property. We will show that it does. Note that the direct construction of the process
with values in Γ̆2

∗ is rather impossible in this way as the latter space is not complete in
υ∗.

To proceed further, we introduce the corresponding spaces of càdlàg paths. By
DR+

(Γ̆2
∗) and DR+

(Γ2
∗) we denote the spaces of càdlàg maps [0,+∞) =: R+ 3 t 7→ γt ∈ Γ̆2

∗
and R+ 3 t 7→ γt ∈ Γ2

∗, respectively. Then the evaluation maps are $t(γ) = γt, γ ∈
DR+

(Γ2
∗), t ∈ R+; hence,

$−1
t (A) = {γ ∈ DR+

(Γ2
∗) : $t(γ) = γt ∈ A}, A ∈ B(Γ2

∗).

Analogously one defines D[s,+∞)(Γ̆
2
∗), D[s,+∞)(Γ

2
∗), s > 0. For s, t ≥ 0, s < t, by F0

s,t we
denote the σ-field of subsets of D[s,+∞)(Γ

2
∗) generated by the family {$u : u ∈ [s, t]}.

Then we set
Fs,t =

⋂
ε>0

F0
s,t+ε, Fs,+∞ =

∨
n∈N

Fs,s+n.

In the next definition – which is an adaptation of the corresponding definition in [9,
Section 5.1, pages 78, 79] – we deal with families of probability measures {Ps,µ : s ≥
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0, µ ∈ Pexp} defined on (D[s,+∞)(Γ
2
∗),Fs,+∞). Depending on the context, each µ ∈ Pexp is

considered as a measure either on Γ̆2
∗ or Γ2

∗, see Remark 3.6. Since Γ̆2
∗ and Γ2

∗ are Polish
spaces, both D[s,+∞)(Γ̆

2
∗) and D[s,+∞)(Γ

2
∗) are also Polish. The latter one is complete

in Skorohod’s metric, see [11, Theorem 5.6, page 121]. Then a probability measure
P on (D[s,+∞)(Γ

2
∗),Fs,+∞) with the property P (D[s,+∞)(Γ̆

2
∗)) = 1 can be redefined as a

measure on D[s,+∞)(Γ̆
2
∗), that holds for all s ≥ 0.

Definition 4.3. A family of probability measures {Ps,µ : s ≥ 0, µ ∈ Pexp} is said to be
a solution of the restricted initial value martingale problem for (L,D(L),Pexp) if for all
s ≥ 0 and µ ∈ Pexp, the following holds: (a) Ps,µ ◦$−1

s = µ; (b) Ps,µ ◦$−1
t ∈ Pexp for all

t > s; (c) for each F ∈ D(L), t2 ≥ t1 ≥ s and any bounded function G : D[s,+∞)(Γ
2
∗)→ R

which is Fs,t1 -measurable, the function

H(γ) :=

[
F ($t2(γ))− F ($t1(γ))−

∫ t2

t1

(LF )($u(γ))du

]
G(γ) (4.17)

is such that ∫
D[s,+∞)(Γ2

∗)

H(γ)Ps,µ(dγ) = 0.

The restricted initial value martingale problem is well-posed if for each s ≥ 0 and
µ ∈ Pexp, there exists a unique path measure Ps,µ satisfying conditions (a), (b) and (c)
mentioned above.

Remark 4.4. Instead of taking all G as in claim (c) of Definition 4.3, it is enough to take
in the form

G(γ) = F1($s1(γ)) · · ·Fm($sm(γ)), (4.18)

with all possible choices of m ∈ N, F1, . . . , Fm ∈ F̃ (see Proposition 3.8), and s ≤ s1 <

s2 < · · · < sm ≤ t1, see [11, eq. (3.4), page 174].

Now we can formulate our result.

Theorem 4.5. For the model defined in (1.3) and satisfying (4.1) – (4.3), the following is
true:

(i) The restricted initial value martingale problem for (L,D(L),Pexp) is well-posed in
the sense of Definition 4.3.

(ii) Its solution has the property Ps,µ(D[s,+∞)(Γ̆
2
∗)) = 1, holding for all s ≥ 0 and

µ ∈ Pexp.

(iii) The stochastic process related to the family

(D[s,+∞)(Γ
2
∗),Fs,+∞, {Fs,t : t ≥ s}, {Ps,µ : µ ∈ Pexp})s≥0

is Markov. This means that, for all t > s and B ∈ Ft,+∞, the following holds

Ps,µ(B|Fs,t) = Ps,µ(B|Ft), Ps,µ − almost surely.

Here Ft is the smallest σ-field of subsets of D[s,+∞)(Γ
2
∗) that contains all $−1

t (A),
A ∈ B(Γ2

∗).

In the proof of Theorem 4.5, we crucially use the Fokker-Planck equation (1.2).

Definition 4.6. For a given s ≥ 0, a map [s,+∞) 3 t 7→ µt ∈ P(Γ2
∗) is said to be

measurable if the maps [s,+∞) 3 t 7→ µt(A) ∈ R are measurable for all A ∈ B(Γ2
∗). Such

a map is said to be a solution of the Fokker-Planck equation for (L,D(L)) if for each
F ∈ D(L) and any t2 > t1 ≥ s, the equality in (1.2) holds true.
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Note that LF ∈ Bb(Γ∗); hence, the integral in the right-hand side (1.2) is well defined
for measurable t 7→ µt.

Remark 4.7. By taking G ≡ 1 in (4.17) one comes to the following conclusion. Let
{Ps,µ : s ≥ 0, µ ∈ Pexp} be a solution as in Definition 4.3. Then for each s and µ ∈ Pexp,
the map [s,+∞) 3 t 7→ Ps,µ ◦$−1

t solves (1.2) for all t2 > t1 ≥ s.

4.3 Comments

4.3.1 Concerning the model

In statistical physics, the first model where attraction is induced by an inter-component
repulsion was proposed by Widom and Rowlinson in [24]. A mathematically rigorous
proof that the Gibbs states in this model can be multiple was done by Ruelle in [21]. In
both these works, the repulsion is of the hard-core type, which in our case corresponds to
φ0(x) = φ1(x) = `r(|x|), r > 0, with `r(ρ) = 0 for ρ > r, and `r(ρ) = +∞ for ρ ≤ r. In the
single-component version of the Widom-Rowlinson model, the energy of the multiparticle
attraction induced by the hard core repulsion in a finite configuration η0 ⊂ Γ is given by
the formula, see [6, eq. (1.1)],

U(η0) = V (η0)− |η0||Br|, (4.19)

where |Br| is the volume of Br and V (η0) is the volume of ∪x∈η0Br(x). The relationship
between the single- and the two-component versions was analyzed in detain in [6],
see also [15] where the interaction of the Curie-Weiss type (in place of the hard-core
repulsion) was studied. A significant feature of (4.19) is that this interaction is super-
stable in the sense of [20], see [6, eq. (1.2)]. For such interactions, the states of thermal
equilibrium (Gibbs states) have correlation functions that satisfy (3.12), see [20], which
means that the Gibbs states are sub-Poissonian. This is one more argument in favor of
using such states. Note that our assumption (4.2) covers the case of hard core repulsion
mentioned above. In [1], the results of which we will use in the remaining part of this
work, the repulsion kernels φi were assumed bounded and integrable, which is a stronger
version of (4.2) that does not cover the hard core repulsion. However, the boundedness
was used there only in the part where the mesoscopic limit of the model was studied.
That is, the part of [1] the results of which we will use here remains valid if one assumes
only (4.2).

4.3.2 Concerning the method

In this work, we mostly follow the scheme elaborated by us in [16]. It has two basic
ingredients: (a) proving existence and uniqueness for the Fokker-Planck equation, where
existence is obtained by means of the corresponding results of [1]; (b) approximating the
initial model by some models for which the process can be constructed directly by means
of the corresponding transition functions. Of course, here we faced some additional
technical problems related to a more complex nature of the model.

Another type of stochastic dynamics in infinite particle systems which is even more
popular in the literature than the systems with ‘conservation of the number of particles’
is the so called ‘birth-and-death’ dynamics. Here the particles appear and disappear,
also under the influence of the existing members of the population. Up to the best of our
knowledge, by now uniqueness for the corresponding Markov processes was obtained
only for infinite particle systems with independent disappearance, see [12]. We plan to
modify our methods to cover also the case of systems with a logistic-type disappearance
repulsion.
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5 The evolution of sub-Poissonian states

As mentioned above, in [1] there was constructed a map t 7→ µt ∈ Pexp which
describes the evolution of states of the model (1.3). Here we show that this map is the
unique solution of the Fokker-Planck equation (1.2), which is then used in the proof
of Theorem 4.5. In this section, we outline the construction realized in [1] in the form
adapted to the present context, which includes also passing to states on the space of
multiple configurations Γ2

∗. This is possible since µ(Γ̆2
∗) = µ(Γ2

∗) = 1, that holds for all
µ ∈ Pexp, see Remark 3.6.

The key idea of [1] may be described as follows. Since each µ ∈ Pexp is fully charac-

terized by its correlation functions k(m)
µ , m ∈ N2

0, see Definition 3.1 and (3.10), instead
of solving (1.2) directly one can pass to the evolution equation for the corresponding
correlation functions defined in appropriate Banach spaces. An addition task, however,
will be to prove that its solutions are correlation functions – an analog of the classical
moment problem in this setting.

5.1 The evolution of correlation functions

For m ∈ N2
0, let a symmetric G(m) be in Ccs(X

m0 × Xm1), see (3.20). As above,
m = (0, 0) corresponds to constant functions. Let G := {G(m)}m∈N2

0
be a collection of

such functions. We equip the set of all such collections with the usual (member-wise)
linear operations and then write G(η) = G(m)(x,y) for η = (η0, η1), η0 = {x1, . . . , xm0},
η1 = {y1, . . . , ym1}, and (x,y) = (x1, . . . , xm0 ; y1, . . . , ym1), cf. (3.8), (3.10). Each η =

(η0, η1) is a pair of finite configurations, and thus η ∈ Γ2. That is, ηi is a finite configuration
of particles of type i = 0, 1; by Γ0 we denote the subset of Γ consisting of all finite (possibly
multiple) configurations. Let Gfin denote the set of all aforementioned collections G
verifying G(m) ≡ 0 for all m0 +m1 =: |m| > NG for some NG ∈ N. Then the map K as in
(3.20) can be defined on Gfin by the formula

(KG)(γ) =
∑
η⊂γ

G(η) =
∑
η0⊂γ0

∑
η1⊂γ1

G(η0, η1) (5.1)

=

∞∑
m0=0

∞∑
m1=0

1

m0!m1!

∑
(x,y)∈γ

G(m)(x,y).

For µ ∈ Pexp and G ∈ Gfin, by (3.22) KG is µ-integrable and the following holds, cf.
(3.10),

µ(KG) =
∑
m∈N2

0

1

m0!m1!

∫
Xm0×Xm1

k(m)
µ (x,y)G(m)(x,y)dm0xdm1y (5.2)

=:
∑
m∈N2

0

1

m0!m1!
〈〈k(m)

µ , G(m)〉〉 =: 〈〈kµ, G〉〉

=:

∫
Γ0

∫
Γ0

kµ(η0, η1)G(η0, η1)λ(dη0)λ(dη1).

Here kµ is the collection of the correlation functions k(m)
µ , m ∈ N2

0, that can also be
considered as a function kµ : Γ2

0 → R such that

kµ(η) = kµ(η0, η1) = k(m)(x,y), η0 = {x1, . . . , xm0}, η1 = {y1, . . . , ym1}. (5.3)

The integrals in (5.2) are understood in the following way, cf. (3.21),∫
Γ0

∫
Γ0

kµ(η0, η1)G(η0, η1)λ(dη0)λ(dη1) (5.4)
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=
∑
m∈N2

0

1

m0!m1!

∫
Xm0×Xm0

k(m)
µ (x,y)G(m)(x,y)dm0xdm1y.

In (5.3) and (5.4), kµ – similarly as G in (5.2) – is the collection of symmetric k(m)
µ ∈

L∞(Xm0×Xm1), considered as an element of the corresponding real linear space, which
we denote by K. Keeping in mind that we deal with µ(LF ) = µ(LKG), see (1.2), assume
that we are given L∆ such that

µ(LKG) = 〈〈L∆kµ, G〉〉. (5.5)

This L∆ can be calculated explicitly, see [1, eq. (2.23)]. To present it here, we define

τ ix(y) = e−φi(x−y), tix(y) = τ ix(y)− 1, x, y ∈ X, i = 0, 1, (5.6)

and

(Υ0
yk)(η0, η1) =

∫
Γ0

k(η0, η1 ∪ ξ)e(t0y; ξ)λ(dξ), (5.7)

(Υ1
yk)(η0, η1) =

∫
Γ0

k(η0 ∪ ξ, η1)e(t1y; ξ)λ(dξ),

where, for an appropriate θ : X → R and ξ ∈ Γ0, we write

e(θ; ξ) =
∏
x∈ξ

θ(x).

The expressions in (5.7) are to be understood in the following way. For a given m ∈ N2
0,

one sets

(Υ0
yk)(m)(x,y) = k(m)(x,y) (5.8)

+

∞∑
n=1

1

n!

∫
Xn

k(m0,m1+n)(x1, . . . , xm0
; y1, . . . , ym1

, z1, . . . , zn)

n∏
j=1

t0y(zj)dz1 · · · dzn.

The convergence of the series and the integrals will be shown below. In the same way,
one defines also the second line of (5.7). Now the operator satisfying (5.5) presents in
the following form

(L∆k)(η0, η1) =
∑
y∈η0

∫
X

a0(x− y)e(τ0
y ; η1)(Υ0

yk)(η0 \ y ∪ x, η1)dx (5.9)

−
∑
x∈η0

∫
X

a0(x− y)e(τ0
y ; η1)(Υ0

yk)(η0, η1)dy

+
∑
y∈η1

∫
X

a1(x− y)e(τ1
y ; η0)(Υ1

yk)(η0, η1 \ y ∪ x)dx

−
∑
x∈η1

∫
X

a1(x− y)e(τ1
y ; η0)(Υ1

yk)(η0, η1)dy.

For ϑ ∈ R and k ∈ K, see (5.3), we set

‖k‖ϑ = ess sup
ξ0,ξ1∈Γ0

|k(ξ0, ξ1)| exp

(
− ϑ(|ξ0|+ |ξ1|)

)
(5.10)
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= sup
m∈N2

0

e−ϑ(m0+m1)

(
ess sup

(x,y)∈Xm0×Xm1

|k(m)(x,y)|

)
,

and then introduce
Kϑ = {k ∈ K : ‖k‖ϑ <∞}, ϑ ∈ R, (5.11)

which is a real Banach space of weighted L∞-type. By (5.10) one readily gets that
‖k‖ϑ′ ≤ ‖k‖ϑ whenever ϑ′ > ϑ, which yields

Kϑ ↪→ Kϑ′ , ϑ′ > ϑ, (5.12)

where ↪→ denotes continuous embedding.
Let us turn now to the following issue. Given k ∈ K, under which conditions is this k

the correlation function for some µ ∈ P(Γ2)? By (5.10) and Definition 3.1 one concludes,
that kµ ∈ Kϑ with ϑ = logκ for µ ∈ Pexp, where κ is the type of µ. At the same time, if
G ∈ Gfin is such that (KG)(γ) ≥ 0, by (3.12) and (5.2) it follows that 〈〈kµ, G〉〉 ≥ 0. Set
G?fin = {G ∈ Gfin : (KG)(γ) ≥ 0, γ ∈ Γ2}, and also

K? = {k ∈ K : k(0,0) = 1 and 〈〈k,G〉〉 ≥ 0 ∀G ∈ G?fin}, K?ϑ = K? ∩ Kϑ, ϑ ∈ R. (5.13)

It is known [1, Proposition 2.2], see also [18] for a more comprehensive discussion, that
each k ∈ K?ϑ is the correlation function of a unique µ ∈ Pexp the type of which does not
exceed eϑ. That is, k ∈ Kϑ is the correlation function of a unique sub-Poissonian state µ
if and only if k ∈ K?ϑ.

Proposition 5.1. Let k ∈ K?ϑ. Then ‖k‖ϑ′ = 1 for each ϑ′ > ϑ.

Proof. Firstly, we note that ‖k‖ϑ ≥ 1 for each ϑ ∈ R since k(∅,∅) = k(0,0) = 1, see (3.13).
By (3.12) and the fact that k ∈ Kϑ, it follows that ‖k(m1,m2)‖L∞ ≤ eϑ(m1+m2), which yields
the proof.

By (5.9) and (5.10) for ϑ ∈ R we then have, see [1, eq. (3.10)] for more detail,

|(L∆k)(η0, η1)| ≤ 4α‖k‖ϑeϑ(|η0|+|η1|)
(
|η0|+ |η1|

)
exp

(
ϕeϑ

)
, (5.14)

where ϕ is as in (4.2) and
α := max

i=0,1
ā

(0)
i , (5.15)

see (4.3). This estimate settles the convergence issue in (5.8). It also implies

‖L∆k‖ϑ′ ≤
4α‖k‖ϑ
e(ϑ′ − ϑ)

exp
(
ϕeϑ

)
, ϑ′ > ϑ, (5.16)

which allows one to define the corresponding bounded linear operators acting from Kϑ
to Kϑ′ . Along with them, we define an unbounded linear operator L∆

ϑ′ , ϑ
′ ∈ R, which acts

in Kϑ′ according to (5.9) with domain

D(L∆
ϑ′) = {k ∈ K : L∆k ∈ Lϑ′}. (5.17)

By (5.16) one concludes that

Kϑ ⊂ D(L∆
ϑ′), ϑ < ϑ′. (5.18)

Now we fix ϑ ∈ R and consider the following Cauchy problem in the Banach space Kϑ

d

dt
kt = L∆

ϑ kt, kt|t=0 = k0. (5.19)
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Definition 5.2. By a solution of (5.19) on the time interval, [0, T ), T > 0, we mean a
continuous map [0, T ) 3 t 7→ kt ∈ D(L∆

ϑ ) ⊂ Kϑ such that the map [0, T ) 3 t 7→ dkt/dt ∈ Kϑ
is also continuous and both equalities in (5.19) are verified.

In view of the complex structure of (5.9), as well as of the fact that Kϑ is a weighted
L∞-type Banach space, it is barely possible to solve (5.19) with all k0 ∈ D(L∆

ϑ ), e.g.,
by employing C0-semigroup techniques. In [1], the solution was constructed for k0

taken from Kϑ0
with ϑ0 < ϑ, see (5.18). Its characteristic feature is that kt lies in some

t-dependent Kϑ′ such that, cf. (5.12),

Kϑ0 ↪→ Kϑ′ ↪→ Kϑ. (5.20)

More precisely, the main result of [1] can be formulated as follows, see Theorem 3.5 ibid.

Proposition 5.3. For each µ ∈ Pexp and T > 0, the Cauchy problem in (5.19) with
ϑ = ϑ(T ) := logκ + αT has a unique solution kt ∈ K?ϑ(T ), where κ is the type of µ and α
is as in (5.15).

Remark 5.4. The proof of Proposition 5.3 is performed in the following three steps.
First one shows that the Cauchy problem (5.19) with k0 ∈ Kϑ0

, ϑ0 < ϑ, has a unique local
solution kt ∈ Kϑ, see (5.20), i.e., existing for t ∈ [0, T (ϑ, ϑ0)) with

T (ϑ, ϑ0) =
ϑ− ϑ0

4α
exp

(
−ϕeϑ

)
. (5.21)

The next (and the hardest) step is showing that, given k0 ∈ K?, the solution kt lies in
K? and hence is the correlation function of a unique µt ∈ Pexp. Finally, by means of the
positivity as in (5.13) one makes continuation of the local solution kt to all t > 0 in such
a way that kt ∈ Kϑ(t) with ϑ(t) = ϑ0 + αt, cf. (5.18).

5.2 The predual evolution

Along with the evolution t 7→ kt described in Proposition 5.3 we will need the following
one. Assume that we are given L̂ such that, cf. (5.5),

〈〈L∆k,G〉〉 = 〈〈k, L̂G〉〉, (5.22)

holding for all appropriate k ∈ K and G ∈ Gfin. This operator can be derived similarly as
L∆ given in (5.9). It has the following form

(L̂G)(η0, η1) (5.23)

=
∑
x∈η0

∫
X

∑
ξ⊂η1

e(τ0
y ; η1 \ ξ)e(t0y; ξ) [G(η0 \ x ∪ y, η1 \ ξ)−G(η0, η1 \ ξ)] dy

+
∑
x∈η1

∫
X

∑
ξ⊂η0

e(τ1
y ; η0 \ ξ)e(t1y; ξ) [G(η0 \ ξ, η1 \ x ∪ y)−G(η0 \ ξ, η1)] dy,

with tiy and τ iy given in (5.6). Obviously, L̂ is defined for each G ∈ Gfin. Our aim now is to
extend it to G taken from the spaces predual to those defined in (5.11). To this end, we
introduce the norm

|G|ϑ =

∫
Γ0

∫
Γ0

|G(ξ0, ξ1)| exp

(
ϑ(|ξ0|+ |ξ1|)

)
λ(dξ0)λ(dξ1), (5.24)

and then define, cf. (5.11),
Gϑ = {G : |G|ϑ <∞}.
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Thus, each Gϑ is a weighted L1-type Banach space. Noteworthy, cf. (5.12),

Gϑ′ ↪→ Gϑ, ϑ < ϑ′. (5.25)

By employing (5.23), similarly as in (5.16) we get

|L̂G|ϑ ≤
4α|G|ϑ′
e(ϑ′ − ϑ)

exp
(
ϕeϑ

)
, ϑ′ > ϑ. (5.26)

The latter formula allows one to define (by induction in n) the iterations of L̂, cf. (5.25),

(L̂)nϑϑ′ : Gϑ′ → Gϑ, n ∈ N,

the operator norms of which obey

‖(L̂)nϑϑ′‖ ≤ nn
(

4α

ϑ′ − ϑ

)n
exp

(
n(ϕeϑ

′
− 1)

)
. (5.27)

Then we introduce the operators

Σϑϑ′(t) = 1 +

∞∑
n=1

tn

n!
(L̂)nϑϑ′ , (5.28)

where the series converges in the norm of the Banach space L(Gϑ′ ,Gϑ) of bounded linear
operators acting from Gϑ′ to Gϑ – uniformly on compact subsets of [0, T (ϑ′, ϑ)), with
T (ϑ′, ϑ) defined in (5.21). The latter fact readily follows by (5.27). Then, for t < T (ϑ′, ϑ),
we can set

Gt = Σϑϑ′(t)G, G ∈ Gϑ′ . (5.29)

For a given ϑ, let k ∈ Kϑ be the correlation function of a certain µ ∈ Pexp. According to
Proposition 5.3, see also Remark 5.4, there exists the map t 7→ kt, k0 = k, that solves
(5.19) and is such that kt ∈ K?ϑ(t) with ϑ(t) = ϑ + αt. Let ϑ and ϑ′ be as in (5.29). For
t < T (ϑ′, ϑ), by (5.21) it follows that

ϑ(t) < ϑ+ αT (ϑ′, ϑ) < ϑ′,

which means that Kϑ(t) ⊂ Kϑ′ . The continuation mentioned in Remark 5.4 was done in
[1] by showing that the solution – a priori lying in Kϑ′ – is in fact in Kϑ(t). For t < T (ϑ′, ϑ),
it can be obtained similarly as in (5.29). By induction in n one defines bounded operators
(L∆)nϑ′ϑ : Kϑ → Kϑ′ , n ≥ 2, the norms of which are estimated as in (5.27). Then one sets

kt = Ξϑ′ϑ(t)k0, Ξϑ′ϑ(t) = 1 +

∞∑
n=1

tn

n!
(L∆)nϑ′ϑ, t < T (ϑ′, ϑ). (5.30)

For each t < T (ϑ′, ϑ), one finds ϑ′′ ∈ (ϑ, ϑ′) such that t < T (ϑ′′, ϑ), see (5.21), which
means that Ξϑ′ϑ(t) maps Kϑ to D(L∆

ϑ′), see (5.12), (5.17). Furthermore, by the absolute
convergence of the series in (5.30) – in the norm of the Banach space L(Kϑ,Kϑ′) – it
follows that the map t 7→ Ξϑ′ϑ(t) is continuously differentiable in this norm and the
following holds

d

dt
Ξϑ′ϑ(t) = Ξϑ′ϑ′′(t)L

∆
ϑ′′ϑ = L∆

ϑ′ϑ′′Ξϑ′′ϑ(t) = L∆
ϑ′Ξϑ′ϑ(t), t < T (ϑ′, ϑ), (5.31)

which yields that kt as in (5.30) solves (5.19). Then the steps mentioned in Remark 5.4
amount to the following. For fixed ϑ, ϑ′, one constructs Ξϑ′ϑ(t), t < T (ϑ′, ϑ), and shows
by (5.31) that kt as in (5.30) solves the corresponding Cauchy problem. Then one
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takes k0 = kµ ∈ K?ϑ0
and shows that kt, t < T (ϑ, ϑ0) for some ϑ > ϑ0, obtained as just

mentioned, lies in K?. Finally, by the positivity as in (5.13) one proves that this kt lies in
K?ϑ(t), ϑ(t) = ϑ0 + αt < ϑ for t < T (ϑ, ϑ0). The continuation to s > t is then performed by
applying Ξϑϑ(t)(s) to kt, see [1, Lemma 5.5] fore more detail.

Complementary information concerning the operator norms of the maps t 7→ Σϑϑ′(t)

and t 7→ Ξϑ′ϑ(t) is given by the following estimates

‖Σϑϑ′(t)‖ ≤
T (ϑ′, ϑ)

T (ϑ′, ϑ)− t
, |Ξϑ′ϑ(t)| ≤ T (ϑ′, ϑ)

T (ϑ′, ϑ)− t
, t < T (ϑ′, ϑ), (5.32)

which readily follow by (5.27) and the corresponding estimate of (L∆)nϑ′ϑ, respectively.
By means of (5.31) and (5.30) we also obtain the following.

Proposition 5.5. Given ϑ and ϑ′ > ϑ, let k0 ∈ Kϑ be the correlation function of a certain
µ ∈ Pexp and then kt be the solution as in Proposition 5.3. Let also G be in Gϑ′ . Then for
each t < T (ϑ′, ϑ) the following holds

〈〈kt, G〉〉 = 〈〈k0, Gt〉〉, (5.33)

where Gt is as in (5.29).

We end up this section by producing appropriate extensions of the map G 7→ KG

defined in (5.1) for G ∈ Gfin. Set G∞ = ∩ϑ∈RGϑ. As is usual, we do not distinguish
between the elements of G∞ and the measurable functions G : Γ2

0 → R for which the
integrals in the right-hand side of (5.24) are finite for all ϑ ∈ R. Then Gfin ⊂ G∞. We
recall that each measurable G : Γ2

0 → R is a collection {G(m)}m∈N2
0

of symmetric (cf.
(3.11)) Borel functions. Similarly as in [18, Theorem 1], one can show that, for each such
G and m ∈ N2

0, the map

Γ2
∗ 3 γ 7→

∑
(x,y)∈γ

G(m)(x,y)

is B(Γ2
∗)-measurable. Then also the functions (possibly taking infinite values)

FG(γ) :=
∑
m∈N2

0

1

m0!m1!

∑
(x,y)∈γ

|G(m)(x,y)|, G ∈ G∞, γ ∈ Γ2
∗,

enjoy this property; hence, the sets

Γ2
G =

⋃
n∈N
{γ ∈ Γ2

∗ : FG(γ) ≤ n}, G ∈ G∞,

are B(Γ2
∗)-measurable. Moreover, Γ2

∗ itself is Γ2
Gψ

for Gψ such that G(1,0)
ψ (x) = G

(0,1)
ψ (x) =

ψ(x) and G
(m)
ψ = 0 whenever |m| 6= 1, see (3.31). Let µ ∈ Pexp be of type eϑ for some

ϑ ∈ R. By (5.2) we thus have
µ(FG) ≤ |G|ϑ.

Similarly as in (3.33) and (3.34) we then get that µ(Γ2
G) = 1. Therefore, for each µ ∈ Pexp

and G ∈ G∞, the series in

(KG)(γ) :=
∑
m∈N2

0

1

m0!m1!

∑
(x,y)∈γ

G(m)(x,y) (5.34)

absolutely converges, µ-almost everywhere on Γ2
∗. This includes also the Poisson mea-

sures πκ with all κ > 0, see (3.19). By means of these argument we obtain the following
conclusion.
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Proposition 5.6. Let µ ∈ Pexp be of type eϑ for some ϑ ∈ R. Then the map G 7→ KG as
in (5.34) gives rise to the bounded linear operator K acting from the Banach space Gϑ to
the Banach space L1(Γ2

∗, µ), such that

µ(KG) = 〈〈kµ, G〉〉.

Moreover, if G belongs to Gϑ′ for some ϑ′ > ϑ, then

µ(LKG) = µ(KL̂G) = 〈〈kµ, L̂G〉〉,

where L̂ : Gϑ′ → Gϑ is the linear operator defined in (5.26).

6 Uniqueness

6.1 Solving the Fokker-Planck equation

We begin by recalling Definition 4.6, in which we mention maps t 7→ µt ∈ P(Γ2
∗).

Lemma 6.1. Let µ0 ∈ Pexp be of type κ0 = eϑ0 and consider the Fokker-Planck equation

(1.2) with the initial condition µt|t=0 = µ0 and all choices of F ∈ F̂ , see (3.55) and
Definition 4.1. Assume that t 7→ µt is a solution of (1.2) with such µ0 and F . Then
µt ∈ Pexp; moreover, for each T > 0, there exists ϑT > ϑ0 such that the type of µt does
not exceed eϑT for all t ≤ T .

Note that in this lemma we assume that only µ0 is sub-Poissonian, and that t 7→ µt
solves (1.2) only with a part of D(L). Before proceeding further, we recall that the
families of functions F̃ and F̂ were introduced in (3.50) and (3.55), respectively.

Proposition 6.2. Set F∞ = {F = KG : G ∈ G∞}, see (5.34). Then both F̃ and F̂ are
subsets of F∞.

Proof. By (3.49) and then by (5.1) one readily gets that

F̃ θτ (γ) =

 ∞∑
m0=0

∑
{x1,...,xm0

}⊂γ0

G̃
(m0)
τ0,θ0

(x1, . . . , xm0
)

 ∞∑
m1=0

∑
{y1,...,ym1

}⊂γ1

G̃
(m1)
τ1,θ1

(y1, . . . , ym1
)


= (KG̃τ,θ)(γ), G̃τ,θ(η0, η1) = G̃τ0,θ0(η0)G̃τ1,θ1(η1), (6.1)

where

G̃
(mi)
τi,θi

(x1, . . . , xmi) =

mi∏
j=1

θτii (xj), θτii (x) := θi(x)e−τiψ(x) + e−τiψ(x) − 1, i = 0, 1. (6.2)

Clearly, θτi ∈ L1(X) for each τ ≥ 0, θi ∈ Θψ, i = 0, 1. Hence, G̃τ,θ ∈ Gϑ for any ϑ ∈ R,

which yields F̃ ⊂ F∞.
Now by the first line in (3.55) we have, see (3.4),

F̂miτi (vi|γi) =
∑

xmi∈γi

vi(x
mi)

∏
x∈γi\xmi

(1 + ςi(x)) (6.3)

=
∑
ηi⊂γi

Rmi(vi|ηi)
∏

x∈γi\xmi
(1 + ςi(x)) ,

where ςi(x) = e−τiψ(x) − 1, and, see (3.54),

Rmi(vi|ηi) =


∑
σ∈Smi

vi,1(xσ(1)) · · · vi,mi (xσ(mi)), if ηi = {x1, . . . , xmi},

0, otherwise.

(6.4)
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Now we open the brackets in the product in (6.3) and get

F̂miτi (vi|γi) =
∑
ηi⊂γi

Ĝ(mi)
τi (vi|ηi), (6.5)

Ĝ(mi)
τi (vi|ηi) :=

∑
ξi⊂ηi

Rmi(vi|ξi)
∏

x∈ηi\ξi

ςi(x).

To complete the proof we have to show the corresponding integrability of Ĝ(mi)
τi (vi|·).

Since vi,j ∈ Θ+
ψ and τi > 0, we have∣∣∣Ĝ(mi)

τi (vi|ηi)
∣∣∣ ≤ ∑

ξi⊂ηi

Rmi(vi|ξi)
∏

x∈ηi\ξi

[τiψ(x)] ,

and hence∫
Γ0

∣∣∣Ĝ(mi)
τi (vi|η)

∣∣∣ eϑ|η|λ(dη) ≤
∫

Γ0

∫
Γ0

eϑ|ξ|Rmi(vi|ξ)eϑ|η|
∏
x∈η

[τiψ(x)]λ(dξ)λ(dη) (6.6)

= emiϑ〈v1,i〉 · · · 〈vmi,i〉 exp
(
τie

ϑ〈ψ〉
)
,

where 〈vj,i〉, j = 1, . . . ,mi, and 〈ψ〉 are the L1(X)-norms of these functions. Similarly as
in (6.1) we then have

F̂mτ (v|γ) = (KĜmτ (v|·))(γ), Ĝmτ (v|η) = Ĝm0
τ0 (v0|η0)Ĝm1

τ1 (v1|η1), (6.7)

which completes the proof.

Lemma 6.3. For each µ ∈ Pexp, the Fokker-Planck equation (1.2) with µ0 = µ has exactly
one solution.

Proof. Existence: Let t 7→ kt be as in Proposition 5.3 with k0 = kµ. Since kt solves (5.19),
it follows that

kt2 − kt1 =

∫ t2

t1

L∆
ϑ(T )ksds, (6.8)

holding for all t2 > t1 ≥ 0 and T > t2. Let µt ∈ Pexp be the unique measure for which kt
is the correlation function, see Remark 5.4. Then for each G ∈ G∞, we have

µtj (KG) = 〈〈ktj , G〉〉, j = 1, 2.

For each ϑ ∈ R, the map Kϑ 3 k 7→ 〈〈k,G〉〉 is linear and bounded – hence continuous.
Then by (6.8) and Proposition 5.6 for F = KG we get

µt2(F )− µt1(F ) = 〈〈
∫ t2

t1

L∆
ϑ(T )ksds,G〉〉 =

∫ t2

t1

〈〈L∆
ϑ(T )ks, G〉〉ds (6.9)

=

∫ t2

t1

〈〈ks, L̂G〉〉ds =

∫ t2

t1

µs(LF )ds.

Now we can take G = Ĝmτ (v|·), see (6.7), or G = G̃τ,θ, see (6.1), (6.2), and conclude that
the map t 7→ µt is a solution of (1.2) according to Definition 4.6.

Uniqueness: Let t 7→ µ̃t be another solution satisfying µ̃t|t=0 = µ. Let also ϑ0 be such
that k0 = kµ ∈ Kϑ0 . For a fixed T > 0 and each t ≤ T , by Lemma 6.1 it follows that
µ̃t ∈ Pexp and its type does not exceed eϑT . That is, the correlation function k̃t of this
measure µ̃t lies in KϑT . Without any harm we may take ϑT big enough so that

sup
s∈[0,T ]

‖k̃s‖ϑT = 1, (6.10)
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see Proposition 5.1, and also ϑT ≥ ϑ(T ) = ϑ0 + αT , see Proposition 5.3.
It is known, see [1, eqs. (4.6) – (4.8)], that the map [ϑT ,+∞) 3 ϑ 7→ T (ϑ, ϑT ), see

(5.21), attains maximum T∗(ϑT ) at ϑ̃T = ϑT + δ(ϑT ), where

T∗(ϑT ) =
δ(ϑT )

4α
exp

(
− 1

δ(ϑT )

)
, (6.11)

and δ(ϑT ) is the unique solution of the equation

δeδ = exp (−ϑT − logϕ) .

According to our assumption k̃t ∈ KϑT ⊂ D(L∆
ϑ̃T

), see (5.18), and

µ̃t(KG)− µ(KG) = 〈〈k̃t − k0, G〉〉 =

∫ t

0

〈〈L∆
ϑ̃T
k̃s, G〉〉ds, (6.12)

holding for all t ≤ T and G such that KG ∈ F̃ ∪ F̂ . That is, G is either G̃τ,θ (6.1) or

Ĝmτ (v|·) (6.7). The integrations in (6.12) were interchanges for the same reasons as in
(6.9). Let us prove that (6.12) holds for all G ∈ G∞. By (5.16) and (6.10) we have

‖L∆
ϑ̃T
k̃s‖ϑ̃T ≤ 1/eT∗(ϑT ), (6.13)

holding for all s ≤ T . Now we fix

t < min{T ;T∗(ϑT )}, (6.14)

and set

q = k̃t − k0 −
∫ t

0

L∆
ϑ̃T
k̃sds.

By Proposition 5.1, and then by (6.10) and (6.13), we get

‖q‖ϑ̃T ≤ 2 + t/eT∗(ϑT ). (6.15)

Then for G = Ĝmτ (v|·) with τi ≤ 1, i = 0, 1, by (6.12) it follows that 〈〈q,G〉〉 = 0. At the
same time, by (6.7), (6.6), (6.5) and (6.15), we have

|〈〈q,G〉〉| ≤ ‖q‖ϑ̃T |G|ϑ̃T (6.16)

≤ (2 + t/eT∗(ϑT )) exp
(

(m0 +m1)ϑ̃T + 2〈ψ〉eϑ̃T
) m0∏
j0=1

m1∏
j1=1

〈vj,i〉.

Let Gε denote Ĝmτ (v|·) with τ0 = τ1 = ε ≤ 1. Then by the dominated convergence
theorem and (6.16) we get

〈〈q,G0〉〉 = lim
ε→0
〈〈q,Gε〉〉 = 0, (6.17)

where G0 is the pointwise limit of Gε as ε→ 0. That is, see (6.5) and (6.4),

G0(η) = Ĝm0
0 (v0|η0)Ĝm1

0 (v1|η1) = Rm0(v0|η0)Rm1(v1|η1). (6.18)

Now we use this G0 in (6.17) and obtain, see (3.54),∫
Xm0×Xm1

q(m)(x,y)v0(x)v1(y)dm0xdm1y (6.19)

=

∫
Xm0×Xm1

q(m0,m1)(x1, . . . , xm0
; y1, . . . , ym1

)v0,1(x1) · · · v0,m0
(xm0

)
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×v1,1(y1) · · · v1,m1
(xm1

)dx1 · · · dxm0
dy1 · · · dym1

= 0,

holding for all m = (m0,m1) ∈ N2
0 and vi,j ∈ Θ+

ψ . For each m ∈ N2
0, the set of functions

(x,y) 7→ v0(x)v1(y), vi,j ∈ Θ+
ψ , is closed with respect to the pointwise multiplication and

separates the points of Xm0 ×Xm1 . Such functions vanish at infinity and are everywhere
positive, see (3.38). Then by the corresponding version of the of the Stone-Weierstrass
theorem [4], the linear span of this set is dense (in the supremum norm) in the algebra
C0(Xm0 ×Xm1) of continuous functions that vanish at infinity (recall that X = Rd, hence
Xm0 ×Xm1 is locally compact). At the same time, C0(Xm0 ×Xm1) ∩ L1(Xm0 ×Xm1) is
dense in L1(Xm0 ×Xm1) as its subset Ccs(X

m0 ×Xm1) has this property. Thus,

〈〈q(m), G(m)〉〉 = 0,

holding for all G(m) ∈ L1(Xm0 ×Xm1). The extension of the latter to

〈〈q,G〉〉 = 0, for G ∈ G∞,

is standard, which yields the validity of (6.12) for all such G. By (5.22), (6.9) and (6.12)
we have

〈〈k̃t, G〉〉 = 〈〈k0, G〉〉+

∫ t

0

〈〈L∆
ϑ̃TϑT

k̃s, G〉〉ds (6.20)

= 〈〈k0, G〉〉+

∫ t

0

〈〈k̃s, L̂ϑT ϑ̃TG〉〉ds G ∈ G∞.

Note that, for G ∈ G∞, L̂ϑT ϑ̃TG ∈ GϑT , where the latter space is predual to KϑT , and

k̃s ∈ KϑT for all s ≤ t ≤ T . For G ∈ G∞, the action of L̂ϑT ϑ̃T on G is the same as in (5.23),

that by (5.26) yields G1 := L̂ϑT ϑ̃TG ∈ G∞. Therefore, one can write (6.20) also for G1.
Repeating this procedure n times we arrive at the following

〈〈k̃t, G〉〉 = 〈〈k0, G〉〉+ t〈〈k0, L̂ϑT ϑ̃TG〉〉+
t2

2
〈〈k0, (L̂ϑT ϑ̃T )2G〉〉 (6.21)

+ · · ·+ tn−1

(n− 1)!
〈〈k0, (L̂ϑT ϑ̃T )n−1G〉〉+

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

〈〈k̃tn , (L̂ϑT ϑ̃T )nG〉〉dt1 · · · dtn.

Let kt be the solution as in (6.8). Our choice of ϑT is such that kt ∈ KϑT , hence (6.21)
can also be written for this kt, which yields

〈〈k̃t − kt, G〉〉 =

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

〈〈k̃tn − ktn , (L̂ϑT ϑ̃T )nG〉〉dt1 · · · dtn.

Now by (5.27) we obtain from the latter, see (6.14),

∣∣∣〈〈k̃t − kt, G〉〉∣∣∣ ≤ 2
nn

n!en

(
t

T∗(ϑT )

)n
|G|ϑ0 → 0, as n→ +∞.

Thus, k̃t = kt for t satisfying (6.14). The continuation of this equality to all t can be made
by repeating this construction, similarly as in [1, the proof of Theorem 3.5, pages 659,
660]. Now the equality µ̃t = µt follows by the fact that each µ ∈ Pexp is identified by its
correlation function, see Remark 5.4.
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6.2 Useful estimates

The aim of this subsection is to prepare the proof of Lemma 6.1. A priori a solution
µt need not be a sub-Poissonian state, so one can speak of µt(F ) only for bounded F , in
particular of µt(F̂τ (v|·)). At the same time, F̂τ (v|·) is bounded for positive τi only, see the
proof of Proposition 3.9. Assume that we have obtained an estimate of µt(F̂τ (v| · · · )) that
is uniform in τ , which might allow for passing to the limit maxi τi → 0. Assume further
that this limit satisfies an estimate similar to (3.8) with a certain t-dependent κ. Then
the proof will follow with the help of Definition 3.1. Let us then turn to obtaining such
estimates. Here we will mostly follow the way elaborated in [16].

Our starting point is the estimate obtained in (4.15) the right-hand side of which is
an element of D(L). Significantly, it is independent of the interaction terms φi, i = 0, 1,
where both components appear in a multiplicative form, similarly as in F̂τ (v|·) in (3.55).
Another observation is that in the latter function all vi,j with the same i = 0, 1 can be
different, whereas (3.9) is based on just two functions θ0, θ1. Keeping this fact in mind,
we introduce the following functions. Fix θ0, θ1 ∈ Θ+

ψ and set, cf. (3.55),

Φmiτi (θi|γi) = F̂miτi (vi|γi)|vi,j=θi =
∑

xmi∈γi

θ⊗mii (xmi) exp (−τiΨ(γi \ xmi) , i = 0, 1. (6.22)

Along with this, we also introduce

Φ
mi,θ

1
i

τi (θi|γi) = F̂miτi (vi|γi)|vi,1=aiθi, vi,j=θi,j≥2, (6.23)

Φmiτi,1(θi|γi) = miΦ
mi,θ

1
i

τi (θi|γi) + τicac̄θi F̂
mi+1
τi (γi),

where θ1
i := aiθi and c̄θi are as in (4.11) and in (3.39), respectively; F̂mi+1

τi (γi) is as in
(4.16). Now we set

Φmτ (θ|γ) = Φm0
τ0 (θ0|γ0)Φm1

τ1 (θ1|γ1), (6.24)

for which by the estimate in (4.15) we then get

|LΦmτ (θ|γ)| ≤ Φm0
τ0,1

(θ0|γ0)Φm1
τ1 (θ1|γ1) + Φm0

τ0 (θ0|γ0)Φm1
τ1,1

(θ1|γ1) =: Φmτ,1(θ|γ). (6.25)

Each of the summands above is a linear combination of the corresponding functions
F̂ m̄iτi (vi|·). Hence Φmτ,1(θ|·) ∈ D(L), and one can estimate LΦmτ,1(θ|·) by repeating the
above procedure based on (4.15). This yields

∣∣LΦmτ,1(θ|·)(γ)
∣∣ ≤ (∫

X

∑
x∈γ0

a0(x− y)
∣∣∇y,x0 Φm0

τ0,1
(θ0|γ0)

∣∣ dy)Φm1
τ1 (θ1|γ1) (6.26)

+

(∫
X

∑
x∈γ1

a1(x− y)
∣∣∇y,x1 Φm1

τ1 (θ1|γ1)
∣∣ dy)Φm0

τ0,1
(θ0|γ0)

+

(∫
X

∑
x∈γ0

a0(x− y)
∣∣∇y,x0 Φm0

τ0 (θ0|γ0)
∣∣ dy)Φm1

τ1,1
(θ1|γ1)

+

(∫
X

∑
x∈γ1

a1(x− y)
∣∣∇y,x1 Φm1

τ1,1
(θ1|γ1)

∣∣ dy)Φm0
τ0 (θ0|γ0).

Each of the summands of the right-hand side of (6.26) can be estimated in the same way
as in the last two lines of (4.15). This procedure was systematically elaborated in [16],
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which we are going to use now. To describe it, we introduce the following notions. First,
for l ∈ N and θi, i = 0, 1, we define, see (4.11),

θli = aiθ
l−1
i , θ0

i := θi. (6.27)

Then as in [16, page 28], for p ∈ N and q ∈ N0, by Cp,q we denote the set of all integer-
valued sequences c = {cl}l∈N0

⊂ N0 such that

c0 + c1 + · · ·+ cl + · · · = p, c1 + 2c2 + · · ·+ lcl + · · · = q. (6.28)

For instance, Cp,0 is a singleton consisting of c = {p, 0, . . . , 0, . . . }, Cp,2 consists of c =

{p− 1, 0, 1, 0, . . . } and c = {p− 2, 2, 0, . . . } for p ≥ 2. Thereafter, we set

Cp,q(c) =
p!q!

c0!c1!c2! · · · (0!)c0(1!)c1(2!)c2 · · ·
, c ∈ Cp,q, (6.29)

wk(p, q) = ∆kpq =
1

k!

k∑
l=0

(−1)k−l
(
k

l

)
(p+ l)q, k ∈ N0.

Note that ∆ is the step-one forward difference operator for which

∆kpq = 0, for k > q. (6.30)

Next, for c ∈ Cmi,q, we write vci (x
mi) =

∏mi
j=1 vi,j(xj), see (3.54), where the number of

vi,j equal to θi is c0, the number of vi,j equal to θ1
i is c1, see (6.27), the number of vi,j

equal to θ2
i is c2, etc, cf. (6.23). Thereafter, for θi ∈ Θ+

ψ , i = 0, 1, such that

c̄θi = 1, (6.31)

see (3.39), we set

Φmiτi,q(θi|γi) =
∑

c∈Cmi,q

Cmi,q(c)F̂
mi
τi (vci |γi) + cqa

q∑
k=1

τki wk(mi, q)F̂
mi+k
τi (γi), (6.32)

see (4.16). For q = 0 (resp. q = 1), this function coincides with that given in the first
(resp. second) line of (6.23). Let us now denote, cf. (4.8), (4.15),

LiΦmiτi,q(θi|γi) =

∫
X

∑
x∈γi

ai(x− y)
∣∣∇y,xi Φmiτi,q(θi|γi)

∣∣ dy, i = 0, 1.

In [16, Appendix], the following was proved, see also (5.24) ibid.

LiΦmiτi,q(θi|γi) ≤ Φ
mi
τi,q+1(θi|γi), i = 0, 1, (6.33)

holding for all θi ∈ Θ+
ψ satisfying (6.31), mi ∈ N, q ∈ N0 and τi ∈ (0, 1]. By means of

(6.33) we then get from (6.26) the following estimate∣∣LΦmτ,1(θ|γ)
∣∣ ≤ Φm0

τ0,2
(θ0|γ0)Φm1

τ1 (θ1|γ1) + 2Φm0
τ0,1

(θ0|γ0)Φm1
τ1,1

(θ1|γ1)

+ Φm0
τ0 (θ0|γ0)Φm1

τ1,2
(θ1|γ1).

The estimates obtained in (6.25), (6.26) can be summarized as follows. Set

Φmτ,q(θ|γ) =

q∑
l=0

(
q

l

)
Φm0

τ0,q−l(θ0|γ0)Φm1

τ1,l
(θ1|γ1). (6.34)

Then the main result of this subsection is the following estimate∣∣LΦmτ,q(θ|γ)
∣∣ ≤ Φmτ,q+1(θ|γ), (6.35)

holding for all q ∈ N0, m ∈ N2
0, τ = (τ0, τ1), τi ∈ (0, 1], and θ = (θ0, θ1), θi ∈ Θ+

ψ satisfying
(6.31). The first step in the proof of (6.35) is made as in (4.15), first estimate. Next, one
applies (6.33).
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6.3 Proving Lemma 6.1

By (6.34) and (6.32), and then by Proposition 3.9, Φmτ,q(θ|·) is a bounded continuous
function of γ ∈ Γ2

∗. However, the upper bound of it may depend on q. Our aim is to
estimate this dependence.

Proposition 6.4. For each ε ∈ (0, 1), τ = (τ0, τ1), τ0, τ1 ∈ (0, 1], and m = (m0,m1) ∈ N2
0,

there exists C̄ > 0, dependent on ε, τ and m, such that the following holds

∀q ∈ N0 Φmτ,q(θ|γ) ≤ q!

ρqε
C̄, ρε :=

1

ca
log(1 + ε), (6.36)

uniformly in γ ∈ Γ2
∗ and θ = (θ0, θ1), θ0, θ1 ∈ Θ+

ψ satisfying (6.31).

Proof. Introduce

V mτ (ρ|γ) =

∞∑
q=0

ρq

q!
Φmτ,q(θ|γ), ρ ≥ 0, (6.37)

where m, τ and θ are as assumed. Let us estimate the growth of this function. By (6.27)
and (4.11), (6.31), we have

θli(x) ≤ claψ(x),

which we use to get the following

F̂miτi (vci |γi) ≤ cc1+2c2+···
a F̂miτi (γi) = cqaF̂

mi
τi (γi), c ∈ Cmi,q,

where we used the second equality in (6.28). Now we employ the fact, see (6.29), that∑
c∈Cp,q

Cp,q(c) = pq = ∆0pq = w0(p, q), (6.38)

which was proved in [16, Appendix], and obtain from (6.32) the following estimate

Φmiτi,q(θi|γi) ≤ c
q
a

q∑
k=0

τki wk(mi, q)F̂
mi+k
τi (γi).

We use the latter in (6.34) and then in (6.37) to get the following

V mτ (ρ|γ) ≤
∞∑
q=0

(caρ)q

q!

q∑
l=0

q!

l!(q − l)!
(6.39)

×
q−l∑
k0=0

l∑
k1=0

τk00 τk11 wk0(m0, q − l)wk1(m1, l)F̂
m0+k0
τ0 (γ0)F̂m1+k1

τ1 (γ1)

=

∞∑
k0=0

∞∑
k1=0

τk00 τk11

k0!k1!
Wm0

τ0,k0
(ρ|γ0)Wm1

τ1,k1
(ρ|γ1),

where we also used the fact that wk(p, q) = 0 whenever k > q, see (6.30). The functions
that appear in the last line of (6.39) are

Wmi
τi,ki

(ρ|γi) :=

( ∞∑
l=0

(caρ)l

l!
wki(mi, l)

)
F̂mi+kiτi (γi) (6.40)

= (ecaρ − 1)
ki emicaρF̂mi+kiτi (γi),

where the second line was derived by means of the second line of (6.29). Then we have

V mτ (ρ|γ) ≤ e(m0+m1)caρY m0
τ0 (ρ|γ0)Y m1

τ1 (ρ|γ1), (6.41)
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Y miτi (ρ|γi) :=

∞∑
k=0

(τi`(ρ))k

k!
F̂mi+kτi (γi), i = 0, 1,

where `(ρ) = ecaρ − 1. By means of the estimate obtained in (3.56), (3.57) with uj(x) =

ψ(x)eτiψ(x) ≤ eτiψ(x) and τi ≤ 1, we then obtain

F̂mi+kτi (γi) ≤
(
mi + k

τi

)mi+k
,

which yields that both series in (6.41) converge whenever ecaρ − 1 < 1. Take ε ∈ (0, 1)

and ρε as in (6.36), then set

Ȳi =
1

τmii

∞∑
k=0

εk

k!
(mi + k)mi+k, i = 0, 1.

Now (6.36) follows by
V mτ (θ|γ) ≤ (1 + ε)m0+m1 Ȳ0Ȳ1 =: C̄,

see (6.37) and (6.41).

Proof of Lemma 6.1. By (6.34), each Φmτ (θ|·) is a linear combination of the elements of
F̂ , and hence Φmτ,q(θ|·) ∈ D(L), see (3.55) and Definition 4.1. If t 7→ µt solves (1.2), see
Definition 4.6, then

µt(Φ
m
τ,q(θ|·)) = µ0(Φmτ,q(θ|·)) +

∫ t

0

µs(LΦ
m
τ,q(θ|·))ds

≤ µ0(Φmτ,q(θ|·)) +

∫ t

0

µs(Φ
m
τ,q+1(θ|·))ds,

see (6.35). Now we repeat this estimate due times and arrive at the following one

µt(Φ
m
τ (θ|·)) ≤

n−1∑
q=0

tq

q!
µ0(Φmτ,q(θ|·)) +

∫ t

0

∫ t1

0

· · ·
∫ tn−1

0

µtn(Φmτ,n(θ|·))dtndtn−1 · · · dt1

≤
n−1∑
q=0

tq

q!
µ0(Φmτ,q(θ|·)) +

(
t

ρε

)n
C̄,

where we also used (6.36) and the fact that µt is a probability measure. For t ∈ (0, ρε),
the second summand in the last line vanishes as n→ +∞, which yields

µt(Φ
m
τ (θ|·)) ≤

∞∑
q=0

tq

q!
µ0(Φmτ,q(θ|·)), t < log(1 + ε)/ca. (6.42)

Now we recall that F̂miτi (vi|·) can be written as the KĜmiτi (vi|·), see (6.5). Since F̂miτi (·) is

a particular case of F̂miτi (vi|·), see (4.16), we can also write it as KĜmiτi (·), where Ĝmiτi (·)
is obtained by the corresponding choice of vi in (6.4), (6.5). This allows us to write

Φmiτi,q(θi|γi) =
∑
ηi⊂γi

Πmi
τi,q(θi|ηi), i = 0, 1,

Πmi
τi,q(θi|ηi) =

∑
c∈Cmi,q

Cmi,q(c)Ĝ
mi
τi (vci |ηi) + cqa

q∑
k=1

τki wk(mi, q)Ĝ
mi+k
τi (ηi),
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where vci is as in (6.32). Then by (6.34) we obtain

Φmτ,q(θ|γ) =
∑
η0⊂γ0

∑
η1⊂γ1

q∑
l=0

(
q

l

)
Πm0

τ0,q−l(θ0|η0)Πm1

τ1,l
(θ1|η1).

Now we may use the fact that µ0 is sub-Poissonian and write, see (5.1), (5.2),

µ0(Φmτ,q(θ|·)) =

q∑
l=0

(
q

l

)∫
Γ0

∫
Γ0

kµ0(η0, η1)Πm0

τ0,q−l(θ0|η0)Πm1

τ1,l
(θ1|η1)λ(dη0)λ(dη1).

Let eϑ0 be the type of µ0. Then by (3.22) we have

µ0(Φmτ,q(θ|·)) ≤
q∑
l=0

(
q

l

)
Ωm0

τ0,q−l(θ0)Ωm1

τ1,l
(θ1),

which yields in (6.42),

µt(Φ
m
τ (θ|·)) ≤ Ω̂m0

τ0 (θ0|t)Ω̂m1
τ1 (θ1|t), t < log(1 + ε)/ca, (6.43)

where

Ω̂miτi (θi|t) =

∞∑
q=0

tq

q!
Ωmiτi,q(θi), i = 0, 1, (6.44)

and, see (6.6),

Ωmiτi,n(θi) :=

∫
Γ0

eϑ0|ηi|
∣∣Πmi

τ1,n(θi|ηi)
∣∣λ(dηi) (6.45)

≤
∑

c∈Cmi,n

Cmi,n(c)

∫
Γ0

eϑ0|ηi|
∣∣∣Ĝmiτi (vci |ηi)

∣∣∣λ(dηi)

+ cna

n∑
k=1

τki wk(mi, n)

∫
Γ0

eϑ0|ηi|
∣∣∣Ĝmi+kτi (ηi)

∣∣∣λ(dηi)

≤ exp
(
miϑ0 + τi〈ψ〉eϑ0

) ∑
c∈Cmi,n

Cmi,n(c)〈θi〉c0〈θ1
i 〉c1 · · · 〈θli〉cl · · ·

+ cna

n∑
k=1

τki wk(mi, n)〈ψ〉mi+k exp
(
(mi + k)ϑ0 + τi〈ψ〉eϑ0

)
.

By (6.27) and (4.9), (4.11), for θi ∈ Θ+
ψ , we have, see (5.15),

〈θli〉 ≤ (α+ 1)l〈θi〉

since

〈θli〉 =

∫
X

∫
X

ai(x− y)θl−1
i (y)dxdy + 〈θl−1

i 〉 ≤ (α+ 1)〈θl−1
i 〉.

Then, see (6.28),

〈θi〉c0〈θ1
i 〉c1 · · · 〈θli〉cl · · · ≤ 〈θi〉c0+c1+···(α+ 1)c1+2c2+··· = 〈θli〉mi(α+ 1)n.

We use this in (6.45) and obtain, see also (6.38),

Ωmiτi,n(θi) ≤ exp
(
miϑ0 + τi〈ψ〉eϑ0

) [
〈θi〉mi [mi(α+ 1)]n
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+cna〈ψ〉mi
n∑
k=1

wk(mi, n)
(
τi〈ψ〉eϑ0

)k ]
.

Now we use this in (6.44), and finally arrive at the following estimate

Ω̂miτi (θi|t) ≤ exp
(
miϑ0 + τi〈ψ〉eϑ0

) [
e(α+1)mit〈θi〉mi (6.46)

+ 〈ψ〉mi
∞∑
q=0

(cat)
q

q!

∞∑
k=1

wk(mi, q)
(
τi〈ψ〉eϑ0

)k ]
,

where we took into account that wk(mi, q) = 0 for k > q, see (6.30). By (6.29) we have
∞∑
q=0

(cat)
q

q!

∞∑
k=1

wk(mi, q)
(
τi〈ψ〉eϑ0

)k
(6.47)

=

∞∑
k=1

1

k!

(
τi〈ψ〉eϑ0

)k k∑
l=0

(−1)k−l
(
k

l

) ∞∑
q=0

(cat)
q

q!
(mi + l)q

= emicat
∞∑
k=1

1

k!

(
τi〈ψ〉eϑ0

)k k∑
l=0

(−1)k−l
(
k

l

)
elcat

= emicat
[

exp
(
(ecat − 1)τi〈ψ〉eϑ0

)
− 1

]
≤ τiε(1 + ε)mi exp

(
〈ψ〉eϑ0

)
,

where t is as in (6.43) and τi ≤ 1, ε < 1. We use now (6.47) in (6.46) and then turn (6.43)
into the following estimate

µt(Φ
m
τ (θ|·)) ≤ exp

(
(m0 +m1)ϑ0 + (τ0 + τ1)〈ψ〉eϑ0

)
(6.48)

×
[
e(α+1)m0t〈θ0〉m0 + τ0ε(1 + ε)m0 exp

(
〈ψ〉eϑ0

)]
×

[
e(α+1)m1t〈θ1〉m1 + τ1ε(1 + ε)m1 exp

(
〈ψ〉eϑ0

)]
, t < log(1 + ε)/ca.

For each γ ∈ Γ2
∗ and a decreasing sequence of positive τk → 0, the sequence Φmτ (θ|γ),

τi = τk, i = 0, 1, is nondecreasing, see (6.32) and (3.55). By (6.48) and the Beppo Levi
monotone convergence lemma we conclude that the pointwise limit, see (6.24), (6.22)
and (3.8), (3.14),

Φm0 (θ|γ) = lim
k→+∞

Φmτk(θ|γ) = Hm
θ (γ) =

∑
(xm0 ,ym1 )∈γ

θ⊗m(xm0 ,ym1), (6.49)

is µt-integrable. Moreover, by the same lemma and (6.48) it follows that

µt(Φ
m
0 (θ|·)) = χ(m)

µt (θ⊗m) ≤ κ|m|t ‖θ0‖m0

L1(X)‖θ1‖m1

L1(X), (6.50)

with
κt = eϑ0+(α+1)t, (6.51)

which by (3.9) yields the property in question for t < log(1 + ε)/ca. Since this length of
the validity interval is independent of µ0, the further continuation can be done by the
literal repetition of the procedure above.

Remark 6.5. According to Proposition 5.3, see also [1, Theorem 3.5], the type of the
solution µt obtained in Lemma 6.3 does not exceed exp(ϑ0 + αt), which is a more precise
estimate than that given in (6.50), (6.51).
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7 Existence: approximating models

The aim of this section is introducing approximating models, for which the corre-
sponding processes can be constructed by employing explicitly derived Markov transition
functions. By this result the process in question will be obtained as the limit of such
approximating processes. Similarly as in [16], the Kolmogorov operators for the approxi-
mating models are obtained from that in (1.3).

7.1 The models

We begin by introducing the basic function, cf. (3.29)

ψσ(x) =
1

1 + σ|x|d+1
, σ ∈ (0, 1], x ∈ X = Rd, (7.1)

and then define
aσi (x, y) = ai(x− y)ψσ(x), i = 0, 1, (7.2)

where ai are the jump kernels that appear in (1.3). It is clear that these aσi satisfy, cf.
(4.1), (4.3),

max
i=0,1

sup
(x,y)∈X2

aσi (x, y) ≤ ‖a‖, (7.3)

max

{
sup
y∈X

∫
X

|x|laσi (x, y)dx; sup
y∈X

∫
X

|x|laσi (y, x)dx

}
≤ ā(l)

i , l = 0, . . . , d+ 1, i = 0, 1.

The Kolmogorov operator corresponding to the approximation model is obtained by
replacing in (1.3) ai(x− y) with aσi (x, y), i = 0, 1; that is, it has the form

(LσF )(γ) =
∑
x∈γ0

∫
X

aσ0 (x, y) exp

(
−
∑
z∈γ1

φ0(z − y)

)
[F (γ \ x ∪0 y)− F (γ)] dy (7.4)

+
∑
x∈γ1

∫
X

aσ1 (x, y) exp

(
−
∑
z∈γ0

φ1(z − y)

)
[F (γ \ x ∪1 y)− F (γ)] dy.

Noteworthy, in the approximating model the kernels corresponding to the jumps from x to
y get smaller if x goes away from the origin. Now we introduce L∆,σ by replacing in (5.9)
ai(x−y) with aσi (x, y), i = 0, 1, where one should take into account that aσi (x, y) 6= aσi (y, x).
Then, cf. (5.5),

µ(LσKG) = 〈〈L∆,σkµ, G〉〉, σ ∈ [0, 1], (7.5)

holding for each µ ∈ Pexp and G ∈ G∞. For σ = 0, L∆,σ coincides with the operator given
in (5.9). Clearly, for all σ ∈ [0, 1], L∆,σ satisfies (5.16) and similar estimates, which allows
one to define bounded operators (L∆,σ)nϑ′ϑ, n ∈ N, and thus construct, cf. (5.30),

Ξσϑ′ϑ(t) = 1 +

∞∑
n=1

tn

n!
(L∆,σ)nϑ′ϑ, t < T (ϑ′, ϑ), (7.6)

where the latter is the same as in (5.21). Similarly, one obtains L̂σ by making the
aforementioned replacements in (5.23), and then defines, cf. (5.28),

Σσ
ϑϑ′(t) = 1 +

∞∑
n=1

tn

n!
(L̂σ)nϑϑ′ , t < T (ϑ′, ϑ). (7.7)

Thereafter, one sets

kσt = Ξσϑ′ϑ(t)k0, Gσt = Σσ
ϑϑ′(t)G0, t < T (ϑ′, ϑ), (7.8)

EJP 28 (2023), paper 67.
Page 37/59

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP952
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A Markov process for a particle system with attraction

holding for each k0 ∈ Kϑ, G0 ∈ Gϑ′ , ϑ′ > ϑ. For σ = 0, both kσt and Gσt coincide with
those that appear in (5.29), (5.32), etc. Let us now consider the Fokker-Planck equation

µt2(F ) = µt1(F ) +

∫ t2

t1

µs(L
σF )ds, F ∈ D(L), (7.9)

where the latter is as in Definition 4.1. Since Lσ satisfies all the estimates used in the
proof of Lemma 6.3, see, e.g., (7.3), we have the following.

Proposition 7.1. For each µ ∈ Pexp and σ ∈ [0, 1], the Fokker-Planck equation (7.9)
with µ0 = µ has exactly one solution t 7→ µσt ∈ Pexp defined by the map t 7→ kσt ∈ K?
constructed with the help of (7.6), (7.8), similarly as in the case σ = 0, see Remark 5.4.
Let also ϑ be such that k0 ∈ Kϑ. Then for each σ ∈ [0, 1], ϑ′ > ϑ and G ∈ Gϑ′ , the following
holds, see (5.33),

〈〈kσt , G〉〉 = 〈〈k0, G
σ
t 〉〉, t < T (ϑ′, ϑ), (7.10)

where Gσt = Σσ
ϑϑ′(t)G, see (7.7), (7.8).

7.2 The weak convergence

Our aim is to prove that µσt ⇒ µt as σ → 0. We begin by proving the following
statement.

Proposition 7.2. Let {µn}n∈N ⊂ Pexp be such that the type of each µn does not exceed
eϑ, ϑ ∈ R, and µn ⇒ µ for some µ ∈ P(Γ2

∗). Then µ ∈ Pexp and its type ≤ eϑ. Moreover,
for each G ∈ Gϑ, it follows that

〈〈kµn , G〉〉 → 〈〈kµ, G〉〉, n→ +∞. (7.11)

Proof. Since F̂mτ (v|·) ∈ Cb(Γ2
∗), see Proposition 3.9 and (3.55), the assumed convergence

yields µn(F ) → µ(F ), holding for all F ∈ F̂ , including F = Φmτ , see (6.24), (6.22).
Therefore, by (6.49), (6.50) we have

µ(Φmτ ) ≤ sup
n
µn(Φmτ ) ≤ e|m|ϑ‖θ0‖m0

L1(X)‖θ1‖m1

L1(X),

holding for all θ0, θ1 ∈ Θ+
ψ . As in the proof of Lemma 6.1, this yields µ ∈ Pexp and its type

does not exceed eϑ. The validity of (7.11) follows by the fact just mentioned.

Now we prove that the solutions of the Fokker-Planck equations (1.2) and (7.9) have
the property µσt ⇒ µt as σ → 0, holding for each t > 0. We obtain this result by proving a
bit more general statement, which will be used in the subsequent part of this paper.

Lemma 7.3. Let {µσ}σ∈(0,1] ⊂ Pexp be such that the type of each µσ does not exceed eϑ0

for some ϑ0 ∈ R, and µσ ⇒ µ as σ → 0. Let also t 7→ µσt , σ ∈ (0, 1], µσt |t=0 = µσ, be the
solution of the Fokker-Planck equation (7.9) mentioned in Proposition 7.1. Then for each
t > 0, it follows that µσt ⇒ µt as σ → 0, where µt is the solution of (1.2) with µt|t=0 = µ.

Noteworthy, by Proposition 7.2 it follows that the limiting measure µ in Lemma 7.3 is
sub-Poissonian and its type does not exceed eϑ0 . The proof of Lemma 7.3 is based on the
following statement.

Lemma 7.4. For a given t > 0, let kσt and kt be the correlation functions of the measures
µσt and µt mentioned in Lemma 7.3. Then there exists ϑ̃(t) ∈ R such that

∀G ∈ Gϑ̃(t) 〈〈kσt , G〉〉 → 〈〈kt, G〉〉, as σ → 0. (7.12)

Proof. As the type of each µσ does not exceed eϑ0 , both kσt and kt lie in Kϑ(t) with
ϑ(t) = ϑ0 + αt, see Remark 5.4 and the proof of Proposition 7.1. Moreover, kσt and
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G satisfy (7.10) with appropriate ϑ, ϑ′. Recall that the map ϑ′ 7→ T (ϑ′, ϑ) attains its
maximum T∗(ϑ) given in (6.11).

Let now the convergence stated in (7.12) hold for a given t ≥ 0. By the assumed
convergence µσ ⇒ µ and Proposition 7.2 this certainly holds for t = 0. Our aim is to
prove that it holds also for all t + s, s ≤ s0, with a possibly t-dependent s0 > 0. Set
ϑ̄t = ϑ(t) + δ(ϑ(t)), see (6.11). For s < T∗(ϑ(t)), the norm of Ξϑ̄tϑ(t)(s) satisfies

‖Ξϑ̄tϑ(t)(s)‖ ≤
T∗(ϑ(t))

T∗(ϑ(t))− s
,

see (5.32). In the same way, one estimates also the norm of Ξσ
ϑ̄tϑ(t)

(s), σ ∈ (0, 1] since

the norms of the corresponding (L∆,σ)n
ϑ̄tϑ(t)

have the same bounds as for σ = 0. For

σ ∈ (0, 1], we write

qσs = kt+s − kσt+s = Ξϑ̄tϑ(t)(s)kt −Ξσϑ̄tϑ(t)(s)k
σ
t , s < T∗(ϑ(t)). (7.13)

Note that

∀G ∈ Gϑ(t) 〈〈qσ0 , G〉〉 → 0 as σ → 0. (7.14)

At the same time, (7.13) can be written in the form

qσs = Ξϑ̄tϑ(t)(s)q
σ
0 −Πσ

ϑ̄tϑ(t)(s)k
σ
t , (7.15)

Πσ
ϑ̄tϑ(t)(s) :=

∫ s

0

d

du

[
Ξϑ̄tϑ(s− u)Ξσϑϑ(t)(u)

]
du,

where s and ϑ ∈ (ϑ(t), ϑ̄t) are chosen in such a way that

s < min{T (ϑ̄t, ϑ);T (ϑ, ϑ(t))}, (7.16)

and hence the Bochner integral in the second line of (7.15) makes sense, see (7.6). Since
the map (ϑ, ϑ′) 7→ T (ϑ′, ϑ) is continuous, see (5.21), one can pick ϑ1 < ϑ and ϑ2 > ϑ, ϑ
being as in (7.16), such that

s < min{T (ϑ̄t, ϑ2);T (ϑ1, ϑ(t))}. (7.17)

Keeping this in mind, we use an evident identical extension of (5.31) to all σ ≤ 1 and
obtain

Πσ
ϑ̄tϑ(t)(s) = −

∫ s

0

Ξϑ̄tϑ2
(s− u)L̃∆,σ

ϑ2ϑ1
Ξσϑ1ϑ(t)(u)du, (7.18)

L̃∆,σ
ϑ2ϑ1

:= L∆
ϑ2ϑ1

− L∆,σ
ϑ2ϑ1

.

We apply this in (7.15) and get

qσs = Ξϑ̄tϑ(t)(s)q
σ
0 +

∫ s

0

Ξϑ̄tϑ2
(s− u)L̃∆,σ

ϑ2ϑ1
kσt+udu.

Note that L̃∆,σ can be written in the same form as L∆, see (5.9), in which ai(x − y),
i = 0, 1, ought to be replaced by ãσi (x, y) := ai(x−y)(1−ψσ(x)). Now let us turn to picking
s0 and ϑj , j = 1, 2, such that (7.17) holds for s ≤ s0. First we set ϑ1 = ϑ(t) + δ(ϑ(t))/2,
see (6.11). By (5.21) and (6.11) we then get

T (ϑ̄t, ϑ1) = T∗(ϑ(t))/2 < T (ϑ1, ϑ(t)).
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Now we fix some ε ∈ (0, 1) and set

s0 = εT∗(ϑ(t))/2 = εT (ϑ̄t, ϑ1). (7.19)

Since the map ϑ 7→ T (ϑ′, ϑ) is continuous, one can pick ϑ2 ∈ (ϑ1, ϑ̄t) such that s0 <

T (ϑ̄t, ϑ2), see (7.19). Then (7.17) holds for these ϑj , j = 1, 2, and s ≤ s0. Now we take
G ∈ Gϑ̄t and set

Gs = Σϑ2ϑ̄t(s)G. (7.20)

Note that Gs ∈ Gϑ2 ⊂ Gϑ(t); that is, Gs can be considered as an element of Gϑ(t) since

Gs = Iϑ(t)ϑ2
Σϑ2ϑ̄t(s)G,

where Iϑ(t)ϑ2
= Σϑ(t)ϑ2

(0) is the embedding operator. For these G and Gs, by (7.17) and
(7.10) we then have

〈〈qσs , G〉〉 = 〈〈qσ0 , Gs〉〉+Rσ(s), (7.21)

Rσ(s) :=

∫ s

0

〈〈L̃∆,σ
ϑ2ϑ1

kσt+u, Gs−u〉〉du.

In view of (7.14), it remains to prove that Rσ(s)→ 0 as σ → 0. To this end, we split Rσ(s)

into four terms in accord with the structure of L̃∆,σ, see (5.9). Thus, we write

Rσ(s) =

4∑
j=1

Rσj (s), (7.22)

with

Rσ1 (s) =

∫ s

0

(∫
Γ0

∫
Γ0

( ∑
y∈η0

∫
X

ãσ0 (x, y)e(τ0
y ; η1)(Υ0

yk
σ
t+u)(η0 \ y ∪ x, η1)dx

)

× Gs−u(η0, η1)λ(dη0)λ(dη1)

)
du, (7.23)

=

∫ s

0

(∫
Γ0

∫
Γ0

(∫
X

∫
X

ãσ0 (x, y)e(τ0
y ; η1)(Υ0

yk
σ
t+u)(η0 ∪ x, η1)

× Gs−u(η0 ∪ y, η1)dxdy

)
λ(dη0)λ(dη1)

)
du

Rσ2 (s) = −
∫ s

0

(∫
Γ0

∫
Γ0

(∫
X

∫
X

ãσ0 (x, y)e(τ0
y ; η1)(Υ0

yk
σ
t+u)(η0 ∪ x, η1)

× Gs−u(η0 ∪ x, η1)dxdy

)
λ(dη0)λ(dη1)

)
du,

Rσ3 (s) =

∫ s

0

(∫
Γ0

∫
Γ0

(∫
X

∫
X

ãσ1 (x, y)e(τ1
y ; η0)(Υ1

yk
σ
t+u)(η0, η1 ∪ x)

× Gs−u(η0, η1 ∪ y)dxdy

)
λ(dη0)λ(dη1)

)
du,

Rσ4 (s) = −
∫ s

0

(∫
Γ0

∫
Γ0

(∫
X

∫
X

ãσ1 (x, y)e(τ1
y ; η1)(Υ1

yk
σ
t+u)(η0, η1)

× Gs−u(η0, η1 ∪ x)dxdy

)
λ(dη0)λ(dη1)

)
du.
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By (5.10), (5.6), (5.7) and (4.2) for each ϑ ∈ R, i = 0, 1, s ≥ 0 and (η0, η1) ∈ Γ2
0, we have

∣∣(Υi
yk
σ
s )(η0, η1)

∣∣ ≤ ‖kσs ‖ϑ exp

(
ϑ(|η0|+ |η1|)

)∫
Γ0

eϑ|ξ|e
(
|tiy|; ξ

)
λ(dξ) (7.24)

= ‖kσs ‖ϑ exp

(
ϑ(|η0|+ |η1|)

) ∞∑
n=0

1

n!
enϑ

(∫
X

[
1− e−φi(x−y)

]
dx

)n

≤ ‖kσs ‖ϑ exp

(
ϑ(|η0|+ |η1|) + ϕeϑ

)
.

By (7.18) we know that kσt+s ∈ K?ϑ(t+u) ⊂ K
?
ϑ1

, which by (3.12) implies ‖kσt+s‖ϑ1
≤ 1. We

take this into account in (7.23), and also that τ iy(x) ≤ 1, see (5.6), and then estimate the
summands in (7.22) as follows ∣∣Rσj (s)

∣∣ ≤ ∫
X

rσj (y)gj(y)dy, (7.25)

with

rσ1 (y) =

∫
X

(1− ψσ(x))a0(x− y)dx, rσ3 (y) =

∫
X

(1− ψσ(x))a1(x− y)dx, (7.26)

rσ2 (y) = (1− ψσ(y))ā0
0, rσ4 (y) = (1− ψσ(y))ā0

1,

see (4.3). It is clear that rσj (y) ≤ r1
j (y), j = 1, . . . , 4, and

∀y ∈ X rσj (y)→ 0 σ → 0, = 1, . . . , 4. (7.27)

Furthermore,

g1(y) = g2(y) = c(ϑ1)

∫ s

0

∫
Γ0

∫
Γ0

|Gu(η0 ∪ y, η1)| eϑ1(|η0|+|η1|)λ(dη0)λ(dη1)du, (7.28)

g3(y) = g4(y) = c(ϑ1)

∫ s

0

∫
Γ0

∫
Γ0

|Gu(η0, η1 ∪ y)| eϑ1(|η0|+|η1|)λ(dη0)λ(dη1)du,

where c(ϑ1) = exp(ϑ1 + ϕeϑ1). Let us show that each gj , j = 1, . . . , 4, is integrable for all
s ≤ s0. Since Gu ∈ Gϑ2 , by (5.32) and (7.20) for u ≤ s ≤ s0, see (7.19), we have

|Gu|ϑ2
≤ T (ϑ̄t, ϑ2)

T (ϑ̄t, ϑ2)− s0
|G|ϑ̄t =: CG. (7.29)

By (7.28) we then have∫
X

g1(y)dy ≤ c(ϑ1)

∫ s

0

(∫
Γ0

∫
Γ0

∫
X

|Gu(η0 ∪ y, η1)| eϑ1(|η0|+|η1|)λ(dη0)λ(dη1)dy

)
du

= c(ϑ1)e−ϑ1

∫ s

0

(∫
Γ0

∫
Γ0

|η0| |Gu(η0, η1)| eϑ1(|η0|+|η1|)λ(dη0)λ(dη1)

)
du

≤ sc(ϑ1)

(ϑ2 − ϑ1)e1+ϑ1
CG. (7.30)

Clearly, the same estimate holds for the remaining gj . Then by the dominated conver-
gence theorem and (7.27), (7.25) it follows that Rσ(s) → 0 as σ → 0, holding for all
s ≤ s0, see (7.19). By (7.14) and (7.21) this yields 〈〈qσs , G〉〉 → 0 as σ → 0.
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To complete the proof of this statement, let us consider the following sequences, cf.
(7.19),

tl = tl−1 + s0l, s0l = εT∗(ϑtl−1
)/2, t0 = 0, l ∈ N. (7.31)

Now we may use the construction just made and the induction in l, which yields (7.12)
holding for all t ≤ tl. Thus, the proof will follow if we show tl → +∞ as l → +∞. Set
supl tl =: t∗. By (7.31) we have tl = s01 + · · ·+ s0l. Hence, t∗ <∞ yields s0l → 0, l→ +∞.
By passing to the limit in the second formula in (7.31) we then get T∗(ϑt∗) = 0, which is
impossible, see (6.11).

Proof of Lemma 7.3. By Lemma 7.4 it follows that µσt (F )→ µt(F ), σ → 0, holding for all
F ∈ F∞, which by Proposition 6.2 yields that µσt (F )→ µt(F ), σ → 0, for all F ∈ F̃ . Then
the property in question follows by claim (ii) of Proposition 3.8.

We end up this subsection with the following complement to Lemma 7.3. For F ∈ F̃ ,
see (3.49), and a sequence {µn}n∈N ⊂ Pexp as in Proposition 7.2, consider

µ̃n(dγ) = C−1
n F (γ)µn(dγ), n ∈ N. (7.32)

where
Cn = µn(F ) > 0, (7.33)

since each F ∈ F̃ is strictly positive.

Proposition 7.5. Let µ̃n and µn be as in (7.32) and assume that µn ⇒ µ as n → +∞.
Then µ̃n ⇒ µ̃, where

µ̃(dγ) = C−1F (γ)µ(dγ), C = µ(F ).

Proof. By assumption, Cn → C. Take any F ′ ∈ F̃ and set F ′′ = F ′F , which is an
element of F̃ since the latter is closed under multiplication, see Proposition 3.8. Then
µ̃n(F ′) = C−1

n µn(F ′′) → C−1µ(F ′′) as n → +∞. Since F̃ is convergence determining,
see claim (ii) of Proposition 3.8, the sequence {µ̃n}n∈N converges to some µ̃ ∈ Pexp (by

Proposition 7.2), such that µ̃(F ′) = C−1µ(F ′′). This implies that µ̃ is as stated since F̃ is
separating.

8 Existence: approximating processes

The aim of this section is proving Theorem 4.5 by constructing path measures for the
model described by Lσ introduced in the preceding section. This will be done in a direct
way by means of the corresponding Markov transition functions.

8.1 The transition function

We start by introducing the real linear space of signed measures on Γ2
∗, see [8, Chapter

4], which we denote byM. That is, each µ ∈M is a σ-additive map µ : B(Γ2
∗)→ R taking

finite values only. LetM+ be the set of µ ∈M such that µ(A) ≥ 0 for allA ∈ B(Γ2
∗). Then

the Jordan decomposition of a given µ ∈ M is the unique representation µ = µ+ − µ−,
µ± ∈M+, in view of which the coneM+ is generating. Set |µ| = µ+ + µ−. Then

‖µ‖ = |µ|(Γ2
∗) (8.1)

is a norm, additive on the coneM+. According to [8, Proposition 4.1.8, page 119],M is
a Banach space with this norm. Set Ψ1 = 1 + Ψ, where the latter was defined in (3.30),
and then define

Mn = {µ ∈M : ‖µ‖n := |µ|(Ψn
1 ) <∞}, n ∈ N. (8.2)
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By the same [8, Proposition 4.1.8, page 119]Mn with the norm ‖µ‖n is also a real Banach
space. In the sequel, we extend (8.2) to n = 0 by setting M0 = M and ‖µ‖0 = ‖µ‖.
Additionally, for n ∈ N0, we set

ϕn(µ) = µ(Ψn
1 ). (8.3)

Now for β > 0, define

‖µ‖β =

∫
Γ2
∗

exp (βΨ(γ)) |µ|(dγ), Mβ = {µ ∈M : ‖µ‖β <∞}, (8.4)

and also

ϕβ(µ) =

∫
Γ2
∗

exp (βΨ(γ))µ(dγ). (8.5)

It is clear that
∀µ ∈M+ ‖µ‖n = ϕn(µ), ‖µ‖β = ϕβ(µ), (8.6)

holding for all n ∈ N0 and β > 0. In our construction, we essentially use the cones of
positive elements

M+
n =Mn ∩M+, M+

β =Mβ ∩M+, β > 0, n ∈ N. (8.7)

For a given N ⊂M, by N we denote the closure of N in ‖ · ‖ defined in (8.1). The proof
of the next statement is completely analogous to that of [16, Lemma 7.4 and Corollary
7.5 pages 39, 40], and thus is omitted here.

Proposition 8.1. For each n ∈ N and β > 0, it follows that Mβ = Mn = M and also

M+
β =M+

n =M+.

Finally, we denoteM+,1 = P(Γ2
∗) and also

M+,1
β =M+,1 ∩Mβ , M+,1

n =M+,1 ∩Mn. (8.8)

By (3.37) it follows that

∀β > 0 ∀n ∈ N Pexp ⊂M+,1
β ⊂M+,1

n . (8.9)

Now for σ ∈ (0, 1], we set, cf. (7.4),

Ψσ(γ) =
∑
x∈γ0

∫
X

aσ0 (x, y) exp

(
−
∑
z∈γ1

φ0(z − y)

)
dy

+
∑
x∈γ1

∫
X

aσ1 (x, y) exp

(
−
∑
z∈γ0

φ1(z − y)

)
dy, γ ∈ Γ2

∗.

By (3.29) and (7.1) it follows that ψ(x) ≤ ψσ(x) ≤ ψ(x)/σ, σ ∈ (0, 1]. For these values of
σ, by (3.30) and (4.3), (5.15) we then have

Ψσ(γ) ≤ (α/σ)Ψ(γ), γ ∈ Γ2
∗. (8.10)

As mentioned above, the transition function in question will be constructed directly, i.e.,
by the formula

pσt (γ, ·) = Sσ(t)δγ(·), t > 0, γ ∈ Γ2
∗, (8.11)

where δγ is the Dirac measure centered at γ and Sσ = {Sσ(t)}t≥0 is the stochastic
semigroup of bounded linear operators acting inM, generated by the dual L†,σ of Lσ

defined in (7.4). The mentioned duality means that

µ(LσF ) = (L†,σµ)(F ), F ∈ D(L). (8.12)
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Recall that the domains of all Lσ, σ ∈ [0, 1] are the same, i.e., are as in Definition 4.1. By
(7.4) and (7.2) we then get

(L†,σµ)(A) = −
∫

Γ2
∗

1A(γ)Ψσ(γ)µ(dγ) +

∫
Γ2
∗

Ωσ(A|γ)µ(dγ) (8.13)

=: (Aµ)(A) + (Bµ)(A), A ∈ B(Γ2
∗).

Here

Ωσ(A|γ) =
∑
x∈γ0

∫
X

aσ0 (x, y) exp

(
−
∑
z∈γ1

φ0(z − y)

)
1A(γ0 \ x ∪0 y, γ1)dy (8.14)

+
∑
x∈γ1

∫
X

aσ1 (x, y) exp

(
−
∑
z∈γ0

φ1(z − y)

)
1A(γ0, γ1 \ x ∪1 y)dy.

Note that A in (8.13) is just the multiplication operator by Ψσ, and the following holds

Ωσ(Γ2
∗|γ) = Ψσ(γ). (8.15)

Now we set

D(L†,σ) = {µ ∈M : |µ|(Ψσ) <∞}, (8.16)

which might have sense if we show that B can act on µ ∈ D(L†,σ). By writing µ = µ+−µ−
we conclude that it is enough to show Bµ ∈ M for positive µ ∈ D(L†,σ) only. Since B
itself is positive, by (8.6) and (8.15) we have that

‖Bµ‖ = (Bµ)(Γ2
∗) =

∫
Γ2
∗

Ψσ(γ)µ(dγ) = ‖Aµ‖, (8.17)

which yields L†,σ : D(L†,σ)→M. Clearly, (A,D(L†,σ)) is closed and the following holds

M1 ⊂ D(L†,σ), (8.18)

see (8.10) and (8.2).

Remark 8.2. Note that δγ ∈ D(L†,σ), since δγ(Ψσ) = Ψσ(γ) <∞, holding for all γ ∈ Γ2
∗,

see (8.10) and (3.32). At the same time, δγ is evidently not sub-Poissonian.

Along with constructing the semigroup Sσ, see (8.11), in Lemma 8.3 below we obtain
a number of complementary results, which we then exploit for proving Theorem 4.5. To
this end, for n ∈ N and a positive µ, let us consider, cf. (8.3), (8.13) and (8.14),

ϕn(Bµ) =

∫
Γ2
∗

Ψn1 (γ)(Bµ)(dγ) =

∫
Γ2
∗

∫
Γ2
∗

Ψn1 (γ)Ωσ(dγ|γ′)µ(dγ′) (8.19)

=

∫
Γ2
∗

( ∑
x∈γ0

∫
X

aσ0 (x, y) exp

(
−
∑
z∈γ1

φ0(z − y)

)
Ψn1 (γ \ x ∪0 y)dy

)
µ(dγ)

+

∫
Γ2
∗

( ∑
x∈γ1

∫
X

aσ1 (x, y) exp

(
−
∑
z∈γ0

φ1(z − y)

)
Ψn1 (γ \ x ∪1 y)dy

)
µ(dγ).

Since Ψ1(γ \ x ∪i y) = 1 + Ψ(γ \ x ∪i y) = Ψ1(γ) + ψ(y)− ψ(x), i = 0, 1, see (3.30), then

Ψn1 (γ \ x ∪i y) ≤ 2nΨn1 (γ), (8.20)
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which by (8.10) yields in (8.19) the following estimate

∀µ ∈M+
n+1 ‖Bµ‖n = ϕn(Bµ) ≤ 2nασ−1‖µ‖n+1, (8.21)

and hence
∀n ∈ N0 B :M+

n+1 →M+
n . (8.22)

In a similar way, one shows that ‖Aµ‖n ≤ (α/σ)‖µ‖n+1 and

−A :M+
n+1 →M+

n , (8.23)

which finally yields that L†,σ :M+
n+1 →M+

n , holding for all n ∈ N0. By means of (8.21)
and the corresponding estimate for A we then define bounded linear operators

(L†,σ)ln,n+l :Mn →Mn+l, l ∈ N, (8.24)

the norms of which satisfy

‖(L†,σ)ln,n+l‖ ≤
(α
σ

)l
(2n + 1)(2n+1 + 1) · · · (2n+l−1 + 1). (8.25)

Next, similarly as in (5.27) we also define bounded operators (L†,σβ′,β)l : Mβ → Mβ′ ,

β > β′ > 0, see (8.4). To estimate their norms, for a given µ = µ+ − µ− ∈ D(L†,σ), we
write

L†,σµ = (A+B)(µ+ − µ−) = (Bµ+ −Aµ−)− (Bµ− −Aµ+) =: µ+
1 − µ

−
1 .

It is clear that µ±1 ∈M+. Then

‖L†,σµ‖β′ ≤ ‖µ+
1 ‖β′ + ‖µ−1 ‖β′ = ‖Aµ+‖β′ + ‖Aµ−‖β′ + ‖Bµ+‖β′ + ‖Bµ−‖β′ . (8.26)

Here we used the additivity of the norms on the positive cone as well as the positivity of
B and −A, see (8.22), (8.23). Now by (8.10) we have

Ψσ(γ) exp (β′Ψ(γ)) ≤ α

eσ(β − β′)
exp (βΨ(γ)) ,

which for µ ∈M+
β yields

‖Aµ‖β′ ≤
α

eσ(β − β′)
‖µ‖β . (8.27)

Next, similarly as in (8.19), (8.21) by (8.10) we have∫
Γ2
∗

exp (β′Ψ(γ)) (Bµ)(dγ) =

∫
Γ2
∗

∫
Γ2
∗

exp (β′Ψ(γ′))Ωβ(dγ′|γ)µ(dγ)

=

∫
Γ2
∗

exp (β′Ψ(γ))

( ∑
x∈γ0

∫
X

aσ0 (x, y) exp

(
−
∑
z∈γ1

φ0(z − y) + β′(ψ(y)− ψ(x))

)
dy

+
∑
x∈γ1

∫
X

aσ1 (x, y) exp

(
−
∑
z∈γ0

φ1(z − y) + β′(ψ(y)− ψ(x))

)
dy

)
µ(dγ)

≤ eβ
′
∫

Γ2
∗

Ψσ(γ) exp (β′Ψ(γ))µ(dγ) ≤ eβ
′
α

σe(β − β′)
‖µ‖β , µ ∈M+

β .

We combine now this estimate with (8.27) and obtain in (8.26) the following, cf. (5.27)

‖(L†,σβ′,β)l‖ ≤
(

l

eTσ(β, β′)

)l
, l ∈ N, (8.28)
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with

Tσ(β, β′) =
σ(β − β′)
αeβ

. (8.29)

By (8.24)), for each l ∈ N and µ ∈ Mβ, we have that (L†,σ)lµ ∈ Mβ′ , β′ < β, and the
following holds

(L†,σβ′,β)lµ = (L†,σ)lµ, l ∈ N. (8.30)

In the next statement, we employ a perturbation technique for constructing stochastic
semigroups of bounded linear operators in ordered Banach spaces with norms additive
on the cones of positive elements. Note that the spaces defined in (8.2), (8.4) have this
property, see (8.6), (8.7). The details of this technique can be found in our previous work
[16, subsect. 7.1.1]. Here we just recall that a semigroup S = {S(t)}t≥0 of such operators
is called stochastic (resp. substochastic) if each S(t) is positive and ‖S(t)u‖ = ‖u‖ (resp.
‖S(t)u‖ ≤ ‖u‖) for each positive u and t > 0. Also, for a given n ∈ N and

Dσn := {µ ∈Mn : |µ|(ΨσΨn1 ) <∞}, (8.31)

cf. (8.2), (8.16), by the trace of A inMn we mean the operator (A,Dσn) acting therein.

Lemma 8.3. For each σ ∈ (0, 1], the closure of (L†,σ,D(L†,σ)), see (8.16), is the generator
of a stochastic semigroup, Sσ = {Sσ(t)}t≥0, inM such that Sσ(t) :Mn →Mn, holding
for each t > 0 and n ∈ N. For each n ∈ N, the restrictions Sσ(t)|Mn constitute a
C0-semigroup onMn. Additionally, for each β > 0 and β′ ∈ (0, β), Sσ(t) :M+

β →M
+
β′ for

t < Tσ(β, β′), see (8.29).

Proof. We basically follow the way of proving [16, Lemma 7.6], based on the Thieme-
Voigt theorem [23] in the form adapted to the context of the present work, see [16,
Assumption 7.1 and Proposition 7.2]. Thus, we begin by mentioning that all the items of
Assumption 7.1 ibid are satisfied. That is: (i) eachMn is dense inM, see Proposition 8.1;
(ii) eachMn is a Banach space (by the aforementioned [8, Proposition 4.1.8, page 119]);
(iii) each coneM+

n , n ∈ N, isM+ ∩Mn and ‖ · ‖n is additive on this cone, see (8.6); (iv)
eachM+

n is dense inM+, see Proposition 8.1. Now we can apply [16, Proposition 7.2],
which amounts to checking that:

(i) −A and B map D(L†,σ) ∩M+ toM+, which follows by the very definition of A and
(8.17);

(ii) (A,D(L†,σ)) generates a substochastic semigroup, Sσ0 = {Sσ0 (t)}t≥0, such that (a)
Sσ0 (t) :Mn →Mn, (b) the restrictions Sσ0 (t)|Mn

constitute a C0-semigroup onMn

generated by the trace of A inMn;

(iii) B : Dσn →Mn and ϕ((A+B)µ) = 0, holding for all µ ∈ D(L†,σ) ∩M+;

(iv) there exist positive cn and εn such that the following holds

∀µ ∈ Dσn ∩M+ ϕn((A+B)µ) ≤ cnϕn(µ)− εn‖Aµ‖. (8.32)

The semigroup Sσ0 mentioned in item (ii) consists of the multiplication operators

(Sσ0 (t)µ)(dγ) = exp (−tΨσ(γ))µ(dγ), (8.33)

which is certainly such that (a) holds for each n ∈ N. To check the strong continuity
of Sσ0 , we take µ ∈ M+ and ε > 0, and then show that ‖µ − Sσ0 (t)µ‖ < ε whenever t is
smaller than an ε-specific δ > 0. The validity of such estimates for an arbitrary µ ∈ M
then simply follows by the Jordan decomposition. Since D(L†,σ) is dense inM, see (8.18)
and Proposition 8.1, one finds µ′ ∈ D(L†,σ)∩M+ such that ‖µ− µ′‖ < ε/3. By (8.33) and
(8.10) we then have

‖µ− Sσ0 (t)µ‖ ≤ ‖µ− µ′‖+ ‖Sσ0 (t)(µ− µ′)‖+ ‖µ′ − Sσ0 (t)µ′‖ (8.34)
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≤ 2‖µ− µ′‖+ t

∫
Γ2
∗

Ψσ(γ)µ′(dγ) ≤ 2

3
ε+

tα

σ
‖µ′‖1 < ε,

for t < σε/3α‖µ′‖1. Moreover, (8.33) can be considered as the definition of bounded
linear operators acting in a givenMn. These operators constitute a C0 semigroup, which
can be proved similarly as in (8.34). Its generator is then obviously the trace of A inMn,
see (8.31). Thus, it remains to prove the validity of (8.32), that is, the validity of∫

Γ2
∗

Ψn1 (γ)(L†,σµ)(dγ) + εn

∫
Γ2
∗

Ψσ(γ)µ(dγ) ≤ cn
∫

Γ2+∗
Ψn1 (γ)µ(dγ), (8.35)

holding for all µ ∈ Dσn ∩M+ and certain positive cn and εn. This clearly amounts to
proving that each of the summands in the left-hand side of (8.35) is ≤ (cn/2)µ(Ψn1 ) with
a properly chosen cn. We begin by proving this for the first summand. By (8.12) we have
that ∫

Γ2
∗

Ψn1 (γ)(L†,σµ)(dγ) =

∫
Γ2
∗

(LσΨn1 )(γ)µ(dγ) (8.36)

Similarly as in obtaining (8.20) we have

|Ψn1 (γ \ x ∪i y)− Ψn1 (γ)| ≤ (2n − 1) |ψ(y)− ψ(x)|Ψn−1
1 (γ). (8.37)

Set

bi(x) =

∫
X

ai(x− y) |ψ(y)− ψ(x)| dy, i = 0, 1. (8.38)

Assume first that |x| ≥ |y|. Then

|ψ(y)− ψ(x)| = ψ(y)− ψ(x) =
[
|x|d+1 − |y|d+1

]
ψ(x)ψ(y) (8.39)

≤ ψ(x)
[
(|x− y|+ |y|)d+1 − |y|d+1

]
ψ(y)

= ψ(x)

d+1∑
l=1

(
d+ 1

l

)
|x− y|l|y|d+1−lψ(y)

≤ ψ(x)

d+1∑
l=1

(
d+ 1

l

)
|x− y|l =: ψ(x)h(x− y),

where we have used the fact that |y|d+1−lψ(y) ≤ 1 for all l ≥ 1 and y ∈ X. For |x| < |y|,
we have

|ψ(y)− ψ(x)| = (|y|d+1 − |x|d+1)ψ(x)ψ(y)

≤ ψ(x)
[
(|y − x|+ |x|)d+1 − |x|d+1

]
ψ(y)

≤ ψ(x)

d+1∑
l=1

(
d+ 1

l

)
|x− y|l|y|d+1−lψ(y)

≤ ψ(x)h(x− y).

Now we use these two estimates in (8.38) and obtain

bi(x) ≤ ψ(x)ᾱ, ᾱ := max
i=0,1

∫
X

ai(x)h(x)dx, (8.40)
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cf. (5.15) and (4.3). By (8.37) and the latter estimate we obtain

|(LσΨn1 )(γ)| ≤
∑
x∈γ0

∫
X

a0(x− y) |Ψn1 (γ \ x ∪0 y)− Ψn1 (γ)| dy (8.41)

+
∑
x∈γ1

∫
X

a1(x− y) |Ψn1 (γ \ x ∪1 y)− Ψn1 (γ)| dy

≤ (2n − 1)ᾱΨn−1
1 (γ)

(∑
x∈γ0

ψ(x) +
∑
x∈γ1

ψ(x)

)
≤ (2n − 1)ᾱΨn1 (γ),

holding for all σ ∈ [0, 1], including σ = 0. By (8.41) and (8.36) we then have∫
Γ2
∗

Ψn1 (γ)(L†,σµ)(dγ) ≤ (2n − 1)ᾱ

∫
Γ2
∗

Ψn1 (γ)µ(dγ). (8.42)

By (8.10) we have Ψσ(γ) ≤ (α/σ)Ψn1 (γ) holding for all n ∈ N and γ ∈ Γ2
∗, which then

yields ∫
Γ2
∗

Ψσ(γ)µ(dγ) ≤ α

σ

∫
Γ2
∗

Ψn1 (γ)µ(dγ).

The latter estimate together with (8.42) yields the validity of (8.35) with εn = 1 and
cn = (2n − 1)ᾱ+ α/σ.

It remains now to prove the concluding statement of the lemma. We proceed by
defining the following bounded operators

Sσβ′,β(t) = Iβ′,β +

∞∑
l=1

tl

l!
(L†,σβ′,β)l, t < Tσ(β, β′), (8.43)

acting fromMβ toMβ′ , see (8.29). Here the powers (L†,σβ′,β)l satisfy (8.28) and Iβ′,β is
the embedding operator. By (8.43) and (8.30), for each µ ∈Mβ , one has

Sσβ′,β(t)µ = Sσ(t)µ, (8.44)

where Sσ(t) is the same as in the first part of the lemma. Then the positivity of Sσβ′,β(t)

follows by the positivity of the latter. This completes the whole proof.

Thus, the lemma just proved yields the existence of the semigroup Sσ which we use
in (8.11) to obtain the Markov transition function pσt . The fact that t 7→ pσt satisfies the
corresponding conditions, see [11, eqs. (1.3)–(1.6), page 156], follows directly by (8.11).
We will use this function to construct the finite dimensional marginals of the stochastic
process corresponding to the approximating model described by Lσ. This will be done in
the next subsection.

8.2 Constructing path measures

By means of the semigroup Sσ constructed in Lemma 8.3 we may have

µ̂σt (·) = (Sσ(t)µ)(·) =

∫
Γ2
∗

pσt (γ, ·)µ(dγ), µ ∈M. (8.45)

Recall that here σ ∈ (0, 1] and Sσ is stochastic. The latter means that µ̂σt is in P(Γ2
∗) when-

ever µ has this property. Moreover, µ̂σt may be inMn ∩ P(Γ2
∗) under the corresponding

condition. However, so far we do not know whether Sσ preserves Pexp.
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Lemma 8.4. For given µ ∈ Pexp, let t 7→ µσt ∈ Pexp, t > 0, be the solution of (7.9), see
Proposition 7.1. Let also µ̂σt be as in (8.45) with the same µ. Then, for all t > 0, it follows
that µσt = µ̂σt .

Proof. By (8.9) and (8.18) it follows that Pexp ⊂ D(L†,σ), which means that t 7→ µ̂σt is the
classical solution of the initial value problem

d

dt
µ̂σt = L†,σµ̂σt , µ̂σt |t=0 = µ, (8.46)

which by (8.12) yields that t 7→ µ̂σt solves (7.9). Then the proof follows by Proposition 7.1.

It is a standard fact that the transition function pσt determines the finite dimensional
distributions of a Markov process, X σ, with values in Γ2

∗, see [11, Theorem 1.1, page 157].
Our aim now is to prove that it has càdlàg paths. To this end, we employ Chentsov-like
arguments, cf. [7] and [16, Proposition 7.8], and thus the metric υ∗, see (3.45), (3.46).
By Lemma 3.4 it is complete. Set

wσu(γ) =

∫
Γ2
∗

υ∗(γ, γ′)pσu(γ, dγ′), (8.47)

Wσ
u,v(γ) =

∫
Γ2
∗

υ∗(γ, γ′)wσu(γ′)pσv (γ, dγ′), u, v ≥ 0.

Thereafter, for a triple t3 > t2 > t1 ≥ 0, consider

Wσ(t1, t2, t3) =

∫
Γ2
∗

Wσ
t3−t2,t2−t1(γ)µ̂σt1(dγ) =

∫
Γ2
∗

Wσ
t3−t2,t2−t1(γ)µσt1(dγ). (8.48)

Note that thisWσ(t1, t2, t3) depends also on µ = µσt |t=0, see Lemma 8.4. By combining
[7, Theorem 1] and [11, Theorems 8.6–8.8, pages 137-139] we obtain the following
statement.

Proposition 8.5. Given T > 0, σ ∈ (0, 1], s ≥ 0 and µ ∈ Pexp, assume that there exist
Cσ > 0 and δ > 0 such that, for each triple that satisfies t1 ≥ s, t3 ≤ T and t3 − t1 < δ,
the following holds

Wσ(t1, t2, t3) ≤ Cσ|t3 − t1|2. (8.49)

Then

(i) There exists a probability measure Pσs,µ on D[0,+∞)(Γ
2
∗) uniquely determined by

its finite dimensional marginals, cf. [11, eq. (1.10), page 157], expressed by the
formula

Pσs,µ({γ : $tn(γ) ∈ An, $tn−1(γ) ∈ An−1, . . . , $t1(γ) ∈ A1, $0(γ) ∈ A0})(8.50)

=

∫
An−1

· · ·
∫
A0

pσtn−tn−1
(γn−1,An)pσtn−1−tn−2

(γn−2, dγn−1) · · · pσt2−t1(γ1, dγ2)

×pσt1(γ0, dγ1)µ(dγ0),

holding for all n ∈ N, tn > tn−1 · · · t1 and Aj ∈ B(Γ2
∗), j = 0, . . . , n.

(ii) If the estimate in (8.49) holds for all σ ∈ (0, 1] with one and the same C > 0,and
the family {µ̂σt }σ∈(0,1] is tight for all t > 0, then the family {Pσs,µ}σ∈(0,1] of measures
mentioned in (i) is also tight, and hence has accumulation points in the weak
topology.

EJP 28 (2023), paper 67.
Page 49/59

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP952
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A Markov process for a particle system with attraction

Note that the tightness mentioned in item (ii) of the latter statement follows by
Prohorov’s theorem and Lemmas 7.3 and 8.4.

Lemma 8.6. For every s ≥ 0 and µ ∈ Pexp, the estimate as in (8.49) holds for all σ ∈ (0, 1]

with one and the same C > 0, dependent on T only.

Proof. For convenience, we take here s = 0 – the proof for s > 0 is completely analogous.
Then we begin by recalling that δγ is in D(L†,σ), see Remark 8.2. Thus, by (8.11) and the
corresponding formulas, see e.g., [11, eq. (1.16), page 9], we have

pσt (γ, ·) = δγ(·) +

∫ t

0

L†,σpσs (γ, ·)ds. (8.51)

We use this in (8.47), which yields

wσu(γ) = wσ0 (γ) +

∫ u

0

(∫
Γ2
∗

υ∗(γ, γ′)L†,σpσs (γ, dγ′)

)
ds (8.52)

=

∫ u

0

(∫
Γ2
∗

υ∗(γ, γ′)L†,σpσs (γ, dγ′)

)
ds

=

∫ u

0

(∫
Γ2
∗

Lσυ∗(γ, γ′)pσs (γ, dγ′)

)
ds,

see (8.12). The second equality in (8.52) follows by the fact that wσ0 (γ) = υ∗(γ, γ) = 0 as
υ∗ is a metric. The function γ′ 7→ Lσυ∗(γ, γ′) =: Jσγ (γ′) has the following form, see (3.45),
(3.46),

Jσγ (γ′) =
∑
x∈γ′0

∫
X

aσ0 (x, y) exp

(
−
∑
z∈γ1

φ0(z−y)

)
[υ∗(γ, γ′ \ x ∪0 y)−υ∗(γ, γ′)] dy (8.53)

+
∑
x∈γ′1

∫
X

aσ1 (x, y) exp

(
−
∑
z∈γ0

φ1(z − y)

)
[υ∗(γ, γ′ \ x ∪1 y)− υ∗(γ, γ′)] dy.

By the triangle inequality for the metric υ∗ we then get∣∣Jσγ (γ′)
∣∣ ≤ ∑

x∈γ′0

∫
X

a0(x− y)υ(ψ(γ′0 \ x ∪ y), ψγ′0)dy (8.54)

+
∑
x∈γ′1

∫
X

a1(x− y)υ(ψ(γ′1 \ x ∪ y), ψγ′1)dy.

By (3.44) and (3.46) it follows that

υ(ψ(γ′i \ x ∪ y), ψγ′i) ≤ sup
g:‖g‖BL≤1

|g(x)ψ(x)− g(y)ψ(y)| . (8.55)

Proceeding similarly as in (8.39) we obtain

|g(x)ψ(x)− g(y)ψ(y)| = ψ(x)ψ(y)

∣∣∣∣ g(x)

ψ(y)
− g(y)

ψ(x)

∣∣∣∣
≤ ψ(x)ψ(y)g(y)

∣∣∣∣ 1

ψ(y)
− 1

ψ(x)

∣∣∣∣+ ψ(x) |g(x)− g(y)|
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≤ ψ(x)

[
|x− y|+

d+1∑
l=1

(
d+ 1

l

)
|x− y|l

]
.

We apply the latter in (8.55), (8.54) and then arrive at the following, see (8.40) and
(5.15), ∣∣Jσγ (γ′)

∣∣ ≤ (α+ ᾱ)Ψ(γ′), (8.56)

which is uniform in σ. By (8.56) we then get from (8.52) the following estimate

wσu(γ) ≤ (α+ ᾱ)

∫ u

0

κσs (γ)ds, κσs (γ) :=

∫
Γ2
∗

Ψ(γ′)pσs (γ, dγ′). (8.57)

By (8.51), similarly as in (8.52) we have

κσs (γ) = Ψ(γ) +

∫ s

0

(∫
Γ2
∗

LσΨ(γ′)pσv (γ, dγ′)

)
dv (8.58)

Proceeding as in (8.41) we obtain

|LσΨ(γ′)| ≤ ᾱΨ(γ′),

by which we obtain from (8.57), (8.58) the following

κσs (γ) ≤ Ψ(γ) + ᾱ

∫ s

0

κσv (γ)dv, (8.59)

which by the Grönwall inequality and (8.57) leads to

wσu(γ) ≤ (α+ ᾱ)ueᾱuΨ(γ). (8.60)

Now we may pass to estimating Wσ
u,v(γ). By the second line in (8.47) and (8.60) we have

Wσ
u,v(γ) ≤ (α+ ᾱ)ueᾱuV σv (γ), V σv (γ) :=

∫
Γ2
∗

υ∗(γ, γ′)Ψ(γ′)pσv (γ, dγ′). (8.61)

Here we again apply (8.51) and then get, cf. (8.52),

V σv (γ) =

∫ v

0

(∫
Γ2
∗

[LσΨ(γ′)υ∗(γ, γ′)] pσs (γ, dγ′)

)
ds (8.62)

Proceeding as in (8.53) we get, see also (8.38),

|LσΨ(γ′)υ∗(γ, γ′)| ≤
∑
x∈γ′0

∫
X

a0(x− y)

∣∣∣∣Ψ(γ′ \ x ∪0 y)υ∗(γ, γ′ \ x ∪0 y)

−Ψ(γ′)υ∗(γ, γ′)

∣∣∣∣dy
+

∑
x∈γ′1

∫
X

a1(x− y)

∣∣∣∣Ψ(γ′ \ x ∪1 y)υ∗(γ, γ′ \ x ∪1 y)

−Ψ(γ′)υ∗(γ, γ′)

∣∣∣∣dy
≤ 2

( ∑
x∈γ′0

b0(x) +
∑
x∈γ′1

b1(x)

)

EJP 28 (2023), paper 67.
Page 51/59

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP952
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A Markov process for a particle system with attraction

+ Ψ(γ′)

( ∑
x∈γ0

∫
X

a0(x− y)υ∗(γ′ \ x ∪0 y, γ
′)dy

+
∑
x∈γ0

∫
X

a1(x− y)υ∗(γ′ \ x ∪1 y, γ
′)dy

)
≤ 2ᾱΨ(γ′) + (α+ ᾱ)Ψ2(γ′),

where we used also (8.40) and (8.54). Now we apply the latter estimate in (8.62) and
obtain

V σv (γ) ≤ 2α

∫ v

0

κσs (γ)ds+ (α+ ᾱ)

∫ v

0

Kσ
s (γ)ds, (8.63)

where κσs (γ) is the same as in (8.57) and

Kσ
s (γ) =

∫
Γ2
∗

Ψ2(γ′)pσs (γ, dγ′).

By (8.51) we have, cf. (8.58), (8.59),

Kσ
s (γ) = Ψ2(γ) +

∫ s

0

(∫
Γ2
∗

(LσΨ2(γ′))pσu(γ, dγ′)

)
du. (8.64)

Similarly as in (8.41) it follows that∣∣(LσΨ2)(γ′)
∣∣ ≤ 3ᾱΨ2(γ′),

by which and the Grönwall inequality we get from (8.64) the following estimate

Kσ
s (γ) ≤ Ψ2(γ)e3ᾱs. (8.65)

Now we use (8.59) and (8.65) in (8.63) and arrive at

V σv (γ) ≤ v
(
2αeᾱvΨ(γ) + (α+ ᾱ)e3ᾱvΨ2(γ)

)
(8.66)

Now we may turn to (8.48) where we use the estimate, see (3.36),∫
Γ2
∗

Ψn(γ)µt1(dγ) ≤ Tn(κ〈ψ〉), n = 1, 2,

and the fact that µt1 ∈ Pexp of type not exceeding exp(ϑ0 +αt1) ≤ exp(ϑ0 +αT ) =: κ, see
Proposition 5.3 and Remark 5.4. Here eϑ0 is the type of µ. By (8.61) and (8.66) we then
conclude thatWσ(t1, t2, t3) satisfies (8.49) with

C = 2α(α+ ᾱ)e2ᾱTT1(κ〈ψ〉) + (α+ ᾱ)2e4ᾱTT2(κ〈ψ〉),

which ends the proof.

9 Completing the proof

Here the hardest part is the proof of item (i), whereas the validity of (iii) is rather
standard, see cf. [9, Theorem 5.1.2, claim (iv), page 80].
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9.1 Proving item (i)

First we prove existence by employing the fact that, for a given µ ∈ Pexp and s ≥ 0, the
measure in question, Ps,µ, is obtained as an accumulation point of the family {Pσs,µ}σ∈(0,1].
Our aim now is to prove that such accumulation points have properties (a), (b), (c)
mentioned in Definition 4.3.

To check (a), we note that Ps,µ ◦ $−1
s = µ since Pσs,µ ◦ $−1

s = µ for all σ ∈ (0, 1].

Furthermore, by Lemmas 8.4 and 7.3 it follows that Pσs,µ ◦$−1
t ⇒ µt as σ → 0, which

yields Ps,µ ◦$−1
t = µt, holding for all accumulation points in view of Lemma 6.3. These

facts yield the validity of (b) of Definition 4.3.
To check (c), we take G as in (4.18) with fixed t2 > t1 > s, m ∈ N and s1 < s2 < · · · <

sm, s1 ≥ s, sm ≤ t1. Then we recall that µσs1 = µ̂σs1 = Sσ(s1 − s)µ, the type of which does
not exceed eϑ(s1−s), ϑ(t) = ϑ0 + αt, see Lemma 8.4, and set χσs1 = C−1

1,σF1µ
σ
s1 , that is,

χσs1(dγ) = C−1
1,σF1(γ)µσs1(dγ), C1,σ := µσs1(F1). (9.1)

Note that C1,σ > 0 since each F ∈ F̃ is strictly positive, see (3.49) and (7.33). By claim
(d) of Proposition 4.2 it follows that χσs1 ∈ Pexp, and its type does not exceed that of µs1 ,
and hence exp(ϑ(s1 − s)). Then we define recursively

χ̃σsl(dγ) = (Sσ(sl − sl−1)χσsl−1
)(dγ) =

∫
Γ2
∗

pσsl−sl−1
(γ′, dγ)χσsl−1

(dγ′), (9.2)

χσsl(dγ) = C−1
l,σFl(γ)χ̃σsl(dγ), Cl,σ := χ̃σsl(Fl), l ≤ m.

As above, for all l ≤ m, χσsl is sub-Poissonian of type ≤ exp(ϑ(sl − s)). Now we take
F ∈ D(L), see Definition 4.1, t ∈ [sm, t2], set

Ft = F ◦$t, Kt = (LF ) ◦$t, Kσt = (LσF ) ◦$t, σ ∈ (0.1], (9.3)

and then consider Pσs,µ(FtG) with G as just discussed. By (8.50) it follows that

Pσs,µ(FtG) = CσP
σ
s,χσsm

(Ft) = CσP
σ
s,χσsm

(F ◦$t) =: Cσµ
σ,sm
t (F ), (9.4)

with Cσ = Pσs,µ(G) > 0. By (8.50)

µσ,smt = Sσ(t− sm)χσsm , (9.5)

and the type of µσ,smt is ≤ eϑ(t−s). By (9.5) it follows that

µσ,smt2 (F )− µσ,smt1 (F ) =

∫ t2

t1

µσ,smt (LσF )dt =

∫ t2

t1

Pσs,µ(FtG)dt,

see (9.4), which yields Pσs,µ(H) = 0, holding for all σ ∈ (0, 1].
Now let Ps,µ be an accumulation point of the family {Pσs,µ}σ∈(0,1]. By Lemmas 7.3

and 8.4, all such accumulation points have the same one dimensional marginals coin-
ciding with µt. For this Ps,µ, let {σn}n∈N ⊂ (0, 1], σn → 0, be such that Pσns,µ ⇒ Ps,µ as
n→ +∞. Then set, cf. (9.4),

Cn = Cσn = Pσns,µ(G), C∞ = Ps,µ(G), (9.6)

µsmt (A) = C−1
∞ Ps,µ(G1A ◦$t), A ∈ B(Γ2

∗), t ∈ [sm, t2].

Let us show that the assumed convergence Pσns,µ ⇒ Ps,µ implies µσn,smt ⇒ µsmt , as
n→ +∞. To this end, by χ̃sl we denote µ

sl−1
sl , where µ

sl−1

t , t ≥ sl−1 is the solution of (1.2)
with the initial condition χsl := C−1

l−1,∞Fl−1χ̃sl−1
, l = 2, . . .m, where Cl,∞ = χ̃sl(Fl), cf.
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(9.2), and χ̃s1 = µs1 = Ps,µ ◦$−1
s1 , which solves (1.2) on [s, s1] with the initial condition

µ. The assumed convergence of the path measures implies χ̃σns1 ⇒ χ̃s1 , see (9.1). By
Lemma 7.3 this yields χ̃σns2 ⇒ χ̃s2 , and thus χ̃σnsl ⇒ χ̃sl for all l ≤ m. Since µsmt defined in
(9.6) is the solution of (1.2) on [sm, t] with the initial condition χsm := C−1

m,∞Fmχ̃sm , this
yields the convergence in question. By Proposition 7.2 this yields in turn that µsmt ∈ Pexp

and the type of µsmt is ≤ exp(ϑ(t− s)). Note that C∞ defined in (9.6) is Cm,∞.
Keeping the aforementioned facts in mind we write, see (4.17),

Ps,µ(H) = Ps,µ(Ft2G)− Ps,µ(Ft1G)−
∫ t2

t1

Ps,µ(KtG)dt, (9.7)

and also set

an(t) = Ps,µ(FtG)− Pσns,µ(FtG), (9.8)

bn(t) = Ps,µ(KtG)− Pσns,µ(KtG),

cn(t) = Pσns,µ ((Kt − Kσnt )G) .

Since Pσs,µ(H) = 0, by (9.7) and (9.8) it follows that

Ps,µ(H) = Ps,µ(H)− Pσns,µ(H) = [an(t2)− an(t1)]

−
∫ t2

t1

bn(t)dt−
∫ t2

t1

cn(t)dt =: an − bn − cn.

By Pσns,µ ⇒ Ps,µ we have an → 0 as n→ +∞. However, the same conclusion for bn and cn
does not follow in so simple way as LF and LσF need not be continuous. To settle this
case, by means of (9.6) we write

bn = Cn

∫ t2

t1

(µsmt (LF )− µσn,smt (LF )) dt+ (C∞ − Cn)

∫ t2

t1

µsmt (LF )dt. (9.9)

By item (a) of Proposition 4.2, LF is a bounded function; hence, the second summand in
(9.9) vanishes as n→ +∞ since Cn → C∞ by the assumed weak convergence, see (9.6).
To prove the same for the first summand – denote it b(1)

n – we employ the fact that µσn,smt

and µsmt are sub-Poissonian and each F ∈ D(L) can be written as KG with G ∈ G̃∞, see
Proposition 6.2. Then

µsmt (LF )− µσn,smt (LF ) = 〈〈kµsmt − kµσn,smt
, L̂G〉〉 → 0, n→ +∞, (9.10)

where we have taken into account that L̂G ∈ G̃∞ whenever G ∈ G̃∞, see (5.26), and
also the fact that µσn,smt ⇒ µsmt implies the convergence of the integrals in (9.10),
see Proposition 7.2. As mentioned above, LF is a bounded function (by claim (i) of
Proposition 4.2), which means that both terms of the left-hand side of (9.10) are bounded
by supγ∈Γ2

∗
|(LF )(γ)|. Together with the convergence Cn → C∞ this yields b(1)

n → 0 as
n→ +∞.

Now we turn to cn. By (9.3) and (9.4), and then by (7.5), we have

cn(t) = Cn [µσn,smt (LKG)− µσn,smt (LσnKG)]

= Cn〈〈(L∆ − L∆,σn)kµσn,smt
, G〉〉 = Cn〈〈L̃∆,σnkµσn,smt

, G〉〉,

cf. (7.21). Here we have also taken into account that µσn,smt ∈ Pexp, that was established

above, and the operator L̃∆,σn is the same as in (7.21). To make precise in which spaces
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Kϑ it acts, we will take into account that G ∈ G∞ = ∩ϑ∈RGϑ, see Proposition 6.2, and that
the type of each µσn,smt does not exceed exp(ϑ(t2 − s)) =: eϑ. Then we write, cf. (7.21)
and (7.22),

〈〈L̃∆,σnkµσn,smt
, G〉〉 =: Rn(t) =

4∑
j=1

Rn,j(t),

where

Rn,1(t) =

∫
Γ0

∫
Γ0

( ∑
y∈η0

∫
X

aσn0 (x, y)e(τ0
y ; η1)(Υ0

ykµσn,smt
)(η0 \ y ∪ x, η1)dx

)
× G(η0, η1)λ(dη0)λ(dη1)

=

∫
Γ0

∫
Γ0

(∫
X

∫
X

aσn0 (x, y)e(τ0
y ; η1)(Υ0

ykµσn,smt
)(η0 ∪ x, η1)G(η0 ∪ y, η1)dxdy

)
× λ(dη0)λ(dη1),

and likewise

Rn,2(t) = −
∫

Γ0

∫
Γ0

(∫
X

∫
X

aσn0 (x, y)e(τ0
y ; η1)(Υ0

ykµσn,smt
)(η0 ∪ x, η1)G(η0 ∪ x, η1)dxdy

)
× λ(dη0)λ(dη1),

Rn,3(t) =

∫
Γ0

∫
Γ0

(∫
X

∫
X

aσn1 (x, y)e(τ1
y ; η0)(Υ1

ykµσn,smt
)(η0, η1 ∪ x)G(η0, η1 ∪ y)dxdy

)
× λ(dη0)λ(dη1),

Rn,4(t) = −
∫

Γ0

∫
Γ0

(∫
X

∫
X

aσn1 (x, y)e(τ1
y ; η0)(Υ1

ykµσn,smt
)(η0, η1 ∪ x)G(η0, η1 ∪ x)dxdy

)
× λ(dη0)λ(dη1).

Now we take into account that kµσn,smt
∈ Kϑ and G ∈ G∞, see above, employ (7.24), and

then get, cf. (7.25),

|Rn,j(t)| ≤
∫
X

rσnj (y)gi(y)dy, j = 1, . . . , 4. (9.11)

with rσnj (y) given in (7.26) and

g1(y) = g2(y) = c(ϑ)

∫
Γ0

∫
Γ0

|G(η0 ∪ y, η1)| exp (ϑ|η0|+ ϑ|η1|)λ(dη0)λ(dη1), (9.12)

g3(y) = g4(y) = c(ϑ)

∫
Γ0

∫
Γ0

|G(η0, η1 ∪ y)| exp (ϑ|η0|+ ϑ|η1|)λ(dη0)λ(dη1),

where c(ϑ) is the same as in (7.28). Note that the bound in (9.11) is uniform in t ∈ [sm, t2],
for which kµσn,smt

∈ Kϑ. Now, similarly as in (7.30), we get∫
X

g1(y)dy ≤ c(ϑ)e−ϑ
∫

Γ0

∫
Γ0

|η0| |G(η0, η1)| exp (ϑ|η0|+ ϑ|η1|)λ(dη0)λ(dη1)

≤ c(ϑ)e−ϑ−1−log ε

∫
Γ0

∫
Γ0

|G(η0, η1)| exp

(
(ϑ+ ε) (|η0|+ |η1|)

)
λ(dη0)λ(dη1)
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= c(ϑ)e−ϑ−1−log ε|G|ϑ+ε <∞

that holds for all ε > 0 as G ∈ G∞. Similar estimates can be obtained for the remaining
|Rn,j(t)|. By the dominated convergence theorem we then get that Rn(t)→ 0 as n→ +∞,
uniformly in t ∈ [sm, t2], which together with the aforementioned convergence Cn → C∞,
yields cn → 0 as n → +∞. Therefore, for each limiting point Ps,µ, it follows that
Ps,µ(H) = 0, that yields the proof of item (c), and thus the existence in question.

Now we turn to uniqueness. To this end we employ the following fact.

Proposition 9.1. Assume that two solutions {P (j)
s,µ : s ≥ 0, µ ∈ Pexp, j = 1, 2}, see

Definition 4.3, satisfy P (1)
s,µ ◦$−1

t = P
(2)
s,µ ◦$−1

t , holding for all t ≥ s, s ≥ 0, and µ ∈ Pexp.

Then they coincide, i.e., P (1)
s,µ = P

(2)
s,µ for all s ≥ 0 and µ ∈ Pexp.

The proof of this statement – based on Lemma 6.3 – is completely analogous to that
of [16, Lemma 5.4], and thus can be omitted here. Then the uniqueness in question is
straightforward. This completes the proof of item (i) of the theorem.

9.2 Proving item (ii)

We begin by recalling that X = Rd. Let {rj}j∈N ⊂ R+ be a strictly increasing
sequence such that limj→+∞ rj = +∞. Set ∆j = {x ∈ X : |x| < rj} and γi,j = γi ∩∆j ,
i = 0, 1, j ∈ N, γ = (γ0, γ1) ∈ Γ2

∗. We also will use the notation γj for (γ0,j , γ1,j). Then we
define

Γ2
∗,j = {γ ∈ Γ2

∗ : γj ∈ Γ̆2}.

That is, γ ∈ Γ2
∗ belongs to Γ2

∗,j if and only if n0(x)+n1(x) = 1, holding for all x ∈ p(γ)∩∆j ,
see (1.1). By (3.31) we then have

Γ̆2
∗ =

⋂
j∈N

Γ2
∗,j . (9.13)

Similarly as in [16, Lemma 2.7], one proves that each Γ2
∗,j is an open subset of Γ2

∗, see
also Lemma 3.4. Define, cf. (3.24),

hN (x, y) = ψ(x)ψ(y) min{N ; |x− y|−dε}, N ∈ N,

HN (γ) =
∑
x∈γ0

∑
y∈γ0\x

hN (x, y) +
∑
x∈γ1

∑
y∈γ1\x

hN (x, y) +
∑
x∈γ0

∑
y∈γ1

hN (x, y),

where ε ∈ (0, 1) and ψ(x) is as in (3.29). Now for µ ∈ Pexp of type κ, similarly as in (3.25)
we get

µ(HN ) ≤ 3κ2IN , (9.14)

where, cf. (3.26),

IN =

∫
X2

hN (x, y)dxdy ≤
∫
X

ψ(x)

(∫
X

ψ(y)|x− y|−dεdy
)
dx

≤
∫
X

ψ(x)

(∫
Br

dz

|z|dε
+
〈ψ〉
rdε

)
dx =

cdr
d(1−ε)

d(1− ε)
〈ψ〉+

〈ψ〉2

rdε
.

Then, similarly as in (3.27), we have that

H(γ) := lim
N→+∞

HN (γ) <∞

for µ-almost all γ ∈ Γ̆2
∗. At the same time,

Hj(γ) := H(γj) ≤ r−dεγj (|γ0 ∩∆j |+ |γ1 ∩∆j |)2
,
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holding for all γ ∈ Γ2
∗,j . Here rγj is the minimal distance between two distinct x, y ∈

(γ0 ∩∆j) ∪ (γ0 ∩∆j), which is positive since the number of pairs of such points is finite
and γj is simple.

Let {Ps,µ : s ≥ 0, µ ∈ Pexp} be the solution which exists and is unique according to
item (i). Fix some s ≥ 0 and µ ∈ Pexp of type κ, and let X be the process corresponding
to Ps,µ. For N ∈ N, we define the stopping time, cf. [11, page 180],

TN,j = inf{t ≥ s : Hj(X (t)) > N}.

Then for a fixed j ∈ N and TN,j ∧ t := min{t;TN,j}, we set Z(t) = limN→+∞ X (TN,j ∧ t)
and Tj = limN→+∞ TN,j . Both limits exist as TN,j ≤ TN+1,j . Let µ̃t be the law of Z(t).
For Φmτ (θ|·) ∈ D(L) defined in (6.24),

Φmτ (θ|X (t))−
∫ t

s

LΦmτ (θ|X (u))du (9.15)

is a right-continuous martingale. Then, similarly as in [11, page 180], by the optional
sampling theorem, we can write

E [Φmτ (θ|X (TN,j ∧ t))] = E [Φmτ (θ|X (s))] + E

[∫ TN,j∧t

0

LΦmτ (θ|X (u))du

]
,

where we pass to the limit N → +∞ and get, see also (6.25),

µ̃t(Φ
m
τ (θ|·)) = µ(Φmτ (θ|·)) + lim

N→+∞
E

[∫ TN,j∧t

0

LΦmτ (θ|X (u))du

]
(9.16)

≤ µ(Φmτ (θ|·)) + lim
N→+∞

E

[∫ TN,j∧t

0

|LΦmτ (θ|X (u))| du

]

≤ µ(Φmτ (θ|·)) + E

[∫ t

0

|LΦmτ (θ|X (u))| du
]

≤ µ(Φmτ (θ|·)) + E

[∫ t

0

Φmτ,1(θ|X (u))du

]

= µ(Φmτ (θ|·)) +

∫ t

s

µu(Φmτ,1(θ|·))du.

Here Φmτ,1(θ|·) ∈ D(L) is as in (6.25) and (6.34), and µu = Ps,µ ◦$−1
u is the law of X (u).

Similarly as in (6.42), by (9.16) we then obtain

µ̃t(Φ
m
τ (θ|·)) ≤

∞∑
q=0

(t− s)q

q!
µ
(
Φmτ,q(θ|·)

)
, t− s < log(1 + ε)/ca.

Now we proceed here as in obtaining (6.48), which finally yields, see (6.50), (6.51,

µ̃t(Φ
m(θ|·)) := lim

max{τ0,τ1}→0
µ̃t(Φ

m
τ (θ|·)) ≤ κ|m|t ‖θ0‖m0

L1(X)‖θ1‖m1

L1(X), (9.17)

where t−s < log(1+ε)/ca and κt = κe(α+1)(t−s). By Definition 3.1 (9.17) yields µ̃t ∈ Pexp

and hence Z(t) ∈ Γ̆2
∗ (almost surely) for this t, see (3.34). Thus, Tj > t. Now we take

δ ∈ (0, 1) and then s1 = s+ δ log(1 + ε)/ca, take into account that µs1 = Ps,µ ◦$−1
s1 ∈ Pexp,

and repeat the above procedure with s replaced by s1. Since the type of µt is κeα(t−s)

– and hence is finite for all t – the construction can be repeated ad infinitum to cover
the whole [s,+∞). This implies that the paths of X remain in D[0,+∞)(Γ

2
∗,j) for all j ∈ N,

which by (9.13) yields the proof of item (ii).
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