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Abstract
We review the recent progress on the long-time behavior for a general class of focusing L2-
critical nonlinear Schrödinger equations (NLS)with lower order perturbations. Twocanonical
models are the stochasticNLSdriven by linearmultiplicative noise and the classical determin-
istic NLS. We show the construction and uniqueness of the corresponding blow-up solutions
and solitons, including the multi-bubble Bourgain–Wang type blow-up solutions and non-
pure multi-solitons, which provide new examples for the mass quantization conjecture and
the soliton resolution conjecture. The refined uniqueness of pure multi-bubble blow-ups and
pure multi-solitons to NLS under very low asymptotical rate is also reviewed. Finally, as a
new result, we prove the qualitative properties of stochastic blow-up solutions, including the
concentration of mass, universality of critical mass blow-up profiles, as well as the vanishing
of the virial at the blow-up time.
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1 Introduction

Weare concernedwith a general class of focusing L2-critical nonlinear Schrödinger equations
with lower order perturbations

i∂tv + �v + a1 · ∇v + a0v + |v| 4d v = 0 (gNLS)

on R
d , the coefficients of lower order perturbations are of form

a1(t, x) = 2i
N∑

l=1

∇φl(x)hl(t), (1.1)

a0(t, x) = −
d∑

j=1

(
N∑

l=1

∂ jφl(x)hl(t)

)2

+ i
N∑

l=1

�φl(x)hl(t), (1.2)

with spatial functions φl ∈ C∞
b (Rd ,R), and temporal functions hl ∈ C(R+;R), 1 ≤ l ≤

N < ∞.
Equation (gNLS) is mainly motivated by the following two canonical models:
• Stochastic nonlinear Schrödinger equations. One important model closely related to

(gNLS) is the stochastic nonlinear Schrödinger equation (SNLS for short) driven by linear
multiplicative noise

id X + �Xdt + |X | 4d Xdt = −iμXdt + i XdW (t), (SNLS)

where W is a Wiener process

W (t, x) =
N∑

l=1

iφl(x)Bl(t), x ∈ R
d , t ≥ 0,

{φl} ⊆ C∞
b (Rd ,R), {Bl} are independent standard N -dimensional real valued Brownian

motions on a normal stochastic basis (Ω,F , {Ft },P), and μ = 1
2

∑N
l=1 φ2

l . The last term
XdW (t) in (SNLS) is taken in the sense ofGubinelli’s controlled rough path, which coincides
with the usual Itô stochastic integration if the corresponding processes are {Ft }-adapted (cf.
[37, 38]). We take N < ∞ for simplicity only.

The relationship between (gNLS) and (SNLS) can be seen from the Doss–Sussman type
transformation

v := e−W X ,

which transforms the stochastic equation (SNLS) to a random equation (gNLS) with the
temporal functions {hl} being exactly the Brownian motions {Bl}.

The physical significance of SNLS is well known. One significant model arises from
molecular aggregates with thermal fluctuations, and the multiplicative noise corresponds to
scattering of exciton by phonons, due to thermal vibrations of the molecules. Many physical
and numerical experiments have beenmade to study the noise effects on blow-up and solitons,
see, e.g., [1, 2] for noise effect on the coherence of the ground state solitary solution in
dimension two, [70] for the case of the critical quintic nonlinearity in dimension one. We
also refer to [9] for applications to open quantum systems, where the martingale feature of
mass plays an important role.
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Multi-bubble Blow-ups and Multi-solitons to SNLS

•Nonlinear Schrödinger equations.When a1, a0 = 0, i.e., the lower order perturbations
vanish, (gNLS) reduces to the canonical focusing L2-critical nonlinear Schrödinger equation
(NLS for short)

i∂tv + �v + |v| 4d v = 0. (NLS)

NLS is one of fundamental dispersive PDEs and is important in continuummechanics, plasma
physics and optics ([33]). In particular, for the cubic nonlinearity in the critical dimension two,
the phenomenon of mass concentration near collapse gives a rigorous basis to the physical
concept of “strong collapse” ([75]). (NLS) has the conservation laws for the mass

M(v) := ‖v‖L2 ,

and the Hamiltonian

H(v) := 1

2
‖∇v‖2L2 − d

2d + 4
‖v‖2+

4
d

L2+ 4
d
. (1.3)

The H1 local well-posedness of (NLS) is well-known, see, e.g., [14, 76]. The SNLS
has been studied in [12, 20, 22], by using stochastic Strichartz estimates. Regarding the
pathwise solvability of (SNLS) and the related (gNLS,) we refer to [4–6, 39, 81, 83] and the
related applications in control theory [8, 82]. In particular, we refer to [5] for the H1 local
well-posedness of (gNLS), and one has the conservation law of mass

‖v(t)‖2L2 = ‖v(0)‖2L2 ,

for all t ∈ [0, τ ∗) with τ ∗(> 0) being the maximal existing time.
Let us mention that, when treating the stochastic equation (SNLS), the Doss–Sussman

transformation (or, rescaling transformation) enables us to perform sharp analysis in a path-
wise way, which is in general difficult for the usual Itô calculus. This pathwise treatment,
particularly, gives path-by-path uniqueness and hence the cocycle property, i.e., we obtain
a random dynamical system (cf. [19]). This provides a convenient platform to analyze the
long-time dynamical mechanism including the current blow-up and soliton dynamics. For
the interested readers, we refer to [80] for a review of the rescaling approach.

The long-time behavior of solutions to (gNLS) is much more delicate. An important role
here is played by the ground state, which is the unique positive radial solution to the nonlinear
elliptic equation

�Q − Q + Q1+ 4
d = 0.

In view of [27, 78], the mass of the ground state is the sharp threshold for the global well-
posedness, scattering and blow-up. We also would like to mention that, for the case of
energy-critical NLS, Kenig and Merle [44] developed the concentration-compactness and
rigidity method, and proved a sharp condition, characterized by the Aubin–Talenti solution,
for the global well-posedness, scattering and blow-up.

In the critical mass case where ‖v‖L2 = ‖Q‖L2 , the following two important dynamics
arise:

• Pseudo-conformal blow-up solutions

ST (t, x) = (w(T − t))−
d
2 Q

(
x − x∗

w(T − t)

)
e
− i

4
|x−x∗|2
T−t + i

w2(T−t)
+iϑ

,

• Solitary wave

W (t, x) := w− d
2 Q

(
x − ct

w

)
ei(

1
2 c·x− 1

4 |c|2t+w−2t+ϑ),
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where x∗, c ∈ R
d , w > 0 and T , ϑ ∈ R. Both dynamics are related closely to each other

through the pseudo-conformal transform in the pseudo-conformal space � := {u ∈ H1 :
xu ∈ L2} defined by

CT (u)(t, x) := 1

(T − t)
d
2

u

(
1

T − t
,

x

T − t

)
e−i |x |2

4(T−t) , t 
= T .

Note that ST = CT (W ), x∗ is the singularity corresponding to the velocity c of W , and
ST blows up at time T . In the seminal paper [55], Merle proved that the pseudo-conformal
blow-up solution is the unique critical mass blow-up solution to the L2-critical NLS, up to
the symmetries of the equation. It was conjectured that the only non-scattering solutions
to (NLS), up to symmetries, are the soliton or the pseudo-conformal transformation of the
soliton. This conjecture has been recently solved by Dodson [28, 29].

Moreover, in the small supercritical mass case where ‖Q‖L2 < ‖v0‖L2 < ‖Q‖L2 + ε,
with small ε(> 0), one stable dynamics is the log-log blow-up solution, which was first
constructed by Perelman [67], and has been extensively studied in a series of works byMerle
and Raphaël [57–59, 61].

Another important dynamics is the Bourgain–Wang blow-up solution, which was first
constructed by Bourgain and Wang [11], and behaves asymptotically as a sum of a singular
profile ST and a regular profile z, i.e.,

v(t) − ST (t) − z(t) → 0, as t → T .

Unlike the log-log blow-up solutions, Bourgain–Wang solutions are unstable under H1 per-
turbation and lie on the boundary of two H1 open sets of global scattering solutions and
log-log blow-up solutions ([62]).

In the even large mass regime, the complete characterization of general blow-up solutions
to L2-criticalNLS remains open. In [10],Bourgain raised an openproblemon the quantization
property of blow-up solutions, namely, whether the concentration of mass is of the form
k‖Q‖2

L2 , k ∈ Z+, see also [11]. Merle and Raphaël [60] formulated precisely the mass
quantization conjecture: blow-up solutions are expected to decompose into a singular part
and an L2 residual, and the singular part expands asymptotically as multiple bubbles, each
of which concentrates a mass of no less than ‖Q‖2

L2 at the blow-up point. In particular,
the Bourgain–Wang solutions provide examples of the mass quantization conjecture in the
single-bubble case. Multi-bubble blow-up solutions without regular profiles to (NLS) were
first constructed by Merle [54]. Thus, a natural question is whether there exist multi-bubble
Bourgain–Wang type blow-up solutions.

Furthermore, according to the famous soliton resolution conjecture, global solutions to a
nonlinear dispersive equation are expected to decompose at large time as a sumof solitons plus
a scattering remainder. Important progress has recently beenmade for the energy critical wave
equation, we refer to [18, 30–32] and the references therein. There are alsomany papers on the
construction of multi-solitons behaving like a sum of multi-solitons. However, the existence
of non-pure multi-solitons (including dispersive part) predicted by the soliton resolution
conjecture seemed not available, see the lecture notes by Cazenave [15]. An interesting
question is then to construct this kind of non-pure multi-solitons.

Let us also mention that the uniqueness of multi-solitons to L2-(sub)critical NLS remains
open (see [50]). The complete study of the uniqueness problem of multi-solitons was done
for the L2-(sub)critical gKdV in the remarkable paper by Martel [49]. Multi-solitons to L2-
supercritical gKdVwere classified by Combet [16].We also would like to refer to [41] for the
classification of the strongly interacting kink-antikink pair. For the NLS, recent progress has
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been made by Côte and Friederich [17] on the smoothness and uniqueness in the (sub)critical
case when the asymptotic rate is large enough. A natural question is thus to prove the unique-
ness of solitons particularly in the low asymptotic regime.

Turning to the stochastic case, there are several physical and numerical papers on the study
of blow-up and solitons. It was observed in [24–26] that multiplicative noise has the effect
to delay blow-up, while white noise even can prevent blow-up. Moreover, de Bouard and
Debussche [23] proved that, in the L2-supercritical case, the conservative noise accelerates
blow-up with positive probability. Similar noise effect was also proved for additive noise
([21]). In [7], the authors proved that the non-conservative noise can provide damping effects,
and so prevent explosion with high probability. Recently, in [65, 66], quantitative behavior of
blow-up solutions, including the blow-up rate and blow-up profiles, was studied by numerical
experiments. The main challenges in the stochastic case are the absence of pseudo-conformal
symmetry and even of a conservation law for the Hamiltonian, due to the presence of lower
order perturbations (or noise).

In this note, we review the recent progress [35, 71–74] on the construction and uniqueness
of blow-up solutions and of solitons for the nonlinear Schrödinger equations with lower
order perturbations (gNLS). In particular, the construction of multi-bubble Bourgain–Wang
type blow-up solutions and non-pure multi-solitons provide new examples for the mass
quantization conjecture and the soliton resolution conjecture. Furthermore, we also review
the refined uniqueness results in [13] for pure multi-solitons to the L2-critical (NLS) in the
low asymptotic rate regime. Finally, inspired by [3, 40, 55, 56], as a new result, in Section 3
we prove qualitative properties of stochastic blow-up solutions, including the concentration
of mass, the universality of blow-up profiles with critical mass and the vanishing of the virial
at the blow-up time.

2 Multi-bubble Blow-up Solutions andMulti-solitons

Let us first review the stochastic single-bubble blow-up solutions in both the critical and small
supercritical mass cases. Then, we show the existence and uniqueness results for the multi-
bubble blow-up solutions and multi-solitons in Section 2.2 and Section 2.3, respectively. In
Section 2.4, we show the refined uniqueness results in the low asymptotical rate regime.

2.1 Single Bubble Blow-up Solutions

For the spatial functions {φl} we assume:

(A0) Asymptotical flatness: For every 1 ≤ l ≤ N and multi-index ν 
= 0,

lim|x |→∞〈x〉2|∂ν
x φl(x)| = 0.

(A1) Flatness at the origin: For every 1 ≤ l ≤ N and multi-index 0 ≤ |ν| ≤ 5,

∂ν
x φl(0) = 0.

The large spatial assumption in (A0) ensures the local well-posedness of (gNLS) (cf. [4,
5]), while the local spatial assumption in (A1) is mainly used for the blow-up analysis.

Theorem 2.1 (Critical mass blow-up solution to SNLS, [73]) Let d = 1, 2. Assume Assump-
tions (A0) and (A1) to hold. Then, there exists τ ∗ ∈ (0,∞) such that for any T ∈ (0, τ ∗],
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there exists v0 ∈ H1 satisfying ‖v0‖L2 = ‖Q‖L2 and the corresponding solution v to (gNLS)
blows up at time T . Moreover, there exist δ,C(T ) > 0 such that for t close to T ,

‖v(t) − ST (t)‖H1 ≤ C(T )(T − t)δ.

Remark 2.2

(i) Adirect application ofTheorem2.1 gives the existence of criticalmass blow-up solutions
to (SNLS). It was known that solutions to (SNLS) exist globally in the H1-subcritical
case or for initial data below the ground state, see [5, 12, 22, 36, 64]. Hence, the mass
of the ground state still serves as a threshold for the global well-posedness and blow-up
in the stochastic case.

(ii) Theproof ofTheorem2.1 is basedon themodulationmethoddeveloped in [69], including
the geometric decomposition, a bootstrap device and the backward propagation from
the singularity. Delicate analysis has also been made to control the variation of the
Hamiltonian, related estimates of geometric parameters and the polynomial type of
perturbation orders when linearizing (gNLS) around the ground state.

(iii) We also mention that the control of the first order term in (gNLS) is non-trivial and is
based on the local smoothing estimates (see, e.g., [53, 83]). The local smoothing esti-
mates also play the key role in the well-posedness of quasi-linear Schrödinger equations,
see [45, 46] and the references therein.

The next result is concerned with the construction of log-log blow-up solutions to (gNLS)
in the small supercritical mass regime. We refer to [34, 57–59, 61, 67] for (NLS) in the
deterministic case. For simplicity, we focus on the case where {φl} are Schwartz functions.
Theorem 2.3 (Log-log blow-up solution to SNLS, [35]) Consider (gNLS) with d = 1, 2
and {φl} being Schwartz functions. Then, there exists an initial datum v0 ∈ H1 such that the
corresponding solution v to (gNLS) blows up in finite time T according to a log-log law in
the sense that there exist parameters (x, γ, λ) ∈ C1((0, T );Rd × R × R

+), such that

v(t, x) = 1

λd/2(t)
(Q + ε)

(
t,

x − x(t)

λ(t)

)
eiγ (t), t ∈ (0, T ),

with

λ(t)−1 ∼
√
ln | ln T − t |

T − t
and

∫
|∇ε|2 + |ε|2e−|y|dy t→T−−−→ 0,

and the blow up point x(t) converges as t → T .

2.2 Multi-bubble Bourgain–Wang Type Blow-up Solutions

This subsection is concerned with the multi-bubble blow-up solutions to (gNLS) at the given
distinct singularities {xk}. Similarly to (A0) and (A1), we assume the following conditions
for the spatial functions {φl} and the regular profiles z∗ (see, e.g., [60, 62]).

(H1ν∗) Asymptotical flatness: For any multi-index ν 
= 0 and 1 ≤ l ≤ N ,

lim|x |→∞〈x〉2|∂ν
x φl(x)| = 0.

Flatness at singularities: There exists ν∗ ∈ N
+ such that for every 1 ≤ l ≤ N and every

multi-index ν with |ν| ≤ ν∗,

∂ν
x φl(xk) = 0, 1 ≤ l ≤ N , 1 ≤ k ≤ K .
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(H2m,α∗) Smallness: There exist m ∈ N, α∗ ∈ (0,∞) such that for every regular profile z∗
satisfying

‖z∗‖H2m+2+d ≤ α∗, ‖〈x〉z∗‖H1 ≤ α∗, (2.1)

we have: Flatness at singularities: For any multi-index ν with |ν| ≤ 2m,

∂ν
x z

∗(xk) = 0, 1 ≤ k ≤ K .

We first show the existence and conditional uniqueness of pure multi-bubble blow-up
solutions without the regular profile.

Theorem 2.4 (Pure multi-bubble blow-up solutions to gNLS, [74]) Consider (gNLS) with
d = 1, 2. Assume that (H1ν∗) holds with ν∗ ≥ 5. Let K ∈ N

+, T ∈ R
+, {ϑ j }Kj=1 ⊆ R,

ζ ∈ (0, 1). Then:

(a) For any distinct points {xk}Kk=1 ⊆ R
d , w ∈ (0,∞), there exists ε > 0 such that for any

{wk}Kk=1 ⊆ R
+ with max1≤k≤K |wk − w| ≤ ε, assertions (i) and (ii) below hold.

(b) For any {wk}Kk=1 ⊆ R
+ there exists ε > 0 such that for any distinct points {xk}Kk=1 ⊆ R

d

with min1≤k≤K |x j − xk | ≥ ε−1 assertions (i) and (ii) below hold, where:

(i) Existence: There exists τ ∗ > 0 small enough such that for any T ∈ (0, τ ∗), there
exist v0 ∈ � and a corresponding blow-up solution v to (gNLS) satisfying

∥∥∥∥∥v(t) −
K∑

k=1

Sk(t)

∥∥∥∥∥
�

≤ C(T − t)
1
2 (ν∗−5)+ζ̃ , t ∈ [0, T ),

where C > 0, ζ̃ ∈ (0, 1), and {Sk} are the pseudo-conformal blow-up solutions

Sk(t, x) = (wk(T − t))−
d
2 Q

(
x − xk

wk(T − t)

)
e
− i

4
|x−xk |2
T−t + i

w2
k (T−t)

+iϑk
. (2.2)

(ii) Conditional uniqueness: There exists a unique blow-up solution v to (gNLS) satis-
fying ∥∥∥∥∥v(t) −

K∑

k=1

Sk(t)

∥∥∥∥∥
H1

≤ C(T − t)3+ζ , t ∈ [0, T ),

where C > 0.

Remark 2.5

(i) The above uniqueness result shows that multi-bubble blow-up solutions are unique in
the energy class with the asymptotic rate (T − t)3+. Later in Theorem 2.12, we can
enlarge the unique energy class with a much lower convergence rate (T − t)0+ in the
case of (NLS).

(ii) The proof of Theorem 2.4 is based on a localization procedure and, in particular, the
delicate decoupling between the interactions of different remainder profiles in the geo-
metric decomposition. In order to respect the multi-bubble structure, a new generalized
energy is constructed, which permits to decouple different bubbles and maintains the
key monotonicity property.

Furthermore, for the multi-bubble Bourgain–Wang type blow-up solutions we have
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Theorem 2.6 (Multi-bubble Bourgain–Wang solutions to gNLS, [71]) Consider (gNLS)
with d = 1, 2. Let K ∈ N

+, T ∈ R
+, {ϑk}Kk=1 ⊆ R, ζ ∈ (0, 1). Then, assertions (a) and (b)

from Theorem 2.4 hold with (i), (ii) there, replaced by:

(i) Existence: If (H1ν∗) holds for ν∗ ≥ 5 and (H2m,α∗) for some α∗ > 0, m ≥ 3 if d = 2,
and m ≥ 4 if d = 1, then there exists ε∗ ∈ (0, α∗] such that for every regular profile z∗
satisfying (2.1) with α∗ replaced by ε∗, there exists a solution v to (gNLS) satisfying that
for t close to T ,

∥∥∥∥∥v(t) −
K∑

k=1

Sk(t) − z(t)

∥∥∥∥∥
L2

+ (T − t)

∥∥∥∥∥v(t) −
K∑

k=1

Sk(t) − z(t)

∥∥∥∥∥
�

≤ C(T − t)
1
2 (κ−1),

where κ := (m + d
2 − 1) ∧ (υ∗ − 2), C > 0, {Sk} are as in (2.2), and z is the unique

solution of the equation

i∂t z + �z + a1 · ∇z + a0z + |z| 4d z = 0,

z(T ) = z∗,

where the coefficients a1, a0 are given by (1.1) and (1.2), respectively.
(ii) Conditional uniqueness: If (H1ν∗) holds with ν∗ ≥ 12 and (H2m,α∗) holds for some

α∗ > 0 and m ≥ 10, then there exists a unique solution v to (gNLS) satisfying that for t
close to T ,

∥∥∥∥∥v(t)−
K∑

k=1

Sk(t)−z(t)

∥∥∥∥∥
L2

+(T − t)

∥∥∥∥∥∇v(t) − ∇
K∑

k=1

Sk(t) − ∇z(t)

∥∥∥∥∥
L2

≤ C(T − t)4+ζ .

Remark 2.7 (i) To the best of our knowledge, Theorem 2.6 provides the first examples of
multi-bubble blow-upswith a regular profile.As a direct application, it provides newexamples
for the mass quantization conjecture, the constructed solution satisfies that as t → T ,

|v(t)|2 ⇀

K∑

k=1

‖Q‖2L2δxk + |z∗|2,

v(t) → z∗ in L2

(
R
d −

K⋃

k=1

B(xk, R)

)

for any R > 0. In particular, it concentrates the mass ‖Q‖2
L2 at each singularity and the

remaining part converges to a regular profile z∗.
(ii) The conditional uniqueness result reveals the rigidity of the flow around multi-bubble

pseudo-conformal blow-up solutions and the regular profile.
(iii) The main effort of the proof is dedicated to decoupling the interactions between three

types of profiles: the main blow-up profile, the regular profile and the remainder profile.
Unlike in [62], because multi-bubble blow-up solutions are in general not radial, two new
geometric parameters are introduced, which in turn require coercivity type control of the
energy. Let us also mention that additional temporal regularity is gained by subtracting the
energy of the regular profile from that of the approximate solutions, which is important to
run the bootstrap arguments.
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2.3 (Non-pure) Multi-solitons

By virtue of the pseudo-conformal invariance of L2-critical NLS, Theorem 2.6 also gives the
corresponding results of non-pure multi-solitons to (NLS).

Theorem 2.8 (Non-pure multi-solitons to NLS, [71]) Consider (NLS) with d = 1, 2. Let
K ∈ N

+, {ϑk}Kk=1 ⊆ R, ζ ∈ (0, 1). Then, assertions (a) and (b) from Theorem 2.4 hold with
xk replaced by ck , 1 ≤ k ≤ K, and (i) and (ii) there, replaced by:

(i) Existence: If (H2m,α∗) holds for some α∗ > 0 with m ≥ 6, then there exists ε∗ ∈ (0, α∗]
such that for every regular profile z∗ satisfying (2.1) with α∗ replaced by ε∗, there exists
a solution u to (NLS) satisfying

∥∥∥∥∥u(t) −
K∑

k=1

Wk(t) − z̃(t)

∥∥∥∥∥
�

≤ Ct−
1
2 κ+ 5

2 , for t large enough,

where κ = m + d
2 − 1, C > 0, {Wk} are the solitary waves

Wk(t, x) = w
− d

2
k Q

(
x − ckt

wk

)
e
i
(
1
2 ck ·x− 1

4 |ck |2t+w−2
k t+ϑk

)

, (2.3)

and z̃ corresponds to the regular part z in Theorem 2.6 through the inverse of the pseudo-
conformal transform:

z̃(t, x) = C−1
T z(t, x) = t−

d
2 z

(
T − 1

t
,
x

t

)
ei

|x |2
4t .

(ii) Conditional uniqueness: If (H2m,α∗) holds for some α∗ > 0 with m ≥ 16, then there
exists a unique non-pure multi-soliton u to (NLS) satisfying

∥∥∥∥∥u(t) −
K∑

k=1

Wk(t) − z̃(t)

∥∥∥∥∥
�

≤ Ct−5−ζ , for t large enough.

Remark 2.9 (i) To our best knowledge, Theorem 2.8 provides first examples of non-pure
multi-solitons including a dispersive part to L2-critical (NLS) predicted by the soliton reso-
lution conjecture.

(ii) It is worth noting that the uniqueness of non-pure multi-solitons holds in the energy
class with the decay rate t−5−, which is larger than the usual class of fast exponential decay
rate, which multi-solitons naturally lie in (see, e.g., [47, 48]). For multi-solitons without
scattering part, we obtain the uniqueness with even lower asymptotic rate, see Theorems 2.13
and 2.14 below.

Unlike the L2-critical NLS, because of the absence of pseudo-conformal invariance,
stochastic multi-solitons to (SNLS) cannot be obtained from multi-bubble blow-ups in
Section 2.2. Hence, the construction of stochastic multi-solitons requires a direct method
at the level of solitons. This is the content of Theorem 2.10 below.

Below we consider the L2-(sub)critical SNLS of similar structure as that of (SNLS):

dX(t) = i�X(t)dt + i |X(t)|p−1X(t)dt − μ(t)X(t)dt +
N∑

k=1

X(t)Gk(t)dBk(t), (2.4)

where 1 < p ≤ 1+ 4
d , d ≥ 1, T0 ≥ 0, {Bk} andμ as in (SNLS),Gk(t, x) = iφk(x)gk(t), x ∈

R
d , t ≥ 0, {φk} ⊆ C∞

b (Rd ,R), {gk} are {Ft }-adapted processes with paths in Cα(R+,R),
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α ∈ ( 13 ,
1
2 ), that are controlledby {Bk} and X(t)Gk(t)dBk(t) is taken in the sense of controlled

rough paths (see, e.g., [37, 38]).
The basic conditions here are as follows:

(H1)’ For every 1 ≤ l ≤ N ,

lim|x |→∞ |x |2|∂ν
x φl(x)| = 0, ν 
= 0.

(H2)’ For every 1 ≤ l ≤ N , {gl} are {Ft }-adapted continuous processes and controlled
by the Brownian motions {Bl}, i.e., {gl} ⊆ D2α

B (R+;RN ) with Gubinelli derivative
{g′

l j }Nj,l=1. In addition, for 1 ≤ l ≤ N , φl and gl satisfy one of the following two
cases:

Case (I)’: gl ∈ L2(R+), P-a.s., and there exists cl > 0 such that
∑

|ν|≤4

|∂νφl(x)| ≤ Ce−cl |x |.

Case (II)’: P-a.s., gl ∈ L2(R+) and there exists c∗ > 0 such that for t large enough,
∫ ∞

t
g2l ds log

(∫ ∞

t
g2l ds

)−1

≤ c∗

t2
. (2.5)

In addition, let ν∗ ∈ N be such that φl satisfies
∑

|ν|≤4

|∂νφl(x)| ≤ C |x |−ν∗ .

We see that the asymptotic behavior (2.5) is closely related to the Levy Hölder continuity
of Brownian motion. For simplicity, we focus on the case where cl = 1, 1 ≤ l ≤ N , and set

φ(x) :=
{
e−|x | in Case (I)’,
|x |−ν∗ in Case (II)’.

Theorem 2.10 (Multi-solitons to SNLS, [72]) Consider (2.4) with 1 < p ≤ 1 + 4
d , d ≥ 1.

Let w0
k > 0, θ0k ∈ R, x0k ∈ R

d , vk ∈ R
d \ {0}, 1 ≤ k ≤ K, such that v j 
= vk for any j 
= k.

Assume (H1)’ and (H2)’ with ν∗ sufficiently large in Case (II)’.
Then, for P-a.e. ω ∈ Ω , there exist T0 = T0(ω) sufficiently large and X∗(ω) ∈ H1, such

that there exists an H1 solution X(ω) to (2.4) on [T0,∞) satisfying X(ω, T0) = X∗(ω) and
∥∥∥∥∥e

−W∗(t)X(t) −
K∑

k=1

Rk(t)

∥∥∥∥∥
H1

≤ C
∫ ∞

t
sφ

1
2 (δs)ds, t ≥ T0. (2.6)

Here, {Rk} are the solitary waves

Rk(t, x) := Qw0
k

(
x − vk t − x0k

)
e
i
(
1
2 vk ·x− 1

4 |vk |2t+(w0
k )

−2t+θ0k

)

,

with Qw(x) := w
− 2

p−1 Q
( x

w

)
, and

W∗(t, x) = −
N∑

l=1

∫ ∞

t
iφl(x)gl(s)dBl(s).

Moreover, in the L2-subcritical case 1 < p < 1+ 4
d , there exists a solution X to (2.4) on

the whole time interval [0,∞), satisfying the asymptotic behavior (2.6).
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Remark 2.11 (i)We note that the temporal asymptotic rate in (2.6) can be of either exponential
and polynomial type, respectively, in Case (I)’ and Case (II)’, which is closely related to the
spatial decay rate of the noise. This reflects the effect of noise on the soliton dynamics.

(ii) The proof of Theorem 2.10 is based on the rescaling approach, involving two types of
Doss–Sussman transforms as in the stochastic scattering context [39], and on the modulation
method in [17, 51, 52]. One crucial ingredient is the monotonicity of the Lyapunov type
functional constructed in [52]. Let us also mention that the geometric decomposition in the
proof is chosen in a quite unified manner in both the L2-subcritical and critical cases.

2.4 Refined Uniqueness

In this subsection, we review the refined uniqueness results on the multi-bubble blow-up
solutions and multi-solitons to (NLS), particularly, in the low asymptotic regime.

Theorem 2.12 (Refined uniqueness ofmulti-bubble blow-ups to NLS, [13]) Consider (NLS)
in dimensions d = 1, 2. Let T ∈ R, K ∈ N \ {0}, {ϑk} ⊆ R. Then, for any ζ ∈ (0, 1), for
any distinct points {xk}Kk=1 ⊆ R

d , w > 0 (resp. {wk}Kk=1 ⊆ R
+), there exists ε > 0 such

that for any {wk}Kk=1 ⊆ R
+ with max1≤k≤K |wk − w| ≤ ε (resp. {xk}Kk=1 ⊆ R

d with
min1≤k≤K |x j − xk | ≥ ε−1), there exists a unique multi-bubble blow-up solution v to (NLS)
satisfying

∥∥∥∥∥v(t) −
K∑

k=1

Sk(t)

∥∥∥∥∥
L2

+ (T − t)

∥∥∥∥∥∇v(t) −
K∑

k=1

∇Sk(t)

∥∥∥∥∥
L2

= o(1), as t close to T ,

and additionally

1

T − t

∫ T

t

1

T − s

∫ T

s

∥∥∥∥∥v(r) −
K∑

k=1

Sk(r)

∥∥∥∥∥

2

H1

drds = O (
(T − t)ζ

)
,

where Sk, 1 ≤ k ≤ K, are the pseudo-conformal blow-up solutions given by (2.2). Moreover,
the asymptotic rate of the unique solution v can be enhanced to the exponentially fast rate
in the pseudo-conformal space. Namely, there exists δ > 0 such that

∥∥∥∥∥v(t) −
K∑

k=1

Sk(t)

∥∥∥∥∥
�

= O
(
e− δ

T−t

)
, for t close to T .

In particular, the above results hold for the multi-bubble blow-up solutions v to (NLS)
such that ∥∥∥∥∥v(t) −

K∑

k=1

Sk(t)

∥∥∥∥∥
H1

= O (
(T − t)ζ

)
, for t close to T .

Regarding the pure multi-solitons to (NLS), we have the following uniqueness result in
the energy class.

Theorem 2.13 (Refined uniqueness in H1 of multi-solitons to NLS, [13]) Consider the sit-
uation as in Theorem 2.12. Then, for any ζ ∈ (0, 1), for any distinct speeds {ck}Kk=1 ⊆ R

d ,
w > 0 (resp. {wk}Kk=1 ⊆ R

+), there exists ε > 0 such that for any {wk}Kk=1 ⊆ R
+ with
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max1≤k≤K |wk − w| ≤ ε (resp. {ck}Kk=1 ⊆ R
d with min1≤k≤K |c j − ck | ≥ ε−1), there exists

a unique multi-soliton u to (NLS) satisfying
∥∥∥∥∥u(t) −

K∑

k=1

Wk(t)

∥∥∥∥∥
H1

= O
(

1

t2+ζ

)
, for t large enough,

where {Wk} are the solitons given by (2.3). Moreover, the unique multi-soliton u converges
exponentially fast in the pseudo-conformal space, i.e., for some δ > 0,

∥∥∥∥∥u(t) −
K∑

k=1

Wk(t)

∥∥∥∥∥
�

= O (
e−δt ) , for t large enough.

In the case of the pseudo-conformal space, the uniqueness class can be further enlarged
in the even lower asymptotic regime.

Theorem 2.14 (Refined uniqueness in � of multi-solitons to NLS, [13]) Consider the sit-
uation as in Theorem 2.13. Then, for any ζ ∈ (0, 1), for any distinct non-zero speeds
{ck}Kk=1 ⊆ R

d \ {0}, w > 0 (resp. {wk}Kk=1 ⊆ R
+), there exists ε > 0 such that

for any {wk}Kk=1 ⊆ R
+ with max1≤k≤K |wk − w| ≤ ε (resp. {ck}Kk=1 ⊆ R

d \ {0} with
min1≤k≤K |c j − ck | ≥ ε−1), there exists a unique multi-soliton u to (NLS) satisfying

∥∥∥∥∥u(t) −
K∑

k=1

Wk(t)

∥∥∥∥∥
�

= O
(

1

t
1
2+ζ

)
, for t large enough.

Moreover, the unique multi-soliton u converges exponentially fast to
∑K

k=1 Wk in �.

Remark 2.15 (i) The uniqueness of multi-solitons to (NLS) was first obtained by Côte and
Friederich [17] in the L2-(sub)critical and critical cases, provided that the convergence rate is
(1/t)N for N large enough. Theorem 2.13 shows that the uniqueness class of multi-solitons
to L2-critical (NLS) can be enlarged in the low convergence regime with rate (1/t)2+.

(ii) The proof proceeds in several upgradation steps, each step requires the monotonicity
of different functionals appropriately constructed with respect to the multi-bubble structure.
More delicately, the analysis of the functionals relies on suitable estimates of the remainder
and geometric parameters in the previous step.

Another main difficulty is the presence of the localizedmass, which is absent in the single-
bubble case. The key idea is to upgrade the localized mass and the remainder together in the
upgradation procedure.

The a priori low asymptotic rate also gives rise to a challenging problem to identify the
energy. The important fact here is that the remainder exhibits dispersion in the energy space
along a sequence, which leads to the energy quantization phenomenon that is the key towards
the derivation of the refined energy estimate.

3 Mass Concentration and Universality

This section is devoted to the qualitative descriptions of the dynamical properties of blow-up
solutions to (SNLS), including the concentration of L2-norm, the universality of critical mass
blow-up solutions, as well as the vanishing of the virial at the blow-up time.

We consider the H1 blow-up solution X to (SNLS) on [0, τ ∗), where d ≥ 1, the stochastic
integration is taken in the sense of Itô and τ ∗(> 0) denotes the maximal existing time. We
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note that by the construction in [5], τ ∗ is an {Ft }-stopping time and τ ∗ > 0, P-a.s.. Hence,
below we focus on the case P(τ ∗ < ∞) > 0.

The first result is concerned with the mass concentration property along a time sequence.

Theorem 3.1 (Mass concentration) Assume the asymptotic flat condition (A0) to hold.
Assume additionally that P(τ ∗ < ∞) > 0. Then, there exists a measurable set Ω0 ⊆ Ω

with full probability such that for every ω ∈ {τ ∗ < ∞} ∩ Ω0, there exist tn(ω) ∈ (0, τ ∗) and
yn(ω) ∈ R

d , n ∈ N, such that tn(ω) → τ ∗(ω) and for any R > 0,

lim inf
n→∞

∫

|x−yn(ω)|≤R
|X(tn(ω), x)(ω)|2dx ≥ ‖Q‖2L2 . (3.1)

Remark 3.2 For the deterministic (NLS), the concentration of the L2-norm was proved in
[40, 63, 77] along all sequence of times converging to the blow-up time. The reason that
Theorem 3.1 holds for a time sequence is mainly due to the failure of the conservation of the
Hamiltonian in the stochastic case. The Itô evolution of the Hamiltonian actually contains
an extra stochastic integration (see (3.10) below), which fluctuates in time and in general is
not uniformly bounded.

The key point here is to make use of the specific structure of the stochastic integration,
which can be controlled by using the Banica type inequality together with the Burkholder–
Davis–Gundy inequality. Moreover, the quantitative large time behavior, i.e., the law of the
iterated logarithm of a martingale, is also used in the control of the asymptotic behavior of
the Hamiltonian of rescaled solutions.

In the critical mass case where ‖X0‖L2 = ‖Q‖L2 , we have the universality of stochastic
critical mass blow-up profiles, which extends the result in [79] to the stochastic case.

Theorem 3.3 (Universality of critical mass blow-up profiles) Assume the situation as in
Theorem 3.1 to hold. Assume additionally that ‖X(0)‖L2 = ‖Q‖L2 . Then, there exists a
measurable set Ω0 ⊆ Ω with full probability such that for any ω ∈ {τ ∗ < ∞} ∩ Ω0, there
exist tn(ω) ∈ (0, τ ∗), yn(ω) ∈ R

d and θ(tn(ω)) ∈ R, n ∈ N, such that

(λn(ω))
d
2 X(tn(ω), λn · +yn(ω))eiθ(tn(ω)) → Q in H1 as n → ∞, (3.2)

where λn(ω) := ‖∇Q‖L2‖∇X(tn(ω))‖L2 , n ≥ 1.

A direct application of Theorem 3.3 yields that the critical mass blow-up solutions con-
centrate the whole mass at the singularity.

Corollary 3.4 Assume the conditions of Theorem 3.3 to hold and let Ω0, yn and tn be as in
Theorem 3.3. Then, we have for every ω ∈ {τ ∗ < ∞} ∩ Ω0,

|X(tn(ω), x)|2dx − ‖Q‖2L2δyn(ω) → 0 in distribution, as n → ∞. (3.3)

Remark 3.5 (i) In [55], Merle proved the rigidity of the critical mass blow-up solutions to
(NLS), which are unique up to the symmetries of the equation. See also [40, 68] for simplified
proofs. In the stochastic case, this strong rigidity is still unclear. The obstructions are due to
the lack of pseudo-conformal symmetry, and the failure of the energy conservation and the
virial identity. In the energy class with asymptotic rate (T − t)3+, in view of Theorem 2.4
the uniqueness of stochastic critical mass blow-up solutions holds.

(ii) A sufficient condition for the finite time blow-up, i.e., P(τ ∗ < ∞) > 0, is that
H(X0) < 0 and

∑N
k=1 ‖∇φk‖L∞ ≤ ε with ε small enough, see [7, Proposition 3.1]. In
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particular, if H(X0) < 0 and {φl} are constants (i.e., the noise W is spatially independent),
then (SNLS) reduces to the classical NLS

idy = �ydt + |y| 4d ydt
with y(0) = X0. Thus, the explosion time τ ∗ is exactly the same as in the deterministic case.

In the general case, the numerical results in [24–26] suggest that, though the smooth
multiplicative noise cannot prevent blow-up, i.e., τ ∗ < ∞, P-a.s., it has the effect to delay
blow-up. The rigorous proof remains unclear. In the following we show that along certain
sequence tn → τ ∗, the virial will tend to zero, which might be of use to understand the
blow-up time.

Theorem 3.6 (Vanishing of the virial at blow-up time) Consider (SNLS) with X0 ∈ H1.
Assume (A0) to hold. Assume additionally that ‖X0‖L2 = ‖Q‖L2 and P(τ ∗ < ∞) = 1. Let
tn and yn, n ∈ N, be as in Theorem 3.3. Then, there exists a measurable set Ω1 with full
probability such that for any ω ∈ Ω1, there exists y∗(ω) ∈ R

d such that yn(ω) → y∗(ω)

and

lim
n→∞

∫
|x − y∗(ω)|2|X(tn, x)(ω)|2dx = 0. (3.4)

Moreover, we have the following lower bound of the blow-up rate along the sequence {tn(ω)},
‖∇X(tn)(ω)‖2L2 ≥ C(τ ∗(ω))(τ ∗(ω) − tn(ω))−2. (3.5)

The proofs of Theorems 3.1, 3.3 and 3.6 are inspired by [3, 40, 55, 68] and are contained
in the subsequent Sections 3.1, 3.2 and 3.3, respectively.

3.1 Concentration of L2-norm

Let us start with the compactness result in [40].

Theorem 3.7 (Theorem 1.1, [40]) Let {vn}∞n=1 be a bounded family of H1 such that

lim sup
n→∞

‖∇vn‖L2 ≤ M, lim sup
n→∞

‖vn‖
L2+ 4

d
≥ m.

Then, there exists {xn}∞n=1 ⊆ R
d such that, up to a subsequence,

vn(· + xn)⇀V weakly,

with

‖V ‖L2 ≥
(

d

d + 2

) d
4

(
m

d
2 +1

M
d
2

)
‖Q‖L2 .

Lemma 3.8 (Sharp Gagliardo–Nirenberg inequality, [78]) For any v ∈ H1, we have

‖v‖2+
4
d

L2+ 4
d

≤
(
d + 2

d

) ( ‖v‖L2

‖Q‖L2

) 4
d ‖∇v‖2L2 .

In particular, for the Hamiltonian given by (1.3), we have

H(v) ≥ 1

2

(
1 −

( ‖v‖L2

‖Q‖L2

) 4
d
)

‖∇v‖2L2 , (3.6)

and H(v) ≥ 0 if ‖v‖L2 ≤ ‖Q‖L2 .
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The following result extends Banica’s inequality in [3] to the stochastic case.

Lemma 3.9 (Banica type estimate) Let X be the solution to (SNLS) on [0, τ ∗). Suppose that
‖X0‖L2 ≤ ‖Q‖L2 . Then, P-a.s. for any function φ ∈ W 1,∞ and for any t ∈ [0, τ ∗) we have

∣∣∣∣Im
∫

X(t)∇X(t) · ∇φdx

∣∣∣∣ ≤
(
2H(X(t))

∫
|X(t)∇φ|2dx

) 1
2

. (3.7)

Proof Thanks to the conservation law of mass, we adapt the arguments as in the proof of [3,
Lemma 2.1]. On one hand, by (3.6) and the conservation of mass, for any α ∈ R,

H(eiαφX(t)) ≥ 1

2

⎛

⎝1 −
(‖eiαφX(t)‖L2

‖Q‖L2

) 4
d

⎞

⎠ ‖∇(eiαφX(t))‖2L2

≥ 1

2

(
1 −

(‖X0‖L2

‖Q‖L2

) 4
d
)

‖∇(eiαφX(t))‖2L2 ≥ 0.

On the other hand, a straightforward expansion shows that

H(eiαφX(t)) = 1

2
‖∇φX(t)‖2L2α

2 − α

(
Im

∫
X(t)∇X(t) · ∇φdx

)
+ H(X(t)).

Thus, we arrive at

1

2
‖∇φX(t)‖2L2α

2 − α

(
Im

∫
X(t)∇X(t) · ∇φdx

)
+ H(X(t)) ≥ 0,

which yields (3.7) due to the arbitrariness of α. ��
Lemma 3.10 (Control of Hamiltonian) Let X be the solution to (SNLS) on [0, τ ∗). Suppose
that ‖X0‖L2 ≤ ‖Q‖L2 . Then, for any T > 0,

E sup
t∈[0,τ∗∧T )

H(X(t)) ≤ C(T ) < ∞. (3.8)

In particular,
sup

t∈[0,τ∗∧T )

H(X(t)) < ∞, P-a.s. (3.9)

We remark that unlike in the NLS case, the Hamiltonian fails to be conserved in the
stochastic case. Lemma 3.10 shows that the finiteness of the Hamiltonian can be derived in
every bounded time regime, which is sufficient for the blow-up analysis.

Proof of Lemma 3.10 As in [5, Theorem 3.1] we have the evolution formula of the Hamilto-
nian

H(X(t)) = H(X0) +
N∑

l=1

∫ t

0

1

2
‖∇φl X(s)‖2L2ds −

N∑

l=1

∫ t

0
Im〈∇φl X(s),∇X(s)〉2dBl(s)

=: H(X0) + H1(t) + H2(t). (3.10)

Note that, by the conservation law of mass,

E sup
s∈[0,τ∗∧t)

H1(s) ≤ 1

2

(
N∑

l=1

‖∇φl‖2L∞

)
‖X0‖2L2 t .
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Moreover, by the Burkholder–Davis–Gundy inequality and the Banica type inequality (3.7),

E sup
s∈[0,τ∗∧t)

|H2(s)| ≤ CE

(∫ τ∗∧t

0

N∑

l=1

|Im〈∇φl X(s),∇X(s)〉2|2ds
) 1

2

≤ √
2CE

(∫ τ∗∧t

0

N∑

l=1

H(X(s))‖X(s)∇φl‖2L2ds

) 1
2

≤ √
2C‖X0‖L2

(
N∑

l=1

‖∇φl‖2L∞

) 1
2

E

(∫ τ∗∧t

0
H(X(s))ds

) 1
2

.

Note that H(X(s)) ≥ 0 for any s < τ ∗, due to Lemma 3.8 and the fact that ‖X(s)‖L2 =
‖X0‖L2 ≤ ‖Q‖L2 .

Thus, plugging the estimates above into (3.10) we get that

E sup
s∈[0,τ∗∧t)

H(X(s)) ≤ CT + CE

(∫ t

0
sup

r∈[0,τ∗∧s)
H(X(r))ds

) 1
2

≤ C(1 + T ) + C
∫ t

0
E sup

r∈[0,τ∗∧s)
H(X(r))ds, t ∈ [0, T ],

which along with the Gronwall inequality implies that

E sup
t∈[0,τ∗∧T )

H(X(t)) ≤ C(1 + T )eCT < ∞,

thereby yielding (3.8) and finishing the proof. ��
We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1 Set λ(t) := ‖∇Q‖L2‖∇X(t)‖L2 and rescale Xλ(t, x) := λ(t)
d
2 X(t, λ(t)x), t ∈

[0, τ ∗), x ∈ R
d . Then, for any t ∈ [0, τ ∗),

‖Xλ(t)‖2L2 = ‖X(t)‖2L2 = ‖Q‖2L2 , ‖∇Xλ(t)‖2L2 = λ(t)2‖∇X(t)‖2L2 = ‖∇Q‖2L2 . (3.11)

In view of (1.3) and (3.10), we deduce that for t ∈ [0, τ ∗),

H(Xλ(t))=λ2(t)H(X(t))

=‖∇Q‖2L2

(
H(X0)

‖∇X(t)‖2
L2

+ 1

2

N∑

l=1

∫ t
0 ‖∇φl X(s)‖2

L2ds

‖∇X(t)‖2
L2

− M(t)

‖∇X(t)‖2
L2

)
, (3.12)

where

M(t) :=
N∑

l=1

∫ t

0
Im〈∇φl X(s),∇X(s)〉2dBl(s).

Note that since
∫ t
0 ‖∇φl X(t)‖2

L2ds ≤ ‖∇φl‖2L∞‖X0‖2L2 t and ‖∇X(t)‖L2 → ∞ as t → τ ∗,

‖∇Q‖2L2

(
H(X0)

‖∇X(t)‖2
L2

+ 1

2

N∑

l=1

∫ t
0 ‖∇φl X(s)‖2

L2ds

‖∇X(t)‖2
L2

)
→ 0 as t → τ ∗. (3.13)
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Regarding the term M(t), using the time-change for martingales (see e.g. [42, Theo-
rem 16.4]) we deduce that there exists a Brownian motion B̃ such that

M(t) = B̃(〈M〉t ), t ∈ (0, τ ∗), a.s., (3.14)

where 〈M〉 denotes the quadratic variation process of M , i.e.,

〈M〉t =
N∑

l=1

∫ t

0
(Im〈∇φl X(s),∇X(s)〉2)2ds, t ∈ [0, τ ∗). (3.15)

Moreover, by the law of iterated logarithm for Brownian motions (see [43, Theorem 11.18]),

lim sup
t→τ∗

|M(t)|√
2〈M〉t ln ln〈M〉t = 1, a.s. (3.16)

Hence,we can take ameasurable setΩ0 ⊆ Ω with full probability such that both (3.14) and
(3.16) hold on Ω0. Below we consider ω ∈ {τ ∗ < ∞} ∩ Ω0. For simplicity, the dependence
on ω is omitted in the notation.

Let tn := inf{t ∈ (0, τ ∗) : ‖∇X(t)‖L2 ≥ n}, n ≥ N0 := 2‖X0‖H1 . Then, using
the continuity of X in H1 and the explosion of ‖∇X(t)‖L2 at τ ∗ we have tn → τ ∗ and
supt∈[0,tn ] ‖∇X(t)‖L2 = ‖∇X(tn)‖L2 .

Then, in the case where sup0≤t<τ∗ 〈M〉t < ∞, using the continuity of Brownian motion
we have sup0≤t<τ∗ |B̃(〈M〉t )| < ∞, and thus

|M(t)|
‖∇X(t)‖2

L2

≤ sup0≤t<τ∗ |B̃(〈M〉t )|
‖∇X(t)‖2

L2

→ 0 as t → τ ∗. (3.17)

Moreover, in the case where 〈M〉t → ∞ as t → τ ∗, by (3.15) and Hölder’s inequality,

〈M〉tn ≤
N∑

l=1

‖∇φl‖2L∞‖X0‖2L2

∫ tn

0
‖∇X(s)‖2L2ds

≤
N∑

l=1

tn‖∇φl‖2L∞‖X0‖2L2‖∇X(tn)‖2L2 .

which along with (3.16) yields that

lim sup
n→∞

|M(tn)|
‖∇X(tn)‖2L2

≤ lim sup
n→∞

√
2〈M〉tn ln ln〈M〉tn

‖∇X(tn)‖2L2

≤ C lim sup
n→∞

√
ln ln ‖∇X(tn)‖L2

‖∇X(tn)‖L2
= 0. (3.18)

Thus, we conclude from (3.17) and (3.18) that

M(tn)

‖∇X(tn)‖2L2

→ 0 as n → ∞.

Taking into account (3.12) and (3.13), we obtain that the Hamiltonian of the rescaled solution
tends to zero along the sequence {tn}, namely,

lim
n→∞ H(Xλn (tn)) = 0, (3.19)

where λn := λ(tn) = ‖∇Q‖L2/‖∇X(tn)‖L2 , n ≥ 1.
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Now, it follows from (3.11) and (3.19) that

lim
n→∞

d

4 + 2d
‖Xλn (tn)‖2+

4
d

L2+ 4
d

= lim
n→∞

(
1

2
‖∇Xλn (tn)‖2L2 + H(Xλn (tn))

)
= 1

2
‖∇Q‖2L2 ,

which implies that

lim
n→∞ ‖Xλn (tn)‖L2+ 4

d
=

(
2 + d

d

) d
4+2d ‖∇Q‖

d
2+d

L2 .

Thus, by virtue of Theorem 3.7, we obtain a profile V ∈ H1 and a sequence of concen-
tration points {yn} ⊆ R

d such that up to a subsequence (still denoted by {n})
‖Q‖L2 ≤ ‖V ‖L2 , (3.20)

Xλn (tn, · + yn)⇀V weakly in H1, as n → ∞. (3.21)

In particular, for any A > 0 and R > 0,
∫

|x |≤A
|V (x)|2dx ≤ lim inf

n→∞

∫

|x |≤A
λdn |X(tn, λnx + yn)|2dx

= lim inf
n→∞

∫

|x−yn |≤λn A
|X(tn, x)|2dx

≤ lim inf
n→∞

∫

|x−yn |≤R
|X(tn, x)|2dx, (3.22)

where the last step is due to the fact that λn A ≤ R for n large enough.
Therefore, letting A → ∞ and using (3.20) we obtain (3.1) and finish the proof. ��

3.2 Universality of Stochastic Critical Mass Blow-up Profiles

We first recall the variational characterization of the ground state.

Lemma 3.11 (Variational characterization of ground state, [68]) Let v ∈ H1 be such that

‖v‖L2 = ‖Q‖L2 , H(v) = 0.

Then, there exist parameters λ0 ∈ R
+, x0 ∈ R

d and θ0 ∈ R such that

v(x) = λ
d
2
0 Q(λ0x + x0)e

iθ0 , x ∈ R
d .

Now we are prepared to prove Theorem 3.3.

Proof of Theorem 3.3 LetΩ0, tn , yn and the profile V be as in Theorem3.1. Belowwe consider
ω ∈ {τ ∗ < ∞} ∩ Ω0. For simplicity, we suppress the ω dependence in the notation.

We claim that

‖V ‖L2 = ‖Q‖L2 , (3.23)

‖∇V ‖L2 = ‖∇Q‖L2 , (3.24)

H(V ) = 0. (3.25)

For this purpose, using (3.20) and the conservation of mass we note that

‖Xλn (· + yn)‖L2 = ‖X0‖L2 = ‖Q‖L2 ≤ ‖V ‖L2 , (3.26)
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where λn := λ(tn). Moreover, (3.22) yields that,

‖V ‖2L2 ≤ lim inf
n→∞

∫

|x−yn |≤R
|X(tn, x)|2dx ≤ ‖X(tn)‖2L2 = ‖Q‖2L2 . (3.27)

Thus, (3.23) follows immediately from (3.26) and (3.27).
Regarding (3.24) and (3.25), in view of (3.21) and (3.26), we first have

Xλn (tn, · + yn) → V in L2, as n → ∞, (3.28)

which along with the uniform boundedness of ‖∇Xλn (tn)‖L2 , implied by (3.11), and inter-
polation yields the strong convergence in L2+4/d , i.e.,

Xλn (tn, · + yn) → V in L2+ 4
d , as n → ∞. (3.29)

In order to prove the strong convergence in H1, i.e.,

Xλn (tn, · + xn) → V in H1, as n → ∞. (3.30)

We note that, on one hand, by (3.11), (3.19) and (3.29),

‖∇Q‖2L2 = lim
n→∞ ‖∇Xλn (· + yn)‖2L2

= lim
n→∞ 2H(Xλn (· + yn)) + d

d + 2
‖Xλn (· + yn)‖2+

4
d

L2+ 4
d

= d

d + 2
‖V ‖2+

4
d

L2+ 4
d
,

which along with Lemma 3.8 and (3.23) yields

‖∇Q‖2L2 ≤ ‖∇V ‖2L2 .

On the other hand, (3.11) and (3.21) yield that

‖∇V ‖2L2 ≤ lim inf
n→∞ ‖∇Xλn (tn, · + yn)‖2L2 = ‖∇Q‖2L2 . (3.31)

Thus, we obtain
‖∇V ‖2L2 = ‖∇Q‖2L2 = ‖∇Xλn (· + yn)‖2L2 ,

which yields (3.24), and, via (3.21) and (3.28), also gives the strong convergence (3.30) in
H1.

Therefore, combining (3.29) and (3.30), we obtain (3.25), as claimed.
Now, by virtue of (3.23), (3.24), (3.25) and the variational characterization of the ground

state Q in Lemma 3.11, we obtain that there exist x0 ∈ R
d and θ0 ∈ [0, 2π) such that

V (x) = eiθ0Q(x + x0),

which along with (3.30) implies (3.2). The proof is complete. ��
Proof of Corollary 3.4 In order to prove (3.3), it suffices to prove that for any ϕ ∈ C∞

b ,
∫

ϕ(x)|X(tn, x)|2dx − ‖Q‖2L2ϕ(yn) → 0 as n → ∞.

For this purpose, by a change of variables we obtain
∫

ϕ(x)|X(tn, x)|2dx =
∫

ϕ(λnx + yn)|λ
d
2
n X(tn, λnx + yn)|2dx .
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This yields
∣∣∣∣
∫

ϕ(x)|X(tn, x)|2dx − ϕ(yn)‖Q‖2L2

∣∣∣∣

≤
∫

|ϕ(λnx + yn)|
∣∣∣∣|λ

d
2
n X(tn, λnx + yn)|2 − |Q(x)|2

∣∣∣∣ dx

+
∫

|ϕ(λnx + yn) − ϕ(yn)||Q(x)|2dx

≤ 2‖Q‖L2‖ϕ‖L∞‖λ
d
2
n X(tn, λnx + yn)e

iθ(tn) − Q(x)‖L2 + λn‖ϕ′‖L∞
∫

|x ||Q(x)|2dx .

Thus, in view of (3.2), the right-hand side above converges to zero. The proof is complete. ��

3.3 Vanishing of Virial

We take the full probability set Ω0 such that Theorem 3.3, Corollary 3.4 and Lemma 3.10
hold on Ω0. For every ω ∈ Ω0, let {tn(ω)} and {yn(ω)} be as in Theorem 3.3. Up to a
subsequence (still denoted by n), we may assume that yn(ω) → y∗(ω), y∗(ω) may be the
Alexandrov point of Rd . In the case where |y∗(ω)| < ∞, we set

Vm(t)(ω) :=
∫

θm(x − y∗(ω))|X(t)(ω)|2dx, (3.32)

where θm(x) := m2θ( x
m ), θ ∈ C∞

0 satisfies θ(x) = |x |2 for x ∈ B(0, 1), |∇θ(x)|2 ≤ Cθ(x)
for x ∈ R

d , C > 0.
In order to analyze the virial functional (3.32), we shall derive an evolution formula on a

full probability set in Lemma 3.13 below. The delicate fact is that, it is unclear whether y∗
is measurable with respect to ω, so the application of Itô’s formula as in [7] is not possible
directly. Below we show that the evolution formula can be derived for Vm(t), but with y∗(ω)

replaced by any fixed y ∈ R
d . The point is that this formula holds for any y ∈ R

d on a
universal full probability set Ω1, but the null set Ω \ Ω1 is independent of y. Thus, one can
eventually replace y by y∗(ω) in the evolution formula.

The proof is based on amollification procedure. Letϕ ∈ C∞
c be a real-valued non-negative

function with unit integral, ϕε(x) := ε−dϕ( x
ε
), x ∈ R

d . Set hε := h ∗ ϕε for any locally

integrable function h mollified by ϕε , f ε(X) := (|X | 4d X)ε and f (X) := |X | 4d X . We have
that P-a.s. for any t ∈ (0, τ ∗) and any q ∈ (1,∞), as ε → 0,

Xε
0 → X0 in L2, Xε → X ∈ Lq(0, t; H1) ∩ L2+ 4

d (0, t; L2+ 4
d ),

f ε(X) → f (X) in L
2d+4
d+4 (0, t; L 2d+4

d+4 ). (3.33)

Lemma 3.12 Consider the situation as in Theorem 3.6. Then, for any sequence εn → 0when
n → ∞, there exists a further subsequence {εn j } and a full probability set Ω̃0, such that for
any ω ∈ Ω̃0 and any y ∈ R

d ∩ Q
d ,

N∑

l=1

∣∣∣∣
∫ t

0

∫
θm(x − y)X

εn j (s, x)((Xφl)
εn j − Xεn j φl)(s, x)dxdBl(s)

∣∣∣∣ → 0

as εn j → 0, t ∈ (0, τ ∗). (3.34)
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Proof Fix 1 ≤ l ≤ N . For any y ∈ R
d ∩Q

d and any M ≥ 1, we use the Burkholder–Davis–
Gundy inequality and the conservation of mass to derive

E sup
s∈[0,τ∗∧M)

∣∣∣∣
∫ s

0

∫
θm(x − y)X

εn
(s, x)((Xφl)

εn − Xεnφl)(s, x)dxdBl(s)

∣∣∣∣
2

= E

(∫ τ∗∧M

0

∣∣∣∣
∫

θm(x − y)X
εn

(s, x)((Xφl)
εn − Xεnφl)(s, x)dx

∣∣∣∣
2

ds

) 1
2

� m2‖X0‖L2E

(∫ τ∗∧M

0
‖(Xφl)

εn (s) − Xεn (s)φl‖2L2ds

) 1
2

.

Since P-a.s. for any s ∈ (0, τ ∗ ∧ M),

‖(Xφl)
εn (s) − Xεn (s)φl‖2L2 → 0 as εn → 0,

and
‖(Xφl)

εn (s) − Xεn (s)φl‖2L2 � ‖φl‖2L∞‖X(s)‖2L2 � ‖φl‖2L∞‖X0‖2L2 ,

the dominated convergence theorem gives

E sup
s∈[0,τ∗∧M)

∣∣∣∣
∫ s

0

∫
θm(x − y)X

εn
(s, x)((Xφl)

εn − Xεnφl)(s, x)dxdBl(s)

∣∣∣∣
2

→ 0 as εn → 0,

which implies that

sup
s∈[0,τ∗∧M)

∣∣∣∣
∫ s

0

∫
θm(x − y)X

εn
(s, x)((Xφl)

εn − Xεnφl)(s, x)dxdBl(s)

∣∣∣∣
2

→ 0

in probability, as εn → 0.

It follows that for any y ∈ R
d ∩ Q

d and any M ≥ 1, there exists a subsequence {εn j } such
that P-a.s.,

sup
s∈[0,τ∗∧M)

∣∣∣∣
∫ s

0

∫
θm(x−y)X

εn j (s, x)((Xφl)
εn j −Xεn j φl)(s, x)dxdBl(s)

∣∣∣∣
2

→0 as εn j →0.

(3.35)
Using a diagonal argument we can select a further subsequence, still denoted by {εn j }, and
a full probability set Ω̃0, such that for any y ∈ R

d ∩ Q
d and any M ≥ 1, the convergence

(3.35) holds on Ω̃0. Taking into account that

{t < τ ∗} =
⋃

M≥1

{t < τ ∗ ∧ M},

we thus obtain (3.34) and finish the proof. ��
The key evolution formula of the virial Vm defined in (3.32) is contained in Lemma 3.13

below.

Lemma 3.13 (Evolution of virial) Consider the situation as in Theorem 3.6. Suppose that
|y∗| < ∞. Then, there exists a measurable set Ω1 with full probability such that for every
ω ∈ Ω1,

Vm(t)(ω) = Vm(0) − 2Im
∫ t

0
〈∇θm(· − y∗(ω))X(s)(ω),∇X(s)(ω)〉ds, 0 ≤ t < τ ∗(ω).

(3.36)
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Proof Taking convolution of both sides of (SNLS) with the mollifier ϕε we derive from
(SNLS) that for every x ∈ R

d ,

Xε(t, x) =
∫ t

0
(i�Xε+i f ε(X)−(μX)ε)(s, x)ds+

N∑

l=1

∫ t

0
i Xφε

l (s, x)dBl(s), t ∈ (0, τ ∗).

This along with the product rule yields

|Xε(t, x)|2 = |Xε(0, x)|2 + 2Re
∫ t

0
[Xε

(i�Xε + i f ε(X) − (μX)ε)](s, x)ds

+
N∑

l=1

∫ t

0
|(Xφl)

ε(s, x)|2ds

−2Im
N∑

l=1

∫ t

0
X

ε
(s, x)(Xφl)

ε(s, x)dBl(s), t ∈ (0, τ ∗), P-a.s. (3.37)

Since both sides are continuous in x , we can find a universal null set Ñ such that for every
ω ∈ Ω \ Ñ , (3.37) holds for any x ∈ R

d .
Thus, we can take a full probability set Ω1 such that Theorem 3.3, Lemmas 3.10 and 3.12

and (3.37) hold on Ω1. Below we consider ω ∈ Ω1 and omit the argument ω in the notation
for simplicity.

For any y ∈ R
d ∩ Q

d , set

V ε
m,y(t) :=

∫
θm(x − y)|Xε(t, x)|2dx, t ∈ (0, τ ∗).

Using (3.37) we have the following identity on Ω1:

V ε
m,y(t) =

∫
θm(x − y)|Xε(0, x)|2dx +

N∑

l=1

∫
θm(x − y)

∫ t

0
|(Xφl)

ε(s, x)|2dsdx

+2Re
∫

θm(x − y)
∫ t

0

[
X

ε
(i�Xε + i f (X)ε − (μX)ε)

]
(s, x)dsdx

−2
N∑

l=1

Im
∫

θm(x − y)
∫ t

0
X

ε
(s, x)(Xφl)

ε(s, x)dBl(s)dx

=:
∫

θm(x−y)|Xε(0, x)|2dx+ I ε
1,y(t)+ I ε

2,y(t) + I ε
3,y(t), t ∈ (0, τ ∗). (3.38)

Since ‖θm(· − y)‖L∞ � m2, we infer from (3.33) that
∫

θm(x − y)|Xε(0, x)|2dx →
∫

θm(x − y)|X(0, x)|2dx = Vm(0) as ε → 0. (3.39)

Below we pass to the limit ε → 0 for each term I ε
j,y(t), 1 ≤ j ≤ 3.

First, using (3.33) again we have

I ε
1,y(t) → 2

∫
θm(x − y)

∫ t

0
μ(x)|X(s, x)|2dsdx = 2

∫ t

0

∫
θm(x − y)μ(x)|X(s, x)|2dxds,

(3.40)
where t ∈ (0, τ ∗) and the last step is due to the Fubini theorem.
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Regarding the second term I ε
2,y(t), using Fubini’s theorem and the integration-by-parts

formula we derive

2Re
∫

θm(x − y)
∫ t

0
X

ε
(s, x)i�Xε(s, x)dsdx

= 2Im
∫ t

0

∫
∇Xε(s, x) · ∇θm(x − y)X

ε
(s, x)dxds,

which along with (3.33) and the fact that ‖∇θm(· − y)‖L∞ � m yields that as ε → 0,

2Re
∫

θm(x − y)
∫ t

0
X

ε
(s, x)i�Xε(s, x)dsdx

→ 2Im
∫ t

0

∫
∇X(s, x) · ∇θm(x − y)X(s, x)dxds. (3.41)

Moreover, it follows from (3.33) again that

2Re
∫

θm(x − y)
∫ t

0
X

ε
(s, x)i f (X)ε(s, x)dsdx

→ −2Im
∫

θm(x − y)
∫ t

0
X(s, x) f (X)(s, x)dsdx = 0 (3.42)

and

2Re
∫

θm(x − y)
∫ t

0
X

ε
(s, x)(μX)ε(s, x)dsdx → 2Re

∫ t

0

∫
θm(x − y)μ(x)|X(s, x)|2dxds.

(3.43)
Thus, it follows from (3.41), (3.42) and (3.43) that as ε → 0,

I ε
2,y(t) → 2Im

∫ t

0

∫
∇X(s, x) · ∇θm(x − y)X(s, x)dxds

−2Re
∫ t

0

∫
θm(x − y)μ(x)|X(s, x)|2dxds, t ∈ (0, τ ∗). (3.44)

Finally, for the last stochastic term I ε
3,y(t). Since

Im
∫

θm(x − y)X
ε
(s, x)Xε(s, x)φl(x)dx = 0,

using the stochastic Fubini theorem and Lemma 3.12 we obtain that there exists a sequence
{εn} such that the following convergence holds on a full probability set Ω1: for any y ∈
R
d ∩ Q

d and any t ∈ (0, τ ∗),

I εn
3,y(t)=−2

N∑

l=1

Im
∫ t

0

∫
θm(x−y)X

εn
(s, x)((Xφl)

εn −Xεnφl)(s, x)dxdBl(s)→0

as εn → 0. (3.45)

Therefore, we conclude from (3.38), (3.39), (3.40), (3.44) and (3.45) that on the set Ω1,
as εn → 0, for any y ∈ R

d ∩ Q
d and any t ∈ (0, τ ∗),

V εn
m,y(t) →

∫
θm(x − y)|X(0, x)|2dx + 2Im

∫ t

0

∫
∇X(s, x) · ∇θm(x − y)X(s, x)dxds.
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Taking into account

V εn
m,y(t) →

∫
θm(x − y)|X(t, x)|2dx, t ∈ (0, τ ∗),

we obtain that for every ω ∈ Ω1, it holds that for any y ∈ R
d ∩ Q

d ,
∫

θm(x − y)|X(t, x)(ω)|2dx =
∫

θm(x − y)|X(0, x)|2dx

−2Im
∫ t

0
〈∇θm(· − y)X(s)(ω),∇X(s)(ω)〉ds, t ∈ (0, τ ∗(ω)). (3.46)

We see that both sides of (3.46) are continuous in y. Actually, for any yn → y, n → ∞,
since X(ω) ∈ C([0, t]; H1), t ∈ (0, τ ∗(ω)), we have

|X(ω)∇θm(x − y) · ∇X(ω)| ≤ Cm|X(ω)||∇X(ω)| ∈ L1((0, t) × R
d),

where the constantC is independent of {yn}. Taking into account∇θm(x−yn) → ∇θm(x−y)
and using the dominated convergence theorem we get

∫ t

0
〈∇θm(· − yn)X(s)(ω),∇X(s)(ω)〉ds

→
∫ t

0
〈∇θm(· − y)X(s)(ω),∇X(s)(ω)〉ds as n → ∞.

Similar arguments also apply to the other two terms in (3.46).
Thus, we obtain that, on the set Ω1, (3.46) holds for any y ∈ R

d . In particular, the null set
is independent of y ∈ R

d . Therefore, we can replace y by y∗(ω) in (3.46), where ω ∈ Ω1,
and prove (3.36). ��

Next, we show the boundedness of the virial of solutions, based on the control of the
Hamiltonian in Lemma 3.10.

Lemma 3.14 (Control of virial) Consider the situation as in Theorem 3.6. Set

V (t) :=
∫

|x |2|X(t, x)|2dx, t ∈ [0, τ ∗).

Then, there exists a full probability set Ω1 such that for every ω ∈ Ω1,

sup
t∈[0,τ∗(ω))

V (t)(ω) < ∞. (3.47)

Proof We take the full probability setsΩ1 as in the proof of Lemma 3.13, and so Theorem 3.3,
Corollary 3.4 and Lemmas 3.10 and 3.13 hold on Ω1. Below we consider ω ∈ Ω1 and omit
the argument ω.

Recall that {tn} and {yn} are as in Theorem 3.3 and yn → y∗, where y∗ may be the
Alexandrov point of Rd . In the case where |y∗| < ∞, applying Lemma 3.13 we have

Vm(X(t)) = Vm(X0) − 2Im
∫ t

0
〈∇θm(· − y∗)X(s),∇X(s)〉ds, 0 ≤ t < τ ∗.

By (3.7), (3.9) and |∇θm |2 ≤ Cθm ,
∣∣∣∣
d

dt
Vm(t)

∣∣∣∣ ≤ C(H(X(t))‖∇θm(x − y∗)X(t)‖2L2)
1
2 ≤ C(τ ∗)V

1
2
m (t),
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where C(τ ∗) is independent of m. This yields that
∣∣∣
√
Vm(t) − √

Vm(0)
∣∣∣ ≤ 1

2
C(τ ∗)t, t ∈ [0, τ ∗). (3.48)

In particular, we have the following uniform bound for all m, n ≥ 1,

√
Vm(0) ≤ 1

2
C(τ ∗)τ ∗ + √

Vm(tn).

Applying Corollary 3.4 we infer that Vm(tn) → 0 as n → ∞, and so the following uniform-
in-m boundedness holds √

Vm(0) ≤ 1

2
C(τ ∗)τ ∗ < ∞. (3.49)

In particular, since θm(x − y∗) → |x − y∗|2 as m → ∞, Fatou’s lemma yields
∫

|x − y∗|2|X0|2dx ≤ 1

4
C(τ ∗)2(τ ∗)2 < ∞.

Thus, using (3.48), (3.49), the conservation of mass and Fatou’s lemma again we obtain

V (t) ≤ |y∗|2‖X0‖2L2 +
∫

|x − y∗|2|X(t)|2dx
≤ |y∗|2‖X0‖2L2 + lim inf

m→∞ Vm(t)

≤ |y∗|2‖X0‖2L2 + lim inf
m→∞

(
1

2
C(τ ∗)τ ∗ + √

Vm(0)

)2

≤ |y∗|2‖X0‖2L2 + (C(τ ∗)τ ∗)2 < ∞.

thereby yielding (3.47) in the case where |y∗| < ∞.
The proof for the case where y∗ is the Alexandrov point of Rd is similar. In this case, we

modify Vm(t) by Ṽm(t) := ∫
θm(x)|X(t, x)|2dx . Then, estimate (3.48) still holds for Ṽm(t),

and by Corollary 3.4, Ṽm(tn) → 0 as n → ∞. Thus, using similar arguments as those below
(3.48) we obtain (3.47) and finish the proof. ��
Proof of Theorem 3.6 Below we perform the analysis on the full probability set Ω1 defined
in the proof of Lemma 3.13. Recall that {yn} are the concentration points as in Corollary 3.4
and yn → y∗.

We claim that

y∗(ω) = limn→∞
∫
x |X(tn(ω), x)(ω)|2dx

‖Q‖2
L2

. (3.50)

To this end, suppose that {yn} converges to infinity, then for R large enough and for n very
large, {x : |x − yn | ≤ 1} ⊆ {|x | ≥ R}, which, via the L2 concentration in Corollary 3.4,
yields that

‖Q‖2L2 ≤
∫

|x−yn |≤1
|X(tn, x)|2dx ≤

∫

|x |>R
|X(tn, x)|2dx .

But on the other hand, by the finiteness of the virial (3.47),
∫

|x |>R
|X(tn, x)|2dx ≤ V (tn)

R2 ≤ supt∈[0,τ∗) V (t)

R2 ≤ ε

for R large enough, which leads to a contradiction. It follows that |y∗| < ∞.
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Hence, we may take R large enough such that {yn} ⊆ BR(0) := {x : |x | ≤ R}. Let
χR ∈ C∞

0 be a cut-off function such that χR(x) = 1 for |x | ≤ R, and χR(x) = 0 for
|x | ≥ R + 1. In particular, χR(yn)yn = yn for all n ≥ 1. Then, we estimate
∣∣∣∣
∫

|X(tn)|2xdx − ‖Q‖2L2 yn

∣∣∣∣≤
∣∣∣∣
∫

|X(tn)|2(1 − χR(x))xdx

∣∣∣∣

+
∣∣∣∣
∫

|X(tn)|2χR(x)xdx − χR(yn)yn‖Q‖2L2

∣∣∣∣

≤ 1

R
sup

t∈[0,τ∗)
V (t)+

∣∣∣∣
∫

|X(tn)|2χR(x)xdx−χR(yn)yn‖Q‖2L2

∣∣∣∣ .

In view of Corollary 3.4, the second term above tends to zero, which yields that

lim sup
n→∞

∣∣∣∣
∫

|X(tn)|2xdx − ‖Q‖2L2 xn

∣∣∣∣ ≤ 1

R
sup

t∈[0,τ∗)
V (t).

Then, using (3.47) and letting R → ∞ we obtain
∫

|X(tn)|2xdx − ‖Q‖2L2 yn → 0 as n → ∞. (3.51)

Moreover, since {X(t)} is a continuous and adapted process in H1, arguing as in the proof
of [7, Lemma 4.2] we have that for any n,m ≥ 1,

∣∣∣∣
∫

|X(tm)|2xdx −
∫

|X(tn)|2xdx
∣∣∣∣ ≤ 2

∫ tm

tn

∣∣∣∣Im
∫

X(s)∇X(s)dx

∣∣∣∣ ds

≤ C
∫ tm

tn

(
H(X(s))‖X(s)‖2L2

) 1
2 ds

≤ C(τ ∗)‖X0‖L2 |tm − tn | → 0,

where the last two steps follow from Lemmas 3.9 and 3.10. This yields that the limit
limn→∞

∫ |X(tn)|2xdx exists. Thus, taking into account (3.51) we obtain (3.50), as claimed.
Now, let Vm(t) := ∫

θm(x − y∗)|X(t, x)|2dx . Arguing as in the proof of (3.48) we obtain
that for any tn 
= tl < τ ∗,

∣∣∣
√
Vm(tn) − √

Vm(tl)
∣∣∣ ≤ 1

2
C(τ ∗)|tn − tl |.

Since by Corollary 3.4, Vm(tl) → 0 as l → ∞, we infer that

√
Vm(tn) ≤ 1

2
C(τ ∗)(τ ∗ − tn)

with C(τ ∗) independent of m and n. Then, Fatou’s lemma yields that as n → ∞,
∫

|x − y∗|2|X(tn)|2dx ≤ lim inf
m→∞ Vm(X(tn)) ≤ 1

4
C(τ ∗)2(τ ∗ − tn)

2 → 0, (3.52)

thereby yielding (3.4).
Furthermore, by the uncertainty principle,

∫
|X(tn, x + y∗)|2dx ≤ C

∫
|x |2|X(tn, x + y∗)|2dx

∫
|∇X(tn, x + y∗)|2dx,
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which along with the conservation of mass and (3.52) implies that

‖Q‖2L2 =
∫

|X(tn, x)|2dx ≤ C
∫

|x − y∗|2|X(tn, x)|2dx
∫

|∇X(tn, x)|2dx

≤ 1

4
CC2(τ ∗)(τ ∗ − tn)

2‖∇X(tn)‖2L2 ,

thereby yielding (3.5). Therefore, the proof of Theorem 3.6 is complete. ��
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