
LOCAL LAWS FOR SPARSE SAMPLE COVARIANCE MATRICES
WITHOUT THE TRUNCATION CONDITION
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Abstract. We consider sparse sample covariance matrices 1
npn

XX∗, where X is a
sparse matrix of order n × m with the sparse probability pn. We prove the local
Marchenko–Pastur law in some complex domain assuming that npn > logβ n, β > 0
and some (4 + δ)-moment condition is fulfilled, δ > 0.

1. Introduction

Sample covariance matrices are of great practical importance for problems of multi-
variate statistical analysis and such rapidly developing areas as the theory of wireless
communication and deep learning. Another significant area of application of sample
covariance matrices is graph theory. The adjacency matrix of an undirected graph is
asymmetric, so the study of its singular values leads to the sample covariance matrix.
If we assume that the probability pn of having graph edges tends to zero as the number
of vertices n increases to infinity, we get to the concept of sparse random matrices.

Sparse Wigner random matrices have been considered in a number of papers (see
[1, 2, 3, 4]) where many results have been obtained. With the symmetrization of
sample covariance matrices it is possible to apply this results in the case when the
observation matrix is square. However, when the sample size is greater than observation
dimension, the spectral limit distribution has the singularity in zero, which requires
different approaches.

The limit spectral distribution of sparse sample covariance matrices with sparsity
npn ∼ nε, (ε > 0 is arbitrary small) was studied in [5, 6]. In particular, a local
law was proved under the assumption that the matrix elements satisfy the moments
condition E |Xjk|q ≤ (Cq)cq. In the paper [7] the case of the sparsity npn ∼ logα n, for
some α > 1 was considered, assuming that the moments of the matrix elements satisfy
the conditions E |Xjk|4+δ ≤ C < ∞, |Xjk| ≤ c1(npn)

1
2
−κ, for some κ > 0. Under

this assumptions the local Marchenko–Pastur law was proved in some complex domain
z ∈ D with Im z > v0 > 0, where v0 is of order log4 n/n and the domain bound not
depend on pn while npn > logβ n.

This work is devoted to the case, when the elements Xjk are not truncated, and only
the conditions E |Xjk|4+δ ≤ C < ∞, npn ∼ logα n, for some α > 1 are fulfilled. We
prove the local Marchenko–Pastur law in some complex domain u + iv ∈ Dµ with the
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real part contained in the support of the Marchenko–Pastur distribution and separated
from the support ends.

2. Main results

Let m = m(n), m ≥ n. Consider independent identically distributed zero mean
random variables Xjk, 1 ≤ j ≤ n, 1 ≤ k ≤ m with EX2

jk = 1 and independent of that
set independent Bernoulli random variables ξjk, 1 ≤ j ≤ n, 1 ≤ k ≤ m with E ξjk = pn.
In addition suppose that npn →∞ as n→∞.

Observe the sequence of sparse sample covariance random matrices

X =
1

√
mpn

(ξjkXjk)1≤j≤n,1≤k≤m.

Denote by s1 ≥ · · · ≥ sn the singular values of X and define the symmetrized empirical
spectral distribution function (ESD) of the sample covariance matrix W = XX∗:

Fn(x) =
1

2n

n∑
j=1

(
I{sj ≤ x}+ I{−sj ≤ x}

)
,

where I{A} stands for the event A indicator.
Note that Fn(x) is the ESD of the block matrix

V =

[
On X
X∗ Om

]
,

where Ok is k × k matrix with zero elements.
Denote R = R(z) the resolvent matrix of V:

R = (V − zI)−1.

Let y = y(n) = n
m

and Gy(x) — the symmetrized Marchenko–Pastur distribution
function with the density

gy(x) =
1

2πy|x|
√

(x2 − a2)(b2 − x2) I{a2 ≤ x2 ≤ b2},

where a = 1 − √y, b = 1 +
√
y. We shall assume that y ≤ y0 < 1 for n,m ≥ 1.

Denote by Sy(z) the Stieltjes transform of the distribution function Gy(x) and sn(z)
the Stieltjes transform of the distribution function Fn(x). We have

Sy(z) =
−z + 1−y

z
+
√

(z − 1−y
z

)2 − 4y

2y
,

sn(z) =
1

2n

[ n∑
j=1

1

sj − z
+

n∑
j=1

1

−sj − z

]
=

1

n

n∑
j=1

z

s2j − z2
=

1

n

n∑
j=1

Rjj.

The last equality follows from Schur complement (see [7, Section 3]). Put

b(z) = z − 1− y
z

+ 2ySy(z) = − 1

Sy(z)
+ ySy(z). (2.1)
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In this paper we prove so called Marchenko–Pastur law for sparse sample covariance
matrices. Let

Λn := Λn(z) = sn(z)− Sy(z).

For constant δ > 0 define the value κ = κ(δ) := δ
2(4+δ)

and consider the following
conditions:

• the condition (C0): for some c0 > 0 and all n ≥ 1 we have npn ≥ c0 log
2
κ n;

• the condition (C1): for some δ > 0 we have µ4+δ := E |X11|4+δ <∞;
• the condition (C2): there exists a constant c1 > 0 such that for all 1 ≤ j ≤ n,

1 ≤ k ≤ m we have |Xjk| ≤ c1(npn)
1
2
−κ almost surely.

Introduce the quantity v0 = v0(a0) := a0n
−1 log4 n with some positive constant a0,

and define the region

D(a0) := {z = u+ iv : (1−√y − v)+ ≤ |u| ≤ 1 +
√
y + v, V ≥ v ≥ v0}.

Let
Γn = 2C0 log n

( 1

nv
+ min

{ 1

np|b(z)|
,

1
√
np

})
,

d(z) =
Im b(z)

|b(z)|
,

and
dn(z) :=

1

nv

(
d(z) +

log n

nv|b(z)|

)
+

1

np|b(z)|
.

Put

Tn :=I{|b(z)| ≥ Γn}

(
dn(z) + d

3
4
n (z)

1

(nv)
1
4

+ d
1
2
n (z)

1

(nv)
1
2

)

+ I{|b(z)| ≤ Γn}

((
Γn
nv

) 1
2

+ Γ
1
2
n

(
Γ

1
2
n√
nv

+
1
√
np

))
.

In the paper [7], assuming that the conditions (C0)–(C2) are satisfied, the next theorem
was proved:

Theorem 2.1. Assume that the conditions (C0)–(C2) are satisfied. Then for any
Q ≥ 1 there exist positive constants C = C(Q, δ, µ4+δ, c0, c1), K = K(Q, δ, µ4+δ, c0, c1),
a0 = a0(Q, δ, µ4+δ, c0, c1) such that for z ∈ D(a0)

Pr
{
|Λn| ≥ KTn

}
≤ Cn−Q.

This work is devoted to the case, when the elements Xjk are not truncated, and only
the conditions (C0)–(C1) are fulfilled. Let

Dµ = {z = u+ iv : 1−√y + µ ≤ |u| ≤ 1 +
√
y − µ, V ≥ v ≥ v0},

for some µ > 0. Note that |b(z)| are bounded in domain Dµ, therefore

Γn = C0 log n
( 1

nv
+

1

np

)
. (2.2)

Without assumption (C1) we get the following result.
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Theorem 2.2. Assume that the conditions (C0)–(C1) are satisfied. Then for any
µ > 0 and Q ≥ 1 there exist constants K = K(Q, δ, µ4+δ, µ), a0 = a0(Q, δ, µ4+δ, µ)
depending on Q, δ, µ4+δ and µ such that

Pr{|Λn| ≤ KΓn} ≥ 1− n−Q,

for all z ∈ Dµ and Γn defined in (2.2).

Organization. The proof of the theorem is based on papers [8] and [7]. In Section
3 we follow [7]. In our case the domain Dµ is separated from the ends of the spectrum.
This makes it possible to significantly simplify the estimates obtained there and so to
prove Theorem 2.2. In Section 4, we show that the elements Rjk of the resolvent are
bounded. For this, following [8], we introduce the so-called admissible and inadmissible
configurations. Assuming that the configuration is admissible, we obtain conditional
estimates for Rjk. Further, taking into account the small probability of inadmissible
configurations, we obtain the estimate for the resolvent elements. In the Section 5 we
state and prove some auxiliary results.

Notation. We use C for large universal constants which maybe different from line by
line. Sy(z) and sn(z) denote the Stieltjes transforms of the symmetrized Marchenko–
Pastur distribution and the spectral distribution function correspondingly. R(z) de-
notes the resolvent matrix. Let T = {1, . . . , n}, J ⊂ T and T(1) = {1, . . . ,m}, K ⊂ T(1).
Consider σ-algebras M(J,K), generated by the elements of X with the exception of the
rows with number from J and the columns with number from K. We will write for
brevity M

(J,K)
j instead of M(J∪{j},K) and M

(J,K)
l+n instead of M(J,K∪{l}). By symbol X(J,K)

we denote the matrix X which rows with numbers in J are deleted, and which columns
with numbers in K are deleted too. In a similar way, we will denote all objects defined
via X(J,K), such that the resolvent matrix R(J,K), the ESD Stieltjes transform s

(J,K)
n ,

Λ
(J,K)
n and so on. The symbol Ej denotes the conditional expectation with respect

to the σ-algebra Mj, and El+n — with respect to σ-algebra Ml+n. Let Jc = T \ J,
Kc = T(1) \K.

3. Proof of Theorem 2.2

For the diagonal elements of R we can write

R
(J,K)
jj = Sy(z)

(
1− ε(J,K)

j R
(J,K)
jj + yΛ(J,K)

n R
(J,K)
jj

)
, (3.1)

for j ∈ Jc, and

R
(J,K)
l+n,l+n = − 1

z + ySy(z)

(
1− ε(J,K)

l+n R
(J,K)
l+n,l+n + yΛ(J,K)

n R
(J,K)
l+n,l+n

)
, (3.2)
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for l ∈ Kc. Correction terms ε(J,K)
j for j ∈ Jc and ε(J,K)

l+n for l ∈ Kc are defined as

ε
(J,K)
j = ε

(J,K)
j1 + · · ·+ ε

(J,K)
j3 ,

ε
(J,K)
j1 =

1

m

m∑
l=1

R
(J,K)
l+n,l+n −

1

m

m∑
l=1

R
(J∪{j},K)
l+n,l+n ,

ε
(J,K)
j2 =

1

mp

m∑
l=1

(X2
jlξjl − p)R

(J∪{j},K)
l+n,l+n ,

ε
(J,K)
j3 =

1

mp

∑
1≤l 6=k≤m

XjlXjkξjlξjkR
(J∪{j},K)
l+n,k+n ;

and

ε
(J,K)
l+n = ε

(J,K)
l+n,1 + · · ·+ ε

(J,K)
l+n,3,

ε
(J,K)
l+n,1 =

1

m

n∑
j=1

R
(J,K)
jj − 1

m

n∑
j=1

R
(J,K∪{l+n})
jj ,

ε
(J,K)
l+n,2 =

1

mp

n∑
j=1

(X2
jlξjl − p)R

(J,K∪{l+n})
jj ,

ε
(J,K)
l+n,3 =

1

mp

∑
1≤j 6=k≤n

XjlXklξjlξklR
(J,K∪{l+n})
jk .

Summing the equation (3.1) (J = ∅, K = ∅), we get the self-consistent equation

sn(z) = Sy(z)(1 + Tn − yΛnsn(z)),

with the error term

Tn =
1

n

n∑
j=1

εjRjj.

The proof of Theorem 2.2 is based on the following theorem.

Theorem 3.1. Under the conditions of the Theorem 2.2, for any µ > 0, there exist
constants C = C(δ, µ4+δ, c0), a0 = a0(δ, µ4+δ, c0), such that

E |Tn|qI{Q} ≤ Cq
( 1

nv
+

1

np

)q
logq n,

for all z ∈ Dµ.

Proof. The proof repeats [7][Theorem 3], taking into account that 0 < ε < Im b(z)
for some ε > 0 and Im b(z), |b(z)| are bounded in domain Dµ. The arguments of
[7][Theorem 3] also require that the condition Pr{B} ≤ Cn−Q be satisfied (see [7][p.
17]). But Lemma 4.1 implies Pr{B;Q} ≤ Cn−Q. �

Proof of Theorem 2.2. First of all, we note that [7, Lemma 8] gives the bound

|Λn| ≤ C|Tn|
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in domain Dµ. We have

Pr{|Λn| ≥ KΓn} ≤ Pr{|Λn| ≥ KΓn;Q}+ Pr{Qc}.
[7, Corollary 3] implies

Pr{Q} ≥ 1− Cn−Q.
Applying Markov inequality and combining the last inequality and Theorem 3.1, we
get

Pr{|Λn| ≥ KΓn} ≤
E |Tn|qI{Q}

KqΓqn
+ Cn−Q ≤

(C
K

)q
.

By choosing a sufficiently large K value and q ∼ log n, we obtained the proof. �

4. Estimate of Rjk

We shall use the notations of [7].
Let s0 > 1 be some positive constant depending on δ, V . For any 0 < v ≤ V we

define kv as
kv = kv(V ) := min{l ≥ 0 : sl0v ≥ V }.

For given γ > 0 consider the event

Qγ(v) :=
{
|Λn(u+ iv)| ≤ γ, for all u

}
and the event

Q := Q̂γ(v) =
kv⋂
l=0

Qγ(sl0v).

For the proof of main result it is enough to estimate the entries of the resolvent
matrix. We prove the next Lemma.

Lemma 4.1. Under conditions of Theorem 2.2 there exists a constant H such that for
z ∈ Dµ

Pr{ max
1≤j,k≤n+m

|Rjk| > H;Q} ≤ Cn−c logn logn.

Following the work of Aggarwal (see [8]), we introduce the configuration matrix
L = (Ljk). Set events

Ajk = {|Xjk| ≥ C(np)
1
2
−κ}.

Define the matrix L with elements

Ljk = ξjkI{Ajk}.
Note that

ELjk ≤
µ4+δ

n2p
.

Introduce the configuration matrix LV:

LV =

[
O L
LT O

]
.

Definition. We call j and k linked (with respect to LV), if Ljk = 1. Otherwise we
call them unlinked.
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Definition. If there exists a sequence j = j1, j2, . . . , jr = k such that jν is linked to
jν+1 for each ν ∈ [1, r − 1], then j and k are called connected.

Definition. We call an index j deviant if there exists some index k such that j and k
are linked. Otherwise we call j typical.

Let

DL = {j ∈ [1, n+m] : j is deviant}, TL = {j ∈ [1, n+m] : j is typical}.

Definition. We call LV deviant-inadmissible if there exist at least
√

n
p
, deviant in-

dices. We call LV connected-inadmissible if there exist distinct indices j1, j2, . . . , jr,
r = [log n], that are pairwise connected. We call the configuration LV inadmissible, if
it is either deviant-inadmissible or connected-inadmissible. Otherwise, the configura-
tion is called admissible.

DefineA as the set of all admissible configurations of size n+m. Let C = C1∪C2 be the
event that the configuration LV is inadmissible, C1 be the event that the configuration
LV is deviant-inadmissible, and C2 be the event that the configuration LV is connected-
inadmissible.

Lemma 4.2. Under the conditions of Theorem 2.2 the bound

Pr{C} ≤ Cn−c log logn

is valid.

Proof. First, we estimate Pr{C1}. The event C1 implies that there are at least
√

n
p

deviant indices, which in turn gives that there is at least
√

n
p
pairs {j, k} such that

j ∈ [1, n], k ∈ [1,m] and Ljk = 1. Hence

Pr{C1} ≤
n∑

j=
√

n
p

(
nm

j

)(
C

n2p

)j
.

By Stirling’s formula, we have(
nm

j

)(
C

n2p

)j
≤ C

(
C
√
np

)j
for
√

n
p
≤ j ≤ n. This yields

Pr{C1} ≤ C

(
C
√
np

)√n
p

.

The estimate Pr{C2} almost repeats the proof of the bound for Pr{∆2} in Lemma
3.11 of [8]. The event C2 implies that there exists a sequence of indices S = {i1, i2, . . . , ir}
such that at least r − 1 pair (ij, ik) are linked. We have

Pr{C2} ≤
(
n+m

r

)(
r2

r − 1

)(
C

n2p

)r−1
.
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Applying Stirling’s formula, get

Pr{C2} ≤ n−C log logn.

�

Now we fix the admissible configuration LV. Let R <
√

n
p
denotes the number of

the deviant indices. Consider the matrix VL = (VL(j, k)) with entries

VL(j, k) =


0, if 1 ≤ j, k ≤ n or n+ 1 ≤ j, k ≤ n+m,

ξjkajk, if 1 ≤ j ≤ n, n+ 1 ≤ k ≤ n+m and Ljk = 0,

ξjkbjk, if 1 ≤ j ≤ n, n+ 1 ≤ k ≤ n+m and Ljk = 1,

V kj, if n+ 1 ≤ j ≤ n+m, 1 ≤ k ≤ n.

Here ajk (resp. bjk ) are independent random variables with the distributions

Pr{ajk ∈ G} = Pr{Xjk ∈ G
∣∣Acjk}

and
Pr{bjk ∈ G} = Pr{Xjk ∈ G

∣∣Ajk}.
The permutation of rows and columns gives the matrix

V =

[
V11 V12

V∗12 V22

]
.

The Hermitian matrix V11 of size R×R consists of type b elements and has the form

V11 =


B1 0 . . . 0 . . .

0 . . . B2 . . .
. . . . . . . . .

0 . . . 0 . . . BL

 ,
where Bν are Hermitian matrices of order rν ≤ r, ν = 1, . . . , L. The matrix V12 of size
R× (m+ n−R) consists of type a elements and has the form

V12 =
[
O1 A1

]
,

where O1 is a matrix of size R×m with zero elements, the matrix A1 is R× (n−R)
with elements distributed by type a. The Hermitian matrix V22 of size (n+m−R)×
(n+m−R) has the form

V22 =

[
O11 A2

A∗2 O22

]
.

Here the square matrices O11 and O22 have zero elements and the orders m and n−R
respectively, and the matrix A2 is m × (n − R) with elements distributed by type a.
The resolvent R(z) = (V − zI)−1 can be represented as

R =

[
R11 R12

RT
12 R22

]
,
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where

R11 =(V11 − zI−V12(V22 − zI)−1V∗12)−1,
R12 =(V12(V22 − zI)−1V∗12 −V11 + zI)−1V12(V22 − zI)−1,
R22 =(V22 − zI)−1 + (V22 − zI)−1V∗12

× (V11 − zI−V12(V22 − zI)−1V∗12)−1V12(V22 − zI)−1.
We will be primarily interested in estimating the spectral norm of the matrix R11 since
it majorizes all elements of the matrix R11. Note that the dimension of the matrix R11

is equal to R×R, where R <
√

n
p
. Introduce a random matrix

Y = V12(V22 − zI)−1V∗12.
Note that

R(J) = (V22 − zI)−1 =

[
R

(J)
11 R

(J)
12

R
(J)
12

T
R

(J)
22

]
.

Given the form of the matrices V12 and V22, we find that

Y = A1R
(J)
22 A

∗
1.

In these notation
R11 = (V11 − zI−Y)−1.

In what follows we shall assume that LV is admissible. We prove that for the
resolvent matrix R all entries are bounded conditioning by admissible LV.

Lemma 4.3. Let LV be admissible. Under conditions of Theorem 2.2 there exists a
constant H such that for z ∈ Dµ

Pr{ max
1≤j,k≤n+m

|Rjk| > H;Q} ≤ Cn−c log logn.

Note that TL ∪ DL = [1, n+m], J ⊂ [1, n+m]. We introduce the events

C1(v, k) =
⋂
|J|≤k

{
max
j,l∈TL

|R(J)
jl (u+ iv)| ≤ H1

}
and

C2(v, k) =
⋂
|J|≤k

{
max

j∈DL,1≤l≤n+m
|R(J)

jl (u+ iv)| ≤ H2

}
.

The following lemma holds.

Lemma 4.4. Under the conditions of the Theorem 2.2, the inequalities

Pr
{
C1(v, k − 1); C1(sv, k) ∩ C2(sv, k) ∩Q

}
≥ 1− Cn−c log logn (4.1)

and
Pr
{
C2(v, k − 1); C1(sv, k) ∩ C2(sv, k) ∩Q

}
≥ 1− Cn−c log logn (4.2)

are valid.
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Proof. For simplicity, we assume that k = 1. We begin by proving the inequality
(4.1). Since both indices are typical, the corresponding matrix elements in the rows
(and columns) with numbers j, k are of type a. Consider the diagonal elements. For
j ∈ TL ∩ [1, n] the equality

Rjj = ySy(z)
(

1 + εjRjj + ΛnRjj

)
holds. For ω ∈ Q we have

|Λn| ≤
1

2
.

Hence,
|Rjj|I{Q} ≤ 2

√
y(1 + |εj||Rjj|)I{Q}.

Let
εj = εj1 + εj2 + εj3

with

εj1 =
1

m

m∑
l=1

R
(j)
l+n,l+n −

1

m

m∑
l=1

Rl+n,l+n,

εj2 =
1

mp

m∑
l=1

(a2jlξjl − p)R
(j)
l+n,l+n,

εj3 =
1

mp

m∑
l,t=1

ajlajtξjlξjtR
(j)
l+n,t+n.

Note that for admissible configurations

|DL| ≤
√
n

p
.

By [7, Lemma 1],

|εj1| ≤
C

nv
.

Next, note that

1

n

m∑
l=1

|R(j)
l+n,l+n|

2I{C1(sv, 1)}I{C2(sv, 1)}I{Q} ≤ H2
2s

2 +H2
1s

2

and
1

n

m∑
l=1

|R(j)
l+n,l+n|

qI{C1(sv, 1)}I{C2(sv, 1)}I{Q} ≤ Hq
2s
q +Hq

1s
q.

We used here the so-called multiplicative inequality: for any s ≥ 1

|Rjj(u+ iv)| ≤ s|Rjj(u+ isv)|.
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Given the above, get

E |εj2|qI{C1(sv, 1)}I{C2(sv, 1)}I{Q} ≤ Cqq
q
2 sqHq

2

(np)
q
2

+
Cqsqq

q
2Hq

1

(np)
q
2

+
CqqqHq

2s
q

(np)2κq+1
+
CqqqHq

1s
q

(np)2κq+1
.

Similarly,

E |εj3|q|Rjj|qI{C1(sv, 1)}I{C2(sv, 1)}I{Q} ≤ Cqqq

(nv)q
a
q
2
n (z) +

Cqq
3q
2 s

q
2H

q
2
2

(nv)
q
2 (np)κq+1

+
Cqq

3q
2 s

3q
2 H

q
2
1

(nv)
q
2 (np)κq+1

+
Cqq2qs2qH2q

2

(np)2κq+2
+
Cqq2qs2qH2q

1 p

(np)2κq+2
.

Here we used the fact that

|Rjk(u+ iv)| ≤ |Rjk(u+ iv)|+ (s− 1)v|[R(u+ iv)R(u+ sv)]jk| ≤ |Rjk(u+ isv)|
+(s− 1)

√
ImRjj ImRkk ≤ sH1

for j, k ∈ TL, and
|Rjk(u+ iv)| ≤ sH2

in the case j ∈ DL or k ∈ DL.
If (np)2κ|b(z)| ≥ Cq2sH1 and (np)κ > CqsH1, then H1 and H2 can be chosen so that

E |Rjj|qI{C1(sv, 1)}I{C2(sv, 1)}I{Q} ≤ Hp
1 .

Now consider the case of deviant indices. Let j ∈ DL and k be arbitrary. Consider the
matrix

Y = V12(V22 − zI)−1V∗12 = A1R
(J)
22 A

∗
1.

We estimate the matrix Y elementwise. We start with off-diagonal elements. Consider
Y12. The equality

Y12 =
1

mp

∑
l,t

a1la2t[R
(J)
22 ]lt

holds. Note that {a1l} and {a2t} are independent. We can apply the lemma 5.1 with
A = R

(J)
22 . By the assumption C1 ∩ C2 ∩Q we get

‖A‖2 ≤ γ
nan(z)

v
+
r

v
,

and
n∑
j=1

Lqj ≤
H

q
2
2 s

q
2

pv
q
2 |b(z)| q2

+
H

q
2
1 s

q
2n

v
q
2

.

Finally, ∑
i,j∈T\J

|[R(J)
22 ]ij|q ≤

Hq−2
2 sq−2n

|b(z)|q−2v
(γan(z) +

r

nv
).

Further, we have
µ
(q)
ξ , µ(q)

η ≤ p(np)−2−κq
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for q ≥ 4 + δ, and
µ
(q)
ξ , µ(q)

η ≤ pµ
q

4+δ

4+δ/(np)
q
2

for q ≤ 4. Combining all the estimates, we obtain

A1 ≤
Cqq

q
2

nq

( 1

q
q
2

+
q
q
2

(np)
q
2
κ +

1

(np)2
qq

(np)qκ

)
,

A2 ≤
Cqq

3q
2

n
q
2
+1(np)qκ

,

A3 ≤
Cqq2q

n2(np)2κq+2
.

Finally we get, for np ≥ C log n
1
κ ,

E |Y12|qI{C1}I{C2}I{Q} ≤
Cqq

q
2

(nv)
q
2

(
a
q
2
n (z) +

r
q
2

(nv)
q
2

)
+

CqH
q
2
2 s

q
2 q

3q
2

(nv)
q
2 (np)qκ+1|b(z)| q2

+
Cqq

3q
2 H

q
2
1 s

q
2

(nv)
q
2 (np)qκ

+
Cqq2qHq

1s
q

(np)2κq+2
+

CqHq
2s
q

|b(z)|q(np)2κq+3
.

Applying Chebyshev’s inequality with q ∼ log n, we conclude that

Pr
{
|Y12| ≥ C log n

(an(z)√
nv

+
log

3
2 n

√
nv(np)κ|b(z)| 12

+
log2 n

(np)2κ|b(z)|

)}
≤ Cn−c log logn. (4.3)

Now consider the diagonal elements.

Y11 =
∑
l,t

a1la1t[R
(J)
22 ]lt.

Represent Y11 as

Y11 =
∑
l

a21l[R
(J)
22 ]ll +

∑
l 6=t

a1la1t[R
(J)
22 ]lt =: Ŷ11 + Ỹ11.

Applying the inequality for quadratic forms, obtain

E |Ỹ11|qI{C1(sv, 1)}I{C2(sv, 1)}I{Q} ≤ Cq
(
qq(E |a11|2)q E ‖R(J)‖qI{C2(sv, 1)}I{Q}

+ q
3q
2 µ(q)(E |a11|2)

q
2

∑
l

E
(∑

t

|[R(J)
22 ]lt|2

) q
2

+q2q(µ(q))2
∑
l,t

|[R(J)
22 ]lt|q

)
I{C1(sv, 1)}I{C2(sv, 1)}I{Q}.

From here it is easy to get

E |Ỹ11|qI{C1(sv, 1)}I{C2(sv, 1)}I{Q} ≤ Cq
(qqr q2a q2n (z)

(nv)
q
2

+
q

3q
2
Cq

(nv)
q
2 (np)κq+2|b(z)| q2

+
Cqq2q

(np)2κq+3|b(z)|q
+

Cq

(np)2κq+2

)
.
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This yields

Pr
{
|Ỹ11| ≥ C

( log2 n log log na
1
2
n (z)√

nv
+

log
5
2 n

√
nv(np)κ

√
|b(z)|

+
log3 n

(np)2κ|b(z)|

)
; C1(sv, 1) ∩ C2(sv, 1) ∩Q

}
≤ Cn− log logn.

Now consider Ŷ11. We have

Ŷ11 =
y

n

∑
l

R
(J)
ll +

∑
l

(a21l − E a21l)R
(J)
ll

= ySy(z)− 1− y
z

+ yΛn(z) +
r

nv
+
∑
l

(a21l − E a21l)R
(J)
ll .

By Rosenthal’s inequality,

E
∣∣∣∑

l

(a21l − E a21l)R
(J)
ll

∣∣∣qI{C1(sv, 1)}I{C2(sv, 1)}I{Q} ≤Cq
( q q2 sq

(np)
q
2

+
q
q
2 sq

(np)q|b(z)|q
+

sqqq

(np)2κq+2|b(z)|q
)
.

The obtained bounds give

Pr
{∣∣∣Ŷ11 − (− 1− y

z
+ ySy(z)

)∣∣∣ ≥ C
(
γan(z) +

r

nv

+
log

3
2 n

(np)
1
2

+
log

3
2

(np)|b(z)|
+

log2 n

(np)2κ|b(z)|

)
; C1 ∩ C2 ∩Q

}
≤ Cn− log logn.

Summing up the estimates for Ŷ11 and Ỹ11, we conclude that

Pr
{∣∣∣Y11 − (ySy(z)− 1− y

z

)∣∣∣ ≥ G1 + G2; C1 ∩ C2 ∩Q
}
≤ Cn−c logn,

where

G1 =γan(z),

G2 =C
( r

nv
+

log
3
2 n

(np)
1
2

+
log

3
2 n

(np)|b(z)|
+

log2 n

(np)2κ|b(z)|

+
log2 n log log na

1
2
n (z)√

nv
+

log
5
2 n

√
nv(np)κ

√
|b(z)|

+
log3 n

(np)2κ|b(z)|

)
.

It is easy to show that if

|b(z)| ≥ C log n
3
2n

(
1√
nv

+
1

(np)κ

)
,

then
Pr
{∣∣∣Y11 − (ySy(z)− 1− y

z

)∣∣∣ ≤ γ|b(z)|; C1 ∩ C2 ∩Q
}
≤ Cn−c logn

with an arbitrarily small constant γ. From this and the inequality (4.3) it follows that
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Pr
{∥∥∥Y − (ySy(z)− 1− y

z

)
I
∥∥∥ ≥ γ|b(z)|; C1 ∩ C2 ∩Q

}
≥ 1− Cn−c logn.

Since the matrix V11 is Hermitian (the eigenvalues are real), and

Im
(
z − 1− y

z
+ ySy(z)

)
≥
√

2

2
|b(z)|,

we find that

Pr
{∥∥∥(V11−

(
z− 1− y

z
+ ySy(z)

)
−Y

)−1∥∥∥ ≤ C

|b(z)|
; C1 ∩ C2 ∩Q

}
≥ 1−Cn−c log logn.

This, in particular, implies that

Pr
{
|Rjk| ≤ H2; C1(sv, 1) ∩ C2(sv, 1) ∩Q

}
≥ 1− Cn−c log logn,

for j ∈ D. The last statement completes the proof of the Lemma 4.4. �

Proof of Lemma 4.3. Let k = |J|. Lemma 4.4 and inequality maxj,l |R(J)
jl (V )| ≤ V −1

imply

Pr
{
C1(v, k − 1);Q

}
≥ 1− Cn−c log logn,

Pr
{
C2(v, k − 1);Q

}
≥ 1− Cn−c log logn,

for V/s0 ≤ v ≤ V . We may repeat this procedure L(v0, s0) times and obtain

Pr{ max
1≤j,k≤n+m

|Rjk(v)| > H;Q} ≤ Cn−c log logn,

for v ≥ V/sL0 = v0. �

Proof of Lemma 4.1. We recall that Lemma 4.2 gives

Pr{LV /∈ A} ≤ Cn−c log logn.

It implies Lemma 4.1. �

5. Appendix

Let ξ1, . . . , ξn and η1, . . . , ηn be mutually independent random variables, A = (aij)
n
i,j=1.

Define

L2
j =

n∑
i=1

|aij|2.

Note that

‖A‖2 =
n∑
j=1

L2
j .
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Lemma 5.1. For any q ≥ 2 the inequality

E |
n∑

i,j=1

aijξiηj|q ≤ Cq
(
A1‖A‖q +A2(

n∑
j=1

Lqj) +A3(
n∑

i,j=1

|aij|q)
)

holds, where

A1 =q
3q
2 (σ2q

ξ + σ2q
η ),

A2 =q
3q
2 (σ

(2q)
ξ + σ2q

η )
q−6

2(q−4 (µ
( q
2
)

ξ )
2(q−2)
q−4 ,

A3 =q2qµ
(q)
ξ µ(q)

η .

Proof. Let A =
∑n

i,j=1 aijξiηj =
∑n

i=1 ξi(
∑n

j=1 aijηj). Applying Rosenthal’s inequality,
we get

A ≤ Cq(q
q
2σqξ E

( n∑
i=1

( n∑
j=1

ηjaij)
2
) q

2 + qqµ
(q)
ξ

n∑
i=1

E
∣∣ n∑
j=1

aijηj
∣∣q)

=: Cqq
q
2σqξA1 + Cqqqµ

(q)
ξ A2.

Using the triangle inequality, we obtain

A1 ≤ 2
q
2 E
( n∑
i=1

n∑
j=1

a2ijη
2
j

) q
2

+ 2
q
2 E
(∑

i 6=j

ηiηj
( n∑
l=1

ailalj
)) q2

=: 2
q
2 (A11 + A12).

Further,

A11 ≤ 2
q
2

(( n∑
i=1

n∑
j=1

a2ij
) q

2σqη + E
( n∑
j=1

(η2j − σ2
η)
( n∑
i=1

a2ij
)) q2)

.

Applying Rosenthal’s inequality again, we conclude that

E
( n∑
j=1

(η2j − σ2
η)
( n∑
i=1

a2ij
)) q2 ≤ Cqq

q
4

( n∑
j=1

( n∑
i=1

a2ij
)2) q4

(µ(4)
η )

q
4

+ Cqq
q
2µ(q)

η

n∑
j=1

( n∑
i=1

a2ij
) q

2 .

To estimate A12, we use the inequality for quadratic forms from [9]. We have

A12 ≤Cqq
q
2σqη

(∑
i 6=j

( n∑
l=1

ailalj
)2) q4

+ Cqq
3q
4 µ

( q
2
)

η σ
q
2
η

n∑
j=1

( n∑
i=1

(
n∑
l=1

ailalj)
2
) q

4

+ Cq
(
qq(µ

( q
2
)

η )2
(∑

i 6=j

( n∑
l=1

ailalj
) q

2

)
.
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Summing up the above inequalities, we find that

A1 ≤Cqσqη

( n∑
i=1

n∑
j=1

a2ij

) q
2

+ Cq(µ(4)
η )

q
4 q

q
4

( n∑
j=1

( n∑
i=1

a2ij
)2) q4

+ Cq
(
q
q
2σqη

(∑
i 6=j

( n∑
l=1

ailalj
)2) q4

+ Cqq
3q
4 µ

( q
2
)

η σ
q
2
η

n∑
i=1

(∑
j 6=i

( n∑
l=1

ailalj
)2) q4

+ Cqqq(µ
( q
2
)

η )2
∑
i 6=j

( n∑
l=1

ailalj
) q

2

)
+ Cqq

q
2µ(q)

η

n∑
j=1

( n∑
i=1

a2ij
) q

2 .

For A2, by Rosenthal’s inequality, we have

A2 ≤ Cqσqηq
q
2

n∑
i=1

Lqi + Cqqqµ(q)
η

n∑
i=1

|aij|q. (5.1)

Further note that

( n∑
j=1

( n∑
i=1

a2ij
)2) q4 ≤ ( n∑

i=1

Lqi
) q

2(q−2)
(‖A‖q)

q−4
2(q−2) ,

(∑
i 6=j

( n∑
l=1

ailalj
)2) q4 ≤ ‖A‖q,

n∑
i=1

(∑
j 6=i

( n∑
l=1

ailalj
)2) q4 ≤ ( n∑

j=1

Lqj
) (q−4)

2(q−2) (‖A‖q) q
2(q−2) ,

(∑
i

L
q
2
j

)2
≤
( n∑
j=1

Lqj
) (q−4)

(q−2) (‖A‖q) 2
(q−2) .

For A we get the estimate

A ≤ Cq(B1 + . . .+B8),
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where

B1 =q
q
2σqξσ

q
η‖A‖q,

B2 =σqξ(µ
(4)
η )

q
4 q

3q
4

( n∑
j=1

Lqj
) q

2(q−2) (‖A‖q) q−4
2(q−2) ,

B3 =qqσqξσ
q
η

( n∑
j=1

Lqj
) q−4
q−2
(
‖A‖q

) 2
q−2
,

B4 =q
5q
4 σqξµ

( q
2
)

η σ
q
2
η

( n∑
j=1

Lqj
) q−4

2(q−2)
(
‖A‖q

) q
2(q−2)

,

B5 =q
3q
2 σqξ
(
µ
( q
2
)

η

)2( n∑
j=1

Lqj
) q−4

(q−2)
(
‖A‖q

) 2
(q−2)

,

B6 =qqσqξµ
(q)
η

n∑
j=1

Lqj ,

B7 =q
3q
2 σqηµ

(q)
ξ

n∑
j=1

Lqj ,

B8 =q2qµ
(q)
ξ µ(q)

η

n∑
i,j=1

|aij|q.

Applying Young’s inequality, we obtain the bounds

B2 ≤ Cq
3q
4

(
σ4
ξ (µ

(4)
η )

q−2
2

n∑
j=1

Lqj + σ2q
ξ ‖A‖

q),

B3 ≤ Cqqqσqξσ
q
η

n∑
j=1

Lqj + Cqqqσqξσ
q
η‖A‖q

)
,

B4 ≤ Cqq
5q
4

(
(σ2q

ξ + σ2q
η )‖A‖q + (µ

( q
2
)

η )
2(q−2)
q−4 (σ

q q−6
q−4

ξ + σ
q q−6
q−4

η )
n∑
j=1

Lqj
)
,

B5 ≤ Cqq
3q
2

(
σ2q
ξ ‖A‖

q + σ
q(q−6)
q−4

ξ (µ
( q
2
)

η )
2(q−2)
q−4

n∑
j=1

Lqj
)
.

The last inequalities give

A ≤ Cq
(
A1‖A‖q +A2(

n∑
j=1

Lqj) +A3(
n∑

i,j=1

|aij|q)
)
,
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where
A1 =q

3q
2 (σ2q

ξ + σ2q
η ),

A2 =q
3q
2 (σ

(2q)
ξ + σ2q

η )
q−6

2(q−4 (µ
( q
2
)

ξ )
2(q−2)
q−4 ,

A3 =q2qµ
(q)
ξ µ(q)

η .

Thus Lemma is proved. �
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