ON THE LARGEST AND THE SMALLEST SINGULAR VALUE OF
SPARSE RECTANGULAR RANDOM MATRICES

F. GOTZE* AND A. TIKHOMIROV

ABSTRACT. We derive estimates for the largest and smallest singular values of sparse
rectangular N x n random matrices, assuming limy 00 7 = ¥ € (0,1). We consider
a model with sparsity parameter py such that Npy ~ log® N for some o > 1, and
assume that the moments of the matrix elements satisfy the condition E | X |*T? <
C < o0o. We assume also that the entries of matrices we consider are truncated at the

level (Npy )2~ with s := m.

1. INTRODUCTION

In the last five to ten years, significant progress has been made in studying the as-
ymptotic behavior of the spectrum of sparse random matrices. A typical example of
such matrices is the incidence matrix of a random graph. Thus, for Bernoulli matrices
Konstantin Tikhomirov obtained exact asymptotics for the probability of singularity,
see [14]; also, see [9]. For the adjacency matrix of Erdés - Renyi random graphs, H.-T.
Yau and L. Erdos & Co. proved a local semicircular law and investigated the behavior
of the largest and the smallest singular values and as well as eigenvector statistics, see
the papers of [2, 4] and the literature therein. In particular for adjacency matrices
of regular graphs, local limit theorems and the behavior of extremal eigenvalues were
investigated by H.-T. Yau and co-authors [1]. For non-Hermitian sparse random ma-
trices M. Rudelson and K. Tikhomirov proved the circular law under unimprovable
conditions on the probability of sparsity and the moments of distributions of the ma-
trix elements (see [12]). J.O. Lee and J.Y. Hwang studied the spectral properties of
sparse sample covariance matrices, which includes adjacency matrices of the bipartite
Erdés-Renyi graph model). In [7] the authors prove a local law for the eigenvalues
density up to the upper spectral edge assuming that sparsity probability p has order
N~ for some € > 0 (here N denotes the growing order of the matrix) and entries of
matrix X;; are i.i.d. r.v.’s such that (in our notations)

E|X;|? =1and E|X;]? < (Cq)* for every ¢ > 1. (1.1)

They also prove the Tracy-Widom limit law for the largest eigenvalues of sparse sample
covariance matrices. However, in the proof of the local Marchenko-Pastur law and the
Tracy-Widom limit, they assume a priori that the result of [3, Lemma 3.11] holds for
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sparse matrices (see |7, Proposition 2.13|), which includes, in particular, the bounded-
ness of the largest singular value that is the operator norm) of a sparse matrix. They
don’t investigate the smallest singular value of sparse rectangular matrices though.

We derive bounds for the smallest and the largest singular values of sparse rect-
angular random matrices assuming that the probability py decreases in such a way
that Npy > log% N for some s > 0, and that the moment conditions are weaker than
those in (1.1) (see condition (1.6)). Our main result is devoted to the smallest singular
value of a sparse rectangular random matrix from an ensemble of dilute Wigner type
matrices.

Suppose n > 1 and N > n. Consider independent identically distributed zero mean
random variables Xj;,, 1 < j < N, 1 <k <n with EX]Z,C = 1 ( where the distribution
of X, may depend on N), which are independent of a set of independent Bernoulli
random variables {;,, 1 < j < N, 1 <k < n, with E{;; = py. In what follows we shall
simplify notation by denoting p = py. We now introduce the following model of dilute
sparse matrices as a sequence of random matrices of the following type

X = (§eXjk)1<j<N1<k<n- (1.2)

Denote by sy > - -+ > s, the singular values of X, and let Y = X*X denote the sample
covariance matrix.

Put y = y(N,n) = &. We shall assume that y(N,n) — yo < 1 as N,n — oo. In
what follows we shall vary the parameter N only.

Theorem 1.1. Let EXj; = 0 and E|X;|* = 1. Suppose that there exists a positive
constant C' > 0 such that

E X" < O < oo, (1.3)

for any j,k > 1 and for some d > 0. Suppose also that there exists a positive constant
B, such that

Np > Blog2 N, (1.4)

_$
where »x = e

Then for every @@ > 1 and A > 0 there ezists a constant K = C(Q, 0, pyrs, A, B)
such that

Pr{s; > K\/Np} < CN 9+N2pPr{|Xy;| > A(Np)z *In N}.
Theorem 1.2. Let E X, =0 and E|X;;|* = 1. Suppose that
E|[Xu|" = pu < oo,
and there exists a positive constant B, such that
Np > Blog® N. (1.5)

Then there exists a constant 19 > 0 such that for every 7 < 19, Q > 1 and K > 0
there exists a constant C' = C(Q, g, K, B) with

Pr{s, < 7v/Np} < CN 94+ Pr{s, > K\/Np}.

These results immediately imply the following corollary.
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Corollary 1.3. Under conditions of Theorem 1.1 there exist a constant 79 > 0 such
that for any ™ < 19 and for any A > 0 there exists a constant C = C(A,d) depending
on A and § such that the following inequality holds

Pr{ s, < 7v/Np} < CN-9+N?pPr{|Xy| > A(Np)> *In N}.
Corollary 1.4. Assume the conditions of Theorem 1.1. In addition assume that there
exists a constant B such that for every N > 1
p=py>B/In*N.

Then
C

In° N’

Pr{s; > K\/Np} < CN~@ 4+
Proof. Applying Markov’s inequality, we obtain

1_ Hats
Pr{|Xy| > A(Np)z *InN} < — 480
{IXul > A(Np) }< (Vp)2 I N

By the conditions of Corollary 1.4, we get
Pr{|Xn| > A(Np)F *In N} < o Hisd

B’ N
The result follows now immediately from theorem 1.1. Thus, Corollary 1.4 is proved.
O
We may consider random variables X;; for e =1,...,N;j = 1,...,n, with identical

distributions depending on N. In this case we have the following result.

Corollary 1.5. In addition to conditions of Theorem 1.1 assume that for any q such
that 4+ < qg < Clogn

E|Xy|" < Cfq(Np)a—2, (1.6)

Then for every Q > 1 and A > 0 there exist constants K = K(Q,0, tays, A) and
C =C(Q,96, a5, A) such that

Pr{s; > K\/Np} < CN“.
and there exists a constant 9 > 0 such that for every 7 < 1y , Q > 1 there exists a
constant C' = C(Q, 9, piars)

Pr{s, < 7y/Np} < CN© (1.7)
2. PROOF OF THEOREM 1.1
Let )Afij denote truncated random variables Xj;, i.e.
Xij = Xyl{|X;5| < A(Np)> “In N},
where I{ B} denotes the indicator of an event B. Let X denote the matrix with entries

& Xi;. By ||A|| we denote the operator norm of a matrix A. First we estimate the

spectral norm of the matrix £ X. Since X;; and §;; are identically distributed random

variables we have _ _
| EX]|| = np| E Xq4].
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By condition (1.3), we have

_ - C
|]EX11|:|EX11]I{|X11’ >A(Np)2 11’1N}| SW

From here we get the bound

IEX]| < CA™(Np)~2~~, (2.1)
We consider now the centered and truncated random variables )A(,»j = Xij - E)Zij for
i=1,...N,j =1,...n, and the matrix X = (§,;X;;). Let 57 > 5,... > 5, denote
the singular values of the matrix X and resp. let 51 > s3... > s, denote the singular
values of the matrix X. Note that

Pris; #5} <PH{X#X} <> Y pPr{X; # X}

i=1 j=1
= nNpPr{|Xn| > A(Np)2 *In N} (2.2)
Furthermore, we have _
5 <S+|EX]. (2.3)

According to (2.1) we may assume that

IEX]| <~yv/Np (2.4)

for sufficiently small v > 0. We may write now

1
Pr{s; > K/Np} < Pr(Si > S K/Np} + N*pPr{|Xu| > A(Np)z*InN}  (2.5)
Note that
2 =EX% =E(Xn)?— (EXy)?
=1 -EXAI{|X1| > ANp)z *In N} — (E X1 I{|X11| > A(Np)2 *In N})2.
(2.6)
It is easy that
2145
A2+5(Np)(2+5)(%—%) '

Without loss of generality we may assume that o, > % Consider now the matrix

X = LX. Let 51 denote the largest singular value of the matrix X. Then

Pr{s; > K\/Np} < Pr{s > 2K+/Np}. (2.8)

During the rest of the proof of Theorem 1.1 we shall consider the matrix X with
entries &;;X;;, i =1,...,N j=1,...,n satisfying the following conditions (C1):

=0 <10 < (2.7)

e ;; are independent Bernoulli r.v.’s with E§;; = p (= pn);
e X;;areiid. r.v.sfor 1 <i < N,1<j<n,suchthat EXy; =0, E|X;;[*" <
pats and )

|X11| < A(Np)27%ll'lN a.s.
We use the following result of Seginer (see [13, Corollary 2.2]).
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Proposition 2.1. There exists a constant A such that for any N,n > 1, any q <
2log max{n, N}, and any N x n random matrizc X = (X;;) where X;; are i.i.d. zero
mean random variables, the following inequality holds:

max{]E max [|X,.]|4, E max Hx.jug} < E|IX]|*
1<i<N 1<j<n
q 19 14
< (24)'( E max E[[ X0 3 + max [X,0l3). (29
Here X;., resp. X.;, denote the i-th row, resp. the j-th column of X.

Proof of Theorem 1.1. Note that s; = ||X]||. Using the notations introduced above, we
now estimate E || X;.||?. By the definition of X we have

q
2

E|X. |l =E (ZX%;C) P < 2q—1(ZEkaém> P por IR ‘ S (G- (2.10)
k=1 k=1 k=1
Note that
E X;&ik = p- (2.11)

Now, applying Rosenthal’s inequality we get

B[S (33 - | < 0ot (YE(XE - 1%)  +adp Y EIXE - 11F), (212)
k=1 k=1 k=1

which implies

B> (X3 - Vx| < Ot (Vp)F + ¢ENDE| X0 ]7), (2.13)
k=1
By assumptions (CT), we have
E|X1|? < C9(Np)2~ ¥ 2n? 49 N. (2.14)

Note that for ¢ ~ In N inequality (2.14) coincide with condition (1.6). Combining
inequalities (2.10)—(2.14), we now get

q

[l q \* —1, —17,.—(4+6 qlfIQN :
E|IX,[? < CUN (1 LY LNy @ )
18 < ot (1 (o) N o

Taking into account (1.5), as well as ¢ < C'logn, we obtain, for ¢ < 2log max{n, N},
E X3 < CU(Np)?.

A similar bound holds for E || X;||?. We may now write
E|[X]|? < CI/N(Np)?.

Taking K > C' and applying Markov’s inequality, the claim follows. Thus Theorem
1.1 is proved. O
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3. SMALLEST SINGULAR VALUES

We shall now prove Theorem 1.2 using an approach developed by Litvak, Pajor,
Rudelson [8], Rudelson and Vershynin in [10] for rectangular matrices for the case
p =1 and Gotze and Tikhomirov in [5] for the sparse dilute Wigner matrices. Denote
by S™=1 the unit sphere in R". Let x = (21,...,2,) € 8™V be a fixed unit vector
and X be a matrix defined in (1.2).

We divide the vectors on the sphere into two parts: compressible and incompressible
vectors recalling the definition.

Definition 3.1. Let §,p € (0,1). A vector x € R" is called sparse if |[supp(x)| < dn.
A vector x € S™ Y is called compressible if x is within Euclidean distance p from
the set of all sparse vectors. A vector x € SV is called incompressible if it is not
compressible. The sets of compressible and incompressible vectors will be denoted by
Comp(9, p) and Incomp(6, p).

Note that
sp = inf || Xx||2
xeSn—1)
and
Pr{s, < 7y/Np} < Pr{ Cinf(é )||XX||2 < 7/ Np}+Pr{ . inf ’ )||XX||2 < 74/ Np},
xe Comp(0,p xeIncomp(o,p

(3.1)
for some §,p € (0,1) and 7 > 0, not depending on n.

For sparse matrices with p = py — 0 as N — oo we cannot directly estimate the first
term on the right hand side of (3.1) using the well-known two step approach of estimat-
ing Pr{||Xx||, < 7+/Np} for a fixed vector x € S~ followed by a union bound for the
some e-net of Comp(d, p) and arriving at a bound for the infimum of x € Comp(4,, p)
with J,, ~ p going to zero. The Rudelson - Vershynin methods for incompressible vec-
tors won’t work in this case. In order to estimate Pr{inf,ccomp(s,p) [|Xx|l2 < 7¢/Np}
with some § > 0 which does not not depend on n, we shall use a method developed
in Gotze-Tikhomirov [5]. This is based on a recurrence approach which allows us to
increase oy step by step Np times arriving in log N steps at an estimate of § >
which does not depend on N. The details of this approach will be described in Section
3.1.

In Section 3.3 we shall derive bounds for Pr{inf e meomp(s,p) || Xx[]2 < 74/ Np}.

3.1. Compressible vectors. Let L be an integer such that

( 6 Np )L‘1<p_1<< 6 Np )L (32)

|logp| + 1 |logp| + 1

where dy € (0,1) denotes some constant independent on N. Note that under the
conditions of Theorem 1.2

L < clog N/loglog N (3.3)
with a constant ¢ = ¢(dp). We introduce a set of numbers p,y and §,n, forv=1,... L,
as follows

PuN = (Np)&,,l]\[ and (5Z/N = 50pyN/(1 + “nguN’)'
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Here
pon = p and don = dop/(1 + |logpl).
Furthermore, introduce as well
_ Npdy \" ~ SoNp \"' bop
o <|1ogp| = 1) pand du = <|1ogp| = 1) [logp| +1
Lemma 3.2. The following inequalities hold

pu,N 2 ﬁu (34)
and
51/,N Z 51/,]\7’ (35>
forv=1,....N
Proof. By condition of Theorem 1.2,
N
P > BumN. (3.6)
1+ |Inp|
Without loss of generality we may assume that
Npdo
— > 1. 3.7
1+ |Inp| (87)

It is straightforward to check now that p, y > p, for v =1,..., N. In fact, for v = 1 it
is easy. Assume that for some v =1,..., N — 1 the inequality p,_; v > p holds. Then

Np50pu—1,N > Npdy Npdy

vwN = VAN > ————D > P. 3.8

Pu 1+ |Inp,_in| — 1—|—|lnp\p L 1—|—]1np|p b (38)
We may write now the following inequalities
9o

OyN > ————Dy 3.9

’N_1—|—|lnp|p’N ( )

and

Npdo

yN > —————Dy_1N, 3.10

P,N_1+|1np|p 1,N ( )

for v=1,..., N. Applying induction for the last inequality, we get, for v =1,..., N,
Pv,N Z Z/j\l/,N' (311)
The last inequality implies that, for v =1,..., NV,

d Npso \""  pdy ~
> 0 5= (P )y P 312
N T g P (1+|1npr T g~ ey 312

Thus, lemma is proved. [l

J

Corollary 3.3. There exist constants 9 > 0,7, > 0 such that
OL.N = Y and pLy > V1. (3.13)
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Introduce the sets
C, := Comp(d,n,p), ZIC,:=Incomp(d,n,p), v=0,...,L.

Note that L > 1 for Np?/(]logp| + 1) < D with some constant D. The case
Np?/(|logp| + 1) > D will we treated separately. In what follows we shall assume
that L > 1.

Definition 3.4. The Lévy concentration function of a random variable £ is defined for
e>0as
L(&,e) =supPr{|{ —v| < e} (3.14)
veR

By P we denote the orthogonal projection in R™ onto a subspace E. Similarly, by
P; we denote the orthogonal projection onto RY, where J C {1,2,...,n}.

We reformulate and prove some auxiliary results from [10]| below for our sparsity
model.

First we prove an analog of [10, Lemma 3.2].

Lemma 3.5. Letx € ZC,, v=1,...,L. Let
G=> X, j=1,...,N.
k=1

Then there exists some absolute constant A such that

1 P 4
— B <1- . .
E(\/ﬁ@, 2) <1-Ap'p.n (3.15)

Remark 3.6. For v = L there exists some constant 0 < b < 1 such that

L p
— (=)< 1= .
£(\/]3CJ,2) <l-b<1

Proof. By Lemma 3.11 there exists a set o(x) such that for k € o(x)

1 1
—— < | € ———,
N Yo

and [[P,(ox]3 > p*.

Let
n= Y wlipXu/ VP
keo(x)
Note that
En?>p? Epp/* <A1+ ——).
n”=p7, B[t < Ag(l+ N&FLNP)
Without loss of generality we may assume that N¢,_; yp < 1. This implies that
2A,
En*< —" . 3.16
'S (3.16)

Let Z =n — v. Note that
EZQZEn2+U22U2+p27

and
En* > (En*)* > p.
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Using Minkowski’s inequality, we get
B [Z]' B pf + 0 B pf*(1+ ) < o7 VZE [n]'(p? + 7).
p
Using the Paley-Zygmund inequality, we get
PEIZE-EP 1 pHpt+ o)
E!nl‘*(/) +v2)2 AR (02 +0?)?
The last inequality and inequality (3.16) together imply

Pr{ln —v| > ¢} > 1

22
P —wv| >el > A p*N6,_ 1——).
tlln =0l 2 £} 2 A NGl = )
Finally, we may write
1 1
Pr{[n —v| > 5/)} > §Alp4py,N.
Thus Lemma 3.5 is proved. ([l

For the set of sparse vectors the following lemma holds.

Lemma 3.7. The following inequality holds.
1 p
L(EX 1— =
X/ VD, 2) 81

Proof. For the proof it is enough to note that by the Paley-Zygmund inequality we
have

1+ 0?2 — &2 P
Pr{|¢X — > -
r{‘f Ul } ol 4E|X‘4(1+U2) 8M4
O
Lemma 3.8. Let (3, ...,(n denote independent identically distributed random variables
such that
Pr{|¢;| < An} <1 —aqw,
for some Ay > 0 and qx € (0,1). Then there exist constants ¢,C such that
N
Pr{} (7 < CNqyM3} < exp{—cNgn}. (3.17)

Jj=1

For the proof of this lemma see [5, Lemma 4.5].
We start with the estimation of || Xx||, for a fixed x € S,

Lemma 3.9. There exist positive absolute constants 1o and cq such that

Pr{|[Xx|l2 < 70/Np} < exp{—coNp}.

Proof of Lemma 3.9. The proof of this lemma may be found in |5, Lemma 4.1|, but for
readers convenience we repeat it here. Let

Z kf]kﬂfk, :1,...,N
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Then

N
IXx|3 =) "¢
j=1

Furthermore, we may write for 7 > 0 and any ¢

N

N
53¢ > 0} < exp(Npr/2} [[ Eexp{~C}/2).

j:1 J=1

TNp

Pr{zg < 72Np} =Pr{
Using ¢ /2 = E ¢ where 7 is a standard Gaussian random variable, we obtain

Pr{z ¢ < m*np} < exp{Npr*t*/2} HE HEﬁij exp{ité e Xjparn; b, (3.18)

7j=1 k=1

wheren;, 7 =1,..., N denotei.i.d. Gaussian standard r.v.s and Ez denotes expectation
with respect to Z conditional on all other r.v.s.

Take a = Pr{|m| < C} for some absolute positive constant C; which will be chosen
later. Then it follows from 3.18 that

N
Pr{z (J? < 72 Np} < exp{t*7*Np/2}

j=1

N n

<11 (04’ By { [IEeux, eXp{itnjkajkfjk}’lnﬂ < 01}‘ +1- 04)-

=1 k=1

Note that for any o,z € [0,1], and f < «
s (BY17
1 —a+ar <max{z ,(—) }.
a

Furthermore, we have

| B, exp{it€ e Xjnwrn; }| < exp{——(l — | fin(tzan;)[*)}, (3.19)

where fjx(u) = Eexp{iuX;;}. Choose a constant M > 0 such that

SupEl T XGe| > M} <

l\DI»—t

Since 1 —cosz > 5a? for [z < 1, conditioning on the event |n;| < C, we get for

|t| < MCl

11 =
—xit’n; B | X PI{| X3;| < M}, (3.20)

1 — | fie(toem;)? = Ex,, (1 — cos(tap Xyn;) > o

Here we denote by )?kj the symmetrization of the r.v. Xj;. It follows from (3.19) for
lt| < 1/(MCy), that for |n;| < Ch,

‘ Efijjk eXP{itﬁijjkl"kUjH < exp{—cptzxzn?} (3'21)
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This implies that

|1 Bev,x., explitnizndin Xu}| < exp{—cpt®n;}. (3.22)
k=1

We may choose C large enough such that following inequalities hold for |¢t| < 1/MC;:

| By {exp{—cpt*ni}|n;| < C1}| < exp{—ct®p/24}. (3.23)
Then we obtain
N B Nli
Pr{z ¢ <7T’Np} < exp{NpT2t2/2}(exp{—thQNp/Qél} + (—) 76) (3.24)
!
j=1
Furthermore, we may take C; sufficiently large such that a > % and choose § = % We
get

N
Pr{z ¢ <7T’Np} < eXp{Np72t2/2}<exp{—ctQNp/GO} + 2*2N/3>. (3.25)
j=1
For 7 < min{\/‘/ﬁ%, V\I/?MCE}, we have for [t| < 1/(MCh),
N
Pr{z ¢ < T’Np} < exp{—ct’Np/120}. (3.26)
j=1
This implies the claim. Thus the lemma is proved. 0

3.2. Compressible and Incompressible Vectors. First we prove an analog of Lemma
2.6 from [10].

Lemma 3.10. There exist positive absolute constants dq, 1o, c1 such that

Pr{ inf : I Xx|l2 < 100/Np, || X]|| < K+y/Np} <exp{—c1Np},

x€ Comp(donN,P0

where
(50]\] = 50p/(| 10gp| + 1), Po = T()/QK. (327)

Proof. Let k = [ndon]. Denote by N, an n-net on the S*=D ARk, Choose n = 79/2K
First we consider the set of all sparse vectors Sparse(k) with support(x) < k. Using
Lemma 3.9 and a union bound, we get

: n
Pr{ inf : IXx]||2 < 2poy/np} < (kz) N, | exp{—coNp}.

x€Sparse(don

Using Stirling’s formula and Proposition 2.1 from [10], we get
Pr{ inf | Xx]|2 < 2791/ Np}
x€Sparse(don)

4n50N (1 + pﬁo)n(;oNfl

<
= V/2mndon (1 — don ) SN (1 — Sy )n(1=don

) exp{—coNp}.
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Simple calculations show

2
Pr{ inf | Xx]||2 < 2791/ Np} < noy
x€Sparse(donN) 1 — 50N)
1 K
) 1-— — —logdpny — (1 — 6o ) — log(1 — 6 —coNp}t.
X exp{n 0N<( 7150N)Po 0g OoN ( 0N)50 Og( ON)) Co p}

If we choose
don = dop/(1 + [log pl)
for a sufficiently small absolute constant 9y, we get

Pr{ inf | Xx||2 < 279y/Np} < exp{—c1Np}.

x€Sparse(don)
Thus the Lemma is proved. O]

In what follows, we shall use a technique developed in Gotze and Tikhomirov [5]
which is based on the following lemmas.

Lemma 3.11. Let p,06 € (0,1). Assume that x € Incomp((5 p). Then there exists a set
oo(x) such that |og(x)] > Cndp? and 5= < || < \/— for k € oo(x), and

Z |z * > p?.
k€oo(z)
For a proof of this Lemma see for instance [11, Lemma 3.4].

Lemma 3.12. Let x € ZC', for some v =0,...,L — 1. Then there exist constants c;
and co such that for any 0 < 7 < 79

Pr{||Xx]||2s < 74/Np} < exp{—c1Np,11n}.

Proof. We repeat the proof of Lemma 3.9 till (3.20).
Furthermore, by Lemma 3.11 there exists a set o¢(z) such that 7 < oyl <

6,,1\,/2
for k € o¢(x), and
> jml >0 (3.28)
keoo(z)
We may write now
> (= | f(tarXm)?) > (1 = | f (b Xj5m;)[*).-
k=1 keog(z)
Note that for k € ¢, and for |X ;x| < M, and for |n;| < C, we have

[t|CM~/2
trop Xani| < ——m——.
| k Jk77]| = \/m

Taking t = k\/Nd,n for Kk = m, we get
|tl’kak77j’ S 1,
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and
11 11
1 — | fy, (te Xem;) |* > ﬁﬂxz?ﬁl@ | Xk PI{ | X | < M} > @t%znf
Repeating now the last part of the proof of Lemma 3.9 and taking into account in-
equality (3.28), we obtain for 7 < pmin{\/iﬁ%, @MC&}, and for |t| = kv/Né,y,

‘ HEEijjk eXP{itﬁjxkgijij < eXP{—Cl)zptz???L (329>
k=1
where ¢ is an absolute constant as in (3.22). We may choose C large enough such that
the following inequalities hold for |t| = K/ Nd,n:

| By, {exp{—cpt®n; }|Imj] < C1}] < exp{—ct’p/24}. (3.30)
We use here that |t|p < dp by (3.2). Then we obtain
B

P> ¢ <7 Np} < exp{Npr*e/2) (exp{ e Np/24) + (5) 770y (33)

Jj=1

Furthermore, we may take C large enough such that o > % and choose = % We get

Pr{d " (2 < T Np} < exp{Npr*t?/2} ( exp{—ct?Np/60} + 2*2N/3> . (3.32)
j=1
For 7 < min{\/‘/G%, ‘/XI/?MCI}, we have for [t| = k\/No,n,
Pr{> (7 < 7°Np} < exp{—ct’Np/120}. (3.33)
j=1

This inequality implies that

N
Pr{> " (? < 7°Np} < exp{—c(p’N*’pé,n A N)/120}. (3.34)
j=1
Thus the lemma is proved. 0

Furthermore, we consider the sets defined as

~

C,=12C,.nNnC,, v=1,...,L. (3.35)
Lemma 3.13. Under conditions of Theorem 1.2 we have, forv=1,..., L,

Pr{inf ||Xx|2 < 74/ Np} < exp{—cNp,n}.

x€eCy
Proof. According to Lemma 3.12 we have for any fixed x € C,
Pr{||Xx|]s < 27/ Np} < exp{—c1Np,n}.
Consider n = £-net N of C,. Then the event {inf s [ Xx|]y < 74/Np} implies

{inf [ Xx]l> < 2r\/Np}. (3.36)
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Without loss of generality we may assume that d;,y < 1. Using a union bound, we get
Pr{inf [|Xx|s < 74/Np} < (n; ) \IN|exp{—c1Np, n} (3.37)
x€Cy vN

Using Stirling’s formula and a simple bound for the cardinality of an n-net, for some
sufficiently small absolute constant «y > 0 (does not depend on v) and

dun = aopun/(|logpun| + 1), pun = Npd,_1 n

we get
Pr{inf || Xx||s < 74/Np} < exp{—ciNp,n}.
XGCU
Thus Lemma 3.13 is proved. 0

Now we consider the case Np?/(|logp|+ 1) > D for some sufficiently large constant
D. Let x € Incomp(don, p) and o(x) denote the set described in Lemma 3.11. Let

G = Zxkﬁijjk,j =1,...,N.
k=1

We have
L(C,m/p) < L( Z T Xk, TA/D)-

keo(x)
Using a Berry-Esseen bound we get

3pE | X3
Zkea(x) kP | 3]16’ < OF + C,ug .
O — T7p)2 PV MOoND
Note that npdoy = ydoNp?/(1 + |Inp|). Choosing D sufficiently large, we have
L(¢,7v/p) <1-0,

for some constant b € (0,1). By Lemma 3.8 we get
Pr{||Xx]]z < 271/Np} < exp{—cN},

L(¢,7yp) < CT+C

for 7 < 715 and ¢ > 0.
Inequality (3.2) implies that there exists vy > 0 such that

Pr{ inf | Xx||2 < 74/Np} < exp{—cN}.

x€Ci1NIncomp(do,p)
Note that
Comp(dpv, p) € Co U (U,G,)

Using a union bound, we get

L-1
Pr{ . in(f(S )HXXH2 < 71y/np} < exp{—ch}—l—Z exp{—c(Np)"Néon} < exp{—¢Np}.
zcComp(oLN,p 1
(3.38)

By Corollary 3.3,
Comp(7, p) C Cy.
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This implies that
inf ) 1 Xx||o < inf ) 1 Xx||2. (3.39)

x€ Incomp(yo,p x€Incomp(dr N ,p

In what follows we shall estimate the probability Pr{infxc meomp(ro,p) | XX[[2 < 7+/Np}.

3.3. Incompressible Vectors. Using a decomposition of the unit sphere S*~1 =
Comp U Incomp, we decompose the invertibility problem onto two sub problems for
compressible and incompressible vectors:

Pr{s,(X) < e/pVN}
< Pr{_inf |IXx]; < ey/pVN} + Pr{ _inf || Xx]|; < e/pVN}. (3.40)
X omp X nco

mp
A bound for the compressible vectors follows from inequality (3.38). It remains to find
a lower bound for || Xx||, for incompressible vectors. Let 0,7y, ..., ny denote standard
Gaussian random variables independent of Xz, & for 1 < j < N, 1 <k < n. We shall
prove the following lemma.

Lemma 3.14. Let © € IC(d,p). Then there exist absolute constants c¢; such that for
any C' > 0, the following inequality

2t 260 02
Pr{|| Xzl < tA/Np} < (————)N + (=L exp{—— 1)V, 3.41
holds for t > cypq/+/Npo.
Proof. We may write
N
Pr{|[Xz> < ty/Np} = Pr{d_(} < *Np} (3.42)
j=1

where (; = Y 1, Xjk&rwr. Applying Markov’s inequality, we get

N N N
1 1
Pr{z ¢ <t*Np} < eNEeXp{—% ZC?} = eNH]EeXp{—%C]?}. (3.43)
=1 =1

Jj=1

We may rewrite the r.h.s. of (3.43) as follows

N N
1
P 2 <*Np} <V [|E ——(n; t- 3.44
r{;ﬂ (j <t"Np}<e j|:|1 eXp{zt\/ﬁCn} (3.44)

Conditioning by n;, we get

n

N N
1
Pr{z ¢ < *Np} < eV HEW H | Ex, e, exp{zﬁnjkajkfij (3.45)
=1

j=1 k=1
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By Lemma 3.11 there exists a set o(z) such that for k € o(x) we have 2f < x| < %
and |o(z)| > 5-6p>N. We may write the following inequality

E,, H | Ex e exp{z
k€o(x) \/_

o1
<E,, H | Ex e, exp{zvnja:kakfij. (3.46)
keo(x) p

UJkakaJk}‘

For any constant C' we have

Eﬂ] H | EXjké-]k eXp{Z

N2k XjrEjn }|
keo(x) \/Z_?

<E nieeXn&n | | Winil < CF + Pri|n;| > C}.

(3.47)

M5 H ‘Engﬁgk exp{z \/—
keo(z)

Consider k € o(x) now. Taking expectation with respect to &;, conditioning on X
and 7;), we obtain

1
|EX]k5Jk(eXp{2 0@k X })]

t\/p

1
= [1+p(Ex,, exp{z njxe Xkt — 1)]. (3.48)

t\/p

Applying Taylor’s formula for the characteristic function Ex, exp{iﬁﬁnjka ik}, we
may write

1
— ;2 Xkl |n;] < C} = 1)

NG

< |1+ p(—

|1+ p(Ex,, exp{i

1 E|X11|
T U] (3.49)

3
Since E | X ;]* < E1 | X11]* < pf < g, for |n;] < C, and
Cpuy

t> N (3.50)
we have
all | B Xul® _ Cuav2 1
3t\/p - 3t\/— 2’
Taking into account this inequality, we get for |n;| < C,
14 p(Exu expli s Xa) — | < explopgod}. (351)

4¢2

N
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Since > cq ) x3 > p?, this inequality implies that

n 1 2
H | Ex e exp{z nierXiw€in [ ;] < O} < eXP{_4t2 Uk } (3.52)
k=1

™

From here it follows for any C' > 0

Pr{ZC < t*Np} < H Eexp{—EnJ} + Pr{|n;| > C}). (3.53)

7j=1

There exists an absolute constant ¢y > 0 such that

Co C2
Pr{ln;| > C} < Fexp{——}. (3.54)
This inequality implies that
= 2 _ 42 C* N
Pr{) (7 <t’Np} < exp{——-1})
= Vt2
2t 200 02
< (——/— )V + (Hexp{——})N. 3.55
< () <C p{-5}) (3.55)
Thus, Lemma 3.14 is proved. U

Proof of Theorem 1.2:

First we note that

Pr{ 1nf ||Xx||2 <ty/Np} <Pr{ inf |IXx|l2 < ty/Np}

( XGCOm(éL’N,p)
+ Pr{ inf ) | Xx||2 < ty/Np}. (3.56)

x€Incomp (8, N ,p

By inequality (3.38), for some constant ¢ > 0,
Pr{  inf | Xx||2 < ty/Np} < exp{—¢Np}. (3.57)

xeCom(dr, N,p)

By Relation (3.39), we have
Pr{ inf |IXx|2 <ty/Np} <Pr{ inf | Xx|l2 < ty/Np} (3.58)
x€Incomp(dr, N,p) x€Incomp(~0,p)

We consider an e-net A/ on the set of incompressible vectors ZC(vo, p) with ¢ = %

2K
where K > 0 is fixed. It is straightforward to check that

Pr{ inf ||Xx||2 < 7y/Np, |X]| < Ky/Np} < Pr{ 1nf |IXx|ls < 274/Np} (3.59)

EZC ’y()

Applying a umon—bound7 we get

Pr{inf [|Xx]ls < 27v/Np} < IN] sup  Pr{[[Xx]|; < 27/ Np}. (3.60)

T€ZC(v0,p)
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By [10, Proposition2.1], we have

9 n—1
|N\§n(1+—> :
3
c1ptq )

Then, applying the result of Lemma 3.14, we get (for ¢ > TN

fﬂmﬁfwaww¢*3<wn<——%EEW+@?wmi§wﬁ
SyAf(r+f§)n_ 0%7;%;§5YV+(%?emﬂ—%;DN>- (3.61)

It is easy to see that, for any 0 < t < 7,

Pr{ 1nf \X:L'HQ <ty/Np} < Pr{ mf HX:CH2 < 10v/Np}. (3.62)

z€ZC(4.

Without loss of generahty we may assume that 7 g 4K . Taking into account both
that N < eV and y < 1 rewrite the inequality (3.63) in the form

IN

5K N 467’0 2C0€ 02
P f X < N — — )N — —
{_nt Xl < /W) < (5 ) ((4ﬁ+ﬁm)+(cem{2 )

N
(5K)¥4eV2 (1_y) N (2c0e(5K)y exp! 2 r
p 0 Crd P15
(3.63)
Put .
p -y
To = (—) .
4y/2 - 5ve2 Ky
For N > 2, we have
K)Y4ev/2 (- 1 1
M'Tél y S 5 N. (364)
Note that, by condition (1.5), for N such that
Ha
InN > , 3.65
/B 0
we have
o> A (3.66)

vV Npyo

Moreover, choosing C' such that

c %2 2006574](3/
e —_—
2yp1 vrd

we obtain that

Pr{ mf HX:(;HQ <t\/Np,|X| < Ky/Np} <e N2 (3.67)

x€ZC(y
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for any 0 < t < 79. The result of Theorem 1.2 follows now from inequalities (3.56),
(3.57) and (3.67). (Since 7 is an absolute constant defined in Corollary 3.3 .) Theorem
1.2 is proved.
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