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Abstract. We derive estimates for the largest and smallest singular values of sparse
rectangular N×n random matrices, assuming limN,n→∞

n
N = y ∈ (0, 1). We consider

a model with sparsity parameter pN such that NpN ∼ logαN for some α > 1, and
assume that the moments of the matrix elements satisfy the condition E |Xjk|4+δ ≤
C <∞. We assume also that the entries of matrices we consider are truncated at the
level (NpN )

1
2−κ with κ := δ

2(4+δ) .

1. Introduction

In the last five to ten years, significant progress has been made in studying the as-
ymptotic behavior of the spectrum of sparse random matrices. A typical example of
such matrices is the incidence matrix of a random graph. Thus, for Bernoulli matrices
Konstantin Tikhomirov obtained exact asymptotics for the probability of singularity,
see [14]; also, see [9]. For the adjacency matrix of Erdös - Renyi random graphs, H.-T.
Yau and L. Erdös & Co. proved a local semicircular law and investigated the behavior
of the largest and the smallest singular values and as well as eigenvector statistics, see
the papers of [2, 4] and the literature therein. In particular for adjacency matrices
of regular graphs, local limit theorems and the behavior of extremal eigenvalues were
investigated by H.-T. Yau and co-authors [1]. For non-Hermitian sparse random ma-
trices M. Rudelson and K. Tikhomirov proved the circular law under unimprovable
conditions on the probability of sparsity and the moments of distributions of the ma-
trix elements (see [12]). J.O. Lee and J.Y. Hwang studied the spectral properties of
sparse sample covariance matrices, which includes adjacency matrices of the bipartite
Erdös–Renyi graph model). In [7] the authors prove a local law for the eigenvalues
density up to the upper spectral edge assuming that sparsity probability p has order
N−1+ε for some ε > 0 (here N denotes the growing order of the matrix) and entries of
matrix Xij are i.i.d. r.v.’s such that (in our notations)

E |X11|2 = 1 and E |X11|q ≤ (Cq)cq for every q ≥ 1. (1.1)

They also prove the Tracy-Widom limit law for the largest eigenvalues of sparse sample
covariance matrices. However, in the proof of the local Marchenko-Pastur law and the
Tracy-Widom limit, they assume a priori that the result of [3, Lemma 3.11] holds for
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sparse matrices (see [7, Proposition 2.13]), which includes, in particular, the bounded-
ness of the largest singular value that is the operator norm) of a sparse matrix. They
don’t investigate the smallest singular value of sparse rectangular matrices though.

We derive bounds for the smallest and the largest singular values of sparse rect-
angular random matrices assuming that the probability pN decreases in such a way
that NpN ≥ log

2
κ N for some κ > 0, and that the moment conditions are weaker than

those in (1.1) (see condition (1.6)). Our main result is devoted to the smallest singular
value of a sparse rectangular random matrix from an ensemble of dilute Wigner type
matrices.

Suppose n ≥ 1 and N > n. Consider independent identically distributed zero mean
random variables Xjk, 1 ≤ j ≤ N , 1 ≤ k ≤ n with EX2

jk = 1 ( where the distribution
of Xjk may depend on N), which are independent of a set of independent Bernoulli
random variables ξjk, 1 ≤ j ≤ N , 1 ≤ k ≤ n, with E ξjk = pN . In what follows we shall
simplify notation by denoting p = pN . We now introduce the following model of dilute
sparse matrices as a sequence of random matrices of the following type

X = (ξjkXjk)1≤j≤N,1≤k≤n. (1.2)

Denote by s1 ≥ · · · ≥ sn the singular values of X, and let Y = X∗X denote the sample
covariance matrix.

Put y = y(N, n) = n
N
. We shall assume that y(N, n) → y0 < 1 as N, n → ∞. In

what follows we shall vary the parameter N only.

Theorem 1.1. Let EXjk = 0 and E |Xjk|2 = 1. Suppose that there exists a positive
constant C > 0 such that

E |Xjk|4+δ ≤ C <∞, (1.3)
for any j, k ≥ 1 and for some δ > 0. Suppose also that there exists a positive constant
B, such that

Np ≥ B log
3
2κ N, (1.4)

where κ = δ
2(4+δ)

.
Then for every Q ≥ 1 and A > 0 there exists a constant K = C(Q, δ, µ4+δ, A,B)

such that

Pr{ s1 ≥ K
√
Np} ≤ CN−Q+N2pPr{|X11| > A(Np)

1
2
−κ lnN}.

Theorem 1.2. Let EXjk = 0 and E |Xjk|2 = 1. Suppose that

E |X11|4 = µ4 <∞,

and there exists a positive constant B, such that

Np ≥ B log2N. (1.5)

Then there exists a constant τ0 > 0 such that for every τ ≤ τ0 , Q ≥ 1 and K > 0
there exists a constant C = C(Q, µ4, K,B) with

Pr{ sn ≤ τ
√
Np} ≤ CN−Q+ Pr{s1 > K

√
Np}.

These results immediately imply the following corollary.
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Corollary 1.3. Under conditions of Theorem 1.1 there exist a constant τ0 > 0 such
that for any τ ≤ τ0 and for any A > 0 there exists a constant C = C(A, δ) depending
on A and δ such that the following inequality holds

Pr{ sn ≤ τ
√
Np} ≤ CN−Q+N2pPr{|X11| > A(Np)

1
2
−κ lnN}.

Corollary 1.4. Assume the conditions of Theorem 1.1. In addition assume that there
exists a constant B such that for every N ≥ 1

p = pN ≥ B/ ln4N.

Then
Pr{ s1 ≥ K

√
Np} ≤ CN−Q +

C

lnδN
.

Proof. Applying Markov’s inequality, we obtain

Pr{|X11| > A(Np)
1
2
−κ lnN} ≤ µ4+δ

(Np)2 ln4+δN
.

By the conditions of Corollary 1.4, we get

Pr{|X11| > A(Np)
1
2
−κ lnN} ≤ µ4+δ

N2B4+δ lnδN
.

The result follows now immediately from theorem 1.1. Thus, Corollary 1.4 is proved.
�

We may consider random variables Xij for i = 1, . . . , N ; j = 1, . . . , n, with identical
distributions depending on N . In this case we have the following result.

Corollary 1.5. In addition to conditions of Theorem 1.1 assume that for any q such
that 4 + δ ≤ q ≤ C log n

E |X11|q ≤ Cq
0q
q(Np)q(

1
2
−κ)−2. (1.6)

Then for every Q ≥ 1 and A > 0 there exist constants K = K(Q, δ, µ4+δ, A) and
C = C(Q, δ, µ4+δ, A) such that

Pr{ s1 ≥ K
√
Np} ≤ CN−Q.

and there exists a constant τ0 > 0 such that for every τ ≤ τ0 , Q ≥ 1 there exists a
constant C = C(Q, δ, µ4+δ)

Pr{ sn ≤ τ
√
Np} ≤ CN−Q (1.7)

2. Proof of Theorem 1.1

Let X̃ij denote truncated random variables Xij, i.e.

X̃ij = XijI{|Xij| ≤ A(Np)
1
2
−κ lnN},

where I{B} denotes the indicator of an event B. Let X̃ denote the matrix with entries
ξijX̃ij. By ‖A‖ we denote the operator norm of a matrix A. First we estimate the
spectral norm of the matrix E X̃. Since Xij and ξij are identically distributed random
variables we have

‖E X̃‖ = np|E X̃11|.
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By condition (1.3), we have

|E X̃11| = |EX11I{|X11| > A(Np)
1
2
−κ lnN}| ≤ C

A3(Np)
3
2
+κ
.

From here we get the bound

‖E X̃‖ ≤ CA−3(Np)−
1
2
−κ. (2.1)

We consider now the centered and truncated random variables X̂ij = X̃ij − E X̃ij for
i = 1, . . . N, j = 1, . . . n, and the matrix X̂ = (ξijX̂ij). Let ŝ1 ≥ ŝ2 . . . ≥ ŝn denote
the singular values of the matrix X̂ and resp. let s̃1 ≥ s̃2 . . . ≥ s̃n denote the singular
values of the matrix X̃. Note that

Pr{s1 6= s̃1} ≤ Pr{X 6= X̃} ≤
N∑
i=1

n∑
j=1

pPr{X̃ij 6= Xij}

= nNpPr{|X11| > A(Np)
1
2
−κ lnN} (2.2)

Furthermore, we have
s̃1 ≤ ŝ1 + ‖E X̃‖. (2.3)

According to (2.1) we may assume that

‖E X̃‖ ≤ γ
√
Np (2.4)

for sufficiently small γ > 0. We may write now

Pr{s1 > K
√
Np} ≤ Pr{ŝ1 >

1

2
K
√
Np}+N2pPr{|X11| > A(Np)

1
2
−κ lnN} (2.5)

Note that

σ̂2
n = E X̂2

11 = E(X̃11)
2 − (E X̃11)

2

= 1− EX2
11I{|X11| > A(Np)

1
2
−κ lnN} − (EX11I{|X11| > A(Np)

1
2
−κ lnN})2.

(2.6)

It is easy that

|1− σn| ≤ |1− σ2
n| ≤

2µ4+δ

A2+δ(Np)(2+δ)(
1
2
−κ)

. (2.7)

Without loss of generality we may assume that σn ≥ 1
2
. Consider now the matrix

X̆ = 1
σn
X̂. Let s̆1 denote the largest singular value of the matrix X̆. Then

Pr{ŝ1 > K
√
Np} ≤ Pr{s̆1 > 2K

√
Np}. (2.8)

During the rest of the proof of Theorem 1.1 we shall consider the matrix X with
entries ξijXij, i = 1, . . . , N j = 1, . . . , n satisfying the following conditions (CI):

• ξij are independent Bernoulli r.v.’s with E ξij = p (= pN);
• Xij are i.i.d. r.v.’s for 1 ≤ i ≤ N, 1 ≤ j ≤ n, such that EX11 = 0, E |X11|4+δ ≤
µ4+δ and

|X11| ≤ A(Np)
1
2
−κ lnN a.s.

We use the following result of Seginer (see [13, Corollary 2.2]).
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Proposition 2.1. There exists a constant A such that for any N, n ≥ 1, any q ≤
2 log max{n,N}, and any N × n random matrix X = (Xij) where Xij are i.i.d. zero
mean random variables, the following inequality holds:

max
{
E max

1≤i≤N
‖Xi·‖q2,E max

1≤j≤n
‖X·j‖q2

}
≤ E ‖X‖q

≤ (2A)q
(
E max

1≤i≤N
E ‖Xi·‖q2 + max

1≤j≤n
‖X·j‖q2

)
. (2.9)

Here Xi·, resp. X·j, denote the i-th row, resp. the j-th column of X.

Proof of Theorem 1.1. Note that s1 = ‖X‖. Using the notations introduced above, we
now estimate E ‖Xi·‖q. By the definition of X we have

E ‖Xi·‖q2 = E
( n∑
k=1

X2
ikξik

) q
2 ≤ 2q−1

( n∑
k=1

EX2
ikξik

) q
2
+2q−1 E

∣∣∣ n∑
k=1

(X2
ik−1)ξik

∣∣∣ q2 . (2.10)

Note that
EX2

ikξik = p. (2.11)

Now, applying Rosenthal’s inequality we get

E
∣∣∣ n∑
k=1

(X2
ik − 1)ξik

∣∣∣ q2 ≤ Cq
(
q
q
4

( n∑
k=1

E(X2
ik − 1)2ξik

) q
4

+ q
q
2p

n∑
k=1

E |X2
ik − 1|

q
2

)
, (2.12)

which implies

E
∣∣∣ n∑
k=1

(X2
ik − 1)ξik

∣∣∣ q2 ≤ Cq
(
q
q
4 (Np)

q
4 + q

q
2NpE |X11|q

)
. (2.13)

By assumptions (CI), we have

E |X11|q ≤ Cq(Np)
q
2
−qκ−2 lnq−4−δN. (2.14)

Note that for q ∼ lnN inequality (2.14) coincide with condition (1.6). Combining
inequalities (2.10)–(2.14), we now get

E ‖Xi·‖q2 ≤ Cq(Np)
q
2

(
1 +

(
q

Np

) q
4

+N−1p−1 ln−(4+δ)N

(
q ln2N

(Np)2κ

) q
2 )
.

Taking into account (1.5), as well as q ≤ C log n, we obtain, for q ≤ 2 log max{n,N},

E ‖Xi·‖q2 ≤ Cq(Np)
q
2 .

A similar bound holds for E ‖X·j‖q. We may now write

E ‖X‖q ≤ CqN(Np)
q
2 .

Taking K � C and applying Markov’s inequality, the claim follows. Thus Theorem
1.1 is proved. �
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3. Smallest singular values

We shall now prove Theorem 1.2 using an approach developed by Litvak, Pajor,
Rudelson [8], Rudelson and Vershynin in [10] for rectangular matrices for the case
p = 1 and Götze and Tikhomirov in [5] for the sparse dilute Wigner matrices. Denote
by S(n−1) the unit sphere in Rn. Let x = (x1, . . . , xn) ∈ S(n−1) be a fixed unit vector
and X be a matrix defined in (1.2).

We divide the vectors on the sphere into two parts: compressible and incompressible
vectors recalling the definition.

Definition 3.1. Let δ, ρ ∈ (0, 1). A vector x ∈ Rn is called sparse if |supp(x)| ≤ δn.
A vector x ∈ S(n−1) is called compressible if x is within Euclidean distance ρ from
the set of all sparse vectors. A vector x ∈ S(n−1) is called incompressible if it is not
compressible. The sets of compressible and incompressible vectors will be denoted by
Comp(δ, ρ) and Incomp(δ, ρ).

Note that
sn = inf

x∈S(n−1)
‖Xx‖2

and

Pr{sn ≤ τ
√
Np} ≤ Pr{ inf

x∈Comp(δ,ρ)
‖Xx‖2 ≤ τ

√
Np}+Pr{ inf

x∈Incomp(δ,ρ)
‖Xx‖2 ≤ τ

√
Np},

(3.1)
for some δ, ρ ∈ (0, 1) and τ > 0, not depending on n.

For sparse matrices with p = pN → 0 as N →∞ we cannot directly estimate the first
term on the right hand side of (3.1) using the well-known two step approach of estimat-
ing Pr{‖Xx‖2 ≤ τ

√
Np} for a fixed vector x ∈ S(n−1) followed by a union bound for the

some ε-net of Comp(δ, ρ) and arriving at a bound for the infimum of x ∈ Comp(δn, ρ)
with δn ∼ p going to zero. The Rudelson - Vershynin methods for incompressible vec-
tors won’t work in this case. In order to estimate Pr{infx∈Comp(δ,ρ) ‖Xx‖2 ≤ τ

√
Np}

with some δ > 0 which does not not depend on n, we shall use a method developed
in Götze-Tikhomirov [5]. This is based on a recurrence approach which allows us to
increase δN step by step Np times arriving in logN steps at an estimate of δ > δ0
which does not depend on N . The details of this approach will be described in Section
3.1.

In Section 3.3 we shall derive bounds for Pr{infx∈Incomp(δ,ρ) ‖Xx‖2 ≤ τ
√
Np}.

3.1. Compressible vectors. Let L be an integer such that(
δ0Np

| log p|+ 1

)L−1
≤ p−1 ≤

(
δ0Np

| log p|+ 1

)L
, (3.2)

where δ0 ∈ (0, 1) denotes some constant independent on N . Note that under the
conditions of Theorem 1.2

L ≤ c logN/ log logN (3.3)
with a constant c = c(δ0).We introduce a set of numbers pνN and δνN , for ν = 1, . . . , L,
as follows

pνN = (Np)δν−1N and δνN = δ0pνN/(1 + | log pνN |).
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Here
p0N = p and δ0N = δ0p/(1 + | log p|).

Furthermore, introduce as well

p̂νN =

(
Npδ0

| log p|+ 1

)ν
p and δ̂νN :=

(
δ0Np

| log p|+ 1

)ν−1
δ0p

| log p|+ 1
.

Lemma 3.2. The following inequalities hold

pν,N ≥ p̂ν (3.4)

and
δν,N ≥ δ̂ν,N , (3.5)

for ν = 1, . . . , N

Proof. By condition of Theorem 1.2,
Np

1 + | ln p|
≥ B lnN. (3.6)

Without loss of generality we may assume that
Npδ0

1 + | ln p|
> 1. (3.7)

It is straightforward to check now that pν,N ≥ p, for ν = 1, . . . , N . In fact, for ν = 1 it
is easy. Assume that for some ν = 1, . . . , N − 1 the inequality pν−1,N ≥ p holds. Then

pν,N =
Npδ0pν−1,N

1 + | ln pn−1,N |
≥ Npδ0

1 + | ln p|
pν−1,N ≥

Npδ0
1 + | ln p|

p ≥ p. (3.8)

We may write now the following inequalities

δν,N ≥
δ0

1 + | ln p|
pν,N (3.9)

and

pν,N ≥
Npδ0

1 + | ln p|
pν−1,N , (3.10)

for ν = 1, . . . , N . Applying induction for the last inequality, we get, for ν = 1, . . . , N ,

pν,N ≥ p̂ν,N . (3.11)

The last inequality implies that, for ν = 1, . . . , N ,

δν,N ≥
δ0

1 + | ln p|
p̂ν−1,N =

(
Npδ0

1 + | ln p|

)ν−1
pδ0

1 + | ln p|
= δ̂nu,N . (3.12)

Thus, lemma is proved. �

Corollary 3.3. There exist constants γ0 > 0, γ1 > 0 such that

δL,N ≥ γ0 and pLN ≥ γ1. (3.13)
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Introduce the sets
Cν := Comp(δν,N , ρ), ICν := Incomp(δν,N , ρ), ν = 0, . . . , L.

Note that L ≥ 1 for Np2/(| log p| + 1) ≤ D with some constant D. The case
Np2/(| log p| + 1) ≥ D will we treated separately. In what follows we shall assume
that L ≥ 1.

Definition 3.4. The Lévy concentration function of a random variable ξ is defined for
ε > 0 as

L(ξ, ε) = sup
v∈R

Pr{|ξ − v| ≤ ε}. (3.14)

By PE we denote the orthogonal projection in Rn onto a subspace E. Similarly, by
PJ we denote the orthogonal projection onto RJ, where J ⊂ {1, 2, . . . , n}.

We reformulate and prove some auxiliary results from [10] below for our sparsity
model.

First we prove an analog of [10, Lemma 3.2].

Lemma 3.5. Let x ∈ ICν, ν = 1, . . . , L. Let

ζj =
n∑
k=1

xkξjkXjk, j = 1, . . . , N.

Then there exists some absolute constant A such that

L(
1
√
p
ζj,

ρ

2
) ≤ 1− Aρ4pνN . (3.15)

Remark 3.6. For ν = L there exists some constant 0 < b < 1 such that

L(
1
√
p
ζj,

ρ

2
) ≤ 1− b < 1.

Proof. By Lemma 3.11 there exists a set σ(x) such that for k ∈ σ(x)

1

2
√
n
≤ |xk| ≤

1√
2nδν−1,N

, and ‖Pσ(x)x‖22 ≥ ρ2.

Let
η =

∑
k∈σ(x)

xkξjkXjk/
√
p.

Note that
E η2 ≥ ρ2, E |η|4 ≤ A0(1 +

1

Nδν−1,Np
).

Without loss of generality we may assume that Nδν−1,Np ≤ 1. This implies that

E |η|4 ≤ 2A0

Nδν−1,Np
. (3.16)

Let Z = η − v. Note that
EZ2 = E η2 + v2 ≥ v2 + ρ2,

and
E η4 ≥ (E η2)2 ≥ ρ4.
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Using Minkowski’s inequality, we get

E
1
4 |Z|4 ≤ E

1
4 |η|4 + v ≤ E

1
4 |η|4(1 +

v

ρ
) ≤ ρ−1

√
2E

1
4 |η|4(ρ2 + v2)

1
2 .

Using the Paley-Zygmund inequality, we get

Pr{|η − v| > ε} ≥ ρ4(E |Z|2 − ε2)2

4E |η|4(ρ2 + v2)2
≥ 1

4E |η|4
ρ4(ρ2 + v2 − ε2)2

(ρ2 + v2)2
.

The last inequality and inequality (3.16) together imply

Pr{|η − v| ≥ ε} ≥ A1ρ
4Nδν−1,Np(1−

2ε2

ρ2 + v2
).

Finally, we may write

Pr{|η − v| ≥ 1

2
ρ} ≥ 1

2
A1ρ

4pν,N .

Thus Lemma 3.5 is proved. �

For the set of sparse vectors the following lemma holds.

Lemma 3.7. The following inequality holds.

L(ξX/
√
p,

1

2
) ≤ 1− p

8µ4

Proof. For the proof it is enough to note that by the Paley-Zygmund inequality we
have

Pr{|ξX − v| ≥ 1

2
} ≥ p

1 + v2 − ε2

4E |X|4(1 + v2)2
≥ p

8µ4

�

Lemma 3.8. Let ζ1, . . . , ζN denote independent identically distributed random variables
such that

Pr{|ζj| ≤ λn} ≤ 1− qN ,
for some λN > 0 and qN ∈ (0, 1). Then there exist constants c, C such that

Pr{
N∑
j=1

ζ2j ≤ CNqNλ
2
N} ≤ exp{−cNqN}. (3.17)

For the proof of this lemma see [5, Lemma 4.5].
We start with the estimation of ‖Xx‖2 for a fixed x ∈ S(n−1).

Lemma 3.9. There exist positive absolute constants τ0 and c0 such that

Pr{‖Xx‖2 ≤ τ0
√
Np} ≤ exp{−c0Np}.

Proof of Lemma 3.9. The proof of this lemma may be found in [5, Lemma 4.1], but for
readers convenience we repeat it here. Let

ζj =
n∑
k=1

Xjkξjkxk, j = 1, . . . , N
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Then

‖Xx‖22 =
N∑
j=1

ζ2j .

Furthermore, we may write for τ > 0 and any t

Pr{
N∑
j=1

ζ2j ≤ τ 2Np} = Pr{τ
2Np

2
− 1

2

N∑
j=1

ζ2j ≥ 0} ≤ exp{Npτ 2t2/2}
N∏
j=1

E exp{−t2ζ2j /2}.

Using e−t
2/2 = E eitη, where η is a standard Gaussian random variable, we obtain

Pr{
N∑
j=1

ζ2j < τ 2np} ≤ exp{Npτ 2t2/2}
N∏
j=1

Eηj
n∏
k=1

EξjkXjk exp{itξjkXjkxkηj}, (3.18)

where ηj, j = 1, . . . , N denote i.i.d. Gaussian standard r.v.s and EZ denotes expectation
with respect to Z conditional on all other r.v.s.

Take α = Pr{|η1| ≤ C1} for some absolute positive constant C1 which will be chosen
later. Then it follows from 3.18 that

Pr{
N∑
j=1

ζ2j < τ 2Np} ≤ exp{t2τ 2Np/2}

×
N∏
j=1

(
α
∣∣∣Eηj { n∏

k=1

EξjkXjk exp{itηjxkXjkξjk}
∣∣∣|ηj| ≤ C1

}∣∣∣+ 1− α
)
.

Note that for any α, x ∈ [0, 1], and β ≤ α

1− α + αx ≤ max{xβ,
(β
α

) β
1−β }.

Furthermore, we have

|EξjkXjk exp{itξjkXjkxkηj}| ≤ exp{−p
2

(1− |fjk(txkηj)|2)}, (3.19)

where fjk(u) = E exp{iuXjk}. Choose a constant M > 0 such that

sup
j,k≥1

E |Xjk|2I{|Xjk| > M} ≤ 1

2
.

Since 1 − cosx ≥ 11
24
x2 for |x| ≤ 1, conditioning on the event |ηj| ≤ C1, we get for

|t| ≤ 1
MC1

,

1− |fjk(txkηj)|2 = EXkj(1− cos(txkX̃kjηj) ≥
11

24
x2kt

2η2j E |X̃kj|2I{|Xkj| ≤M}. (3.20)

Here we denote by X̃kj the symmetrization of the r.v. Xkj. It follows from (3.19) for
|t| ≤ 1/(MC1), that for |ηj| ≤ C1,

|EξjkXjk exp{itξjkXjkxkηj}| ≤ exp{−cpt2x2kη2j} (3.21)
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This implies that

|
n∏
k=1

EξkjXkj exp{itηjxkξjkXjk}| ≤ exp{−cpt2η2j}. (3.22)

We may choose C1 large enough such that following inequalities hold for |t| ≤ 1/MC1:

|Eηj{exp{−cpt2η2j}
∣∣|ηj| ≤ C1}| ≤ exp{−ct2p/24}. (3.23)

Then we obtain

Pr{
N∑
j=1

ζ2j ≤ τ 2Np} ≤ exp{Npτ 2t2/2}
(

exp{−cβt2Np/24}+
(β
α

)N β
1−β
)

(3.24)

Furthermore, we may take C1 sufficiently large such that α ≥ 4
5
and choose β = 2

5
. We

get

Pr{
N∑
j=1

ζ2j ≤ τ 2Np} ≤ exp{Npτ 2t2/2}
(

exp{−ct2Np/60}+ 2−2N/3
)
. (3.25)

For τ < min{
√
c√
60
,
√
ln 2√
3
MC1}, we have for |t| ≤ 1/(MC1),

Pr{
N∑
j=1

ζ2j ≤ τ 2Np} ≤ exp{−ct2Np/120}. (3.26)

This implies the claim. Thus the lemma is proved. �

3.2. Compressible and Incompressible Vectors. First we prove an analog of Lemma
2.6 from [10].

Lemma 3.10. There exist positive absolute constants δ0, τ0, c1 such that

Pr{ inf
x∈Comp(δ0N ,ρ0)

‖Xx‖2 ≤ τ0
√
Np, ‖X‖ ≤ K

√
Np} ≤ exp{−c1Np},

where

δ0N = δ0p/(| log p|+ 1), ρ0 = τ0/2K. (3.27)

Proof. Let k = [nδ0N ]. Denote by Nη an η-net on the S(k−1) ∩ Rk. Choose η = τ0/2K
First we consider the set of all sparse vectors Sparse(k) with support(x) ≤ k. Using
Lemma 3.9 and a union bound, we get

Pr{ inf
x∈Sparse(δ0N )

‖Xx‖2 ≤ 2ρ0
√
np} ≤

(
n

k

)
|Nη| exp{−c0Np}.

Using Stirling’s formula and Proposition 2.1 from [10], we get

Pr{ inf
x∈Sparse(δ0N )

‖Xx‖2 ≤ 2τ0
√
Np}

≤ 4nδ0N√
2πnδ0N(1− δ0N)

(1 + K
ρ0

)nδ0N−1

δnδ0N0N (1− δ0N)n(1−δ0N )
exp{−c0Np}.



12 F. GÖTZE AND A. TIKHOMIROV

Simple calculations show

Pr{ inf
x∈Sparse(δ0N )

‖Xx‖2 ≤ 2τ0
√
Np} ≤

√
2nδ0N

(1− δ0N)π

× exp{nδ0N
(

(1− 1

nδ0N
)
K

ρ0
− log δ0N − (1− δ0N)

1

δ0N
log(1− δ0N)

)
− c0Np}.

If we choose
δ0N := δ0p/(1 + | log p|)

for a sufficiently small absolute constant δ0, we get

Pr{ inf
x∈Sparse(δ0N )

‖Xx‖2 ≤ 2τ0
√
Np} ≤ exp{−c1Np}.

Thus the Lemma is proved. �

In what follows, we shall use a technique developed in Götze and Tikhomirov [5]
which is based on the following lemmas.

Lemma 3.11. Let ρ, δ ∈ (0, 1). Assume that x ∈ Incomp(δ, ρ). Then there exists a set
σ0(x) such that |σ0(x)| ≥ Cnδρ2 and 1

2
√
n
≤ |xk| ≤ 1√

nδ/2
for k ∈ σ0(x), and∑

k∈σ0(x)

|xk|2 ≥ ρ2.

For a proof of this Lemma see for instance [11, Lemma 3.4].

Lemma 3.12. Let x ∈ ICν for some ν = 0, . . . , L− 1. Then there exist constants c1
and c2 such that for any 0 < τ ≤ τ0

Pr{‖Xx‖2 ≤ τ
√
Np} ≤ exp{−c1Npν+1N}.

Proof. We repeat the proof of Lemma 3.9 till (3.20).
Furthermore, by Lemma 3.11 there exists a set σ0(x) such that 1

2
√
n
≤ |xk| ≤ 1√

nδνN/2

for k ∈ σ0(x), and ∑
k∈σ0(x)

|xk|2 ≥ ρ2. (3.28)

We may write now
n∑
k=1

(1− |f(txkXjkηj)|2) ≥
∑

k∈σ0(x)

(1− |f(txkXjkηj)|2).

Note that for k ∈ σ0, and for |Xjk| ≤M , and for |ηj| ≤ C, we have

|txkXjkηj| ≤
|t|CM

√
2√

NδνN
.

Taking t = κ
√
NδνN for κ = 1

CM
√
2
, we get

|txkXjkηj| ≤ 1,
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and
1− |fηj(txkXjkηj)|2 ≥

11

24
t2x2kη

2
j E |Xjk|2I{|Xjk| ≤M} ≥ 11

48
t2x2kη

2
j .

Repeating now the last part of the proof of Lemma 3.9 and taking into account in-
equality (3.28), we obtain for τ < ρmin{

√
c√
60
,
√
ln 2√
3
MC1}, and for |t| = κ

√
NδνN ,

|
n∏
k=1

EξjkXjk exp{itηjxkξjkXjk}| ≤ exp{−cρ2pt2η2j}, (3.29)

where c is an absolute constant as in (3.22). We may choose C1 large enough such that
the following inequalities hold for |t| = κ

√
NδνN :

|Eηj{exp{−cpt2η2j}
∣∣|ηj| ≤ C1}| ≤ exp{−ct2p/24}. (3.30)

We use here that |t|p ≤ δ0 by (3.2). Then we obtain

Pr{
n∑
j=1

ζ2j ≤ τ 2Np} ≤ exp{Npτ 2t2/2}
(

exp{−cβt2Np/24}+
(β
α

)N β
1−β

)} (3.31)

Furthermore, we may take C1 large enough such that α ≥ 4
5
and choose β = 2

5
. We get

Pr{
n∑
j=1

ζ2j ≤ τ 2Np} ≤ exp{Npτ 2t2/2}
(

exp{−ct2Np/60}+ 2−2N/3
)
. (3.32)

For τ < min{
√
c√
60
,
√
ln 2√
3
MC1}, we have for |t| = κ

√
NδνN ,

Pr{
n∑
j=1

ζ2j ≤ τ 2Np} ≤ exp{−ct2Np/120}. (3.33)

This inequality implies that

Pr{
N∑
j=1

ζ2j ≤ τ 2Np} ≤ exp{−c(ρ2N2κ2pδνN ∧N)/120}. (3.34)

Thus the lemma is proved. �

Furthermore, we consider the sets defined as

Ĉν := ICν−1 ∩ Cν , ν = 1, . . . , L. (3.35)

Lemma 3.13. Under conditions of Theorem 1.2 we have, for ν = 1, . . . , L,

Pr{ inf
x∈Ĉν
‖Xx‖2 ≤ τ

√
Np} ≤ exp{−cNpνN}.

Proof. According to Lemma 3.12 we have for any fixed x ∈ Ĉν
Pr{‖Xx‖2 ≤ 2τ

√
Np} ≤ exp{−c1Npν,N}.

Consider η = τ
K
-net N of Ĉν . Then the event {infx∈Ĉν ‖Xx‖2 ≤ τ

√
Np} implies

{ inf
x∈N
‖Xx‖2 ≤ 2τ

√
Np}. (3.36)
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Without loss of generality we may assume that δLN < 1. Using a union bound, we get

Pr{ inf
x∈Ĉν
‖Xx‖2 ≤ τ

√
Np} ≤

(
n

nδνN

)
|N | exp{−c1Npν,N} (3.37)

Using Stirling’s formula and a simple bound for the cardinality of an η-net, for some
sufficiently small absolute constant α0 > 0 (does not depend on ν) and

δνN = α0pνN/(| log pν,N |+ 1), pνN := Npδν−1,N

we get

Pr{ inf
x∈Ĉν
‖Xx‖2 ≤ τ

√
Np} ≤ exp{−ĉ1NpνN}.

Thus Lemma 3.13 is proved. �

Now we consider the case Np2/(| log p|+ 1) > D for some sufficiently large constant
D. Let x ∈ Incomp(δ0N , ρ) and σ(x) denote the set described in Lemma 3.11. Let

ζj =
n∑
k=1

xkξjkXjk, j = 1, . . . , N.

We have
L(ζj, τ

√
p) ≤ L(

∑
k∈σ(x)

xkξjkXjk, τ
√
p).

Using a Berry-Esseen bound we get

L(ζj, τ
√
p) ≤ Cτ + C

∑
k∈σ(x) x

3
kpE |Xjk|3

(
∑

k∈σ(x) x
2
kp)

3
2

≤ Cτ +
Cµ3

ρ
√
nδ0Np

.

Note that npδ0N = yδ0Np
2/(1 + | ln p|). Choosing D sufficiently large, we have

L(ζj, τ
√
p) ≤ 1− b,

for some constant b ∈ (0, 1). By Lemma 3.8 we get

Pr{‖Xx‖2 ≤ 2τ
√
Np} ≤ exp{−cN},

for τ ≤ τ0 and c > 0.
Inequality (3.2) implies that there exists γ0 > 0 such that

Pr{ inf
x∈C1∩Incomp(δ0,ρ)

‖Xx‖2 ≤ τ
√
Np} ≤ exp{−cN}.

Note that
Comp(δLN , ρ) ⊂ C0 ∪

(
∪Lν=1Ĉν

)
.

Using a union bound, we get

Pr{ inf
x∈Comp(δLN ,ρ)

‖Xx‖2 ≤ τ
√
np} ≤ exp{−cNp}+

L−1∑
ν=1

exp{−c(Np)νNδ0,N} ≤ exp{−cNp}.

(3.38)
By Corollary 3.3,

Comp(γ0, ρ) ⊂ CL.
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This implies that

inf
x∈Incomp(γ0,ρ)

‖Xx‖2 ≤ inf
x∈Incomp(δLN ,ρ)

‖Xx‖2. (3.39)

In what follows we shall estimate the probability Pr{infx∈Incomp(γ0,ρ) ‖Xx‖2 ≤ τ
√
Np}.

3.3. Incompressible Vectors. Using a decomposition of the unit sphere S(n−1) =
Comp ∪ Incomp, we decompose the invertibility problem onto two sub problems for
compressible and incompressible vectors:

Pr{sn(X) ≤ ε
√
p
√
N}

≤ Pr{ inf
x∈Comp

‖Xx‖2 ≤ ε
√
p
√
N}+ Pr{ inf

x∈Incomp
‖Xx‖2 ≤ ε

√
p
√
N}. (3.40)

A bound for the compressible vectors follows from inequality (3.38). It remains to find
a lower bound for ‖Xx‖2 for incompressible vectors. Let η, η1, . . . , ηN denote standard
Gaussian random variables independent of Xjk, ξjk for 1 ≤ j ≤ N, 1 ≤ k ≤ n. We shall
prove the following lemma.

Lemma 3.14. Let x ∈ IC(δ, ρ). Then there exist absolute constants c1 such that for
any C > 0 , the following inequality

Pr{‖Xx‖2 ≤ t
√
Np} ≤ (

2t√
t2 + ρ2/2

)N + (
2c0
C

exp{−C
2

2
})N , (3.41)

holds for t ≥ c1µ4/
√
Npδ.

Proof. We may write

Pr{‖Xx‖2 ≤ t
√
Np} = Pr{

N∑
j=1

ζ2j < t2Np} (3.42)

where ζj =
∑n

k=1Xjkξjkxk. Applying Markov’s inequality, we get

Pr{
N∑
j=1

ζ2j < t2Np} ≤ eN E exp{− 1

t2p

N∑
j=1

ζ2j } = eN
N∏
j=1

E exp{− 1

t2p
ζ2j }. (3.43)

We may rewrite the r.h.s. of (3.43) as follows

Pr{
N∑
j=1

ζ2j < t2Np} ≤ eN
N∏
j=1

E exp{i 1

t
√
p
ζjηj}. (3.44)

Conditioning by ηj, we get

Pr{
N∑
j=1

ζ2j < t2Np} ≤ eN
N∏
j=1

Eηj
n∏
k=1

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}| (3.45)
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By Lemma 3.11 there exists a set σ(x) such that for k ∈ σ(x) we have 1
2
√
n
≤ |xk| ≤

√
2√
nδ

and |σ(x)| ≥ 1
2y
δρ2N . We may write the following inequality

Eηj
∏

k∈σ(x)

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}|

≤ Eηj
∏

k∈σ(x)

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}|. (3.46)

For any constant C we have

Eηj
∏

k∈σ(x)

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}|

≤ Eηj

 ∏
k∈σ(x)

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}|

 I{|ηj| ≤ C}+ Pr{|ηj| > C}.

(3.47)

Consider k ∈ σ(x) now. Taking expectation with respect to ξjk conditioning on Xjk

and ηj), we obtain

|EXjkξjk
(

exp{i 1

t
√
p
ηjxkXjkξjk}

)
|

= |1 + p(EXjk exp{i 1

t
√
p
ηjxkXjk} − 1)|. (3.48)

Applying Taylor’s formula for the characteristic function EXjk exp{i 1
t
√
p
ηjxkXjk}, we

may write

|1 + p(EXjk exp{i 1

t
√
p
ηjxkXjk||ηj| ≤ C} − 1)|

≤ |1 + p(− 1

2t2p
η2jx

2
k +

E |X11|3

6t3p
3
2

|xk|3|ηj|3)|. (3.49)

Since E |X11|3 ≤ E
3
4 |X11|4 ≤ µ

3
4
4 ≤ µ4, for |ηj| ≤ C, and

t ≥ Cµ4√
yNpδ

, (3.50)

we have
|xk||ηj|E |X11|3

3t
√
p

≤ Cµ4

√
2

3t
√
yNδp

≤ 1

2
.

Taking into account this inequality, we get for |ηj| ≤ C,

|1 + p(EXjkξjk exp{i 1

t
√
p
ηjxkXjk} − 1)| ≤ exp{− 1

4t2
x2kη

2
j}. (3.51)
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Since
∑

k∈σ(x) x
2
k ≥ ρ2, this inequality implies that

n∏
k=1

|EXjkξjk exp{i 1

t
√
p
ηjxkXjkξjk}|I{|ηj| ≤ C} ≤ exp{− ρ2

4t2
η2j}. (3.52)

From here it follows for any C > 0

Pr{
N∑
j=1

ζ2j < t2Np} ≤
N∏
j=1

(
E exp{− ρ2

4t2
η2j}+ Pr{|ηj| > C}

)
. (3.53)

There exists an absolute constant c0 > 0 such that

Pr{|ηj| > C} ≤ c0
C

exp{−C
2

2
}. (3.54)

This inequality implies that

Pr{
N∑
j=1

ζ2j < t2Np} ≤ (
t√

t2 + ρ2/2
+
c0
C

exp{−C
2

2
})N

≤ (
2t√

t2 + ρ2/2
)N + (

2c0
C

exp{−C
2

2
})N . (3.55)

Thus, Lemma 3.14 is proved. �

Proof of Theorem 1.2:

First we note that

Pr{ inf
x∈S(n−1)

‖Xx‖2 ≤ t
√
Np} ≤ Pr{ inf

x∈Com(δL,N ,ρ)
‖Xx‖2 ≤ t

√
Np}

+ Pr{ inf
x∈Incomp(δL,N ,ρ)

‖Xx‖2 ≤ t
√
Np}. (3.56)

By inequality (3.38), for some constant c > 0,

Pr{ inf
x∈Com(δL,N ,ρ)

‖Xx‖2 ≤ t
√
Np} ≤ exp{−cNp}. (3.57)

By Relation (3.39), we have

Pr{ inf
x∈Incomp(δL,N ,ρ)

‖Xx‖2 ≤ t
√
Np} ≤ Pr{ inf

x∈Incomp(γ0,ρ)
‖Xx‖2 ≤ t

√
Np} (3.58)

We consider an ε-net N on the set of incompressible vectors IC(γ0, ρ) with ε = t
2K

where K > 0 is fixed. It is straightforward to check that

Pr{ inf
x∈IC(γ0,ρ)

‖Xx‖2 ≤ τ
√
Np, ‖X‖ ≤ K

√
Np} ≤ Pr{ inf

x∈N
‖Xx‖2 ≤ 2τ

√
Np} (3.59)

Applying a union-bound, we get

Pr{ inf
x∈N
‖Xx‖2 ≤ 2τ

√
Np} ≤ |N | sup

x∈IC(γ0,ρ)
Pr{‖Xx‖2 ≤ 2τ

√
Np}. (3.60)
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By [10, Proposition2.1], we have

|N | ≤ n

(
1 +

2

ε

)n−1
.

Then, applying the result of Lemma 3.14, we get (for t ≥ ... c1µ4√
Nγ0p

)

Pr{ inf
x∈IC(γ0,ρ)

‖Xx‖2 ≤ t
√
Np} ≤ |N |

(
(

2t√
t2 + ρ2/2

)N + (
2c0
C

exp{−C
2

2
})N
)

≤ yN

(
1 +

4K

t

)n−1(
(

2t√
t2 + ρ2/2

)N + (
2c0
C

exp{−C
2

2
})N
)
. (3.61)

It is easy to see that, for any 0 < t ≤ τ0,

Pr{ inf
x∈IC(δ,ρ)

‖Xx‖2 ≤ t
√
Np} ≤ Pr{ inf

x∈IC(δ,ρ)
‖Xx‖2 ≤ τ0

√
Np}. (3.62)

Without loss of generality we may assume that τ0 ≤ 4K. Taking into account both
that N ≤ eN and y < 1 rewrite the inequality (3.63) in the form

Pr{ inf
x∈IC(γ0,ρ)

‖Xx‖2 ≤ τ0
√
Np} ≤

(
5K

2τ0

)yN (
(

4eτ0√
4τ 20 + ρ2/2

)N + (
2c0e

C
exp{−C

2

2
})N
)

≤

((5K)y4e
√

2

ρ
τ
(1−y)
0

)N

+ (
2c0e(5K)y

Cτ y0
exp{−C

2

2
})N


(3.63)

Put

τ0 =

(
ρ

4
√

2 · 5ye2Ky

) 1
1−y

.

For N ≥ 2, we have
(5K)y4e

√
2

ρ
τ
(1−y)
0 ≤ 1

2
e−

1
2
N . (3.64)

Note that, by condition (1.5), for N such that

lnN ≥ µ4

τ0
√
Bγ0

, (3.65)

we have
τ0 ≥

µ4√
Npγ0

. (3.66)

Moreover, choosing C such that

Ce
C2

2 ≥ 2c0e5yKy

2yρ
y

1−y τ y0
we obtain that

Pr{ inf
x∈IC(γ0,ρ)

‖Xx‖2 ≤ t
√
Np, ‖X‖ ≤ K

√
Np} ≤ e−N/2, (3.67)
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for any 0 ≤ t ≤ τ0. The result of Theorem 1.2 follows now from inequalities (3.56),
(3.57) and (3.67). (Since γ0 is an absolute constant defined in Corollary 3.3 .) Theorem
1.2 is proved.
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