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Abstract. We establish global-in-time existence and non-uniqueness of probabilistically strong

solutions to the three dimensional Navier–Stokes system driven by space-time white noise. In
this setting, solutions are expected to have space regularity at most −1/2 − κ for any κ > 0.

Consequently, the convective term is ill-defined analytically and probabilistic renormalization is
required. Up to now, only local well-posedness has been known. With the help of paracontrolled

calculus we decompose the system in a way which makes it amenable to convex integration. By

a careful analysis of the regularity of each term, we develop an iterative procedure which yields
global non-unique probabilistically strong paracontrolled solutions. Our result applies to any

divergence free initial condition in L2 ∪B−1+κ
∞,∞ , κ > 0, and implies also non-uniqueness in law.
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1. Introduction

Thermal fluctuations are omnipresent on the molecular level of fluids. As such, fluids are not
deterministic but rather stochastic and continually changing. In order to incorporate these effects
into the description of large scale dynamics, Landau and Lifshitz [LL87] proposed a Navier–Stokes
system perturbed by stochastic flux terms. These are given by a divergence of delta correlated space-
time Gaussian random fields included in the momentum equation. Mathematically, it is extremely
challenging to make sense of such a system. Indeed, due to the irregularity of the noise combined
with the nonlinearity of the system, the equations become critical in dimension 2 and supercritical
in dimension higher in the sense of the theory of regularity structures by Hairer [Hai14]: Introducing
an ultraviolet cut-off, i.e. mollifying the noise, and trying to remove the cut-off would require an
infinite number of renormalizations. Therefore, neither the classical stochastic analysis tools nor
the pathwise theories of regularity structures [Hai14] and paracontrolled distributions by Gubinelli,
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Imkeller and Perkowski [GIP15] are applicable. Nevertheless, despite these theoretical difficulties,
the Landau–Lifshitz–Navier–Stokes system has been verified numerically for various equilibrium as
well as non-equilibrium systems (see e.g. [DVEGB10] and references therein).

In this paper, we contribute to the rigorous mathematical understanding of microscopic pertur-
bations in fluid dynamics. To avoid the issue of criticality mentioned above, we consider the delta
correlated space-time Gaussian noise as a forcing, not as a flux. This models forcing acting on
the molecular level, which translated to the macroscopic level necessarily becomes delta correlated.
Indeed, any two points in the large scale dynamics are extremely far apart on the molecular level,
so their associated noises must be uncorrelated. Moreover, such a noise also appears in a scaling
limit of point vortex approximation and the vorticity form of the 2D Euler equations perturbed by
a certain transport type noise (cf. [FL20, FL21, LZ21]). In fact, the scaling limit is given by the
vorticity form of the 2D Navier–Stokes system driven by the curl of space-time white noise, which
in the velocity-pressure variables reads as 2D Navier–Stokes equations driven by space-time white
noise.

The corresponding gain of one derivative in comparison to the Landau–Lifshitz setting makes the
system mathematically accessible as it remains subcritical up to space dimension 3. However, even
this problem has resisted rigorous mathematical analysis for a long time due to its irregularity. More
precisely, the space-time white noise in spatial dimension d can be shown to be a random distribution
of space-time regularity −(d+ 2)/2− κ under the parabolic scaling for any κ > 0. Accordingly, in
view of Schauder’s estimates a solution is expected to be two degrees of regularity better, i.e. at
most −d/2 + 1− κ. Hence, already in d = 2 solutions are not functions. Consequently, the product
in the convective term is analytically ill-defined and probabilistic arguments are required in order
to make sense of the equations.

We consider the three dimensional Navier–Stokes system with periodic boundary conditions driv-
en by a space-time white noise

du+ div(u⊗ u) dt+∇p dt = ∆udt+ dB,

divu = 0,

u(0) = u0,

(1.1)

where B is a cylindrical Wiener process on some stochastic basis (Ω,F , (Ft)t>0,P). The time
derivative of B is the space-time white noise. Our main results read as follows.

Theorem 1.1. For any given divergence free initial condition u0 ∈ L2∪B−1+κ
∞,∞ P-a.s., κ > 0, there

exist infinitely many global-in-time probabilistically strong solutions solving (1.1) in a paracontrolled
sense.

Remark 1.2. In the following we prove the result for the initial condition u0 in B−1+κ
∞,∞ or u0−z(0) ∈

L2 for simplicity, where z is the stationary solution to the linear equation. If we choose z(0) = 0, a
small modification of the proof implies that the result also holds for the initial condition u0 ∈ L2.

The main ideas behind the definition of paracontrolled solution are explained in Section 1.3 and
the detailed presentation can be found in Section 4.1. Probabilistically strong solutions means
that the solutions are adapted to the normal filtration (Ft)t>0 generated by the cylindrical Wiener
process.

Corollary 1.3. Non-uniqueness in law holds for (1.1) for every given initial law supported on
divergence free vector fields in L2 ∪B−1+κ

∞,∞ , κ > 0.
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1.1. Singular SPDEs. In two space dimensions, the problem was solved locally in time in the
seminal paper by Da Prato, Debussche [DPD02]. Furthermore, using the properties of the Gaussian
invariant measure, it was possible to obtain global-in-time existence for a.e. initial condition with
respect to the invariant measure. By the strong Feller property in [ZZ17] global-in-time existence
for every initial condition could be derived. Recently, for a related two dimensional critical problem,
tightness of approximate stationary solutions and non-triviality of the limit has been established in
a weak coupling regime by Cannizzaro and Kiedrowski [CK21].

The more irregular three dimensional setting remained open for much longer as substantially new
ideas were required. These came in a parallel development with the theory of regularity structures
by Hairer [Hai14] and with the paracontrolled distributions introduced by Gubinelli, Imkeller and
Perkowski [GIP15]. These theories permit to treat a large number of singular subcritical SPDEs
(cf. [BHZ19, CH16, BCCH21]) including the Kardar–Parisi–Zhang (KPZ) equation, the generalized
parabolic Anderson model and the stochastic quantization equations for quantum fields (see [Hai13,
CC18, GP17, CCHS20] and references therein). In particular they led to a local well-posedness
theory for the Navier–Stokes system (1.1) in three dimensions by Zhu, Zhu [ZZ15].

The question of global existence is even more challenging. Roughly speaking, in the field of
singular SPDEs the only available global existence results rely either on a strong drift present in the
system or a particular transform for certain nonlinearities or on properties of an invariant measure:

• Suitable a priori estimates have been established for the dynamical Φ4 stochastic quan-
tization model by Mourrat and Weber [MW17, MW17a] and Gubinelli and Hofmanová
[GH19, GH21] (see also [SSZZ22, SZZ22] for the vector valued case). All these results make
an essential use of the strong damping term −φ3.

• In [GP17, PR19, ZZZ22], a priori estimates and paracontrolled solutions to the KPZ equation
and singular Hamilton–Jacobi–Bellman equation were obtained by using Cole–Hopf’s or
Zvonkin’s transform and maximum principle.

• Moreover, using the probabilistic notion of energy solutions [GJ14, GJ13, GP18] or studying
the associated infinitesimal generator and Kolmogorov equation [GP20], it is possible to
construct global solutions to KPZ equation, but this depends on the invariant Gaussian
measure (i.e. the law of Brownian motion or spatial white noise).

• We mention that in [RWZZ20, CWZZ21] global martingale solutions were constructed for
geometric stochastic heat equations by using a Dirichlet form approach. This relies on an
integration by parts formula for the known invariant measure.

No such results are available for the 3D Navier–Stokes system with space-time white noise:

• There is no strong drift helping to stabilize the evolution.
• Due to the appearance of the divergence free condition and the corresponding pressure term,

it is impossible to apply maximum principle or Cole–Hopf’s transform.
• The existence of an invariant measure is an open problem.
• No global energy (or other) estimates are available due to irregularity of solutions (see below

for more explanation on this point).

Furthermore, even if the regularity of the noise is increased, global existence is not known. More
precisely, consider the following regularized problem which interpolates between the case of a trace-
class noise and the space-time white noise

du+ div(u⊗ u) dt+∇p dt = ∆udt+ (−∆)−γ/2dB,

divu = 0.
(1.2)
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Here B is the cylindrical Wiener process. The case of γ > 3/2 corresponds to a trace-class noise
whereas γ = 0 is the space-time white noise.

For γ > 3/2, global existence of probabilistically weak Leray solutions is classical (see Flandoli,
Gatarek [FG95]). Their uniqueness remains an outstanding open problem. The authors in [FG95]
also constructed stationary solutions via Krylov–Bogoliubov’s argument and energy estimates. Er-
godicity and strong Feller property was proved by Da Prato and Debussche [DPD03] and also by
Flandoli and Romito [FR08]. A Markov transition semigroup was then constructed by Debussche,
Odasso [DO06] and by Flandoli and Romito [FR08]. However, further structure and properties
of the invariant measure are still unclear. Recently, in [HZZ19] we established non-uniqueness in
law in a class of analytically weak (not Leray) solutions using the method of convex integration. In
[HZZ23], we additionally presented non-uniqueness of Markov solutions and global-in-time existence
and non-uniqueness of probabilistically strong and analytically weak solutions.

If γ 6 3/2 the usual energy estimates pertinent to the notion of Leray solution are not available.
Indeed, as the noise is no longer trace-class, Itô’s formula cannot be applied. However, for γ ∈
(1/2, 3/2] it is still possible to prove global existence of probabilistically weak solutions. Namely,
decomposing the velocity u into the sum of its stochastic part z and its nonlinear part v (as shown
also in Section 3.1 below), one can derive a global energy estimate for v. It can be then combined
with compactness and Skorokhod representation theorem to deduce global existence. Nevertheless,
since it is necessary to change the probability space in the course of the proof, these solutions are
only probabilistically weak.

Up to now, even global existence of probabilistically weak solutions was open in the case of
γ 6 1/2. Only local well-posedness in the spirit of Zhu, Zhu [ZZ15] seemed to be possible. The
difficulty can be seen as follows. If e.g. γ = 1/2, we decompose u = v + z with z solving the linear
stochastic equation

dz +∇pz dt = ∆z dt+ (−∆)−1/4dB, divz = 0,

and v solving the nonlinear equation

∂tv + div((v + z)⊗ (v + z)) +∇pv = ∆v, divv = 0.

As z ∈ CTC−κ, the best regularity for v is given by CTC
1−κ. Hence we cannot expect the energy

estimate for v since this would require the L2
TH

1-norm of v. We may include further decomposition
like in the case of the Φ4 model [MW17, MW17a, GH19, GH21], but this would lead to new nonlinear
terms which cannot be absorbed as in the Φ4 model. Due to this, we also cannot obtain energy
inequality and uniform estimates as in the case of a trace-class case. Consequently, we cannot
derive global solutions by a usual compactness argument. Note that it is also possible to consider
global solutions for small initial data (cf. [BR17]). However, this would destroy adaptedness of the
solutions since the initial data would depend on the whole path of the driving noise.

1.2. Convex integration. In the present paper, we focus on the case of space-time white noise,
i.e. γ = 0. Simplified versions of our proofs as outlined in Section 3 also provide the results in
the more regular cases of γ > 0. Our idea is to apply the method of convex integration in order
to construct global-in-time solutions. This is an iterative procedure which permits to construct
solutions explicitly scale by scale. It makes an essential use of the form of the nonlinearity which
propagates oscillations and reduces an error term, the so-called Reynolds stress, in order to approach
a solution as one proceeds through the iteration. As typical for the convex integration constructions,
the same method gives raise to infinitely many solutions.
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Convex integration was introduced into fluid dynamics by De Lellis and Székelyhidi Jr. [DLS09,
DLS10, DLS13]. This method has already led to a number of groundbreaking results concern-
ing the incompressible Euler equations, culminating in the proof of Onsager’s conjecture by Isett
[Ise18] and by Buckmaster, De Lellis, Székelyhidi Jr. and Vicol [BDLSV19]. Also the question of
well/ill-posedness of the three dimensional Navier–Stokes equations has experienced an immense
breakthrough: Buckmaster and Vicol [BV19b] established non-uniqueness of weak solutions with
finite kinetic energy, Buckmaster, Colombo and Vicol [BCV18] were able to connect two arbitrary
strong solutions via a weak solution. Burczak, Modena and Székelyhidi Jr. [BMS20] then obtained
a number of new ill-posedness results for power-law fluids and in particular also non-uniqueness of
weak solutions to the Navier–Stokes equations for every given divergence free initial condition in L2.
Sharp non-uniqueness results for the Navier–Stokes equations in dimension d > 2 were obtained by
Cheskidov and Luo [CL20, CL21]. We refer to the reviews [BV19a, BV21] for further details and
references.

All these convex integration results very much rely on the L2-setting. Namely, the constructed
solutions belong (at least) to L2 and the iteration converges strongly in L2, hence one can pass
to the limit in the quadratic nonlinearity. As the energy inequality is available in this setting,
it is also understood as a natural selection criterion for physical solutions. Convex integration
yields such solutions for Euler equations (see [DLS10], and [HZZ22] for the stochastic setting), or
when the diffusion is weak, e.g. for power-law fluids with small parameter p (see [BMS20]) and
for hypodissipative Navier–Stokes equations for small α (see [CDLDR18]). However, constructing
Leray solutions by convex integration to the Navier–Stokes system seems to be out of reach at the
moment. By a different method, a first non-uniqueness result for Leray solutions was established
recently by Albritton, Brué and Colombo [ABC21] for the Navier–Stokes system with a force.

Compared to the classical uniform estimates and the compactness argument, convex integration
provides a new way of constructing solutions. This turns out to be particularly useful in the
stochastic setting as uniqueness of Leray solutions is unknown and there has been no result of
existence of global probabilistically strong solutions before. In [HZZ23], we proved such a result
for a trace-class noise by convex integration. In less regular settings, as for instance for γ 6 1/2
discussed above, there are no Leray solutions to compete with in the first place. Furthermore,
there are no alternative globally defined solutions whatsoever (neither probabilistically strong nor
probabilistically weak). In this paper, we use convex integration to construct global probabilistically
strong solutions in this setting when the energy inequality is out of reach. The question of how to
select physical solutions in this case remains open.

1.3. Decomposition. We introduce a decomposition of the Navier–Stokes system (1.1), which
makes also this singular setting amenable to convex integration. Recall that solutions are only
expected to have regularity −1/2− κ, κ > 0, hence the quadratic term u⊗ u is far from being well-
defined analytically. The common idea in the field of singular SPDEs is to prescribe a particular
form of a solution u so that the nonlinearity can be made sense of. In the first step, we write

u = z + z + h.

The first term z solves the stochastic heat equation

dz +∇pz dt = ∆z dt+ dB, divz = 0,

and permits to isolate the most irregular part of u, the rest being more regular. Note that by

Schauder estimates, z belongs to B
−1/2−κ
∞,∞ and hence the product z ⊗ z is not well defined in the

classical sense. As z is Gaussian, we can understand z⊗ z as a Wick product using renormalization.



GLOBAL EXISTENCE AND NON-UNIQUENESS FOR 3D NSE WITH SPACE-TIME WHITE NOISE 7

In particular, for a suitable mollification zε of z, there are diverging constants Cε ∈ R3×3, Cijε →∞,
so that

z = lim
ε→0

zε ⊗ zε − Cε

is well defined and belongs to B−1−κ
∞,∞ . More details of the probabilistic constructions are included

in Section 4.1. In order to isolate the corresponding (still irregular) part of the solution u, we then
define

∂tz + div(z ) +∇p2 = ∆z , divz = 0,

which by Schauder estimates belongs to B−κ∞,∞.

It is then seen that the remainder h is already function valued but its regularity is necessarily
limited by 1/2− κ. Even further decomposition cannot improve this regularity since products of z
with the unknown always appear in the equation. A way how to overcome this issue stems from
the work by Gubinelli, Imkeller and Perkowski [GIP15] on the parabolic Anderson model and was
applied to (1.1) by Zhu, Zhu in [ZZ15]: one postulates a paracontrolled ansatz which describes a
further structure of the solution h. It reads as

h = −P[h ≺ I∇z] + ϑ− (z + z ).

Here, z , z are additional stochastic objects constructed by renormalization, I is the heat opera-
tor, P the Helmholtz projection and finally ≺ denotes a paraproduct as introduced by Bony [Bon81].
This permits to cancel the two most irregular terms in the equation for h so that the remainder ϑ
becomes more regular, namely, 1 − κ. Furthermore, by a commutator lemma it permits to make
sense of the analytically ill-defined product h ⊗ z. We refer to Section 2.2 for basic definitions
of paracontrolled calculus and to Section 4.2 for more details on the notion of our paracontrolled
solution. In view of the regularity of solutions, we also see that energy inequality is impossible in
this case.

The above decomposition is sufficient to prove local well-posedness as done in [ZZ15]. However, a
much more refined analysis is indispensable to apply convex integration. Therefore, we split further
h = v1 + v2 where v1 represents the irregular part and v2 the regular one. In addition, the equation
for v1 is linear whereas the one for v2 contains the quadratic nonlinearity. Similarly to the above
discussion of the more regular cases (1.2) with γ 6 1/2, even with this decomposition into v1 + v2,
it is not possible to derive global estimates via the energy method. Our idea is instead to apply
convex integration on the level of v2. However, the equation for v2 is coupled with the equation
for v1. Therefore, we put forward a joint iterative procedure approximating both equations at
once. The Reynolds stress R̊q is only included in the equation for v2

q , where q ∈ N0 is the iteration

parameter. Consequently, the construction of the new iteration v2
q+1 relies only on the previous

stress R̊q. Here, we employ the intermittent jets by Buckmaster, Colombo and Vicol [BCV18] (see
also [BV19a] and our previous works [HZZ19, HZZ23]). As the next step, we solve the equation for
v1
q+1 exactly by a fixed point argument. See Figure 1 for a sketch of our procedure.

In order to make this strategy possible, it is necessary to find the decomposition of the equation
for h into the system for v1 and v2 and to define the corresponding equations for the iterations
v1
q and v2

q . This together with the construction of each approximate velocity v2
q+1 through the

intermittent jets has to be done in a way to decrease the corresponding Reynolds stress R̊q+1 as

q →∞. Especially the control of R̊q+1 requires a careful analysis of each of the terms appearing in
the equation for h. We have to balance various competing factors such as regularity, integrability,
blow-up as t→ 0 and blow-up as q →∞ of various terms. The divergencies need to be compensated
by small quantities. We rely on a decomposition of each product into the two paraproducts and the
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resonant term, because each of these parts behaves differently and requires a different treatment.
Roughly speaking, irregular terms are included into v1 while regular ones into v2, but the precise
splitting is delicate. Further issues and required ideas are summarized as follows:

• In the first step, we aim at constructing convex integration solutions up to a stopping time.
The stopping time can be chosen arbitrarily large with arbitrarily large probability and
is used to have uniform in ω bounds for the stochastic objects. The reason for this is
adaptedness: without a stopping time, the parameters would depend on the whole path and
the constructed solutions could not be adapted to the given filtration (Ft)t>0. Thus, they
would not be probabilistically strong.

• In the second step, we overcome this limitation by extending the constructed solutions by
other convex integration solutions. To this end, it is necessary to obtain convex integration
solutions for any given divergence free initial condition in L2. Hence, we aim at starting v1

as well as v1
q from the given initial condition, whereas v2 and v2

q all start from zero. This
simplifies the begin of the iterative procedure. To keep the same initial value during the
iteration, the oscillations can only be added for positive times and we approach t = 0 as
q →∞.

• A paracontrolled ansatz for v1 and accordingly also for each v1
q needs to be included in order

to make sense of the resonant part of the product v1⊗z and v1
q⊗z. At each iteration step q,

the equation for v1
q is coupled with the equation for the corresponding remainder v]q (taking

the role of ϑ above).
• Since the initial value of v1, v1

q and v]q is only in L2, they have singularity at time zero when
considered in more regular function spaces. But higher regularity is indispensable in order
to control various terms, both in the equation for v1

q and v]q but also in the formula for R̊q+1.
For this reason, we work with blow-up norms in time, but this brings an extra blow-up in
the convex integration part and in particular in the estimate of R̊q+1.

• We introduce additional (uniform in q) localizers ∆>R + ∆6R in terms of Littlewood–Paley
blocks. The part ∆>R is always included into v1 and helps to simplify the estimates of
v1
q and v]q as it provides an arbitrarily small constant and avoids the need for a Gronwall

lemma.
• Some terms are regular and could be, in principle, included into v2, but they require regu-

larity of v1
q which does not hold true uniformly as t→ 0. While the fixed point equation for

v1
q can be solved using suitable blow-up norms in time to overcome the singularity at t = 0,

having such blow-ups in the equation for v2
q cannot be controlled in the convex integration.

Hence, we further decompose these terms by using ∆>R + ∆6R and include their irregular
parts into v1

q .
• Moreover, in order to control the blow-up of certain terms, we include q-dependent localizers

∆6f(q) for a suitable f(q)→∞ into the equation for v1
q . Thanks to this, we are able to add

irregularity scale by scale in a controlled way. The opposite approach, namely including the
irregular terms fully at the beginning of the iteration, does not seem to be possible.

The detailed decomposition is presented in Section 4.3. As a preparation, we explain the main
ideas on the simpler settings of (1.2) with γ > 0 in Section 3.

1.4. Final remarks. Previously, convex integration has always been used to deduce non-uniqueness
of solutions in settings where energy inequality is available. It has also been used to obtain first
existence results for weak solutions in situations where compactness does not guarantee the passage
to the limit in the convective term, namely, for Euler equations (see [DLS09, DLS10, DLS13]), and
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for power-law fluids with small parameter p (see [BMS20]). As already mentioned above, these
results even lead to infinitely many weak solutions satisfying the energy inequality.

Our result shows that convex integration can also be used to construct global solutions when
the energy inequality is out of reach, in particular in the field of singular SPDEs. We hope that
our technique could also be applied to other singular SPDEs, especially in cases where no strong
damping is at hand. We also mention that the convex integration can be applied to other PDEs like
transport and continuity equation [MS17, MS18], 3D Hall–MHD system [Da18] and hyperviscous
Navier–Stokes equations [LT18]. Our approach may also be applied to the corresponding singular
versions of the latter two.

The nonlinearity in the Navier–Stokes system looks similarly to the one in the Langevin dynamic
for the Yang–Mills measure, i.e. stochastic quantization of the Yang–Mills field. This was considered
in [She21, CCHS20] where local-in-time solutions were constructed. However, existence of global
solutions remains open. The idea is to use the dynamics and PDE techniques to study properties
of the field. Formally, these equations have the law of the associated field as an invariant measure.
In the case of the stochastic quantization of the Euclidean Φ4 field theory, it was indeed possible to
use the dynamics to construct and study properties of the corresponding measure (see [GH21] and
[SZZ21a]). As global existence for the Langevin dynamic for the Yang–Mills measure is out of reach
by the classical PDE techniques, we hope that our technique can shed some light on this problem.

Finally, we point out that in the field of regularization by noise, it is believed that more noise,
in the sense of more irregular noise, in the Navier–Stokes equations may imply uniqueness. Certain
regularizing effect could indeed be proved on the level of the so-called strong Feller property estab-
lished for (1.1) by Zhu, Zhu [ZZ17]. Nevertheless, our results show that even in this case we still
have non-uniqueness. Furthermore, also a weaker notion of uniqueness, namely, uniqueness in law
is disproved.

Organization of the paper. In Section 2 we introduce our notation and present preliminary results
on Besov spaces, paraproducts and paracontrolled calculus. Section 3 is devoted to the more regular
settings of (1.2) with γ > 0 and we discuss the main ideas of our decomposition. In particular, it is
shown how decreasing the parameter γ, i.e. making the problem more irregular, necessarily requires
further ideas and a more refined decomposition. In Section 4 we recall the construction of stochastic
objects and introduce the notion of paracontrolled solution. We also present a formal decomposition
of the system into the system for v1 and v2 as discussed above. The set-up of the iterative convex
integration procedure and proofs of our main results are shown in Section 5. We give estimates of v1

q

and v]q in Section 6. Section 7 is devoted to the core of the convex integration construction, namely,
the iteration Proposition 5.1. Finally, in Appendix A we recall the construction of intermittent jets
and in Appendix B we prove auxiliary Schauder estimates.

2. Preliminaries

Throughout the paper, we use the notation a . b if there exists a constant c > 0 such that a 6 cb,
and we write a ' b if a . b and b . a.

2.1. Function spaces. Given a Banach space E with a norm ‖ · ‖E and T > 0, we write CTE =
C([0, T ];E) for the space of continuous functions from [0, T ] to E, equipped with the supremum
norm ‖f‖CTE = supt∈[0,T ] ‖f(t)‖E . For p ∈ [1,∞] we write LpTE = Lp([0, T ];E) for the space of

Lp-integrable functions from [0, T ] to E, equipped with the usual Lp-norm. We use (∆i)i>−1 to
denote the Littlewood–Paley blocks corresponding to a dyadic partition of unity. Besov spaces on
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the torus with general indices α ∈ R, p, q ∈ [1,∞] are defined as the completion of C∞(Td) with
respect to the norm

‖u‖Bαp,q :=

∑
j>−1

2jαq‖∆ju‖qLp

1/q

.

The Hölder–Besov space Cα is given by Cα = Bα∞,∞ and we also set Hα = Bα2,2, α ∈ R. To deal
with the singularity at time zero we introduce the following blow-up norms: for α ∈ (0, 1), p ∈ [1,∞]

‖f‖CαT,γLp := sup
06t6T

tγ‖f(t)‖Lp + sup
06s<t6T

sγ
‖f(t)− f(s)‖Lp
|t− s|α

,

‖f‖CT,γBαp,∞ := sup
06t6T

tγ‖f(t)‖Bαp,∞ .

For T > 0 and a domain D ⊂ R+ we denote by CNT,x and CND,x, respectively, the space of CN -

functions on [0, T ]× T3 and on D × T3, respectively, N ∈ N0 := N ∪ {0}. The spaces are equipped
with the norms

‖f‖CNT,x =
∑

06n+|α|6N
n∈N0,α∈N3

0

‖∂nt Dαf‖L∞T L∞ , ‖f‖CND,x =
∑

06n+|α|6N
n∈N0,α∈N3

0

sup
t∈D
‖∂nt Dαf‖L∞ .

Set Λ = (1−∆)1/2. For s > 0, p ∈ [1,+∞] we use W s,p to denote the subspace of Lp, consisting
of all f which can be written in the form f = Λ−sg, g ∈ Lp and the W s,p norm of f is defined to be
the Lp norm of g, i.e. ‖f‖W s,p := ‖Λsf‖Lp . For s < 0, p ∈ (1,∞), W s,p is the dual space of W−s,q

with 1
p + 1

q = 1.

The following embedding results will be frequently used (we refer to e.g. [GIP15, Lemma A.2]
for the first one and to [Tri78, Theorem 4.6.1] for the second one).

Lemma 2.1.

(1) Let 1 6 p1 6 p2 6∞ and 1 6 q1 6 q2 6∞, and let α ∈ R. Then Bαp1,q1 ⊂ B
α−d(1/p1−1/p2)
p2,q2 .

(2) Let s ∈ R, 1 < p <∞, ε > 0. Then W s,2 = Bs2,2 = Hs, and Bsp,1 ⊂W s,p ⊂ Bsp,∞ ⊂ Bs−εp,1 .

2.2. Paraproducts, commutators and localizers. Paraproducts were introduced by Bony in
[Bon81] and they permit to decompose a product of two distributions into three parts which behave
differently in terms of regularity. More precisely, using the Littlewood-Paley blocks, the product fg
of two Schwartz distributions f, g ∈ S ′(Td) can be formally decomposed as

fg = f ≺ g + f ◦ g + f � g,

with

f ≺ g = g � f =
∑
j>−1

∑
i<j−1

∆if∆jg, f ◦ g =
∑
|i−j|61

∆if∆jg.

Here, the paraproducts ≺ and � are always well-defined and critical is the resonant product denoted
by ◦. In general, it is only well-defined provided the sum of the regularities of f and g in terms
of Besov spaces is strictly positive. Moreover, we have the following paraproduct estimates from
[Bon81] (see also [GIP15, Lemma 2.1], [MW17a, Proposition A.7]).

Lemma 2.2. Let β ∈ R, p, p1, p2, q ∈ [1,∞] such that 1
p = 1

p1
+ 1

p2
. Then it holds

‖f ≺ g‖Bβp,q . ‖f‖Lp1‖g‖Bβp2,q ,
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and if α < 0 then
‖f ≺ g‖Bα+β

p,q
. ‖f‖Bαp1,q‖g‖Bβp2,q .

If α+ β > 0 then it holds
‖f ◦ g‖Bα+β

p,q
. ‖f‖Bαp1,q‖g‖Bβp2,q .

We denote <= ◦+ �, 4= ◦+ ≺ . The key tool of the paracontrolled calculus introduced in
[GIP15] is the following commutator lemma from [GIP15, Lemma 2.4] (see also [MW17a, Proposi-
tion A.9]).

Lemma 2.3. Assume that α ∈ (0, 1) and β, γ ∈ R are such that α+ β + γ > 0 and β + γ < 0 and
p, p1, p2 ∈ [1,∞] satisfy 1

p = 1
p1

+ 1
p2

. Then there exist a bounded trilinear operator

com(f, g, h) : Bαp1,∞ × C
β ×Bγp2,∞ → Bα+β+γ

p,∞

satisfying
‖com(f, g, h)‖Bα+β+γ

p,∞
. ‖f‖Bαp1,∞‖g‖Cβ‖h‖Bγp2,∞

such that for smooth functions f, g, h it holds

com(f, g, h) = (f ≺ g) ◦ h− f(g ◦ h).

We also recall the following two lemmas for the Helmholtz projection P from [ZZ15, Lemma 3.5,
Lemma 3.6].

Lemma 2.4. Assume that α ∈ (0, 1), β ∈ R and p ∈ [1,∞]. Then for every k, l = 1, 2, 3

‖[Pkl, f ≺]g‖Bα+β
p,∞
. ‖f‖Bαp,∞‖g‖Cβ .

Lemma 2.5. Assume that α ∈ R and p ∈ [1,∞]. Then for every k, l = 1, 2, 3

‖Pklf‖Bαp,∞ . ‖f‖Bαp,∞ .

Analogously to the the real-valued case, we may define paraproducts for vector-valued distribu-
tions. More precisely, for two vector-valued distributions f, g ∈ S ′(Td;Rm), we use the following
tensor paraproduct notation

f ⊗ g = (figj)
m
i,j=1 = f #≺ g + f � g + f #� g

= (fi ≺ gj)mi,j=1 + (fi ◦ gj)mi,j=1 + (fi � gj)mi,j=1

and note that Lemma 2.2 carries over mutatis mutandis. We also denote

#<= � + #�, #4 = � + #≺ .
When there is no danger of confusion, we apply the simple paraproducts also within matrix-vector
multiplication, i.e. for f ∈ S ′(Td;Rm×m) and g ∈ S ′(Td;Rm) we define using the Einstein summa-
tion convention

(f � g)mi=1 = (g ≺ f)mi=1 =
(
f ij � gj

)m
i=1

, (f ◦ g)mi=1 = (g ◦ f)mi=1 =
(
f ij ◦ gj

)m
i=1

.

Similarly to Lemma 2.3, we may also define a matrix-valued commutator as continuous extensions
of

(f, g, h) 7→ (com(f, g, h))mi,j=1 = (f ≺ g) � h− f · (g � h) = (fk ≺ gik) ◦ hj − fk(gik ◦ hj),

(f, g, h) 7→ (com∗(f, g, h))mi,j=1 = h� (f ≺ g)− (h� g) · f = hi ◦ (fk ≺ gjk)− (hi ◦ gjk)fk,

which is well-defined for smooth functions f, h : Td → Rm, g : Td → Rm×m and takes values in
S ′(Td;Rm×m). A counterpart of the bound in Lemma 2.3 holds true in this setting as well.
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Finally, we introduce localizers in terms of Littlewood–Paley expansions. Let J ∈ N0. For
f ∈ S ′(Td) we define

∆>Jf =
∑
j>J

∆jf, ∆6Jf =
∑
j6J

∆jf.

Then it holds in particular for α 6 β 6 γ

‖∆>Jf‖Cα . 2−J(β−α)‖f‖Cβ , ‖∆6Jf‖Cγ . 2J(γ−β)‖f‖Cβ . (2.1)

3. More regular stochastic perturbations

In our previous works [HZZ19, HZZ23] we considered the case of a trace class noise. We
proved non-uniqueness in law as well as non-uniqueness of Markov solutions and existence and non-
uniqueness of global-in-time probabilistically strong solutions. These results apply to the Navier–
Stokes system

du+ div(u⊗ u)dt+∇pdt = ∆udt+ (−∆)−γ/2dB, div u = 0, (3.1)

where B = (B1, B2, B3) is a vector-valued L2-cylindrical Wiener process on some stochastic basis
(Ω,F , (Ft)t>0,P) and γ > 3/2. Here the filtration (Ft)t>0 is the normal filtration generated by the
Wiener process B. As a main result of the present paper, we treat the case of space-time white noise,
i.e. γ = 0. But already the more regular case of γ ∈ (0, 3/2] presents interesting new challenges. In
this section we want to outline some of the main ideas on examples of these more regular noises.

If the noise is not trace class, Itô’s formula cannot be applied in order to obtain an energy
inequality. The case of γ = 3/2 is therefore the treshold where (and below which) stochastic
counterparts of Leray solutions on the level of u no longer make sense. Furthermore, the expected
regularity of solutions depends on the regularity of the noise. This can be seen by looking at the
linear counterpart of (3.1)

dz +∇pzdt = ∆zdt+ (−∆)−γ/2dB, div z = 0, (3.2)

and realizing that z ∈ CTCγ−1/2−κ ∩ C1/2−δ
T Cγ−3/2+2δ−κ P-a.s. for κ, δ > 0 small. This can be

obtained by Schauder estimates from the fact that the space-time white noise dB/dt is a random
distribution of space-time regularity −5/2 − κ for κ > 0 with parabolic scaling. Thus, if γ 6
1/2 the solution is not even function-valued and the quadratic nonlinearity in (3.1) is not well-
defined analytically. Nevertheless, one can use probability theory and renormalization to define this
nonlinearity using Wick products.

We distinguish the following cases with an increasing level of difficulty:

(1) γ ∈ (1/2, 3/2]: solutions are function-valued hence the convective term is well-defined but
the energy inequality for u cannot be obtained.

(2) γ ∈ (1/6, 1/2]: solutions become distribution-valued, renormalization is needed to define
the product.

(3) γ ∈ (0, 1/6]: further decomposition is required in order to make sense of all the required
products.

(4) γ = 0: the case of space-time white noise, a so-called paracontrolled ansatz is required and
we present a detailed proof in subsequent sections.

We stress that while global existence of martingale (i.e. probabilistically weak) solutions in
the case γ ∈ (1/2, 3/2] can be obtained by compactness and Skorokhod representation theorem,
existence of probabilistically strong solutions was unknown. For γ 6 1/2 even global existence of
martingale solutions was an open problem.
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In the remainder of this section, we focus on the first three regimes and explain how to make them
amenable to convex integration and hence to global-in-time existence and non-uniqueness results.

3.1. The case of γ ∈ (1/2, 3/2]. Even though the energy inequality cannot be computed here, the
approach of [HZZ19, HZZ23] can be applied with minimal modifications. In particular, one uses the
decomposition u = z + v where z solves (3.2) and

Lv + div((v + z)⊗ (v + z)) +∇pv = 0, div v = 0. (3.3)

Here and in the sequel, we use the notation L = ∂t − ∆. The convex integration scheme is then
given via the iteration system

Lvq + div((vq + zq)⊗ (vq + zq)) +∇pq = div R̊q, div vq = 0,

where zq = ∆6f(q)z with ∆6f(q) being a cut-off of the Littlewood–Paley expansion. With a suitable
definition of the stopping times, this permits to add noise scale by scale as one proceeds through
the iteration. Setting the convex integration up with an initial iteration v0 as in [HZZ19], one can
prove that the constructed solution v is distinct from the Leray solution to (3.3) starting from the
same initial value. This implies existence of an initial value so that non-uniqueness holds for (3.1) as
well. Using the probabilistic extension of solutions from [HZZ19], non-uniqueness in law on any time
interval [0, T ], T > 0, follows. Following the ideas of [HZZ23] it is also possible to construct solutions
with a prescribed L2 initial condition and to obtain existence and non-uniqueness of global-in-time
probabilistically strong solutions.

3.2. The case of γ ∈ (1/6, 1/2]. This case is more delicate and further decomposition is required.
More precisely, in addition to u = z + v as above, we split v into its irregular and regular part, i.e.
v = v1 + v2. The equation for v1 contains all the irregular terms of the product (v + z) ⊗ (v + z),
whereas the regular ones are put in v2. Additionally, the equation for v1 shall be linear so that it
can be solved by a fixed point argument. As a rule of thumb, we color the irregular terms magenta
and the regular ones blue. The decomposition can be done as follows. The product z ⊗ z needs to

be constructed by renormalization as a Wick product denoted by z and it is of spatial regularity
C2(γ−1/2)−κ. For the moment, we ignore this fact and proceed formally. We come back to the
rigorous definition of the stochastic objects in Section 4.1.

So we have the first magenta term z ⊗ z. Then we write with the help of paraproducts and
Littlewood–Paley projectors

(v1 + v2)⊗ z = (v1 + v2) #≺ ∆>Rz+(v1 + v2) #< ∆>Rz+(v1 + v2)⊗∆6Rz,

and treat the symmetric term z ⊗ (v1 + v2) the same way. Here, #<= � + #� and we included a
suitable cut-off R to be chosen appropriately. This eventually simplifies the fixed point argument
used to establish, for a given convex integration iteration v2

q , the existence and uniqueness of v1
q .

Finally, we let (v1 + v2)⊗ (v1 + v2). This leads to

Lv1 + div
(
z ⊗ z + (v1 + v2) #≺ ∆>Rz + ∆>Rz #� (v1 + v2)

)
+∇p1 = 0, div v1 = 0,

Lv2 + div
(
(v1 + v2) #< ∆>Rz + ∆>Rz #4 (v1 + v2) + (v1 + v2)⊗∆6Rz

)
+ div(∆6Rz ⊗ (v1 + v2) + (v1 + v2)⊗ (v1 + v2)) +∇p2 = 0, div v2 = 0.

We set up a convex integration scheme as an approximation of the above system of equations for
v1 and v2. In particular, we include further Littlewood–Paley projectors and let

Lv1
q +div

(
z ⊗ z + (v1

q + v2
q ) #≺ ∆6f(q)∆>Rz + ∆6f(q)∆>Rz #� (v1

q + v2
q )
)

+∇p1
q = 0, div v1

q = 0,

Lv2
q + div

(
(v1
q + v2

q ) #< ∆>Rz + ∆>Rz #4 (v1
q + v2

q ) + (v1
q + v2

q )⊗∆6Rz
)
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+ div(∆6Rz ⊗ (v1
q + v2

q ) + (v1
q + v2

q )⊗ (v1
q + v2

q )) +∇p2
q = div R̊q, div v2

q = 0.

Note that the Reynolds stress R̊q is only included in the equation for v2
q . Indeed, v2

q contains the
quadratic nonlinearity which is used in the convex integration to reduce the stress.

At each iteration step q+1, we first use the previous stress R̊q in order to define the principle part

of the corrector w
(p)
q+1, the incompressibility corrector w

(c)
q+1 and the time corrector w

(t)
q+1 in terms

of the intermittent jets, see Appendix A. This gives the next iteration v2
q+1 and consequently we

obtain v1
q+1 by a fixed point argument, cf. Figure 1. The localizers ∆6f(q) in the equation of v1

q are

used to control the blow up of a certain norm of v1
q as q →∞.

3.3. The case of γ ∈ (0, 1/6]. In this regime, also the resonant product v1�z becomes problematic.
This can be overcome by introducing an additional stochastic object which permits to cancel the
worst term, i.e. z ⊗ z, from the equation for v1. To be precise, let

Lz1 + div(z ⊗ z) +∇pz1 = 0, div z1 = 0, (3.4)

and define u = z + v = z + z1 + v1 + v2. Recall that in the rigorous analysis z ⊗ z needs to be

replaced by the Wick product z of regularity C2(γ−1/2)−κ. Consequently, z1 then becomes our
second stochastic object, later denoted as z with regularity C2γ−κ. In addition, also the products

z1 ⊗ z and z ⊗ z1 need to be defined via renormalization as z and z , respectively. We again
ignore this fact for a moment and continue with the formal decomposition. The reader is referred
to Section 4.1 below for more details on the stochastic construction.

Proceeding as above, this leads to

Lv1 + div
(
z1 ⊗ z + z ⊗ z1 + z1 ⊗ z1 + (v1 + v2) #≺ ∆>Rz + ∆>Rz #� (v1 + v2)

)
+∇p1 = 0,

div v1 = 0,

Lv2 + div
(
(v1 + v2) #< ∆>Rz + ∆>Rz #4 (v1 + v2) + (v1 + v2)⊗ (∆6Rz + z1)

)
+ div((z1 + ∆6Rz)⊗ (v1 + v2) + (v1 + v2)⊗ (v1 + v2)) +∇p2 = 0, div v2 = 0,

together with the convex integration scheme

Lv1
q + div

(
z1 ⊗ z + z ⊗ z1 + z1 ⊗ z1 + (v1

q + v2
q ) #≺ ∆6f(q)∆>Rz + ∆6f(q)∆>Rz #� (v1

q + v2
q )
)

+∇p1
q = 0, div v1

q = 0,

Lv2
q + div

(
(v1
q + v2

q ) #< ∆>Rz + ∆>Rz #4 (v1
q + v2

q ) + (v1
q + v2

q )⊗ (∆6Rz + z1)
)

+ div((∆6Rz + z1)⊗ (v1
q + v2

q ) + (v1
q + v2

q )⊗ (v1
q + v2

q )) +∇p2
q = div R̊q, div v2

q = 0.

With this definition, one can obtain existence of an initial condition for which there are non-unique
solutions before a stopping time. Since there are no global Leray solutions, for global existence it is
necessary to extend these solutions by other convex integration solutions. To this end, an improved
convex integration construction is needed, which gives the result for any prescribed initial condition
in L2. In particular, the term

v1 #< ∆>Rz

and its symmetric counterpart appearing in the equation for v2 require regularity of v1. Accord-
ingly, this introduces blow-up norms in time to overcome the singularity at t = 0 into the convex
integration, which is not convenient. We therefore refine the decomposition above by writing

(v1 + v2) #< ∆>Rz = v1 #< ∆>Rz+v
2 #< ∆>Rz.
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We include these terms into the equations for v1, v2 accordingly respecting the colors. Then in the
equations for v1

q and v2
q we rewrite

(v1
q + v2

q ) #< ∆>Rz = v1
q #< ∆>Rz+v

2
q #< ∆>Rz.

The symmetric terms are treated the same way.

4. Paracontrolled solutions

It turns out that even further expansion would not help in order to treat the case of space-time
white noise, i.e. γ = 0. Indeed, there would always be ill-defined products. As understood in
the field of singular SPDEs, a paracontrolled ansatz needs to be included. It postulates a partic-
ular structure of solutions and permits to make sense of the analytically ill-defined products using
probabilistic tools. In the sequel, we first introduce the stochastic objects needed for the rigorous
formulation of the Navier–Stokes system (1.1). Then we formulate the notion of paracontrolled
solution incorporating the paracontrolled ansatz. Finally, we give a formal decomposition combined
with paracontrolled ansatz in the spirit of Section 3.

4.1. Stochastic objects. Let us recall that due to Theorem 1.1 [ZZ15], the equation (3.1) with
γ = 0 is locally well-posed for initial conditions in Cη for η ∈ (−1,−1/2). The solution u belongs
to C([0, σ);Cη) where σ is a strictly positive stopping time so that

‖uε − u‖CσCη → 0

in probability. Here, uε denotes the solution to the regularized Navier–Stokes system

∂tuε + div(uε ⊗ uε) +∇pε = ∆uε + ζε, div uε = 0,

where ζε is a mollification of the space-time white noise ζ = dB/dt. In particular, the stochastic
objects needed in our proof here were constructed in [ZZ15].

To summarize the main ideas, let zε be the stationary solution to

∂tzε +∇pzε = ∆zε + ζε, div zε = 0.

Then zε → z in Lp
(
Ω;CTC

−1/2−κ) for every p ∈ [1,∞). Moreover, the renormalized product z

can be defined as a Wick product in the sense that there exist diverging constants Cε ∈ R3×3,
Cijε →∞, so that

zε := zε ⊗ zε − Cε
has a well-defined limit in Lp

(
Ω;CTC

−1−κ) for every p ∈ [1,∞). In fact, Cε = E[zε ⊗ zε]. We also
introduce the following stochastic objects. Let

∂tzε −∆zε = −Pdiv(zε ), div zε = 0, zε (0) = 0,

with P being the Leray projection operator, and define

zε := zε ⊗ zε, zε := zε ⊗ zε , zε := PI(∇zε) � zε =
(
PI(∇zε)ik ◦ zjε

)3
i,j,k=1

,

zε := PIdiv(zε ), zε := PIdiv(zε ),

zε := zε ⊗ zε − C1,ε(t), zε := zε � zε + zε � zε − C2,ε(t),

where If(t) =
∫ t

0
e(t−r)∆f(r)dr and

C1,ε(t) = E[(zε ⊗ zε )(t, 0)]→∞, C2,ε(t) = E[(zε � zε)(t, 0)] + E[(zε � zε)(t, 0)]→∞
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as ε→ 0.

For connecting the solutions in Section 5 we also introduce two stochastic objects zε (r; s) and

z (r; s). They are defined the same way as zε and z but replacing the last integration operator
I by Is,r =

∫ r
s
e(r−l)∆dl and the renormalized diverging constants Ci,ε(r; s) are defined as the

expectation of the corresponding terms for i = 1, 2.

We recall the following result from [ZZ15].

Proposition 4.1. For every κ > 0 and some 0 < δ < 1/4, there exist random distributions

Z := (z, z , z , z , z , z , z , z ) (4.1)

such that if τε is a component in

Zε := (zε, zε , zε , zε , zε , zε , zε , zε )

and τ is the corresponding component in Z then τε → τ in CTC
ατ ∩ Cδ/2T Cατ−δ a.s. as ε → 0,

where the regularities ατ are summarized in Table 1. Furthermore, for every p ∈ [1,∞)

sup
ε>0

E‖τε‖pCTCατ + sup
ε>0

E‖τε‖p
C
δ/2
T Cατ−δ

. 1.

For τε(r; s) = zε (r; s) and τε(r; s) = zε (r; s) there exist random distributions τ(r; s) = z (r; s)

and τ(r; s) = z (r; s) such that

sup
ε>0

E sup
06s6r6T

‖τε‖pCατ . 1,

and

sup
ε>0

E sup
06s6r6T

‖τε − τ‖pCατ → 0,

as ε→ 0.

τ z z z z z z z z
ατ − 1

2 − κ −κ −1− κ − 1
2 − κ − 1

2 − κ −κ −κ −κ
Table 1. Regularity of stochastic objects.

The renormalization of τ(r; s) can be done by a similar argument as [ZZ15].

Remark 4.2. We emphasize that the renormalization constants Cε, Ci,ε, i = 1, 2, only depend
on t. Hence, due to the divergence in the nonlinear term, they do not appear in the approximate
Navier–Stokes system driven by the mollified noise ζε. If we modified the Cε, Ci,ε, i = 1, 2, by
adding a finite constant, some of the limit random distributions τ would change. For the rest of
the paper, we fix the stochastic objects τ and prove existence of infinitely many solutions h to (4.2)
with these fixed stochastic data.

Finally, we note that similarly to our decomposition, the local solution u obtained in Theorem 1.1
in [ZZ15] decomposes as u = z+z1 +h with a suitable paracontrolled ansatz for h. In particular, by
Schauder estimates, the part h possesses a positive spatial regularity at positive times, i.e. it belongs
in particular to L2. For this reason, it is sufficient to restrict our attention to initial conditions for
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the convex integration scheme in L2. Indeed, for an initial condition in Cη, η ∈ (−1,−1/2), we can
always start with the local solution from [ZZ15] and start with convex integration only at a positive
(random) time.

4.2. Notion of solution. To begin with, we write formally

u = z + v = z + z1 + h,

where z and z1 solve (3.2) and (3.4), respectively. Then the equation for h reads as

Lh+ div((h+ z1)⊗ (h+ z1) + z ⊗ (h+ z1) + (h+ z1)⊗ z) +∇ph = 0, (4.2)

divh = 0,

which shall be further rewritten as a system for v1 and v2 in Section 4.3. Indeed, the multiplication
of h and z is not well-defined as the expected sum of their regularities is not strictly positive for the
resonant product h � z to be well-defined, cf. Lemma 2.2. Collecting the terms which make h too
irregular leads to the following paracontrolled ansatz

h = −P[h ≺ I∇z] + ϑ− PI div(z ⊗ z1 + z1 ⊗ z),

where If(t) =
∫ t

0
Pt−sf(s)ds.

Then ϑ becomes more regular than h since

ϑ = h+ PI div(z ⊗ z1 + z1 ⊗ z) + PI[h ≺ ∇z]− P[I, h ≺]∇z, (4.3)

where [I, h ≺]∇z denotes the commutator between I and h ≺ given by

[I, h ≺]∇z = I[h ≺ ∇z]− h ≺ I∇z.
We use the same notation for other commutators as well. The second and the third terms on the
right hand side of (4.3) cancel the irregular terms in h whereas the last term has better regularity
by Lemma B.4. Using the commutator Lemma B.4, Lemma 2.3 and Lemma 2.4, we write formally
h� z as

h� z = −P[h ≺ I∇z] � z + ϑ� z − (PI div(z ⊗ z1 + z1 ⊗ z)) � z

= −([P, h ≺]I∇z) � z − com(h,PI∇z, z)− h · (PI∇z � z)

+ ϑ� z − (PI div(z ⊗ z1 + z1 ⊗ z)) � z.

The above orange terms are still ill-defined and need to be replaced by the corresponding stochastic
objects. Hence the rigorous paracontrolled ansatz and the definition of h� z read as

h = −P[h ≺ I∇z] + ϑ− (z + z ), (4.4)

h� z := −([P, h ≺]I∇z) � z − com(h,PI∇z, z)− h · z + ϑ� z − z , (4.5)

Let us now formulate the definition of paracontrolled solution to (4.2). To this end, we recall
that the given cylindrical Wiener process B is defined on a stochastic basis (Ω,F , (Ft)t>0,P) and
this is also where all the stochastic objects in Section 4.1 are constructed.

Definition 4.3. We say that a pair of (Ft)t>0-adapted processes

(h, ϑ) ∈
(
L2(0, T, L2) ∩ C1/10

T,1/2−κL
5/3 ∩ L1(0, T, B

1/5
5/3,∞) ∩ CTH−1

)
×
(
L1(0, T, B

3/5−κ
1,∞ ) ∩ CTH−1

)
P-a.s. with κ > 0 is a paracontrolled solution to (4.2) provided (4.4) holds and the equation (4.2)
holds in the analytically weak sense with the resonant product h� z given by (4.5).
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Remark 4.4. (i) We note that paracontrolled solutions are probabilistically strong, that is, they
are adapted to the given filtration (Ft)t>0.

(ii) The space C
1/10
T,1/2−κ with singularity at time zero is used in Definition 4.3 in order to cover the

case of irregular initial conditions, namely, divergence free initial conditions in C−1+2κ for κ > 0.

(iii) The function spaces to which (h, ϑ) belong together with Proposition 4.1 guarantee that all
the terms in (4.4)-(4.5) are well-defined. This in turn permits to make sense of all the terms in (4.2).

4.3. Formal decomposition. We continue with the formal decomposition of the equation in order
to find the desired paracontrolled ansatz. Moreover, in order to be able to apply convex integration,
we need to introduce a further decomposition into v1, v2. In this subsection, we ignore the fact that
various products of z are not well-defined. We proceed as if these were well-defined and we replace
their values in the end by the corresponding stochastic objects constructed in Section 4.1.

Let h = v1 + v2, (4.2) rewrites as

L(v1 + v2) + div((v1 + v2 + z1)⊗ (v1 + v2 + z1)+z ⊗ (v1 + v2 + z1) + (v1 + v2 + z1)⊗ z)
+∇(p1 + p2) = 0, div(v1 + v2) = 0.

(4.6)

The regular terms (encoded in blue) shall be put in the equation for v2, whereas the irregular ones
(in magenta) into v1, so that in the end

Lv1 + div(z1 ⊗ z1 + V 1 + V 1,∗) +∇p1 = 0, div v1 = 0, (4.7)

Lv2 + div((v1 + v2)⊗ (v1 + v2) + V 2 + V 2,∗) +∇p2 = 0, div v2 = 0. (4.8)

Here V 1,∗ and V 2,∗, respectively, denotes the transpose of V 1 and V 2, respectively. First, we assign

(v1 + v2)⊗ (v1 + v2), z1 ⊗ z1 + z ⊗ z1 + z1 ⊗ z.
Then we decompose

(v1 + v2)⊗ z1 = (v1 + v2)⊗∆>Rz1 + (v1 + v2)⊗∆6Rz1

= (v1 + v2) #≺ ∆>Rz1 + v1 #< ∆>Rz1+v2 #< ∆>Rz1+(v1 + v2)⊗∆6Rz1.

These terms are included into V 1 and V 2, whereas the symmetric counterparts

z1 ⊗ (v1 + v2) = ∆>Rz1 #� (v1 + v2) + ∆>Rz1 #4 v1+∆>Rz1 #4 v2+∆6Rz1 ⊗ (v1 + v2)

are in V 1,∗ and V 2,∗. Note that we colored v1 #< ∆>Rz1 magenta. Indeed, it requires regularity of
v1 which is not true uniformly as t → 0, since the initial condition is only in L2. Hence if colored
blue, this term cannot be controlled in the convex integration scheme. This applies also to other
terms below.

In the rest of the computation we only discuss the terms in V 1 and V 2, the symmetric terms
being included automatically. We split

(v1 + v2)⊗ z = (v1 + v2) #≺ z + (v1 + v2) #� z + (v1 + v2) � z

= (v1 + v2) #≺ ∆>Rz + v1 #� ∆>Rz+ v2 #� ∆>Rz + (v1 + v2) ( #≺ + #�) ∆6Rz + v2 � z + v1 � z.

For the resonant product v1 � z we shall use a paracontrolled ansatz which permits to cancel the
worst terms in V 1. In particular, the multiplication of v1 and z is not well-defined as the expected
sum of their regularities is not strictly positive making the resonant product v1 � z ill-defined. First
of all, there is the stochastic term div(z ⊗ z1 + z1 ⊗ z) which makes v1 too irregular. Second of all,
it is the following paraproduct between v1 and z

div
(
∆>Rz #� (v1 + v2)

)
= (v1 + v2) ≺ ∆>R∇z,
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which creates problems. This leads to the paracontrolled ansatz

v1 = −P[(v1 + v2) ≺ ∆>RI∇z] + v] − PI div(z ⊗ z1 + z1 ⊗ z), div v] = 0, (4.9)

where If(t) =
∫ t

0
e(t−s)∆f(s)ds. Thus,

v] = v1 + PI div(z ⊗ z1 + z1 ⊗ z) + IP[(v1 + v2) ≺ ∆>R∇z]− P[I, (v1 + v2) ≺]∆>R∇z. (4.10)

This permits to cancel the two terms

−PI div(z ⊗ z1 + z1 ⊗ z)− IP[(v1 + v2) ≺ ∆>R∇z]
from v1. Consequently, v] has a better regularity than v1 and hence, in view of the commutator
lemma, Lemma 2.3, the resonant product v1 �z can be rigorously defined. To this end, we compute

P[(v1 + v2) ≺ ∆>RI∇z] � z = P[(v1 + v2) ≺ I∇z] � z − P[(v1 + v2) ≺ ∆6RI∇z] � z

= ([P, (v1 + v2) ≺]I∇z) � z + [(v1 + v2) ≺ PI∇z] � z − P[(v1 + v2) ≺ ∆6RI∇z] � z

= ([P, (v1 + v2) ≺]I∇z) � z + com(v1 + v2,PI∇z, z)
+(v1 + v2) · (PI(∇z) � z)− P[(v1 + v2) ≺ ∆6RI∇z] � z.

The above commutator between the Helmholtz projection and the paraproduct is understood com-
ponentwise as follows

([P, (v1 + v2) ≺]I∇z)i = Pij [(v1 + v2)k ≺ I∂kzj ]− (v1 + v2)k ≺ PijI∂kzj

and accordingly
((v1 + v2) ≺ PI∇z)i = (v1 + v2)k ≺ PijI∂kzj .

We deduce

v1 � z = −P[(v1 + v2) ≺ ∆>RI∇z] � z + v] � z − (PI div(z ⊗ z1 + z1 ⊗ z)) � z

= −([P, (v1 + v2) ≺]I∇z) � z − com(v1 + v2,PI∇z, z)− (v1 + v2) · (PI∇z � z)

−P[(v1 + v2) ≺ ∆6RI∇z] � z + v] � z−(PI div(z ⊗ z1 + z1 ⊗ z)) � z.

In order to avoid the singularity at time zero in the convex integration, we include an additional
splitting into ∆>R and ∆6R of the remaining (uncolored) terms above as follows

−([P, (v1 + v2) ≺]I∇z) � z = −([P, v1 ≺]I∇z) � ∆>Rz

−([P, v1 ≺]I∇z) � ∆6Rz−([P, v2 ≺]I∇z) � z,

− com(v1 + v2,PI∇z, z) = − com(v1,PI∇z,∆>Rz)

− com(v1,PI∇z,∆6Rz)− com(v2,PI∇z, z),
−(v1 + v2) · (PI∇z � z) = −(v1 + v2) ≺ ∆>R(PI∇z � z)−v1 < ∆>R(PI∇z � z)

−v2 < ∆>R(PI∇z � z)−(v1 + v2) ·∆6R(PI∇z � z),

v] � z = v] � ∆>Rz+v
] � ∆6Rz.

Finally, collecting all the terms leads us to

V 1 = z1 ⊗ z+(v1 + v2) #≺ ∆>Rz1 + v1 #< ∆>Rz1 + (v1 + v2) #≺ ∆>Rz + v1 #� ∆>Rz

−(PI div(z ⊗ z1 + z1 ⊗ z)) � z−([P, v1 ≺]I∇z) � ∆>Rz− com(v1,PI∇z,∆>Rz)

−(v1 + v2) ≺ ∆>R(PI∇z � z)−v1 < ∆>R(PI∇z � z) + v] � ∆>Rz,

V 2 = v2 #< ∆>Rz1+(v1 + v2)⊗∆6Rz1

+v2 #� ∆>Rz + (v1 + v2) ( #≺ + #�) ∆6Rz + v2 � z

−P[(v1 + v2) ≺ ∆6RI∇z] � z − ([P, v2 ≺]I∇z) � z−([P, v1 ≺]I∇z) � ∆6Rz
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− com(v1,PI∇z,∆6Rz)− com(v2,PI∇z, z)− v2 < ∆>R(PI∇z � z)

−(v1 + v2) ·∆6R(PI∇z � z) + v] � ∆6Rz.

It will be seen below, that letting

h = v1 + v2, ϑ = v] + v2 + P[(v1 + v2) ≺ ∆6RI∇z]

satisfies the requirements of Definition 4.3. The idea then is to apply convex integration on the level
of the equation (4.8) for v2. In particular, we need to make sure that the convex integration gives
v2 of the required regularity for ϑ.

5. Convex integration set-up and results

The goal of this section is to construct infinitely many probabilistically strong paracontrolled
solutions (h, ϑ) and deduce global existence and non-uniqueness for the system (4.2). The equation
(4.2) for h splits formally into the coupled system (4.7), (4.8) for v1 and v2 and it remains to include
the stochastic objects. This leads to

Lv1 + div(z + V 1 + V 1,∗) +∇p1 = 0,

Lv2 + div((v1 + v2)⊗ (v1 + v2) + V 2 + V 2,∗) +∇p2 = 0,

div v1 = div v2 = 0, v1(0) = v0, v2(0) = 0,

(5.1)

with

V 1 = z + (v1 + v2) #≺ ∆>Rz + v1 #< ∆>Rz + (v1 + v2) #≺ ∆>Rz + v1 #� ∆>Rz

−z − ([P, v1 ≺]I∇z) � ∆>Rz − com(v1,PI∇z,∆>Rz)

−(v1 + v2) ≺ ∆>Rz − v1 < ∆>Rz + v] � ∆>Rz

and

V 2 = v2 #< ∆>Rz + (v1 + v2)⊗∆6Rz

+v2 #� ∆>Rz + (v1 + v2) ( #≺ + #�) ∆6Rz + v2 � z

−P[(v1 + v2) ≺ ∆6RI∇z] � z − ([P, v2 ≺]I∇z) � z − ([P, v1 ≺]I∇z) � ∆6Rz

− com(v1,PI∇z,∆6Rz)− com(v2,PI∇z, z)− v2 < ∆>Rz

−(v1 + v2) ·∆6Rz + v] � ∆6Rz.

The paracontrolled ansatz for v1 reads as

v1 = −P[(v1 + v2) ≺ ∆>RI∇z] + v] − (z + z ). (5.2)

These equations need to be considered together within the convex integration scheme and we put
forward a joint iterative procedure.

The convex integration iteration is indexed by a parameter q ∈ N0. It will be seen that the
Reynolds stress R̊q is only required for the approximations v2

q of v2, whereas the approximations v1
q

of v1 are obtained by a fixed point argument. We consider an increasing sequence {λq}q∈N0
⊂ N

which diverges to ∞, and a sequence {δq}q∈N0
⊂ (0, 1) which decreases to 0. We choose a ∈ N,

b ∈ N, β ∈ (0, 1) and let

λq = a(bq), δq = λ2β
1 λ−2β

q ,
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v1
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]
0
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q

v1
q , v

]
q

R̊q v2
q+1

v1
q+1, v

]
q+1

R̊q+1

Figure 1. Iteration scheme.

where β will be chosen sufficiently small and a as well as b sufficiently large. At each step q, a triple
(v1
q , v

2
q , R̊q) is constructed solving the following system

Lv1
q + div(z + V 1

q + V 1,∗
q ) +∇p1

q = 0,

Lv2
q + div((v1

q + v2
q )⊗ (v1

q + v2
q ) + V 2

q + V 2,∗
q ) +∇p2

q = div R̊q,

div v1
q = div v2

q = 0, v1
q (0) = v0, v2

q (0) = 0,

(5.3)

where

V 1
q = z + (v1

q + v2
q ) #≺ ∆6f(q)∆>R(z + z ) + v1

q #< ∆>Rz + v1
q #� ∆6f(q)∆>Rz

−([P, v1
q ≺]I∇z) � ∆>Rz − com(v1

q ,PI∇z,∆>Rz)− z

−(v1
q + v2

q ) ≺ ∆6f(q)∆>Rz − v1
q < ∆>Rz + v]q � ∆>Rz

and

V 2
q = v2

q #< ∆>Rz + (v1
q + v2

q )⊗∆6Rz

+v2
q #� ∆>Rz + (v1

q + v2
q ) ( #≺ + #�) ∆6Rz + v2

q � z

−P[(v1
q + v2

q ) ≺ ∆6RI∇z] � z − ([P, v2
q ≺]I∇z) � z − ([P, v1

q ≺]I∇z) � ∆6Rz

− com(v1
q ,PI∇z,∆6Rz)− com(v2

q ,PI∇z, z)− v2
q < ∆>Rz

−(v1
q + v2

q ) ·∆6Rz + v]q � ∆6Rz.

Here, V 1
q and V 2

q are obtained from V 1 and V 2, respectively, by replacing v1, v2, v] by v1
q , v2

q , v]q
and adding the projector ∆6f(q), where 2f(q) = λθq , θ = 10/21, into the second, the fourth and the

eighth term in V 1
q . These projectors are used to control the blow-up of certain norms of v1

q and v2
q

and also to prove the convergence of v1
q as q → ∞. We shall therefore require the parameter a to

be a power of 221 and b ∈ N. The parameter R is chosen in (6.7) below.

Analogously to the paracontrolled ansatz (5.2), v1
q , v2

q and v]q are linked via

v1
q = −P[(v1

q + v2
q ) ≺ I(∇∆>R∆6f(q)z)] + v]q − (z + z ). (5.4)

Our main goal is to prove convergence of v1
q , v2

q and v]q as q → ∞ and to show that their limits
satisfy (5.1), (5.2) in order to recover a paracontrolled solution to (4.2) in the sense of Definition 4.3.
See Figure 1 for our iteration scheme. More precisely, we use v2

q to determine v1
q and v]q by Schauder

estimates. Then R̊q is determined by v1
q , v

]
q and v2

q . The next velocity v2
q+1 is only determined by

R̊q via a convex integration argument.

As the next step, we define a stopping time which controls suitable norms of all the required
stochastic objects. Namely, for L > 1 we let

TL := T 1
L ∧ T 2

L ∧ T 3
L ∧ T 4

L ∧ T 5
L ∧ L1/2, (5.5)
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T 1
L := inf

{
t > 0, ‖z(t)‖C−1/2−κ > L1/2

}
∧ inf

{
t > 0, ‖z‖

C
1/10
t C−7/10−κ > L

1/2
}
,

T 2
L := inf

{
t > 0, ‖z (t)‖C−κ > L

}
∧ inf

{
t > 0, ‖z ‖

C
1/10
t C−1/5−κ > L

}
,

T 3
L := inf

{
t > 0, ‖z (t)‖C−κ > L

}
∧ inf

{
t > 0, ‖z (t)‖C−1/2−κ + ‖z (t)‖C−1/2−κ > L

}
,

T 4
L := inf

{
t > 0, sup

06s<r6t
‖z (r; s)‖C−κ > L

}
∧ inf

{
t > 0, ‖z ‖

C
1/10
t C−1/5−κ > L

}
,

T 5
L := inf

{
t > 0, sup

06s<r6t
‖z (r; s)‖C−κ > L

}
,

where we denoted by z (r; s) and z (r; s) the stochastic objects obtained the same way as z (r)

and z (r) but replacing the last integration operator I = I0,r by Is,r =
∫ r
s
e(r−l)∆dl. It follows

from Proposition 4.1 that the stopping time TL is P-a.s. strictly positive and it holds that TL ↑ ∞
as L→∞ P-a.s.

We intend to solve (5.1) for any given divergence free initial condition v0 ∈ L2∪C−1+κ measurable
with respect to F0. However, in the first step, we take the following additional assumption: Let
N > 1 be given and assume that P-a.s.

‖v0‖L2 6 N. (5.6)

We keep this additional assumption on the initial condition throughout the convex integration
step in Proposition 5.1. In Theorem 5.4 it is relaxed to v0 ∈ L2 P-a.s and, finally, Corollary 5.6
proves the result if v0 ∈ C−1+κ P-a.s. We also suppose that there is a deterministic constant
ML(N)1/2 > L6N + L29. In the following we write ML instead of ML(N) for simplicity.

Let α ∈ (0, 1) be a small parameter to be chosen below. By induction on q we assume the
following bounds for the iterations v2

q : if t ∈ [0, TL] then for p = 32
32−7α

‖v2
q‖CtW 2/3,p 6 a−α/2M1/2

L (1 +
∑

16r6q

δ1/2
r ) 6 3M

1/2
L a−α/2,

‖v2
q‖C1/10

t L5/3 + ‖v2
q‖CtW 1/5,5/3 6 a−α/2M1/2

L (1 +
∑

16r6q

δ1/2
r ) 6 3M

1/2
L a−α/2.

(5.7)

Later on, we use the factor a−α/2 to absorb an implicit constant. Here we defined
∑

16r60 := 0. In

addition, we used
∑
r>1 δ

1/2
r 6

∑
r>1 a

bβ−rbβ = 1
1−a−βb 6 2 which boils down to the requirement

aβb > 2, (5.8)

which we assume from now on. We also assume that L is large enough such that the implicit
constant in (5.20) and (7.54) below can be absorbed by L. Moreover, for such L we can always
choose a large enough such that L 6 aα/16. We denote

σq = 2−q, q ∈ N0 ∪ {−1}, γq = 2−q, q ∈ N0 \ {3}, γ3 = K,

for K > 0 arbitrary. This constant will be used in order to distinguish different solutions.

The key result is the following iterative proposition, which we prove below in Section 7.

Proposition 5.1. Let N > 1 and let L > 1 sufficiently large. There exists a choice of parameters
a, α, b, β such that the following holds true: Let (v1

q , v
2
q , R̊q) for some q ∈ N0 be an (Ft)t>0-adapted
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solution to (5.3), (5.4) satisfying (5.7) and

‖v2
q (t)‖L2 6

{
M0(M

1/2
L

∑q
r=1 δ

1/2
r +

∑q
r=1 γ

1/2
r ) + 3M0(ML(1 + 3q))1/2, t ∈ (

σq−1

2 ∧ TL, TL],

0, t ∈ [0,
σq−1

2 ∧ TL],

(5.9)
for a universal constant M0,

‖v2
q‖C1

t,x
6 λ4

qM
1/2
L , t ∈ [0, TL], (5.10)

‖R̊q(t)‖L1 6 δq+1ML, t ∈ (σq−1 ∧ TL, TL], (5.11)

‖R̊q(t)‖L1 6ML(1 + 3q), t ∈ [0, TL]. (5.12)

Then there exists an (Ft)t>0-adapted process (v1
q+1, v

2
q+1, R̊q+1) which solves (5.3), (5.4) on the level

q + 1 and satisfies

‖v2
q+1(t)− v2

q (t)‖L2 6


M0(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1), t ∈ (4σq ∧ TL, TL],

M0((ML(1 + 3q))1/2 + γ
1/2
q+1), t ∈ (

σq
2 ∧ TL, 4σq ∧ TL],

0, t ∈ [0,
σq
2 ∧ TL],

(5.13)

‖R̊q+1(t)‖L1 6


MLδq+2, t ∈ (σq ∧ TL, TL],

MLδq+2 + sups∈[(t−σq/2)∨0,t] ‖R̊q(s)‖L1 , t ∈ (
σq
2 ∧ TL, σq ∧ TL],

sups∈[(t−σq/2)∨0,t] ‖R̊q(s)‖L1 + 3ML t ∈ [0,
σq
2 ∧ TL].

(5.14)

Consequently, (v2
q+1, R̊q+1) obeys (5.7), (5.9), (5.10), (5.11) and (5.12) at the level q + 1. Further-

more, for 1 < p = 32
32−7α , t ∈ [0, TL] it holds

‖v2
q+1(t)− v2

q (t)‖W 2/3,p 6M1/2
L δ

1/2
q+1a

−α/2, (5.15)

‖v2
q+1 − v2

q‖C1/10
t L5/3 + ‖v2

q+1 − v2
q‖CtW 1/5,5/3 6M1/2

L δ
1/2
q+1a

−α/2, (5.16)

and for t ∈ (4σq ∧ TL, TL] we have∣∣‖v2
q+1‖2L2 − ‖v2

q‖2L2 − 3γq+1

∣∣ 6 7MLδq+1. (5.17)

Note that no bounds on v1
q , v1

q+1 were included in the statement of Proposition 5.1. Indeed,

the definition of the new velocity v2
q+1 does not require v1

q+1. Then, having v2
q+1 at hand, all the

necessary bounds for v1
q+1, v]q+1 follow from Section 6 below. In particular, in Section 6 we prove

the following.

Proposition 5.2. Under the assumptions of Proposition 5.1, it holds for κ > 0 and t ∈ [0, TL]

‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v1

q‖C1/6−κ
t,1/6

L5/3 + ‖v1
q‖CtL2 . a−α/4M1/2

L + L3N + L4, (5.18)

‖v]q‖Ct,3/10B3/5−κ
5/3,∞

+ ‖v]q‖C1/20

t,3/10
B

11/20−2κ

5/3,∞
+ ‖v]q‖CtL2 . a−α/8M1/2

L + L5N + L6, (5.19)

‖v1
q+1 − v1

q‖CtL2 + ‖v1
q+1 − v1

q‖CtB1/3−κ
5/3,∞

+ ‖v1
q+1 − v1

q‖C1/6−κ
t L5/3 . a

−α/2M
1/2
L δ

1/2
q+1 +M

1/2
L λ−θ/20

q ,

‖v]q+1 − v]q‖Ct,3/10B3/5−κ
5/3,∞

+ ‖v]q+1 − v]q‖CtL2 . a−α/2M1/2
L δ

1/2
q+1 +M

1/2
L λ−θ/20

q .

Here θ = 10/21 and the implicit constants are always universal and independent of q.
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In the following we always use κ > 0 to denote a small constant.

Remark 5.3. The best regularity we can expect for v1 is 1/2 − κ whereas for v] it is 1 − κ. It
will be seen in Section 6 that their integrability is determined by v2 and hence it comes from the
convex integration argument. Here, we observe a competition between regularity and integrability,
cf. (5.15) and (5.16) and their proofs in Section 7.4.3 and Section 7.4.5. For convenience, we have
chosen integrability 5/3 and space regularity 1/3− 2κ for v1 and 3/5− κ for v]. The time weights
are dictated by the desired space regularity as the initial value for v1

q and v]q only belongs to L2.

We also note that the bounds in Proposition 5.2 do not rely on the W 2/3,p estimate of v2
q or the

difference v2
q+1 − v2

q . Indeed, this is only needed to make sense of the resonant product v2 � z in
the limit and to control the corresponding part of the Reynolds stress.

We intend to start the iteration from v2
0 ≡ 0 on [0, TL]. Then (5.7), (5.9) and (5.10) hold. In

that case, R̊0 is the trace-free part of the matrix

v1
0 ⊗ v1

0 + V 2
0 + V 2,∗

0

where

V 2
0 = v1

0 ⊗∆6Rz + v1
0 ( #≺ + #�) ∆6Rz − P[v1

0 ≺ ∆6RI∇z] � z − ([P, v1
0 ≺]I∇z) � ∆6Rz

− com(v1
0 ,PI∇z,∆6Rz)− v1

0 ·∆6Rz + v]0 � ∆6Rz.

By (5.18) and (5.19), paraproduct estimates Lemma 2.2, commutator estimates Lemmas 2.3, 2.4,
we have

‖R0(t)‖L1 . ‖v1
0‖L2(‖∆6Rz ‖Cκ + ‖∆6Rz ‖Cκ + ‖∆6Rz‖Cκ) (5.20)

+ ‖v1
0‖2L2 + ‖v]0‖L2‖∆6Rz‖Cκ + ‖v1

0‖L2‖z‖C−1/2−κ‖∆6Rz‖C−1/2+2κ

. a−α/8ML + L6N2 + L8 + L(a−α/8M
1/2
L + L5N + L6)2(1/2+2κ)R

6ML.

Here we used the value of R from (6.7) in Section 6 and the implicit constant can be absorbed by
taking a and L large enough. Thus (5.11) as well as (5.12) are satisfied on the level q = 0, since
δ1 = 1.

We deduce the following result.

Theorem 5.4. There exists a P-a.s. strictly positive stopping time TL, arbitrarily large by choosing
L large, such that for any F0-measurable divergence free initial condition v0 ∈ L2 P-a.s. the
following holds true: There exists an (Ft)t>0-adapted process (v1, v2, v]) such that for κ > 0

v1 ∈ C([0, TL];L2) ∩ L1(0, TL;B
1/3−2κ
5/3,∞ ) ∩ C1/6−κ

TL,1/6
L5/3,

v2 ∈ Lp(0, TL;L2) ∩ C([0, TL],W 2/3,1 ∩W 1/5,5/3) ∩ C1/10
TL

L5/3,

v] ∈ C([0, TL];L2) ∩ L1(0, TL;B
3/5−κ
5/3,∞ ),

P-a.s. for all p ∈ [1,∞), and it is an analytically weak solution to (5.1) with v1(0) = v0, v
2(0) = 0

and satisfying (5.2). Furthermore, there are infinitely many such solutions and also infinitely many
paracontrolled solutions (h, ϑ) = (v1 + v2, v] + v2 + P[(v1 + v2) ≺ ∆6RI∇z]) on [0, TL] satisfying

h ∈ C([0, TL];L5/3) ∩ L1(0, TL;B
1/5
5/3,∞) ∩ C1/10

TL,1/6
L5/3 ∩ Lp(0, TL;L2),

ϑ ∈ C([0, TL];L5/3) ∩ L1(0, TL;B
3/5−κ
1,∞ ),

P-a.s. for all p ∈ [1,∞), where R depends on L and is chosen in (6.7) below.
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Proof. Letting v2
0 ≡ 0, we repeatedly apply Proposition 5.1 and obtain (Ft)t>0-adapted processes

(v1
q , v

2
q , R̊q), q ∈ N, such that

v2
q → v2 in C([0, TL],W 2/3,1 ∩W 1/5,5/3) ∩ C1/10

TL
L5/3

as a consequence of (5.15), (5.16) and (5.7). In view of Proposition 5.2, it follows that

v1
q → v1 in C([0, TL];L2) ∩ L1(0, TL;B

1/3−2κ
5/3,∞ ) ∩ C1/6−κ

TL,1/6
L5/3,

v]q → v] in C([0, TL];L2) ∩ L1(0, TL;B
3/5−κ
5/3,∞ ).

Then (v1, v2, v]) are (Ft)t>0-adapted. Moreover, using (5.13) we have for every p ∈ [1,∞)∫ TL

0

‖v2
q+1 − v2

q‖
p
L2dt 6

∫ 4σq∧TL

σq/2∧TL
‖v2
q+1 − v2

q‖
p
L2dt+

∫ TL

4σq∧TL
‖v2
q+1 − v2

q‖
p
L2dt

.
∫ 4σq∧TL

σq/2∧TL
Mp

0 ((ML(1 + 3q))1/2 + γ
1/2
q+1)pdt+

∫ TL

4σq∧TL
Mp

0 (M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)pdt

.Mp
0

(
2−q((ML(1 + 3q))1/2 + γ

1/2
q+1)p + TL(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1)p

)
.

Thus, the sequence v2
q , q ∈ N, is Cauchy hence converging in Lp(0, TL;L2) for all p ∈ [1,∞).

Accordingly, v2
q → v2 also in Lp(0, TL;L2). Furthermore, by (5.11), (5.12) we know for all p ∈ [1,∞)∫ TL

0

‖R̊q(t)‖pL1dt .M
p
Lδ

p
q+1TL + (ML(1 + 3q))p2−q → 0, as q →∞.

Thus, the process (v1, v2, v]) satisfies (5.1) and (5.2) before TL in the analytically weak sense. Since
v1
q (0) = v0 and v2

q (0) = 0 for all q ∈ N0 we deduce that v1(0) = v0 and v2(0) = 0. Thus (h, ϑ)
defined above solves (4.2) in the sense of Definition 4.3.

Next, we prove non-uniqueness of the constructed solutions. In view of (5.17), we have on
t ∈ (4σ0 ∧ TL, TL]∣∣‖v2‖2L2 − 3K

∣∣ 6 ∣∣∣∣∣
∞∑
q=0

(‖v2
q+1‖2L2 − ‖v2

q‖2L2 − 3γq+1)

∣∣∣∣∣+ 3
∑
q 6=2

γq+1

6 7ML

∞∑
q=0

δq+1 + 3
∑
q 6=2

γq+1 6 7ML

∞∑
q=0

δq+1 + 3
∑
q 6=2

γq+1 6 c,

(5.21)

where the constant c > 0 is independent of K and the parameters a, α. This implies non-uniqueness
by choosing different K. More precisely, for a given L > 1 sufficiently large it holds P(4σ0 < TL) > 0.
The parameters L,N determine ML(N) and consequently by choosing different K = K(L,N) and
K ′ = K ′(L,N) so that 3|K − K ′| > 2c we deduce that the corresponding solutions v2

K and v2
K′

have different L2-norms on the set {4σ0 < TL}. We claim that the sums v1
K + v2

K and v1
K′ + v2

K′ are
different as well. Indeed, it is easy to see from (5.18) and (5.21) that

√
3K − c−M1/2

L 6 ‖v1 + v2‖L2 6M1/2
L +

√
3K + c.

Choosing K ′ such that
√

3K ′ − c−M1/2
L > M

1/2
L +

√
3K + c gives different solutions.

For a general divergence free initial condition v0 ∈ L2 P-a.s., we define

ΩN := {N − 1 6 ‖v0‖L2 < N} ∈ F0.
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Then the first part of this proof gives the existence of infinitely many paracontrolled solutions
(hN , ϑN ) on each ΩN . Letting

h :=
∑
N∈N

hN1ΩN , ϑ :=
∑
N∈N

ϑN1ΩN

concludes the proof. Note that this also uses the fact that the stochastic objects are defined in
advance and then the rest of the construction proceeds pathwise. �

By an argument similar to [HZZ23, Theorem 1.1] we may extend the paracontrolled solutions
obtained in Theorem 5.4 by other paracontrolled solutions in order to obtain global existence and
non-uniqueness.

Theorem 5.5. Let v0 ∈ L2 P-a.s. be an F0-measurable divergence free initial condition. There
exist infinitely many paracontrolled solutions (h, ϑ) to (4.2) on [0,∞). Moreover, it holds

h ∈ Lploc([0,∞);L2) ∩ C([0,∞), L5/3) P-a.s. for all p ∈ [1,∞).

Proof. By Theorem 5.4 we constructed a paracontrolled solution h = v1 + v2 before the stopping
time TL starting from the given initial condition h(0) = v0 ∈ L2 P-a.s. Since TL > 0 P-a.s., we
know that for P-a.e. ω there exists q0(ω) such that 4σq0(ω) < TL(ω). By (5.13) we find

‖v2(TL)‖L2 6
∑

06q<q0

‖v2
q+1(TL)− v2

q (TL)‖L2 +
∑
q>q0

‖v2
q+1(TL)− v2

q (TL)‖L2

.M0q0(ML(1 + q0))1/2 +M0(K1/2 + 1) +M0M
1/2
L <∞.

This implies that ‖v2(TL)‖L2 < ∞ P-a.s. Since also v1(TL) ∈ L2 P-a.s., we can use the value
(v1 + v2)(TL) as a new initial condition for h in Theorem 5.4.

More precisely, we consider ĥ(0) = (v1 + v2)(TL) and define ẑ(t) = z(t + TL) and similarly we
define the stochastic objects

ẑ1(t) := z (t+ TL), ẑ1 ⊗ ẑ(t) := z (t+ TL), ẑ ⊗ ẑ1(t) := z (t+ TL),

ẑ (t) := z (t+ TL), I(∇ẑ)(t) := ITL,TL+t(∇z),

PI(∇ẑ) � ẑ(t) = PITL,TL+t(∇z) � z(t+ TL) = z (t+ TL;TL),

PI(div(ẑ ⊗ ẑ1 + ẑ1 ⊗ ẑ)) � ẑ(t) = PITL,TL+t(div(z + z )) � z(t+ TL) = z (t+ TL;TL).

Then we define stopping time T̂L similar as in (5.5) with T 4
L and T 5

L replaced by

T̂ 4
L := inf

{
t > 0, ‖z (TL + t;TL)‖C−κ > L

}
∧ inf

{
t > 0, ‖z ‖

C
1/10
t+TL

C−1/5−κ > L

}
,

T̂ 5
L := inf

{
t > 0, ‖z (TL + t;TL)‖C−κ > L

}
.

Then T̂L+1 > TL+1 − TL.

Consequently, we obtain solutions(
ĥ = v̂1 + v̂2, ϑ̂ = v̂] + v̂2 + P[(v̂1 + v̂2) ≺ ∆6RI(∇ẑ)]

)
before T̂L+1 adapted to Ft+TL . Here R is chosen as in (6.7) in Section 6 but in terms of L + 1

instead of L. Moreover, by Proposition 5.2 and (5.7) it holds that ĥ(0) ∈ B1/5
5/3,∞. Hence, there is
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no singularity near zero of ĥ and similarly as in Section 6 we obtain ĥ ∈ C1/10
T L5/3. Then we set

h(t) = (v1 + v2)1t6TL + ĥ(t− TL)1TL+1>t>TL . Then for p > 1

h ∈ C([0, TL+1];L5/3) ∩ L1(0, TL+1;B
1/5
5/3,∞) ∩ C1/10

TL+1,1/6
L5/3 ∩ Lp(0, TL+1;L2).

By the same argument as in the proof of [HZZ23, Theorem 1.1], h is adapted to (Ft)t>0 and satisfies
the equation (4.2) before [0, TL+1]. Indeed, we have for t > TL

h(t) = (v1 + v2)(TL)− P
∫ t

TL

e(t−s)∆
[
div
(
h⊗ h+ z ⊗ h+ h⊗ z + z

+ h⊗ z + z ⊗ h+ z + z
)]

ds,

with the paracontrolled ansatz

h(t) = −P[h(t) ≺ ITL,t∇z] + ϑ̂(t− TL)− ITL,t(z + z ),

and for s > TL

h� z(s) = −P[h ≺ ITL,s∇z] � z(s) + ϑ̂(s− TL) � z(s)− z (s;TL)

= −([P, h ≺]ITL,s∇z) � z(s)− com(h(s),PITL,s∇z, z(s))− h(s) · z (s;TL)

+ ϑ̂(s− TL) � z(s)− z (s;TL).

Now, we define

ϑ =
(
v] + v2 + P[(v1 + v2) ≺ ∆6RI(∇z)]

)
1t6TL

+
(
ϑ̂(t− TL) + P[h(t) ≺ e(t−TL)∆I∇z(TL)] + e(t−TL)∆(z + z )(TL)

)
1t>TL .

It is easy to see that ϑ ∈ C([0, TL+1], L5/3) ∩ L1(0, TL+1, B
3/5−κ
1,∞ ). Then, for t, s > TL it holds

h(t) = −P[h(t) ≺ (I∇z)(t)] + ϑ(t)− (z + z )(t),

h� z(s) =− ([P, h(s) ≺](I∇z)(s)) � z(s)− com(h(s),P(I∇z)(s), z(s))− h(s) · z (s)

+ ϑ(s) � z(s)− z (s).

Here we used that from the renormalization it holds

z (s) = z (s, TL) + e(s−TL)∆(z + z )(TL) � z(s)

and similarly for other terms.

Thus, (h, ϑ) satisfies the equation (4.2), as well as (4.4) and (4.5) before TL+1. Now, we can
iterate the above steps, i.e. starting from h(TL+k) and constructing solutions (hk+1, ϑk+1) before
the stopping time TL+k+1. Define h = h11t6TL +

∑∞
k=1 hk1{TL+k−1<t6TL+k}, and obtain that h ∈

Lploc([0,∞);L2)∩C([0,∞);L5/3), for all p ∈ [1,∞). Similarly, we define ϑ and we obtain that (h, ϑ)
is a paracontrolled solution. We emphasize that h does not blow up at any finite time T since for
any time T we could find k0 such T 6 TL+k0 and the infinite sum becomes a finite sum. The desired
norm of h only depends on L, k0 and the initial data. Furthermore, as in the proof of Theorem 5.4
we obtain infinitely many such solutions by choosing different K. �

Corollary 5.6. Let v0 ∈ L2 ∪ C−1+κ with κ > 0 P-a.s. be a F0-measurable divergence free initial
condition. Then there exist infinitely many paracontrolled solutions (h, ϑ) to (4.2) on [0,∞).
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Proof. If v0 ∈ C−1+κ with κ > 0, by [ZZ15] there exists a stopping time 0 < σ 6 TL and a local
paracontrolled solution (h, ϑ) to (4.2) in the sense of Definition 4.3. Now, h(σ) ∈ C1/2−κ, κ > 0,
and we can start from h(σ) and obtain infinitely many global paracontrolled solutions by using

Theorem 5.5. Moreover, there is no singularity at h(σ) and h ∈ C1/10
T,1/2−κL

5/3. Note that due to

singularity at zero, we only have h ∈ L2(0, T, L2) ∩ C1/10
T,1/2−κL

5/3 ∩ CTH−1 ∩ L1(0, T, B
1/5
5/3,∞). �

Accordingly, Theorem 1.1 is proved.

Finally, by exactly the same argument as in [HZZ23, Corollary 1.2], Corollary 1.3 follows.

6. Estimate of v1
q and v]q

In this section, we work under the assumptions of Proposition 5.1. The main aim is to prove the
bounds (5.18), (5.19) as well as for κ > 0 and t ∈ [0, TL]

‖v1
q+1 − v1

q‖CtL2 + ‖v1
q+1 − v1

q‖CtB1/3−2κ

5/3,∞
+ ‖v1

q+1 − v1
q‖C1/6−κ

t L5/3

. ‖v2
q+1 − v2

q‖CtB1/5

5/3,∞
+ ‖v2

q+1 − v2
q‖C1/10

t L5/3 +M
1/2
L λ−θ/20

q , (6.1)

‖v]q+1 − v]q‖Ct,3/10B3/5−κ
5/3,∞

+ ‖v]q+1 − v]q‖CtL2

. ‖v2
q+1 − v2

q‖CtB1/5

5/3,∞
+ ‖v2

q+1 − v2
q‖C1/10

t L5/3 +M
1/2
L λ−θ/20

q ,
(6.2)

and

‖v1
q‖Ct,3/8L4 .M1/2

L λθ(7/10+2κ)
q . (6.3)

As a consequence of (5.16), this proves Proposition 5.2. Moreover, we recall that the equation for
v1
q is linear. Hence, for a given v2

q we obtain the existence and uniqueness of solution v1
q to (5.3)

by a fixed point argument together with the uniform estimate derived in the sequel. Also, if v2
q is

(Ft)t>0-adapted, so are (v1
q , v

]
q). This in particular gives the existence of v1

q+1 in Proposition 5.1,

once the new velocity v2
q+1 was constructed in Section 7.

In the following, we make use of the localizers ∆>R present in the equation for v1
q in (5.3).

Namely, by an appropriate choice of R we can always apply (2.1) to get a small constant in front
of terms which contain v1

q . We are therefore able to absorb them into the left hand sides of the
estimates without a Gronwall argument. Due to singularity at t = 0, we use the weighted in time
norms Ct,γ for several different γ > 0, see Section 2 for their definition. In the following, all the
estimates are pathwise and valid before the stopping time TL.

6.1. Estimate of v1
q in Ct,1/6B

1/3−2κ
5/3,∞ and C

1/6−κ
t,1/6 L5/3. We intend to apply Lemma B.2 and notice

that by Remark B.3 each application yields a factor L, independently of the chosen time weights in
the range γ, δ ∈ {0, 1/6, 3/10}. However, we note that the difficult terms for Lemma B.2 are those
where we need to decrease the weight, i.e. γ < δ. For those we need to make sure that the condition

γ − δ − α/2 + β/2 + 1 > 0 (6.4)

from Lemma B.2 is satisfied. It will be seen below that this is always achieved since these terms do
not require such a gain in space regularity, i.e. the difference α − β compensates the negativity of
the difference γ − δ.
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Hence, we shall bound each term appearing in V 1
q as well as z in appropriate (possibly time-

weighted) function spaces with spatial regularity at least B
−2/3−κ
5/3,∞ . The terms in V 1,∗

q are estimated

the same way.

Recall that by the definition of the stopping time (5.5) we have

‖z‖2CtC−1/2−κ + ‖z ‖CtC−κ + ‖z ‖CtC−1/2−κ + ‖z ‖CtC−κ + ‖z ‖CtC−κ . L.
By the paraproduct estimate Lemma 2.2 we have

‖(v1
q + v2

q ) #≺ ∆6f(q)∆>Rz‖Ct,1/6B−2/3−κ
5/3,∞

. sup
s∈[0,t]

s1/6(‖v1
q (s)‖L5/3 + ‖v2

q (s)‖L5/3)‖∆>Rz‖CtC−2/3−κ

. (‖v1
q‖Ct,1/6L5/3 + ‖v2

q‖Ct,1/6L5/3)L2−R/6,

‖(v1
q + v2

q ) #≺ ∆6f(q)∆>Rz ‖Ct,1/6B−1/6−κ
5/3,∞

+ ‖(v1
q + v2

q ) ≺ ∆6f(q)∆>Rz ‖Ct,1/6B−1/6−κ
5/3,∞

. sup
s∈[0,t]

s1/6(‖v1
q (s)‖L5/3 + ‖v2

q (s)‖L5/3)(‖∆>Rz ‖CtC−1/6−κ + ‖∆>Rz ‖CtC−1/6−κ)

. (‖v1
q‖Ct,1/6L5/3 + ‖v2

q‖Ct,1/6L5/3)L2−R/6,

and

‖v1
q #< ∆>Rz ‖Ct,1/6Bκ5/3,∞ + ‖v1

q < ∆>Rz ‖Ct,1/6Bκ5/3,∞ + ‖v1
q #� ∆6f(q)∆>Rz‖Ct,1/6B−1/3−3κ

5/3,∞

. sup
s∈[0,t]

s1/6‖v1
q‖B1/3−2κ

5/3,∞
(‖∆>Rz ‖CtC−1/6−κ + ‖∆>Rz ‖CtC−1/6−κ + ‖∆>Rz‖CtC−2/3−κ)

. ‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
L2−R/6.

For the two commutators we use the commutator estimates, Lemma 2.4 and Lemma 2.3, to obtain

‖([P, v1
q ≺]I(∇z)) � ∆>Rz‖Ct,1/6Bκ5/3,∞ + ‖com(v1

q ,PI(∇z),∆>Rz)‖Ct,1/6Bκ5/3,∞
. ‖v1

q‖Ct,1/6B1/3−2κ

5/3,∞
‖∆>Rz‖CtC−2/3−κ‖z‖CtC−1/2−κ . ‖v1

q‖Ct,1/6B1/3−2κ

5/3,∞
L2−R/6.

For the last term containing v]q we use the paraproduct estimate and Lemma B.2. In particular,

since v]q requires a higher time weight t3/10, we shall verify the condition (6.4). It turns out that this
is satisfied as γ = 1/6, δ = 3/10, α = 1/3− 2κ, β = −1 + 1/20− 2κ hence (6.4) holds. Accordingly,
we obtain

‖I div(v]q � ∆>Rz)‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖I div(v]q � ∆>Rz)‖C1/6−κ

t,1/6
L5/3

. L‖ div(v]q � ∆>Rz)‖Ct,3/10B−1+1/20−2κ

5/3,∞

. L‖v]q � ∆>Rz‖Ct,3/10B1/20−2κ

5/3,∞

. L‖v]q‖Ct,3/10B3/5−κ
5/3,∞

‖∆>Rz‖CtC−11/20−κ

. L2‖v]q‖Ct,3/10B3/5−κ
5/3,∞

2−R/20.

For the initial value part we have by Lemma B.1 and (5.6) for t ∈ (0, TL]

‖et∆v0‖B1/3−2κ

5/3,∞
. L1/2t−1/6+κN,
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‖(et∆ − es∆)v0‖L5/3 . |t− s|1/6−κs−1/6+κN, |t− s| 6 1, 0 < s < t.

Summarizing all the above estimates and using Besov embedding Lemma 2.1, we obtain

‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v1

q‖C1/6−κ
t,1/6

L5/3

. L
(
L+N + L2−R/20(‖v1

q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v]q‖Ct,3/10B3/5−κ

5/3,∞
) + L2−R/6‖v2

q‖Ct,1/6L5/3

)
.

(6.5)

Here, we used (5.6) and, as mentioned above, the extra factor L comes from Lemma B.2.

6.2. Estimate of v]q in Ct,3/10B
3/5−κ
5/3,∞ and C

1/20
t,3/10B

11/20−2κ
5/3,∞ . Let us proceed with the estimate of

v]q. Here, there are no difficulties coming from changing the time weight as all the terms require
either a lower or the same weight. In view of (5.3), the paracontrolled ansatz (5.4) and since

div
(
(v1
q + v2

q ) #≺ ∆6f(q)∆>Rz
)

= ∆6f(q)∆>Rz � ∇(v1
q + v2

q ),

div
(
∆6f(q)∆>Rz #� (v1

q + v2
q )
)

= (v1
q + v2

q ) ≺ ∇∆6f(q)∆>Rz,

we obtain

v]q = v1
q + P[(v1

q + v2
q ) ≺ I(∇∆>R∆6f(q)z)] +

(
z + z

)
= v1

q (0)− IPdiv
(
z + V ]q + V ],∗q

)
(6.6)

−P[I, (v1
q + v2

q ) ≺](∇∆>R∆6f(q)z)− IP[∇(v1
q + v2

q ) ≺ ∆6f(q)∆>Rz],

where
V ]q = (v1

q + v2
q ) #≺ ∆6f(q)∆>Rz + v1

q #< ∆>Rz + v1
q #� ∆6f(q)∆>Rz

−([P, v1
q ≺]I∇z) � ∆>Rz − com(v1

q ,PI∇z,∆>Rz)− z

−(v1
q + v2

q ) ≺ ∆6f(q)∆>Rz − v1
q < ∆>Rz + v]q � ∆>Rz.

In the following we estimate each term on the right hand side of (6.6).

From the above estimate we already know that z as well as all the terms in V ]q except for

v]q � ∆>Rz are bounded in B
−1/3−3κ
5/3,∞ . We also showed by paraproduct estimates Lemma 2.2 that

‖v]q � ∆>Rz‖Ct,3/10B1/20−2κ

5/3,∞
. ‖v]q‖Ct,3/10B3/5−κ

5/3,∞
‖∆>Rz‖CtC−11/20−κ

. L1/2‖v]q‖Ct,3/10B3/5−κ
5/3,∞

2−R/20.

Moreover, Lemma 2.2 also implies

‖P[∇(v1
q + v2

q ) ≺ (∆>R∆6f(q)z)]‖Ct,1/6B−27/20−κ
5/3,∞

.
(

sup
s∈[0,t]

s1/6‖v1
q (s)‖

B
1/3−2κ

5/3,∞
+ L1/6‖v2

q‖CtB1/5

5/3,∞

)
‖∆>Rz‖CtC−11/20−κ

. (‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
L1/2 + L‖v2

q‖CtB1/5

5/3,∞
)2−R/20,

which can then be plugged in the Schauder estimate, Lemma B.2. Next, we note that Lemma
B.4 can be applied to the remaining term in (6.6) which also gives a factor of L. Hence, we use
interpolation to have

‖P[I, (v1
q + v2

q ) ≺](∇∆>R∆6f(q)z)‖Ct,3/10B3/5

5/3,∞

+ ‖P[I, (v1
q + v2

q ) ≺](∇∆>R∆6f(q)z)‖C1/20

t,3/10
B

11/20−2κ

5/3,∞
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. L(‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v2

q‖CtB1/5

5/3,∞
+ ‖v1

q‖C1/6−κ
t,1/6

L5/3 + ‖v2
q‖C1/10

t L5/3)‖∆>Rz‖CtC−11/20−κ

. L22−R/20(‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v2

q‖CtB1/5

5/3,∞
+ ‖v1

q‖C1/6−κ
t,1/6

L5/3 + ‖v2
q‖C1/10

t L5/3).

Combining the above estimates and using Schauder estimate Lemma B.2 and interpolation, we have

‖v]q‖Ct,3/10B3/5−κ
5/3,∞

+ ‖v]q‖C1/20

t,3/10
B

11/20−2κ

5/3,∞

. L2 + LN + L22−R/20
(
‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v2

q‖CtB1/5

5/3,∞

+ ‖v1
q‖C1/6−κ

t,1/6
L5/3 + ‖v2

q‖C1/10
t L5/3 + ‖v]q‖Ct,3/10B3/5−κ

5/3,∞

)
+ L22−R/6‖v2

q‖Ct,1/6L5/3 ,

which combined with (6.5) implies that

‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v1

q‖C1/6−κ
t,1/6

L5/3 + ‖v]q‖Ct,3/10B3/5−κ
5/3,∞

+ ‖v]q‖C1/20

t,3/10
B

11/20−2κ

5/3,∞

. L2 + LN + L22−R/20
(
‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v2

q‖CtB1/5

5/3,∞

+ ‖v1
q‖C1/6−κ

t,1/6
L5/3 + ‖v2

q‖C1/10
t L5/3 + ‖v]q‖Ct,3/10B3/5−κ

5/3,∞

)
+ L22−R/6‖v2

q‖Ct,1/6L5/3 .

Then we choose R such that

2R/20 = 4CL2, (6.7)

with C being the implicit constant and use (5.7) to obtain

‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v1

q‖C1/6−κ
t,1/6

L5/3 + ‖v]q(s)‖Ct,3/10B3/5−κ
5/3,∞

+ ‖v]q‖C1/20

t,3/10
B

11/20−2κ

5/3,∞
(6.8)

. L2 + LN + L2a−α/2M
1/2
L ,

which implies the first part of (5.18) and (5.19).

6.3. Estimate of v1
q in CtL

2. Here, most of the terms are similar as in (6.5) but we need to be

careful about the compatibility condition (6.4). As mentioned above, terms except for v]q � ∆>Rz

and (v1
q + v2

q ) #≺ ∆6f(q)∆>Rz have spatial regularity

B
−1/3−3κ
5/3,∞ ⊂ B−1/3−3/10−3κ

2,∞

by Lemma 2.1. Thus, the corresponding CtL
2 norm can be bounded by Lemma B.2 with γ = 0,

δ = 1/6, α = κ, β = −1/3− 3/10− 3κ− 1 as follows

‖I div(· · · )‖CtL2 . ‖I div(· · · )‖CtBκ2,∞
. L‖div(· · · )‖

Ct,1/6B
−1/3−3/10−3κ−1
2,∞

. L2 + L2‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
+ L2‖v2

q‖CtL5/3 .

Here, in · · · we collected all the terms from V 1
q + V 1,∗

q except for the above mentioned two and z
and their symmetric counterparts.

Next, using paraproduct estimates and Lemma 2.1, the term corresponding to v]q � ∆>Rz can be

bounded in view of the embedding B
3/5−κ−1/2−κ
5/3,∞ ⊂ B

3/5−1/2−2κ−3/10
2,∞ = B

−1/5−2κ
2,∞ by Lemma B.2
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with γ = 0, δ = 3/10, α = κ, β = −1/5− 2κ− 1 as

‖I div(v]q � ∆>Rz)‖CtL2 . ‖I div(v]q � ∆>Rz)‖CtBκ2,∞
. L‖ div(v]q � ∆>Rz)‖Ct,3/10B−1/5−2κ−1

2,∞

. L‖v]q � ∆>Rz‖Ct,3/10B3/5−1/2−2κ

5/3,∞

. L‖v]q‖Ct,3/10B3/5−κ
5/3,∞

‖z‖CtC−1/2−κ

. L2‖v]q‖Ct,3/10B3/5−κ
5/3,∞

.

We also use Lemma 2.2 and embedding B
−1+3/10+κ
5/3,∞ ⊂ H−1 to have

‖(v1
q + v2

q ) #≺ ∆6f(q)∆>Rz‖CtH−1 . ‖v1
q‖CtL2‖∆>Rz‖CtC−2/3−κ + ‖v2

q‖CtL5/3‖z‖CtC−1/2−κ

. L1/2(‖v1
q‖CtL22−R/6 + ‖v2

q‖CtL5/3).

Thus combining the above estimates and (5.7), (6.8) we obtain

‖v1
q‖CtL2

. L2 + LN + L2(‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v2

q‖CtL5/3 + ‖v]q‖Ct,3/10B3/5−κ
5/3,∞

) + L2‖v1
q‖CtL22−R/6

. L4 + L3N + a−α/2L4M
1/2
L + L2a−α/2M

1/2
L + L2‖v1

q‖CtL22−R/6

. L4 + L3N + a−α/4M
1/2
L + L2‖v1

q‖CtL22−R/6,

using the fact that L4 6 aα/4. Hence the last part of (5.18) follows.

6.4. Estimate of v]q in CtL
2. We apply the paracontrolled ansatz (5.4), the Besov embedding

Lemma 2.1, and paraproduct estimates Lemma 2.2 as well as (5.7) and (5.5) together with the

Schauder estimate to control z and z . We deduce

‖v]q‖CtL2 . L‖v1
q‖CtL2 + ‖v2

q ≺ I(∇∆>R∆6f(q)z)‖CtB3/10+κ

5/3,∞
+ L2

. L(‖v2
q‖CtL5/3 + ‖v1

q‖CtL2) + L2

. La−α/2M1/2
L + L(L4 + L3N + a−α/4M

1/2
L ) + L2

.M1/2
L a−α/8 + L5N + L6.

The last part of (5.19) follows.

6.5. Estimate of the difference v1
q+1−v1

q in CtB
1/3−2κ
5/3,∞ and C

1/6−κ
t L5/3. Most of the terms can

be estimated similarly as in (6.5). We do not have to consider the initial data as it vanishes and
therefore we can even control directly the Ct-norms without any weight. The main change comes
from the additional difference ∆6f(q+1)−∆6f(q). First, we use Lemma 2.2 to bound the terms with
paraproducts #≺,≺ containing ∆6f(q+1) −∆6f(q) by Schauder estimates as

L‖v1
q + v2

q‖CtL5/3‖(∆6f(q+1) −∆6f(q))∆>R(z + z )‖CtC−2/3−κ .M1/2
L λ−θ/6q ,

L‖v1
q + v2

q‖CtL5/3‖(∆6f(q+1) −∆6f(q))∆>Rz )‖CtC−2/3−κ .M
1/2
L λ−θ/6q .
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The part of #� containing ∆6f(q+1) −∆6f(q) can be bounded by Schauder estimates Lemma B.2
with γ = 0, δ = 1/6, α = 1/3− 2κ, β = 1/3− 2κ− 11/20− κ− 1 as

L‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
‖(∆6f(q+1) −∆6f(q))z‖CtC−11/20−κ .M

1/2
L λ−θ/20

q .

Thus, in view of (6.5) we obtain

‖v1
q+1 − v1

q‖CtB1/3−2κ

5/3,∞
+ ‖v1

q+1 − v1
q‖C1/6−κ

t L5/3

. L22−R/20
(
‖v1
q+1 − v1

q‖CtB1/3−2κ

5/3,∞
+ ‖v2

q+1 − v2
q‖CtL5/3 + ‖v]q+1 − v]q‖Ct,3/10B3/5−κ

5/3,∞

)
+M

1/2
L λ−θ/20

q , (6.9)

where for v]q part we used γ = 0, δ = 3/10, α = 1/3 − 2κ, β = 3/5 − κ − 11/20 − 1. Therefore in

order to deduce the first part of (6.1), we shall estimate the difference v]q+1 − v]q.

6.6. Estimate of the difference v]q+1−v]q in Ct,3/10B
3/5−κ
5/3,∞ . Terms in V ]q can be bounded similarly

as above. We only concentrate on

P[I, (v1
q + v2

q ) ≺](∇∆>R∆6f(q)z), IP[∇(v1
q + v2

q ) ≺ ∆6f(q)∆>Rz].

Similarly as before, most terms could be estimated as the estimates for v]q with vq replaced by
vq+1 − vq. We consider the terms containing ∆6f(q+1) −∆6f(q) and use

‖(∆6f(q+1) −∆6f(q))z‖CtC−11/20−κ . λ−θ/20
q L1/2.

Thus, using (5.18) the Ct,3/10B
3/5−κ
5/3,∞ -norm of these terms can be bounded by

λ−θ/20
q L2(‖v1

q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v2

q‖CtB1/5

5/3,∞
+ ‖v1

q‖C1/6−κ
t,1/6

L5/3 + ‖v2
q‖C1/10

t L5/3)

. λ−θ/20
q M

1/2
L .

Here we used Lemma B.4. Hence, we obtain

‖v]q+1 − v]q‖Ct,3/10B3/5−κ
5/3,∞

. λ−θ/20
q M

1/2
L + L2

(
‖v1
q+1 − v1

q‖CtB1/3−2κ

5/3,∞
+ ‖v2

q+1 − v2
q‖CtB1/5

5/3,∞
(6.10)

+ ‖v1
q+1 − v1

q‖C1/6−κ
t L5/3 + ‖v2

q+1 − v2
q‖C1/10

t L5/3 + ‖v]q+1 − v]q‖Ct,3/10B3/5−κ
5/3,∞

)
2−R/20.

Combining this bound with (6.9) we deduce a first part of (6.1) and (6.2) and it remains to estimate

the differences v1
q+1 − v1

q and v]q+1 − v]q in CtL
2.

6.7. Estimate of the difference v1
q+1 − v1

q and v]q+1 − v]q in CtL
2. By the Besov embedding

Lemma 2.1 it holds

‖v1
q+1 − v1

q‖CtL2 . ‖v1
q+1 − v1

q‖CtB1/3−2κ

5/3,∞
,

which in view of the first part of (6.1) implies the second part of (6.1). Moreover, by (5.4), the
Besov embedding Lemma 2.1, and paraproduct estimates Lemma 2.2 we have

‖(v1
q + v2

q ) ≺ I(∇∆>R(∆6f(q) −∆6f(q+1))z)‖CtB1/3−2κ

5/3,∞

. L(‖v1
q‖CtL5/3 + ‖v2

q‖CtL5/3)‖(∆6f(q) −∆6f(q+1))z‖CtC−2/3−κ
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. L3/2(‖v1
q‖CtL2 + ‖v2

q‖CtL5/3)λ−θ/6q ,

which due to B
1/3−2κ
5/3,∞ ⊂ L2 and (6.1) implies

‖v]q+1 − v]q‖CtL2

. ‖v1
q+1 − v1

q‖CtL2 + ‖v2
q+1 − v2

q‖CtL5/3 + L3/2(‖v1
q‖CtL2 + ‖v2

q‖CtL5/3)λ−θ/6q

. ‖v2
q+1 − v2

q‖CtB1/5

5/3,∞
+ ‖v2

q+1 − v2
q‖C1/10

t L5/3 +M
1/2
L λ−θ/20

q .

This gives the remaining estimate of (6.2).

6.8. Estimate of v1
q in Ct,3/8L

4. This norm may a priori blow up during the iteration. We also
estimate each term separately and apply the Schauder estimate Lemma B.2 which then gives an
additional factor L. We have

‖∆>R∆6f(q)(z + z )‖CtC1/5+κ + ‖∆>R∆6f(q)z ‖CtC1/5+κ . Lλ(7/10+2κ)θ
q .

Hence, by Lemma 2.2 and (5.18) we have

‖(v1
q + v2

q ) #≺ ∆>R∆6f(q)(z + z )‖CtB−1+κ
4,∞

+ ‖(v1
q + v2

q ) ≺ ∆>R∆6f(q)z ‖CtB−1+κ
4,∞

. ‖v1
q + v2

q‖CtB−6/5
4,∞

(
‖∆>R∆6f(q)(z + z )‖CtC1/5+κ + ‖∆>R∆6f(q)z ‖CtC1/5+κ

)
. Lλ(7/10+2κ)θ

q ‖v1
q + v2

q‖CtL5/3 ,

‖v1
q #� ∆>R∆6f(q)z‖Ct,1/6B−1+κ

4,∞

. ‖v1
q‖Ct,1/6B−1+κ

4,∞
‖∆>R∆6f(q)z‖CtL∞

. L1/2λ(1/2+2κ)θ
q ‖v1

q‖Ct,1/6B1/3−2κ

5/3,∞
,

and

‖v1
q #< ∆>Rz ‖Ct,1/6B−1+κ

4,∞
+ ‖v1

q < ∆>Rz ‖Ct,1/6B−1+κ
4,∞

. ‖v1
q #< ∆>Rz ‖Ct,1/6B1/3−3κ

5/3,∞
+ ‖v1

q < ∆>Rz ‖Ct,1/6B1/3−3κ

5/3,∞

. ‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
(‖z ‖CtC−κ + ‖z ‖CtC−κ)

. ‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
L.

Using Lemma B.2 and (5.19) we have

‖Idiv(v]q � ∆>Rz)‖Ct,3/10L4 . ‖Idiv(v]q � ∆>Rz)‖Ct,3/10Bκ4,∞
. L‖v]q � ∆>Rz‖Ct,3/10B−1+2κ

4,∞

. L‖v]q‖Ct,3/10B3/5−κ
5/3,∞

‖∆>Rz‖CtC−1/2−κ .

By commutator estimates Lemma 2.3 we have

‖([P, v1
q ≺]I(∇z)) � ∆>Rz‖Ct,1/6B1/3−4κ

5/3,∞
+ ‖com(v1

q ,PI(∇z),∆>Rz)‖Ct,1/6B1/3−4κ

5/3,∞

. ‖v1
q‖Ct,1/6B1/3−2κ

5/3,∞
‖z‖2CtC−1/2−κ . ‖v1

q‖Ct,1/6B1/3−2κ

5/3,∞
L.



GLOBAL EXISTENCE AND NON-UNIQUENESS FOR 3D NSE WITH SPACE-TIME WHITE NOISE 35

Finally, for the initial value part we apply Lemma 9 in [DV15] to obtain

‖et∆v0‖L4 . t−3/8‖v0‖L2 .

Combining the above estimates and applying the Schauder estimate Lemma B.2, the Besov embed-
ding Lemma 2.1 as well as (5.18) and (5.19) and the definition of ML we obtain (6.3).

Note that we only control the L4-norm instead of e.g. L∞ because the paraproduct

v1
q #� ∆6f(q)∆>Rz

only belongs to B
1/3−2κ
5/3,∞ .

7. The main iteration – proof of Proposition 5.1

7.1. Choice of parameters. In the sequel, additional parameters will be indispensable and their
value has to be carefully chosen in order to respect all the compatibility conditions appearing in the
estimations below. First, for a sufficiently small α ∈ (0, 1) to be chosen below, we let ` ∈ (0, 1) be a
small parameter satisfying

`4/5λ4
q 6 λ

−α
q+1, `−1 6 λ2α

q+1, (7.1)

In particular, we define

` := λ
− 3α

2
q+1 λ

−2
q . (7.2)

In the sequel, we use the following bounds

α > 244βb, 1 > 168βb2,
1

35
− 33α > 2βb, αb > 128 (7.3)

which can be obtained by choosing α small such that 1
35 − 33α > α, and choosing b ∈ N large

enough such that αb > 128 and finally choosing β small such that α > 244βb, 1 > 168βb2. Various
estimates of this form are needed for the final control the new stress R̊q+1. Hence, we shall choose
α small first and b large, then β small enough. The last free parameter is a which is power of 221

and satisfies the lower bounds given through

a > 4ML +K, L 6 aα/16.

Then by our condition we have

ML(1 + 3q) +K 6 λ1/42
q < `−2/183 < λα−2β

q+1 , σ−1
q < `−1/61. (7.4)

In the sequel, we increase a in order to absorb various implicit and universal constants.

We may freely increase the value of a provided we make β smaller at the same time.

7.2. Mollification. We intend to replace v2
q by a mollified velocity field v`. To this end, we extend

z(t) = z(0), z (t) = z (0) = 0, z (t) = 0,

I(∇z)(t) = 0, viq(t) = viq(0), R̊q(t) = R̊q(0) for t < 0.

As v2
q equals to zero near zero, ∂tv

2
q (0) = 0, which implies by our extension that the equation holds

also for t < 0. Let {φε}ε>0 be a family of standard mollifiers on R3, and let {ϕε}ε>0 be a family of

standard mollifiers with support on R+. We define a mollification of vq, R̊q in space and time by
convolution as follows

v` = (v2
q ∗x φ`) ∗t ϕ`, R̊` = (R̊q ∗x φ`) ∗t ϕ`,
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where φ` = 1
`3φ( ·` ) and ϕ` = 1

`ϕ( ·` ). Since the mollifier ϕ` is supported on R+, it is easy to see that

z` is (Ft)t>0-adapted and so are v` and R̊`. Then using the equation for v2
q we obtain that (v`, R̊`)

satisfies
∂tv` −∆v` + divN +∇p` = div(R̊` +Rcom)

divv` = 0,
(7.5)

where N is the trace-free part of the following matrix

N = (v1
q + v2

q )⊗ (v1
q + v2

q ) + V 2
q + V 2,∗

q

and
Rcom = N −N ∗x φ` ∗t ϕ`.

By using (5.7) (5.10) and (7.2) we know for t ∈ [0, TL]

‖v2
q − v`‖C1/10

t L5/3 + ‖v2
q − v`‖CtW 1/5,5/3 . `4/5‖v2

q‖C1
t,x
6 `4/5λ4

qM
1/2
L (7.6)

6M1/2
L λ−αq+1 6

1

4
M

1/2
L δ

1/2
q+1a

−α/2,

‖v2
q − v`‖CtL2 . `‖v2

q‖C1
t,x
6 `λ4

qM
1/2
L 6M1/2

L λ−αq+1 6
1

4
M

1/2
L δ

1/2
q+1, (7.7)

and for p ∈ [1,∞]

‖v2
q − v`‖CtW 2/3,p . `1/3‖v2

q‖C1
t,x
6 `1/3λ4

qM
1/2
L 6M1/2

L λ
−15α/32
q+1 6

1

4
M

1/2
L δ

1/2
q+1a

−α/2, (7.8)

where we used the fact that αb > 128 and α > 3β and we chose a large enough in order to absorb
the implicit constant. In addition,

‖v`‖CNt,x . `
−N+1‖vq‖C1

t,x
6 `−N+1λ4

qM
1/2
L .M1/2

L `−Nλ−αq+1 (7.9)

holds for t ∈ [0, TL] and it holds for t ∈ (
σq
2 ∧ TL, TL]

‖v`(t)‖L2 6 ‖v2
q‖CtL2 .M0(M

1/2
L +K1/2) + 3M0M

1/2
L (1 + 3q)1/2 (7.10)

with some universal implicit constant.

7.3. Construction of v2
q+1. Let us proceed with the construction of the perturbation wq+1, which

then defines the next iteration by v2
q+1 := v` + wq+1. To this end, we make use of the intermittent

jets [BV19a, Section 7.4], which we recall in Appendix A. In particular, the building blocks W(ξ) =
Wξ,r⊥,r‖,λ,µ for ξ ∈ Λ are defined in (A.3) and the set Λ is introduced in Lemma A.1. The necessary

estimates are collected in (A.7). For the intermittent jets we choose the following parameters

λ = λq+1, r‖ = λ
−4/7
q+1 , r⊥ = r

−1/4
‖ λ−1

q+1 = λ
−6/7
q+1 , µ = λq+1r‖r

−1
⊥ = λ

9/7
q+1. (7.11)

Since a is power of 221, λq+1r⊥ = a(bq+1)/7 ∈ N.

Now we follow [HZZ23, Section 5.2] and introduce ρ as follows

ρ := 2

√
`2 + |R̊`|2 +

γq+1

(2π)3
,

which implies for p > 1

‖ρ(t)‖Lp 6 2`(2π)3/p + 2‖R̊`(t)‖Lp + γq+1. (7.12)

In view of (5.11) which holds on (2σq ∧ TL, TL] and since suppϕ` ⊂ [0, `], we obtain for t ∈ (4σq ∧
TL, TL]

‖ρ‖C0
[4σq∧TL,t],x

. `−4δq+1ML + γq+1, (7.13)
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where we also used the embedding W 4,1 ⊂ L∞. Then, we deduce similarly as [HZZ23, (3.25)] for
N > 1 and t ∈ (4σq ∧ TL, TL]

‖ρ‖CN
[4σq∧TL,t],x

. `−4−NMLδq+1 + `−N+1(`−5MLδq+1)N + γq+1 . `
2−7Nδq+1ML + γq+1.

(7.14)
For a general t ∈ [0, TL], we have by (5.12)

‖ρ‖C0
t,x
. `−4ML(1 + 3q) + γq+1, (7.15)

and for N > 1
‖ρ‖CNt,x . `

2−7NML(1 + 3q) + γq+1, (7.16)

where we used ML(1 + 3q) 6 `−1.

Next, we define the amplitude functions

a(ξ)(ω, t, x) := aξ,q+1(ω, t, x) := ρ(ω, t, x)1/2γξ

(
Id− R̊`(ω, t, x)

ρ(ω, t, x)

)
(2π)−3/4, (7.17)

where γξ is introduced in Lemma A.1. Since ρ and R̊` are (Ft)t>0-adapted, we know that also a(ξ)

is (Ft)t>0-adapted. By (A.5) we have

(2π)−
3
2

∑
ξ∈Λ

a2
(ξ)

∫
T3

W(ξ) ⊗W(ξ)dx = ρId− R̊`, (7.18)

By using (7.12) for t ∈ (4σq ∧ TL, TL]

‖a(ξ)(t)‖L2 6 ‖ρ(t)‖1/2L1 ‖γξ‖C0(B1/2(Id))

6
M

8|Λ|(1 + 8π3)1/2

(
2(2π)3`+ 2δq+1ML + γq+1

)1/2
6

M

4|Λ|
(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1),

(7.19)

and for t ∈ [0, TL]

‖a(ξ)(t)‖CtL2 6
M

4|Λ|
(M

1/2
L (1 + 3q)1/2 + γ

1/2
q+1),

where M denotes the universal constant from Lemma A.1. From (7.13), (7.14) and similarly to
[HZZ23, (3.30)] we deduce for t ∈ (4σq ∧ TL, TL]

‖ρ1/2‖C0
[4σq∧TL,t],x

. `−2δ
1/2
q+1M

1/2
L + γ

1/2
q+1,

and for m = 1, . . . , N using K 6 `−1

‖ρ1/2‖Cm
[4σq∧TL,t],x

. `1−7mδ
1/2
q+1M

1/2
L + `1/2−m(γq+1 + `−5δq+1ML)m 6 `1−7m(δ

1/2
q+1M

1/2
L + γ

1/2
q+1).

This implies for N ∈ N0 as in [HZZ23, (3.34)]

‖a(ξ)‖CN
[4σq∧TL,t],x

. `−8−7N (δ
1/2
q+1M

1/2
L + γ

1/2
q+1). (7.20)

For a general t ∈ [0, TL] we have for N ∈ N0

‖a(ξ)‖CNt,x . `
−8−7N (M

1/2
L (1 + 3q)1/2 + γ

1/2
q+1), (7.21)

where we used ML(1 + 3q) +K 6 `−1.
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Let us introduce a smooth cut-off function

χ(t) =


0, t 6 σq

2 ,

∈ (0, 1), t ∈ (
σq
2 , σq),

1, t > σq.

Note that ‖χ′‖C0
t
6 2q+1 which has to be taken into account in the estimates of the C

1/10
t L5/3 and

C1
t,x-norms in (7.39)- (7.45) below.

With these preparations in hand, we define the principal part w
(p)
q+1 of the perturbation wq+1 as

w
(p)
q+1 :=

∑
ξ∈Λ

a(ξ)W(ξ). (7.22)

Since the coefficients a(ξ) are (Ft)t>0-adapted and W(ξ) is a deterministic function we deduce that

w
(p)
q+1 is also (Ft)t>0-adapted. Moreover, according to (7.18) and (A.4) it follows that

w
(p)
q+1 ⊗ w

(p)
q+1 + R̊` =

∑
ξ∈Λ

a2
(ξ)P 6=0(W(ξ) ⊗W(ξ)) + ρId, (7.23)

where we use the notation P 6=0f := f −Ff(0) = f − (2π)−3/2
∫
T3 fdx.

We also define the incompressibility corrector by

w
(c)
q+1 :=

∑
ξ∈Λ

curl(∇a(ξ) × V(ξ)) +∇a(ξ) × curlV(ξ) + a(ξ)W
(c)
(ξ) , (7.24)

with W
(c)
(ξ) and V(ξ) being given in (A.6). Since a(ξ) is (Ft)t>0-adapted and W(ξ),W

(c)
(ξ) and V(ξ) are

deterministic functions we know that w
(c)
q+1 is also (Ft)t>0-adapted. By a direct computation we

deduce that

w
(p)
q+1 + w

(c)
q+1 =

∑
ξ∈Λ

curl curl(a(ξ)V(ξ)),

hence

div(w
(p)
q+1 + w

(c)
q+1) = 0.

We also introduce a temporal corrector

w
(t)
q+1 := − 1

µ

∑
ξ∈Λ

PP 6=0

(
a2

(ξ)φ
2
(ξ)ψ

2
(ξ)ξ
)
, (7.25)

where P is the Helmholtz projection. Similarly to above w
(t)
q+1 is (Ft)t>0-adapted and by similar

computation as [BV19a, (7.38)] we obtain

∂tw
(t)
q+1 +

∑
ξ∈Λ

P 6=0

(
a2

(ξ)div(W(ξ) ⊗W(ξ))
)

= − 1

µ

∑
ξ∈Λ

PP 6=0∂t

(
a2

(ξ)φ
2
(ξ)ψ

2
(ξ)ξ
)

+
1

µ

∑
ξ∈Λ

P6=0

(
a2

(ξ)∂t(φ
2
(ξ)ψ

2
(ξ)ξ)

)
= (Id− P)

1

µ

∑
ξ∈Λ

P6=0∂t

(
a2

(ξ)φ
2
(ξ)ψ

2
(ξ)ξ
)
− 1

µ

∑
ξ∈Λ

P6=0

(
∂ta

2
(ξ)(φ

2
(ξ)ψ

2
(ξ)ξ)

)
.

(7.26)

Note that the first term on the right hand side can be viewed as a pressure term.
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We define the truncated perturbations w̃
(p)
q+1, w̃

(c)
q+1, w̃

(t)
q+1 as follows

w̃
(p)
q+1 := w

(p)
q+1χ, w̃

(c)
q+1 := w

(c)
q+1χ, w̃

(t)
q+1 := w

(t)
q+1χ

2.

Define wq+1 := w̃
(p)
q+1 + w̃

(p)
q+1 + w̃

(t)
q+1 and

v2
q+1 = v` + wq+1 = v` + w̃

(p)
q+1 + w̃

(c)
q+1 + w̃

(t)
q+1.

We note that by construction v2
q+1 is (Ft)t>0 adapted.

7.4. Verification of the inductive estimates for v2
q+1. By (7.19) and (7.20) and similar argu-

ment as [HZZ23] we obtain for t ∈ (4σq ∧ TL, TL] and some universal constant M0 > 1

‖w̃(p)
q+1(t)‖L2 .

∑
ξ∈Λ

1

4|Λ|
M(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1)‖W(ξ)‖CtL2 6

M0

2
(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1), (7.27)

where we used 150α < 1
7 and for t ∈ (

σq
2 ∧ TL, 4σq ∧ TL]

‖w̃(p)
q+1(t)‖L2 6

M0

2
((ML(1 + 3q))1/2 + γ

1/2
q+1). (7.28)

Similarly as in [HZZ23, (3.43)-(3.46)], we apply (A.7) and (7.20) for general Lp-norms to deduce
for t ∈ (4σq ∧ TL, TL], p ∈ (1,∞)

‖w̃(p)
q+1(t)‖Lp . `−8(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1)r

2/p−1
⊥ r

1/p−1/2
‖ , (7.29)

‖w̃(c)
q+1(t)‖Lp . `−22(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1)r

2/p
⊥ r

1/p−3/2
‖ , (7.30)

and

‖w̃(t)
q+1(t)‖Lp . `−16(MLδq+1 + γq+1)r

2/p−1
⊥ r

1/p−2
‖ λ−1

q+1, (7.31)

‖w̃(c)
q+1(t)‖Lp + ‖w̃(t)

q+1(t)‖Lp . `−8(M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)r

2/p−1
⊥ r

1/p−1/2
‖ . (7.32)

For a general t ∈ (
σq
2 ∧ TL, 4σq ∧ TL] we have

‖w̃(p)
q+1(t)‖Lp . `−8((ML(1 + 3q))1/2 + γ

1/2
q+1)r

2/p−1
⊥ r

1/p−1/2
‖ , (7.33)

‖w̃(c)
q+1(t)‖Lp . `−22((ML(1 + 3q))1/2 + γ

1/2
q+1)r

2/p
⊥ r

1/p−3/2
‖ , (7.34)

and

‖w̃(t)
q+1(t)‖Lp . `−16((ML(1 + 3q)) + γq+1)r

2/p−1
⊥ r

1/p−2
‖ λ−1

q+1, (7.35)

‖w̃(c)
q+1(t)‖Lp + ‖w̃(t)

q+1(t)‖Lp . `−8((ML(1 + 3q))1/2 + γ
1/2
q+1)r

2/p−1
⊥ r

1/p−1/2
‖ . (7.36)

Combining (7.27), (7.30) and (7.31) we obtain for t ∈ (4σq ∧ TL, TL]

‖wq+1(t)‖L2 6 (M
1/2
L δ

1/2
q+1 + γ

1/2
q+1)

(
M0

2
+ Cλ

44α−2/7
q+1 + C(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1)λ

32α−1/7
q+1

)
6

3

4
M0(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1),

(7.37)

and for t ∈ (
σq
2 ∧ TL, 4σq ∧ TL]

‖wq+1(t)‖L2 6
3

4
M0((ML(1 + 3q))1/2 + γ

1/2
q+1), (7.38)

where we used ML(1 + 3q) +K < `−1 and the condition on α.
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With these bounds, we have all in hand to complete the proof of Proposition 5.1. We split the
details into several subsections.

7.4.1. Proof of (5.13). First, (7.37) together with (7.7) yields for t ∈ (4σq ∧ TL, TL]

‖v2
q+1(t)− v2

q (t)‖L2 6 ‖wq+1(t)‖L2 + ‖v`(t)− v2
q (t)‖L2 6M0(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1).

For t ∈ ( 1
2σq ∧ TL, 4σq ∧ TL] we use (7.38), (7.7) to obtain

‖v2
q+1(t)− v2

q (t)‖L2 6 ‖wq+1(t)‖L2 + ‖v`(t)− v2
q (t)‖L2 6M0((ML(1 + 3q))1/2 + γ

1/2
q+1).

For t ∈ [0, 1
2σq ∧ TL] it holds χ(t) = 0 as well as v2

q (t) = 0 by (5.9) implying

‖v2
q+1 − v2

q‖CtL2 = ‖v` − v2
q‖CtL2 = 0.

Hence (5.13) follows.

7.4.2. Proof that (5.13) implies (5.9) on the level q + 1. From (5.13) we find for t ∈ [0, 1
2σq ∧ TL]

‖v2
q+1‖CtL2 6

q∑
r=0

‖v2
r+1 − v2

r‖CtL2 = 0,

proving the second bound in (5.9) on the level q+ 1. For the first bound in (5.9) on the level q+ 1,
we obtain in view of (5.13) for t ∈ ( 1

2σq ∧ TL, TL]

‖v2
q+1(t)‖L2 6

∑
06r6q

‖v2
r+1(t)− v2

r(t)‖L2

6M0

M1/2
L

∑
06r6q

δ
1/2
r+1 +

∑
06r6q

(ML(1 + 3r))1/21t∈(σr2 ∧TL,4σr∧TL] +
∑

06r6q

γ
1/2
r+1


6M0

M1/2
L

∑
06r6q

δ
1/2
r+1 + 3(ML(1 + 3q))1/2 +

∑
06r6q

γ
1/2
r+1

 ,

where we used the fact that by the definition of σr = 2−r each t ∈ [0, TL] only belongs to three
intervals (σr2 ∧ TL, 4σr ∧ TL]. Hence (5.9) follows.

7.4.3. Proof of (5.16) and the second inequality in (5.7) on the level q + 1. In this section, we see
in particular how the definition of intermittent jets determines the integrability 5/3 which we use
throughout the paper. It holds by (7.21), (A.7) and the choice of parameters in (7.3)

‖w̃(p)
q+1‖C1/10

t L5/3 + ‖w̃(p)
q+1‖CtW 1/5,5/3

.
∑
ξ∈Λ

‖a(ξ)‖C1
t,x

(‖W(ξ)‖C1/10
t L5/3 + ‖W(ξ)‖CtW 1/5,5/3)2q+1

. (M
1/2
L (1 + 3q)1/2 + γ

1/2
q+1)`−15r

1/5
⊥ r

1/10
‖ ((r⊥λq+1µ/r‖)

1/10 + λ
1/5
q+1)2q+1

.M1/2
L λ

32α−1/35
q+1 ,

(7.39)
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‖w̃(c)
q+1‖C1/10

t L5/3 + ‖w̃(c)
q+1‖CtW 1/5,5/3

.
∑
ξ∈Λ

2q+1
(
‖a(ξ)‖C1

t,x
(‖W (c)

(ξ) ‖C1/10
t L5/3 + ‖W (c)

(ξ) ‖CtW 1/5,5/3)

+ ‖a(ξ)‖C3
t,x

(‖V(ξ)‖C1/10
t W 1,5/3 + ‖V(ξ)‖CtW 6/5,5/3)

)
. (M

1/2
L (1 + 3q)1/2 + γ

1/2
q+1)`−29r

1/5
⊥ r

1/10
‖

(
r⊥r

−1
‖ + λ−1

q+1

)(
(r⊥λq+1µ/r‖)

1/10 + λ
1/5
q+1

)
2q+1

.M1/2
L `−30r

6/5
⊥ r

−9/10
‖

(
(r⊥λq+1µ/r‖)

1/10 + λ
1/5
q+1

)
.M1/2

L λ
60α−11/35
q+1 ,

(7.40)

‖w̃(t)
q+1‖C1/10

t L5/3 + ‖w̃(t)
q+1‖CtW 1/5,5/3

6
1

µ
2q+1

∑
ξ∈Λ

(
‖a(ξ)‖C0

t,x
‖a(ξ)‖C1

t,x
‖φ(ξ)‖2L10/3‖ψ(ξ)‖2CtL10/3

+ ‖a(ξ)‖2C0
t,x
‖φ(ξ)‖L10/3‖φ(ξ)‖W 1/5,10/3‖ψ(ξ)‖2CtL10/3

+ ‖a(ξ)‖2C0
t,x
‖φ(ξ)‖2L10/3‖ψ(ξ)‖CtW 1/5,10/3‖ψ(ξ)‖CtL10/3

+ ‖a(ξ)‖2C0
t,x
‖φ(ξ)‖2L10/3‖ψ(ξ)‖C1/10

t L10/3‖ψ(ξ)‖CtL10/3

)
. (ML(1 + 3q) + γq+1)`−23r

1/5
⊥ r

−7/5
‖ (µ−1r−1

⊥ r‖)

×
(

(r⊥λq+1µ/r‖)
1/10 + λ

1/5
q+1 + (λq+1r⊥r

−1
‖ )1/5

)
2q+1

.MLλ
48α−6/35
q+1 ,

(7.41)

and

‖wq+1‖C1/10
t L5/3 + ‖wq+1‖CtW 1/5,5/3 .M

1/2
L λ

32α−1/35
q+1 6

3

4
M

1/2
L δq+1a

−α/2. (7.42)

In the last inequality above we used (7.3). Hence, (5.16) follows from (7.6). The second inequality
in (5.7) on the level q + 1 follows as well.

7.4.4. Proof of (5.10) on the level q+ 1. Using (7.21) and similar as [HZZ23, Section 3.1.4] we find
for t ∈ [0, TL]

‖w̃(p)
q+1‖C1

t,x
. `−15((ML(1 + 3q))1/2 + γ

1/2
q+1)r−1

⊥ r
−1/2
‖ λ2

q+1, (7.43)

‖w̃(c)
q+1‖C1

t,x
. `−29((ML(1 + 3q))1/2 + γ

1/2
q+1)r

−3/2
‖ λ2

q+1, (7.44)

and
‖w̃(t)

q+1‖C1
t,x
. `−24(ML(1 + 3q) + γq+1)r−1

⊥ r−2
‖ λ1+α

q+1 . (7.45)

In particular, we see that the fact that the time derivative of χ behaves like 2σ−1
q . `−1 does not

pose any problems as the C0
t,x-norms of w̃

(p)
q+1, w̃

(c)
q+1 and w̃

(t)
q+1 always contain smaller powers of `−1.

Combining (7.9) and (7.43), (7.44), (7.45) with (7.1) we obtain for t ∈ [0, TL]

‖v2
q+1‖C1

t,x
6 ‖v`‖C1

t,x
+ ‖wq+1‖C1

t,x

6 (ML(1 + 3q) + γq+1)1/2
(
λαq+1 + Cλ

30α+22/7
q+1 + Cλ

58α+20/7
q+1 + Cλ50α+3

q+1

)
6M1/2

L λ4
q+1,

where we used ML(1 + 3q) + γq+1 6 `−1. This implies (5.10).
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7.4.5. Proof of (5.15) and the first inequality in (5.7) on the level q + 1. Similarly, we derive the
following estimates: for t ∈ [0, TL] it follows from (7.1), (7.21) and (A.7) that

‖w̃(p)
q+1 + w̃

(c)
q+1‖CtW 1,p 6

∑
ξ∈Λ

‖curl curl(a(ξ)V(ξ))‖CtW 1,p

.
∑
ξ∈Λ

‖a(ξ)‖C3
t,x
‖V(ξ)‖CtW 3,p

. `−29((ML(1 + 3q))1/2 + γ
1/2
q+1)r

2/p−1
⊥ r

1/p−1/2
‖ λq+1,

(7.46)

and

‖w̃(t)
q+1‖CtW 1,p 6

1

µ

∑
ξ∈Λ

(
‖a(ξ)‖C0

t,x
‖a(ξ)‖C1

t,x
‖φ(ξ)‖2L2p‖ψ(ξ)‖2CtL2p

+ ‖a(ξ)‖2C0
t,x
‖φ(ξ)‖L2p‖∇φ(ξ)‖L2p‖ψ(ξ)‖2CtL2p

+ ‖a(ξ)‖2C0
t,x
‖φ(ξ)‖2L2p‖∇ψ(ξ)‖CtL2p‖ψ(ξ)‖CtL2p

)
. `−23(ML(1 + 3q) + γq+1)r

2/p−2
⊥ r

1/p−1
‖ λ

−2/7
q+1 .

(7.47)

We also have for p = 32
32−7α , r

2/p−2
⊥ r

1/p−1
‖ 6 λαq+1 and

‖wq+1‖CtW 1,p . (ML(1 + 3q) + γq+1)`−29λ
α−1/7
q+1 .M1/2

L λ
60α−1/7
q+1 6

3

4
M

1/2
L δ

1/2
q+1a

−α/2, (7.48)

where we used the condition for α, β and (7.3) in the second step, which combined with (7.8) implies
(5.15) and hence the first inequality of (5.7).

7.5. Proof of (5.17). We control the energy similarly as in [HZZ23, Section 3.1.5]. By definition,
we find∣∣‖v2

q+1‖2L2 − ‖v2
q‖2L2 − 3γq+1

∣∣ 6 ∣∣‖w̃(p)
q+1‖2L2 − 3γq+1

∣∣+ ‖w̃(c)
q+1 + w̃

(t)
q+1‖2L2

+ 2‖v`(w̃(c)
q+1 + w̃

(t)
q+1)‖L1 + 2‖v`w̃(p)

q+1‖L1 + 2‖w̃(p)
q+1(w

(c)
q+1 + w̃

(t)
q+1)‖L1 + |‖v`‖2L2 − ‖v2

q‖2L2 |.
(7.49)

Let us begin with the bound of the first term on the right hand side of (7.49). We use (7.23) and

the fact that R̊` is traceless to deduce for t ∈ (4σq ∧ TL, TL]

|w̃(p)
q+1|2 −

3γq+1

(2π)3
= 6

√
`2 + |R̊`|2 +

∑
ξ∈Λ

a2
(ξ)P6=0|W(ξ)|2,

hence

|‖w̃(p)
q+1‖2L2 − 3γq+1| 6 6 · (2π)3`+ 6‖R̊`‖L1 +

∑
ξ∈Λ

∣∣∣ ∫ a2
(ξ)P 6=0|W(ξ)|2

∣∣∣. (7.50)

Here we estimate each term separately. Using (7.2) we find

6 · (2π)3` 6 6 · (2π)3λ
−3α/2
q+1 6

1

48
λ−2β
q+1ML 6

1

48
δq+1ML,

which requires 2β < 3α/2 and choosing a large to absorb the constant. Using (5.11) on R̊q and
suppϕ` ⊂ [0, `] we know for t ∈ (4σq ∧ TL, TL]

6‖R̊`(t)‖L1 6 6δq+1ML.
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For the last term in (7.50) we use similar argument as in [HZZ23, Section 3.1.5] to have since ML > 1

∑
ξ∈Λ

∣∣∣ ∫ a2
(ξ)P 6=0|W(ξ)|2

∣∣∣ . λ158α−1/7
q+1 (ML(1 + 3q) +K) . λ160α−1/7

q+1 6
1

24
λ2β

1 λ−2β
q+1ML =

1

24
δq+1ML,

where we used ML(1+3q)+K 6 `−1 6 λ2α
q+1 as well as 160α+2β < 1/7. This completes the bound

of (7.50).

Going back to (7.49), we control the remaining terms as follows. Using the estimates (7.30),
(7.31) and (7.1) we have for t ∈ (4σq ∧ TL, TL]

‖w̃(c)
q+1 + w̃

(t)
q+1‖2L2 . (ML + γq+1)λ

88α−4/7
q+1 + (M2

L + γ2
q+1)λ

64α−2/7
q+1 6

1

48
λ−2β
q+1ML 6

δq+1

48
ML,

where we use ML + γq+1 6 `−1 to control ML + γq+1. Similarly we use (7.10) together with (7.27)
to have for t ∈ (4σq ∧ TL, TL]

2‖v`(w̃(c)
q+1 + w̃

(t)
q+1)‖L1 + 2‖w̃(p)

q+1(w̃
(c)
q+1 + w̃

(t)
q+1)‖L1 .M0((ML(1 + 3q))1/2 +K1/2)‖w̃(c)

q+1 + w̃
(t)
q+1‖L2

.M0((ML(1 + 3q))1/2 +K1/2)
(

(M
1/2
L + γ

1/2
q+1)λ

44α−2/7
q+1 + (ML + γq+1)λ

32α−1/7
q+1

)
6

1

48
λ−2β
q+1ML 6

δq+1

48
ML,

where we used ML(1 + 3q) +K 6 `−1 and we possibly increased a to absorb M0. We use (7.1) and
(7.29) and ‖v`‖C1

t,x
6 ‖v2

q‖C1
t,x

to have for every κ > 0

2‖v`w̃(p)
q+1‖L1 . ‖v`‖L∞‖w̃(p)

q+1‖L1 .M1/2
L λ4

q`
−8(M

1/2
L δ

1/2
q+1 + γ

1/2
q+1)r1−κ

⊥ r
1
2 (1−κ)

‖

. (ML +K)λ
17α− 8

7 (1−κ)
q+1 6

1

96
λ−2β
q+1ML 6

δq+1

96
ML.

For the last terms by (7.10) we have

|‖v`‖2L2 − ‖v2
q‖2L2 | 6 ‖v` − v2

q‖L2(‖v`‖L2 + ‖v2
q‖L2)

. `λ4
qM

1/2
L M0(ML(1 + 3q) +K)1/2

6
1

96
λ−2β
q+1ML 6

δq+1

96
ML.

which requires ML(1+3q)+K < λα−2β
q+1 as in (7.4) and a large enough to absorb the extra constant.

Combining the above estimate (5.17) follows.
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7.6. Definition of the Reynolds stress R̊q+1. Considering the equation for the difference v2
q+1−

v`, we obtain the formula for the new Reynolds stress

divR̊q+1 −∇p2
q+1

= −∆wq+1 + ∂t(w̃
(p)
q+1 + w̃

(c)
q+1) + div((v` + v1

q+1)⊗ wq+1 + wq+1 ⊗ (v` + v1
q+1))︸ ︷︷ ︸

div(Rlin)+∇plin

+ div
(

(w̃
(c)
q+1 + w̃

(t)
q+1)⊗ wq+1 + w̃

(p)
q+1 ⊗ (w̃

(c)
q+1 + w̃

(t)
q+1)

)
︸ ︷︷ ︸

div(Rcor)+∇pcor

+ div(w̃
(p)
q+1 ⊗ w̃

(p)
q+1 + R̊`) + ∂tw̃

(t)
q+1︸ ︷︷ ︸

div(Rosc)+∇posc

+ div((V 2
q+1 − V 2

q ) + (V 2,∗
q+1 − V 2,∗

q ))︸ ︷︷ ︸
divRcom1+∇pcom1

+ div
(
(v` + v1

q+1)⊗ (v` + v1
q+1)− (v1

q + v2
q )⊗ (v1

q + v2
q )
)︸ ︷︷ ︸

div(Rcom2)+∇pcom2

+ div(Rcom)−∇p`,

(7.51)

where, using the notation vq = v1
q + v2

q ,

V 2
q+1 − V 2

q

= (v2
q+1 − v2

q ) #< ∆>Rz + (vq+1 − vq)⊗∆6Rz

+ (v2
q+1 − v2

q ) #� ∆>Rz + (vq+1 − vq) ( #≺ + #�) ∆6Rz + (v2
q+1 − v2

q ) � z

− P[(vq+1 − vq) ≺ ∆6RI∇z] � z − ([P, (v2
q+1 − v2

q ) ≺]I∇z) � z

− ([P, (v1
q+1 − v1

q ) ≺]I∇z) � ∆6Rz

− com(v1
q+1 − v1

q ,PI∇z,∆6Rz)− com(v2
q+1 − v2

q ,PI∇z, z)− (v2
q+1 − v2

q ) < ∆>Rz

− (vq+1 − vq) ·∆6Rz + (v]q+1 − v]q) � ∆6Rz.

Applying the inverse divergence operator R we define

Rlin := −R∆wq+1 +R∂t(w̃(p)
q+1 + w̃

(c)
q+1) + (v` + v1

q+1) ⊗̊wq+1 + wq+1 ⊗̊ (v` + v1
q+1),

Rcor := (w̃
(c)
q+1 + w̃

(t)
q+1) ⊗̊wq+1 + w̃

(p)
q+1 ⊗̊ (w̃

(c)
q+1 + w̃

(t)
q+1),

Rcom1 is the trace-free part of the matrix

(V 2
q+1 − V 2

q ) + (V 2,∗
q+1 − V 2,∗

q ),

and

Rcom2 := (v` + v1
q+1) ⊗̊ (v` + v1

q+1)− (v2
q + v1

q ) ⊗̊ (v2
q + v1

q ).
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Similarly as in [HZZ23], using (7.23), (7.26), the oscillation error is given by

Rosc := χ2
∑
ξ∈Λ

R
(
∇a2

(ξ)P6=0(W(ξ) ⊗W(ξ))
)
− χ2

µ

∑
ξ∈Λ

R
(
∂ta

2
(ξ)(φ

2
(ξ)ψ

2
(ξ)ξ)

)
+Rw(t)

q+1∂tχ
2 + (1− χ2)R̊`

=: R(x)
osc +R(t)

osc +R
(1)
cut.

Finally we define the Reynolds stress on the level q + 1 by

R̊q+1 := Rlin +Rcor +Rosc +Rcom +Rcom1 +Rcom2.

We observe that by construction, R̊q+1 is (Ft)t>0-adapted.

7.7. Verification of the inductive estimates for R̊q+1. We shall establish the three bounds in
(5.14). As the oscillations wq+1 were fully added for t ∈ (σq∧TL, TL], this is the good interval where

the desired smallness of R̊q+1 is achieved. In the middle interval t ∈ (
σq
2 ∧TL, σq∧TL], there is a part

of R̊q+1 involving the cut-off 1− χ2, which can only be bounded by the previous stress R̊q. In the
time interval t ∈ [0,

σq
2 ∧ TL], there are no oscillations which could decrease the Reynolds stress and

hence we can only prove a polynomial blow-up. Nevertheless, this eventually leads to convergence
in Lp in time as this bad time interval is shrinking exponentially, cf. the proof of Theorem 5.4.
Here, it is essential that we do not use regularity of v1

q and v]q to avoid the blow-up in time.

Case I. Let t ∈ (σq∧TL, TL]. If TL 6 σq then there is nothing to estimate here, hence we assume
that σq < TL and t ∈ (σq, TL]. In this regime, it holds χ = 1 and so the truncation does not play

any role in the estimates. We estimate each term in the definition of R̊q+1 separately. We choose

p = 32
32−7α > 1 so that in particular that r

2/p−2
⊥ r

1/p−1
‖ 6 λαq+1. For the linear error we apply (5.10)

to obtain

‖Rlin(t)‖L1 . ‖R∆wq+1‖Lp + ‖R∂t(w(p)
q+1 + w

(c)
q+1)‖Lp + ‖(v` + v1

q+1)⊗̊wq+1 + wq+1⊗̊(v` + v1
q+1)‖L1

. ‖wq+1‖W 1,p +
∑
ξ∈Λ

‖∂tcurl(a(ξ)V(ξ))‖Lp + (M
1/2
L λ4

q + ‖v1
q+1(t)‖L4)‖wq+1‖L4/3 ,

where by (A.7) and (7.21)∑
ξ∈Λ

‖∂tcurl(a(ξ)V(ξ))‖CtLp 6
∑
ξ∈Λ

(
‖a(ξ)‖CtC1

x
‖∂tV(ξ)‖CtW 1,p + ‖∂ta(ξ)‖CtC1

x
‖V(ξ)‖CtW 1,p

)
. (ML(1 + 3q) + γq+1)1/2`−15r

2/p
⊥ r

1/p−3/2
‖ µ+ (ML(1 + 3q) + γq+1)1/2`−22r

2/p−1
⊥ r

1/p−1/2
‖ λ−1

q+1.

Remark 7.1. For the product v1
q+1 ⊗ wq+1 we used the L4-norm of v1

q instead of L2 in order to

lower the required integrability of wq+1. Indeed, wq+1 is not small in L2 for t ∈ (σq, TL], cf. (7.37),
(7.38). On the other hand, as a consequence of (6.3), increasing the integrability of v1

q+1 leads to a

blow-up in two respects: there is a blow up as t → 0 but also the time-weighted norm in Ct,3/8L
4

has only a diverging bound as q →∞. We show below that both these divergencies are compensated
by the smallness of wq+1 in L4/3 and by using the fact that t > σq.
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In view of (7.48), (7.33), (7.36) as well as (6.3) applied on the level q+1, we deduce for t ∈ (σq, TL]

‖Rlin(t)‖Lp .M1/2
L λ

60α−1/7
q+1 + (ML(1 + 3q) + γq+1)1/2

(
`−22λ

α−1/7
q+1

+M
1/2
L `−8r

1/2
⊥ r

1/4
‖ (λ4

q + σ−3/8
q λ

1/3+κ
q+1 )

)
.M1/2

L λ
60α−1/7
q+1 + (ML(1 + 3q) + γq+1)1/2M

1/2
L λ

16α−5/21+κ
q+1 σ−3/8

q

6
MLδq+2

5
.

Here, we have taken a sufficiently large and β sufficiently small.

The estimates of Rcor and Rosc are the same as the corresponding bounds in [HZZ23]. The
strongest requirement comes from the bound of Rcor, namely, we have

‖Rcor(t)‖Lp . ((ML(1 + 3q))1/2 + γ
1/2
q+1)3λ

49α−1/7
q+1 6 `−3/2λ

49α−1/7
q+1 6

ML

5
λ−2βb
q+1 6

ML

5
δq+2,

which is satisfied provided λ
52α−1/7
q+1 6 ML

5 λ−2βb
q+1 .

We use standard mollification estimates in order to bound Rcom. More precisely, Rcom has to
vanish sufficiently fast in order to fulfill the first bound in (5.14). Hence, we need to use regularity
of each term in N which then by mollification estimates leads to the desired decay. To this end,
there is a number of terms which require spatial regularity of v1

q as well as v]q. But these norms
blow up as t → 0, cf. Proposition 5.2. Thus, we make use of the fact that t > σq and that the

corresponding blow-up of order σ
−1/6
q and σ

−3/10
q , respectively, can be absorbed by the smallness of

` due to our choice of the parameters in (7.4).

Let us now consider each term in Rcom separately. For I1 := (v1
q+v2

q )⊗∆6Rz −(v1
q+v2

q )·∆6Rz
we use Proposition 5.2 and (5.7) to have

‖I1 − I1 ∗x φ` ∗t ϕ`‖L1

. `1/10(‖v2
q‖C1/10

t L5/3 + ‖v1
q‖C1/6−κ

[σq/2,t]
L5/3)(‖∆6Rz ‖C1/10

t L∞
+ ‖∆6Rz ‖C1/10

t L∞
)

+ `1/10(‖v2
q‖CtW 1/5,5/3 + ‖v1

q‖C[σq/2,t]B
1/6−κ
5/3,∞

)(‖∆6Rz ‖CtC1/10 + ‖∆6Rz ‖CtC1/10)

. `1/10σ−1/6
q (M

1/2
L a−α/4 + L3N + L4)L10,

where we used

‖∆6Rz ‖CtC1/10 + ‖∆6Rz ‖C1/10
t L∞

. 2(1/5+2κ)R(‖z ‖
C

1/10
t C−1/5−κ + ‖z ‖CtC−κ) . L10

and similarly for z . The same estimate also holds for the symmetric counterpart. For I2 :=
(v1
q + v2

q )⊗ (v1
q + v2

q ) we use (5.9) and (5.18) to have

‖I2 − I2 ∗x φ` ∗t ϕ`‖L1

.
(
`‖v2

q‖C1
t,x

+ `1/61‖v1
q‖C1/61

[σq/2,t]
L2 + `1/31‖v1

q‖C[σq/2,t]H
1/30−3κ

)
(‖v1

q‖CtL2 + ‖v2
q‖CtL2)

. σ−1/6
q `1/61(MLa

−α/8 + L6N2 + L8) + (`λ4
q + σ−1/6

q `1/61)M
1/2
L (M

1/2
L (1 + 3q)1/2 +K1/2)

.M1/2
L (ML(1 + 3q) +K)1/2(`λ4

q + `1/61σ−1/6
q ),

where we used interpolation and Proposition 5.2 and the embedding Lemma 2.1 to have

‖v1
q‖C1/61

t,1/6
L2 . ‖v1

q‖
9

10(1−9κ)

Ct,1/6H1/30−3κ‖v1
q‖

1−90κ
10(1−9κ)

C
1/6−κ
t,1/6

H−3/10
. ‖v1

q‖
9

10(1−9κ)

Ct,1/6B
1/3−2κ

5/3,∞
‖v1
q‖

1−90κ
10(1−9κ)

C
1/6−κ
t,1/6

L5/3
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.M1/2
L a−α/4 + L3N + L4 .M1/2

L ,

provided κ was chosen sufficiently small. For I3 := v2
q #< ∆>Rz −v2

q < ∆>Rz we use paraproduct
estimates Lemma 2.2 and (5.10) to have

‖I3 − I3 ∗x φ` ∗t ϕ`‖L1

. `1/10‖v2
q‖C1

t,x
(‖z ‖CtC−κ + ‖z ‖CtC−κ + ‖z ‖

C
1/10
t C−1/5−κ + ‖z ‖

C
1/10
t C−1/5−κ)

. `1/10λ4
qLM

1/2
L .

For I4 := (v1
q + v2

q )( #≺ + #�)∆6Rz we use paraproduct estimates Lemma 2.2 and (5.10) to have

‖I4 − I4 ∗x φ` ∗t ϕ`‖L1

. `1/10(‖v2
q‖C1

t,x
+ ‖v1

q‖C1/10

[σq/2,t]
B

1/10

5/3,∞
)(‖∆6Rz‖C1/10

t L∞
+ ‖∆6Rz‖CtC1/10)

. `1/10L29
(
M

1/2
L λ4

q + σ−1/6
q (a−α/4M

1/2
L + L3N + L4)

)
,

where we used

‖∆6Rz‖CtC1/10 + ‖∆6Rz‖C1/10
t L∞

. 2R(7/10+2κ)L1/2 6 L29,

and by interpolation and Proposition 5.2

‖v1
q‖C1/10

t,1/6
B

1/10

5/3,∞
. ‖v1

q‖Ct,1/6B1/3−2κ

5/3,∞
+ ‖v1

q‖C1/6−κ
t,1/6

L5/3 .M
1/2
L a−α/4 + L3N + L4. (7.52)

For I5 := v2
q #� ∆>Rz+v2

q�z+v]q�∆6Rz we use paraproduct estimates Lemma 2.2, Proposition 5.2
and (5.10) to have

‖I5 − I5 ∗x φ` ∗t ϕ`‖L1

. `1/24(‖v2
q‖C1

t,x
+ ‖v]q‖C[σq/2,t]B

3/5−κ
5/3,∞

+ ‖v]q‖C1/20

[σq/2,t]
B

11/20−κ
5/3,∞

)(‖z‖
C

1/24
t C−7/12−κ + ‖z‖CtC−1/2−κ)

. `1/24LM
1/2
L

(
λ4
q + σ−3/10

q (a−α/8M
1/2
L + L5N + L6)

)
. `1/24ML(λ4

q + σ−3/10
q ).

Here we used L 6 aα/16 by the choice of the parameters and interpolation to bound ‖z‖
C

1/24
t C−7/12−κ

by

‖z‖CtC−1/2−κ + ‖z‖
C

1/10
t C−7/10−κ . L

1/2.

For I6 := P[vq ≺ ∆6RI(∇z)] � z we use (5.7), (5.18) and Lemma 2.2 to have

‖I6 − I6 ∗x φ` ∗t ϕ`‖L1

. `1/10(‖v2
q‖C1/10

t L5/3 + ‖v1
q‖C1/10

[σq/2,t]
L5/3)

×
(
‖z‖CtC−1/2−κ(‖∆6RI∇z‖CtC3/5+2κ + ‖∆6RI∇z‖C1/10

t C1/2+2κ)

+ ‖z‖
C

1/10
t C−7/10−κ‖∆6RI∇z‖CtC7/10+2κ

)
. `1/10L10σ−1/6

q (M
1/2
L a−α/4 + L3N + L4) . `1/10MLσ

−1/6
q .

Here we used

‖∆6RI∇z‖CtC7/10+2κ + ‖∆6RI∇z‖C1/10
t C1/2+2κ . 2R(1/5+3κ)‖z‖CtC−1/2−κ . L9.
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In view of the two commutator estimates, Lemma 2.3 and Lemma 2.4, the remaining terms
containing v2

q could be controlled by

`1/10‖v2
q‖C1

t,x
(‖z‖2CtC−1/2−κ + ‖z‖CtC−1/2−κ‖z‖

C
1/10
t C−7/10−κ) . `1/10λ4

qM
1/2
L L,

and the remaining terms containing v1
q could be controlled by

`1/10‖v1
q‖C1/10

[σq/2,t]
B

1/10

5/3,∞

(
‖z‖CtC−1/2−κ‖∆6Rz‖CtC−1/2+1/5+2κ + ‖z‖CtC−1/2−κ‖∆6Rz‖C1/10

t C−1/2+2κ

)
. `1/10L10σ−1/6

q (M
1/2
L a−α/4 + L3N + L4) . `1/10MLσ

−1/6
q .

Here we used (5.18) and (7.52) and

‖∆6Rz‖CtC−1/2+1/5+2κ + ‖∆6Rz‖C1/10
t C−1/2+2κ

. 2R(1/5+3κ)(‖z‖CtC−1/2−κ + ‖z‖
C

1/10
t C−7/10−κ) . L9.

Therefore, we have that for t ∈ (σq, TL]

‖Rcom(t)‖L1 .M1/2
L (`1/61σ−1/6

q + `λ4
q)(ML(1 + 3q) +K)1/2 + `1/24MLλ

4
q + `1/24MLσ

−3/10
q

6
MLδq+2

5
,

where we used the choice of ` in (7.2) and the conditions

α > 244βb, αb > 128, (ML(1 + 3q) +K)1/2 6 `−1/183, σ−1/3
q < `−1/183,

which can indeed be achieved by our conditions on the parameters.

Next, by the choice of α, β and b we use paraproduct estimates Lemma 2.2 we can bound Rcom1

uniformly over the interval [0, t] for p = 32
32−7α

‖Rcom1‖CtL1 . (‖v2
q+1 − v2

q‖CtW 2/3,p + ‖v1
q+1 − v1

q‖CtB1/3−2κ

5/3,∞
+ ‖v]q+1 − v]q‖CtL5/3)L21

. L21M
1/2
L (λ−1/42

q + λ
−15α/32
q+1 + λ

60α−1/7
q+1 + λ

32α−1/35
q+1 )

6
MLδq+2

10
,

where we used (7.8) and (7.48) to control ‖v2
q+1 − v2

q‖CtW 2/3,p , (6.1), (7.6) and (7.42) to control

‖v1
q+1 − v1

q‖CtB1/3−2κ

5/3,∞
and also (6.2), (7.6) and (7.42) to control ‖v]q+1 − v]q‖CtL5/3 . Moreover, we

applied 1 > 168βb2 and −32α+ 1
35 > 2βb, the condition on α, β, b and

‖∆6Rz‖CtCκ . 2R(1/2+2κ)‖z‖CtC−1/2−κ . L21. (7.53)

Furthermore, we use Proposition 5.2, (6.1), (5.9) and (7.42) to estimate also Rcom2 uniformly
over [0, t] to obtain

‖Rcom2‖CtL1 . (ML(1 + 3q) +K)1/2(‖v1
q+1 − v1

q‖CtL2 + ‖v` − v2
q‖CtL2)

. (ML(1 + 3q) +K)1/2M
1/2
L (λ−1/42

q + λ−αq+1 + λ
32α−1/35
q+1 )

6
MLδq+2

10
,

Here we used α > 244βb, 1 > 168βb2 and (ML(1 + 3q) +K)1/2 6 λ1/84
q < `−1/183.
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Remark 7.2. We note that it was essential in the estimate of Rcom1 and Rcom2 that no time weights

were required for the difference v1
q+1 − v1

q and v]q+1 − v]q. Indeed, there would be no way to absorb
the weight as time approaches zero. We also note that the bounds of Rcom1 and Rcom2 hold directly
for all t ∈ [0, TL].

Summarizing all the above estimates we obtain

‖R̊q+1(t)‖L1 6MLδq+2,

which is the desired bound.

Case II. Let t ∈ (
σq
2 ∧ TL, σq ∧ TL]. If TL 6

σq
2 then there is nothing to estimate, hence we may

assume
σq
2 < TL and t ∈ (

σq
2 , σq ∧ TL]. Then we decompose R̊` = χ2R̊` + (1 − χ2)R̊`. The first

part χ2R̊` is canceled (up to the oscillation error χ2Rosc) by w̃
(p)
q+1 ⊗ w̃

(p)
q+1 = χ2w

(p)
q+1 ⊗ w

(p)
q+1 and

χ2∂tw
(t)
q+1 = ∂tw̃

(t)
q+1 − (χ2)′w

(t)
q+1. So in this case in the definition of R̊q+1 most terms are similar to

Case I. and can be estimated similarly as above. Therefore, we only have to consider (1− χ2)R̊`,
and

divRcut := χ′(t)(w
(p)
q+1(t) + w

(c)
q+1(t)) + (χ2)′(t)w

(t)
q+1(t).

We know

‖(1− χ2)R̊`(t)‖L1 6 sup
s∈[t−`,t]

‖R̊q(s)‖L1 .

For Rcut we realize that the bounds (7.33) and (7.36) also hold for w
(p)
q+1, w

(c)
q+1 and w

(t)
q+1. Then we

have for κ > 0

‖Rcut(t)‖L1 6 ‖χ′(t)(w(p)
q+1(t) + w

(c)
q+1(t))‖L1 + ‖(χ2)′(t)w

(t)
q+1(t)‖L1

.
1

σq
‖w(p)

q+1(t)‖L1 +
1

σq
‖w(c)

q+1(t)‖L1 +
1

σq
‖w(t)

q+1(t)‖L1

6
1

σq
`−8((ML + 3qML)1/2 + γ

1/2
q+1)r1−2κ

⊥ r
1/2−κ
‖ 6

ML

10
δq+2,

where we use σ−1
q 6 `−1 and M

1/2
L (1 + 3q)1/2 + γ

1/2
q+1 6 `−1. For Rcom, where the required space

regularity of v1
q and v]q leads to a blow-up in time, we again use the fact that t > σq/2 and 4` 6 σq

to have a similar bound as in the first case.

Case III. For t ∈ [0,
σq
2 ∧TL] we know v`(t) = v2

q+1(t) = 0 and so the Reynolds stress reduces to

R̊q+1 = R̊` +Rcom1 +Rcom +Rcom2.

The bounds for Rcom1 and Rcom2 hold as in Case I.. Unlike Case I. and Case II., here we cannot
use regularity of v1

q due to the blow-up at t = 0 as t is no longer bounded away from zero. On the
other hand, we do not have to show smallness of Rcom but only a polynomial blow-up, see (5.14).
Therefore, we do not try to use the mollification estimates. Instead, we bound ‖Rcom(t)‖L1 directly
using Lemma 2.2 and (7.53), (5.18), (5.19) as

‖Rcom(t)‖L1 . ‖v1
q‖CtL2(‖∆6Rz ‖CtL∞ + ‖∆6Rz ‖CtL∞ + ‖∆6Rz‖CtCκ)

+ ‖v1
q‖2CtL2 + ‖v]q‖CtL5/3‖∆6Rz‖CtCκ + ‖v1

q‖CtL2‖z‖CtC−1/2−κ‖∆6Rz‖CtC−1/2+2κ

6 2ML, (7.54)

where we used (7.53) and the implicit constant can be absorbed by taking a and L large enough.



50 MARTINA HOFMANOVÁ, RONGCHAN ZHU, AND XIANGCHAN ZHU

Remark 7.3. We point out that for the two commutators in Rcom we did not apply the commutator
estimates Lemma 2.3 and Lemma 2.4, as these would require regularity of v1

q . Instead, we estimated
each term by the paraproduct estimates directly.

As a result, it follows

‖R̊q+1(t)‖L1 6 sup
s∈[t−`,t]

‖R̊q(s)‖L1 + 3ML,

which completes the proof of (5.14) and also (5.11) and (5.12).

Appendix A. Intermittent jets

In this part we recall the construction of intermittent jets from [BV19a, Section 7.4]. We point
out that the construction is entirely deterministic, that is, none of the functions below depends on
ω. Let us begin with the following geometric lemma which can be found in [BV19a, Lemma 6.6].

Lemma A.1. Denote by B1/2(Id) the closed ball of radius 1/2 around the identity matrix Id, in the

space of 3 × 3 symmetric matrices. There exists Λ ⊂ S2 ∩ Q3 such that for each ξ ∈ Λ there exists
a C∞-function γξ : B1/2(Id)→ R such that

R =
∑
ξ∈Λ

γ2
ξ (R)(ξ ⊗ ξ)

for every symmetric matrix satisfying |R − Id| 6 1/2. For CΛ = 8|Λ|(1 + 8π3)1/2, where |Λ| is the
cardinality of the set Λ, we define the constant

M = CΛ sup
ξ∈Λ

(‖γξ‖C0 +
∑
|j|6N

‖Djγξ‖C0).

For each ξ ∈ Λ let us define Aξ ∈ S2 ∩Q3 to be an orthogonal vector to ξ. Then for each ξ ∈ Λ we
have that {ξ, Aξ, ξ ×Aξ} ⊂ S2 ∩Q3 form an orthonormal basis for R3. We label by n∗ the smallest
natural such that

{n∗ξ, n∗Aξ, n∗ξ ×Aξ} ⊂ Z3

for every ξ ∈ Λ.

Let Φ : R2 → R be a smooth function with support in a ball of radius 1. We normalize Φ such
that φ = −∆Φ obeys

1

4π2

∫
R2

φ2(x1, x2)dx1dx2 = 1. (A.1)

By definition we know
∫
R2 φdx = 0. Define ψ : R → R to be a smooth, mean zero function with

support in the ball of radius 1 satisfying

1

2π

∫
R
ψ2(x3)dx3 = 1. (A.2)

For parameters r⊥, r‖ > 0 such that
r⊥ � r‖ � 1,

we define the rescaled cut-off functions

φr⊥(x1, x2) =
1

r⊥
φ

(
x1

r⊥
,
x2

r⊥

)
, Φr⊥(x1, x2) =

1

r⊥
Φ

(
x1

r⊥
,
x2

r⊥

)
, ψr‖(x3) =

1

r
1/2
‖

ψ

(
x3

r‖

)
.

We periodize φr⊥ ,Φr⊥ and ψr‖ so that they are viewed as periodic functions on T2,T2 and T
respectively.
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Consider a large real number λ such that λr⊥ ∈ N, and a large time oscillation parameter µ > 0.
For every ξ ∈ Λ we introduce

ψ(ξ)(t, x) := ψξ,r⊥,r‖,λ,µ(t, x) := ψr‖(n∗r⊥λ(x · ξ + µt))

Φ(ξ)(x) := Φξ,r⊥,λ(x) := Φr⊥(n∗r⊥λ(x− αξ) ·Aξ, n∗r⊥λ(x− αξ) · (ξ ×Aξ))
φ(ξ)(x) := φξ,r⊥,λ(x) := φr⊥(n∗r⊥λ(x− αξ) ·Aξ, n∗r⊥λ(x− αξ) · (ξ ×Aξ)),

where αξ ∈ R3 are shifts to ensure that {Φ(ξ)}ξ∈Λ have mutually disjoint support.

The intermittent jets W(ξ) : T3 × R→ R3 are defined as in [BV19a, Section 7.4].

W(ξ)(t, x) := Wξ,r⊥,r‖,λ,µ(t, x) := ξψ(ξ)(t, x)φ(ξ)(x). (A.3)

By the choice of αξ we have that

W(ξ) ⊗W(ξ′) ≡ 0, for ξ 6= ξ′ ∈ Λ, (A.4)

and by the normalizations (A.2) we obtain

1

(2π)3

∫
T3

W(ξ)(t, x)⊗W(ξ)(t, x)dx = ξ ⊗ ξ.

These facts combined with Lemma A.1 imply that∑
ξ∈Λ

γ2
ξ (R)

1

(2π)3

∫
T3

W(ξ)(t, x)⊗W(ξ)(t, x)dx = R, (A.5)

for every symmetric matrix R satisfying |R − Id| 6 1/2. Since W(ξ) are not divergence free, we
introduce the corrector term

W
(c)
(ξ) :=

1

n2
∗λ

2
∇ψ(ξ) × curl(Φ(ξ)ξ) = curl curlV(ξ) −W(ξ). (A.6)

with

V(ξ)(t, x) :=
1

n2
∗λ

2
ξψ(ξ)(t, x)Φ(ξ)(x).

Thus we have

div
(
W(ξ) +W

(c)
(ξ)

)
≡ 0.

Next, we recall the key bounds from [BV19a, Section 7.4]. For N,M > 0 and p ∈ [1,∞] the
following holds provided r−1

‖ � r−1
⊥ � λ

‖∇N∂Mt ψ(ξ)‖CtLp . r
1/p−1/2
‖

(
r⊥λ

r‖

)N (
r⊥λµ

r‖

)M
,

‖∇Nφ(ξ)‖Lp + ‖∇NΦ(ξ)‖Lp . r
2/p−1
⊥ λN ,

‖∇N∂Mt W(ξ)‖CtLp +
r‖

r⊥
‖∇N∂Mt W

(c)
(ξ) ‖CtLp + λ2‖∇N∂Mt V(ξ)‖CtLp . r

2/p−1
⊥ r

1/p−1/2
‖ λN

(
r⊥λµ

r‖

)M
,

(A.7)
where the implicit constants may depend on p,N and M , but are independent of λ, r⊥, r‖, µ.
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Appendix B. Estimates for the heat operator

To deal with the singularity at zero we introduce the following two norms: for α ∈ (0, 1), p ∈
[1,∞], γ > 0

‖f‖CαT,γLp := sup
06t6T

tγ‖f(t)‖Lp + sup
06s<t6T

sγ
‖f(t)− f(s)‖Lp
|t− s|α

,

‖f‖CT,γBαp,∞ := sup
06t6T

tγ‖f(t)‖Bαp,∞ .

First, we recall the basic estimates for the heat semigroup Pt := et∆ from [ZZZ22, Lemma 2.8].
Let T > 1.

Lemma B.1. For any θ > 0 and α ∈ R, there is a constant C = C(α, θ) > 0 such that for
p, q ∈ [1,∞] and all t ∈ (0, T ],

‖Ptf‖Bθ+αp,q
.C T θ/2t−θ/2‖f‖Bαp,q . (B.1)

For any 0 < θ < 2, there is a constant C = C(θ) > 0 such that for all t ∈ [0, 1],

‖Ptf − f‖Lp .C tθ/2‖f‖Bθp,∞ . (B.2)

Then we prove the following for If =
∫ ·

0
Pt−sfds.

Lemma B.2. Let α ∈ (0, 2), β ∈ (α− 2, 0), γ, δ ∈ [0, 1), p ∈ [1,∞] so that

γ − δ − α/2 + β/2 + 1 > 0.

Then

‖If‖
C
α/2
T,γ L

p + ‖If‖CT,γBαp,∞ . T
γ−δ+1‖f‖CT,δBβp,∞ .

Proof. By Lemma B.1, we have for 0 6 t 6 T

tγ‖If(t)‖Bαp,∞ . T
(α−β)/2tγ

∫ t

0

(t− s)−(α−β)/2s−δds‖f‖CT,δBβp,∞ ,

where

T (α−β)/2tγ
∫ t

0

(t− s)−(α−β)/2s−δds

= T (α−β)/2tγ
∫ t/2

0

(t− s)−(α−β)/2s−δds+ T (α−β)/2tγ
∫ t

t/2

(t− s)−(α−β)/2s−δds

. T (α−β)/2tγ−(α−β)/2

∫ t/2

0

s−δds+ T (α−β)/2tγ−δ
∫ t

t/2

(t− s)−(α−β)/2ds

. T (α−β)/2tγ−δ−(α−β)/2+1 6 T γ−δ+1,

provided γ − δ − (α− β)/2 + 1 > 0.

To bound the other norm, we use Lemma B.1 again to get for 0 6 s 6 t 6 T , |t − s| 6 1, κ > 0
small enough

sγ‖If(t)− If(s)‖Lp . sγ
∫ t

s

‖Pt−rf(r)‖Bκp,∞dr + sγ‖(Pt−s − I)If(s)‖Lp

. sγ
∫ t

s

(t− r)−(κ−β)/2r−δdr‖f‖CT,δBβp,∞ + sγ(t− s)α/2‖If(s)‖Bαp,∞ .
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For the first term, we write r = s+ x(t− s) and obtain if γ > δ

sγ
∫ t

s

(t− r)−(κ−β)/2r−δdr 6 sγ−δ
∫ t

s

(t− r)−(κ−β)/2dr

= sγ−δ(t− s)1−κ/2+β/2

∫ 1

0

(1− x)−(κ−β)/2dx . T γ−δ(t− s)α/2

since β/2 + 1 > α/2; whereas if γ < δ we get

sγ
∫ t

s

(t− r)−(κ−β)/2r−δdr

= sγ(t− s)1−κ/2+β/2

∫ 1

0

(1− x)−(κ−β)/2(s+ x(t− s))−δ+γ(s+ x(t− s))−γdx

6 (t− s)1−κ/2+β/2

∫ 1

0

(1− x)−(κ−β)/2(s+ x(t− s))−δ+γdx

6 (t− s)1−κ/2+β/2−δ+γ
∫ 1

0

(1− x)−(κ−β)/2x−δ+γdx

. (t− s)α/2,
provided −α/2 + 1− δ + γ + β/2 > 0.

For the second term we use the previous estimate. Therefore, for |t− s| 6 1

sγ‖If(t)− If(s)‖Lp . (t− s)α/2T 1−δ+γ‖f‖CT,δBαp,∞ .
Since Bαp,∞ ⊂ Lp, we estimate the remaining term in the Hölder norm in time using the first estimate
above

tγ‖If(t)‖Lp . tγ‖If(t)‖Bαp,∞ . T
γ−δ+1‖f‖CT,δBβp,∞

and the proof is complete. �

Remark B.3. We observe that in Section 6, we need to use Lemma B.2 for various combinations
of γ, δ ∈ {0, 1/6, 3/10}. As a consequence, the power of T in the statement of Lemma B.2 is always
bounded by 2. Since due to the definition of the stopping time (5.5) we have T 6 L1/2 we obtain a
factor L for any application of the Schauder estimate.

Lemma B.4. Let α ∈ (0, 1), p ∈ [1,∞], γ ∈ (0, 1), β ∈ R. Then for any κ > 0, T > 1

‖[I, f ≺]g‖
C
α/4
T,γ B

α/2+β+2−κ
p,∞

+ ‖[I, f ≺]g‖CT,γBα+β+2−κ
p,∞

. T 1+α/2(‖f‖
C
α/2
T,γ L

p + ‖f‖CT,γBαp,∞)‖g‖CTCβ .

Proof. We have

[I, f ≺]g(t) =

∫ t

0

e(t−s)∆[(f(s)− f(t)) ≺ g(s)]ds+

∫ t

0

[e(t−s)∆, f(t) ≺]g(s)ds = I1(t) + I2(t).

Then by (B.1) we have

tγ‖I1(t)‖Bα+β+2−κ
p,∞

. tγT 1−κ/2+α/2

∫ t

0

(t− s)−1+κ/2s−γds‖f‖
C
α/2
T,γ L

p‖g‖CTCβ

. T 1+α/2‖f‖
C
α/2
T,γ L

p‖g‖CTCβ ,

and by [CC18, Lemma A.1] (see also [MW17a])

tγ‖I2(t)‖Bα+β+2−κ
p,∞

. tγ
∫ t

0

(t− s)−1+κ/2ds‖f(t)‖Bαp,∞‖g‖CTCβ . T
κ‖f‖CT,γBαp,∞‖g‖CTCβ .
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Moreover, for 0 6 t1 < t2 6 T satisfying |t2 − t1| 6 1

I1(t2)− I1(t1) =

∫ t1

0

(
e(t2−s)∆[(f(s)− f(t2)) ≺ g(s)]− e(t1−s)∆[(f(s)− f(t1)) ≺ g(s)]

)
ds

+

∫ t2

t1

e(t2−s)∆[(f(s)− f(t2)) ≺ g(s)]ds,

which by Lemma B.1 implies that

tγ1‖I1(t2)− I1(t1)‖
B
α/2+β+2−κ
p,∞

. T 1−κ/2+α/2‖f‖
C
α/2
T,γ L

p‖g‖CTCβ

× tγ1
(
|t1 − t2|α/4

∫ t1

0

(t1 − s)−1+κ/2s−γds+

∫ t2

t1

(t2 − s)−1+α/4+κ/2s−γds
)

. T 1+α/2‖f‖
C
α/2
T,γ L

p‖g‖CTCβ |t1 − t2|
α/4.

Also, it holds

I2(t2)− I2(t1)

=

∫ t1

0

[e(t2−s)∆ − e(t1−s)∆, f(t1) ≺]g(s)ds+

∫ t1

0

[e(t2−s)∆, (f(t2)− f(t1)) ≺]g(s)ds

+

∫ t2

t1

[e(t2−s)∆, f(t2) ≺]g(s)ds = J1 + J2 + J3.

Then we obtain by [CC18, Lemma A.1] (see also [MW17a])

tγ1‖J2 + J3‖Bα/2+β+2−κ
p,∞

. (‖f‖
C
α/4
T,γ B

α/2
p,∞

+ ‖f‖CT,γBαp,∞)‖g‖CTCβ

×
(
|t1 − t2|α/4

∫ t1

0

(t1 − s)−1+κ/2ds+

∫ t2

t1

(t2 − s)−1+α/4+κds
)

. (‖f‖
C
α/2
T,γ L

p + ‖f‖CT,γBαp,∞)‖g‖CTCβ |t1 − t2|
α/4Tκ.

Since Dm((1− e−22j(t2−t1)|ξ|2)e−22j(t1−s)|ξ|2) . (|t2 − t1|22j)δe−c2
2j(t1−s) for m ∈ N0, δ ∈ (0, 1) and

ξ in an annulus, by similar argument as [CC18, Lemma A.1] (see also [MW17a]) we obtain

‖[e(t2−s)∆ − e(t1−s)∆, f(t1) ≺]g(s)‖
B
α/2+β+2−κ
p,∞

. |t2 − t1|α/4‖f(t1)‖Bαp,∞(t1 − s)−1+κ/2‖g(s)‖Cβ .

This implies

tγ1‖J1‖Bα/2+β+2−κ
p,∞

. ‖f‖CT,γBαp,∞‖g‖CTCβ |t1 − t2|
α/4

∫ t1

0

(t1 − r)−1+κ/2dr

. ‖f‖CT,γBαp,∞‖g‖CTCβ |t1 − t2|
α/4Tκ

and the proof is complete. �
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[HZZ23] M. Hofmanová, R. Zhu, X. Zhu. Global-in-time probabilistically strong and Markov solutions to sto-
chastic 3D Navier–Stokes equations: existence and non-uniqueness. The Annals of Probability, Vol. 51,

No. 2, 524–579, 2023.

[Ise18] P. Isett. A proof of Onsager’s conjecture. Ann. of Math. (2), 188(3):871–963, 2018.
[LL87] L. D. Landau, E. M. Lifshitz. Fluid mechanics. Translated from the Russian by JB Sykes and WH

Reid. Course of Theoretical Physics. 1987.

[LT18] T. Luo and E. Titi. Non-uniqueness of weak solutions to hyperviscous Navier-Stokes equations - on
sharpness of J.-L. Lions exponent. arXiv:1808.07595, 2018.

[LZ21] D. Luo and R. Zhu. Stochastic mSQG equations with multiplicative transport noises: white noise
solutions and scaling limit Stochastic Process. Appl. 140, 236-286, 2021.
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