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Abstract. In this paper, we will derive the first and 2nd order Wiener chaos

decomposition for the multivariate linear statistics of the determinantal point

processes associated with the spectral projection kernels on the unit spheres
Sd. We will first get a graphical representation for the cumulants of multi-

variate linear statistics for any determinantal point process. The main results

then follow from the very precise estimates and identities regarding the spectral
projection kernels and the symmetry of the spheres.

1. Introduction

The determinantal point process is an important class of point processes with
applications in random matrix theory, statistical mechanics, quantum mechanics,
etc. It’s also called the Slater determinant in quantum mechanics that is to describe
the wave function of a multi-fermionic system. In this paper, we will consider deter-
minantal point processes on the unit spheres associated with the spectral projection
kernels of the Laplace operator with respect to the standard round metric. Such
spectral projection kernels can be represented in terms of the spherical harmonics,
which are one of the most fundamental wave functions in quantum mechanics to
describe particles confined to the spheres.

Let Φ be a point process sampled on the space X . The k-th joint intensity
function ρk of the point process Φ is defined by

E
[ ∑

(x1,...,xk)∈Φk∗

f(x1, . . . , xk)
]

=

∫
Xk

f(x1, . . . , xk)ρk(x1, . . . , xk)dx1 . . . dxk, (1)

where f is any bounded measurable function and the set

Φk∗ := {(x1, . . . , xk) : xi ∈ Φ, ∀1 ≤ i 6= j ≤ k, xi 6= xj}. (2)

If Φ is a determinantal point process associated with some kernel function K, then
its k-th joint intensity function reads

ρk(x1, . . . , xk) = det
(
K(xi, xj)1≤i≤j≤k

)
, (3)

where K(xi, xj)1≤i,j≤k is a k × k matrix whose (i, j) entry is K(xi, xj).
In this paper we will focus on the case when K is the spectral projection kernel on

the unit sphere Sd with d ≥ 2, defined as follows. The Laplace operator on Sd with

respect to the standard round metric has discrete spectrum
{
λn = −n(n+d−1), n =
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0, 1, 2, ....
}

. Here, the round metric is the pullback of the Euclidean metric under

the inclusion map i : Sd → Rd+1. For a given eigenvalue λn, the corresponding
eigenfunctions are called the spherical harmonics of level n. Let Hn(Sd) be the
space of the spherical harmonics of level n. Then one has [2]

kn := dimHn(Sd) =
2n+ d− 1

n+ d− 1

(
n+ d− 1
d− 1

)
, (4)

which admits the asymptotic estimate (by d ≥ 2)

kn ∼ 2nd−1/Γ(d). (5)

Let Kn be the spectral projection

Kn : L2(Sd)→ Hn(Sd), (6)

and we denote by Kn(x, y) its kernel.
Now we define a determinantal point process Φn on Sd associated with the kernel

Kn(x, y). Here the total number of points in Φn is almost surely kn. Note that
Φn can be alternatively defined by sampling kn points on Sd according to the
probability density

1

kn!
det
(
Kn(xi, xj)1≤i,j≤kn

)
. (7)

Given a function f(x1, .., xk) of k ≥ 1 variables, we define the multivariate linear
statistics

Lnf :=
∑

(x1,...,xk)∈Φkn,∗

f(x1, . . . , xk), (8)

where

Φkn,∗ := {(x1, . . . , xk) : xi ∈ Φn, xi 6= xj , ∀1 ≤ i 6= j ≤ k}. (9)

Multivariate linear statistics of this form are usually called U-statistics.
For 1 ≤ i ≤ k, we define the i-margin function fi by integrating f with respect

to all variables over Sd except xi, i.e.,

fi(x) =

∫
(Sd)k−1

f(x1, . . . , xi−1, x, xi+1, . . . , xk)dx1 · · · dxi−1dxi+1 · · · dxk. (10)

Here, we denote by dx the volume element with respect to the standard round
metric on Sd. If k = 1, the 1-margin function is defined to be f itself.

For 1 ≤ i < j ≤ k, we define the (i, j)-margin function fi,j to be

fi,j =

∫
(Sd)k−2

f(x1, . . . , xk)dx1 · · · dxi−1dxi+1 · · · dxj−1dxj+1 · · · dxk. (11)

In this article, we will study the limiting distribution of the multivariate linear
statistics Lnf . We first give an asymptotic expansion for the expectation of Lnf .

Theorem 1. Let f(x1, .., xk) be a bounded function of k variables. We have

E(Lnf) =

(
kn
sd

)k ∫
(Sd)k

f(x1, . . . , xk)dx1 · · · dxk

− kk−1
n

skd

∑
1≤i<j≤k

2d−1

Γ(d)π
Γ
(d

2

)2
∫
Sd

∫
Sd

fi,j(x, y)

sind−1(arccos(x · y))
dxdy

+ o(n(d−1)(k−1)),

(12)
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where sd = 2π
d+1
2 /Γ(d+1

2 ) is the surface area of Sd.

By estimating the growth order of the cumulants of Lnf , we can prove the
following central limit theorem for Lnf .

Theorem 2. Let f be a bounded function of k variables on Sd. Assume that

F (x) :=

k∑
i=1

fi(x) (13)

is not constant almost everywhere in x ∈ Sd, then it holds that

lim
n→∞

1

k2k−1
n

Var(Lnf) =
2d−2

s2k
d Γ(d)π

Γ
(d

2

)2
∫
Sd

∫
Sd

(F (x)− F (y))2

sind−1(arccos(x · y))
dxdy > 0.

(14)
In addition, Lnf is asymptotically normal, i.e.,

Lnf − E(Lnf)

(Var(Lnf))
1
2

d−→ N(0, 1), (15)

where N(0, 1) is the standard Gaussian distribution and the notation
d−→ means the

convergence in distribution.

Combining Theorem 1 and Theorem 2, we have the following corollary.

Corollary 1. Under the assumption of Theorem 2,(
Lnf −

(
kn
sd

)k ∫
(Sd)k

f(x1, . . . , xk)dx1 · · · dxk

)
Var(Lnf)−1/2 d−→ N(0, 1).

When the assumption of Theorem 2 fails, i.e., F (x) is constant almost every-
where, the right hand side of (14) will be degenerate, i.e., Var(Lnf) will have
strictly smaller growth order than k2k−1

n = Θ(n(d−1)(2k−1)). For such degenerate
case, our next theorem shows that for a class of test functions, the limiting distri-
bution is given by a mixture of centered chi-square distributions, i.e., the 2nd order
Wiener Chaos.

We now consider the following two invariance conditions on the bounded test
function f(x1, . . . , xk), k ≥ 2.

• f is invariant under permutations, i.e.,

f(x1, . . . , xk) = f(xσ(1), . . . , xσ(k)),∀σ ∈ Sym(k). (16)

• We assume that the (1, 2)-margin function f1,2(x1, x2) only depends on
their spherical distance dist(x1, x2) (abbreviated as d(x1, x2)), i.e.,

f1,2(x1, x2) = f1,2(x′1, x
′
2), ∀d(x1, x2) = d(x′1, x

′
2). (17)

We will show that if the test function f satisfies these two assumptions, then F (x)
must be constant on the sphere, and thus the variance will be degenerate.

As a remark, the condition (16) is not an essential one. We can always sym-
metrize a function f by considering the average

f̄(x1, . . . , xk) =
1

k!

∑
σ∈Sym(k)

f(xσ(1), . . . , xσ(k)),

and this will yield Lnf = Lnf̄ by (8).
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There is an important class of test functions that satisfy these two assumptions.
For example, given δ > 0, if we choose

f(x1, x2) = 1[d(x1, x2) < δ], (18)

where the indicator function is equal to 1 if the distance d(x1, x2) < δ and 0
otherwise, then the random variable Lnf will be the number of pairs of random
points whose distances are less than δ. Similarly, if we take

f(x1, x2, x3) = 1[d(x1, x2) < δ, d(x1, x3) < δ, d(x2, x3) < δ], (19)

then Lnf will count the number of triangles where the three vertices of the triangle
are within distance δ. These types of counting statistics are useful tools to study
the topology of random complexes built over random point processes, due to its
connections with Betti numbers, e.g., [4, 6, 11]. Our main result Theorem 3 below
implies that such types of counting statistics of the determinantal point process on
Sd converge to the 2nd order Wiener chaos.

Under conditions (16) and (17) we can determine the growth order of Var(Lnf)
and find the limiting distribution of Lnf . We define the function

ĥ(x, y) :=

∫
Sd

(f1,2(x, y)− f1,2(x, z)) sin−(d−1)(arccos(z · y))dz. (20)

We will see that ĥ is a bounded symmetric function, and thus we can consider it
as a Hilbert-Schmidt integral operator acting on L2(Sd). Then this operator is
compact and self-adjoint. Therefore we have the spectral decomposition

ĥ(x, y) =

∞∑
j=1

zjwj(x)wj(y), (21)

where {zj , j ≥ 1} are eigenvalues of the operator, and {wj , j ≥ 1} are the corre-
sponding eigenfunctions which form an orthonormal basis of L2(Sd).

The following theorem states that the multivariate linear statistics will tend to
a mixture of centered chi-squared distributions in the degenerate case.

Theorem 3. For any bounded function f(x1, . . . , xk) with k ≥ 2 satisfying condi-
tions (16) and (17), we have

lim
n→∞

Var(Lnf)

k2k−2
n

=
2C2

dk
2(k − 1)2

Γ(d)2s2k
d

∫
(Sd)2

ĥ(x, y)2dxdy, (22)

where the constant Cd := 2d−2Γ(d/2)2

π . Furthermore, we have(
Lnf − E(Lnf)

)(kn
sd

)−k (
Cdk(k − 1)

nd−1

)−1
d−→
∞∑
i=1

zi(χi − 1)/2, (23)

where χi, i ≥ 1 are independent chi-squared random variables with one degree of

freedom and
∑∞
i=1 zi(χi − 1)/2 is understood as the L2-limit of

∑N
i=1 zi(χi − 1)/2

as N →∞.

Similar to Corollary 1, using the fact that kn ∼ 2nd−1/Γ(d), and Theorems 1
and 3, we deduce the following result.
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Corollary 2. Under the assumptions of Theorem 3, we have(
kn
sd

)−k (
Cdk(k − 1)

nd−1

)−1
(
Lnf −

(
kn
sd

)k ∫
(Sd)k

f(x1, . . . , xk)dx1 · · · dxk

+
kk−1
n

skd

∑
1≤i<j≤k

2d−1

Γ(d)π
Γ
(d

2

)2
∫
Sd

∫
Sd

fi,j(x, y)

sind−1(arccos(x · y))
dxdy


d−→
∞∑
i=1

zi(χi − 1)/2.

(24)

Note that the limiting distribution can be rewritten in the form of the 2nd order
Wiener chaos

∞∑
i=1

ziH2(Xi)/2, (25)

where H2(x) = x2−1 is the Hermite polynomial of degree 2, and Xi are independent
and identically distributed (i.i.d.) standard Gaussian random variables N(0, 1).

There is a vast literature on the univariate linear statistics of determinantal point
processes, e.g., [7, 8, 9]. There are also very few works that give conditions for a
Gaussian limit of multivariate linear statistics, e.g., [3]. But to the best of our
knowledge, Theorem 3 is the very first result on the multivariate linear statistics
for determinantal point processes beyond the Gaussian limit case.

Theorem 2 and Theorem 3 are proved by the method of cumulants. We will
first derive a graphical representation for the cumulants of the multivariate linear
statistics for any determinantal point process in Lemma 1, which generalizes the
well-known formula for the univariate case (see (42) below). This graphical rep-
resentation allows us to study the asymptotic properties of the cumulants by the
off-diagonal decay of the spectral projection kernel, where we have to prove Lemma
3 and Lemma 4 bounding multiple integrals over the product of kernels. Exact
identities and asymptotic expansions of the spectral projection kernels combined
with the symmetry of the underlying space of the sphere are two crucial ingredients
for our proofs. For example, we repeatedly use the facts that the spectral projection
kernel is constant on the diagonal, and it satisfies very precise off-diagonal estimates

for all length scales, e.g., (53); the important fact that the integral operator ĥ(x, y)
defined in (20) is symmetric is partially due to the symmetry of the sphere, etc.

Contrary to the i.i.d. point process, the determinantal point process has the
negative association property. But our main results Theorem 2 and Theorem 3 are
still analogs of the classical Wiener chaos decomposition in the theory of U-statistics
for i.i.d random variables.

Given i.i.d. random variables X1, · · · , Xn, Hoeffding’s form for U-statistics is
the following (normalized) multivariate linear statistics,

Ukn(g) =

(
n

k

)−1 ∑
1≤i1<···<ik≤n

g(Xi1 , . . . , Xik),

where g is a symmetric real-valued function of k variables.
Without loss of generality, we assume E(g(X1, .., Xk)) = 0. Then Hoeffding in

1948 proved that, if the variance Var(g(X1, .., Xk)) <∞, then the following central
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limit theorem holds (Corollary 11.5 in [5]),

n1/2Ukn(g)
d−→ N(0, k2δ1). (26)

Here, the constant δ1 is the variance

δ1 = Var(g1(X1)),

where

g1(x) := E(g(x,X2, .., Xk)).

If the variance δ1 vanishes, that is the limit of U-statistics for i.i.d. random variables
is degenerate, then a χ2-limit theorem holds for the rescaled statistics. To be more
precise, we suppose that g1(x) = Eg(x,X2, .., Xk) = 0 and Eg2(X1, .., Xk) < ∞,
then we have (Corollary 11.5 in [5]),

nUkn(g)
d−→
(
k

2

) ∞∑
i=1

λiH2(Yi), (27)

where H2(x) = x2−1 is the Hermite polynomials of degree 2, Yi are i.i.d. standard
Gaussian random variables, and λi are eigenvalues of the integral operator A defined
as follows. Let dµ be the probability density of the random variable X1 and set

g2(x, y) := Eg(x, y,X3, .., Xk).

For any bounded measurable function f , the operator A is define by

(Af)(y) =

∫
g2(x, y)f(x)dµ(x). (28)

The formats of results (26) and (27) are almost identical to Theorem 2 and Theorem
3, respectively. The roles of g1(x1) and g2(x1, x2) are replaced by the i-margin func-
tion fi(x) and the (i, j)-margin function fi,j(x, y) respectively; when the variance
vanishes, both the limiting distributions are the linear eigenvalue combination of

H2(Yi), where the role of the symmetric integral operator A is replaced by ĥ(x, y).
In general, Ukn may exhibit the convergence in distribution to the Wiener chaos

with arbitrary order (Theorem 11.3 in [5]). For example, for the primitive com-
pletely degenerate case where

g (x1, . . . , xk) =

k∏
i=1

g (xi)

with Eg (X1) = 0 and Eg2 (X1) = σ2 <∞, one has the convergence

nk/2Ukn (g)

σk
d−→ Hk(Y ), (29)

where Hk(x) is the Hermite polynomial of degree k and Y is the standard Gaussian
random variable.

Therefore, we may expect that the multivariate linear statistics of the deter-
minantal point process associated with the spectral projection kernel on Sd also
admits some kind of Wiener chaos decomposition. Actually, our method, especially
the representation formula in Lemma 1, can be applied to any other determinantal
point process such as CUE, GUE, the complex Ginibre ensemble in random matrix
theory and Gaussian analytic functions in random polynomial theory. And the
similar results may hold as well, but note that one has to change the conditions
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especially (17) for the test functions to others according to the symmetry and the
invariance of the underlying space and the kernel.

Notation. In this paper, we use C (or c) to denote some constants independent
of n, whose specific values may change from line to line. For a sequence of numbers
an and bn, we write an = o(bn) if bn 6= 0 and limn→∞ an/bn = 0; an = O(bn) if
there exists some constant C such that |an| ≤ C |bn|; an = Θ(bn) if an = O(bn)
and bn = O(an); an ∼ bn if limn→∞ an/bn = 1.

2. A graphical representation of cumulants

In this section we will derive a graphical representation of the cumulants for the
multivariate linear statistics of any determinantal point process.

Given a random variable X, its m-th cumulant Qm(X) is defined to be the
coefficient in the formal expansion of logE exp(itX),

logE exp(itX) =

∞∑
m=1

Qm(X)

m!
(it)m. (30)

A partition of a set S is an unordered collection R = {R1, . . . , R`} of nonempty
subsets of S where ` is some positive integer not exceeding |S|. In addition, R
satisfies the following two conditions:

• Ri ∩Rj = ∅ for i 6= j.
• ∪`i=1Ri = S.

Let m be any positive integer. We denote by Π(m) the set of partitions of
{1, 2, · · · ,m}. The moments of X can be derived from its cumulants as follows,

E(Xm) =
∑

R={R1,...,R`}∈Π(m)

Q|R1| . . . Q|R`|. (31)

On the other hand, the cumulants can be expressed by moments as

Qm(X) =
∑

R={R1,...,R`}∈Π(m)

(−1)`−1(`− 1)!Π`
i=1EX |Ri|. (32)

Some simple properties of cumulants include

Q1(X) = E(X), Q2(X) = Var(X), Qm(cX) = cmQm(X).

If X is a Gaussian random variable, then Qm(X) = 0 for all m ≥ 3.
Similarly to the method of moments, to show that Xn converges in distribution

to X, it suffices to prove that the m-th cumulant of Xn converges to Qm(X) for
all fixed m (as long as the limit is uniquely determined by its cumulants). For the
special case that X is Gaussian distributed and Xn has mean 0, it suffices to prove

lim
n→∞

Qm(Xn)

Var(Xn)
m
2

= 0

for all sufficiently large m ([9, Lemma 3]).
Let Φ be a determinantal point process on the space X associated with the

kernel K(x, y). In the followings, we will derive a formula for the cumulants of the
multivariate linear statistics. We will expand the m-th power of the multivariate
linear statistics and express it in the form of (31), then the formula for the cumulants
can be found directly from this expression.
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To expand (
∑

(x1,...,xk)∈Φk∗
f(x1, .., xk))m, we have km points x1, . . . , xmk (count-

ing multiplicities) appearing in the product f(x1, . . . , xk) · · · f(xmk−k+1, . . . , xmk).
We write yi,j := x(i−1)k+j for 1 ≤ i ≤ m, 1 ≤ j ≤ k, and set yi := (yi,1, . . . , yi,k).
Then we have ∑

(x1,...,xk)∈Φk∗

f(x1, . . . , xk)

m

=
∑

y1,...,ym∈Φk∗

f(y1) · · · f(ym). (33)

We first introduce a notation: given any positive integer p, we define the set

[p] :=
{

1, . . . , p
}
.

To find the relations among the points x1, . . . , xmk, we define by

M(m, k) := Map([m], [km]k∗)

the set of all maps from [m] to

[km]k∗ :=
{

(i1, . . . , ik) ∈ [km]k : ij 6= i`, ∀ 1 ≤ j < ` ≤ k
}
. (34)

To be more precise, let T be an element in M(m, k), then we can rewrite it as

T := (T1, . . . , Tm),

where each Ti is the image of i ∈ {1, 2, ..,m} under the map T and

Ti ∈
{

(i1, . . . , ik) : ij ∈ [km] and ij 6= i`, ∀ 1 ≤ j < ` ≤ k
}
.

We also write Ti = (Ti,1, . . . , Ti,k) where Ti,j is the j-th component of the k-tuple
Ti. For example, when m = 3 and k = 2, then T,T′,T′′ defined as follows all
belong to M(3, 2),

T1 = (1, 2), T2 = (1, 4), T3 = (2, 4). (35)

T ′1 = (1, 3), T ′2 = (1, 6), T ′3 = (3, 6). (36)

T ′′1 = (1, 2), T ′′2 = (1, 4), T ′′3 = (5, 6). (37)

We say two maps T, T̂ ∈ M(m, k) are equivalent if they differ by a permutation
of [km], i.e. by composing with a permutation they become the same map. We
denote by S(m, k) the set of all equivalence classes of M(m, k). As an example, the
T and T′ defined in (35) and (36) are equivalent since the permutation (23)(46)
brings T to T′. But T′′ defined in (37) is neither equivalent to T nor T′.

For any T ∈ M(m, k), we can construct a graph for it, which we call T-graph.
The T-graph is constructed in two steps. Initially there are mk vertices in total,
indexed by (i, j) for 1 ≤ i ≤ m, 1 ≤ j ≤ k. First for each 1 ≤ i ≤ m and
1 ≤ j ≤ k − 1, we draw a black edge between Ti,j and Ti,j+1. Then for any
(i, j) 6= (i′, j′) such that Ti,j = Ti′,j′ , we use a solid red edge to connect (i, j) and
(i′, j′). See Figure 1 for the graphical representations of T, T′ and T′′. One can see

that if T is equivalent to T̂, then T-graph is the same as T̂-graph, and vice versa.
Consequently, each equivalence class in S(m, k) can be identified with a T-graph.

For T ∈M(m, k), we define the size and the range of T as

|T| := |∪mi=1Ti| , Range(T) = ∪Ti.
For example, for the T defined in (35) we have |T| = 3 and Range(T) = {1, 2, 4}.

For notational simplicity, for a collection of indices t = (t1, . . . , tk), we define
f(t) := f(xt1 , xt2 , . . . , xtk); by an abuse of nation, for T = (T1, . . . , Tm), we set
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(1, 1)

(2, 1)

(1, 2)

(3, 2)

(2, 2)

(3, 1)

T1 T3

T2

(1, 1)

(2, 1)

(1, 2)

(3, 2)

(2, 2)

(3, 1)

T ′1 T ′3

T ′2

(1, 1)

(2, 1)

(1, 2)

(3, 2)

(2, 2)

(3, 1)

T ′′1 T ′′3

T ′′2

Figure 1. Graphical view of T (left), T′ (middle) and T′′ (right)

f(T) = Πm
i=1f(Ti); and we write dx as the volume element involved in the integra-

tion. By the definition of the determinantal point process, we have

E

 ∑
(x1,...,xk)∈Φk∗

f(x1, . . . , xk)

m
=

∑
T∈S(m,k)

∫
X |T|

f(T) det
(
K(xi, xj)i,j∈Range(T)

)
dx

=
∑

T∈S(m,k)

∑
σ∈Sym(Range(T))

∫
X |T|

f(T)sgn(σ)Πq∈Range(T)K(xq, xσ(q))dx.

(38)

Here, for any set A, Sym(A) is the set of all permutations of the elements in A,
and sgn(σ) is the sign of the permutation σ.

For any T and σ ∈ Sym(Range(T)) we can further construct a (T, σ)-graph G
by adding dotted red edges to the T-graph. Specifically, for any Ti,j 6= Ti′,j′ , we
add a dotted red edge between two vertices (i, j) and (i′, j′) if σ(Ti,j) = Ti′,j′ or
σ(Ti′,j′) = Ti,j . We say the pair (T, σ) is connected if the (T, σ)-graph is connected.

For example, for T defined in (35), the (T, σ)-graph G is connected for any
σ ∈ Sym({1, 2, 4}) because the T-graph itself is already connected. On the other
hand, for T′′ defined in (37), if σ = id (the identity in the permutation group), then
the (T′′, σ)-graph has two components. However, for σ = (15) ∈ Sym({1, 2, 4, 5, 6})
the (T′′, σ)-graph becomes connected.

(1, 1)

(2, 1)

(1, 2)

(3, 2)

(2, 2)

(3, 1)

T1 T3

T2

(1, 1)

(2, 1)

(1, 2)

(3, 2)

(2, 2)

(3, 1)

T ′′1 T ′′3

T ′′2

(1, 1)

(2, 1)

(1, 2)

(3, 2)

(2, 2)

(3, 1)

T ′′1 T ′′3

T ′′2

Figure 2. T in (35), σ = id (left); T′′ in (37), σ = id (middle);
T′′ in (37), σ = (15) (right).

If a (T, σ)-graph G has ` connected components, then G naturally induces a
partition R of [m] into ` disjoint sets {R1, . . . , R`}. For 1 ≤ j ≤ `, we set

Hj := ∪i∈RjTi, σj = the restriction of σ to Hj .
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Let f(T|Rj ) =
∏
i∈Rj f(Ti). Then for the integral∫

X |T|
f(T1)f(T2) . . . f(Tm)sgn(σ)Πq∈Range(T)K(xq, xσ(q))dx,

we can split it into a product of exactly ` integrals∏̀
j=1

∫
X|Hj |

sgn(σj)f(T|Rj )
∏
q∈Hj

Kn(xq, xσj(q))dxq

 .

For any integer-valued r, we define

C(r) :=
{

(T, σ) : T ∈ S(r, k), σ ∈ Sym(Range(T)),

(T, σ)-graph is connected
}
.

(39)

The definition of {R1, . . . , R`} implies that, for each 1 ≤ j ≤ `, the pair (T|Rj , σj)
is in C(|Rj |). Therefore, we have∑

T∈S(m,k)

∑
σ∈Sym(Range(T))

∫
X |T|

f(T)sgn(σ)
∏

q∈Range(T)

K(xq, xσ(q))dx

=
∑

R={R1,...,R`}∈Π(m)

∏̀
j=1

 ∑
(T,σ)∈C(|Rj |)

Int(f, (T, σ))

 ,

(40)

where

Int(f, (T, σ)) :=

∫
X |T|

f(T)sgn(σ)
∏

q∈Range(T)

K(xq, xσ(q))

 dx.

Combining (31) (38) and (40), we obtain the following formula for the cumulants
of multivariate linear statistics of general determinantal point processes.

Lemma 1.

Qm

 ∑
(x1,...,xk)∈Φk∗

f(x1, . . . , xk)


=

∑
(T,σ)∈C(m)

∫
X |T|

f(T)sgn(σ)
∏

q∈Range(T)

K(xq, xσ(q))dx.

(41)

For k = 1, (41) gives the following well-known formula (Formula (2.7) in [8]),

Qm

(∑
x∈Φ

f(x)

)

=

m∑
`=1

∑
(n1,...,n`):

∑`
j=1 nj=m,nj≥1,∀j

(−1)`−1

`

m!

n1! . . . n`!∫
X `
fn1(x1) · · · fn`(x`)K(x1, x2) · · ·K(x`−1, x`)K(x`, x1)dx.

(42)

Indeed, by the definition of S(m, 1), each T ∈ S(m, 1) corresponds to one way
of assigning m different balls into ` indistinguishable urns for some `. Hence the
T-graph itself has ` components and also partitions the set [m] into ` components.



MULTIVARIATE LINEAR STATISTICS 11

Thus, to ensure the (T, σ)-graph is connected, different components have to be
linked through σ ∈ Sym(Range(T)), which implies that σ has to be a cyclic per-
mutation of length `. As an example, suppose k = 1, m = 5 and T = {1, 2, 3, 3, 3},
then |T| = 3 and σ has to be (123) or (132) to obtain a connected (T, σ)-graph.

For later reference, we introduce a few more concepts.

Definition 1. For a (T, σ)-graph, we say Ti,j is a connection point if at least one
of the two conditions are satisfied:

• σ(Ti,j) /∈ Ti.
• There exists an i′ 6= i such that Ti,j ∈ Ti′ .

Equivalently, using the graphical representation of a (T, σ)-graph, Ti,j is a connec-
tion point if (i, j) is connected to some vertex in {(i′, j′) : i′ 6= i, 1 ≤ j′ ≤ k} by a
red edge, either solid or dotted.

Note that, if the (T, σ)-graph is connected, then for each i, there must exist at
least one connection point Ti,j .

Definition 2. We say a (T, σ) pair is reducible if its (T, σ)-graph is connected
and there exists an i ∈ [m] and a j ∈ [k] such that

• Ti,j is the only connection point in Ti.
• σ(x) = x,∀x ∈ Ti − {Ti,j}.

If the above two conditions hold, then we say the (T, σ)-graph breaks at Ti,j and
Ti,j is a break point. Equivalently, (T, σ)-graph is reducible if it is connected and
there exists some (i, j) which is the only vertex in {(i, j) : 1 ≤ j ≤ k} that can have
red edge(s) connecting with other vertices. We say a (T, σ) pair is irreducible if it
is not reducible.

We define I(m) to be the set of all (T, σ) ∈ C(m) that are irreducible, i.e.,

I(m) := {(T, σ) ∈ C(m) : (T, σ) is irreducible}. (43)

An example of the reducible graph is given by the right panel of Figure 2, while
the left and the middle ones in Figure 2 are irreducible.

Definition 3. We say a (T, σ) ∈ I(m) is circle-like if for each 1 ≤ i ≤ m,
there are exactly two distinct numbers 1 ≤ i1 6= i2 ≤ k such that each of (i, i1)
and (i, i2) has exactly one red edge and the red edge is connected to a vertex in
{(i′, j′) : i′ 6= i, 1 ≤ j′ ≤ k}, and all other vertices, i.e., those not in the set
{(i, i1), (i, i2) : 1 ≤ i ≤ m}, have no red edge.

The following proposition explains the name ‘circle-like’.

Proposition 1. Let (T, σ) be circle-like. Then there exists a cyclic permutation p
of {1, . . . ,m} such that, for each 1 ≤ i ≤ m, there exist two distinct indices i1 and
i2 and that (i, i2) is connected with (p(i), p(i)1) with a red edge.

Proof. Note that, by the definition of being circle-like, if we contract all vertices in
{(i, j) : 1 ≤ j ≤ k} into a single vertex (and give it label i), then we will obtain a
connected graph with m vertices such that each vertex has degree 2, which is then
necessarily a circle of size m. Fix a direction of the circle, suppose the label of these
vertices are a1, . . . , am. Then we can define a permutation p such that p(ai) = ai+1

where am+1 := a1. In addition, by reordering i1 and i2 for each 1 ≤ i ≤ m if needed,
we can assume that (ai, (ai)2) is connected with (ai+1, (ai+1)1) for all 1 ≤ i ≤ m
with a red edge. This completes the proof. �
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As a remark, we will see that in the proof of Theorem 3 for the degenerate case,
the collections of the cycle-like (T, σ)-graph will provide the leading order term for
the cumulants of multivariate linear statistics, which will eventually yield the 2nd
order Wiener chaos.

3. Properties of the spectral projection kernel

In this section, we first review some basic facts for the spectral projection kernel.
Then we will derive several integral lemmas which provide the key estimates to prove
the main results.

3.1. Preliminaries. It’s well-known that the kernel for the spectral orthogonal
projection Kn : L2(Sd)→ Hn(Sd) satisfies (Theorem 2.9 in [2])

Kn(x, y) =
kn
sd
Pn(cos d(x, y)) =

kn
sd
Pn(x · y), (44)

where d(x, y) ∈ [0, π] is the geodesic distance which is the angle between the vectors
x, y ∈ Sd, Pn is the Legendre polynomial of degree n in d dimension, kn is the

dimension of Hn given in (4) and sd = 2π
d+1
2 /Γ(d+1

2 ) is the surface area of Sd.
Since both x and y are on the unit sphere, then we can rewrite cos d(x, y) = x · y
as the inner product between x and y.

We also write

Pn(x, y) := Pn(cos d(x, y)) = Pn(x · y).

By the fact that Pn(1) = 1 [2], one has the identity

Kn(x, x) =
kn
sd
. (45)

The kernel Kn(x, y) satisfies the reproducing property,∫
Sd
Kn(x1, x2)Kn(x2, x3)dx2 = Kn(x1, x3). (46)

When x1 = x3, (46) reads, ∫
Sd
K2
n(x1, x2)dx2 =

kn
sd
, (47)

and thus we have ∫
(Sd)2

K2
n(x1, x2)dx1dx2 = kn. (48)

For Pn, two basic properties are [2],

Pn(x) = (−1)nPn(−x) (49)

and

|Pn(x)| ≤ 1, ∀x ∈ [−1, 1]. (50)

By (45) and the reproducing property (46), we obtain that∫
Sd
Pn(x1, x2)Pn(x2, x3)dx2 =

(
kn
sd

)−1

Pn(x1, x3), (51)

and by (47), we have ∫
Sd
P 2
n(x1, x2)dx2 =

(
kn
sd

)−1

. (52)
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For 0 ≤ θ ≤ π/2, one has the Hilb’s asymptotics for the Legendre polynomials (by
taking α = β = d−2

2 in [10, Theorem 8.21.12]),

Pn(cos θ) =Γ

(
d

2

)(
θ

sin θ

) 1
2
(

1

2
(n+

d− 1

2
) sin θ

)− d−2
2

J d−2
2

(
(n+

d− 1

2
)θ

)
+Rn(θ),

(53)

where J d−2
2

is the Bessel function of order d−2
2 . And the error term satisfies the

estimates:

Rn(θ) =

{
θ2O(1) 0 ≤ θ ≤ cn−1 ,

θ
3−d
2 O(n−

1+d
2 ) cn−1 ≤ θ ≤ π/2 ,

where c is some constant independent of n.
For the Bessel function, J d−2

2
is bounded on the positive real line and has the

expansion (Formula (1.71.1) in [10]),

J d−2
2

(x) =

∞∑
j=0

(−1)j

j!Γ(j + d
2 )

(x
2

)2j+ d−2
2

. (54)

Furthermore, it admits the asymptotic expansion (Formula (1.71.7) in [10]),

J d−2
2

(x) =

√
2

πx
cos
(
x− (d− 1)

π

4

)
+ o(x−1) as x→ +∞. (55)

Now we define a function pn(θ) for θ ∈ [0, π] as follows. For 0 ≤ θ ≤ π/2, we define

pn(θ) :=Γ
(d

2

)( θ

sin θ

)1/2(
1

2
(n+

d− 1

2
) sin θ

)−(d−2)/2

×

√
2

π(n+ (d− 1)/2)θ
cos
(

(n+ (d− 1)/2)θ − (d− 1)
π

4

)
=Γ
(d

2

)(2d−1

π

)1/2(
n+ (d− 1)/2

)−(d−1)/2(
sin θ

)−(d−1)/2

× cos
(

(n+ (d− 1)/2)θ − (d− 1)
π

4

)
;

(56)

for π/2 < θ ≤ π, we define

pn(θ) := (−1)npn(π − θ).

Combining (53) and (55), for 0 ≤ θ ≤ π, we have the estimates,

|Pn(cos θ)− pn(θ)| ≤ C
(

min{nθ, n(π − θ)}−d/2 ∧ 1
)
, (57)

|Pn(cos θ)| ≤ C
(

min{nθ, n(π − θ)}−(d−1)/2 ∧ 1
)
, (58)

and

|pn(θ)| ≤ C
(

min{nθ, n(π − θ)}−(d−1)/2 ∧ 1
)
. (59)
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3.2. Integral estimates. Now we will prove several lemmas involving the integrals
of the kernel Kn. They will be one of the main technical ingredients in the proofs
of our main results.

We will use the spherical coordinate system (θ, φ1, . . . , φd−1) for Sd, where
θ, φ1, . . . , φd−2 range over [0, π] and φd−1 ranges over [0,2π]. Here, θ is the arc
length from the point (θ, φ) to the origin of the coordinate system. For simplic-
ity, we will use φ as a shorthand for (φ1, . . . , φd−1), and thus the range of φ is
Ω := [0, π]d−2 × [0, 2π]. Then the volume element for Sd with respect to the stan-
dard round metric is

dx = Ĵ(θ, φ)dθdφ,

where

Ĵ(θ, φ) = sind−1(θ) sind−2(φ1) · · · sin(φd−2).

We define

J(φ) := sind−2(φ1) · · · sin(φd−2),

and thus we can rewrite

dx = sind−1(θ)J(φ)dθdφ.

The first lemma concerns the integration of a function against K2
n.

Lemma 2. For any bounded function f(x, y), we have

lim
n→∞

1

kn

∫
Sd

∫
Sd
f(x, y)K2

n(x, y)dxdy

=
2d−1

Γ(d)π

(Γ
(
d
2

)
sd

)2
∫
Sd

∫ π

0

∫
Ω

f(x, x+ (θ, φ))J(φ)dφdθdx.

=
2d−1

Γ(d)π

(Γ
(
d
2

)
sd

)2
∫
Sd

∫
Sd

f(x, y)

sind−1(arccos(x · y))
dxdy.

(60)

The next two lemmas give upper bounds on the integration of the product of
several K ′ns.

Lemma 3. For any r ∈ N, r ≥ 2,∫
(Sd)r

∣∣∣ r∏
i=1

Kn(xi, xi+1)
∣∣∣dx1 · · · dxr = O(n

(d−1)r
2 ), (61)

where xr+1 is set to be x1. Equivalently,∫
(Sd)r

∣∣∣ r∏
i=1

Pn(xi, xi+1)
∣∣∣dx1 · · · dxr = O(n−

(d−1)r
2 ). (62)

Lemma 4. For any r ∈ N, r ≥ 3 and bounded measurable function h of r variables,∫
(Sd)r

h(x1, . . . , xr)

r∏
i=1

Pn(xi, xi+1)dx1 · · · dxr = o(n−
(d−1)r

2 ), (63)

where xr+1 is set to be x1.

We now give the proofs of Lemmas 2-4.
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Proof of Lemma 2. By the boundedness of f , without loss of generality, we may
assume that f is nonnegative. For x, y ∈ Sd, we build a spherical coordinate
system (θ, φ) with x being the north pole and write y as x + (θ, φ). By the facts
that Kn(x, y) = knPn(cos θ)/sd and |Pn cos(θ)| = |Pn cos(π − θ)|, we have∫

Sd

∫
Sd
f(x, y)K2

n(x, y)dxdy

=
(kn
sd

)2
∫
Sd

∫ π

0

∫
Ω

f(x, x+ (θ, φ))Pn(cos θ)2Ĵ(θ, φ)dφdθdx

=
(kn
sd

)2
(∫

Sd

∫ π
2

0

∫
Ω

f(x, x+ (θ, φ))Pn(cos θ)2Ĵ(θ, φ)dφdθdx

+

∫
Sd

∫ π
2

0

∫
Ω

f(x, x+ (π − θ, φ))Pn(cos θ)2Ĵ(θ, φ)dφdθdx

)

:=
(kn
sd

)2

(I1 + I2).

(64)

We will analyze I1 and I2 by a series of approximations. We only give details for
I1, and I2 follows from the same arguments. By Hilb’s asymptotic (53), one has

Pn(cos θ)2 =Γ
(d

2

)2
(

1

2
(n+

d− 1

2
) sin θ

)−(d−2) ( θ

sin θ

)
J d−2

2

(
(n+

d− 1

2
)θ

)2

+ R̂n(θ),

(65)

where

R̂n(θ) =

{
θ2O(1) 0 ≤ θ ≤ c/n ,
θ2−dO(n−d) c/n ≤ θ ≤ π/2 .

We now define

I3 =

∫
Sd

∫ π
2

0

∫
Ω

θJ d−2
2

(
(n+

d− 1

2
)θ
)2

f(x, x+ (θ, φ))J(φ)dφdθdx. (66)

By (64) and (65) there exists C > 0 such that∣∣∣∣∣I1 − Γ
(d

2

)2
(

1

2
(n+

d− 1

2
)

)−(d−2)

I3

∣∣∣∣∣ ≤ Cn−d. (67)

By (55), for any ε ∈ (0, 1), there exists an M > 0 large enough such that for x > M ,
we have

(1− ε) 2

πx
cos2

(
x− (d− 1)

π

4

)
− x− 3

2

≤J d−2
2

(x)2

≤(1 + ε)
2

πx
cos2

(
x− (d− 1)

π

4

)
+ x−

3
2 .

(68)



16 FENG, GÖTZE, AND YAO

Now we split I3 into two terms,

I3 =

∫
Sd

∫ M/n

0

∫
Ω

J d−2
2

(
(n+

d− 1

2
)θ

)2

f(x, x+ (θ, φ))θJ(φ)dφdθdx

+

∫
Sd

∫ π
2

M/n

∫
Ω

J d−2
2

(
(n+

d− 1

2
)θ

)2

f(x, x+ (θ, φ))θJ(φ)dφdθdx

:=I4 + I5.

(69)

For I4, by the boundedness of f and J d−2
2

, there exists some C > 0 such that

|I4| ≤ CM2/n2. (70)

For I5, it holds trivially that (n + d−1
2 )θ > M for θ > M/n. Hence, we can apply

the estimates (68) for J d−2
2

((n+ d−1
2 )θ). We set

I6 =

∫
Sd

∫ π
2

M/n

∫
Ω

2

π(n+ (d− 1)/2)θ
f(x, x+ (θ, φ))

× cos2
(

(n+
d− 1

2
)θ − (d− 1)

π

4

)
θJ(φ)dφdθdx.

(71)

Combining (68), (71) and the following estimate∫
Sd

∫ π
2

M/n

∫
Ω

(
(n+

d− 1

2
θ)

)−3/2

f(x, x+ (θ, φ))θJ(φ)dφdθdx ≤ Cn−3/2,

we have that

(1− ε)I6 − Cn−
3
2 ≤ I5 ≤ (1 + ε)I6 + Cn−

3
2 . (72)

By Riemann-Lebesgue lemma, for any fixed x and φ, one has

lim
n→∞

∫ π
2

M/n

f(x, x+ (θ, φ)) cos2
(

(n+
d− 1

2
)θ − (d− 1)

π

4

)
dθ

= lim
n→∞

∫ π
2

M/n

f(x, x+ (θ, φ))
(1

2
+

cos((2n+ d− 1)θ − (d− 1)π2 )

2

)
dθ

=
1

2

∫ π
2

0

f(x, x+ (θ, φ))dθ.

(73)

Therefore, the bounded convergence theorem implies that

lim
n→∞

∫
Sd

∫
Ω

∫ π
2

M/n

f(x, x+ (θ, φ)) cos2
(

(n+
d− 1

2
)θ − π

4

)
J(φ)dθdφdx

=
1

2

∫
Sd

∫
Ω

∫ π
2

0

f(x, x+ (θ, φ))J(φ)dθdφdx.

(74)

This implies that

lim
n→∞

nI6 =
1

π

∫
Sd

∫
Ω

∫ π
2

0

f(x, x+ (θ, φ))J(φ)dθdφdx := I7. (75)

Now, combining (69), (70) and (72) and (75), we have

(1− ε)I7 ≤ lim inf
n→∞

nI3 ≤ lim sup
n→∞

nI3 ≤ (1 + ε)I7. (76)
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Since (76) holds for all ε ∈ (0, 1) while I3 and I7 don’t depend on ε, by sending
ε→ 0, we have

lim
n→∞

nI3 = I7. (77)

Combining (67) and (77), we have

lim
n→∞

nd−1I1 = Γ
(d

2

)2

2d−2I7.

By the same argument with θ replaced by π − θ, we get a similar limit

lim
n→∞

nd−1I2 = Γ
(d

2

)2

2d−2I8,

where I8 is defined similarly to I7 as

I8 =
1

π

∫
Sd

∫
Ω

∫ π

π
2

f(x, x+ (θ, φ))J(φ)dθdφdx.

By the fact kn ∼ 2nd−1/Γ(d), we get

lim
n→∞

1

kn

∫
Sd

∫
Sd
f(x, y)K2

n(x, y)dxdy

= lim
n→∞

(
kn
s2
d

)
(I1 + I2)

= lim
n→∞

2nd−1

Γ(d)

1

s2
d

Γ
(d

2

)2

2d−2n−(d−1)(I7 + I8)

=
Γ
(
d
2

)2

2d−1

πΓ(d)s2
d

∫
Sd

∫ π

0

∫
Ω

f(x, x+ (θ, φ))J(φ)dφdθdx.

(78)

This completes the proof of Lemma 2.
�

As a remark, the proof of Lemma 2 actually shows that for almost all x, we have

lim
n→∞

1

kn

∫
Sd
f(x, y)K2

n(x, y)dy

=
2d−1

Γ(d)π

(Γ
(
d
2

)
sd

)2
∫
Sd

f(x, y)

sind−1(arccos(x · y))
dy.

(79)

Proof of Lemma 3. To prove Lemma 3, we recall (58) where we have

Pn(x, y) ≤ Cn−
d−1
2 (min{d(x, y), π − d(x, y)})−

d−1
2 . (80)

For x1, . . . , xd ∈ Sd, let αi,j = d(xi, xj) be the geodesic distance which is the angle
between xi and xj and let βi,j = min{αi,j , π − αi,j}. We now claim

β1,3 ≤ β1,2 + β2,3. (81)

To prove (81), we consider four possible cases.

• If α1,2 < π/2 and α2,3 ≤ π/2, then we have

β1,2 + β2,3 = α1,2 + α2,3 ≥ α1,3 ≥ β1,3.

Here, the first inequality follows from triangle inequality.
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• If α1,2 < π/2 and α2,3 ≥ π/2, then by symmetry of the sphere, if we set
x′3 := −x3 (the reflection of x3 through the origin of Rd+1), we have

β1,2 + β2,3 = α1,2 + π − α2,3 = d(x1, x2) + d(x2, x
′
3) ≥ d(x1, x

′
3) ≥ β1,3.

• The case α1,2 ≥ π/2 and α2,3 < π/2 can be analyzed similarly to the second
case.
• If α1,2 ≥ π/2 and α2,3 ≥ π/2, then by setting x′2 := −x2, we have

β1,2 + β2,3 = d(x1, x
′
2) + d(x′2, x3) ≥ d(x1, x3) ≥ β1,3.

The inequality (81) implies that

β1,2β2,3 = max{β1,2, β2,3}min{β1,2, β2,3} ≥
β1,3

2
min{β1,2, β2,3},

which gives

(β1,2β2,3)−(d−1)/2 ≤ Cβ−(d−1)/2
1,3 min{β1,2, β2,3}−(d−1)/2

≤ Cβ−(d−1)/2
1,3

(
β
−(d−1)/2
1,2 + β

−(d−1)/2
2,3

)
.

(82)

By (80) and (82), for any fixed x1 and x3, we have∫
Sd

∣∣∣Pn(x1, x2)Pn(x2, x3)
∣∣∣dx2

≤Cn−(d−1)

∫
Sd

(β1,2β2,3)−(d−1)/2dx2

≤Cn−(d−1)β
−(d−1)/2
1,3

∫
Sd

(
β
−(d−1)/2
1,2 + β

−(d−1)/2
2,3

)
dx2

≤Cn−(d−1)β
−(d−1)/2
1,3

(∫ π

0

β
−(d−1)/2
1,2 sind−1(α1,2)dα1,2

+

∫ π

0

β
−(d−1)/2
2,3 sind−1(α2,3)dα2,3

)
≤Cn−(d−1)β

−(d−1)/2
1,3 .

(83)

Using (83) r − 2 times to integrate out the variables x2, . . . , xr−1, we get∫
(Sd)r

∣∣∣ r∏
i=1

Pn(xi, xi+1)
∣∣∣dx1 · · · dxr

≤Cn−(d−1)r/2

∫
Sd

(∫ π

0

β
−(d−1)
1,r sin(d−1)(α1,r)dα1,r

)
dx1

≤Cn−(d−1)r/2.

(84)

This proves Lemma 3.
�

Proof of Lemma 4. As in the proof of Lemma 3, let αi,i+1 be the angle between xi
and xi+1 and set βi,i+1 = min{αi,i+1, π − αi,i+1}. Recall the function pn defined
in (56), by (57),

|Pn(xi, xi+1)− pn(αi,i+1)| = |Pn(cosαi,i+1)− pn(αi,i+1)| ≤ C(nβi,i+1)−d/2. (85)

We can write

h(x1, . . . , xr)Π
r
i=1Pn(xi, xi+1) = h(x1, . . . , xr)Π

r
i=1pn(αi,i+1) + Ir (86)
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where the error term Ir is bounded from above as

Ir ≤C |h(x1, . . . , xr)|
r∑
j=1

(nβj,j+1)−d/2
( r∏
i=1,i6=j

(|Pn(cosαj,j+1)|+ |pn(αj,j+1)|)
)

≤Cn−
(d−1)(r−1)

2 n−d/2
r∑
j=1

β−d/2j,j+1

 r∏
i=1,i6=j

β
−(d−1)/2
i,i+1

 .

(87)

The first inequality is given by the estimate (85) together with the following ele-
mentary inequality: given a1, . . . , ar, b1, . . . , br ∈ R, one has∣∣∣∣∣

r∏
i=1

ai −
r∏
i=1

bi

∣∣∣∣∣ 6
r∑
j=1

|aj − bj |

 r∏
i=1,i6=j

(|ai|+ |bi|)

 .

The second inequality in (87) is given by the estimates (58) and (59).
By slightly modifying the proof of Lemma 3 we can show that∫

(Sd)r
β
−d/2
j,j+1

 r∏
i=1,i6=j

β
− d−1

2
i,i+1

 dx1 · · · dxr <∞. (88)

Combining (87) and (88), we get∫
(Sd)r

|Ir| dx1 · · · dxr ≤ Cn−
(d−1)r

2 − 1
2 = o(n−

(d−1)r
2 ). (89)

We define a function

g(x1, . . . , xr) := h(x1, . . . , xr)

r∏
i=1

sin−(d−1)/2(βi,i+1). (90)

The proof of Lemma 3 implies that the function Πr
i=1 sin−

d−1
2 (βi,i+1) is integrable

over (Sd)r. On the other hand, by definition of pn, we can write

h(x1, . . . , xr)

r∏
i=1

pn(αi,i+1)

=(n+ (d− 1)/2)−(d−1)r/2 × g(x1, . . . , xr)

×
r∏
i=1

(
(−1)n1[αi,i+1>π/2] cos

(
(n+

d− 1

2
)βi,i+1 − (d− 1)

π

4

))
.

(91)

When computing the integration over x1, . . . , xr, we can build a spherical coordinate
system (θ, φ) around x2 and represent x1 by x2 + (θ, φ). Here θ ∈ [0, π] and φ has
d−1 components φ1, . . . , φd−1. We claim that, for almost every (fixed) φ, x2, . . . , xr,
the integration of (91) over θ has the limit

lim
n→∞

∫
Sd
g(x2 + (θ, φ), x2, . . . , xr)×∏

i=1,r

(
(−1)n1[αi,i+1>π/2] cos

(
(n+

d− 1

2
)βi,i+1 − (d− 1)

π

4

))
dθ = 0.

(92)
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Assume (92) for the moment, by (91) and the dominated convergence theorem, we
have ∫

(Sd)r
h(x1, . . . , xr)

r∏
i=1

pn(αi,i+1)dx1 · · · dxr = o(n−
(d−1)r

2 ). (93)

Lemma 4 now follows from (86), (89) and (93). Hence it remains to prove (92).
To this end we first rewrite the product of the two cos(· · · ) factors in (92) as

1

2
cos

(
(n+

d− 1

2
)(β1,2 + βr,r+1)− (d− 1)

π

2

)
+

1

2
cos

(
(n+

d− 1

2
)(β1,2 − βr,r+1)

)
.

(94)

Under the spherical coordinate system, α1,2 = θ so that β1,2 = min{θ, π − θ}.
Denote by (θ′, φ′) the coordinate of xr in this system. By making an orthogonal
transformation if necessary, we may assume that φ′1 = 0.

To compute βr,r+1, note that

cosαr,r+1 = cosαr,1 = x1 · xr = cos θ cos θ′ + sin θ cosφ1 sin θ′. (95)

If neither θ′ nor φ1 is not equal to 0 or π, then αr,r+1, viewed as a function of θ, is
continuously differentiable at all but finite many θ’s, and satisfies∣∣∣∣dαr,r+1

dθ

∣∣∣∣ =
|− sin θ cos θ′ + cos θ cosφ1 sin θ′|√
1− (cos θ cos θ′ + sin θ cosφ1 sin θ′)2

< 1.

Thus, β1,2 ± βr,r+1 is piecewise differentiable in θ with a nonzero derivative. The
limit (92) now follows from (94) and (the proof of) the Riemann-Lebesgue lemma.

Note that (92) is not true for r = 2 where the second cos(· · · ) factor in (94)
is a constant, which further implies that the integration (92) may tend to some
constant other than 0. Thus we need the assumption r ≥ 3.

�

4. Proof of Theorem 1

In this section we prove Theorem 1 regarding the asymptotic expansion of the
mean E(Lnf). By (1) and (3), we have

E(Lnf) =

∫
(Sd)k

f(x1, . . . , xk) det
(
Kn(xi, xj)1≤i,j≤k

)
dx1 · · · dxk (96)

We can expand the determinant as

det
(
Kn(xi, xj)1≤i,j≤k

)
=

k∏
i=1

Kn(xi, xi)−
∑

1≤i<j≤k

K2
n(xi, xj)

∏
` 6=i,j

Kn(x`, x`)

+ remainder term,

where the remainder term (denoted by I9) is the sum of sgn(σ)Πk
i=1Kn(xi, xσ(i))

over all σ′s ∈ Sym(k) which are neither the identity nor a transposition (a permu-
tation which exchanges two elements and keeps all others fixed). Using the cycle
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decomposition of permutations, (44) and (50), we have the upper bound

|I9| ≤C
(
kn
sd

)k ∑
σ=(i1j1)(i2j2)

P 2
n(xi1 , xj1)P 2

n(xi2 , xj2)

+
∑

3≤r≤k

∑
σ=(i1···ir)

∣∣Pn(xi1 , xi2) · · ·Pn(xir−1 , xir )Pn(xir , xi1)
∣∣ ,

(97)

where C is some constant depending on k.
Combining (52), the estimate kn = Θ(nd−1), the boundedness of f and Lemma

3, we have the upper bound∫
(Sd)k

|f(x1, . . . , xk)| |I9| dx1 · · · dxk ≤ Cn(d−1)k(n−2(d−1) + n−3(d−1)/2), (98)

which gives the error term in (12). We also have∫
(Sd)k

f(x1, . . . , xk)

×
( k∏
i=1

Kn(xi, xi)−
∑

1≤i<j≤k

K2
n(xi, xj)

∏
6̀=i,j

Kn(x`, x`)
)
dx1 · · · dxk

=

(
kn
sd

)k ∫
(Sd)k

f(x1, . . . , xk)dx1 · · · dxk

−
(
kn
sd

)k−2 ∫
(Sd)2

∑
1≤i<j≤k

fi,j(x, y)K2
n(x, y)dxdy,

(99)

where fi,j is the (i, j)-margin function of f as defined in (11). Applying Lemma 2
to (99), we will get the first two terms in (12), which finishes the proof of Theorem
1.

5. Proof of Theorem 2

5.1. Univariate case. The univariate linear statistics for determinantal point pro-
cesses has been understood very well. The following result proved in [9] is partic-
ularly useful. Given a family of determinantal point processes with kernel Kn and
measurable bounded univariate functions fn with compact support (to ensure inte-
grability), let Lnfn and Ln |fn| be the linear statistics of fn and |fn|, respectively.
Suppose that

Var(Lnfn)→∞, sup |fn| = o(Var(Lnfn)ε), E(Ln |fn|) = O(Var(Lnfn)δ) (100)

for any ε > 0 and some δ > 0, then one has the central limit theorem,

Lnfn − E(Lnfn)√
Var(Lnfn)

d−→ N(0, 1).

In our case, the integrability condition holds trivially as the test function is bounded
and the underlying space Sd is compact. Thus, it remains to check the three
conditions in (100) in order to to prove Theorem 2 for the univariate case.
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Note that the variance of Lnf is given by

Var(Lnf) =
1

2

∫
Sd

∫
Sd

(f(x)− f(y))2K2
n(x, y)dxdy. (101)

By Lemma 2, one immediately has the limit,

lim
n→∞

Var(Lnf)

kn

=
2d−2

Γ(d)π

(Γ(d2 )

sd

)2
∫
Sd

∫ π

0

∫
Ω

(f(x)− f(x+ (θ, φ)))2J(φ)dφdθdx.

=
2d−2

Γ(d)π

(Γ(d2 )

sd

)2
∫
Sd

∫
Sd

(f(x)− f(y))2

sind−1(arccos(x · y))
dxdy.

(102)

By definition (10), the 1-margin function is itself for k = 1, i.e., F (x) = f(x), and
thus (102) gives the limit of variance in (14) for k = 1. The assumption that F (x) is
not constant almost everywhere implies the first condition Var(Lnfn) = Θ(kn) →
∞. The second condition is satisfied since f is bounded. The third condition is
satisfied with δ = 1 by the fact that

E(Ln |f |) =

∫
Sd
|f(x)|Kn(x, x)dx =

kn
sd

∫
Sd
|f(x)| dx = Θ(kn).

This completes the proof of Theorem 2 for the univariate case.

5.2. Multivariate case. Now we prove Theorem 2 for the multivariate linear sta-
tistics. There are two steps in the proof. We will first derive the growth order of
the variance Var(Lnf) = Q2(Lnf), then we will prove Qm(Lnf) = o(Q2(Lnf)

m
2 )

for all fixed m ≥ 3. This will imply the Gaussian limit for the multivariate linear
statistics by the method of cumulants.

We first introduce a notation. Given the set A which is a collection of (T, σ)-
graph, we define

Qm(Lnf,A) :=
∑

(T,σ)∈A

∫
(Sd)|T|

f(T)sgn(σ)Πq∈Range(T)K(xq, xσ(q))dx, (103)

where dx is the volume element involved in the integration. With such notation,
we have Qm(Lnf) = Qm(Lnf, C(m)) by (41) (recall the definition of C(m) in (39)).

We first estimate Q2(Lnf), which is the variance Var(Lnf). We can split the
expression for Q2(Lnf) into 3 parts:

Q2(Lnf) = Qm(Lnf, C(2)) = Q2(Lnf,A1) +Q2(Lnf,A2) +Q2(Lnf,A3),

where A1, A2, A3 are disjoint subsets of C(2) defined as follows:

A1 = {(T, σ) ∈ C(2) : |T| = 2k, σ is a transposition, i.e. σ = (ij) for some i, j},
A2 = {(T, σ) ∈ C(2) : |T| = 2k − 1, σ = id},
A3 = C(2)−A1 −A2.

Lemma 5. We have the following two estimates.
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(1)

Q2(Lnf,A1) +Q2(Lnf,A2)

=

(
kn
sd

)2k−2
kn2d−2

Γ(d)π

(Γ(d2 )

sd

)2
∫
Sd

∫
Sd

(F (x)− F (y))2

sind−1(arccos(x · y))
dxdy

+ o(n(d−1)(2k−1)).

(104)

(2) Q2(Lnf,A3) = o
(
n(d−1)(2k−1)

)
.

The limit (14) now follows from Lemma 5. In particular, since F is not constant
almost everywhere, we have the following estimate of the variance

Q2(Lnf) = Θ(n(d−1)(2k−1)). (105)

Proof of Lemma 5 . We first consider Q2(Lnf,A1). If |T| = 2k, then T has to be
((1, . . . , k), (k + 1, . . . , 2k)). Pick any 1 ≤ i ≤ k and k + 1 ≤ j ≤ 2k. Then for such
T and σ we have

Q2(Lnf, (T, σ)) = −
∫

(Sd)2k
f(x1, . . . , xk)f(xk+1, . . . , x2k)

(kn
sd

)2k−2

K2
n(xi, xj)dx

= −
(kn
sd

)2k−2
∫

(Sd)2
fi(xi)fj−k(xj)K

2
n(xi, xj)dxidxj ,

where the second equality is given by the definition of the i-margin function fi in
(10). Summing over all i, j, we see that Q2(Lnf,A1) is equal to

−
(kn
sd

)2k−2
∫

(Sd)2

(
k∑
i=1

fi(x)

)(
k∑
i=1

fi(y)

)
K2
n(x, y)dxdy

=−
(
kn
sd

)2k−2 ∫
(Sd)2

F (x)F (y)K2
n(x, y)dxdy.

(106)

Now we consider A2. Since T ∈ S(2, k) and |T| = 2k−1, T has to satisfy |T1∩T2| =
1. The number of ways to choose 1 location in T1 and 1 location in T2 are both k.
Therefore, Q2(Lnf,A2) equals

k∑
i=1

2k∑
j=k+1

(kn
sd

)2k−1
∫

(Sd)2k−1

f(x1, . . . , xk)f(xk+1, . . . , xj−1, xi, xj , . . . , x2k−1)dx

=

k∑
i=1

2k∑
j=k+1

(kn
sd

)2k−1
∫
Sd
fi(x)fj−k(x)dx

=
(kn
sd

)2k−1
∫
Sd
F (x)2dx.

Adding up Q2(Lnf,A1) and Q2(Lnf,A2) and using (47), we have

Q2(Lnf,A1) +Q2(Lnf,A2) =
(kn
sd

)2k−2 1

2

∫
(Sd)2

(F (x)− F (y))2K2
n(x, y)dxdy.

Now (104) follows by applying Lemma 2 to the function (F (x)− F (y))2.
Now we turn to the second part of Lemma 5. We can further decompose the set

A3 into 3 subsets A4, A5, A6 corresponding to |T| = 2k or 2k − 1 or smaller than
2k−1. For any (T, σ) ∈ A4, σ is neither a transposition nor identity (because (T, σ)
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has to induce a connected graph), thus there are at least three different indices q
such that σ(q) 6= q. By (41) and Lemma 3 with r = 3, we have

Q2(Lnf,A4) = O(n(2k)(d−1)n−
3(d−1)

2 ) = o(n(d−1)(2k−1)). (107)

For any (T, σ) ∈ A5, it is not in A2, i.e., σ is not identity, and thus there are at
least two q’s such that σ(q) 6= q. Applying Lemma 3 with r = 2, we get

Q2(Lnf,A5) = O(n(2k−1)(d−1)n−(d−1)) = o(n(d−1)(2k−1)). (108)

For any (T, σ) ∈ A6, it’s clear that if |T| ≤ 2k − 2, then for any σ, we have

|Q2(Lnf, (T, σ))| ≤ C
(kn
sd

)|T|
= O(n(d−1)|T|) = o(n(d−1)(2k−1)).

Hence, we have

Q2(Lnf,A6) = o(n(d−1)(2k−1)). (109)

Combining (107), (108) and (109), we have

Q2(Lnf,A3) = Q2(Lnf,A4) +Q2(Lnf,A5) +Q2(Lnf,A6) = o(n(d−1)(2k−1)),

which completes the proof of Lemma 5. �

Next we will prove the estimates for the higher order cumulants.

Lemma 6. For any m ≥ 3, it holds that

Qm(Lnf) = o(Var(Lnf)
m
2 ), i.e., Qm(Lnf) = o(n(d−1)(km−m2 )). (110)

This lemma will imply the convergence of the multivariate linear statistics to
the Gaussian distribution (15) by the method of cumulants. To prove Lemma 6,
we first need the following lemma.

Lemma 7. Given a permutation σ, let a(σ) be the number of elements q such that
σ(q) 6= q. Suppose the (T, σ)-graph is connected, then we have

km− |T|+ a(σ) ≥ m− 1 + 1[σ 6= id]. (111)

Proof. (111) is essentially due to the simple fact in graph theory that for a connected
graph the number of edges is not smaller than the number of vertices minus 1.

Before applying this fact, we note that, due to the construction of the (T, σ)-
graph, the connectivity property of the graph is not affected by removing some
redundant red edges. Indeed, if a vertex has ` solid red edges, then it lies in a
clique (i.e., a complete graph) of size `+ 1 formed by red solid edges only. We can

change this clique to a path graph by removing `(`+1)
2 − ` = `(`−1)

2 red solid edges
without affecting the connectivity. After the edge removals, the number of solid
red edges becomes km− |T|.

We now consider the new (T, σ)-graph after removing some redundant red edges
as described above. Note that the total number of vertices and black edges are
equal to km and (k − 1)m, respectively.

• If σ = id, then there is no dotted red edge. The number of red solid edges
(after the edge removals) is equal to km− |T|. Hence, by the connectivity
of the graph, we have

(k − 1)m+ km− |T| ≥ km− 1,

which proves (111).
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• If σ 6= id, then we have dotted red edges. We now perform a contraction of
the graph by contracting all vertices connected by black or red solid edges
into a single one. After this contraction, the number of remaining vertices
is at least

m− (km− |T|).
These remaining vertices must be connected by dotted red edges to ensure
that the (T, σ)-graph is connected, whose number can be upper bounded
by a(σ) − 1. (We may remove one dotted red edge without affecting the
connectivity, if the number of the vertices is a(σ).) This implies

a(σ)− 1 ≥ m− (km− |T|)− 1,

which proves (111) in the case σ 6= id.

�

Now we decompose C(m) into the following three subsets,

B1 = {(T, σ) ∈ C(m) : |T| = km, a(σ) = m},
B2 = (C(m)−B1) ∩ {(T, σ) ∈ C(m) : σ = id},
B3 = (C(m)−B1) ∩ {(T, σ) ∈ C(m) : σ 6= id}.

(112)

For any (T, σ) ∈ B1, by the restrictions that a(σ) = m ≥ 3 and (T, σ) ∈ C(m) ,
the cycle decomposition of σ must be the multiplication of one cyclic permutation
of length m and (mk−m) cyclic permutations of length 1, e.g., σ = (12 · · ·m)(m+
1) · · · (km). Applying Lemma 4 with r = m ≥ 3, we have

Qm(Lnf, (T, σ)) = o(n(d−1)|T|n−
(d−1)m

2 ) = o(n(d−1)(km−m2 )),

which further implies that

Qm(Lnf,B1) = o(n(d−1)(km−m2 )). (113)

For any (T, σ) ∈ B2, by m ≥ 3, (41), (111) and the boundedness of f , we have

Qm(Lnf, (T, σ)) = O(n(d−1)|T|) = O(n(d−1)(km−m+1)) = o(n(d−1)(km−m2 )).

Therefore, we get the estimate

Qm(Lnf,B2) = o(n(d−1)(km−m2 )). (114)

For any (T, σ) ∈ B3, by the boundedness of f and Lemma 3 with r = a(σ) ≥ 2, we
have

Qm(Lnf, (T, σ))) = O(n(d−1)|T|n−(d−1)a(σ)/2)).

If |T| = km, then we must have a(σ) > m since (T, σ) ∈ C(m) is connected but it
is not in B1. It follows that

O(n(d−1)|T|n−(d−1)a(σ)/2) = o(n(d−1)(km−m2 )).

If |T| < km, then by (111) with σ 6= id, we have

km− |T|+ a(σ)

2
≥ km− |T|+ m− (km− |T|)

2
>
m

2
,

which implies

Qm(Lnf, (T, σ)) = O(n(d−1)|T|n−(d−1)a(σ)/2) = o(n(d−1)(km−m2 )).

Hence, we have

Qm(Lnf,B3) = o(n(d−1)(km−m2 )). (115)
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By (113), (114) and (115), for m ≥ 3 we get

Qm(Lnf) = Qm(Lnf,B1) +Qm(Lnf,B2) +Qm(Lnf,B3) = o(n(d−1)(km−m2 )).

This together with (105) will complete the proof of Lemma 6, and thus the proof
of Theorem 2 for k ≥ 2.

6. Proof of Theorem 3

In this section, we will prove Theorem 3. We first claim that if f(x1, ..., xk)
with k ≥ 2 satisfies (16) and (17), then the i-margin function fi(x) is necessarily
constant for all 1 ≤ i ≤ k. In fact, condition (16) of the permutation invariance
implies that

fi(x) = f1(x) for all i, (116)

which is equal to ∫
(Sd)k−1

f(x, x2, . . . , xk)dx2 · · · dxk

=

∫
Sd

(∫
(Sd)k−2

f(x, x2, . . . , xk)dx3 · · · dxk

)
dx2

=

∫
Sd
f1,2(x, x2)dx2.

Here f1,2 is (1, 2)-margin function of f . Condition (17) further implies that the
integral

∫
Sd
f1,2(x, x2)dx2 is independent of x, i.e., f1(x) is a constant independent

of x, and thus F (x) is a constant. Therefore, the limit of the variance on the right
hand side of (14) is degenerate. Without loss of generality, we assume that the
integral of f is 0, i.e., ∫

(Sd)k
f(x1, . . . , xk)dx1 · · · dxk = 0.

This is equivalent to
∫
Sd
f1(x)dx = 0, which implies that (since f1 is constant)

f1(x) = 0 and thus F (x) = 0 for all x ∈ Sd. (117)

6.1. Calculations of the cumulants. Again we will prove Theorem 3 by the
method of cumulants. Recall the concepts of break points, (ir)reducible graph and
the notation I(m) (see Definitions 1 and 2, and (43)), we first have

Lemma 8. Let f be a function of k ≥ 2 variables that satisfies the i-margin function
fi = 0 for all i. For any (T, σ) /∈ I(m), we have Qm(Lnf, (T, σ)) = 0.

Proof. By the definition of the reducible graph, we can assume that (T, σ) breaks
at q0 ∈ Ti, and thus σ(q) = q for q ∈ Range(Ti)− q0. Thus we have

Qm(Lnf, (T, σ))

=

∫
(Sd)|T|

sgn(σ)f(T1) · · · f(Tm)Πq∈Range(T)Kn(xq, xσ(q))dx

=sgn(σ)

∫
(Sd)|T|−k+1

(∫
(Sd)k−1

f(Ti)Πq∈Range(Ti),q 6=q0Kn(xq, xq)dxq

)
× (Πj 6=if(Tj))

(
Πq′∈{q0}∪(Range(T)−Range(Ti))Kn(xq′ , xσ(q′))

)
dxq′

=0.
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We have used the assumption fi = 0 in the last equality. �

Lemma 8 implies that

Qm(Lnf) = Qm(Lnf, C(m)) = Qm(Lnf, I(m)).

Recall the concept of the circle-like graph in Definition 3, we express I(m) as
the union of

E1 := {(T, σ) ∈ I(m) : (T, σ) is circle-like} (118)

and its complement

E2 := I(m)− E1. (119)

Lemma 9. For m ≥ 2, recall that a(σ) is the number of elements that are not fixed
by σ, we have

• For any (T, σ) ∈ I(m),

km− |T|+ a(σ)

2
≥ m. (120)

• If (T, σ) ∈ E2 and km − |T| + a(σ)
2 = m, then σ is not a composition

of disjoint transpositions, i.e., in the cycle decomposition of σ, there must
exist at least one cyclic permutation with length strictly greater than 2.

Proof. We now define two functions M(i, j) and ∆(i, j) for 1 ≤ i ≤ m, 1 ≤ j ≤ k.
Given a (T, σ)-graph, we say an index q ∈ [km] has multiplicity M if there are
exactly M different i’s such that q ∈ Ti. We define M(i, j) as the multiplicity of
Ti,j . We define ∆(i, j) = 1 if σ(Ti,j) 6= Ti,j and 0 otherwise. Then we have

km− |T|+ a(σ)

2
=

m∑
i=1

k∑
j=1

(
M(i, j)− 1

M(i, j)
+

∆(i, j)

2M(i, j)

)
. (121)

Since we assume that (T, σ) ∈ I(m), for each i, Ti has at least two distinct
elements, denoted by Ti,i1 and Ti,i2 , such that they both have red edges. Therefore,
we have

max{M(i, i1)− 1,∆(i, i1)} ≥ 1 and max{M(i, i2)− 1,∆(i, i2)} ≥ 1. (122)

If M(i, i1) > 1, then
M(i, i1)− 1

M(i, i1)
≥ 1

2
.

If M(i, i1) = 1, then by (122), ∆(i, i1) = 1. We then have

∆(i, i1)

2M(i, i1)
=

∆(i, i1)

2
=

1

2
.

In both cases we always have

M(i, i1)− 1

M(i, i1)
+

∆(i, i1)

2M(i, i1)
≥ 1

2
. (123)

The same inequality holds for Ti,i2 . Hence we have

k∑
j=1

(
M(i, j)− 1

M(i, j)
+

∆(i, j)

2M(i, j)

)
≥ 2× 1

2
= 1. (124)



28 FENG, GÖTZE, AND YAO

And the equality in (124) holds iff there are exactly two vertices (i, iα), α ∈ {1, 2}
that have red edges and each satisfies

M(i, iα) = 1 and ∆(i, iα) = 1; or M(i, iα) = 2 and ∆(i, iα) = 0. (125)

By summing over 1 ≤ i ≤ m, we have

m∑
i=1

k∑
j=1

(
M(i, j)− 1

M(i, j)
+

∆(i, j)

2M(i, j)

)
≥

m∑
i=1

1 = m. (126)

(120) now follows from (121) and (126).
Now we turn to prove the second part of Lemma 9 by contradiction. Suppose

that km − |T| + a(σ)/2 = m and the cycle decomposition of σ only consists of
disjoint transpositions, we need to show (T, σ) ∈ E1. By the proof of (120) above,
the condition km− |T|+ a(σ)/2 = m implies that

k∑
j=1

(
M(i, j)− 1

M(i, j)
+

∆(i, j)

2M(i, j)

)
= 1 (127)

for each 1 ≤ i ≤ m. This further implies that for each 1 ≤ i ≤ m, there are exactly
two vertices (i, i1) and (i, i2) that can have red edges, and all the other vertices
have no red edges. By (125), for all 1 ≤ i ≤ m and any α ∈ {1, 2}, either of the
following two conditions holds:

• M(i, iα) = 2 and ∆(i, iα) = 0. In this case (i, iα) has exactly one solid red
edge but no red dotted edge.
• M(i, iα) = 1 and ∆(i, iα) = 1. In this case (i, iα) has at least one dotted red

edge, but no solid edge. Since σ is only composed of disjoint transpositions,
(i, iα) must have exactly one dotted red edge connecting with some other
vertex (j, jα′). And j has to be distinct from i. Otherwise there would be
no red edge between the set {(i, ·)} and {(i′, j′) : i′ 6= i, 1 ≤ j′ ≤ k}, which
makes (T, σ) /∈ C(m).

As a conclusion, in both cases, for each 1 ≤ i ≤ m, there are exactly two vertices in
{(i, j) : 1 ≤ j ≤ k} that can have red edge and each of them is connected to vertices
in {(i′, j′) : i′ 6= i, 1 ≤ j′ ≤ k} with a single red edge. This shows that (T, σ) is
circle-like which is a contradiction, and this proves the second part of Lemma 9. �

The following lemma indicates that the summation over the subset E1 yields the
leading order term of Qm(Lnf).

Lemma 10. Fix any m ≥ 2, we have the following two estimates.

(1)

Qm(Lnf,E2) = o(n(d−1)(k−1)m). (128)

(2)

Qm(Lnf,E1) =
1

2
(m− 1)!(k(k − 1))m

(
kn
sd

)mk (
Cd
nd−1

)m
×
∫

(Sd)m
ĥ(x1, x2)ĥ(x2, x3) · · · ĥ(xm, x1)dx1 · · · dxm

+ o(n(d−1)(k−1)m),

(129)
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where the constant Cd is defined in Theorem 3, and the symmetric function ĥ(x, y)
is defined in (20).

By the relation Qm(Lnf) = Qm(Lnf, I(m)) = Qm(Lnf,E1) +Qm(Lnf,E2), we
have the following corollary.

Corollary 3. For any m ≥ 2, the m-th cumulant satisfies the asymptotic expansion

Qm(Lnf) =
1

2
(m− 1)!(k(k − 1))m

(
kn
sd

)mk (
Cd
nd−1

)m
×
∫

(Sd)m
ĥ(x1, x2)ĥ(x2, x3) · · · ĥ(xm, x1)dx1 · · · dxm

+ o(n(d−1)(k−1)m).

(130)

In the special case m = 2, it yields the limit (22) for the variance of Lnf .

Proof of Lemma 10. We first prove part (1). Given any (T, σ) ∈ E2 ⊂ I(m), by

(120), it holds that km − |T| + a(σ)
2 ≥ m. For the case km − |T| + a(σ)

2 > m, by
Lemma 3, we have

Qm(Lnf, (T, σ))

=

∫
(Sd)|T|

f(T1) · · · f(Tm)sgn(σ)Πq∈Range(T)Kn(xq, xσ(q))dx

=O(n|T|(d−1))O(n−(d−1)a(σ)/2)

=O(n(d−1)(|T|−a(σ)/2)) = o(n(d−1)(mk−m)).

(131)

For the case km − |T| + a(σ)
2 = m, by the second part of Lemma 9, there must

be a cyclic permutation whose length is at least 3 in the cycle decomposition of σ.
Hence by Lemma 3 and Lemma 4, we can first integrate all variables with indices
in that cyclic permutation, and then integrate the remaining variables to get

Qm(Lnf, (T, σ)) = O(n|T|(d−1))o(n−(d−1)a(σ)/2)

= o(n(d−1)(|T|−a(σ)/2)) = o(n(d−1)(mk−m)).
(132)

By (131) and (132), if we sum over all (T, σ) ∈ E2, we prove (128).
We next prove part (2). We define

hn(x, y) :=

∫
Sd

(f1,2(x, y)− f1,2(x, z))P 2
n(y, z)dz

=(kn/sd)
−1f1,2(x, y)−

∫
Sd
f1,2(x, z)P 2

n(y, z)dz.

(133)

Since f1,2(x, y) and Pn(x, y) depend only on the distance d(x, y), we have

hn(x, y) =(kn/sd)
−1f1,2(x, y)−

∫
Sd
f1,2(x, z)P 2

n(y, z)dz

=(kn/sd)
−1f1,2(y, x)−

∫
Sd
f1,2(y, z)P 2

n(x, z)dz = hn(y, x).

(134)
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Hence hn(x, y) is symmetric in x and y. We claim that

Qm(Lnf,E1) =
1

2
(m− 1)!(k(k − 1))m

(
kn
sd

)mk
×
∫

(Sd)m
hn(x1, x2)hn(x2, x3) · · ·hn(xm, x1)dx1 · · · dxm.

(135)

Now we prove (135). Given (T, σ) ∈ E1 which is circle-like, by Proposition 1, we
can find vertices (i, i1) and (i, i2) for 1 ≤ i ≤ m and a cyclic permutation p of
{1, . . . ,m} such that (i, i2) is connected with (p(i), p(i)1) with a red edge for all i.
To compute Qm(Lnf, (T, σ)), for simplicity, by condition (16) of the permutation
invariance of f , we assume that i1 = 1 and i2 = 2 for all i, and we also assume p is
the cyclic permutation (12 · · ·m). We now define a new kernel P̃i(x, y) as follows.
If (i, 2) and (i+ 1, 1) are connected by a solid red edge (i.e., Ti,2 = Ti+1,1), we let

P̃i(x, y) = K−1
n (x, x)δy(x) = (kn/sd)

−1δy(x),

where δy(x) is a Dirac delta function such that for any function g,∫
Sd
δy(x)g(x)dx = g(y).

If (i, 2) and (i + 1, 1) are connected by a dotted red edge (i.e., σ(Ti,2) = Ti+1,1 or
σ(Ti+1,1) = Ti,2), then we let

P̃i(x, y) = −P 2
n(x, y) = −(kn/sd)

−2K2
n(x, y).

Integrating over all variables except those in the set {Ti,α, 1 ≤ i ≤ m, 1 ≤ α ≤ 2},

Qm(Lnf, (T, σ)) =

(
kn
sd

)mk ∫
(Sd)2m

f1,2(x1, y1)P̃1(y1, x2)f1,2(x2, y2)P̃2(y2, x3)×

· · · × f1,2(xm, ym)P̃m(ym, x1)dx1 · · · dxmdy1 · · · dym.
(136)

If we fix the cyclic permutation p = (1 · · ·m) and indices iα = 1, 2, then we can get
2m different (T, σ) in the set E1, because each red edge between (i, 2) and (i+ 1, 1)
can either be a solid one, or a dotted one. If we sum over all 2m different (T, σ) in
(136) and integrate over the variables y1, . . . , ym, then we get a total contribution
of (

kn
sd

)mk ∫
(Sd)m

hn(x1, x2)hn(x2, x3)× · · · × hn(xm, x1)dx1 · · · dxm. (137)

Since there are (m − 1)! cyclic permutations of [m] and there are (k(k − 1))m

distinct combinations of the indices iα, 1 ≤ i ≤ m, 1 ≤ α ≤ 2, we obtain (135). But
note that there is a factor 1/2 in the front of (135), this is because given a circle-like
(T, σ)-graph, the correspondence from p and {iα, 1 ≤ i ≤ m,α = 1, 2} to (T, σ) is
not 1-1, but rather 2-1. Indeed, by defining p′ = p−1 and i′α = i3−α, we end up at
the same (T, σ)-graph. As an example, the (T, σ)-graph given in the left panel of
Figure 2 is circle-like, and by Proposition 1 we can take the cyclic permutation as
p = (123) or p = (132).



MULTIVARIATE LINEAR STATISTICS 31

Now we prove part (2) of Lemma 10. By (79), for any fixed x and y,

lim
n→∞

nd−1hn(x, y) = Cd

∫
Sd

(f1,2(x, y)− f1,2(x, z)) sin−(d−1)(arccos(z · y))dz

= Cdĥ(x, y).

(138)

Furthermore, by the boundedness of f and (52), there exists constants c and C
such that for all x and y, we have∣∣nd−1hn(x, y)

∣∣ ≤ cnd−1

∫
Sd
P 2
n(y, z)dz ≤ C. (139)

Hence, part (2) of Lemma 10 follows from (135), (138) and the dominated conver-
gence theorem. �

6.2. Identification of the limiting distribution. Recall from (134) that hn and

thus ĥ are both symmetric, i.e., ĥ(x, y) = ĥ(y, x). This implies that there exists an
orthonormal basis of L2(Sd), say wj , j ≥ 1 such that

ĥ(x, y) =

∞∑
j=1

zjwj(x)wj(y)

for almost all (x, y) ∈ Sd × Sd.
We consider the following random variable

Xn :=
(
Lnf − E(Lnf)

)(kn
sd

)−k (
Cdk(k − 1)

nd−1

)−1

.

By Corollary 3, for any fixed m ≥ 2, we have

lim
n→∞

Qm(Xn) =
(m− 1)!

2

∞∑
j=1

zmj . (140)

In addition, Q1(Xn) = E(Xn) = 0 for all n.
We shall now determine the specific form of the limiting distribution of Xn in

three steps. Let χi, i ≥ 1 be independent chi-squared random variables with one
degree of freedom, defined on some common probability space Ω0. We consider a
sequence of random variables YN defined by

YN =

N∑
i=1

zi(χi − 1)/2.

• We show that YN , N ≥ 1 is a Cauchy sequence in L2(Ω0). Thus YN con-
verges to some limiting random variable Y in the L2 norm. We further
show that the convergence is also in Lm for any m ≥ 1, which implies that
Qm(YN )→ Qm(Y ) for any m ≥ 1.
• We next find the cumulants of Y by computing logE exp(itYN ) and taking

the limit N →∞. It turns out that

Qm(Y ) = lim
n→∞

Qm(Xn), ∀m ≥ 1.

• Finally, we prove that the distribution of Y satisfies the Carleman’s condi-
tion. This combined with the second step shows that Xn converges to Y in
distribution and completes the proof of Theorem 3.
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By (138) and (139), ĥ(x, y) is uniformly bounded, and thus we have

∞∑
j=1

z2
j =

∫
Sd

∫
Sd
ĥ(x, y)2dxdy <∞.

Thus for any N1 < N2, it holds that

‖YN1 − YN2‖
2
L2 ≤ C

N2∑
j=N1+1

z2
j → 0 as N1, N2 →∞,

which implies that YN , N ≥ 1 is a Cauchy sequence in L2(Ω0). Consequently, we
can find a limiting random variable Y such that YN → Y in L2.

For all m ≥ 2, one has
∞∑
j=1

|zj |m ≤
( ∞∑
j=1

z2
j

)m/2
<∞. (141)

By (141), for any even integer m, the m-th moment of YN is bounded uniformly
from above:

E(Y mN ) ≤ C
∑

m=m1+···+m`:m1,...,m`≥2

∏̀
i=1

( ∞∑
j=1

|zj |mi
)
<∞,

where the summation is over all integer partitions of m. This further implies the
sequence {Y mN , N ≥ 1} is uniformly integrable for any fixed m ≥ 1 and thus we
have

YN
Lm−−→ Y as N →∞

for all m ≥ 1. We can formally write Y as the sum
∑∞
i=1 zi(χi − 1)/2.

We now turn to the second step. The cumulant generating function of YN is

logE exp(itYN ) =

N∑
i=1

logE exp(zi(χi − 1)it/2)

=

N∑
i=1

log
1√

1− ziit
−

N∑
i=1

ziit

2
=

N∑
i=1

∞∑
m=2

zmi
2m

(it)m.

For m ≥ 2, the m-th cumulant of YN is

Qm(YN ) = m!

N∑
j=1

zmj
2m

=
(m− 1)!

2

N∑
i=1

zmi . (142)

Since YN converges to Y in Lm for all m ≥ 1, by (32) we have

Qm(Y ) = lim
N→∞

Qm(YN ) =
(m− 1)!

2

∞∑
i=1

zmi , ∀m ≥ 2, (143)

which coincides with (140). Also, Q1(Y ) = E(Y ) = 0 since E(YN ) = 0 for all N .
To finish the proof of the convergence of Xn to Y , we need to show that the

distribution of Y is uniquely determined by the cumulant condition (143). To this
end it suffices to verify the Carleman’s condition

∞∑
m=1

(
E(Y 2m)

)−1/(2m)
=∞. (144)
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To establish (144), by (141) and (143), for m ≥ 2, we have

|Qm(Y )| ≤ m!Cm, (145)

for some constant C > 0. Note that (145) also holds for m = 1 since Q1(Y ) = 0.
By (31) and (145), for any even integer m, we have

E(Y m) ≤
∑

R={R1,...,R`}∈Π(m)

∣∣Q|R1|
∣∣ · · · ∣∣Q|R`|∣∣

≤
∑

R={R1,...,R`}∈Π(m)

|R1|!C |R1| · · · |R`|!C |R`|

=Cm
∑

R={R1,...,R`}∈Π(m)

|R1|! · · · |R`|!,

(146)

where we used the fact that
∑`
i=1 |Ri| = m. To estimate the last summation, given

an integer partition m = m1 + · · ·+m` for some ` ≥ 1 and m1, . . . ,m` ≥ 1. Denote
the number of distinct mi’s by N ′ and let τ1, . . . , τ` be their multiplicities. Then
the number of partitions {R1, . . . , R`} of [m] such that

#{Ri : |Ri| = mi} = τi, ∀ 1 ≤ i ≤ `
is given by

m!

m1! · · ·m`!
∏N ′

i τi!
.

Thus, we have

E(Y m) ≤Cm
∑

m=m1+···+m`

∑
R∈Π(m),|Ri|=mi

m1! · · ·m`!

≤Cm
∑

m=m1+···+m`

m!

m1! · · ·m`!
∏N ′

i τi!
m1! · · ·m`!

≤Cmm!
∑

m=m1+···+m`

1.

(147)

It is known that the total number of partitions of an integer m, denoted by κ(m),

satisfies log κ(m) ∼ π
√

(2m)/3 as m → ∞ (p.70 in [1]). Consequently, for some

constant C̃ large enough and all m ≥ 1, κ(m) ≤ C̃m. Therefore, we have

E(Y m) ≤ Cmm!C̃m ≤ (CC̃)mmm. (148)

Now (144) follows from (148) since
∞∑
i=1

(
E(Y 2i)

)−1/(2i) ≥
∞∑
i=1

(
(CC̃)2i(2i)2i

)−1/(2i)

≥
∞∑
i=1

c

i
=∞. (149)

This completes the proof of (144), and thus we finish the proof of Theorem 3.
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