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Abstract

In this paper, we show the weak and strong well-posedness of density dependent stochastic differential
equations driven by o«-stable processes with o € (1,2). The existence part is based on Euler’s
approximation as Hao et al. (2021), while, the uniqueness is based on the Schauder estimates in
Besov spaces for nonlocal Fokker—Planck equations. For the existence, we only assume the drift being
continuous in the density variable. For the weak uniqueness, the drift is assumed to be Lipschitz in
the density variable, while for the strong uniqueness, we also need to assume the drift being Bg-order
Holder continuous in the spatial variable, where By € (1 — /2, 1).
© 2023 Elsevier B.V. Allrights reserved.
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1. Introduction

Fix o € (1, 2). Let (L;);>0 be a d-dimensional symmetric and rotationally invariant «-stable
process on some probability space ({2, %, P). In this paper, we consider the following density
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dependent stochastic differential equation (abbreviated as DDSDE):
d)
dX, = b(t, X;, pi(X))dt +dLy, Xo 2 o, (LD

where b : Ry x RY x R, — R is a bounded Borel measurable vector field, j1¢ is a probability
measure over R? and for ¢ > 0, p;(x) = Po X . I(dx) /dx is the distributional density of X,
with respect to the Lebesgue measure dx on RY.

In literature, DDSDE (1.1) is also called McKean—Vlasov SDE of Nemytskii-type which
was firstly introduced in [2, Section 2] to give a probabilistic representation for the solutions of
nonlinear Fokker—Planck equations. In a series of works [2-5], Barbu and Rockner investigated
the following DDSDE driven by Brownian motions:

d
dX; = b(t, X;, p(X)dt +0(t, Xy, p(X))dW:,  Xo (=) Ko, (1.2)

where 0 : Ry xR xR, — RY®R? is measurable and W is a standard d-dimensional Brownian
motion. By It6’s formula, one sees that p, solves the following nonlinear Fokker—Planck
equation (NFPE) in the distributional sense:

d
1 . .
8tpt_§ E 0;0; [aij(t, , pf)pt]erlV(b(t, > p)p) =0, tlg% pi(x)dx = po(dx) weakly,

i,j=1

where 0, .= ai, ajj = ZZ: 1 0ik0 jk» and div stands for the divergence. More precisely, for any
g € CXRY),

d
1 t t
(P @) = (10, @) + 5 Z/ <ps,a,-,-(s,~,ps>a,»aj<p>ds+/ (s, b(s, -, ps) - Vep)ds,
0 0

i,j=1

where
(01, @) = /Rd P(x)p;(x)dx = Ep(X,).

In Barbu and Rockner’s works, they obtained the well-posedness for NFPE through analytic
methods, and then used the so-called superposition principle to get the well-posedness of
DDSDE (2.3). Recently, different from these works, the second named author together with
Rockner and Zhang [13] gave a purely probabilistic proof for the existence of the solution to
the following DDSDE with additive noises:

dX; = b(t, X;, pi(X;))dt + dW;. (1.3)

It is well known that Brownian motion is a continuous Lévy process. Hence, it is natural
to consider such density dependent SDEs driven by pure jump Lévy processes. In particular,
we consider «-stable processes which are typical Lévy processes having selfsimilar properties
(cf. [26]). Up to now, the study of the well-posedness of SDEs with stable noises has been and
remains an important area in stochastic analysis. For the classical case, there are a lot of results
about strong solutions, weak solutions, and martingale solutions (see [8,15,21,23,25] and etc.).
We also see that there are many results about McKean—VIlasov SDEs with jumps (see [22]
and references therein). Among these results, some applications can be found in financial
mathematics (cf. [6]) and neural net-works (cf. [24]). However, under the framework of Lévy
noises, there are no results about Nemytskii’s type SDEs. Thus, it is natural and interesting to
investigate DDSDE (1.1).
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On the other hand, McKean-Vlasov SDEs with Lévy noises are related to non-local
integral-PDEs. By Itd’s formula (cf. [17, Theorem 5.1]) for DDSDE (1.1), we have that for
any ¢ € C°(RY),

Vo ) = it 01 % /0 (s, DS, -, ps) - Vop)ds +/O (ps, A2 @)ds, (1.4)
where
AP p(x) = f (<.0(x +2) —o(x) — zl < - v(p(x)>|z|—d7adz
Rd

(1.5)

2

is the infinitesimal generator of (L;),>o (cf. [26, Theorem 31.5]). Consequently, one sees that
p: solves the following equation in the distributional sense:

dpr — A p, + div(b(t, -, p)p:) = 0, lim oy (x)dx = po(dx) weakly, (1.6)
t

_! / (fp(x +2)+ox —z)— 2<p(x)) 2|7 *dz
Rd

where we use the fact that A%/? is a self-adjoint operator. We point out that the infinitesimal
generator of Brownian motion is the Laplacian A. The fractional Laplacian operator A%/ is
non-local, and is essentially different from the local operator A. For instance, we can use
Leibniz’s rule to handle A(fg) but the non-local case is more difficult. Thus, the Euler type
approximation in [13], a purely probabilistic method, is chosen to show the existence of the
solutions of DDSDE (1.1) in this paper.

Moreover, when b(t, -, u) is fp-order Holder continuous uniformly in #,u with By €
(1 —a/2,1), we obtain the uniqueness based on some a priori estimates of Besov-type (see
Lemma 3.6) for the nonlocal Fokker—Planck Eq. (1.4). This part is not studied in [13]. It is
worth noting that the condition By > 1 — /2 is natural. The uniqueness in [13] is obtained
based on the well-known pathwise uniqueness for SDE (1.3) with bounded measurable drift
b(t, x, pi(x)) (cf. [29]). However, the situation changes when we consider «-stable noises with
a € (0,2). Let us consider

dX; = b(t, X;)dt +dL,,

where L is a d-dimensional symmetric «-stable process. When d = 1 and @ < 1, even a
bounded and By-Hdlder continuous b is not enough to ensure pathwise uniqueness if o+ £y < 1
(see [27] for the counterexample). When d > 1 and « € [1,2), Priola [25] obtained the
pathwise uniqueness under 8y > 1 —«/2. The condition By > 1 —«/2 can be found in [11,15]
as well for the supercritical case and the degenerate case respectively.

Before stating the main result, we introduce the classical Holder spaces in R4. For B >0,
let CA(R?) be the classical B-order Holder space consisting of all measurable functions f :
R? — R with

[B]
Iflles =Y IV flloo + [V flep-is < o0,

Jj=0
where [B] denotes the greatest integer no more than 8, V/ stands for the j-order gradient, and

) = FOlleo
[ flle :== sup [f(x)], [flecr == sup Al s Q] , ¥y €(0, 1.

xeRd heRd |hl”

In the sequel, for any p € [1, 00), we denote by L7 the space of all p-order integrable functions
on R¢ with the norm denoted by |- l,-

418



M. Wu and Z. Hao Stochastic Processes and their Applications 164 (2023) 416—442

As mentioned before, to show the existence of a weak solution, we consider the following
Euler scheme to DDSDE (1.1): Let T >0, N e Nand h :=T/N. For ¢t € [0, k], define

XN = Xo+L,,
and for ¢t € (kh, (k + 1)h] with k =1,..., N — 1, we inductively define X,N by

t
xN =X}, +/ b(s, Xty o (Xe)ds + (L; — L),
kh

where pj) (x) is the distributional density of X}, whose existence is easily seen from the
construction.
We give the definition of a weak solution to DDSDE (1.1):

Definition 1.1 (Weak Solutions). Let j1y be a probability measure on R? and o € (1,2). We
call a filtered probability space (12, .F, P; (Z;);>0) together with a pair of .%,-adapted processes
(X:, Ly)r>0 defined on it a weak solution of SDE (1.1) with initial distribution o, if

i) Po Xy I'= ug, and (Ly)i>0 is a d-dimensional symmetric and rotationally invariant
a-stable process.
(ii) for each t > 0, p;(x) =Po Xt’l(dx)/dx and

t
X, = Xo + / b(s, X, py(X)ds + Ly, P —aus.
0

The following existence and uniqueness result is the main theorem of this paper.

Theorem 1.2. Assume that @ € (1,2), and b is bounded measurable and for any (t, x, ugy) €
Ry x R x R,

lim |b(t, x, u) — b(t, x, up)| = 0. (1.7)
u—>ug

(Existence) For any T > 0 and initial distribution o, there are a subsequence Ny and a weak
solution (X, L) to DDSDE (1.1) in the sense of Definition 1.1. Moreover, for each t € (0, T],
X, admits a distributional density p;, with respect to Lebesgue measure, satisfying the estimate

t
P < e /R e (18)

where the constant ¢ > 0 only depends on T,d, a, ||b|, and the following L'-convergences
hold:

Jlim / 10,4 () = pr()ldy = 0 (1.9)
and
hm/ / 16, () — pi(y)ldydr = 0. (1.10)

(Uniqueness) Suppose that there is a constant ¢ > 0 such that for all (¢, x, u;) € Ry xR xR,
i=1,2,

|b(t, x, uy) — b(t, x, uy)| < cluy — uy|. (1.11)

() If po(dx) = po(x)dx with py € L1(R?) for some q € (=4~
holds for DDSDE (1.1).

i 0], then the weak uniqueness
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(i) If po(dx) = po(x)dx with py € CPo(RY) for some By € (1 —a/2,1) and

sup [1b(t, -, )|l cpy < 00,
(t,u)eR?.
then the pathwise uniqueness holds for DDSDE (1.1). Furthermore, there is a unique strong
solution to it.

Remark 1.3. Although we use the same method as [13] in the existence part, our assumptions
on drifts are weaker. Therein, the following local uniform continuity is assumed,
lim sup |b(¢,x,u) — b(t,x,up)) =0, Vit >0,R > 0. (1.12)
UUO x| <R
For example, b(t, x,u) = (Ju/x| A 1)1z, x € R, u € R, satisfies the condition (1.7) but
does not satisfy (1.12) for any R > 0. It should be noted that our condition (1.7) is also valid
for the Brownian motion case. That is, we improve the result in [13].

Remark 1.4. For the uniqueness, the conditions here are natural. Conditions in (i) are the
same as [13, Theorem 1.2]; the same condition By > 1 — «/2 in ( ii) can be found in [11,25]
as well.

The paper is organized as follows. In Section 2, we show some estimates of the density to the
rotationally invariant and symmetric a-stable process. In Section 3, we introduce Besov spaces
and establish Schauder’s estimates for non-local parabolic equations by using Littlewood-
Paley’s type estimates of heat kernels. In Section 4, we prove some uniform estimates in N
about heat kernels of Euler’s scheme X ,N . In Section 5, we show the proof of Theorem 1.2.

Throughout this paper, we use the following conventions and notations: As usual, we use =
as a way of definition. Define Ny := N U {0} and R, := [0, c0). The letter ¢ = c(- - - ) denotes
an unimportant constant, whose value may change in different places. We use A < B and
A < B to denote ¢ "B <A< c¢Band A < ¢B, respectively, for some unimportant constant
c>1.

2. Preliminaries
2.1. «-Stable processes
A cadlag process {L, | t > 0} on RY (d > 1) is called a Lévy process, if Ly = 0 almost

surely and L has independent and identically distributed increments. The associated Poisson
random measure is defined by

N({O,t] x I') := Z 17(Ly — Ly_), IT'e BRI\ {0}),1 >0,
s€(0,1]
and the Lévy measure is given by
v(I[) :=EN(O, 1] x I').
Then, the compensated Poisson random measure is defined by
N(dr, dz) := N(dr, dz) — v(dz)dr.

For a € (0,2), a Lévy process L; is called a symmetric and rotationally invariant «-stable
process if the Lévy measure has the form

v®(dz) = clz] 4 *dz,

420



M. Wu and Z. Hao Stochastic Processes and their Applications 164 (2023) 416—442

with some specific constant ¢ = c¢(d, o) > 0. In this paper, we only consider the symmetric and
rotationally invariant «-stable process. Without causing confusion, we simply call it the a-stable
process, and assume that v®(dz) = |z|~¥~*dz here and after. For any 0 < y; < & < s, it is
easy to see that

/ (121" A 22 (dz) < oo, @
Rd

By Lévy-Itd’s decomposition (cf. [26, Theorem 19.2]), we have

t t
L, = lim / / ZN(dr, dz) + / / ZN(dr, dz). (2.2)
el0 Jo Je<izi<i 0 Jiz|>1

By [26, Theorem 31.5], the infinitesimal generator of Lévy process (L;);>o is the fractional
Laplacian operator A%? defined by (1.5).
Moreover, by Lévy-Khintchine’s formula [26, Theorem 8.1], for all [§| > 1, we have

|Ee's 1| <exp (f/ (cos(§ - 2) — 1)v<a)(dz)>

0 .
<exp( t|g|“/ / Cofg r )Z‘(de)dr) L e crlél
§d—1

where & := £/|£|, and X is the uniform measure on the sphere SY~!, and the constant ¢ > 0
depends only on & and X'(S?~!). Hence, by [26, Proposition 28.1 ], L, admits a smooth density
function p,(t, -) given by Fourier’s inverse transform

pa(t,x)=(2n)*d/2/ e RS lrde, Vi > 0,
RrRd

and the partial derivatives of p,(z, -) at any orders tend to 0 as |x| — oco. Since the «-stable
process L, has the scaling property

AV Liizo € (Likso, Vi > 0,
it is easy to see that
Palt, x) =17 p (1,71 x). (23)
By [7, Theorem 2.1], one knows that there is a constant ¢ = ¢(d, @) > 1 such that
c7loa(t, x) < pult, x) < coult, X), 24)

where
t

(tl/“ + |x|)d+a'
By [9]*Lemma 2.2, for any j € Ny, there is a constant ¢ = c¢(d, j, @) > 0 such that

V7 pa(t, )| < ct™//*u(t, x). (2.6)

0(t, x) := (2.5)

Since
@+ x +z)77 <A+ x)7Y, for 2] < V%) v (Ix]/2),
we get that

0u(t, x +2) <4 %, (1, x), for |z] < 2rY*) v (1x|/2). 2.7)
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Note that p,(z, x) is the heat kernel of the operator A2 e,
0ipat, x) = AP pe(t, ), lim pa(t, x) = So(x), (2.8)
t

where & is the Dirac measure at point 0. We also have the following Chapman—Kolmogorov
(abbreviated as C-K) equations:

(Pa(t) * pa(s))(x) = /Rd Pa(t, x — ¥)pals, y)dy = po(t +5,x), t,5>0. (2.9)

2.2. Some estimates of the heat kernel of A*/?

Now we give some estimates of the heart kernel of A% . These estimates are straightforward
and elementary. Note that Lemma 2.1 and Corollary 2.2 are the same as [9, Lemma 2.2] and
[9, Theorem 2.4] respectively when j = 0.

Lemma 2.1. For any j € Ny and B € (0, 1), there is a constant ¢ = c(d, a, B, j) > 0 such
that for every t > 0, x1, x; € R4,
IV pa(t, x1) = V/ pa(t, x2)| < clxy = xo|P 10D/ (py (2, x1) + pat. x2)). (2.10)

Proof. If |x; — x| > ¢!/, then by (2.6) we have
IV pa(t, x1) — V' pa(t, x2)| S t77/%(0a(t, x1) + 0a(t, X2))
Sl — xa PP (041, x1) + 04(t, X2)).

If |x; — x| < /% then by the mean-value formula and (2.6),

1
IV pa(t, x1) = V7 pa(t, x2)| < |31 —X2|/ V7 (2, X1 + 6(x2 — x1))|d6
0

1
< g — x|t U/ / 0u(t, X1 + 0(x2 — x1))d0
0

(2.7) .
S = w0l P g, (2, xy),

where we have used 8 € (0, 1) in the last inequality. Combining the above calculations, we
get (2.10) by (2.4). O

As a consequence of Lemma 2.1, we have the following corollary.

Corollary 2.2. For any j € Ny, there is a constant ¢ = c¢(d, «, j) > 0 such that for every
t>0and x € RY,

|A2V po(t, x)| < et 7% py (2, x). (2.11)
Proof. First of all, recalling the definition (1.5),

A%vjpa(tv x) = /

|zl /e

. . . dz
(V]Pa(t, X +2) = VI pult, x) —z- VI p(t, x))lle“"

. . dz
+ (V/pa(t,x+z)—vjpa(t,x)>T+a
12|t/ |z]

= fl + fg.
422
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For .71, by (2.7) and (2.10), we have that for any 8 € (@ — 1, 1),

|, it dz 1
S </ ) |z1P* e B |d+aga(t,x)§t %04 (t, x).
lzl<et/

For %, by (2.6), ones see that

Sy < il /

|z|>¢1/e

dz
(Qa(t, X +2) + 042, X))|Z|T+a

St—l—j/aga(t,x)—i-t_j/a/ 0q(2, x+z)| |d+a

|z|>1l/e

Then, we only need to estimate the second term above denoted by .#3. If |x| < 2t!/%, by (2.5)
and (2.7), we obtain that

) dz , t dz
LIS f’/a/ 0u(t,2)—— < f’/“—/
2|1/ |Z|d+a t(d+o:)/a f2|>11/e |Z|d+a

< t*(d“rOl‘i’j)/a — tfj/otfl

—Jj/a—1
t(d+a)/a'\“ (t x)

If |x| > 2¢'/%, by (2.5) and (2.7), we have

7 =,fj/a(/ +/ )Qa(t X +2)—— dw
Blsp>ile Jpgg> 1l Iz |

dz

‘ e 1
—Jjla —j/a
S 177%ea(t, x) o / T /|z oy Qaltsx +2)dz
>z

|z|>¢1/e

Jjla—1
P |d+a§t 04(t, x).

Q4 ,
S T ot x) + 17
Based on (2.4), the proof is complete.

The following result is also true when we consider Gaussian heat kernels (cf. [13, Lemma
2.1]).

Lemma 2.3. For any B € (0,«) and j € Ny, there is a constant ¢ = c¢(d, «, B, j) > 0 such
that for every t,t, > 0 and x € R4,

IV paltr, x) — V7 po(ta, 0| < clta — 119G poter, x) + 15, VP po (2, 1)),
(2.12)

Proof. Without loss of generality, we assume that r, > t;. If t,—t; > f1, then t;, Vi, < 2(t—1)
and

(2.6)

IV patr, x) = VI po(ty, )| S 177 0a(t1, x) 4 157 04 (12, x)
St — 0P P 00 (11, x) + 15,9 00 (12, x)).

For t, — #; < 11, notice that by (2.8) and (2.11),

IV 8, pa(t, )| = [V A* 2 py(t, x)| = | A2V po(t, )| S t7177/% 04 (2, x). (2.13)
423
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Thus, by the mean-value formula and 8 € (0, o), we have
IV pa(tt, x) = V pa(t2, X)| < |tz —hl/ [V;0 pal(ty + 0(12 — 11), x)dO

N fl|/ (t1 + 02 — 1)) /%00 () + 0(t2 — 1), x)dO

(2.5)
+
S =l T g, x) < 1y — 0PV 011, x).

By (2.4), the proof is finished. [J

3. Besov spaces and Schauder’s estimates

In this section, we introduce Besov spaces where we obtain Schauder’s estimates for the
operator d; — A%/? (see Lemma 3.6). Let .(R?) be the Schwartz space of all rapidly decreasing
functions on RY, and .7’ (RY) the dual space of & (R9) called Schwartz generalized function
(or tempered distribution) space. Given f € .7(R?), the Fourier and inverse transforms of f
are defined by

F&) = FfE) = @y / e fodr, § e R

R
and
fx)=F ' fx) = @Qn)4? /d ¢S f(e)dE, x e RY.
R
For any f € .7/(RY),

(foo)=(f.9). (f.@)=(f.9), forVpe SR
Let x : RY — [0, 1] be a smooth radial function with

x(é)={1’ sl

0, €] > 3/2.
Define ¥ (£¢) := x(§) — x(2¢) and for j € N,
ViEy=y@7). G.1)
Let B, :={&§ € R? | |£] < r} for r > 0. It is easy to see that ¥ > 0, suppyr C B3;2/ B2, and
k
XQE)+ Y Y€)= xQ@7*) > 1, as k — oo. (3.2)
j=0

The block operators R ; are defined on .7/ (R?) by

FlxFH=xxf j=-1,

R =\F wFn=iyn g >0,

Remark 3.1. For j > —1, by definitions, one sees that
1
Rj=R;R;. where R;:= ) R, with R_;:=0, (3.3)

=—1
424



M. Wu and Z. Hao Stochastic Processes and their Applications 164 (2023) 416—442
and R ; is symmetric in the sense of
f (R fx)gdx = / [ TORg(0dx,  f e SR, g € SR (3:4)
R R

Here is the definition of Besov spaces.

Definition 3.2 (Besov Spaces). For any 8 € R and p, g € [1, oo], the Besov space Bﬁ_q(Rd)
is defined by

. 1
B ) = {f e S ®|Ifly, =D VIR 1,)’]

j=z-1

/4
< oo,
If p =q = o0, it is in the sense
BL o) = [ € S/ ®) LIy = sup 27R; fl < oof.
o -

Recall the following Bernstein’s inequality (cf. [1]*Lemma 2.1).

Lemma 3.3 (Bernstein’s inequality). For any k € N, there is a constant ¢ = c(d, k) > 0 such
that for all j > —1,

IV*R; flloo < 2V (IR f llco-
In particular, for any a € R,

IVE £ llBg, o0 < el fllgas - (3.5)

Remark 3.4 (Equivalence Between Besov Spaces and Holder Spaces). If B > 0 and 8 ¢ N,
we have the following equivalence between B&,N(Rd ) and C#(R?): (cf. [28))

IFlge = I fllce- (3.6)
However, for any n € Ny, we only have one side control that is
I flBz e S N fllcre (3.7
By Bernstein’s inequality, we have that for any |k| < 1/2,
(3.2)
If+h) = fl < Y IR fx+h) =R fx)l
jz-1
S Y Wl B+ Y 270 Nl
Jj<—log, |h| Jj=—logy |h|

< I fllgy,  VhlCog, | ™" + 1),
and for any |h| > 1/2,
If G+ h) = FOOIS 20 flloo < 41711 f gy, .-
Thus, by (3.5), we obtain that

" VK f(x) — VEF)
vty |x = ylogy [x — y|™' + 1)

< ”f”B’éérLo’ for any k € N. (3.8)
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Now we introduce the estimate of Littlewood-Paley’s type for the heat kernel p,(¢, x). The
same result is proved in [15]*Lemma 3.1 for ¢ = 2 and [8]*Lemma 3.3 and [14]*Lemma 2.12
for o € (0, 2). For reader’s convenience, we give a proof here.

Lemma 3.5. Let o € (0, 2). There is a constant ¢ = c(«, d) > 1 such that for all j > —1 and
T >0,

T
/ /d IR palt, x)|dxdr < c(14 T)27%. (3.9)
0 R

Proof. First of all, by the scaling property (2.3), we have that for any m € Ny,

/ (A" po)(z, x)ldx = gamle f 14" pe1, 0)ldx S tmame (3.10)
R4 R

For j = —1, we have

T T
/ / [R-1pa(t, x)|dxdt 5/ | po(t, Hllidt = T27%2% < T2°.
0 JRd 0

For j > 0, by (3.1) and the change of variables,
f IR Palt, )ldx =277 / | / Pa(t. 27 (x = y)1P(y)dy dx. 3.11)
R R4 ' JRA

Notice that the support of i is contained in an annulus. By [12, (1.2.1)], we have that A~y
is a well-defined Schwartz function where

FA™)E) = (—|E)™"Y(E) € LR, m € N,.
Based on this, we have 1} = A’”A"”lﬁ, m € Ny and

fR | Pat, 27 (x — )P (y)dy = fR A" palt, 27 (x — YA P)(y)dy.

Hence,
Gan ‘
/ IR pa(t, x)ldx < Z_Jd/ |A™ po(t, 277 x)|dx
R4 R4

) (3.10) )
=272m f (A" pe)(t, x)ldx S 2722,
R4

Then, considering the cases m = 0 and m = 2, one sees that

T 29 T
/ / |R_,-pa(r,x>|dxdz=(f + / ) / (R, palt, ©)ldxds
0 JRY 0 2-aj/ JRd
2

—aj T
< / dr +27% / e <27,
0 2

—aj
The proof is finished.
Following the method used in [14,15], we give a well-known a priori estimate of Besov-type

by (3.9). The result is seen as Schauder’s estimate when p = g = oo in the literature. In the
sequel, for a Banach space B and T > 0, g € [1, oo], we denote by

LI(B) = L([0, T]; B), L% := LI([0, T] x RY).
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Lemma 3.6. Leta € (0,2), 8 € R. For any p € [1,00] and g € [1, 00], there is a constant
c=cld,a, B, p,q) > 0 such that for all (u, f) € .S x " with

u=A"?u+ £, u(0) = uy,

in the following weak sense
wmm=wmm+£wm¢wwm+ﬂxﬂmmm,Weymﬂ

and for any T > 0,
lulyg gy < (T Nuolgars + 4+ DI f g g ). (3.12)

Proof. We only give the proof under g € [1, 00), since the case of ¢ = 0o is similar and easier.
Let {p:}s-0 be a usual mollifier on RY. Then u, := u * p, and f, = f * p, satisfy

due(t, x) = A%uc(t, x) + folt, x),  ue(0) = ug * pe.

Thus, without loss of generality, we assume that u, f,uy € C*. For any ¢t € [0, T], let
u'(s) ;== u(t — s) and f'(s) := f(t —s) for any s € (0, ¢). Obviously,

dou' (s, x) + AUl (s, x) = — f'(s, %), u'(0) = u().
By It6’s formula (cf. [17, Theorem 5.1]), we have

t
Eu'(t,x + L,) = u'(0, x) — / Ef'(s, x + Ly)ds.
0
Then, we have Duhamel’s formula:
t
u(t,x) = / Pa(t, x — y)uo(y)dy +/ / Pa(s, x — y) f(t — s, y)dyds.
R4 0 JRd
Taking R ; for both sides, by (3.3) and (3.4), we get
t
Rju(t, x) = /d Palt, x — Y)Rjuo(y)dy + / [d Rjpals,x — y)R; f(z — s, y)dyds.
R 0o JR

From this, by Minkowski’s inequality and Holder’s inequality, one sees that
T
IR jullpg ey < < TV Ruoll, + /0 IR PR fC = $)ssllpg pyds

57”%Rmﬂp+a+Tnﬂwnmm%wy
By definitions and Fubini’s theorem, we have
Z 2(a+ﬁ)ql||R |

lul?, .
Ll T Lj@ry’
Therefore,

< (a+B)qj q q Baj

el s, S Ty 2 IRsuolly + L+ 1) 3 2R £y,

j=—1 j=—1
S Tlluollqa+,s + 1+ T)qllfll 5
l’q (pq)

which implies the desired estimate.
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Remark 3.7 (cf. [15, Section 3]).The above result is true for « = 2, which means we can get
the same result for the Laplacian A case by considering Brownian motion through the same
method.

Remark 3.8. Here we compare Schauder estimates in Holder spaces, Besov spaces and
Sobolev spaces. By (3.12) for p = ¢ = oo and (3.6), we obtain the classical Schauder’s
estimate for o = 2:

lullisecasy S lluollczes + 11.f llgeccsy, B € (0, 1).

It is well-known that Schauder’s estimate is not true for 8 = 0. But the lemma above tells us
that

0 .
60,00)

“u”]]f;o(B%o,oo) S ”’/‘O”Bgc_oo + ”f”[L}%O(B

Furthermore, by (3.7) and (3.8), we get

IVute, ) = Vutt, »I S 1x = y1(1+1ogg 1x = ¥ (o2 + 1f e )-

In Sobolev spaces, it holds that

<
||u||]1f§(w21p) ~ ||“0||L‘§(W2,p) + ||f||]L‘§(LP)

with p, g # 1, oo (see [20,30] and references therein). However, p,q = 1 or oo are allowed
in Besov case.
4. Estimates of heat kernels for Euler-Maruyama scheme

In this section, assume that & € (1,2) and b : R, x RY — R? is a bounded measurable
function. Fix T > 0 and x € R?. Consider the following Euler scheme X" (x): X' = x, and

t
XV =x +/ b(s, X} ()ds + L, t€(0,T], (4.1)
0

where N € N, ¢n(s) .= kh for s € [kh, (k+ 1)h) with h .= T/N and k =0,1,...,N — 1.
First of all, we prove the following Duhamel’s formula for the Euler scheme.

Lemma 4.1 (Duhamel’s Formula). Let a € (1,2). For each t € (0,T] and x € R, XN (x)
admits a density pN(t, ) satisfying the following Duhamel’s formula:

t
Py, y) = palt,x — y) + f E[b(sv Xoviw)* Vpalt =5, X — y)]dS- 4.2)
0

Proof. Fix t € (0, 7] and f € C®(RY). Letting s € [0, ¢] and

u(s, x) := palt —s,) % f(x) = /d Pat —s,x —y)f(y)dy,
R
by (2.8), it is easy to see that u(s, x) solves the following equation:

@ + A =0, u(t,x)= f(x). (4.3)
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By It6’s formula (cf. [17, Theorem 5.1]), we have
t t
u(t, X)) = u(0, x) +/ (Osu)(s, X\ )ds +/ b(s, X\ () - Vuls, XN )ds
, 0 0
+ / / (u(s, XN +2)— us, X;V_))N(ds, dz)
0 Jiz|>1
t ~
n f / (u(s, XY 4+2) — us. Xlﬁv_))N(ds, dz)
0 Jo<|zI<1
t
+ / / (u(s, XN 4 21 <) — uts, XN) — z1<1 - Vs, X‘ﬁv)>v(°‘)(dz)ds.
0 JRA\(0}

Observe that a cadlag function can have at most a countable number of jumps. Taking the
expectation for both sides in the above equality, by [17, Section 3], (2.1) and (4.3), we obtain
that for any f € CX(RY),

t
Ef(XN) =Eu(t, X)) = u(0, x) +/ ]E(b(s, X3 () - Vus, Xf,v))ds.
0
Furthermore, since

t t
f / IV pa(s, y)|dyds @f |Vpa(l,x)|dx/ sT1eds < oo, ifae(l,?2),
0 JRA R4 0

we derive the desired Duhamel’s formula. [

Remark 4.2. For any general initial value X' = X, € %, since L is independent of X,
XN (x) defined by (4.1) is independent of X,. Consequently, by [19, Lemma 3.11], the Euler
scheme X with initial value X, also has a density p)]}’()(t, y) given by

PR, y) = /R L P2 (6P o Xg (dx). (4.4)

The following uniform estimate for p(z, y) was proved by Huang, Suo and Yuan [16] when
the coefficient b takes the form b(x). For the convenience of readers, we show it again by the
method from [13].

Theorem 4.3. Let o € (1,2). For any T > 0, there is a constant ¢ = c¢(d, o, T, ||b|loc) > 0
such that for any N € N, t € (0, T] and x,y € R,

PNt y) < cpolt, x — y). 4.5)

Proof. For the simplicity, we use a slight abuse of notation ||| = ||b||]Lc%o in the following.
First of all, by (2.4), (2.6) and (2.7), we know that there is a constant ¢y = co(d, @) > 2 such
that

1

|Vp(x(ta-x)| < Cot_ /apd(ta-x)v (46)

and
Palt, x +2) < copalt, ), if |z| <20V 4.7)
Below, we fix this constant ¢y and T > 0. Let ¢ > 0 be small enough such that
e =y 25 1blloos™ N < 1/2.
429



M. Wu and Z. Hao Stochastic Processes and their Applications 164 (2023) 416—442

Denote
h=T/N and M :=[eg/h] e N.
Without loss of generality, we assume
N = (T(;11bll)* ") v (2T /). (4.8)

Indeed, if N is bounded by some positive integer Ny, an elementary iteration can prove the
inequality (4.5). Although the constant ¢ depends on the number of iterations N, it is uniformly
bounded since N has an upper bound. Precisely, assuming (4.5) holds for pfcv (kh, y) with some
constant ¢, it suffices to show that (4.5) holds for p)’(\' ((k 4+ Dk, y) with another constant. Note
that

(k+1)h
X(Nk+1)h =Xy + / b(s, Xy)ds + Lasn — L,
kh

where L1y, — L, is independent of X ﬁl and has density p4(h, -). Hence, by [19, Lemma
3.11], we have
(k+Dh

PV ((k + Dh, y) = / PV (kh, z)pa(h, z +/ b(s, z)ds — y)dz.
]Rd

h
Observing that

Q=

| (k+1)h
he +|y| < h +‘y+/ b(s, z)ds| + k|||l
k

h

(k+Dh

<+ Tl*‘%llblloo)(hé + 'y +/ b(s, z)ds
kh

):

we obtain, by the definition (2.5), that

(k+1)h

(2.4) (k+1)h
po(hezs [ s =y) S eu(hz-yr [ b )
kh kh

2.4)
Souh,z—y) S palh,z—y),

where the implicit constants in the above < only depend on d, &, T, ||b|lco. Thus, there is a
constant ¢y = ¢o(d, a, T, ||b||s) such that

py ((k+ Dh, y) < éé /d Palkh, x — 2)po(h, z — y)dz = ccope((k + Dh, x — y),
R

where we used the C-K Eqgs. (2.9) in the last equality. One sees that when the above process is
repeated once, the constant ¢ is multiplied once more. Fortunately, due to the Ny constraint,
the iteration can end at N. Furthermore, by similar calculations or just like (Step 3), we get
(4.5) for any t € (kh, (k + 1)h) with k =0,..., N — 1.

In the sequel, we estimate ppy under the assumption (4.8). Since N should go to infinity in
this case, we have to estimate p)), more carefully. By (4.8), we have ||b|lc < 2h7'T/* and
e > h.

(Step 1) In this step, by induction, we prove the following result: for k =1,2,..., M AN,

pY(kh, y) < copa(kh, x — y). (4.9)
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For k = 1, noting that X = x + foh b(s, x)ds + L, with ||b]loo < 2h~@D/% by (4.7) we get
that

h
pY(h, y) = palh,y —x — / b(s, x)ds) < copa(h, x — y).
0

Suppose now that (4.9) holds for j = 1,2, ...,k — 1. By Duhamel’s formula (4.2), we see that

kh
pYkh, y) = polkh, x — y) = fo E[bGs. XJ,) - Vpatkh — s, XY = y)Jas

k—1

(j+Dh
-y / 1V (s)ds, (4.10)
j=0 7t

where IJN(s) = [b(s X W) - Vpo(kh —s, XN — y)] Observe that for s € (jh, (j + Dh),
XY =X+ / b(r, X§y)dr + (Ly — L ).

Since Ly — L j; is independent of X;.Vh and has density py(s — jh, -), by [19, Lemma 3.11] and
C-K Egs. (2.9), we have

V(s = [b(s XNV pa(kh — 5) % pals — jh)(xjvh / b(r, XY, )dr — y)]
= E[b(s, X}}) - Vo (kh = jh, Xj,,+/ bir, X2)dr = y) ]

<10l [ 19pal(kh = iz =y + [ b)Y m. e
Rd jh
Furthermore, by (4.6), (4.7) and induction hypothesis, we obtain that for s € (jh, (j + 1)h),

1)(s) < [1blloo(kh — jh)™*cG f | Palkh = jh, 2= y) - copa(jh, x = 2)dz
R

<o L0 em @V kh — 5)7V po(kh, x — y),

where we have used h||b|lo < 2h'/%. Substituting this into (4.10), we get, since kh < Mh < ¢
and o € (1, 2), that
ki

|py (kh, y) — patkh, x — y)| < coles™ @V pykh, x — y)&=L | (kh —s)~"/*ds
0
= co Lee™ @I kn) ™V po(kh, x — y)
< Co Espa(kha X — y)’
which implies that

pY(kh,y) < (cole + Dpalkh, x — y) < co palkh, x — ).

(Step 2) Next we assume that M < N. Since ¢n(s + Mh) = ¢pn(s) + Mh, we have

t+Mh

XN o = X +/Mh b(s, X}y s)ds + (Liysn — L)

=Xy, + / b(s + Mh, X¢N(é)+Mh)ds + (Lysmn — L)
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For ¢t € [0, MK], letting
)},N = X,AiMh, Li = Liysn — Lan,
we have

t
XY =X{'+ | bls+Mh, X} )ds+L,.

t

S~

[~

Noting that (i,),>o
1, we have

(L/)>0, denoting by p¥(z, -) the density of XV with X} = z, by Step

YR, y) < copa(ih.z—y), j=1,....M.
Hence, for j =1,..., M, by (4.4), (4.9) and C-K Egs. (2.9), we obtain that

PN+ M), y) = / , pY(jh, y)pY (Mh, z)dz
R

< ¢ / [ Palih, 2= Y)pa(Mh, x = 2)dz
R
= c2pa((j + M)h, x — y),
that is
pN(kh,y) < Epolkh,x —y), k=M+1,...,2M.

Repeating the above procedure [N /M ]-times, we get that

pfcv(kh, y) < c([)ZT/E]Hpa(kh,x -y), k=1,...,N.
We point that the constant c([)ZT/ s independent of N.(Step 3) Observe that for ¢+ €

(kh, (k + Dh),

t
XV = x¥ 4 / bls, XN)ds + (L, — Lu),
kh

where L, — Ly, is independent of X,Zl. Thus, by [19, Lemma 3.11] and (4.7),

t

pY(t,y) = f ) pY(kh, 2)po(t — kh, z + / b(s, z)ds — y)dz
R kh

< c([)ZT/8]+2/ pakh, x — 2)pa(t —kh,z — y)dz
R4

2T 2
= po(t, x = ).

Here, we have used h||b||o < 2h'% and C-K Egs. (2.9). O

The following corollary is a combination of Theorem 4.3, Lemma 2.1 and Lemma 2.3.

Corollary 4.4. Let po(dx) =Po Xo_l(dx) be the distribution of Xy and o € (1, 2).
(i) For any T > 0, there is a constant ¢ = c¢(d, o, T, ||b|loc) > O such that for all N € N,
te0,T]and y € R,

Pt ¥) < c/

i Pa(t, x — y)po(dx). 4.11)
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(ii) Forany T > 0 and B € (0, « — 1), there is a constant ¢ = c(d, a, T, ||b||~, B) > 0 such
that for all N € N, t € (0, T] and y1, v, € R4,

PRt y2) = P (6 yDl < clyn = PP > / | Palt, x = ypo(dx). - (4.12)
i=1,2 Y

(iii) Forany T > 0 and B € (0, o — 1), there is a constant ¢ = c(d, a, T, ||b|l s, B) > 0 such
that for all N € N, t1,tp € (0,T] and y € R¢,

PX (2. ) — pY, (0 I < el — 1P D a7 / | Palti, x = Y)pto(dv).
i=12 Re

Proof. (i) is a direct consequence of (4.4) and Theorem 4.3.
(ii) By Duhamel’s formula (4.2) and (4.4), we have

P, (&, y2) — pX, (. yD| < 1 + A,
where
S = /d [Pa(t, x — y2) — pa(t, x — y1)|po(dx),
R

and

t
Faim bl [ [ 9P =531 = 2) = Vputt = .32 = 2l . 1z,
0 JRR
For .7, by (2.10), we have

S Sy =l ey /d Palt, x = yi)to(dx).
R

i=1,.2
For %, by (2.10), (i) and C-K Egs. (2.9), we obtain that

t
S 5w —y1|ﬂf (t — )" " (/ Palt —s,z—yi)[/ Pals. x —z)uo(dx)]d1> ds
0 R4 Rd

i=1,2

t
b=l [[a= s T [ gt = oo

i=1,2

b=l S [ pex = oo,
=127 R

where we have used 8 € (0, — 1).
(iii) Suppose that #; < f,. By Duhamel’s formula (4.2) and (4.4), we have

|P;]\(]0(l2, y) — P;lgo(tl, W< A+ S+ 2,
where

7= /R 1Paltnx = ) = palin, x = Vo),

[0}
St [ [ 190t = 5.2 = oG5, 20z,
1 R

and

I
H3 = IIbIIoof /d IVpalty — 5,2 —y) = Vpalti — 5,2 — y)Ipy, (s, 2)dz
0 R
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For ¢, by (2.12), we have
S Sl =Py e / | Palti, x = y)po(dx).
R

i=1,2
For #,, by (2.6), (i) and C-K Egs. (2.9), we get

B2 / 2<zz—s)*““ ( f Palts —5,2—) / pa(s,x—z)uo(dX)dz> ds
n R4 R
o)
_ / (s — 5)"eds / Palin, x — y)po(dx)
n ]Rd

< (= 1) Vet / Pl = ypo(dn).
R

Since 8 € (0, — 1), we have
0 < (t2 _ t])—l/OH—l < |t2 —1 |/3/0(t2—ﬂ/0t+(0t—1)/a g |t2 —1 |ﬂ/0{t2—ﬂ/0tT(ot—l)/a.

Hence,
2 Sty — )Pl e / | Paltz, x = y)puo(d).
R

For _#3, by (2.12), (i) and C-K Egs. (2.9), we obtain that

n
S35l —nlPe | —5) P ( fR Palti —s,2=) /R , pa(s,x—zwdx)dz) ds

i=12

n
=ln—nfe )" / (1 — 5y~ HP/ds / Pati, x — y)po(dx)
0 R?

i=1,2
< g T Ve —nPle Ifﬂ/a/d Pa(ti, x — y)po(dx),
i=1.2 R
where we have used 8 € (0,0 — 1) and 0 <ty <, < T.
Combining the above calculations, we get the desired estimate. [J

5. Proof of Theorem 1.2

Let (12, Z, (%)r>0, P) be a complete filtered probability space, L, a d-dimensional symmet-
ric and rotationally invariant .%,-adapted «-stable process with o € (1, 2), X an .%j-measurable
random variable with distribution po. Let T > 0, N e Nand h :=T/N. Let X ,N be the Euler
approximation of DDSDE (1.1) constructed in the introduction. From the construction, it is
easy to see that X" solves the following SDE:

t
xV =X, +/ bV (s, Xpy (s))ds + Ly, (5.1)
0
where

bV (s, x) = Lzmb(s, X, pl (X))

and
o0

G (s) =D jihlnGanm(s).

j=0
Trivially, s — h < ¢n(s) < s.
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Let D be the space of all cadlag functions from [0, 7] to R?. In the following, D is
equipped with Skorokhod topology which makes D into a Polish space, and use dp to denote
the associated metric.

Lemma 5.1. The sequence of laws for (XN) in (D, dp) is tight.

Proof. It is trivial that the sequence of distributions for (XY, Lo) = (X, 0) is tight in RY x R,
Taking g € («/2, o), by Chebyshev’s inequality, (5.1) and the fact (cf. [10, Lemma 2.4])

EIL, — Lyl Sl =517, g €0, ), (5.2)
we obtain that forany N e N, R>0and 0<s <r <1< T,

P(1xY = XY > R XY = XY > R

N——"

<P(ILr = Lyl + 0 = )bl > R) x B(IL; = L1+t = Dllblle > R) (5:3)
Sr— ) =) R L (1 — $)Y R,
Similarly, we have

hmsupIP’< |XN X(])V| > 8) =0, Ve>0.
810

Hence, combining the above calculations, by [18, Theorem 4.1, p.355], we see that the
sequence (XV) is tight. O

Let p; N(t, -) be the distributional density of the Euler scheme X, N(x) of SDE (5.1) starting
from x at time 0. Since for each x € R?, X, N(x) is independent of Xo, the distributional density
oN(-) of XN with initial distribution ¢ is given by

PN (y) = / L po(dx). (5.4)
R
Furthermore, by Theorem 4.3, we have that for ¢ > 1,
1/q o 4 1/q
( P I'dy) " = P @GN (0), Vo(dn)| dy)
(2.3)
S / / 1Pl (@), x = VI po(andy) " < w0
Rd JRd

(5.5)
where 1/g +1/p = 1.

Lemma 5.2. For fixed T > 0, there are a subsequence (Ny)ren and a continuous function
p € C((0, T]1 x RY) such that for any M € N with M > 1/T,

lim sup sup [p,"*(y) — p(y)] = 0. (5.6)

k=00 |y |<M 1/M<t<T
Proof. By Theorem 4.3 and (2.4), we have that

sup sup o (y)] < / sup  sup |pe(t,x — y)luo(dx) < cpy,
IYI<M 1/M<t<T R |y|<M 1/M<t<T
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where ¢y, is independent of N. Moreover, by Corollary 4.4, we have for any 8 € (0, — 1),
ti,t € [1/M,T] and y;, y, € R?,

lof 1) = o )1 < lop ) = P Dl + 1o (1) — o) (1)

Sl —nlffemPre " / Palti, x = y1)po(dx)
i=1,2

+ Iy =l My / P2, x = yi)to(dx)

i=1,2
2.4)
< MY — )Pl 4 |y — )P, 7

where the implicit constants in the above < are independent of N. Thus, by Ascolli-Arzela’s
theorem, we conclude the proof and have (5.6). [J

Now we are in a position to give
Proof of Theorem 1.2. (Existence) Fix T > 0. For the simplicity, we use a slight abuse
of notation | - ||eo = || - ||]Lc;c in some places. Let Qy be the law of (X", L) in D x D. By
Lemma 5.1, Qy is tight. Therefore, by Prokhorov’s theorem (cf. [19, Theorem 16.3]), for the

subsequence in Lemma 5.2, there are a subsubsequence (n;);>; and a probability measure Q
on D x D so that

Q,,j — Q weakly.

Below, for simplicity of notations, we still denote the above subsequence by Qu, N € N. Then,
by Skorokhod S representation theorem (cf. [19, Theorem 4.30]), there are a probability space
(Q ]P’) and random variables X, L thereon such that

XV Iy > (X, L), P—as. (5.8)
and
Po(XN, Iy ' =Qy =Po (X", L), Po(X,L)"' =Q. (5.9)

In particular, the distributional density of X N'is pN. Moreover, by Lemma 5.2 and (5.8), for
any t € (0, T) and ¢ € Cf"(]Rd),

Ep(®) = lim EpX)) = lim / w20 ()dz = / p(pr()z.
Rd Rd
In other words, p, is the density of X,. Define .%, N = =o{XN, LV s < t}. Noting that
IP[LZ - Ls € - | yv] = ]P{Ll - L.v € '}a
we have
PILY - LY e | FM =L} - IV e},

which means that Zf’ is an (JOZN’SN )-adapted «-stable Lévy process. Thus, by (5.1) and (5.9) we
obtain

t
xN =Xl +/ bV (s, X ()ds + L), (5.10)
0
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where b" (s, X nb(s, xv ))). We claim that

o> Lo X

t
|8 X s — / bis, Ko, pu (T, (5.11)

o) = Lis>

in probability as N — oo. Recalling the results in [18, p.339] and (5.8), one sees that for
P-as. o, if AX,(a)) AL ((w) = 0, then

XN () — X, ().
Then, through taking N — oo in (5.10), it holds that for Pas w,
t
X(w) = Xo(w) +/ b(s, Xs(w), ps(Xs(w)))ds + L(w), t € D,,
0
where
D, ={t € R, | AX,(») = AL,(w) = 0}.
Since X and L belong to I, D¢ is a countable set in R and
t
X (w) = Xo(w) +/ b(s, Xs(w), ps(Xs(w)))ds + Li(w), te€R,,
0

which derives the existence.
Let us now prove (5.11). Indeed, observe that

t
‘f bN(s X¢N(s))ds - / b(s, Xy, ps(X;))ds| < le + ij + T|blles/N,
0

where
t
N ._ T TN N TN TN TN
= E/h » Ko ) Pono Xy ) — b0 Xg ), PS(X¢N<s>))‘dS
and
N =F / X PR, ) = bls. Ko, p(Kofds.

(1) For 7", we have
1
N ™ TN
4 <]E/h Lygn < 56 B 200 R = b5, K Kyl ] s

+ bl [ B(R 0l = R)as = SR+ FBR

Since

102 @) = o] < 102, @) = N )] + Y (%) = py ()]
by (5.6) and (5.7), we see that for each fixed (s, x) € (0, T] x R4,

. N
i 110, ) (0) = 5] = 0,
which implies that for any (s, x) € R} x R4, by (1.7) we have

Jim_[b(s, %, pgy, () = b5, %, py(2)] = 0. (5.12)
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Moreover, by Holder’s equality and (5.5), we get

INR) = /h /| . 565, ., Pl (D) = bCs. . p )|l (0)dxds

t 1/p
< [ [ [ Jbsrofeen = s, m(x)))pdxds]
n Jixi<r

t 1/q
x [/ f ngN(s)(y)qude] (5.13)
h JIyI<R

t P 1/p
S [fh / ‘b(s, X, pé}VN(s)(x)) — b(s, x, ,os(x))) dxds]
[x|<R

T 4 1/q
X |:/ (s — h)_a("_l)dsi|
h

provided 1 < ¢ < 1 4+ «/d and 1/p 4+ 1/q = 1. Note that the implicit constant in
the above < is independent of N, R. Thus, for any R > 0, by dominated convergence
theorem and (5.12), we get that

Jim _7J(R) = 0. (5.14)

For 7 J(R), by (5.1), (5.2) and Chebyshev’s inequality, we have

t t
/ B(1%0, | > R)ds :/ P(1X0, | > R)ds
0 0
t 1/a
< T]P’(|X0| FTIbl > R/2> +/ @nGD
s R)2

< T]P’(|X0| + T1b]los > R/2> + 7@tV R /D)™ (5.15)

which converges to zero uniformly in N as R — oco. Consequently, combining (5.14)
and (5.15), we obtain that

Jim A1 =0,
(2) For /ZN , let K, be a family of mollifiers in R? and define
B,(t,x) = b(1, -, py(-)) * Ky (x).
Notice that || B,|| < ||b|loo and for any R > 0, Bg := {x € R? | |x| < R},
lim || 1 (B. = b)ll, = 0. (5.16)
Then
I3 <IN @)+ I+ I,

where

t
e =F fh 1Bu(s, XY ) — Bus, Ry)lds,

t
/21;,(5) = E/h b(s, XgN(‘yV ,Os(XgN(S))) — B (s, XgN(S)NdS
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and
t
S = [ 106 R pu(Ko) - B Kl
h
Thus, by (5.8) and results in [18, p.339], for any s > 0,
gﬁleiJ:O(S) — )N(SIA;(FO(S), as N — oo, P-as.,
which, by the dominated convergence theorem, implies that for arbitrary fixed ¢ > 0,

t t
lim E/ |Be(s, XV) — Be(s, X)|ds g]E/ lim |Be(s, X) — Be(s, X,)|1 5 3. _o(s)ds
h 0 N—>oo ST

N—o00
t
+ 21| Be oo B /0 1,5, 0(5)ds =0,

where we use the fact that for Lebsgue a.e. s € [0, 7], Af(s = 0 since X € D. On the
other hand, by (5.2), we have

t t
E / |Be(s. X}y () — Be(s. X2)lds < |V Belloo / EIX} ) — X |ds
h h
S IVB:lloc(R] 16l + 17]*),
where h = T /N. Consequently, for fixed ¢ > 0,
lim _#)\(e) =0.
N—o0

For /2];’ (&), we have

t

A <E [y mlbto K 2 E ) = Bilo, K lds

t
+ 2||b||oo/ IP’<|X(’;’N(X)| > R)ds =1N(e)+ JY.
h

Samely as (5.13), by Holder’s inequality with 1 < g < a/d + 1 and g = ﬁ, we see
that
1/q

T 1/p T dq
IR(e) < [/0 / 1b(s, y, ps(¥)) — Be(s, y)lpdde} Uh (s — h)“ﬂds} ;
VISR

where the implicit constant in the above < is independent of N, R and ¢. Hence, for
each R > 0, by the dominated convergence theorem and (5.16), we obtain

lim sup I,Iev(e) =0.
e—0 N
By (5.15), we have limg_,  supy Jg = 0. For _Z}(¢), it is similar to _Z3) ().

Combining the above calculations, we get (5.11). The proof of the existence is finished.
(Uniqueness) For i = 1,2, let p”’ be two densities of two weak solutions X for DDSDE
(1.1) respectively:

) t ) ) ) .
x0 =X, + / b(s, X, pP(XD))ds + Li".
0

For each i, by tlle.well—lin_own result (see [23] for example), for any x € R, there is a unique
weak solution (X (x), L") for the following classical SDE with bounded drift b(z, x, p”(x))
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and o € (1, 2):
X () =x+ / (s KO, pO XD s + L
0
Denote by p@(z, -) the density of X\"(x). Then, we have

() = fR PV »po(odx. (5.17)
Moreover, by (4.5) and (5.6),
PO, Y) < epalt, x —y), V(t,x,) € (0, T] x RY x RY. G.18)
In the following, we prove (i) and (ii) respectively.
(i) Define u, := ,ot(l) - ,ot(z). Hence, by (1.6),
du, = A*u, + div(B(t, )u,),  uo =0, (5.19)
in weak sense, where

b(t, x, p"(x)) — b(t, x, p>(x))
u(x)

B(t. x) = b(t. x, p"(x)) + p”(x) :
and use the convention g

and (5.18), we have

= 0. In this case, we only need to prove that u, = 0. By (5.17)

. (2.3)
1o oo < 1palt, Mplipolly, S 4@ e L0, T]), i=1,2,
where 1/p + 1/g = 1. Notice that, by the assumption (1.11),

1B, Moo S Mblloo + 1107 oo S 1+ 174D, (5.20)

~

By Duhamel’s formula and (5.19), we have

muy:/(m@—n*mwmmmﬁum&
0

Hence, for g > d/(a — 1), by (5.20) we have
t
lurlloo < / IV pa — )1 I1B(s)us |l ods
0

(2.3) t
S / =)V + 57 CD) Juy ) o,
0

which completes the proof by Gronwall’s inequality (cf. [31, Example 2.4]).
(i) Based on the weak uniqueness result (i) with ¢ = oo, we denote by

o= p, = p;.
By the well-known result (see [11]*Theorem 1.1 for example), if we have
A(t, x) = b(t, x, p(x)) € L¥([0, T]; CFo) (5.21)

for By € (1 —a/2,1) and any T > O, then the strong uniqueness holds. Thus, it is enough
to show that p,(x) € L*®([0, T]; C*) for By > 1 — /2. Unfortunately, we cannot obtain
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it directly from pg € C#o and (5.17), since p:(x,y) # p:(x — y). Firstly, by (5.17) and
(5.18), we have

sup [1prlloo < lloolleo sup / Pa(t, y)dy = [lpollco>
t€[0,T] te[0,T] JRA

which implies that
b(t, x) := b(t, x, p(x))p,(x) € L([0, T] x RY).

Hence, by (1.6), (3.12), (3.5) and (3.6), for any T > 0, there is a constant ¢y such that
for all r € [0, T'],

oot < er(llpollesn + IBlse ). (5.22)
Ifoa — 1> By, (5.21) is straightforward. Otherwise, by (1.11) and (5.22), we have

||b||L<;_O(Ca71) < OQ.

Thus, by (1.6), (3.12), (3.5) and (3.6) again, there is a constant c(Tz) such that for all
t€l0,T],

2
Il 01 | ce@—1ngy < P,

By induction, there are a N € N with

(@ = 1N > fo
and a constant c(TN) such that
lodlesr < e Vi e0,T].

Then, we have (5.21) and complete the proof. [
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