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Abstract

In this paper, we show the weak and strong well-posedness of density dependent stochastic differential
quations driven by α-stable processes with α ∈ (1, 2). The existence part is based on Euler’s
pproximation as Hao et al. (2021), while, the uniqueness is based on the Schauder estimates in
esov spaces for nonlocal Fokker–Planck equations. For the existence, we only assume the drift being
ontinuous in the density variable. For the weak uniqueness, the drift is assumed to be Lipschitz in
he density variable, while for the strong uniqueness, we also need to assume the drift being β0-order
ölder continuous in the spatial variable, where β0 ∈ (1 − α/2, 1).
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1. Introduction

Fix α ∈ (1, 2). Let (L t )t⩾0 be a d-dimensional symmetric and rotationally invariant α-stable
rocess on some probability space (Ω ,F ,P). In this paper, we consider the following density
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dependent stochastic differential equation (abbreviated as DDSDE):

dX t = b(t, X t , ρt (X t ))dt + dL t , X0
(d)
= µ0, (1.1)

where b : R+ ×Rd
×R+ → Rd is a bounded Borel measurable vector field, µ0 is a probability

measure over Rd and for t > 0, ρt (x) = P ◦ X−1
t (dx)/dx is the distributional density of X t

with respect to the Lebesgue measure dx on Rd .
In literature, DDSDE (1.1) is also called McKean–Vlasov SDE of Nemytskii-type which

was firstly introduced in [2, Section 2] to give a probabilistic representation for the solutions of
nonlinear Fokker–Planck equations. In a series of works [2–5], Barbu and Röckner investigated
the following DDSDE driven by Brownian motions:

dX t = b(t, X t , ρt (X t ))dt + σ (t, X t , ρt (X t ))dWt , X0
(d)
= µ0, (1.2)

where σ : R+×Rd
×R+ → Rd

⊗Rd is measurable and W is a standard d-dimensional Brownian
motion. By Itô’s formula, one sees that ρt solves the following nonlinear Fokker–Planck
equation (NFPE) in the distributional sense:

∂tρt −
1
2

d∑
i, j=1

∂i∂ j

[
ai j (t, ·, ρt )ρt

]
+div(b(t, ·, ρt )ρt ) = 0, lim

t→0
ρt (x)dx = µ0(dx) weakly,

here ∂i :=
∂
∂xi

, ai j :=
∑d

k=1 σikσ jk , and div stands for the divergence. More precisely, for any
∈ C∞

c (Rd ),

⟨ρt , ϕ⟩ = ⟨µ0, ϕ⟩ +
1
2

d∑
i, j=1

∫ t

0
⟨ρs, ai j (s, ·, ρs)∂i∂ jϕ⟩ds +

∫ t

0
⟨ρs, b(s, ·, ρs) · ∇ϕ⟩ds,

here

⟨ρt , ϕ⟩ :=

∫
Rd
ϕ(x)ρt (x)dx = Eϕ(X t ).

n Barbu and Röckner’s works, they obtained the well-posedness for NFPE through analytic
ethods, and then used the so-called superposition principle to get the well-posedness of
DSDE (2.3). Recently, different from these works, the second named author together with
öckner and Zhang [13] gave a purely probabilistic proof for the existence of the solution to

he following DDSDE with additive noises:

dX t = b(t, X t , ρt (X t ))dt + dWt . (1.3)

It is well known that Brownian motion is a continuous Lévy process. Hence, it is natural
o consider such density dependent SDEs driven by pure jump Lévy processes. In particular,
e consider α-stable processes which are typical Lévy processes having selfsimilar properties

cf. [26]). Up to now, the study of the well-posedness of SDEs with stable noises has been and
emains an important area in stochastic analysis. For the classical case, there are a lot of results
bout strong solutions, weak solutions, and martingale solutions (see [8,15,21,23,25] and etc.).
e also see that there are many results about McKean–Vlasov SDEs with jumps (see [22]

nd references therein). Among these results, some applications can be found in financial
athematics (cf. [6]) and neural net-works (cf. [24]). However, under the framework of Lévy

oises, there are no results about Nemytskii’s type SDEs. Thus, it is natural and interesting to
nvestigate DDSDE (1.1).
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On the other hand, McKean–Vlasov SDEs with Lévy noises are related to non-local
ntegral-PDEs. By Itô’s formula (cf. [17, Theorem 5.1]) for DDSDE (1.1), we have that for
ny ϕ ∈ C∞

c (Rd ),

⟨ρt , ϕ⟩ = ⟨µ0, ϕ⟩ +

∫ t

0
⟨ρs, b(s, ·, ρs) · ∇ϕ⟩ds +

∫ t

0
⟨ρs,∆

α/2ϕ⟩ds, (1.4)

here

∆α/2ϕ(x) :=

∫
Rd

(
ϕ(x + z) − ϕ(x) − z1|z|⩽1 · ∇ϕ(x)

)
|z|−d−αdz

=
1
2

∫
Rd

(
ϕ(x + z) + ϕ(x − z) − 2ϕ(x)

)
|z|−d−αdz

(1.5)

s the infinitesimal generator of (L t )t⩾0 (cf. [26, Theorem 31.5]). Consequently, one sees that
t solves the following equation in the distributional sense:

∂tρt − ∆α/2ρt + div(b(t, ·, ρt )ρt ) = 0, lim
t↓0
ρt (x)dx = µ0(dx) weakly, (1.6)

here we use the fact that ∆α/2 is a self-adjoint operator. We point out that the infinitesimal
enerator of Brownian motion is the Laplacian ∆. The fractional Laplacian operator ∆α/2 is
on-local, and is essentially different from the local operator ∆. For instance, we can use
eibniz’s rule to handle ∆( f g) but the non-local case is more difficult. Thus, the Euler type
pproximation in [13], a purely probabilistic method, is chosen to show the existence of the
olutions of DDSDE (1.1) in this paper.

Moreover, when b(t, ·, u) is β0-order Hölder continuous uniformly in t, u with β0 ∈

1 − α/2, 1), we obtain the uniqueness based on some a priori estimates of Besov-type (see
emma 3.6) for the nonlocal Fokker–Planck Eq. (1.4). This part is not studied in [13]. It is
orth noting that the condition β0 > 1 − α/2 is natural. The uniqueness in [13] is obtained
ased on the well-known pathwise uniqueness for SDE (1.3) with bounded measurable drift
(t, x, ρt (x)) (cf. [29]). However, the situation changes when we consider α-stable noises with
∈ (0, 2). Let us consider

dX t = b(t, X t )dt + dL t ,

here L is a d-dimensional symmetric α-stable process. When d = 1 and α < 1, even a
ounded and β0-Hölder continuous b is not enough to ensure pathwise uniqueness if α+β0 < 1
see [27] for the counterexample). When d ⩾ 1 and α ∈ [1, 2), Priola [25] obtained the
athwise uniqueness under β0 > 1 −α/2. The condition β0 > 1 −α/2 can be found in [11,15]
s well for the supercritical case and the degenerate case respectively.

Before stating the main result, we introduce the classical Hölder spaces in Rd . For β > 0,
et Cβ(Rd ) be the classical β-order Hölder space consisting of all measurable functions f :

d
→ R with

∥ f ∥Cβ :=

[β]∑
j=0

∥∇
j f ∥∞ + [∇ [β] f ]Cβ−[β] < ∞,

here [β] denotes the greatest integer no more than β, ∇
j stands for the j-order gradient, and

∥ f ∥∞ := sup
x∈Rd

| f (x)|, [ f ]Cγ := sup
h∈Rd

∥ f (· + h) − f (·)∥∞

|h|
γ , γ ∈ (0, 1).

n the sequel, for any p ∈ [1,∞), we denote by L p the space of all p-order integrable functions
n Rd with the norm denoted by ∥ · ∥ .
p
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As mentioned before, to show the existence of a weak solution, we consider the following
uler scheme to DDSDE (1.1): Let T > 0, N ∈ N and h := T/N . For t ∈ [0, h], define

X N
t := X0 + L t ,

nd for t ∈ (kh, (k + 1)h] with k = 1, . . . , N − 1, we inductively define X N
t by

X N
t := X N

kh +

∫ t

kh
b(s, X N

kh, ρ
N
kh(X N

kh))ds + (L t − Lkh),

here ρN
kh(x) is the distributional density of X N

kh , whose existence is easily seen from the
onstruction.

We give the definition of a weak solution to DDSDE (1.1):

efinition 1.1 (Weak Solutions). Let µ0 be a probability measure on Rd and α ∈ (1, 2). We
all a filtered probability space (Ω ,F ,P; (Ft )t⩾0) together with a pair of Ft -adapted processes
X t , L t )t⩾0 defined on it a weak solution of SDE (1.1) with initial distribution µ0, if

(i) P ◦ X−1
0 = µ0, and (L t )t⩾0 is a d-dimensional symmetric and rotationally invariant

α-stable process.
(ii) for each t > 0, ρt (x) = P ◦ X−1

t (dx)/dx and

X t = X0 +

∫ t

0
b(s, Xs, ρs(Xs))ds + L t , P − a.s.

The following existence and uniqueness result is the main theorem of this paper.

heorem 1.2. Assume that α ∈ (1, 2), and b is bounded measurable and for any (t, x, u0) ∈

+ × Rd
× R+,

lim
u→u0

|b(t, x, u) − b(t, x, u0)| = 0. (1.7)

Existence) For any T > 0 and initial distribution µ0, there are a subsequence Nk and a weak
olution (X, L) to DDSDE (1.1) in the sense of Definition 1.1. Moreover, for each t ∈ (0, T ],

X t admits a distributional density ρt , with respect to Lebesgue measure, satisfying the estimate

ρt (y) ⩽ c
∫
Rd

t
(t1/α + |x − y|)d+α

µ0(dx), (1.8)

here the constant c > 0 only depends on T, d, α, ∥b∥∞, and the following L1-convergences
hold:

lim
k→∞

∫
Rd

|ρ
Nk
t (y) − ρt (y)|dy = 0 (1.9)

and

lim
k→∞

∫ T

0

∫
Rd

|ρ
Nk
t (y) − ρt (y)|dydt = 0. (1.10)

Uniqueness) Suppose that there is a constant c > 0 such that for all (t, x, ui ) ∈ R+×Rd
×R+,

= 1, 2,

|b(t, x, u1) − b(t, x, u2)| ⩽ c|u1 − u2|. (1.11)

i) If µ0(dx) = ρ0(x)dx with ρ0 ∈ Lq (Rd ) for some q ∈ ( d
α−1 ,+∞], then the weak uniqueness

olds for DDSDE (1.1).
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(ii) If µ0(dx) = ρ0(x)dx with ρ0 ∈ Cβ0 (Rd ) for some β0 ∈ (1 − α/2, 1) and

sup
(t,u)∈R2

+

∥b(t, ·, u)∥Cβ0 < ∞,

hen the pathwise uniqueness holds for DDSDE (1.1). Furthermore, there is a unique strong
olution to it.

emark 1.3. Although we use the same method as [13] in the existence part, our assumptions
n drifts are weaker. Therein, the following local uniform continuity is assumed,

lim
u→u0

sup
|x |<R

|b(t, x, u) − b(t, x, u0)| = 0, ∀t ⩾ 0, R > 0. (1.12)

or example, b(t, x, u) := (|u/x | ∧ 1)1x ̸=0, x ∈ R, u ∈ R+, satisfies the condition (1.7) but
oes not satisfy (1.12) for any R > 0. It should be noted that our condition (1.7) is also valid
or the Brownian motion case. That is, we improve the result in [13].

emark 1.4. For the uniqueness, the conditions here are natural. Conditions in (i) are the
ame as [13, Theorem 1.2]; the same condition β0 > 1 − α/2 in ( ii) can be found in [11,25]
s well.

The paper is organized as follows. In Section 2, we show some estimates of the density to the
otationally invariant and symmetric α-stable process. In Section 3, we introduce Besov spaces
nd establish Schauder’s estimates for non-local parabolic equations by using Littlewood-
aley’s type estimates of heat kernels. In Section 4, we prove some uniform estimates in N
bout heat kernels of Euler’s scheme X N

t . In Section 5, we show the proof of Theorem 1.2.
Throughout this paper, we use the following conventions and notations: As usual, we use :=

s a way of definition. Define N0 := N ∪ {0} and R+ := [0,∞). The letter c = c(· · · ) denotes
n unimportant constant, whose value may change in different places. We use A ≍ B and

A ≲ B to denote c−1 B ⩽ A ⩽ cB and A ⩽ cB, respectively, for some unimportant constant
⩾ 1.

. Preliminaries

.1. α-Stable processes

A càdlàg process {L t | t ⩾ 0} on Rd (d ⩾ 1) is called a Lévy process, if L0 = 0 almost
urely and L has independent and identically distributed increments. The associated Poisson
andom measure is defined by

N ((0, t] × Γ ) :=

∑
s∈(0,t]

1Γ (Ls − Ls−), Γ ∈ B(Rd
\ {0}), t > 0,

nd the Lévy measure is given by

ν(Γ ) := EN ((0, 1] × Γ ).

hen, the compensated Poisson random measure is defined by

Ñ (dr, dz) := N (dr, dz) − ν(dz)dr.

or α ∈ (0, 2), a Lévy process L t is called a symmetric and rotationally invariant α-stable
rocess if the Lévy measure has the form

ν(α)(dz) = c|z|−d−αdz,
420
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with some specific constant c = c(d, α) > 0. In this paper, we only consider the symmetric and
otationally invariant α-stable process. Without causing confusion, we simply call it the α-stable

process, and assume that ν(α)(dz) = |z|−d−αdz here and after. For any 0 ⩽ γ1 < α < γ2, it is
easy to see that∫

Rd
(|z|γ1 ∧ |z|γ2 )ν(α)(dz) < ∞. (2.1)

By Lévy–Itô’s decomposition (cf. [26, Theorem 19.2]), we have

L t = lim
ε↓0

∫ t

0

∫
ε<|z|⩽1

z Ñ (dr, dz) +

∫ t

0

∫
|z|>1

zN (dr, dz). (2.2)

By [26, Theorem 31.5], the infinitesimal generator of Lévy process (L t )t⩾0 is the fractional
aplacian operator ∆α/2 defined by (1.5).

Moreover, by Lévy-Khintchine’s formula [26, Theorem 8.1], for all |ξ | ⩾ 1, we have

|Eeiξ ·L t | ⩽ exp
(

t
∫
Rd

(cos(ξ · z) − 1)ν(α)(dz)
)

⩽ exp
(

−t |ξ |α
∫

∞

0

∫
Sd−1

1 − cos(ξ̄ · rθ )
r1+α

Σ (dθ )dr
)
⩽ e−ct |ξ |α ,

here ξ̄ := ξ/|ξ |, and Σ is the uniform measure on the sphere Sd−1, and the constant c > 0
epends only on α and Σ (Sd−1). Hence, by [26, Proposition 28.1 ], L t admits a smooth density
unction pα(t, ·) given by Fourier’s inverse transform

pα(t, x) = (2π )−d/2
∫
Rd

e−i x ·ξEeiξ ·L t dξ, ∀t > 0,

nd the partial derivatives of pα(t, ·) at any orders tend to 0 as |x | → ∞. Since the α-stable
rocess L t has the scaling property

(λ−1/αLλt )t⩾0
(d)
= (L t )t⩾0, ∀λ > 0,

t is easy to see that

pα(t, x) = t−d/α pα(1, t−1/αx). (2.3)

y [7, Theorem 2.1], one knows that there is a constant c = c(d, α) > 1 such that

c−1ϱα(t, x) ⩽ pα(t, x) ⩽ c ϱα(t, x), (2.4)

here

ϱα(t, x) :=
t

(t1/α + |x |)d+α
. (2.5)

y [9]*Lemma 2.2, for any j ∈ N0, there is a constant c = c(d, j, α) > 0 such that

|∇
j pα(t, x)| ⩽ ct− j/αϱα(t, x). (2.6)

ince

(t1/α
+ |x + z|)−γ ⩽ 4γ (t1/α

+ |x |)−γ , for |z| ⩽ (2t1/α) ∨ (|x |/2),

e get that

ϱ (t, x + z) ⩽ 4d+αϱ (t, x), for |z| ⩽ (2t1/α) ∨ (|x |/2). (2.7)
α α
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Note that pα(t, x) is the heat kernel of the operator ∆α/2, i.e.,

∂t pα(t, x) = ∆α/2 pα(t, x), lim
t↓0

pα(t, x) = δ0(x), (2.8)

here δ0 is the Dirac measure at point 0. We also have the following Chapman–Kolmogorov
abbreviated as C-K) equations:

(pα(t) ∗ pα(s))(x) =

∫
Rd

pα(t, x − y)pα(s, y)dy = pα(t + s, x), t, s > 0. (2.9)

.2. Some estimates of the heat kernel of ∆α/2

Now we give some estimates of the heart kernel of ∆
α
2 . These estimates are straightforward

and elementary. Note that Lemma 2.1 and Corollary 2.2 are the same as [9, Lemma 2.2] and
[9, Theorem 2.4] respectively when j = 0.

Lemma 2.1. For any j ∈ N0 and β ∈ (0, 1), there is a constant c = c(d, α, β, j) > 0 such
that for every t > 0, x1, x2 ∈ Rd ,

|∇
j pα(t, x1) − ∇

j pα(t, x2)| ⩽ c|x1 − x2|
β t−( j+β)/α(pα(t, x1) + pα(t, x2)). (2.10)

Proof. If |x1 − x2| > t1/α , then by (2.6) we have

|∇
j pα(t, x1) − ∇

j pα(t, x2)| ≲ t− j/α(ϱα(t, x1) + ϱα(t, x2))

≲ |x1 − x2|
β t−( j+β)/α(ϱα(t, x1) + ϱα(t, x2)).

f |x1 − x2| ⩽ t1/α , then by the mean-value formula and (2.6),

|∇
j pα(t, x1) − ∇

j pα(t, x2)| ⩽ |x1 − x2|

∫ 1

0
|∇

j+1 pα(t, x1 + θ (x2 − x1))|dθ

≲ |x1 − x2|t−( j+1)/α
∫ 1

0
ϱα(t, x1 + θ (x2 − x1))dθ

(2.7)
≲ |x1 − x2|

β t−( j+β)/αϱα(t, x1),

here we have used β ∈ (0, 1) in the last inequality. Combining the above calculations, we
et (2.10) by (2.4). □

As a consequence of Lemma 2.1, we have the following corollary.

orollary 2.2. For any j ∈ N0, there is a constant c = c(d, α, j) > 0 such that for every
> 0 and x ∈ Rd ,

|∆
α
2 ∇

j pα(t, x)| ⩽ ct−1− j/α pα(t, x). (2.11)

roof. First of all, recalling the definition (1.5),

∆
α
2 ∇

j pα(t, x) =

∫
|z|⩽t1/α

(
∇

j pα(t, x + z) − ∇
j pα(t, x) − z · ∇

j+1 pα(t, x)
) dz
|z|d+α

+

∫
|z|⩾t1/α

(
∇

j pα(t, x + z) − ∇
j pα(t, x)

) dz
|z|d+α

:= I + I .
1 2
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For I1, by (2.7) and (2.10), we have that for any β ∈ (α − 1, 1),

I1 ⩽
∫

|z|⩽t1/α
|z|β+1t−

j+1+β
α

dz
|z|d+α

ϱα(t, x) ≲ t−1− j/αϱα(t, x).

or I2, by (2.6), ones see that

I2 ≲ t− j/α
∫

|z|>t1/α

(
ϱα(t, x + z) + ϱα(t, x)

) dz
|z|d+α

≲ t−1− j/αϱα(t, x) + t− j/α
∫

|z|>t1/α
ϱα(t, x + z)

dz
|z|d+α

.

Then, we only need to estimate the second term above denoted by I3. If |x | ⩽ 2t1/α , by (2.5)
and (2.7), we obtain that

I3 ≲ t− j/α
∫

|z|>t1/α
ϱα(t, z)

dz
|z|d+α

⩽ t− j/α t
t (d+α)/α

∫
|z|>t1/α

dz
|z|d+α

≲ t−(d+α+ j)/α
= t− j/α−1 t

t (d+α)/α≲t− j/α−1ϱα(t, x).

f |x | > 2t1/α , by (2.5) and (2.7), we have

I3 = t− j/α
(∫

|x |

2 ⩾|z|>t1/α
+

∫
|z|> |x |

2

)
ϱα(t, x + z)

dz
|z|d+α

≲ t− j/αϱα(t, x)
∫

|z|>t1/α

dz
|z|d+α

+ t− j/α 1
|x |

d+α

∫
|z|> |x |

2

ϱα(t, x + z)dz

(2.4)
≲ t− j/α−1ϱα(t, x) + t− j/α 1

|x |
d+α

≲ t− j/α−1ϱα(t, x).

ased on (2.4), the proof is complete.

The following result is also true when we consider Gaussian heat kernels (cf. [13, Lemma
.1]).

emma 2.3. For any β ∈ (0, α) and j ∈ N0, there is a constant c = c(d, α, β, j) > 0 such
hat for every t1, t2 > 0 and x ∈ Rd ,

|∇
j pα(t1, x) − ∇

j pα(t2, x)| ⩽ c|t2 − t1|β/α(t−( j+β)/α
1 pα(t1, x) + t−( j+β)/α

2 pα(t2, x)).

(2.12)

roof. Without loss of generality, we assume that t2 > t1. If t2−t1 > t1, then t1∨t2 ⩽ 2(t2−t1)
nd

|∇
j pα(t1, x) − ∇

j pα(t2, x)|
(2.6)
≲ t− j/α

1 ϱα(t1, x) + t− j/α
2 ϱα(t2, x)

≲ |t2 − t1|β/α(t−( j+β)/α
1 ϱα(t1, x) + t−( j+β)/α

2 ϱα(t2, x)).

or t2 − t1 ⩽ t1, notice that by (2.8) and (2.11),

|∇
j∂ p (t, x)| = |∇

j∆α/2 p (t, x)| = |∆α/2
∇

j p (t, x)| ≲ t−1− j/αϱ (t, x). (2.13)
t α α α α
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Thus, by the mean-value formula and β ∈ (0, α), we have

|∇
j pα(t1, x) − ∇

j pα(t2, x)| ⩽ |t2 − t1|
∫ 1

0
|∇ j∂t pα|(t1 + θ (t2 − t1), x)dθ

≲ |t2 − t1|
∫ 1

0
(t1 + θ (t2 − t1))−1− j/αϱα(t1 + θ (t2 − t1), x)dθ

(2.5)
≲ |t2 − t1|t

−1− j/α
1 ϱα(t1, x) ⩽ |t2 − t1|β/αt−( j+β)/α

1 ϱα(t1, x).

y (2.4), the proof is finished. □

. Besov spaces and Schauder’s estimates

In this section, we introduce Besov spaces where we obtain Schauder’s estimates for the
perator ∂t −∆α/2 (see Lemma 3.6). Let S (Rd ) be the Schwartz space of all rapidly decreasing
unctions on Rd , and S ′(Rd ) the dual space of S (Rd ) called Schwartz generalized function
or tempered distribution) space. Given f ∈ S (Rd ), the Fourier and inverse transforms of f
re defined by

f̂ (ξ ) := F f (ξ ) := (2π )−d/2
∫
Rd

e−iξ ·x f (x)dx, ξ ∈ Rd

nd

f̌ (x) := F−1 f (x) := (2π )−d/2
∫
Rd

eiξ ·x f (ξ )dξ, x ∈ Rd .

or any f ∈ S ′(Rd ),

⟨ f̂ , ϕ⟩ := ⟨ f, ϕ̂⟩, ⟨ f̌ , ϕ⟩ := ⟨ f, ϕ̌⟩, for ∀ϕ ∈ S (Rd ).

et χ : Rd
→ [0, 1] be a smooth radial function with

χ (ξ ) =

{
1, |ξ | ⩽ 1,
0, |ξ | > 3/2.

efine ψ(ξ ) := χ (ξ ) − χ (2ξ ) and for j ∈ N0,

ψ j (ξ ):=ψ(2− jξ ). (3.1)

et Br := {ξ ∈ Rd
| |ξ | ⩽ r} for r > 0. It is easy to see that ψ ⩾ 0, suppψ ⊂ B3/2/B1/2, and

χ (2ξ ) +

k∑
j=0

ψ j (ξ ) = χ (2−kξ ) → 1, as k → ∞. (3.2)

he block operators R j are defined on S ′(Rd ) by

R j f :=

{
F−1(χF f ) = χ̌ ∗ f, j = −1,
F−1(ψ jF f ) = ψ̌ j ∗ f, j ⩾ 0.

emark 3.1. For j ⩾ −1, by definitions, one sees that

R j = R jR̃ j , where R̃ j :=

1∑
R j+ℓ with R−2 := 0, (3.3)
ℓ=−1
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and R j is symmetric in the sense of∫
Rd

R j f (x)g(x)dx =

∫
Rd

f (x)R j g(x)dx, f ∈ S ′(Rd ), g ∈ S (Rd ). (3.4)

Here is the definition of Besov spaces.

efinition 3.2 (Besov Spaces). For any β ∈ R and p, q ∈ [1,∞], the Besov space Bβp,q (Rd )
s defined by

Bβp,q (Rd ) :=

{
f ∈ S ′(Rd ) | ∥ f ∥Bβp,q

:=

[ ∑
j⩾−1

(
2β j

∥R j f ∥p
)q

]1/q
< ∞

}
.

f p = q = ∞, it is in the sense

Bβ
∞,∞(Rd ) :=

{
f ∈ S ′(Rd ) | ∥ f ∥Bβ∞,∞

:= sup
j⩾−1

2β j
∥R j f ∥∞ < ∞

}
.

Recall the following Bernstein’s inequality (cf. [1]*Lemma 2.1).

emma 3.3 (Bernstein’s inequality). For any k ∈ N, there is a constant c = c(d, k) > 0 such
hat for all j ⩾ −1,

∥∇
kR j f ∥∞ ⩽ c2k j

∥R j f ∥∞.

n particular, for any α ∈ R,

∥∇
k f ∥Bα∞,∞

⩽ c∥ f ∥Bα+k
∞,∞

. (3.5)

emark 3.4 (Equivalence Between Besov Spaces and Hölder Spaces). If β > 0 and β /∈ N,
e have the following equivalence between Bβ∞,∞(Rd ) and Cβ(Rd ): (cf. [28])

∥ f ∥Bβ∞,∞
≍ ∥ f ∥Cβ . (3.6)

owever, for any n ∈ N0, we only have one side control that is

∥ f ∥Bn
∞,∞

≲ ∥ f ∥Cn . (3.7)

y Bernstein’s inequality, we have that for any |h| < 1/2,

| f (x + h) − f (x)|
(3.2)
⩽

∑
j⩾−1

|R j f (x + h) − R j f (x)|

≲
∑

j<− log2 |h|

∥ f ∥B1
∞,∞

|h| +

∑
j⩾− log2 |h|

2− j
∥ f ∥B1

∞,∞

≲ ∥ f ∥B1
∞,∞

|h|(log2 |h|
−1

+ 1),

nd for any |h| ⩾ 1/2,

| f (x + h) − f (x)| ⩽ 2∥ f ∥∞ ⩽ 4|h|∥ f ∥B1
∞,∞

.

hus, by (3.5), we obtain that

sup
|∇

k f (x) − ∇
k f (y)|

+ −1 ≲ ∥ f ∥Bk+1
∞,∞

, for any k ∈ N0. (3.8)

x ̸=y |x − y|(log2 |x − y| + 1)
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Now we introduce the estimate of Littlewood-Paley’s type for the heat kernel pα(t, x). The
ame result is proved in [15]*Lemma 3.1 for α = 2 and [8]*Lemma 3.3 and [14]*Lemma 2.12
or α ∈ (0, 2). For reader’s convenience, we give a proof here.

emma 3.5. Let α ∈ (0, 2). There is a constant c = c(α, d) > 1 such that for all j ⩾ −1 and
T > 0,∫ T

0

∫
Rd

|R j pα(t, x)|dxdt ⩽ c(1 + T )2−α j . (3.9)

roof. First of all, by the scaling property (2.3), we have that for any m ∈ N0,∫
Rd

|(∆m pα)(t, x)|dx = t−2m/α
∫
Rd

|∆m pα(1, x)|dx ≲ t−2m/α. (3.10)

or j = −1, we have∫ T

0

∫
Rd

|R−1 pα(t, x)|dxdt ≲
∫ T

0
∥pα(t, ·)∥1dt = T 2−α2α ⩽ T 2α.

or j ⩾ 0, by (3.1) and the change of variables,∫
Rd

|R j pα(t, x)|dx = 2− jd
∫
Rd

⏐⏐⏐ ∫
Rd

pα(t, 2− j (x − y))ψ̌(y)dy
⏐⏐⏐dx . (3.11)

otice that the support of ψ is contained in an annulus. By [12, (1.2.1)], we have that ∆−mψ̌

s a well-defined Schwartz function where

F(∆−mψ̌)(ξ ) := (−|ξ |2)−mψ(ξ ) ∈ S (Rd ), m ∈ N0.

ased on this, we have ψ̌ = ∆m∆−mψ̌,m ∈ N0 and∫
Rd

pα(t, 2− j (x − y))ψ̌(y)dy =

∫
Rd

∆m pα(t, 2− j (x − y))(∆−mψ̌)(y)dy.

ence,∫
Rd

|R j pα(t, x)|dx
(3.11)
≲ 2− jd

∫
Rd

|∆m pα(t, 2− j x)|dx

= 2−2 jm
∫
Rd

|(∆m pα)(t, x)|dx
(3.10)
≲ 2−2 jm t−2m/α.

hen, considering the cases m = 0 and m = 2, one sees that∫ T

0

∫
Rd

|R j pα(t, x)|dxdt =

(∫ 2−α j

0
+

∫ T

2−α j

) ∫
Rd

|R j pα(t, x)|dxdt

≲
∫ 2−α j

0
dt + 2−4 j

∫ T

2−α j
t−4/αdt ≲ 2−α j .

he proof is finished.

Following the method used in [14,15], we give a well-known a priori estimate of Besov-type
y (3.9). The result is seen as Schauder’s estimate when p = q = ∞ in the literature. In the
equel, for a Banach space B and T > 0, q ∈ [1,∞], we denote by

Lq (B) := Lq ([0, T ];B), Lq
:= Lq ([0, T ] × Rd ).
T T
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Lemma 3.6. Let α ∈ (0, 2), β ∈ R. For any p ∈ [1,∞] and q ∈ [1,∞], there is a constant
c = c(d, α, β, p, q) > 0 such that for all (u, f ) ∈ S ′

× S ′ with

∂t u = ∆α/2u + f, u(0) = u0,

in the following weak sense

⟨u(t), ϕ⟩ = ⟨u0, ϕ⟩ +

∫ t

0
⟨u(s),∆α/2ϕ⟩ds +

∫ t

0
⟨ f (s), ϕ⟩ds, ∀ϕ ∈ S (Rd ),

nd for any T > 0,

∥u∥Lq
T (Bα+β

p,q ) ⩽ c
(

T 1/q
∥u0∥Bα+β

p,q
+ (1 + T )∥ f ∥Lq

T (Bβp,q )

)
. (3.12)

roof. We only give the proof under q ∈ [1,∞), since the case of q = ∞ is similar and easier.
et {ρε}ε>0 be a usual mollifier on Rd . Then uε := u ∗ ρε and fε = f ∗ ρε satisfy

∂t uε(t, x) = ∆α/2uε(t, x) + fε(t, x), uε(0) = u0 ∗ ρε.

hus, without loss of generality, we assume that u, f, u0 ∈ C∞. For any t ∈ [0, T ], let
t (s) := u(t − s) and f t (s) := f (t − s) for any s ∈ (0, t). Obviously,

∂sut (s, x) + ∆α/2ut (s, x) = − f t (s, x), ut (0) = u(t).

y Itô’s formula (cf. [17, Theorem 5.1]), we have

Eut (t, x + L t ) = ut (0, x) −

∫ t

0
E f t (s, x + Ls)ds.

hen, we have Duhamel’s formula:

u(t, x) =

∫
Rd

pα(t, x − y)u0(y)dy +

∫ t

0

∫
Rd

pα(s, x − y) f (t − s, y)dyds.

aking R j for both sides, by (3.3) and (3.4), we get

R j u(t, x) =

∫
Rd

pα(t, x − y)R j u0(y)dy +

∫ t

0

∫
Rd

R j pα(s, x − y)R̃ j f (t − s, y)dyds.

rom this, by Minkowski’s inequality and Hölder’s inequality, one sees that

∥R j u∥Lq
T (L p) ⩽ T 1/q

∥R j u0∥p +

∫ T

0
∥R j pα(s)∥1∥R̃ j f (· − s)1·>s∥Lq

T (L p)ds

(3.9)
≲ T 1/q

∥R j u0∥p + (1 + T )2−α j
∥R̃ j f ∥Lq

T (L p).

y definitions and Fubini’s theorem, we have

∥u∥
q

Lq
T (Bα+β

p,q )
=

∑
j⩾−1

2(α+β)q j
∥R j u∥

q
Lq

T (L p)
.

herefore,

∥u∥
q

Lq
T (Bα+β

p,q )
≲ T

∑
j⩾−1

2(α+β)q j
∥R j u0∥

q
p + (1 + T )q

∑
j⩾−1

2βq j
∥R j f ∥

q
Lq

T (L p)

≲ T ∥u0∥
q

Bα+β
p,q

+ (1 + T )q
∥ f ∥

q

Lq
T (Bβp,q )
hich implies the desired estimate.
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Remark 3.7 (cf. [15, Section 3]).The above result is true for α = 2, which means we can get
he same result for the Laplacian ∆ case by considering Brownian motion through the same

ethod.

emark 3.8. Here we compare Schauder estimates in Hölder spaces, Besov spaces and
obolev spaces. By (3.12) for p = q = ∞ and (3.6), we obtain the classical Schauder’s
stimate for α = 2:

∥u∥L∞
T (C2+β ) ≲ ∥u0∥C2+β + ∥ f ∥L∞

T (Cβ ), β ∈ (0, 1).

t is well-known that Schauder’s estimate is not true for β = 0. But the lemma above tells us
hat

∥u∥L∞
T (B2

∞,∞) ≲ ∥u0∥B2
∞,∞

+ ∥ f ∥L∞
T (B0

∞,∞).

Furthermore, by (3.7) and (3.8), we get

|∇u(t, x) − ∇u(t, y)| ≲ |x − y|

(
1 + log+

2 |x − y|
−1

)(
∥u0∥C2 + ∥ f ∥L∞

T

)
.

n Sobolev spaces, it holds that

∥u∥Lq
T (W 2,p) ≲ ∥u0∥Lq

T (W 2,p) + ∥ f ∥Lq
T (L p)

ith p, q ̸= 1,∞ (see [20,30] and references therein). However, p, q = 1 or ∞ are allowed
n Besov case.

. Estimates of heat kernels for Euler–Maruyama scheme

In this section, assume that α ∈ (1, 2) and b : R+ × Rd
→ Rd is a bounded measurable

unction. Fix T > 0 and x ∈ Rd . Consider the following Euler scheme X N
t (x): X N

0 = x , and

X N
t = x +

∫ t

0
b(s, X N

φN (s))ds + L t , t ∈ (0, T ], (4.1)

here N ∈ N, φN (s) := kh for s ∈ [kh, (k + 1)h) with h := T/N and k = 0, 1, . . . , N − 1.
irst of all, we prove the following Duhamel’s formula for the Euler scheme.

emma 4.1 (Duhamel’s Formula). Let α ∈ (1, 2). For each t ∈ (0, T ] and x ∈ Rd , X N
t (x)

dmits a density pN
x (t, ·) satisfying the following Duhamel’s formula:

pN
x (t, y) = pα(t, x − y) +

∫ t

0
E

[
b(s, X N

φN (s)) · ∇ pα(t − s, X N
s − y)

]
ds. (4.2)

roof. Fix t ∈ (0, T ] and f ∈ C∞
c (Rd ). Letting s ∈ [0, t] and

u(s, x) := pα(t − s, ·) ∗ f (x) =

∫
Rd

pα(t − s, x − y) f (y)dy,

y (2.8), it is easy to see that u(s, x) solves the following equation:

α/2
(∂s + ∆ )u = 0, u(t, x) = f (x). (4.3)
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By Itô’s formula (cf. [17, Theorem 5.1]), we have

u(t, X N
t ) = u(0, x) +

∫ t

0
(∂su)(s, X N

s−)ds +

∫ t

0
b(s, X N

φN (s)) · ∇u(s, X N
s−)ds

+

∫ t

0

∫
|z|>1

(
u(s, X N

s− + z) − u(s, X N
s−)

)
N (ds, dz)

+

∫ t

0

∫
0<|z|⩽1

(
u(s, X N

s− + z) − u(s, X N
s−)

)
Ñ (ds, dz)

+

∫ t

0

∫
Rd\{0}

(
u(s, X N

s + z1|z|⩽1) − u(s, X N
s ) − z1|z|⩽1 · ∇u(s, X N

s )
)
ν(α)(dz)ds.

bserve that a càdlàg function can have at most a countable number of jumps. Taking the
xpectation for both sides in the above equality, by [17, Section 3], (2.1) and (4.3), we obtain
hat for any f ∈ C∞

c (Rd ),

E f (X N
t ) = Eu(t, X N

t ) = u(0, x) +

∫ t

0
E

(
b(s, X N

φN (s)) · ∇u(s, X N
s )

)
ds.

urthermore, since∫ t

0

∫
Rd

|∇ pα(s, y)|dyds
(2.3)
=

∫
Rd

|∇ pα(1, x)|dx
∫ t

0
s−1/αds < ∞, if α ∈ (1, 2),

e derive the desired Duhamel’s formula. □

emark 4.2. For any general initial value X N
0 = X0 ∈ F0, since L is independent of X0,

X N
t (x) defined by (4.1) is independent of X0. Consequently, by [19, Lemma 3.11], the Euler

cheme X N
t with initial value X0 also has a density pN

X0
(t, y) given by

pN
X0

(t, y) =

∫
Rd

pN
x (t, y)P ◦ X−1

0 (dx). (4.4)

The following uniform estimate for pN
x (t, y) was proved by Huang, Suo and Yuan [16] when

he coefficient b takes the form b(x). For the convenience of readers, we show it again by the
ethod from [13].

heorem 4.3. Let α ∈ (1, 2). For any T > 0, there is a constant c = c(d, α, T, ∥b∥∞) > 0
uch that for any N ∈ N, t ∈ (0, T ] and x, y ∈ Rd ,

pN
x (t, y) ⩽ cpα(t, x − y). (4.5)

roof. For the simplicity, we use a slight abuse of notation ∥b∥∞ := ∥b∥L∞
T

in the following.
irst of all, by (2.4), (2.6) and (2.7), we know that there is a constant c0 = c0(d, α) > 2 such

hat

|∇ pα(t, x)| ⩽ c0t−1/α pα(t, x), (4.6)

nd

pα(t, x + z) ⩽ c0 pα(t, x), if |z| ⩽ 2t1/α. (4.7)

elow, we fix this constant c0 and T > 0. Let ε > 0 be small enough such that

ℓ := c2 α
∥b∥ ε(α−1)/α ⩽ 1/2.
ε 0 α−1 ∞
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Denote

h := T/N and M := [ε/h] ∈ N.

Without loss of generality, we assume

N ⩾ (T ( 1
2∥b∥∞)α/(α−1)) ∨ (2T/ε). (4.8)

Indeed, if N is bounded by some positive integer N0, an elementary iteration can prove the
inequality (4.5). Although the constant c depends on the number of iterations N , it is uniformly
bounded since N has an upper bound. Precisely, assuming (4.5) holds for pN

x (kh, y) with some
constant c̃, it suffices to show that (4.5) holds for pN

x ((k + 1)h, y) with another constant. Note
that

X N
(k+1)h = X N

kh +

∫ (k+1)h

kh
b(s, X N

kh)ds + L (k+1)h − Lkh,

where L (k+1)h − Lkh is independent of X N
kh and has density pα(h, ·). Hence, by [19, Lemma

3.11], we have

pN
x ((k + 1)h, y) =

∫
Rd

pN
x (kh, z)pα

(
h, z +

∫ (k+1)h

kh
b(s, z)ds − y

)
dz.

Observing that

h
1
α + |y| ⩽ h

1
α +

⏐⏐⏐⏐y +

∫ (k+1)h

kh
b(s, z)ds

⏐⏐⏐⏐ + h∥b∥∞

⩽ (1 + T 1−
1
α ∥b∥∞)

(
h

1
α +

⏐⏐⏐⏐y +

∫ (k+1)h

kh
b(s, z)ds

⏐⏐⏐⏐),
e obtain, by the definition (2.5), that

pα
(

h, z +

∫ (k+1)h

kh
b(s, z)ds − y

) (2.4)
≲ ϱα

(
h, z − y +

∫ (k+1)h

kh
b(s, z)ds

)
≲ ϱα(h, z − y)

(2.4)
≲ pα(h, z − y),

here the implicit constants in the above ≲ only depend on d, α, T, ∥b∥∞. Thus, there is a
onstant c̃0 = c̃0(d, α, T, ∥b∥∞) such that

pN
x ((k + 1)h, y) ⩽ c̃c̃0

∫
Rd

pα(kh, x − z)pα(h, z − y)dz = c̃c̃0 pα((k + 1)h, x − y),

here we used the C-K Eqs. (2.9) in the last equality. One sees that when the above process is
epeated once, the constant c̃0 is multiplied once more. Fortunately, due to the N0 constraint,
he iteration can end at N . Furthermore, by similar calculations or just like (Step 3), we get
4.5) for any t ∈ (kh, (k + 1)h) with k = 0, . . . , N − 1.

In the sequel, we estimate pN
kh under the assumption (4.8). Since N should go to infinity in

his case, we have to estimate pN
kh more carefully. By (4.8), we have ∥b∥∞ ⩽ 2h−1+1/α and

> h.
Step 1) In this step, by induction, we prove the following result: for k = 1, 2, . . . ,M ∧ N ,

pN (kh, y) ⩽ c p (kh, x − y). (4.9)
x 0 α

430



M. Wu and Z. Hao Stochastic Processes and their Applications 164 (2023) 416–442

t

S

w

S
C

F

w

w

(

For k = 1, noting that X N
h = x +

∫ h
0 b(s, x)ds + Lh with ∥b∥∞ ⩽ 2h−(α−1)/α , by (4.7) we get

hat

pN
x (h, y) = pα(h, y − x −

∫ h

0
b(s, x)ds) ⩽ c0 pα(h, x − y).

uppose now that (4.9) holds for j = 1, 2, . . . , k −1. By Duhamel’s formula (4.2), we see that

pN
x (kh, y) − pα(kh, x − y) =

∫ kh

0
E

[
b(s, X N

φN (s)) · ∇ pα(kh − s, X N
s − y)

]
ds

=

k−1∑
j=0

∫ ( j+1)h

jh
I N

j (s)ds, (4.10)

here I N
j (s) := E

[
b(s, X N

jh) · ∇ pα(kh − s, X N
s − y)

]
. Observe that for s ∈ ( jh, ( j + 1)h),

X N
s = X N

jh +

∫ s

jh
b(r, X N

jh)dr + (Ls − L jh).

ince Ls − L jh is independent of X N
jh and has density pα(s − jh, ·), by [19, Lemma 3.11] and

-K Eqs. (2.9), we have

I N
j (s) = E

[
b(s, X N

jh) · ∇ pα(kh − s) ∗ pα(s − jh)
(

X N
jh +

∫ s

jh
b(r, X N

jh)dr − y
)]

= E
[
b(s, X N

jh) · ∇ pα
(

kh − jh, X N
jh +

∫ s

jh
b(r, X N

jh)dr − y
)]

⩽ ∥b∥∞

∫
Rd

|∇ pα|
(

kh − jh, z − y +

∫ s

jh
b(r, z)dr

)
pN

x ( jh, z)dz.

urthermore, by (4.6), (4.7) and induction hypothesis, we obtain that for s ∈ ( jh, ( j + 1)h),

I N
j (s) ⩽ ∥b∥∞(kh − jh)−1/αc2

0

∫
Rd

pα(kh − jh, z − y) · c0 pα( jh, x − z)dz

⩽ c0
α−1
α
ℓεε

−(α−1)/α(kh − s)−1/α pα(kh, x − y),

here we have used h∥b∥∞ ⩽ 2h1/α . Substituting this into (4.10), we get, since kh ⩽ Mh ⩽ ε

and α ∈ (1, 2), that

|pN
x (kh, y) − pα(kh, x − y)| ⩽ c0 ℓεε

−(α−1)/α pα(kh, x − y) α−1
α

∫ kh

0
(kh − s)−1/αds

= c0 ℓεε
−(α−1)/α(kh)(α−1)/α pα(kh, x − y)

⩽ c0 ℓε pα(kh, x − y),

hich implies that

pN
x (kh, y) ⩽ (c0 ℓε + 1)pα(kh, x − y) ⩽ c0 pα(kh, x − y).

Step 2) Next we assume that M < N . Since φN (s + Mh) = φN (s) + Mh, we have

X N
t+Mh = X N

Mh +

∫ t+Mh

Mh
b(s, X N

φN (s))ds + (L t+Mh − L Mh)

= X N
Mh +

∫ t

0
b(s + Mh, X N

φN (s)+Mh)ds + (L t+Mh − L Mh).
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For t ∈ [0,Mh], letting

X̃ N
t = X N

t+Mh, L̃ t = L t+Mh − L Mh,

e have

X̃ N
t = X̃ N

0 +

∫ t

0
b(s + Mh, X̃ N

φN (s))ds + L̃ t .

oting that (L̃ t )t⩾0
d
= (L t )t⩾0, denoting by p̃N

z (t, ·) the density of X̃ N
t with X̃ N

0 = z, by Step
, we have

p̃N
z ( jh, y) ⩽ c0 pα( jh, z − y), j = 1, . . . ,M.

ence, for j = 1, . . . ,M , by (4.4), (4.9) and C-K Eqs. (2.9), we obtain that

pN
x (( j + M)h, y) =

∫
Rd

p̃N
z ( jh, y)pN

x (Mh, z)dz

⩽ c2
0

∫
Rd

pα( jh, z − y)pα(Mh, x − z)dz

= c2
0 pα(( j + M)h, x − y),

hat is

pN
x (kh, y) ⩽ c2

0 pα(kh, x − y), k = M + 1, . . . , 2M.

epeating the above procedure [N/M]-times, we get that

pN
x (kh, y) ⩽ c[2T/ε]+1

0 pα(kh, x − y), k = 1, . . . , N .

e point that the constant c[2T/ε]+1
0 is independent of N .(Step 3) Observe that for t ∈

kh, (k + 1)h),

X N
t = X N

kh +

∫ t

kh
b(s, X N

kh)ds + (L t − Lkh),

here L t − Lkh is independent of X N
kh . Thus, by [19, Lemma 3.11] and (4.7),

pN
x (t, y) =

∫
Rd

pN
x (kh, z)pα(t − kh, z +

∫ t

kh
b(s, z)ds − y)dz

⩽ c[2T/ε]+2
0

∫
Rd

pα(kh, x − z)pα(t − kh, z − y)dz

= c[2T/ε]+2
0 pα(t, x − y).

ere, we have used h∥b∥∞ ⩽ 2h1/α and C-K Eqs. (2.9). □

The following corollary is a combination of Theorem 4.3, Lemma 2.1 and Lemma 2.3.

orollary 4.4. Let µ0(dx) = P ◦ X−1
0 (dx) be the distribution of X0 and α ∈ (1, 2).

(i) For any T > 0, there is a constant c = c(d, α, T, ∥b∥∞) > 0 such that for all N ∈ N,
t ∈ (0, T ] and y ∈ Rd ,

pN
X (t, y) ⩽ c

∫
pα(t, x − y)µ0(dx). (4.11)
0 Rd
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(ii) For any T > 0 and β ∈ (0, α−1), there is a constant c = c(d, α, T, ∥b∥∞, β) > 0 such
that for all N ∈ N, t ∈ (0, T ] and y1, y2 ∈ Rd ,

|pN
X0

(t, y2) − pN
X0

(t, y1)| ⩽ c|y2 − y1|
β t−β/α

∑
i=1,2

∫
Rd

pα(t, x − yi )µ0(dx). (4.12)

(iii) For any T > 0 and β ∈ (0, α−1), there is a constant c = c(d, α, T, ∥b∥∞, β) > 0 such
that for all N ∈ N, t1, t2 ∈ (0, T ] and y ∈ Rd ,

|pN
X0

(t2, y) − pN
X0

(t1, y)| ⩽ c|t2 − t1|β/α
∑
i=1,2

t−β/α

i

∫
Rd

pα(ti , x − y)µ0(dx).

roof. (i) is a direct consequence of (4.4) and Theorem 4.3.
(i i) By Duhamel’s formula (4.2) and (4.4), we have

|pN
X0

(t, y2) − pN
X0

(t, y1)| ⩽ I1 + I2,

here

I1 :=

∫
Rd

|pα(t, x − y2) − pα(t, x − y1)|µ0(dx),

nd

I2 := ∥b∥∞

∫ t

0

∫
Rd

|∇ pα(t − s, y1 − z) − ∇ pα(t − s, y2 − z)|pN
X0

(s, z)dzds,

or I1, by (2.10), we have

I1 ≲ |y2 − y1|
β t−β/α

∑
i=1,2

∫
Rd

pα(t, x − yi )µ0(dx).

or I2, by (2.10), (i) and C-K Eqs. (2.9), we obtain that

I2 ≲ |y2 − y1|
β

∫ t

0
(t − s)−(1+β)/α

∑
i=1,2

(∫
Rd

pα(t − s, z − yi )
[∫

Rd
pα(s, x − z)µ0(dx)

]
dz

)
ds

= |y2 − y1|
β

∫ t

0
(t − s)−(1+β)/αds

∑
i=1,2

∫
Rd

pα(t, x − yi )µ0(dx)

≲ |y2 − y1|
β t (α−1−β)/α

∑
i=1,2

∫
Rd

pα(t, x − yi )µ0(dx),

here we have used β ∈ (0, α − 1).
(i i i) Suppose that t1 < t2. By Duhamel’s formula (4.2) and (4.4), we have

|pN
X0

(t2, y) − pN
X0

(t1, y)| ⩽ J1 + J2 + J3,

here

J1 :=

∫
Rd

|pα(t2, x − y) − pα(t1, x − y)|µ0(dx),

J2 := ∥b∥∞

∫ t2

t1

∫
Rd

|∇ pα(t2 − s, z − y)|pN
X0

(s, z)dz,

nd

J3 := ∥b∥∞

∫ t1
∫

|∇ pα(t2 − s, z − y) − ∇ pα(t1 − s, z − y)|pN
X (s, z)dz
0 Rd 0
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For J1, by (2.12), we have

J1 ≲ |t2 − t1|β/α
∑
i=1,2

t−β/α

i

∫
Rd

pα(ti , x − y)µ0(dx).

or J2, by (2.6), (i) and C-K Eqs. (2.9), we get

J2 ≲
∫ t2

t1

(t2 − s)−1/α
(∫

Rd
pα(t2 − s, z − y)

∫
Rd

pα(s, x − z)µ0(dx)dz
)

ds

=

∫ t2

t1

(t2 − s)−1/αds
∫
Rd

pα(t2, x − y)µ0(dx)

≲ (t2 − t1)−1/α+1
∫
Rd

pα(t2, x − y)µ0(dx).

ince β ∈ (0, α − 1), we have

0 ⩽ (t2 − t1)−1/α+1 ⩽ |t2 − t1|β/αt−β/α+(α−1)/α
2 ⩽ |t2 − t1|β/αt−β/α

2 T (α−1)/α.

ence,

J2 ≲ |t2 − t1|β/αt−β/α

2

∫
Rd

pα(t2, x − y)µ0(dx).

or J3, by (2.12), (i) and C-K Eqs. (2.9), we obtain that

J3 ≲ |t2 − t1|β/α
∑

i=1,2

∫ t1

0
(ti − s)−(1+β)/α

(∫
Rd

pα(ti − s, z − y)
∫
Rd

pα(s, x − z)µ0(dx)dz
)

ds

= |t2 − t1|β/α
∑

i=1,2

∫ t1

0
(ti − s)−(1+β)/αds

∫
Rd

pα(ti , x − y)µ0(dx)

⩽ α
α−1−β

T (α−1)/α
|t2 − t1|β/α

∑
i=1,2

t−β/αi

∫
Rd

pα(ti , x − y)µ0(dx),

here we have used β ∈ (0, α − 1) and 0 ⩽ t1 < t2 ⩽ T .
Combining the above calculations, we get the desired estimate. □

. Proof of Theorem 1.2

Let (Ω ,F , (Ft )t⩾0,P) be a complete filtered probability space, L t a d-dimensional symmet-
ic and rotationally invariant Ft -adapted α-stable process with α ∈ (1, 2), X0 an F0-measurable
andom variable with distribution µ0. Let T > 0, N ∈ N and h := T/N . Let X N

t be the Euler
pproximation of DDSDE (1.1) constructed in the introduction. From the construction, it is
asy to see that X N

t solves the following SDE:

X N
t = X0 +

∫ t

0
bN (s, X N

φN (s))ds + L t , (5.1)

here

bN (s, x) = 1{s⩾h}b(s, x, ρN
φN (s)(x))

nd

φN (s) =

∞∑
j=0

jh1[ jh,( j+1)h)(s).
rivially, s − h ⩽ φN (s) ⩽ s.
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Let D be the space of all càdlàg functions from [0, T ] to Rd . In the following, D is
equipped with Skorokhod topology which makes D into a Polish space, and use dD to denote
the associated metric.

Lemma 5.1. The sequence of laws for (X N
·

) in (D, dD) is tight.

Proof. It is trivial that the sequence of distributions for (X N
0 , L0) ≡ (X0, 0) is tight in Rd

×Rd .
Taking q ∈ (α/2, α), by Chebyshev’s inequality, (5.1) and the fact (cf. [10, Lemma 2.4])

E|L t − Ls |
q ≲ |t − s|q/α, q ∈ (0, α), (5.2)

we obtain that for any N ∈ N, R > 0 and 0 ⩽ s < r < t ⩽ T ,

P
(
|X N

r − X N
s | ⩾ R, |X N

t − X N
r | ⩾ R

)
⩽P

(
|Lr − Ls | + (r − s)∥b∥∞ ⩾ R

)
× P

(
|L t − Lr | + (t − r )∥b∥∞ ⩾ R

)
≲(r − s)q/α(t − r )q/αR−2q ⩽ (t − s)2q/αR−2q .

(5.3)

imilarly, we have

lim
δ↓0

sup
N

P
(

|X N
δ − X N

0 | ⩾ ε
)

= 0, ∀ε > 0.

ence, combining the above calculations, by [18, Theorem 4.1, p. 355], we see that the
equence (X N

·
) is tight. □

Let pN
x (t, ·) be the distributional density of the Euler scheme X N

t (x) of SDE (5.1) starting
rom x at time 0. Since for each x ∈ Rd , X N

t (x) is independent of X0, the distributional density
N
t (·) of X N

t with initial distribution µ0 is given by

ρN
t (y) =

∫
Rd

pN
x (t, y)µ0(dx). (5.4)

urthermore, by Theorem 4.3, we have that for q > 1,(∫
Rd

|ρN
φN (t)(y)|

q
dy

)1/q
=

(∫
Rd

⏐⏐⏐⏐∫
Rd

pN
x (φN (t), y)µ0(dx)

⏐⏐⏐⏐q

dy
)1/q

≲
(∫

Rd

∫
Rd

|pα(φN (t), x − y)|q µ0(dx)dy
)1/q (2.3)

≲ φN (t)−
d
αp ,

(5.5)

here 1/q + 1/p = 1.

Lemma 5.2. For fixed T > 0, there are a subsequence (Nk)k∈N and a continuous function
∈ C((0, T ] × Rd ) such that for any M ∈ N with M > 1/T ,

lim
k→∞

sup
|y|⩽M

sup
1/M⩽t⩽T

|ρ
Nk
t (y) − ρt (y)| = 0. (5.6)

roof. By Theorem 4.3 and (2.4), we have that

sup sup |ρN
t (y)| ⩽ c

∫
sup sup |pα(t, x − y)|µ0(dx) ⩽ cM ,
|y|⩽M 1/M⩽t⩽T Rd |y|⩽M 1/M⩽t⩽T
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where cM is independent of N . Moreover, by Corollary 4.4, we have for any β ∈ (0, α − 1),
1, t2 ∈ [1/M, T ] and y1, y2 ∈ Rd ,

|ρN
t1

(y1) − ρN
t2

(y2)| ⩽ |ρN
t1

(y1) − ρN
t2

(y1)| + |ρN
t2

(y1) − ρN
t2

(y2)|

≲ |t1 − t2|β/αMβ/α
∑
i=1,2

∫
Rd

pα(ti , x − y1)µ0(dx)

+ |y1 − y2|
βMβ/α

∑
i=1,2

∫
Rd

pα(t2, x − yi )µ0(dx)

(2.4)
≲ M (d+β)/α(|t1 − t2|β/α + |y1 − y2|

β), (5.7)

here the implicit constants in the above ≲ are independent of N . Thus, by Ascolli-Arzela’s
heorem, we conclude the proof and have (5.6). □

Now we are in a position to give

roof of Theorem 1.2. (Existence) Fix T > 0. For the simplicity, we use a slight abuse
f notation ∥ · ∥∞ := ∥ · ∥L∞

T
in some places. Let QN be the law of (X N , L) in D × D. By

emma 5.1, QN is tight. Therefore, by Prokhorov’s theorem (cf. [19, Theorem 16.3]), for the
ubsequence in Lemma 5.2, there are a subsubsequence (n j ) j⩾1 and a probability measure Q
n D × D so that

Qn j → Q weakly.

elow, for simplicity of notations, we still denote the above subsequence by QN , N ∈ N. Then,
y Skorokhod’s representation theorem (cf. [19, Theorem 4.30]), there are a probability space
Ω̃ , F̃ , P̃) and random variables X̃ , L̃ thereon such that

(X̃ N , L̃ N ) → (X̃ , L̃), P̃ − a.s. (5.8)

nd

P̃ ◦ (X̃ N , L̃ N )−1
= QN = P ◦ (X N , L)−1, P̃ ◦ (X̃ , L̃)−1

= Q. (5.9)

n particular, the distributional density of X̃ N
t is ρN

t . Moreover, by Lemma 5.2 and (5.8), for
ny t ∈ (0, T ) and ϕ ∈ C∞

c (Rd ),

Ẽϕ(X̃ t ) = lim
N→∞

Ẽϕ(X̃ N
t ) = lim

N→∞

∫
Rd
ϕ(z)ρN

t (z)dz =

∫
Rd
ϕ(z)ρt (z)dz.

n other words, ρt is the density of X̃ t . Define F̃ N
t := σ {X̃ N

s , L̃ N
s ; s ⩽ t}. Noting that

P[L t − Ls ∈ · | Fs] = P{L t − Ls ∈ ·},

e have

P̃[L̃ N
t − L̃ N

s ∈ · | F̃ N
s ] = P̃{L̃ N

t − L̃ N
s ∈ ·},

hich means that L̃ N
t is an (F̃ N

s )-adapted α-stable Lévy process. Thus, by (5.1) and (5.9) we
btain

X̃ N
t = X̃ N

0 +

∫ t

bN (s, X̃ N
φ (s))ds + L̃ N

t , (5.10)

0

N
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where bN (s, X̃ N
φN (s)) = 1{s⩾h}b(s, X̃ N

φN (s), ρ
N
φN (s)(X̃ N

φN (s))). We claim that∫ t

0
bN (s, X̃ N

φN (s))ds →

∫ t

0
b(s, X̃s, ρs(X̃s))ds, (5.11)

n probability as N → ∞. Recalling the results in [18, p. 339] and (5.8), one sees that for
P̃-a.s. ω, if ∆X̃ t (ω) = ∆L̃ t (ω) = 0, then

X̃ N
t (ω) → X̃ t (ω).

Then, through taking N → ∞ in (5.10), it holds that for P̃-a.s ω,

X̃ t (ω) = X̃0(ω) +

∫ t

0
b(s, X̃s(ω), ρs(X̃s(ω)))ds + L̃ t (ω), t ∈ Dω,

here

Dω := {t ∈ R+ | ∆X̃ t (ω) = ∆L̃ t (ω) = 0}.

ince X̃ and L̃ belong to D, Dc
ω is a countable set in R+ and

X̃ t (ω) = X̃0(ω) +

∫ t

0
b(s, X̃s(ω), ρs(X̃s(ω)))ds + L̃ t (ω), t ∈ R+,

hich derives the existence.
Let us now prove (5.11). Indeed, observe that

Ẽ
⏐⏐⏐⏐∫ t

0
bN (s, X̃ N

φN (s))ds −

∫ t

0
b(s, X̃s, ρs(X̃s))ds

⏐⏐⏐⏐ ⩽ J N
1 + J N

2 + T ∥b∥∞/N ,

here

J N
1 := Ẽ

∫ t

h

⏐⏐⏐b(s, X̃ N
φN (s), ρ

N
φN (s)(X̃ N

φN (s))) − b(s, X̃ N
φN (s), ρs(X̃ N

φN (s)))
⏐⏐⏐ds

nd

J N
2 := Ẽ

∫ t

h

⏐⏐⏐b(s, X̃ N
φN (s), ρs(X̃ N

φN (s))) − b(s, X̃s, ρs(X̃s))
⏐⏐⏐ds.

(1) For J N
1 , we have

J N
1 ⩽ Ẽ

∫ t

h
1

{|X̃ N
φN (s)|⩽R}

⏐⏐⏐b(s, X̃ N
φN (s), ρ

N
φN (s)(X̃ N

φN (s))) − b(s, X̃ N
φN (s), ρs(X̃ N

φN (s)))
⏐⏐⏐ds

+ 2∥b∥∞

∫ t

h
P̃
(
|X̃ N

φN (s)| > R
)

ds := J N
11 (R) + J N

12 (R).

Since

|ρN
φN (s)(x) − ρs(x)| ⩽ |ρN

φN (s)(x) − ρN
s (x)| + |ρN

s (x) − ρs(x)|,

by (5.6) and (5.7), we see that for each fixed (s, x) ∈ (0, T ] × Rd ,

lim
N→∞

1{s⩾h}|ρ
N
φN (s)(x) − ρs(x)| = 0,

which implies that for any (s, x) ∈ R+ × Rd , by (1.7) we have

lim |b(s, x, ρN (x)) − b(s, x, ρs(x))| = 0. (5.12)

N→∞

φN (s)
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Moreover, by Hölder’s equality and (5.5), we get

J N
11 (R) =

∫ t

h

∫
|x |⩽R

⏐⏐⏐b(s, x, ρN
φN (s)(x)) − b(s, x, ρs(x))

⏐⏐⏐ρN
φN (s)(x)dxds

⩽

[∫ t

h

∫
|x |⩽R

⏐⏐⏐b(s, x, ρN
φN (s)(x)) − b(s, x, ρs(x))

⏐⏐⏐p
dxds

]1/p

×

[∫ t

h

∫
|y|⩽R

|ρN
φN (s)(y)|

q
dyds

]1/q

≲

[∫ t

h

∫
|x |⩽R

⏐⏐⏐b(s, x, ρN
φN (s)(x)) − b(s, x, ρs(x))

⏐⏐⏐p
dxds

]1/p

×

[∫ T

h
(s − h)−

d
α (q−1)ds

]1/q

(5.13)

provided 1 < q < 1 + α/d and 1/p + 1/q = 1. Note that the implicit constant in
the above ≲ is independent of N , R. Thus, for any R > 0, by dominated convergence
theorem and (5.12), we get that

lim
N→∞

J N
11 (R) = 0. (5.14)

For J N
12 (R), by (5.1), (5.2) and Chebyshev’s inequality, we have∫ t

0
P̃
(
|X̃ N

φN (s)| > R
)

ds =

∫ t

0
P
(
|X N

φN (s)| > R
)

ds

≲ TP
(
|X0| + T ∥b∥∞ > R/2

)
+

∫ t

0

(φN (s))1/α

R/2
ds

⩽ TP
(
|X0| + T ∥b∥∞ > R/2

)
+ T (α+1)/α(R/2)−1 (5.15)

which converges to zero uniformly in N as R → ∞. Consequently, combining (5.14)
and (5.15), we obtain that

lim
N→∞

J N
1 = 0.

(2) For J N
2 , let Kε be a family of mollifiers in Rd and define

Bε(t, x) = b(t, ·, ρt (·)) ∗ Kε(x).

Notice that ∥Bε∥ ⩽ ∥b∥∞ and for any R > 0, BR := {x ∈ Rd
| |x | < R},

lim
ε→0

∥1BR (Bε − b)∥p = 0. (5.16)

Then

J N
2 ⩽ J N

21 (ε) + J N
22 (ε) + J N

23 (ε),

where

J N
21 (ε) := Ẽ

∫ t

h
|Bε(s, X̃ N

φN (s)) − Bε(s, X̃s)|ds,

J N
22 (ε) := Ẽ

∫ t

|b(s, X̃ N
φ (s), ρs(X̃ N

φ (s))) − Bε(s, X̃ N
φ (s))|ds
h
N N N
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and

J N
23 (ε) := Ẽ

∫ t

h
|b(s, X̃s, ρs(X̃s)) − Bε(s, X̃s)|ds.

Thus, by (5.8) and results in [18, p. 339], for any s > 0,

X̃ N
s 1∆X̃s=0(s) → X̃s1∆X̃s=0(s), as N → ∞, P̃-a.s.,

which, by the dominated convergence theorem, implies that for arbitrary fixed ε > 0,

lim
N→∞

Ẽ
∫ t

h
|Bε(s, X̃ N

s ) − Bε(s, X̃s )|ds ⩽ Ẽ
∫ t

0
lim

N→∞
|Bε(s, X̃ N

s ) − Bε(s, X̃s )|1∆X̃s=0(s)ds

+ 2∥Bε∥∞Ẽ
∫ t

0
1∆X̃s>0(s)ds = 0,

where we use the fact that for Lebsgue a.e. s ∈ [0, t], ∆X̃s = 0 since X̃ ∈ D. On the
other hand, by (5.2), we have

Ẽ
∫ t

h
|Bε(s, X̃ N

φN (s)) − Bε(s, X̃ N
s )|ds ⩽ ∥∇ Bε∥∞

∫ t

h
Ẽ|X̃ N

φN (s) − X̃ N
s |ds

≲ ∥∇ Bε∥∞(|h|∥b∥∞ + |h|
1/α),

where h = T/N . Consequently, for fixed ε > 0,

lim
N→∞

J N
21 (ε) = 0.

For J N
22 (ε), we have

J N
22 (ε) ⩽ Ẽ

∫ t

h
1

{|X̃ N
φN (s)|⩽R}

|b(s, X̃ N
φN (s), ρs(X̃ N

φN (s))) − Bε(s, X̃ N
φN (s))|ds

+ 2∥b∥∞

∫ t

h
P̃
(
|X̃ N

φN (s)| > R
)

ds := I N
R (ε) + J N

R .

Samely as (5.13), by Hölder’s inequality with 1 < q < α/d + 1 and q =
p

p−1 , we see
that

I N
R (ε) ≲

[∫ T

0

∫
|y|⩽R

|b(s, y, ρs(y)) − Bε(s, y)|pdyds
]1/p [∫ T

h
(s − h)−

dq
αp ds

]1/q

,

where the implicit constant in the above ≲ is independent of N , R and ε. Hence, for
each R > 0, by the dominated convergence theorem and (5.16), we obtain

lim
ε→0

sup
N

I N
R (ε) = 0.

By (5.15), we have limR→∞ supN J N
R = 0. For J N

23 (ε), it is similar to J N
22 (ε).

Combining the above calculations, we get (5.11). The proof of the existence is finished.
(Uniqueness) For i = 1, 2, let ρ(i)

t be two densities of two weak solutions X (i) for DDSDE
(1.1) respectively:

X (i)
t = X0 +

∫ t

0
b(s, X (i)

s , ρ
(i)
s (X (i)

s ))ds + L (i)
t .

For each i , by the well-known result (see [23] for example), for any x ∈ Rd , there is a unique
weak solution (X̃ (i)(x), L̃ (i)) for the following classical SDE with bounded drift b(t, x, ρ(i)(x))
t t t
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D

M

I

and α ∈ (1, 2):

X̃ (i)
t (x) = x +

∫ t

0
b(s, X̃ (i)

s (x), ρ(i)
s (X̃ (i)

s (x)))ds + L̃ (i)
t .

enote by p(i)
x (t, ·) the density of X̃ (i)

t (x). Then, we have

ρ
(i)
t (y) =

∫
Rd

p(i)
x (t, y)ρ0(x)dx . (5.17)

oreover, by (4.5) and (5.6),

p(i)
x (t, y) ⩽ cpα(t, x − y), ∀(t, x, y) ∈ (0, T ] × Rd

× Rd . (5.18)

n the following, we prove (i) and (ii) respectively.

(i) Define ut := ρ
(1)
t − ρ

(2)
t . Hence, by (1.6),

∂t ut = ∆α/2ut + div(B(t, x)ut ), u0 = 0, (5.19)

in weak sense, where

B(t, x) := b(t, x, ρ(1)
t (x)) + ρ

(2)
t (x)

b(t, x, ρ(1)
t (x)) − b(t, x, ρ(2)

t (x))
ut (x)

,

and use the convention 0
0 = 0. In this case, we only need to prove that ut = 0. By (5.17)

and (5.18), we have

∥ρ
(i)
t ∥∞ ⩽ ∥pα(t, ·)∥p∥ρ0∥q

(2.3)
≲ t−d/(αq)

∈ L1([0, T ]), i = 1, 2,

where 1/p + 1/q = 1. Notice that, by the assumption (1.11),

∥B(t, ·)∥∞ ≲ ∥b∥∞ + ∥ρ
(2)
t ∥∞ ≲ 1 + t−d/(αq). (5.20)

By Duhamel’s formula and (5.19), we have

ut (x) =

∫ t

0

(
pα(t − s) ∗ div(B(s)us)

)
(x)ds.

Hence, for q > d/(α − 1), by (5.20) we have

∥ut∥∞ ⩽
∫ t

0
∥∇ pα(t − s)∥1∥B(s)us∥∞ds

(2.3)
≲

∫ t

0
(t − s)−1/α(1 + s−d/(αq))∥us∥∞ds,

which completes the proof by Gronwall’s inequality (cf. [31, Example 2.4]).
(ii) Based on the weak uniqueness result (i) with q = ∞, we denote by

ρt := ρ1
t = ρ2

t .

By the well-known result (see [11]*Theorem 1.1 for example), if we have

A(t, x) := b(t, x, ρt (x)) ∈ L∞([0, T ]; Cβ0 ) (5.21)

for β0 ∈ (1−α/2, 1) and any T > 0, then the strong uniqueness holds. Thus, it is enough
to show that ρ (x) ∈ L∞([0, T ]; Cβ0 ) for β > 1 − α/2. Unfortunately, we cannot obtain
t 0
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D

r

A

s
f

R

it directly from ρ0 ∈ Cβ0 and (5.17), since pt (x, y) ̸= pt (x − y). Firstly, by (5.17) and
(5.18), we have

sup
t∈[0,T ]

∥ρt∥∞ ≲ ∥ρ0∥∞ sup
t∈[0,T ]

∫
Rd

pα(t, y)dy = ∥ρ0∥∞,

which implies that

b̄(t, x) := b(t, x, ρt (x))ρt (x) ∈ L∞([0, T ] × Rd ).

Hence, by (1.6), (3.12), (3.5) and (3.6), for any T > 0, there is a constant cT such that
for all t ∈ [0, T ],

∥ρt∥C(α−1)∧β0 ⩽ cT

(
∥ρ0∥Cβ0 + ∥b̄∥L∞

T

)
. (5.22)

If α − 1 > β0, (5.21) is straightforward. Otherwise, by (1.11) and (5.22), we have

∥b̄∥L∞
T (Cα−1) < ∞.

Thus, by (1.6), (3.12), (3.5) and (3.6) again, there is a constant c(2)
T such that for all

t ∈ [0, T ],

∥ρt∥C(2(α−1))∧β0 ⩽ c(2)
T .

By induction, there are a N ∈ N with

(α − 1)N > β0

and a constant c(N )
T such that

∥ρt∥Cβ0 ⩽ c(N )
T , ∀t ∈ [0, T ].

Then, we have (5.21) and complete the proof. □
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