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Abstract

Models of choice under uncertainty study choice behavior when outcomes de-

pend on the realized state of the world. The typical assumption is that utilities

of outcomes do not depend on the realized state and are state independent.

Without this simplifying assumption, it is difficult to separately identify util-

ities and beliefs. This paper provides novel general foundations for models

with state dependent utilities: once we depart from expected utility, it is of-

ten possible to uniquely identify utilities and beliefs. Specifically, we show that

with general models of non-expected utility under ambiguity we have complete

identification of utilities and probabilities under full-dimensional uncertainty.

Additionally, we offer novel axiomatizations for state dependent dual-self vari-

ational expected utility and dual-self expected utility.
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1 Introduction

Decision making under uncertainty studies choice behavior when outcomes depend

on the realized state of the world. Traditionally, it is assumed that the utilities

of outcomes are state independent and do not depend on the realized state. This

independence simplifies the identification of utilities and beliefs. However, as observed
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by Aumann (1971) in many situations outcomes and their utilities might be state

dependent. Known examples are when the state of the world is the health of the

decision maker such as when choosing health insurance (Arrow, 1971). Assuming

state independent utilities in these situations can lead to inaccurate identification of

beliefs and incorrect model predictions overall.

This paper reconsiders state dependent utilities in the standard framework and

shows that, under general conditions, it is possible to separately identify the state

dependent utilities and probabilities whenever we have full-dimensional uncertainty

about the state of the world. Additionally, we offer novel axiomatizations for state

dependent dual-self variational expected utility and dual-self expected utility (Chan-

drasekher et al., 2022).

Before moving on to the results, we highlight the importance of identifying utili-

ties and probabilities with a concrete example. Consider a government that wants to

change people’s behavior with a public health campaign, but people find the change

difficult or inconvenient e.g. reducing smoking or increasing the use of seat belts. Here

the choice of an effective campaign depends critically on if the lack of change reflects

a taste-based reason (quitting smoking is difficult, seat belts are uncomfortable) or

if it reflects a belief-based reason (only heavy smokers get cancer or only reckless

drivers get into accidents). In the first case, an effective campaign would make the

change of behavior easier by increasing the availability of nicotine replacement prod-

ucts and making smoking socially less acceptable or redesigning seat belts to be more

comfortable and convenient. In the second case, an effective campaign would be an

information campaign on the effects of behavior changes and risks associated with the

current behavior. Here, it is crucial to separate tastes from beliefs in order to choose

an effective campaign.

This paper characterizes the identification of utilities and probabilities in gen-

eral state dependent models under uncertainty. First, we consider general dual-self

expected utility (Chandrasekher et al., 2022) with state dependent utility. In this con-
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text, we show our main identification result: when the uncertainty about the states

of the world is full-dimensional, the probabilities and the state dependent utilities are

fully identified. This shows that the well-known impossibility of identification under

expected utility is only a knife-edge case due to the linearity of expected utility. Once

we depart from such linearity, we regain the identification. Especially, this shows the

identification for many special cases such as maxmin expected utility (Gilboa and

Schmeidler, 1989), Choquet expected utility (Schmeidler, 1989), α-maxmin expected

utility (Ghirardato et al., 2004), and invariant biseparable preferences (Ghirardato

et al., 2004; Amarante, 2009).

Second, we consider the identification of more general dual-self variational expected

utility (Chandrasekher et al., 2022) with state dependent utility. In this case, under

full-dimensional uncertainty, the probabilities and the intensities of utilities are fully

identified. That is, the probabilities are uniquely identified and the state dependent

utilities are identified up to a common positive transformation and addition of state

dependent constants. This general result characterizes the identification for monotone

mean-variance preferences (Maccheroni et al., 2009), multiplier preferences (Hansen

and Sargent, 2001; Strzalecki, 2011), variational preferences (Maccheroni et al., 2006),

monotonic mean-dispersion preferences (Grant and Polak, 2013), and vector expected

utility (Siniscalchi, 2009).

Finally, we characterize the existence of these representations. We focus on stan-

dard preferences under ambiguity, that is continuous, monotonic, and risk indepen-

dent preferences. First, we show that if these standard preferences have two acts with

the same ambiguity, in a sense that will be made precise, then they admit a dual-

self variational expected utility representation (Chandrasekher et al., 2022) with state

dependent utility.1 Second, if these preferences additionally have an unambiguous
1This result extends Chandrasekher et al.’s (2022) characterization. However, this extension is not

entirely straightforward since under state-dependence, constant acts may no longer be unambiguous,
so we need to find an alternative way to capture the characterizing properties of the representation.
We will infer from the decision maker’s behavior which acts are unambiguous and use this to capture
the characterizing properties.
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act, in a sense that will be made precise, then they admit a dual-self expected utility

representation (Chandrasekher et al., 2022) with state dependent utility.

For practical use, we provide a behavioral elicitation method for state dependent

utilities based on acts that have a constant utility for dual-self expected utility and

acts that have a constant utility difference for dual-self variational expected utility.

This allows the elicitation of state dependent utilities and beliefs based on standard

choice data. This behavioral identification is illustrated in our example in Section 2.

Our identification results and the standard setting that we consider are very flex-

ible and suitable for applications beyond just uncertainty. First, in the context of

social choice theory, our identification results show the identification of interpersonal

utility comparisons and the fairness of the society. This is formalized in Mononen

(2024b). Here, we assume that we observe the preferences of a social planner over so-

cial alternatives. The planner aggregates members’ utilities by giving a Pareto weight

to each member. Here, the states of the world are interpreted as members of the so-

ciety and the probabilities for the states are the planner’s Pareto weights. Our iden-

tification result shows in this context that if any redistribution from one member to

another affects the welfare under some utility distribution, then interpersonal utility

comparisons and the fairness of the society, that is the Pareto weights, are identified.

Second, in the context of intertemporal choice, our results provide foundations

and identification for evolving tastes over time when there is uncertainty about the

discount factor following Wakai (2008) and Mononen (2024a). Here, the states of the

world are interpreted to be time periods and we have time dependent utilities. The

probabilities give the possible discount factors for each time period. In this context.

our identification result shows that if there is uncertainty about the discount factor

at each time period, then the time dependent utilities are identified.

This paper contributes to the literature studying the identification of state depen-

dent utilities in models of non-expected utilities following Drèze (1987) and Chew and

Wang (2020). Our identification results offer an alternative to using additional infor-
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mation (e.g. preferences conditional on signals with Bayesian updating, hypothetical

lotteries of state-outcome pairs, or stochastic choice) for the identification of state

dependent utilities as in Karni (2011a; 2011b), Tsakas (2023), Karni and Schmeidler

(2016), and Lu (2019).

Second, our paper contributes to the literature on modeling choice under uncer-

tainty that was recently discussed in Gilboa et al. (2020). We generalize the standard

setting for state dependent consequences as has been suggested in the literature (Au-

mann, 1971; Shafer, 1986; Gilboa et al., 2020). However, we show that we can still

uniquely identify the beliefs of the decision maker in this more general setting that

does not contain simple bets on events.

The remainder of the paper proceeds as follows: We begin, in Section 2, by show-

ing a simple example of the fundamental forces behind the identification result. Next,

Section 3 studies the identifications of state dependent dual-self expected utility and

state dependent dual-self variational expected utility. Section 3.3 shows the main

result of the paper that full-dimensional uncertainty characterizes the identification

of beliefs and shows how to behaviorally elicitate the state dependent utilities. Sec-

tion 3.4 generalizes the results for the identification of beliefs for a single state and for

the relative likelihoods between two states. Additionally, we characterize the general

identification of beliefs and utilities. Section 4 axiomatically characterizes the exis-

tence of the representations. Finally, Section 5 discusses the related literature and

Section 6 concludes. Proofs for all the results are in the Appendix.

2 An Example of Identification

We begin with a simple example illustrating that with state dependent subjective

expected utility the intensities of preferences and the probabilities cannot be sepa-

rated. However, this is only an unidentified knife-edge case. In the second part of the

example, we show that under ambiguity these can be separated and identified.
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The idea for the lack of identification is simple and can be illustrated with purchas-

ing a health insurance. In here, we would want to quantify the likelihood of getting

injured and the subjective cost of the injury. However, separating these two quanti-

ties is difficult if we only observe insurance purchase decisions. The difficulty comes

from the fact that a purchase of a health insurance can always be explained equally

well by either having a high likelihood of getting injured or having a low likelihood of

injury but a large subjective cost for it. These two possibilities cannot be separated.

Formally, we consider preferences for health insurance contracts (fI , fH) that pays

out fI in the case of injury in the state I (injury), and fH without injury in the state

H (healthy). Assume that the preferences have a state dependent subjective expected

utility representation with a probability of 0.5 for injury. The value of the insurance

contract (fI , fH) is

0.5uI(fI) + 0.5uH(fH)

where uI , uH : ∆(X) → R are state dependent utilities.

Now these preferences have an alternative state dependent subjective expected

utility representation with any probability p ∈ (0, 1) for state 1 since

0.5uI(fI)+0.5uH(fH)=p
(0.5
p
uI(fI)

)
+(1−p)

( 0.5
1 − p

uH(fH)
)

=pũI(fI)+(1−p)ũH(fH),

where the terms inside the parentheses define new state dependent utility functions

ũI , ũH .

In this alternative representation, we have replaced the probability of an injury

with an intensity of preference for money in the case of an injury. This highlights the

impossibility of identifying the state dependent subjective expected utility since the

intensities of preferences are inseparable from the probabilities.

However, once there is uncertainty about the subjective probability of the injury,

then identification is possible. We illustrate this in the simplest case of extreme uncer-

tainty aversion. We consider first the identification of the state dependent maxmin ex-

pected utility. Here, there exist (increasing) state dependent utility functions (uI , uH)

6



such that the value of the health insurance contract (fI , fH) is

min
p∈[0,1]

puI(fI) + (1 − p)uH(fH).

Assume that we observe a purchase for the insurance amount c ∈ R at the cost

of π at wealth w for the insurance contract that pays out (w+ c, w− πc). Under the

extreme uncertainty aversion, the purchase provides full insurance and the purchase

reveals that the state dependent utilities uI(w + c) and uH(w − πc) are equal. This

illustrates the underlying mechanism for observing the state dependent utilities across

the states from the choices of the decision maker.

Second, we consider identification for the state dependent variational expected

utility with a linear ambiguity index function. Here, there exist (increasing) state

dependent utility functions (uI , uH) and AI , AH ∈ R such that the value of the health

insurance contract (fI , fH) is

min
p∈[0,1]

puI(fI) + (1 − p)uH(fH) + pAI + (1 − p)AH

where pAI + (1 − p)AH is the linear ambiguity index of p.

In this case, the purchase for the insurance amount c at the cost of π at wealth w

does not reveal that the utilities for the states are equal since the same choices can

be explained by equal utility or by a linear cost function. Formally, we have for an

insurance contract (fI , fH),

min
p∈[0,1]

puI(fI)+(1−p)uH(fH)+pAI+(1−p)AH = min
p∈[0,1]

p
(
uI(fI)+AI

)
+(1−p)

(
uH(fH)+AH

)
= min

p∈[0,1]
pũI(fI) + (1 − p)ũH(fH),

where the terms inside the parentheses define new state dependent utility functions

(ũI , ũH). This illustrates the lack of identification of utility levels with state dependent

dual-self variational expected utility.

However, if we observe another purchase for the insurance amount c′ at a higher

wealth w′, then under a linear ambiguity index, the decision maker will fully hedge the

utility improvement across the states and distributes the utility improvement equally
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across the states: uI(w+ c)−uI(w′ + c′) = uH(w−πc)−uH(w′ −πc′). This illustrates

the underlying mechanism for observing the intensities of preferences, that is utility

differences, across the states from the choices. In our main results, we generalize both

of the identifications to non-convex preferences and to full-dimensional uncertainty.

3 Identification

In order to study identification in the most general setup, we study a state depen-

dent version of dual-self variational expected utility (Chandrasekher et al., 2022).

This includes as special cases monotone mean-variance preferences (Maccheroni et

al., 2009), multiplier preferences (Hansen and Sargent, 2001; Strzalecki, 2011), vari-

ational preferences (Maccheroni et al., 2006), monotonic mean-dispersion preferences

(Grant and Polak, 2013), and vector expected utility (Siniscalchi, 2009). Addition-

ally, we provide stronger identification results for the special case of dual-self expected

utility (Chandrasekher et al., 2022) that has as special cases maxmin expected util-

ity (Gilboa and Schmeidler, 1989), Choquet expected utility (Schmeidler, 1989), and

α-maxmin expected utility (Ghirardato et al., 2004) and is an alternative representa-

tion for invariant biseparable preferences (Ghirardato et al., 2004; Amarante, 2009).

Our identification results encompass those for all the special cases.

3.1 Preliminaries and Notation

We consider the finite Anscombe-Aumann (1963) framework with state dependent

consequences. S is a finite state space, for each s ∈ S, Xs is a set of state dependent

consequences and ∆(Xs) is the set of (simple) lotteries on Xs. Acts are mappings

from states to lotteries over state specific consequences and the set of acts is H =

×s∈S ∆(Xs).2 Our primitive is a binary relation ≿ on H. As usual, ≻ and ∼ denote

the asymmetric and symmetric parts of ≿ respectively.
2This includes the standard state independent Anscombe-Aumann setting where Xs=X for all s.
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The following notation will be useful. ∆(S) is the set of probability measures on

S. We endow ∆(S) with the Euclidean topology. K(∆(S)) is the set of all closed,

convex, and non-empty subsets of ∆(S) endowed with the Hausdorff topology. For

P ⊆ ∆(S), denote the convex closure of P by coP . For S ′ ⊆ S and P ⊆ ∆(S), denote

the projection of P to S ′ by prS′ P = {(ps)s∈S′|p ∈ P}.

For f ∈ H, s ∈ S, xs ∈ ∆(Xs), fs denotes the consequence of the act f in the

state s and (xs, f−s) denotes the act where the consequence in the state s is xs

and in the states s′ ∈ S \ {s}, fs′ . Mixtures of acts are defined statewise: for all

f, g ∈ H,α ∈ [0, 1], s ∈ S, define (αf + (1 − α)g)s = αfs + (1 − α)gs.

Our identification conditions are based on the unambiguous indifference as defined

in Ghirardato et al. (2004).

Definition Acts f and g are unambiguously indifferent, denoted f ∼∗ g, if for all

acts h and α ∈ (0, 1)

αf + (1 − α)h ∼ αg + (1 − α)h.

If consequences in some state do not affect the preferences, then the utility for

these consequences is unobservable. Hence our focus is on proper states:

Definition A state s ∈ S is proper if there exist xs, ys ∈ ∆(Xs) and f ∈H such that

(xs, f−s) ̸∼ (ys, f−s).

The collection of proper states is denoted SP .

We infer the preferences on consequences within each state as follows:

Definition For each s ∈ S, define ≿s on ∆(Xs) by for all xs, ys ∈ ∆(Xs),

xs ≿s ys ⇐⇒ (xs, f−s) ≿ (ys, f−s) for all f ∈ H.

Additionally, ≻s and ∼s denote the asymmetric and symmetric parts of ≿s respec-

tively.

Finally, for an ambiguity index for beliefs c : ∆(S) → R ∪ {∞}, we denote the

effective domain of c by dom c = {p ∈ ∆(S)|c(p) ∈ R}.
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3.2 State Dependent Dual-Self Variational Expected

Utility

The state independent dual-self variational expected utility was introduced by Chan-

drasekher et al. (2022) as a general model for preferences under ambiguity. We use a

state dependent variation of it:

Definition (u,C) is a state dependent dual-self variational expected utility for ≿ if

for each s ∈ S, us : ∆(Xs) → R is affine, C ⊆ {c : ∆(S) → R ∪ {∞}|c is convex} is

such that maxc∈C minp∈∆(S) c(p) = 0 and for each c∈C, p∈ dom c, and s /∈ SP , ps = 0,

and for all f, g ∈ H,

f ≿ g ⇐⇒ max
c∈C

min
p∈∆(S)

∑
s∈S

psus(fs) + c(p) ≥ max
c∈C

min
p∈∆(S)

∑
s∈S

psus(gs) + c(p).

Here, c ∈ C is an index of ambiguity aversion where lower values capture higher

uncertainty aversion (Maccheroni et al., 2006). This representation is the variational

expected utility when C is a singleton. Axiomatically, this representation is a non-

convex generalization of variational preferences and any uncertainty aversion and

seeking of the preferences can be represented by the interplay of an ambiguity index

(min) and the set of ambiguity indices (max).

As observed in Chandrasekher et al. (2022), the state independent dual-self vari-

ational expected utility is not unique. However, in the state independent case, the

smallest convex closure of the effective domains of the ambiguity indices captures

uniquely the beliefs of the decision maker. This gives us tight dual-self variational

expected utility that we use to study the identification of the beliefs in the state de-

pendent case.

Definition (u,C) is a state dependent tight dual-self variational expected utility for

≿, if (u,C) is a state dependent dual-self variational expected utility for ≿ and if

(u, C̃) is another state dependent dual-self variational expected utility for ≿, then

co⋃
c̃∈C̃ dom c̃ ⊇ co⋃c∈C dom c.
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An important special case of dual-self variational expected utility is dual-self ex-

pected utility that corresponds to 0/∞-valued ambiguity indices. We provide stronger

identification results for this special case.

Definition (u,P) is a state dependent dual-self expected utility for ≿ if for each s∈S,

us : ∆(Xs) → R is affine and P ⊆ K(∆(S)) is compact and non-empty such that for

each P ∈ P, p ∈ P, and s /∈ SP , ps = 0, and for all f, g ∈ H,

f ≿ g ⇐⇒ max
P∈P

min
p∈P

∑
s∈S

psus(fs) ≥ max
P∈P

min
p∈P

∑
s∈S

psus(gs).

We define state dependent tight dual-self expected utility symmetrically.

Definition (u,P) is a state dependent tight dual-self expected utility for ≿ if (u,P)

is a state dependent dual-self expected utility for ≿ and if (u, P̃) is another state

dependent dual-self expected utility for ≿, then co⋃
P̃∈P̃ P̃ ⊇ co⋃P∈P P .

3.3 Full Identification

This section provides the main result of the paper. We introduce a novel simple ax-

iom stating that the decision maker has full-dimensional uncertainty. This axiom

characterizes the full identification of probabilities and intensities of utilities in the

state dependent dual-self variational expected utility. Additionally, the levels of util-

ities are identified in the state dependent dual-self expected utility. Furthermore, we

show how the state dependent utilities can be elicitated behaviorally.

3.3.1 Full-Dimensional Uncertainty and Full Identification

To make the underlying intuition for our identifying condition clear, we first derive

it informally from the idea that the decision maker’s uncertainty about the proper

states is full-dimensional. Consider two acts f and g that have trade-offs between

proper states. That is the act f is better than g in some states and g is better than f

in some other states. Under full-dimensional uncertainty, there is uncertainty about
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the likelihood ratio between any proper states.3 Then especially there is uncertainty

about the trade-offs between f and g. This means that in the mixture αf + (1 −α)h

with some act h, trading-off f for g can hedge ambiguity and the uncertainty can be

observed. This is formalized in the next identification axiom by assuming that if two

acts are unambiguously indifferent and so trading f for g does not hedge ambiguity,

then they do not have trade-offs across states and are statewise indifferent.

Axiom 1 If f, g ∈ H and f ∼∗ g, then for all s ∈ S, fs ∼s gs.

The main result of this paper is the following uniqueness result for the state de-

pendent dual-self variational expected utility. The result states that Axiom 1 char-

acterizes the separation and identification of the probabilities and intensities of pref-

erences.

Theorem 1 (Full Identification) Assume that (u,C) is a state dependent tight

dual-self variational expected utility for ≿. The following four conditions are equiva-

lent:

(1) ≿ satisfies Axiom 1.

(2) prSP co⋃c∈C dom c has a non-empty interior in ∆(SP).

(3) If (ũ, C̃) is a state dependent tight dual-self variational expected utility for ≿,

then

co
⋃
c̃∈C̃

dom c̃ = co
⋃
c∈C

dom c.

(4) If (ũ, C̃) is a state dependent tight dual-self variational expected utility for ≿,

then there are α ∈ R+ and B ∈ RS such that for all s ∈ SP ,

ũs = αus +Bs.

The second condition shows that Axiom 1’s uncertainty about every trade-off be-

tween proper states is the behavioral characterization of full-dimensional uncertainty

for the proper states.
3Formally, full-dimensional uncertainty states that the set of probabilities has a non-empty inte-

rior. So especially there is uncertainty about the likelihood ratio between any states.
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The third and fourth conditions show that the full-dimensional uncertainty char-

acterizes the identification of the convex closure of the probabilities and the intensities

of the utilities. That is we have partially recovered the state independent identifica-

tion up to the levels of utilities. The lack of identification for the levels of utilities

follows from the interchangeability of additive constants between the ambiguity index

c and the utility function as illustrated in Section 2.

Before discussing the result, we show that with the state dependent dual-self

expected utility, we additionally identify the utility levels.

Theorem 2 (Full Identification, Dual-Self) Assume that (u,P) is a state depen-

dent tight dual-self expected utility for ≿. The following four conditions are equiva-

lent:

(1) ≿ satisfies Axiom 1.

(2) prSP co⋃P∈P P has a non-empty interior in ∆(SP).

(3) If (ũ, P̃) is a state dependent tight dual-self expected utility for ≿, then

co
⋃
P̃∈P̃

P̃ = co
⋃
P∈P

P.

(4) If (ũ, P̃) is a state dependent tight dual-self expected utility for ≿, then there

are α ∈ R+ and β ∈ R such that for all s ∈ SP ,

ũs = αus + β.

Next, we discuss these results. First, these identification results provide the iden-

tification for all the special cases of dual-self variational expected utility and dual-self

expected utility.

Second, the full-dimensionality of the set of probabilities for the proper states is

a generic property, but it rules out important special cases: If ≿ satisfies the inde-

pendence axiom, then Axiom 1 will not be satisfied. Especially, as is well-known, the

state dependent expected utility is not identified. More generally, if there are unam-

biguous events, that is all of the probabilities agree on the probability of an event,

then Axiom 1 will not be satisfied for these unambiguous events and the utilities and
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probabilities are not identified across these unambiguous events and their comple-

ments.

Third, under Axiom 1, the state dependent utilities are identified for all the proper

states and the tight set of probabilities is identified. However, the set of ambiguity

indices is not identified. This is symmetrical to the multiplicity of state independent

dual-self variational expected utility (Chandrasekher et al., 2022). Additionally, the

utilities for non proper states are not identifiable since these states do not affect the

preferences.

Lastly, Section 2 highlighted the intuition of these identifications. This intuition

generalizes to any finite number of states and is formalized in the Appendix.

3.3.2 Equally Crisp Acts and Full Identification

To get an insight into the identification, we can behaviorally capture the identification

of intensities of utilities by acts that hedge ambiguity similarly as illustrated in our

example in Section 2. These acts are such that trading one of the acts for the other

does not change the hedged ambiguity or the preferences. This is formalized in

the following property from Maccheroni et al.’s (2006) weak certainty independence

axiom.

Definition Acts f and g are equally crisp if for all h, h′ ∈ H,α ∈ (0, 1),

αh+ (1 − α)f ≿ αh′ + (1 − α)f ⇐⇒ αh+ (1 − α)g ≿ αh′ + (1 − α)g.

We show later on in Section 4 that the existence of equally crisp acts, essentially,

characterizes state dependent dual-self variational expected utility under standard

axioms. The next result connects the full identification from Theorem 1 to equally

crisp acts.

Proposition 3 Assume that (u,C) is a state dependent dual-self variational expected

utility for ≿. The following two conditions are equivalent.

(1) ≿ satisfies Axiom 1.
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(2) f and g are equally crisp acts iff there is α ∈ R such that for all s ∈ SP ,

us(fs) − us(gs) = α.

This result shows that under Axiom 1, the utility differences across different states

can be identified by equally crisp acts. This shows that intensities of utilities across

states can be elicitated by identifying equally crisp acts that allows for the elicitation

of beliefs. These equally crisp acts can be identified from the choice data. Addition-

ally, this result shows that the identification of utility differences across states using

equally crisp acts characterizes our identification axiom.

3.3.3 Crisp Acts and Full Identification

In the case of state dependent dual-self expected utility, we have a stronger behavioral

identification for the utilities across states using acts that are unambiguous and do

not hedge ambiguity as defined in Ghirardato et al. (2004). This identification was

illustrated in our example in Section 2.

Definition h ∈ H is a crisp act4 if for all f, g ∈ H,α ∈ (0, 1),

f ≿ g ⇐⇒ αf + (1 − α)h ≿ αg + (1 − α)h.

We show later on in Section 4 that the existence of crisp acts, essentially, charac-

terizes state dependent dual-self expected utility with a utility overlap across states

under standard axioms. The next result connects the full identification from Theo-

rem 2 to crisp acts.

Proposition 4 Assume that (u,P) is a state dependent dual-self expected utility for

≿. Then for the following two conditions, (1)⇒(2).

(1) ≿ satisfies Axiom 1.

(2) f is a crisp act iff there is α ∈ R such that for all s ∈ SP ,

us(fs) = α.

4Cerreia-Vioglio et al. (2011) use a different definition for crisp acts that does not extend to state
dependent setting.
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Additionally, if int⋂s∈SP us
(
∆(Xs)

)
̸= ∅, then (1) and (2) are equivalent.

The first part of this result is symmetric to the previous Proposition 3 except

that in here we can elicit the utility levels across the states by identifying the crisp

acts. The second part shows, that if there is utility overlap with an interior across the

states, then the identification of utilities with crisp acts characterizes our identification

axiom.

3.4 Partial Identification

The previous results showed characterizations for the full identification. However,

some states of the world might not be uncertain and in this case, the full identification

is not possible. In this section, we offer behavioral conditions and conditions for the

set of probabilities that characterize the identification of probabilities for a single

state and relative likelihoods between two states. Additionally, we characterize the

partial identification of the probabilities and utilities.

3.4.1 Probability Identification

The next result shows the identification of probabilities for a single state and how full-

dimensional uncertainty can be extended to a single state by applying Axiom 1 only

to a single state. Additionally, it provides a formalization for a notion of independent

uncertainty for a single state.

Proposition 5 (Probability Identification) Assume that (u,C) is a state depen-

dent tight dual-self variational expected utility for ≿. Fix any s ∈ SP . The following

three conditions are equivalent:

(1) If f, g ∈ H and f ∼∗ g, then fs ∼s gs.

(2) SP = {s} or there are p, q∈ co⋃c∈C dom c such that ps ̸= qs and for all s̃∈S\{s},
ps̃

1 − ps
= qs̃

1 − qs
.
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(3) If (ũ, C̃) is a state dependent tight dual-self variational expected utility for ≿,

then {
p̃s

∣∣∣∣p̃ ∈ co
⋃
c̃∈C̃

dom c̃
}

=
{
ps

∣∣∣∣p ∈ co
⋃
c∈C

dom c
}
.

The first condition shows that independent uncertainty about a state s means be-

haviorally that there is uncertainty about any trade-offs involving the state s5. The

second condition shows that independent uncertainty about a state s is formalized as

having uncertainty about the probability of the state s while keeping all the proba-

bilities conditional on the event S \ {s} the same. The last condition shows that this

independent uncertainty about a state characterizes the identification of the proba-

bilities for that state.6

3.4.2 Relative Likelihood Identification

Next, we move on to the identification of the relative likelihood of two states. When

considering a gamble between two states the identification of the probabilities is not

important since the gamble depends only on the relative likelihood of the states. The

next result provides a behavioral condition for full-dimensional uncertainty about a

relative likelihood and shows how this characterizes the identification of utilities and

the relative likelihoods between two states. Additionally, it provides a formalization

for a notion of independent uncertainty for a relative likelihood.

Proposition 6 (Relative Likelihood Identification) Assume that (u,C) is a

state dependent tight dual-self variational expected utility for ≿. Fix any s, s′ ∈

SP , s ̸= s′. The following four conditions are equivalent:

(1) If f, g ∈ H are equally crisp and fs ≻s gs, then fs′ ≿s′ gs′ .

(2) There are p, q∈ co⋃c∈C dom c such that ps

ps′
̸= qs

qs′
and for all s̃∈S\{s, s′}, ps̃= qs̃.

5This follows from the observation that this condition is equivalent to if fs ̸∼s gs and f ∼ g, then
f ̸∼∗ g.

6Identification of utilities for a single state is not possible since utilities are always identified only
up to a common positive affine transformation.
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(3) If (ũ, C̃) is a state dependent tight dual-self variational expected utility for ≿,

then {
p̃s
p̃s′

∣∣∣∣p̃ ∈ co
⋃
c̃∈C̃

dom c̃
}

=
{
ps
ps′

∣∣∣∣p ∈ co
⋃
c∈C

dom c
}
.

(4) If (ũ, C̃) is a state dependent tight dual-self variational expected utility for ≿,

then there are α ∈ R+ and B ∈ RS such that

ũs = αus +Bs and ũs′ = αus′ +Bs′ .

The first condition is a strengthening of Axiom 1 when applied to only two states.

The idea of the axiom is the same as before: There is uncertainty about the likelihood

of the state s compared to the state s′. However, when f and g are not indifferent,

this uncertainty is observed in equally crisp acts.

The second condition shows that independent uncertainty about the relative like-

lihood of two states is formalized as having uncertainty about the relative likelihood

of the two states while keeping all the other probabilities the same. The last two con-

ditions show that this independent uncertainty about the relative likelihood charac-

terizes the identification of the relative likelihoods and relative intensities of utilities

for these two states.7

3.4.3 Partial Identification Characterization

Finally, we move on to the general partial identification characterization of the state

dependent dual-self variational expected utility.

Theorem 7 (Partial Identification) Assume that (u,C) is a state dependent tight

dual-self variational expected utility for ≿, ũ is a state dependent utility function,

and P ⊆ ∆(S). The following two conditions are equivalent
7Additionally, with state dependent dual-self expected utility the relative utility levels are iden-

tified.
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(1) There is C̃ such that (ũ, C̃) is a state dependent tight dual-self variational

expected utility for ≿ and

P = co
⋃
c̃∈C̃

dom c̃.

(2) There are x ∈ RS
++, B ∈ RS, and α ∈ R++ such that for all p ∈ ∪c∈C dom c,∑

s∈S
xsps = 1, for all s ∈ SP ,

ũs = α

xs
us +Bs, and P =

{
(xsps)s∈S

∣∣∣∣p ∈ co
⋃
c∈C

dom c
}
.

This result shows that the set of beliefs is identified up to statewise multiplicative

transformations for which the probabilities remain as probabilities when we do the

statewise reciprocal transformation for the utilities. Additionally, common scalings

and state dependent additive transformations for the utilities are possible. Especially,

the theorem shows how the size of the set of probabilities restricts the possible trans-

formations by the requirement that the multiplicative transformation must keep all

the probabilities as probabilities.89

4 Axioms for the Representations

4.1 State Dependent Dual-Self Variational Expected

Utility

This section introduces five axioms that characterize the existence of a state depen-

dent dual-self variational expected utility representation and an additional axiom

that gives a state dependent dual-self expected utility representation. This axiom-

atization highlights the generality of the representation by showing that essentially
8Formally, these transformations are restricted by linearly independent probabilities in

⋃
P ∈P P :

If x ∈ RS is such that for all probabilities p,
∑

s∈S xsps = 1, then we can write x = 1 + (x − 1) where
for all probabilities p,

∑
s∈S(xs − 1)ps = 0. Thus we can decompose any transformation to a sum

of 1 and a vector orthogonal to the set of probabilities. Since RS can be decomposed to the sum of
the linear span of

⋃
P ∈P P and its orthogonal complement, this shows the close connection between

the size of the set of probabilities and the set of possible transformations.
9With state dependent dual-self expected utility, we have an additional restriction for utility

levels that for all p, q ∈ co
⋃

P ∈P P ,
∑

s∈S psBs =
∑

s∈S qsBs.
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the only standard ambiguity preferences that do not have a state dependent dual-self

variational expected utility representation are such that every act contains different

ambiguity.

The first four axioms define standard preferences under ambiguity following Cerreia-

Vioglio et al. (2011) in the state dependent context. The first two axioms are standard

assumptions that the preferences are a nontrivial weak order that satisfy continuity.

Axiom 2 ≿ is complete and transitive and there are f, g ∈ H such that f ≻ g.

Axiom 3 For all f, g, h∈H, the sets {α∈ [0, 1]|αf+(1−α)g≿h} and {α∈ [0, 1]|h≿

αf + (1 − α)g} are closed.

The next assumption for standard preferences under ambiguity is monotonicity.10

This is the main axiom ruling out state dependent utilities by assuming that the

consequences in each state of the world are ranked similarly. We assume monotonicity

only within each state which allows for a fully separate ranking of consequences in

each state.

Axiom 4 For all s ∈ S, xs, ys ∈ ∆(Xs), f, g ∈ H,

(xs, f−s) ≻ (ys, f−s) =⇒ (xs, g−s) ≿ (ys, g−s).

The next assumption for standard preferences under ambiguity is independence on

lotteries.11 We relax the independence axiom on lotteries within each state by allowing

for weak preference reversals that could occur if the state might be impossible.12

Axiom 5 For all s ∈ S, xs, ys, zs ∈ ∆(Xs), α ∈ (0, 1),

xs ≻s ys =⇒ αxs + (1 − α)zs ≿s αys + (1 − α)zs.

The last axiom for dual-self variational expected utility assumes that all the con-

stant acts are equally crisp and share the same ambiguity. We relax this by assuming
10The state independent monotonicity assumes that if f, g ∈ H are such that for all s ∈ S, fs ≿ gs,

then f ≿ g where fs and gs are acts that give the consequences fs and gs, respectively, in every state.
11This is usually assumed implicitly through the certainty independence axiom or the weak cer-

tainty independence axiom.
12This weak independence was introduced in Einy (1989).
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that there exist some equally crisp acts that are statewise ordered.

Axiom 6 There are f ∗, g∗ ∈ H such that f ∗ and g∗ are equally crisp and for all

s ∈ SP , f ∗
s ≻s g

∗
s .

The intuition for this axiom is that it captures the dispersional or relative nature

of ambiguity. Ambiguity of an act comes from the uncertainty if the realized outcome

is good or bad. However, these bad outcomes are only bad in a relative sense that

the realized outcome could have been better. Now, this axiom is assuming that in

any mixture with g∗ trading g∗ for f ∗ improves all the outcomes without affecting

the relative comparisons or the ambiguity of the act. Finally, this axiom does not

restrict how the outcomes are changed by trading g∗ for f ∗ as long as the changes

are strict improvements in all the proper states to rule out additional ambiguity from

trade-offs across states.

These five axioms characterize state dependent dual-self variational expected util-

ity representation.

Theorem 8 (Existence) The following two conditions are equivalent:

(1) ≿ satisfies Axioms 2-6.

(2) There is (u,C) that is a state dependent tight dual-self variational expected

utility for ≿.

This result highlights the generality of the dual-self variational expected utility.

Under the standard ambiguity assumptions, Axioms 2-5, the only requirement for the

state dependent dual-self variational expected utility is that there are two acts that

share the same ambiguity and are statewise ordered. In other words, essentially, the

only standard preferences that do not have a state dependent dual-self variational

representation are such that all the acts contain different ambiguity.

This characterization shows that the main axioms that the state dependent rep-

resentation relaxes from the state independent representation are monotonicity and

the weak certainty independence axiom. First, monotonicity is relaxed to hold only
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within each state. Second, for the weak certainty independence axiom, we infer from

the decision maker’s behavior which of the acts are equally crisp instead of assuming

that constant acts are equally crisp.

This representation has multiple special cases as discussed above and this theorem

provides the state dependent foundations for these representations.

4.2 State Dependent Dual-Self Expected Utility

Next, we show that adding an axiom stating that there exists an unambiguous act

that cannot be used for ambiguity hedging characterizes state dependent dual-self

expected utility with a utility overlap across the states.

Axiom 7 There exists a crisp act c ∈ H.

Theorem 9 (Existence, Dual-Self) The following two conditions are equivalent:

(1) ≿ satisfies Axioms 2-7.

(2) There is (u,P) that is a state dependent tight dual-self expected utility for ≿

such that ⋂
s∈S

us
(
∆(Xs)

)
̸= ∅.

This result shows the generality of the state dependent dual-self expected util-

ity. Essentially, the only standard ambiguity preferences that do not have a state

dependent dual-self representation are such that every act is ambiguous or every act

contains different ambiguity.

Remark Combining Axioms 6 and 7 to a stronger axiom that there exist crisp acts

f ∗, g∗ such that for all s ∈ SP , f ∗
s ≻s g

∗
s , gives a state dependent dual-self expected

utility with int ∩s∈Sus
(
∆(Xs)

)
̸= ∅.

5 Related Literature

State independent dual-self and dual-self variational expected utilities were intro-

duced in Chandrasekher et al. (2022) building on Ghirardato et al.’s (2004) approach
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of using Clarke derivatives to capture the beliefs of the decision maker. These models

are non-convex generalizations of multiple prior preferences (Gilboa and Schmeidler,

1989) and variational preferences (Maccheroni et al., 2006).

The previous literature on state dependent utility has mainly focused on axioma-

tizing the state dependent expected utility using some additional information: Karni

(2007) assumes preferences on conditional acts which are acts conditional on a given

event happening. Karni (2011a; 2011b) and Tsakas (2023) assume preferences con-

ditional on signals and uses updating of probabilities for identification. Karni et al.

(1983) and Karni and Schmeidler (2016) assume preferences on hypothetical lotteries

that are lotteries on state-consequence pairs. Lu (2019) uses two random choice data

sets before and after updating beliefs for the identification of intensities of utilities.

Chew and Wang (2020) exemplifies that state and rank dependent expected utility

can be identified under two states of the world. State and rank dependent expected

utility is a special case of state dependent dual-self expected utility. Karni (2020)

shows that in state and rank dependent expected utility with rank-dependent prob-

abilities the utilities and probabilities are not identified.

Drèze (1958; 1961; 1987; 2004) studies state dependent maxmax expected utility

in a rich setting when the acts are lotteries of Anscombe-Aumann acts in the context

of moral hazard. However, in the Appendix, we show that the identification theorems

are incorrect since Drèze does not focus on tight representations. Baccelli (2019)

discusses Drèze’s contribution extensively.

Baccelli (2019) studies the identification of state dependent subjective expected

utility with act-dependent probabilities. However, in the Appendix, we show that

the identification result is incorrect due to the non-uniqueness of the act-dependent

probabilities.

Hill (2019) studies state dependent maxmin expected utility such that the best and

the worst acts have a constant utility in the state independent Anscombe-Aumann

setting without Risk Independence. He assumes that the best and the worst acts are
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crisp or unambiguous acts. Hill shows that when the best and the worst acts have

a constant utility and the representation is linear between the best and the worst

act, we recover the standard state independent identification. In contrast under

Risk Independence, we consider the identification of representations for any state

dependent utilities.

Additionally, our paper contributes to the literature on modeling choice under

uncertainty that was recently discussed in Gilboa et al. (2020). Since Savage (1954),

it has been the prevalent assumption in decision making under uncertainty that states

of the world and consequences are separated and any consequence is achievable from

any state of the world. With state independent utility, this leads to a difficulty

in defining what are the consequences which are not affected by the realized state

of the world as illustrated by the exchange between Aumann (1971) and Savage

(1971). To resolve this problem, Savage (1954; 1967) used extended consequences

that are pure experiences of receiving the original consequences in each state of the

world. However, acts over these pure experiences are not observable and in Savage

(1954) the identification of probabilities for the states relies crucially on unobservable

imaginary acts (Shafer, 1986). In contrast, we allow for state dependent consequences

and for state dependent utility. This relaxes the assumption that any consequence

is achievable from any state of the world and we do not require the use of pure

experiences as consequences. Our state dependent setting allows for more tractable

and observable modeling of choice under uncertainty. Especially, we show that the

beliefs of the decision maker can be observed even without simple bets on events.

6 Conclusion

The assumption of state independent utilities has been the simplifying, but non-

ideal, assumption to separate the subjective probabilities from the utilities. This

paper provided a novel foundation for state dependent utility by studying models of

non-expected utilities. We showed that with a state dependent version of dual-self ex-
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pected utility (Chandrasekher et al., 2022) state dependent utilities and probabilities

are fully identified under full-dimensional uncertainty. Additionally, with a state de-

pendent version of more general dual-self variational expected utility (Chandrasekher

et al., 2022) the intensities of preferences and probabilities are fully identified under

full-dimensional uncertainty; however, the levels of utilities are not identified.

These identifications encompass those for state dependent versions of all the spe-

cial cases and alternative representations of dual-self and dual-self variational ex-

pected utilities: maxmin expected utility (Gilboa and Schmeidler, 1989), Choquet

expected utility (Schmeidler, 1989), α-maxmin expected utility (Ghirardato et al.,

2004), invariant biseparable preferences (Ghirardato et al., 2004; Amarante, 2009),

monotone mean-variance preferences (Maccheroni et al., 2009), multiplier preferences

(Hansen and Sargent, 2001; Strzalecki, 2011), variational preferences (Maccheroni et

al., 2006), monotonic mean-dispersion preferences (Grant and Polak, 2013), and vec-

tor expected utility (Siniscalchi, 2009).

Additionally, we offered an elicitation method for the state dependent utilities

under full-dimensional uncertainty. First, we showed that with dual-self expected

utility, constant utilities across states are identified by unambiguous acts. Second,

with dual-self variational expected utility, constant utility differences between two

acts are identified by equally ambiguous acts. This allows the elicitation of state de-

pendent utilities and beliefs based on standard choice data in contrast to the previous

approaches in the literature.

Finally, we considered the existence of the representations. First, we showed that,

essentially, the only standard preferences under ambiguity that do not have a state

dependent dual-self variational expected utility representation are such that every act

contains different ambiguity. Second, we showed that, essentially, the only standard

preferences without a state dependent dual-self expected utility representation are

such that every act contains different ambiguity or every act is ambiguous.
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Our general framework allows for applications beyond just uncertainty. It is ap-

plied in Mononen (2024b) to the context of social choice theory. In there, our iden-

tification results show the identification of interpersonal utility comparisons and the

fairness of the society. Second, in the context of intertemporal choice, our results

provide foundations and identification for evolving tastes over time when there is un-

certainty about the discount factor following Wakai (2008) and Mononen (2024a).
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Appendix to “State Dependent Utility and

Ambiguity”

This appendix clarifies the previous literature and proves the main identification

result, Theorem 2, and the general partial identification result, Theorem 7. This ap-

pendix is organized as follows. First, Section A provides counterexamples for Bac-

celli’s Proposition 1 (2019), Drèze’s Theorem 8.2 (1987) and Drèze and Rustichini’s

Theorem 6.11 (2004). Second, Section B.1 introduces the notation used in the ap-

pendix. Section B.2 shows that for state dependent dual-self variational expected

utility equally crisp acts are characterized by additivity in exchanging one crisp act

for the other. Section B.3 shows how these identified directional derivatives give the

uniqueness of the state dependent utilities and beliefs. Finally, Section B.4 shows

that Axiom 1 captures full-dimensional uncertainty that gives the full-identification

results, Theorems 1 and 2.

Next, we show Propositions 3 and 4 and characterize the identification with crisp

and equally crisp acts. First, the identification with equally crisp acts, Proposition 3,

follows directly from Corollary 15 and Lemma 19.

A Counterexamples for Previous Literature

A.1 A Counterexample for Baccelli’s Proposition 1

(2019)

Example 1 State space S = {1, 2}. Preferences on R2 that are represented by

0.5x1 + 0.5x2 if (x1, x2) ̸= (0, 0) and by x1 if (x1, x2) = (0, 0). Here, the act-dependent

probabilities (0.5, 0.5) and (1, 0) are linearly independent. Proposition 1 claims that

they are unique. However, the preferences have an alternative representation with

state dependent utility for any p ∈ (0, 1) by the utilities u1(x) = 1
p
x and u2(x) = 1

1−px

and the representation pu1(x1) + (1 − p)u2(x2) if (x1, x2) ̸= (0, 0) and by u1(x1) if
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(x1, x2) = (0, 0). This contradicts Proposition 1.

A.2 A Counterexample for Drèze’s Theorem 8.2

(1987) and Drèze and Rustichini’s Theorem 6.11

(2004)

Example 2 State space S = {1, 2}. Preferences on [0, 1]2 that have a maxmax

representation with state dependent utility u1(x) = x and u2(x) = x − 1 and the

set of probabilities {(p, 1 − p)|p ∈ [1
2 , 0]}. Since this set of probabilities contains

two linearly-independent probabilities, Theorems 6.11 and 8.2 claim that the state

dependent utility is unique up to a common positive affine transformation and the

set of probabilities is unique. However, this set of probabilities is not tight since only

the probability (1
2 ,

1
2) is used in the maxmax representation. So, the preferences have

an alternative maxmax representation with the same utility and a singleton set of

probabilities of (1
2 ,

1
2). By the example in Section 2, the state-dependent utility is not

identified contradicting Theorems 6.11 and 8.2.

B Identification Characterizations

B.1 Preliminaries

For clarity, we assume, without loss of generality, that S = SP since the probability

for not proper states is always zero and identified and the utilities are not identified.

Additionally, for clarity, we focus on state dependent niveloid representation that is

an alternative representation for state dependent dual-self variational representation.

Before defining this, we introduce some notation. Let u be an affine state dependent

utility and I : u(H) → R be a function. Denote by 1̄ ∈ RS a constant vector of 1. We

say that

■ I is monotonic if for all φ, ψ∈u(H) such that for all s∈S, φs ≥ψs, I(φ) ≥ I(ψ).
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■ I is C-additive if for all φ ∈ u(H), α ≥ 0 such that φ+α1̄ ∈ u(H), I(φ+α1̄) =

I(φ) + α.

■ I is positive homogeneous if for all φ ∈ u(H), α > 0 such that αφ ∈ u(H),

I(αφ) = αI(φ).

Definition (u, I) is a state dependent niveloid representation for ≿ if for each s∈ S,

us :∆(Xs)→R is affine, I :u(H)→R is C-additive and monotonic, and for all f, g∈H,

f ≿ g ⇐⇒ I
(
u(f)

)
≥ I

(
u(g)

)
.

Especially, a state dependent niveloid representation such that I is positive homo-

geneous is an alternative representation for state dependent dual-self expected utility.

We use the following notation. Let A⊆RS be a convex set. For every φ∈ intA, ξ∈

RS, the Clarke upper derivative of I at φ in the direction ξ is

I◦(φ; ξ) = lim sup
ψ→φ,t↘0

I(ψ + tξ) − I(ψ)
t

.

The Clarke subdifferential of I at φ is the set

∂I(φ) = {χ ∈ RS| ∀ ξ ∈ RS, χ · ξ ≤ I◦(φ; ξ)}.

Ghirardato et al. (2004) has shown that the union of all Clarke subdifferentials,⋃
φ∈intu(H) ∂I(φ), captures the decision maker’s beliefs.

Example 3 Assume that (u,C) is a state dependent tight dual-self variational ex-

pected utility for ≿. Define I : u(H) → R by for all f ∈ H,

I
(
u(f)

)
= max

c∈C
min
p∈∆(S)

∑
s∈S

psus(fs) + c(p).

Then I is a state dependent niveloid representation for ≿ and

co
⋃
c∈C

dom c =
⋃

φ∈intu(H)
∂I(φ).

Example 4 Assume that (u,P) is a state dependent tight dual-self expected utility

for ≿. Define I : u(H) → R by for all f ∈ H,

I
(
u(f)

)
= max

P∈P
min
p∈P

∑
s∈S

psus(fs).
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Then I is a state dependent niveloid representation for ≿ such that I is positive

homogeneous and

co
⋃
P∈P

P =
⋃

φ∈intu(H)
∂I(φ).

We start with a lemma showing that the state dependent utilities are identified

up to statewise positive affine transformations.

Lemma 10 Assume that (u, I) and (ũ, Ĩ) are state dependent niveloid representa-

tions for ≿. Then, for each s∈SP , there are As>0 and Bs∈R such that ũs=Asus+Bs.

Proof. Let s ∈ SP . By the monotonicity of I, we have for all xs, ys ∈ ∆(Xs) if

xs ≻ ys then us(xs) > us(ys) and ũs(xs) > ũs(ys). Additionally, clearly, Axioms 2-

5 are necessary and satisfied by ≿. Thus by Lemma 26, ≿s is complete, transitive,

non-trivial, and continuous. So by Mononen (2022), there are As > 0 and Bs ∈ R

such that ũs = Asus +Bs

B.2 State Dependent Niveloid Representation

Additive Between Equally Crisp Acts

We first show that any state dependent niveloid representation is additive between

equally crisp acts. The next lemma shows that the set of equally crisp acts is convex.

This simple proof is omitted.

Lemma 11 Assume that f ∗, g∗ and f̃ ∗, g̃∗ are equally crisp acts and α ∈ [0, 1]. Then

αf ∗ + (1 − α)f̃ ∗, αg∗ + (1 − α)g̃∗ are equally crisp acts.

Lemma 12 Assume that (u, I) is a state dependent niveloid representation for ≿.

If f ∗ and g∗ are equally crisp acts then for all α ∈ (0, 1)

I
(
αu(f ∗) + (1 − α)u(g∗)

)
= αI

(
u(f ∗)

)
+ (1 − α)I

(
u(g∗)

)
.
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Proof. First, assume that there exist m,n ∈ N such that α= m
n

. Let h ∈H, β ∈ (0, 1)

be such that u(h) ∈ intu(H). We show that

I
(
βu(h) + (1 − β)

(
αu(f ∗) + (1 − α)u(g∗)

))
(1)

= αI
(
βu(h) + (1 − β)u(f ∗)

)
+ (1 − α)I

(
βu(h) + (1 − β)u(g∗)

)
.

Now there exist h̃ ∈H, c ∈ R and ñ ∈ N such that βu(h) + (1 − β)u(f ∗) + c1, βu(h) +

(1 − β)u(g∗) + c1,∈ intu(H) and

βu(h̃) + (1 − β)u(g∗) = βu(h) + (1 − β)u(g∗) + c1

and

βh̃+ (1 − β)g∗ ∼ βh+ (1 − β)
( 1
nñ
f ∗ + nñ− 1

nñ
g∗
)
.

Since f ∗ and g∗ are equally crisp, we have for all m ∈ {1, . . . , nñ},

βh̃+ (1 − β)
(
m− 1
nñ

f ∗ + nñ−m+ 1
nñ

g∗
)

∼ βh+ (1 − β)
(
m

nñ
f ∗ + nñ−m

nñ

)
g∗.

By C-additivity of I, for all m ∈ {1, . . . , nñ},

I
(
βu(h) + (1 − β)

(m− 1
nñ

u(f ∗) + nñ−m+ 1
nñ

u(g∗)
))

+ c

= I
(
βu(h) + (1 − β)

(m
nñ
u(f ∗) + nñ−m

nñ
u(g∗)

))
.

Thus for each m ∈ {0, . . . , nñ},

I
(
βu(h)+(1−β)

(m
nñ
u(f ∗)+ nñ−m

nñ
u(g∗)

))
= I

(
βu(h)+(1−β)u(g∗)

))
+mc. (2)

Hence, by (2) for m = nñ

c = 1
nñ

(
I
(
βu(h) + (1 − β)u(f ∗)

)
− I

(
βu(h) + (1 − β)u(g∗)

))
.

Thus, (2) for m = mñ shows (1). By the continuity of I, by taking β → 0 shows the

claim for all α ∈ [0, 1].

The next lemma shows that the constant directional derivative to the direction

u(f ∗) − u(g∗) gives the additivity of the representation to the direction u(f ∗) − u(g∗)

that characterizes equally crisp acts.
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Lemma 13 Assume that (u, I) is a state dependent niveloid representation for ≿

and f ∗ and g∗ are equally crisp acts. Then for all h ∈ H, β ∈ (0, 1)

I
(
βu(h) + (1 − β)u(f ∗)

)
− I

(
βu(h) + (1 − β)u(g∗)

)
= (1 − β)

(
I
(
u(f ∗)

)
− I

(
u(g∗)

))
.

Proof. Assume first that f ∗ ≻ g∗. Denote

A =
{
α ∈ [0, β]

∣∣∣∣I(αu(h) + (1 − α)u(f ∗)
)

− I
(
αu(h) + (1 − α)u(g∗)

)
= (1 − α)

(
I
(
u(f ∗)

)
− I

(
u(g∗)

))}
.

Since I is continuous, A is closed. Since A is non-empty, maxA exists. We show

that maxA = β. Let α∗ ∈ A and α∗ < β. Since α∗h+ (1 − α∗)f ∗ ≻ α∗h+ (1 − α∗)g∗,

there exist α̃ ∈ (α∗, β) and γ ∈ (0, 1) such that

α̃h+ (1 − α̃)(0.5f ∗ + 0.5g∗) ∼ α∗h+ (1 − α∗)
(
γf ∗ + (1 − γ)g∗

)
. (3)

Let ε < min{(1 − γ)(1 −α∗), 0.5(1 − α̃)}. By writing α̃h+ (1 − α̃)(0.5f ∗ + 0.5g∗) and

α∗h+ (1 − α∗)
(
γf ∗ + (1 − γ)g∗

)
as probability ε mixtures with g∗, we have since f ∗

and g∗ are equally crisp.

α̃h+ (1 − α̃)
((

0.5 + 1
1 − α̃

ε
)
f ∗ +

(
0.5 − 1

1 − α̃
ε
)
g∗
)

(4)

∼ α∗h+ (1 − α∗)
((
γ + 1

1 − α∗ ε
)
f ∗ +

(
1 − γ − 1

1 − α∗ ε
)
g∗
)
.

Thus by Lemmas 11 and 12 and (3,4), α̃ ∈ A. Thus maxA = β.

Assume next that f ∗ ∼ g∗. We show that for all α ∈ (0, 1), αh + (1 − α)f ∗ ∼

αh+(1−α)g∗. Assume, per contra, that there exist α∗ ∈ (0, 1) with α∗h+(1−α∗)f ∗ ≻

α∗h+ (1 − α∗)g∗. Denote

A =
{
α ∈ [0, α∗]

∣∣∣∣αh+ (1 − α)f ∗ ̸∼ αh+ (1 − α)g∗
}
.

By the first part, for all α ∈ A,

I
(
αu(h) + (1 − α)u(f ∗)

)
− I

(
αu(h) + (1 − α)u(g∗)

)
= 1 − α

1 − α∗

(
I
(
α∗u(h) + (1 − α∗)u(f ∗)

)
− I

(
α∗u(h) + (1 − α∗)u(g∗)

))
.

Thus by the continuity of I, A is closed. But also the complement of A in [0, α∗] is

nonempty and closed which is a contradiction.
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Finally, equally crisp acts can be characterized by having certainty about their

expected utility difference. First, we relate Clarke derivatives to standard derivatives.

Lemma 14 Assume that (u, I) is a state dependent niveloid representation for ≿.

Then for all f ∈ H with u(f) ∈ intu(H),

∂I(u(f))=convex
{

lim
i→∞

∇I(φi)
∣∣∣(φi)∞

i=1⊆u(H), lim
i→∞

φi=u(f),∀i∈N, I differentiable atφi
}
.

Proof. Since I is Lipschitz on u(H), this follows directly from Clarke’s (1983) Theorem

2.5.1.

Corollary 15 Assume that (u, I) is a state dependent niveloid representation for ≿.

f and g are equally crisp acts iff there exist α∈R such that for all p∈ ∪φ∈intu(H)∂I(φ)

p ·
(
u(f) − u(g)

)
= α.

Especially, then α = I(u(f)) − I(u(g)).

Proof. =⇒: Follows directly from Lemmas 13 and 14.

⇐=: By Chandrasekher et al.’s (2022) proof of Theorem 1, there exists C ⊆ {c :

∆(S) →R∪{∞}|c is convex} such that for all φ∈ u(H), I(φ) = maxc∈C minp∈dom c p ·

φ + c(p) and for each c ∈ C, dom c ⊆ ⋃
φ∈intu(H) ∂I(φ). By the assumption, we have

for all h ∈ H and β ∈ [0, 1]

I
(
u(βh+ (1 − β)f)

)
= max

c∈C
min

p∈dom c
βp · u(h) + (1 − β)p · u(f) + c(p)

=max
c∈C

min
p∈dom c

βp ·u(h)+(1−β)p ·u(g)+c(p)+(1−β)α=I
(
u(βh+(1−β)g)

)
+(1−β)α.

This shows that f and g are equally crisp acts.

B.3 Partial Identification

Define the unambiguous preference ≿∗ by for all f, g ∈ H,

f ≿∗ g ⇐⇒ αf + (1 − α)h ≿ αg + (1 − α)h for all α ∈ (0, 1] and h ∈ H.
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Definition (u, P ) is a state dependent Bewley expected utility for ≿∗ if u = (us)s∈S
and for all s ∈ S, us : ∆(Xs) → R is affine and P ⊆ ∆(S) is closed, convex, and non-

empty such that for each p ∈ P, s /∈ SP , ps = 0 and for all f, g ∈ H,

f ≿∗ g ⇐⇒
∑
s∈S

psus(fs) ≥
∑
s∈S

psus(gs) for all p ∈ P.

We show in the online appendix Proposition S.1 the uniqueness of state dependent

Bewley expected utility representation.

We omit the proof the next standard result.

Lemma 16 Assume that (u, I) is a state dependent niveloid representations for ≿.

Then
(
u, co⋃φ∈intu(H) ∂I(φ)

)
is a state dependent Bewley expected utility for ≿∗

The next lemma shows the general identification for dual-self variational repre-

sentation’s utilities and probabilities. For all x ∈ RS and p ∈ ∆(S), define multipli-

cations statewise

xp = (xsps)s∈S.

This induces multiplications of x ∈ RS with sets P ∈ ∆(S).

Lemma 17 Assume that (u, I) and (ũ, Ĩ) are state dependent niveloid representa-

tions for ≿. Then there exist x ∈ RS
++, B ∈ RS, and α ∈ R++ such that for all

p ∈ ⋃
φ∈intu(H) ∂I(φ), ∑s∈S xsps = 1,

co
⋃

φ∈int ũ(H)

∂Ĩ(φ) = xco
⋃

φ∈intu(H)
∂I(φ).

and

(ũs)s∈SP =
(
α

xs
us +Bs

)
s∈SP

.

Proof. By Lemma 10, there exist A ∈ RS
++, B ∈ RS

++ such that for all s ∈ SP ,

ũs = Asus +Bs.

Let f ∗, g∗ ∈H with ũ(f ∗), ũ(g∗) ∈ int ũ(H) and c∈R++ be such that for all s∈SP ,

ũs(f ∗
s ) = ũs(g∗

s) + c.
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By Corollary 15, f ∗ and g∗ are equally crisp. By Corollary 15, for all p ∈

∪φ∈intu(H)∂I(φ)

p · A−1 = p ·
(
u(f ∗) − u(g∗)

)
= I(u(f ∗)) − I(u(g∗)).

Denote α = I(u(f)) − I(u(g)) and x = A−1α−1.

By Lemma 16, (u, co⋃φ∈intu(H) ∂I(φ)) and (ũ, co⋃φ∈int ũ(H) ∂Ĩ(φ)) give state de-

pendent Bewley expected utilities for ≿∗. By the uniqueness of state dependent Be-

wley expected utility, Proposition S.1, we have

co
⋃

φ∈int ũ(H)

∂Ĩ(φ) = xco
⋃

φ∈intu(H)
∂I(φ).

Theorem 7 follows as a direct corollary of Lemma 17 by Example 3.

B.4 Full Identification

Next, we move on to full-identification and show how Axiom 1 characterizes the full

identification. We start by showing that any utility difference between two acts can

be realized with strict preference for all the strict utility differences.

Lemma 18 Assume that (u, I) is a state dependent niveloid representation for ≿.

Then there exist f ∈ H with u(f) ∈ intu(H) such that for all g ∈ H and s ∈ SP ,

fs ≻s gs iff us(fs) > us(gs) and fs ≿s gs iff us(fs) ≥ us(gs).

Proof. By Lemma 14 and Chandrasekher et al.’s (2022) Supplementary Appendix’s

Remark 3, for each s ∈ SP there exist f s ∈ H such that u(f s) ∈ intu(H) and I is

differentiable at u(f s) with ∇I(u(f s))s > 0. Then (f ss )s∈S satisfies the claim.

The next result shows that Axiom 1 characterizes the full-dimensional uncertainty

that gives the identification by previous partial identification.

Lemma 19 Assume that (u, I) is a state dependent niveloid representation for ≿.

The following two are equivalent:
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(I) ≿ satisfies Axiom 1.

(II) prSP co⋃φ∈intu(H) ∂I(φ) has a non-empty interior in ∆(SP).

Proof. Assume that (I) holds. Let f ∈ H be as in Lemma 18 and g ∈ H be such

that for all p ∈ ∪φ∈intu(H)∂I(φ), p ·
(
u(f) − u(g)

)
. By Lemma 13 and Corollary 15,

f ∼∗ g. By Axiom 1 and the choice of f , for all s ∈ SP , us(fs) = us(gs). Since

u(f) ∈ intu(H), this shows that
(

prSP co⋃φ∈intu(H) ∂I(φ)
)⊥

= {0̄}. Hence, following

Boyd and Vandenberghe’s (2004) Section 2.5.2 it has a non-empty interior in ∆(SP).

Assume that (II) holds. Assume that f ∼∗ g. Especially, f and g are equally crisp.

By Corollary 15,

prSP u(f) − u(g) ∈
(

prSP co
⋃

φ∈intu(H)
∂I(φ)

)⊥
= {0̄}

that shows (I) by the monotonicity of I.

Finally, Theorems 1 and 2 follow directly from Lemmas 17, 19, and 23.

B.5 Partial Identification for State Dependent

Dual-Self Representation

The next lemma shows that the values of the state dependent niveloid representation

are unique up to a positive affine transformation.

Lemma 20 Assume that (u, I) and (ũ, Ĩ) are state dependent niveloid representa-

tions for ≿. Let f ∗ and g∗ be equally crisp acts such that f ∗ ≻ g∗. If f, g ∈ H with

u(f), u(g) ∈ intu(H), then

Ĩ
(
u(f)

)
− Ĩ

(
ũ(g)

)
=
Ĩ
(
ũ(f ∗)

)
− Ĩ

(
ũ(g∗)

)
I
(
u(f ∗)

)
− I

(
u(g∗)

)(I(u(f)
)

− I
(
u(g)

))
.

Proof. If f ∼ g, then the claims follows by the representations. So assume that f ≻ g.

Now there exist β ∈ (0, 1), h, h′ ∈ H with u(h), u(h′) ∈ intu(H) such that

u(f) = βu(h) + (1 − β)u(g∗) and u(g) = βu(h′) + (1 − β)u(g∗). (5)
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Let n ∈ N and γ ∈ (0, 1) be such that
1
n

(
I
(
u(f)

)
− I

(
u(g)

))
= (1 − β)γ

(
I
(
u(f ∗)

)
− I

(
u(g∗)

))
. (6)

For each i ∈ {0, . . . n}, there exist αi ∈ [0, 1] such that

I
(
αiu(f) + (1 − αi)u(g)

)
= i

n
I
(
u(f)

)
+ n− i

n
I
(
u(g)

)
By (5), for each i ∈ {0, . . . n− 1},

αif + (1 − αi)g ∼ β(αih+ (1 − αi)h′) + (1 − β)g∗

and by Lemma 13,

αi+1f + (1 − αi+1)g ∼ β(αih+ (1 − αi)h′) + (1 − β)(γf ∗ + (1 − γ)g∗).

Hence, by Lemma 13,

Ĩ
(
αi+1ũ(f)+(1−αi+1)ũ(g)

)
−Ĩ
(
αiũ(f)+(1−αi)ũ(g)

)
=(1−β)γ

(
Ĩ
(
ũ(f ∗)

)
−Ĩ
(
ũ(g∗)

))
.

Thus,

Ĩ
(
ũ(f)

)
− Ĩ

(
ũ(g)

)
=

n−1∑
i=0

Ĩ
(
αi+1ũ(f) + (1 − αi+1)ũ(g)

)
− Ĩ

(
αiũ(f) + (1 − αi)ũ(g)

)
= n(1 − β)γ

(
Ĩ
(
ũ(f ∗)

)
− Ĩ

(
ũ(g∗)

))
that shows the claim by (6).

As a direct corollary the values of the state dependent niveloid representation are

unique up to a positive affine transformation.

Lemma 21 Assume that (u, I) and (ũ, Ĩ) are state dependent niveloid representa-

tions for ≿. Let f ∗ and g∗ be equally crisp acts such that f ∗ ≻ g∗. Denote

a =
Ĩ
(
ũ(f ∗)

)
− Ĩ

(
ũ(g∗)

)
I
(
u(f ∗)

)
− I

(
u(g∗)

) and b = Ĩ
(
ũ(g∗)

)
− αI

(
u(g∗)

)
.

Then for all f ∈ H,

Ĩ
(
ũ(f)

)
= aI

(
u(f)

)
+ b.

Next, we move on to partial identification of dual-self representation. The next

lemma shows how for dual-self representation the derivative gives the value of the
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representation.

Lemma 22 Assume that (u, I) is a state dependent niveloid representation for ≿

and I is positive homogeneous. Let f ∈ H be such that u(f) ∈ intu(H). If I is

differentiable at u(f) with derivative p, then I(u(f)) = p · u(f).

Proof. Since u(f) ∈ intu(H), there exists α0 > 0 such that (1+α0)u(f) ∈ u(H). Since

u(H) is convex and I is positive homogeneous, we have for all α ∈ (0, α0),

I
(
(1 + α)u(f)

)
= (1 + α)I

(
u(f)

)
=⇒

I
(
αu(f) + u(f)

)
− I

(
u(f)

)
α

= I
(
u(f)

)
.

Thus by taking the limit α → 0, we have by the differentiability of I at u(f),

I
(
u(f)

)
= lim

α→0

I
(
αu(f) + u(f)

)
− I

(
u(f)

)
α

= p · u(f).

The next lemma shows the identification for probabilities and utilities.

Lemma 23 Assume that (u, I) and (ũ, Ĩ) are state dependent niveloid representa-

tions for ≿ that are positive homogeneous. Then there exist x∈RS
++, y∈RS, α∈R++,

and β ∈ R such that for all p ∈ ⋃
φ∈intu(H) ∂I(φ), ∑s∈S xsps = 1, ∑s∈S ysps = 0,⋃

φ∈int ũ(H)

∂Ĩ(φ) = x
⋃

φ∈intu(H)
∂I(φ).

and for all SP ,

(ũs)s∈SP =
(
α

xs
(us + ys) + β

)
s∈SP

.

Proof. By Lemma 17, there exist x ∈ RS
++, B ∈ RS, and α ∈ R++ such that for all

p ∈ ⋃
φ∈intu(H) ∂I(φ), ∑s∈S xsps = 1,

(ũs)s∈SP =
(
α

xs
us +Bs

)
s∈SP

.

From Lemma 21, it follows that I is differentiable at φ ∈ intu(H) with derivative

∇I(φ) iff Ĩ is differentiable at α
x
φ+B ∈ int ũ(H) with derivative x∇I(φ).
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By Lemma 22, we have for all φ ∈ intu(H) such that φ is a differentiability point

of I.

α∇I(φ) · φ+ ∇I(φ) · xB = x∇I(φ) ·
(
α

x
φ+B

)
= Ĩ(φ)

= αI(φ) + β = α∇I(φ) · φ+ β

and so ∇I(φ) · xB = β. Hence, by Lemma 14, for all p ∈ ⋃
φ∈intu(H) ∂I(φ),

p · xB = β.

Defining αy = xB − xβ shows the claim.

B.6 Identification with Crisp Acts

Next, we show Proposition 4 and characterize the identification with crisp acts. First,

we show that state dependent niveloid representation is affine between any act and a

crisp act.

Lemma 24 Assume that (u, I) is a state dependent niveloid representation for ≿.

If f ∗ is crisp act, then for all h ∈ H,α ∈ (0, 1),

I
(
αu(h) + (1 − α)u(f ∗)

)
= αI

(
u(h)

)
+ (1 − α)I

(
u(f ∗)

)
.

Proof. First, assume that u(h) ∈ intu(H). Now there exist h̃ ∈ H, c ∈ R and n ∈ N

α ∈ (0, 1) such that u(h) + c1 ∈ intu(H), αn = β

u(h̃) = u(h) + c1 and h̃ ∼ αh+ (1 − α)f ∗.

Since f ∗ is crisp, we have for all m ∈ {1, . . . , n},

αm−1h̃+ (1 − αm−1)f ∗ ∼ αmh+ (1 − αm)f ∗

and by the representation

I
(
αm−1u(h) + (1 − αm−1)f ∗

)
+ αm−1c = I

(
αmu(h) + (1 − αm)f ∗

)
.

Thus for each m ∈ {0, . . . , n},

I
(
αmu(h) + (1 − αm)f ∗

)
= I

(
u(h)

)
+ 1 − αm

1 − α
c.
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By taking the limit m → ∞, we have by the continuity of I
c

1 − α
= I

(
u(f ∗)

)
− I

(
u(h)

)
and so

I
(
αnu(h) + (1 − αn)f ∗

)
= I

(
u(h)

)
+ (1 − αn)

(
I
(
u(f ∗)

)
− I

(
u(h)

))
= (1 − αn)I

(
u(f ∗)

)
+ αnI

(
u(h)

)
.

Finally, by the continuity of I, this shows the results for all h ∈ H.

Next, we show that the expected utility of crisp acts is the same for all probabil-

ities.

Lemma 25 Assume that (u, I) is a state dependent niveloid representation for ≿

that is positive homogeneous. Then c ∈ H is crisp iff for all p ∈ ⋃
φ∈intu(H) ∂I(φ),

p · u(c) = I
(
u(c)

)
.

Proof. ⇐=: By Chandrasekher et al.’s (2022) proof of Theorem 1, there exists P ∈

K(∆(S)) such that for all φ ∈ u(H), I(φ) = maxP∈P minp∈P p ·φ and for each P ∈ P,

P ⊆ ⋃
φ∈intu(H) ∂I(φ). By the assumption, we have for all f ∈ H and α ∈ [0, 1]

I
(
u(αf + (1 − α)c)

)
= max

P∈P
min
p∈P

αp · u(f) + (1 − α)p · u(c)

= max
P∈P

min
p∈P

αp · u(f) + (1 − α)I
(
u(c)

)
= αI

(
u(f)

)
+ (1 − α)I

(
u(c)

)
.

This shows that c is a crisp act.

=⇒: Let h ∈H be such that u(h) ∈ intu(H) and I is differentiable at u(h). Then

since I is affine between u(h) and u(c) by Lemma 24,

I(u(c)) = ∇I
(
u(h)

)
· u(h) + ∇I

(
u(h)

)
· (u(c) − u(h)) = ∇I

(
u(h)

)
· u(c).

Finally, Proposition 4 follows directly from Lemmas 19 and 25.
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C Existence of State Dependent Dual-Self Expected

Utility and Dual-Self Variational Expected Utility

C.1 Statewise Weak Affine Representations

Next, we show that each ≿s has a weak affine representation as defined next.

Definition us : ∆(Xs) → R is a weak affine representation for ≿s if us is affine and

for all x, y ∈ ∆(Xs)

x ≻s y =⇒ us(x) > us(y).

We show first that ≿s is a weak order that is mixture continuous. This follows

directly from Axioms 2-4 and we omit the standard proof.

Lemma 26 Let s ∈ S. If ≿ satisfies Axioms 2-4, then ≿s is complete, transitive,

and for all xs, ys, zs ∈ ∆(Xs), the sets {α ∈ [0, 1]|αxs + (1 − α)ys ≿s zs} and {α ∈

[0, 1]|zs ≿s αxs + (1 − α)ys} are closed.

Next, we show the existence of weak affine representation for ≿.

Lemma 27 If ≿ satisfies Axioms 2-5 and s ∈ S, then there exists an affine us :

∆(Xs) → R such that us is a weak affine representation for ≿s.

Proof. Follows directly from, Lemma 26, Axiom 5, and Mononen (2022, Theorem

1).

The next result shows statewise monotonicity results with the weak affine repre-

sentation.

Lemma 28 Assume that for each s ∈ SP , ≿s has a weak affine representation with

us. Then

(1) For all s ∈ S, xs, ys ∈ ∆(Xs), if us(xs) ≥ us(ys), then xs ≿s ys.

(2) For all f, g ∈ H, if for all s ∈ SP , us(fs) ≥ us(gs), then f ≿ g.

Proof. The first one follows from the negation of the definition of weak representation.

The second one follows from the first one and the transitivity of ≿.
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C.2 Preferences Monotonic Between Equally Crisp

Acts

Next we show that ≿ is monotonic when moving from one equally crisp act to another

one.

Lemma 29 Assume that ≿ satisfies Axioms 2-5, for each s ∈ SP , us : ∆(Xs) → R

is a weak affine representation for ≿s and f ∗ and g∗ are equally crisp acts such that

for all s ∈ SP ,

us(f ∗
s ) > us(g∗

s). (7)

Then for all α, α′ ∈ [0, 1],

α ≥ α′ ⇐⇒ αf ∗ + (1 − α)g∗ ≿ α′f ∗ + (1 − α′)g∗.

Proof. For all α ∈ [0, 1], denote

f ∗αg∗ = αf ∗ + (1 − α)g∗.

Assume, per contra, that there exist 1 > α∗ > α∗ > 0 such that

f ∗α∗g∗ ∼ f ∗α∗g
∗ (8)

By the nontriviality and continuity, there exists f 0 ̸∼ f ∗α∗g∗ with u(f 0) ∈ intu(H).

W.l.o.g. assume that f ∗α∗g∗ ≻ f 0. Denote

αf = sup{α ∈ [0, 1]|αf 0 + (1 − α)f ∗α∗g∗ ≿ f ∗α∗g∗}. (9)

By the continuity, αf < 1 and αff 0 + (1 − αf )f ∗α∗g∗ ∼ f ∗α∗g∗. Since by Lemma 11,

f ∗α∗g∗ and f ∗α∗g
∗ are equally crisp,

αff 0 +(1−αf )f ∗α∗g
∗ ∼αff ∗α∗g∗ +(1−αf )f ∗α∗g

∗ = f ∗(αfα∗ +(1−αf )α∗)g∗. (10)

By (7) and since for each s ∈ S, us is affine, there exist 0 < ε < 1 − αf such that for

each s ∈ SP , Then we have for all s ∈ SP ,

us
(
(αf + ε)f 0

s + (1 − αf − ε)f ∗
sα

∗g∗
s

)
≥ us

(
αff 0

s + (1 − αf )f ∗
sα∗g

∗
s

)
. (11)
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By Lemma 28,

(αf + ε)f 0 + (1 − αf − ε)f ∗α∗g∗
(11)
≿ αff 0 + (1 − αf )f ∗α∗g

∗

(10)∼ f ∗(αfα∗ + (1 − αf )α∗)g∗
(7)
≿ f ∗α∗g

∗ (8)∼ f ∗α∗g∗.

However, this contradicts the definition of αf in (9). Thus if 1 > α∗ > α∗ > 0, then

by (7) and Lemma 28, f ∗α∗g∗ ≻ f ∗α∗g
∗. Finally, if 1 ≥ α∗ > α∗ ≥ 0, then by above,

(7), and Lemma 28,

f ∗α∗g∗ ≿ f ∗(2/3α∗ + 1/3α∗)g∗ ≻ f ∗(1/3α∗ + 2/3α∗)g∗ ≿ f ∗α∗g
∗.

The next result generalizes the previous monotonicity when the equally crisp acts

are mixed with another act.

Lemma 30 Assume that ≿ satisfies Axioms 2-5, for each s ∈ SP , us : ∆(Xs) → R

is a weak affine representation for ≿s and f ∗ and g∗ are equally crisp acts such that

for all s ∈ SP , us(f ∗
s ) > us(g∗

s). Then for all f ∈ H, β ∈ [0, 1),

α ≥ α′ ⇐⇒ βf + (1 − β)
(
αf ∗ + (1 − α)g∗

)
≿ βf + (1 − β)

(
α′f ∗ + (1 − α′)g∗

)
.

Proof. Follows directly from Lemmas 11 and 29 since βf + (1 − β)f ∗, βf + (1 − β)g∗

are equally crisp acts and for each s ∈ SP us is affine.

C.3 Existence of State Dependent Dual-Self

Variational Expected Utility

The next step show the existence of C-additive and monotonic representation.

Proposition 31 Assume ≿ satisfies Axioms 2-6 and for all s ∈ SP , us : ∆(Xs) → R

is a weak affine representation for ≿s such that us(f ∗
s )−us(g∗

s) = 1. Then there exists

I : u(H) → R such that (u, I) is a state dependent niveloid representation for ≿.

Proof. For all α ∈ [0, 1], denote

f ∗αg∗ = αf ∗ + (1 − α)g∗.
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Denote

H◦ =
{
f ∈ H

∣∣∣u(f) ∈ intu(H)
}
.

We endow H◦ with the order topology.

Define the partition of H◦,

B =
{
{g ∈ H◦| ∃α ∈ R, u(g) = u(f) + 1̄α}

∣∣∣f ∈ H◦
}
.

Define the mapping B : H◦ → B by for each f ∈ H◦, f ∈ B(f) ∈ B.

For each B∈B, choose fB ∈B and define the function φB :B→R by the following.

For f ∈ B, there exists αf ∈ R such that u(f) = u(fB) + 1̄αf and define ψB(f) = αf .

First, H◦ and each B∈B are connected in the order topology by Axiom 3. Second,

for each f ∈ B ∈ B, there exist f 1, f 2 ∈ B such that f 1 ≻ f ≻ f 2 by Lemma 30.

Third, ψB is continuous in the order topology by Axiom 3.

Finally, let f, g∈H◦. Since u(f), u(g)∈ intu(H), there exist f̃ , g̃∈H and β̂∈ (0, 1)

such that u(f̃) = u(f) − β̂(u(f ∗1/2g∗) − u(f)), u(g̃) = u(g) − β̂(u(f ∗1/2g∗) − u(g)) ∈

intu(H). Denoting β = 1
1+β̂

, we have

u
(
βf̃ + (1 − β)(f ∗1/2g∗)

)
= u(f) and u

(
βg̃ + (1 − β)(f ∗1/2g∗)

)
= u(g).

Let f ′ ∈ B(f) and g′ ∈ B(g) be such that βf̃ + (1 − β)f ∗ ≻ f ′, g′ ≻ βf̃ + (1 − β)g∗.

Let αf , αg ∈ (0, 1) be such that

βf̃ + (1 − β)(f ∗αf
′
g∗) ∼ f ′ and βf̃ + (1 − β)(f ∗αg

′
g∗) ∼ g′.

By Lemma 30, we have u(f)+(1
2 −αf ′)1̄=u(f ′) and u(g)+(1

2 −αg′)1̄=u(g′). Especially

φB(f)(f ′) − φB(f)(f) = αf
′ − 1

2 and φB(g)(g′) − φB(g)(g) = αg
′ − 1

2 .

So we have

f ′ ≿ g′ ⇐⇒ βf̃ + (1 − β)(f ∗αf
′
g∗) ≿ βf̃ + (1 − β)(f ∗αg

′
g∗) ⇐⇒ αf

′ ≥ αg
′

⇐⇒ αf
′ − 1

2 ≥ αg
′ − 1

2 ⇐⇒ φB(f)(f ′) − φB(f)(f) ≥ φB(g)(g′) − φB(g)(g).

Thus by Mononen (2021, Theorem 1), there exist τ :B→R such that for all f, g∈H◦

f ≿ g ⇐⇒ ψB(f)(f) + τ
(
B(f)

)
≥ ψB(g)(g) + τ

(
B(g)

)
.
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By defining I : intu(H) → R by for all f ∈ intu(H), I(u(f)) = φB(f)(f) + τ(B(f)),

(u, I) is a state dependent niveloid representation for ≿ in H◦.

Finally, since I is 1-lipschitz continuous, it can be extended continuously to u(H)

with Ĩ : u(H) → R that inherits C-additivity and monotonicity.

Proposition 32 If ≿ satisfies Axioms 2-6, then there exists (u,C) that is a dual-self

variational representation for ≿.

Proof. By Lemma 27 and Proposition 31, for all s∈S, there exist affine us :∆(Xs)→R

and I : u(H) → R such that (u, I) is a state dependent niveloid representation for ≿

and u(f ∗) = 1̄, u(g∗) = 0̄. By Chandrasekher et al.’s (2022) Lemmas A.5 and S.3.2,

there exists C ⊆
{
c : ∆(S) → R ∪ {∞}|c is convex

}
such that for all φ ∈ intu(H),

I(φ) = maxc∈C minp∈∆(S) p · φ+ c(p).

C.4 Existence of State Dependent Dual-Self Expected

Utility

Next, we show that if there exist a crisp act with a constant utility, then a state depen-

dent dual-self varrational representation is a state dependent dual-self representation.

Proposition 33 If ≿ satisfies Axioms 2-7, then there exists (u,P) that is a dual-self

representation for ≿.

Proof. Let f ∗, g∗ be equally crisp acts as in Axiom 6 and c a crisp act as in Axiom 7.

By Lemma 27, there exist and for each s ∈ SP , us : ∆(Xs) → R is a weak affine

representation for ≿s such that us(f ∗
s )−us(g∗

s) = 1 and us(cs) = 0. By Proposition 31,

there exists I : u(H) →R such that (u, I) is a state dependent niveloid representation

for ≿. By adding a constant, we can assume that I(0̄) = 0. By Lemma 24, for all

h ∈ H,α ∈ (0, 1)

I
(
αu(h)

)
= αI

(
u(h)

)
and so I is positively homogeneous. By Chandrasekher et al.’s (2022) proof of Theo-

rem 1, there exists P ∈ K(∆(S)) such that for all φ ∈ u(H), I(φ) = maxP∈P minp∈P p ·
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Online Appendix to “State Dependent Utility and

Ambiguity”

Not intended for publication

This online appendix is organized as follows. Section B.5 showes the partial iden-

tification for state dependent dual-self expected utility. This shows Theorem 2 as a

corollary. Section C proves the existence of state dependent dual-self expected utility

and state dependent dual-self variational expected utilities, Theorems 8 and 9. Sec-

tion B.6 characterizes the identification with crisp and equally crisp acts and shows

Propositions 3 and 4. Finally, Appendix S.2 characterizes the full identification of

probabilities for a single state and for relative likelihoods between two states and

shows Proposition 5 and Proposition 6.

S.1 State Dependent Bewley Uniqueness

Assume that SP = S. We show the uniqueness of the state dependent Bewley repre-

sentation.

Proposition S.1 If (u,C) and (ũ, C̃) are state dependent Bewley representations

for ≿, then there exist a ∈ RS
++, b ∈ RS such that

C̃ =
{
p̃ ∈ ∆(S)

∣∣∣∣∃ p ∈ C, ∀ s ∈ S, p̃s = a−1
s ps∑

s∈S a−1
s ps

}
and for all s ∈ SP ,

ũs = asus + bs.

Proof. By the representation, we have for all xs, ys ∈ ∆(Xs), us(xs) ≥ us(ys) iff

ũs(xs) ≥ ũs(ys). By the vNM uniqueness theorem, there exist a ∈ RS
++, b ∈ RS such

that for each s ∈ S,

ũs = asus + b.
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Denote a−1 = (a−1
s )s∈S. Define multiplications with a and a−1 statewise. Define

Ĉ =
{(

a−1
s ps∑

s′∈S a
−1
s′ ps′

)
s∈S

∣∣∣∣∣p ∈ C

}
.

Now Ĉ ⊆ ∆(S) since for all s ∈ S, as > 0.

Define ≿Ĉ and ≿C̃ on RS by for all φ, ψ ∈ RS,

φ ≿Ĉ ψ ⇐⇒ ∀ p̂ ∈ Ĉ, p̂ · φ ≥ p̂ · ψ and

φ ≿C̃ ψ ⇐⇒ ∀ p̃ ∈ C̃, p̃ · φ ≥ p̃ · ψ.

Let φ, ψ ∈ RS. We show that φ ≿Ĉ ψ ⇐⇒ φ ≿C̃ ψ. Since S = SP , there exist

θ ∈ intu(H) and α⋆ ∈ (0, 1] such that α⋆a−1φ+ (1 −α⋆)θ, α⋆a−1ψ+ (1 −α⋆)θ ∈ u(H).

Let f, g ∈ H be such that

α⋆a−1φ+ (1 − α⋆)θ = u(f) and α⋆a−1ψ + (1 − α⋆)θ = u(g).

Now we have

φ ≿Ĉ ψ ⇐⇒ ∀ p̂ ∈ Ĉ, p̂ · φ ≥ p̂ · ψ

⇐⇒ ∀ p̂ ∈ Ĉ, α⋆p̂ · φ+ (1 − α⋆)p̂ · aθ ≥ α⋆p̂ · ψ + (1 − α⋆)p̂ · aθ

⇐⇒ ∀ p̂ ∈ Ĉ, p̂ · a
(
α⋆a−1φ+ (1 − α⋆)θ

)
≥ p̂ · a

(
α⋆a−1ψ + (1 − α⋆)θ

)
⇐⇒ ∀ p ∈ C,

a−1p∑
s∈S a−1

s ps
· au(f) ≥ a−1p∑

s∈S a−1
s ps

· au(g)

⇐⇒ ∀ p ∈ C, p · u(f) ≥ p · u(g) ⇐⇒ f ≿ g ⇐⇒ ∀ p̃ ∈ C̃, p̃ · ũ(f) ≥ p̃ · ũ(g)

⇐⇒ ∀ p̃ ∈ C̃, p̃ · a
(
α⋆a−1φ+ (1 − α⋆)θ

)
+ p̃ · b ≥ p̃ · a

(
α⋆a−1ψ + (1 − α⋆)θ

)
+ p̃ · b

⇐⇒ ∀ p̃ ∈ C̃, p̃ · φ ≥ p̃ · ψ ⇐⇒ φ ≿C̃ ψ.

Thus ≿C̃ has state independent Bewley representations with (Id, C̃) and (Id, Ĉ).

By its uniqueness (Ghirardato et al., 2004), C̃ = Ĉ.

S.2 Relative Likelihood and Probability Characterizations

Next, we move on to proving Proposition 5 and Proposition 6. We show these results

by characterizing the possible transformations for probabilities that keep the relative

likelihoods between two states the same and that keep the probabilities for a single

2



state the same behaviorally and in terms of the set of probabilities.

S.2.1 Relative Likelihood Identification

Our first lemma for relative likelihood identification shows that our behavioral as-

sumption for relative likelihood identification characterizes their identification. This

follows as a corollary of this lemma and our previous partial identification result.

Lemma S.2 Assume that (u, I) is a state dependent niveloid representation for ≿.

Fix any s, s′ ∈ SP , s ̸= s′. The following two are equivalent:

(1) If f, g ∈ H are equally crisp and fs ≻s gs, then fs′ ≿s′ gs′ .

(2) For all x ∈
(⋃

φ∈intu(H) ∂I(φ)
)⊥

, xs = xs′ .

Proof. We will first show that (1)⇒(2). Assume, per contra, there exists x ∈(⋃
φ∈intu(H) ∂I(φ)

)⊥
, xs ̸= xs′ . Assume w.l.o.g. xs > xs′ . Let c = −1

2xs − 1
2xs′ . By

Lemma 18, there exist f, g ∈ H, a > 0 such that fs ≻s gs and gs′ ≻s′ fs′ and for all

s̃ ∈ SP us̃(fs̃) − us̃(gs̃) = a(xs̃ + c). By Corollary 15, f and g are equally crisp acts

which contradicts (1).

Second, we show that (2)⇒(1). Assume, per contra, that there exist equally crisp

acts f and g such that fs ≻s gs and gs′ ≻s′ fs′ . Denote x = u(f) − u(g) − [I(u(f)) −

I(u(g))]1̄. By Corollary 15, x ∈
(⋃

φ∈intu(H) ∂I(φ)
)⊥

. Now, us(fs) > us(gs) and

us′(gs′) > us′(fs′), so xs ̸= xs′ that contradicts (2).

The next lemma characterizes in terms of probabilities when the relative likelihood

for states is identified.

Lemma S.3 Assume that P ⊆ ∆(S), P is convex, P ̸= ∅, s, s′ ∈ S, and s ̸= s′. The

following two are equivalent:

(1) For all x ∈ P⊥, xs = xs′ .

(2) There exist p, q ∈ P such that for all s̃ ∈ S \ {s, s′}, ps̃ = qs̃ and ps

ps′
̸= qs

qs′
.
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Proof. We will first show that (2)⇒(1). Assume, per contra, that there exists x∈ P⊥

such that xs ̸= xs′ . Let p, q be as in (2). Then∑
s̃∈S

xs̃ps̃ = 0 =
∑
s̃∈S

xs̃qs̃

Since for all s̃ ∈ S \ {s, s′}, ps̃ = qs̃ and so ps + ps′ = qs + qs′ ,

(xs − xs′)ps + xs(ps + ps′) = xsps + xs′ps′ = xsqs + xs′qs′ = (xs − xs′)qs + xs(qs + qs′).

Hence,

(xs − xs′)(ps − qs) = 0.

Since xs ̸= xs′ by the counter assumption, we have ps = qs which is a contradiction.

Next, we show that (1)⇒(2). Denote n⊥ = dimP⊥ and n= dimP . Now n⊥ +n=

|S|. There exist (ci)n⊥
i=1 ⊆ P⊥ linearly independent vectors and (pi)ni=1 ⊆ P linearly

independent vectors. First, we show that n≥2. Since P is non-empty, n≥1. Assume,

per contra, n = 1. Thus P is a singleton P = {p}. If ps = 0, then (1s, 0−s) ∈ P⊥

which is a contradiction. Similarly, ps′ ̸= 0. Now,
(
(1
ps′)s, (−

1
ps

)s′ , 0−s,s′

)
∈ P⊥ that is

a contradiction. So n ≥ 2.

We consider two cases. First, assume that for all i ∈ {1, . . . , n⊥},

cis = 0. (12)

Now we can consider the matrix C formed by row vectors (ci)n⊥
i=1 where the columns

are S. By (12), we can reduce C into Smith normal form C̃ formed by row vectors

(c̃i)n⊥
i=1 such that for each i∈{1, . . . , n⊥}, there exists si∈S\{s, s′} such that c̃isi = −1,

for all j ∈ {1, . . . , n⊥} \ {i}, c̃isj = 0, and for all k, l ∈ {1, . . . , n⊥}, k ̸= l, sk ̸= sl. Now

(c̃i)n⊥
i=1 ⊆ P⊥ are linearly independent and for all i ∈ {1, . . . , n⊥},

c̃is = c̃is′ = 0. (13)

Denote S⊥ = {s1 . . . , sn
⊥}. Now we have for all i ∈ {1, . . . , n⊥} and p ∈ P ,

psi =
∑

s̃∈S\S⊥

c̃is̃p
j
s̃. (14)
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Let π : {1, . . . , n− 2} → S \ (S⊥ ∪ {s, s′}) be a one-to-one function. We show by

induction that for each i∈{0, . . . , n−2}, there exists a linearly independent collection

of probabilities (pj,i)n−i
j=1 ⊆ P such that for all j, k ∈ {1, . . . , n− i}, 1 ≤ l ≤ i,

pj,iπ(l) = pk,iπ(l). (15)

For the first step i=0, define for all j∈{1, . . . , n}, p̃j,i=pj. For the induction step,

assume that for 0≤ i≤n−2, there exists (pj,i)n−i
j=1 that satisfy (15). First, we show that

min
{
pj,iπ(i+1)

∣∣∣j ∈ {1, . . . , n− i}
}

̸= max
{
pj,iπ(i+1)

∣∣∣j ∈
{
1, . . . , n− i}

}
. (16)

Assume, per contra, that for all j, k ∈ {1, . . . , n − i}, pj,iπ(i+1) = pk,iπ(i+1). Let P i be

a matrix formed by the column vectors (pj,i)n−i
j=1. The column rank of P i is n − i

since columns are linearly independent. Thus the row rank of P i is n − i. However,

each row s̃ ∈ S⊥ is linearly dependent on rows S \ S⊥ by (14) and each row s̃ ∈

{π(1), . . . , π(i), π(i+1)} is constant and so since the rows sum to 1, linearly dependent

on the rows S \ {π(1), . . . , π(i), π(i + 1)}. Thus the maximum row rank for P i is

|S| − n⊥ − i− 1 = n− i− 1 which is a contradiction. This shows (16).

Let

j∗ ∈ arg max
{
pj,iπ(i+1)

∣∣∣j ∈ {1, . . . , n− i}
}

and j∗ ∈ arg min
{
pj,iπ(i+1)

∣∣∣j ∈ {1, . . . , n− i}
}
.

By (16), there exists βi ∈ (0, 1) such that for all j ∈ {1, . . . , n− i} \ j∗,
1
2p

j,i
π(i+1) + 1

2p
j∗,i
π(i+1) > βi > pj∗,iπ(i+1).

Thus for each j ∈ {1, . . . , n− i} \ j∗, there exists αj ∈ (0, 1) such that

αj
(1

2p
j,i
π(i+1) + 1

2p
j∗,i
π(i+1)

)
+ (1 − αj)pj∗,iπ(i+1) = βi.

Denote for j ∈ {1, . . . , n− i− 1} \ j∗,

p̃(j−1(j>j∗)),i+1 = αj
(1

2p
j,i + 1

2p
j∗,i
)

+ (1 − αj)pj∗,i,

where 1(j > j∗) is an indicator function for j > j∗. Now (p̃j,i+1)n−i−1
j=1 are linearly

independent since they have been created using elementary column operations from

P i. Additionally, it satisfies (15). This shows the induction step and concludes the
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induction.

Since n ≥ 2, by the induction, there exist p∗, p† ∈ P that are linearly independent

and for all s̃ ∈ S \ (S⊥ ∪ {s, s′}), p∗
s̃ = p†

s̃.

By (13,14), for all s̃ ∈ S \ {s, s′},

p∗
s̃ = p†

s̃.

This shows the claim since p† and p∗ are linearly independent.

Second, we consider the case that there exists i ∈ {1, . . . , n⊥} such that cis ̸= 0.

First, if a vector c̃ ∈ RS is such that c̃s = c̃s′ ̸= 0 and for all s̃ ∈ S \ {s, s′}, c̃s̃ = 0, then

c̃ /∈ P⊥ (17)

since each p ∈ P is non-negative.

Next, consider the matrix C formed by row vectors (ci)n⊥
i=1 where the columns are

S. Denote sn⊥ = s, sn
⊥+1 = s′. By (17), we can reduce C into Smith normal form

C̃ formed by row vectors (c̃i)n⊥
i=1 such that for each i ∈ {1, . . . , n⊥ − 1}, there exists

si ∈S \{s, s′} such that for each î∈ {1, . . . , n⊥}, c̃î
sî = −1, for all j ∈ {1, . . . , n⊥}\{i},

c̃îsj = 0, and for all k, l ∈ {1, . . . , n⊥}, k ̸= l, sk ̸= sl. Now (c̃i)n⊥
i=1 ⊆ P⊥ are linearly

independent and for all i ∈ {1, . . . , n⊥ − 1},

c̃is = c̃is′ = 0 and c̃n
⊥

s = c̃n
⊥

s′ = −1.

Denote S⊥ ={s1 . . . , sn
⊥
, sn

⊥+1}. Now we have for all i∈{1, . . . , n⊥−1} and p∈P ,

psi =
∑

s̃∈S\S⊥

c̃is̃ps̃ and p
sn⊥ + p

sn⊥+1 =
∑

s̃∈S\S⊥

c̃n
⊥

s̃ ps̃. (18)

Next, we show that there exists s† ∈ S \ S⊥ such that
n⊥∑
i=1

c̃is† ̸= −1. (19)

Assume, per contra, for all s̃ ∈ S \ S⊥,
n⊥∑
i=1

c̃is̃ = −1. (20)
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Then, we have for p ∈ P ,

1 =
∑
s̃∈S

ps̃
(18)=

∑
s̃∈S\S⊥

(
1 +

n⊥∑
i=1

c̃is̃

)
ps̃

(20)= 0

that is a contradiction which shows (19).

Let π : {1, . . . , n− 2} → S \ (S⊥ ∪ {s†}) be a one-to-one function. By an induction

as in the previous case for each i ∈ {0, . . . , n− 2}, there exists a collection of linearly

independent probabilities (p̃j,i)n−i
j=1 such that for all j, k ∈ {1, . . . , n− i}, 1 ≤ l ≤ i,

pj,iπ(l) = pk,iπ(l).

Since n ≥ 2, by the induction, there exist p∗, p† ∈ P that are linearly independent

and for all s̃ ∈ S \ (S⊥ ∪ {s†}), p∗
s̃ = p†

s̃.

Now we have for p ∈ {p∗, p†},

1 =
∑
s̃∈S

ps̃
(18)=

∑
s̃∈S\S⊥

(
1 +

n⊥∑
i=1

c̃is̃

)
ps̃

(19)==⇒ ps† =
1 −∑

s̃∈S\(S⊥∪{s†})

(
1 +∑n⊥

i=1 c̃
i
s̃

)
ps̃

1 +∑n⊥
i=1 c̃

i
s†

.

Thus p∗
s† = p†

s† .

Now for all s̃ ∈ S \ S⊥, p∗
s̃ = p†

s̃. By (18), for all s̃ ∈ S \ {s, s′},

p∗
s̃ = p†

s̃ and p∗
s + p∗

s′ = p†
s + p†

s′ .

This shows the claim since p† and p∗ are linearly independent.

The relative likelihood identification characterization, Proposition 6, directly fol-

lows from Lemmas S.2 and S.3 and Theorem 7.

S.2.2 Probability Identification

The identification for a probability is similar to the identification for the relative like-

lihood of some states. First, we show that our behavioral assumption for probability

identification characterizes its identification.

Lemma S.4 Assume that (u, I) is a state dependent niveloid representation for ≿.

Fix any s ∈ SP . The following two are equivalent:
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(1) If f, g ∈ H and f ∼∗ g, then fs ∼s gs.

(2) For all f, g ∈ H such that f ∼ g and fs ≻s gs, there exist h ∈ H and α ∈ (0, 1)

such that

αh+ (1 − α)f ̸∼ αh+ (1 − α)g.

(3) For all x ∈
(⋃

φ∈intu(H) ∂I(φ)
)⊥

, xs = 0.

Proof. We will first show that (1)⇒(2). Assume, per contra, w.l.o.g. that there exists

x̃ ∈
(⋃

φ∈intu(H) ∂I(φ)
)⊥

, x̃s > 0. Assume w.l.o.g. x̃s > 0. Now x = (x̃SP , 0−SP ) ∈(⋃
φ∈intu(H) ∂I(φ)

)⊥
.

By Lemma 18, there exist f, g ∈H, a> 0 such that fs ≻s gs, u(f), u(g) ∈ intu(H),

and u(f) − u(g) = ax. By Corollary 15, f and g are equally crisp and f ∼ g. By

Lemma 13, f ∼∗ g that contradicts (1).

Second, we show that (2)⇒(1). Assume, per contra, w.l.o.g. that there exist

f, g ∈ H, s′ ∈ S such that f ∼∗ g, fs ≻s gs. Especially, by the definition, f and g are

equally crisp acts. By Corollary 15, u(f) −u(g) ∈
(⋃

φ∈intu(H) ∂I(φ)
)⊥

. Additionally,

by the monotonicity of I, us(fs) − us(gs) > 0 that contradicts (2).

The second lemma characterizes in terms of the set of probabilities when the

probabilities for a single state are identified.

Lemma S.5 Assume that P ⊆ ∆(S), P is convex, P ̸= ∅, and s ∈ S. The following

two are equivalent:

(1) For all x ∈ P⊥, xs = 0 and there exist s′ ∈ S, s ̸= s′ and p ∈ P such that ps′ > 0.

(2) There exist p, q ∈ P such that ps ̸= qs and for all s̃ ∈ S \ {s},
ps̃

1 − ps
= qs̃

1 − qs
. (21)

Proof. We show first that (2)⇒(1). First, by (2), |P |≥2 and so there exist s′ ∈S, s ̸=s′

and p ∈ P such that ps′ > 0. Assume, per contra, that there exists x ∈ P⊥ such that

xs ̸= 0. Let p, q be as in (2). Since ps ̸= 1 or qs ̸= 1, we have by (21) since |S| ≥ 2,

ps ̸= 1 and qs ̸= 1. (22)
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Now, we have ∑
s̃∈S

xs̃ps̃ = 0 and
∑
s̃∈S

xs̃qs̃ = 0.

By (22), we have∑
s̃∈S\{s}

xs̃
ps̃

1 − ps
+ xs

ps
1 − ps

= 0 =
∑

s̃∈S\{s}
xs̃

qs̃
1 − qs

+ xs
qs

1 − qs
.

By (21), we have

xs
ps

1 − ps
= xs

qs
1 − qs

xs ̸=0===⇒ ps
1 − ps

= qs
1 − qs

.

Now x 7→ x
1−x is strictly increasing function for x ∈ [0, 1) and so by (22),

ps
1 − ps

= qs
1 − qs

⇒ ps = qs.

This contradicts (2).

Next, we show that (1)⇒(2). Denote n⊥ = dimP⊥ and n= dimP . Now n⊥ +n=

|S|. There exist (ci)n⊥
i=1 ⊆ P⊥ linearly independent vectors and (pi)ni=1 ⊆ P linearly

independent vectors.

First, we show that n ≥ 2. Since P is non-empty, n ≥ 1. Assume, per contra,

n = 1. Thus P is a singleton P = {p}. If ps = 0, then (1s, 0−s) ∈ P⊥ which is a

contradiction. By assumption, there exists s′ ∈ S, s′ ̸= s such that ps′ > 0. Now(
(1
ps′)s, (−

1
ps

)s′ , 0−s,s′

)
∈ P⊥ that is a contradiction. So n ≥ 2.

Next, consider the matrix C formed by row vectors (ci)n⊥
i=1 and columns S. We can

reduce C into Smith normal form C̃ formed by row vectors (c̃i)n⊥
i=1 such that for each

i∈ {1, . . . , n⊥}, there exists si ∈S \{s} such that c̃isi = −1, for all j ∈ {1, . . . , n⊥}\{i},

c̃isj = 0, and for all k, l ∈ {1, . . . , n⊥}, k ̸= l, sk ̸= sl. Now (c̃i)n⊥
i=1 ⊆ P⊥ are linearly

independent and for all i ∈ {1, . . . , n⊥}, c̃is = 0.

Denote S⊥ = {s1 . . . , sn
⊥}. Now we have for all i ∈ {1, . . . , n⊥} and p ∈ P ,

psi =
∑

s̃∈S\(S⊥∪{s})
c̃is̃ps̃. (23)

Let π : {1, . . . , n−1} → S \ (S⊥ \{s}) be a one-to-one function such that π(n) = s.

We show by induction that for each i ∈ {0, . . . , n − 1}, there exists a collection of

linearly independent probabilities (pj,i)nj=1 ⊆ P such that for all 1 ≤ m ≤ i, and
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j, k ∈ {1, . . . , n} \ {m},

pj,iπ(m) = pk,iπ(m) > pm,iπ(m).

This follows symmetrically to the proof in Lemma S.3 since at each step for i < n−1,

min
{
pj,iπ(i+1)

∣∣∣j ∈ {i+ 1, . . . , n}
}

̸= max
{
pj,iπ(i+1)

∣∣∣j ∈
{
i+ 1, . . . , n}

}
by linear independence and since for all k ≤ i and j, l ∈ {i+ 1, . . . , n}, pj,iπ(k) = pl,iπ(k).

Denote p∗ = pn,n−1. Since n ≥ 2, by taking a convex combination of (pj,n−1)n−1
j=1 ,

there exist a > 1 and p† ∈ P such that p∗ and p† are linearly independent and for

all s̃ ∈ S \ (S⊥ ∪ {s}), p∗
s̃ = ap†

s̃ > 0. Let s† ∈ S \ (S⊥ ∪ {s}). Now we have for all

s̃ ∈ S \ (S⊥ ∪ {s}),
p∗
s̃

p∗
s†

= ap†
s̃

ap†
s†

= p†
s̃

p†
s†

.

By (23), we have for all i ∈ {1, . . . , n⊥} and p ∈ P ,
psi

ps†
=

∑
s̃∈S\(S⊥∪{s})

c̃is̃
ps̃
ps†

.

Thus for all s̃ ∈ S \ {s},
p∗
s̃

p∗
s†

= p†
s̃

p†
s†

. (24)

By taking the sum over s̃, we have
1 − p∗

s

p∗
s†

= 1 − p†
s

p†
s†

.

Thus by multiplying (24) by p∗
s†

1−p∗
s
, we have for all s̃ ∈ S \ {s},

p∗
s̃

1 − p∗
s

= p†
s̃

1 − p†
s

. (25)

Finally, we show that p∗
s ̸= p†

s. Assume, per contra, p∗
s = p†

s. Then by (25) for

all s̃ ∈ S, p∗
s̃ = p†

s̃, which contradicts that p∗ and p† are linearly independent. Thus

p∗
s ̸= p†

s which shows the claim.

The previous two lemmas give the probability identification characterization.

Proposition S.6 (Probability Identification) Assume that (u,C) is a state de-

pendent tight dual-self variational expected utility for ≿ and s ∈ SP . The following
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three conditions are equivalent:

(1) If f, g ∈H are such that f ∼ g and fs ≻s gs, then there exist h∈H and α∈ (0, 1)

such that

αh+ (1 − α)f ̸∼ αh+ (1 − α)g.

(2) SP = {s} or there are p, q∈ co⋃c∈C dom c such that ps ̸= qs and for all s̃∈S\{s},
ps̃

1 − ps
= qs̃

1 − qs
.

(3) If (ũ, C̃) is a state dependent tight dual-self variational expected utility for ≿,

then {
p̃s

∣∣∣∣p̃ ∈ co
⋃
c̃∈C̃

dom c̃
}

=
{
ps

∣∣∣∣p ∈ co
⋃
c∈C

dom c
}
.

Proof. First if SP = {s}, then (1) is always true since co⋃c∈C dom c= {(1s, 0−s)} and

there does not exist f, g ∈ H such that fs ≻s gs and f ∼ g by the representation.

Additionally, (2) and (3) are always true.

Second assume that SP ̸= {s}. (1) ⇐⇒ (2) follows from Lemmas S.4 and S.5.

(2) ⇐⇒ (3) follows from Theorem 7 and Lemma S.5.
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