TAIL ESTIMATES AND OFF-DIAGONAL UPPER BOUNDS OF THE HEAT KERNEL

ALEXANDER GRIGOR’YAN, ERYAN HU, AND JIAXIN HU

AsstracT. We study the upper bounds of heat kernels of regular Dirichlet forms (with a jump part) on a dou-
bling metric measure space. We prove an equivalent characterization of alctdsimate of the tail of the

heat kernel outside balls in terms of the Faber-Krahn inequality, the generalized capacity condition, and the
L9%-estimate of the tail of the jump kernel. As a consequence, we obtain a pointwise upper bound of the heat
kernel with a polynomial decay in distance depending on the paramdtethe case of Ahlfors regular mea-

sure, these results are valid for glE [1, o], while in the general case of doubling measure we have to assume
thatq € [2, o]. Thanks to the presence of the paramegesur results cover much more general class of jump
kernels than was previously possible. The proofs use new methods as well as the results of the previous works
[24, 23] of the authors.
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1. INTRODUCTION

In this paper, we are concerned with the heat kernel upper bounds for a regular DirichleEfariniith
jump part on a metric space equipped with a doubling measure.

Let (M, d) be a locally compact separable metric space angd le¢ a Radon measure o with full
support. The triple 1, d, 1) is referred to as anetric measure spacd_et (€, ¥) be a regular jump type
Dirichlet form in L? := L2(M, u) associated with a Radon measji@efined onM x M\diag:

& V) = f fM 1000~ OO0 ~ ). (1.1)

The Dirichlet form determines the heat semigrd¥p= exptL) in L2, where £ is the (negative definite)
generator of the Dirichlet form. Theeat kernebf (&, ), denoted byp(x, y), is by definition the integral
kernel of the heat semigroyp;}i.o. Besides, the heat kernel coincides with the transition density of the
jump process associated wit, (7). _
If jis absolutely continuous with respectuiox u, then the density(x,y) = % is calledthe jump
kernel For example, iM = R" and
c

n
Koymr YR

Ixy) =
where 0< 8 < 2 andc = ¢(n), then£ = —(~A)’/2. In this case the heat kernel is the transition density of a
symmetric stable process of indéxand it admits the estimate

-(n+p)
1 Ix-y
pt(X’Y) - tn_/ﬁ (l+ tl/ﬁ )

Here the symbok means that the ratio of both sides are bounded from above and below by two positive
constants.
We aim at similar estimates of the heat kernel in a general metric measure dphata)( Denote by
B(x, r) open metric balls irM. Suppose for the moment thats a-regular for somer > 0, that is, for all
X € M andr > 0,

(1.2)

u(B(x,r)) =r®. V)
By a result of Grigor'yan and Kumagai (cf3(]), if the heat kernel is stochastically complete and satisfies
a self-similar estimate
d(x, y))

~ 1t
p’[(X, y) - t (I)( tl/ﬁ
for someg, y > 0 and some functio® then it is necessarily the following estimate:

1 d(x,y)\ @
Pr(X,y) = /B (1+ a5 ) )

(1.3)

We refer to (.3 as astable-likeestimate of the heat kernel because of its similaritylt@)( A natural
guestion aries: what conditions on the jump kerhehsure 1.3)?
Chen and Kumagai proved id]] that if 8 < 2 then (L.3) is equivalent to the following condition:

Jxy) = d(x,y)"@H)  xye M. Q)

However, on most of fractal sets there exist regular Dirichlet forms with the jump kernel satisfying (
with 8 > 2. In this case one needs one more condition:giweeralized capacity conditicsenoted shortly
(Gcap that will be explained below.

Condition Gcap is closely related to theutgf Sobolev inequalityntroduced by Barlow and Bass in
[4], and to theenergy inequalityof Andres and Barlow inJ]. With help of this condition, the following
result was proved by Grigor'yan, E.Hu and J.Hu ZiJland in a more general setting by Chen, Kumagai
and Wang in15].

Theorem 1.1. Under the standing assumptiox)(we have, for any > 0,
(Geap + (J) & (L.3). (1.4)
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The above results deal with Dirichlet forms when the jump kernel admits comparable upper and lower
bounds. However, there are many interesting jump measures when this is not the case. For instance, the
jump kernel can vanish somewhere or may not exist at all. For such jump measures, only very limited results
on heat kernel estimates are available. In pa@kitiie authors considered arftrametric spaces a class of
jump kernels satisfying the following rather weak tail estimate: foxalM andr > 0,

f J(x, y)du(y) < Eﬁ. (TJ)
B(xr)C r

In [9, Theorem 2.8], we proved that, under the standing assumpfid)n § certain Poinc& inequality
(denoted there by (PI)) is equivalent to two sided estimates of the heat kernel that include the following
upper bound

© (14 400" a5

p'[(X,y) < ta’/ﬁ 1+ tl—/ﬂ
and a certain weak lower bound. Let us emphasize that the expgrieare is smaller that the optimal
exponentr + g in (1.3). However, the exponegtcannot be improved in this setting.

In the proof of the above result, the followingjl estimateof the heat semigroup plays an important role:
for any ballB of radiusr > 0 and for anyt > 0,

Pilge < % in %B. (TP)

(HereaB for A > 0 means a ball of radius& concentric toB.) Indeed, the most flicult part in P] was to
prove that (PIk (TJ) = (TP). Then the upper bound () follows easily from TP) and other conditions.

Itis clear that, under the hypothesis)( the upper bound of the jump kernel i) {mplies (TJ). Similarly,
the upper estimate of the heat kernel1n3j implies (L.5) as well as TP).

One may ask whether there are other shapes of the heat kernel (and jump kernel) estimates between these
two cases1.3) and (L.5) (reps. betweenJj and (TJ)).

In this paper we give a positive answer to this question by introducing one-parameter families of heat
kernel and jump kernel estimates and by proving their equivalence (under certain standing hypotheses).

Assuming for simplicity that\{) holds, fix a parameteq € [1, ] and define the followind.? tail
estimateof the jump kernel (see also Definiti@5 below for a more general case): for ale M andr > 0,

C
13(X, LBy < TV (TXy)
whereq’ = % is the Hblder conjugate of. Similarly, we introduce th&“ tail estimateof the heat kernel
(see also Definitior2.10for a more general case): for adle M, r > 0 andt > 0,

- t C r \—(e/d+g)
1P HMoscapur) < C(t A ra/q'+ﬁ) R (1+ tl_/ﬁ)

as well as the following pointwise upper bound of the heat kernel (see also Defiitidfor a more general
case): for allx,y € M andt > 0,

(TPg)

t 1 d(x, y) —(a/d'+B)
d(x,y)a/q'+ﬁ)_ta_/ﬁ(l tUB ) ' (UEg)

Our main result for Ahlfors-regular spaces (Theorgd) says the following: if ¥¥) holds true, then
(FK) + (Gcap + (TJy) & (TPy) + (C) = (UEy). (1.6)

Here FK) is a certairFaber-Krahn inequalitysee Definition®.3, 3.3for details), and condition (C) means
that the Dirichlet form &, ) is conservative, that i$;1 = 1 for allt > 0.

In fact, we prove this result in a more general setting of doubling measure (see ThHaaEpkut in this
case we have to assume tlgat [2, «]. Let us also mention that the most interesting arfalilt part of the
proof of (1.6) is the implication:

p(X,y) < Ct A (t_ﬁ%’ A

(FK) + (Gcap + (TJy) = (TPy).
We remark that the result (6) for the case wheq = o was partly proved by Grigor'yan, J. Hu and Lau
in [28] and by Chen, Kumagai and Wang itd], while (1.6) is entirely new whem € [2, o).
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Note that our approach is purely analytical, and the metric space may be bounded or unbounded. Let us
also emphasize the following novelties of this paper:

e Our starting point is th&9-tail estimate of the jump kernel, rather than a more conventional point-
wise estimate of.

e Ourmain resultin Theore. 15is stated and proved for a general volume functigr, r) satisfying
the volume doubling condition as well as for a general scaling funatigx r) (that replaces?)
that may depend on poimt which covers many examples of metric measure spaces.

There are many works devoted to the study of heat kernels on metric measure spaces including fractals.
For example, se€r] for the Sierphski gasket, 17] for affine nested fractals3p] for post-critically finite
self-similar sets, 3], [3] for the Sierphski carpets, and3f, 35] for a certain class of self-similar sets.
Equivalent conditions for two-sided estimates of heat kernels for local Dirichlet forms on metric measure
spaces were investigated 29 and [31], whilst for non-local Dirichlet forms in§], [11], [12], [13], [14],

[15], [21]. Equivalent conditions only for upper estimates of heat kernels for local Dirichlet forms were
studied in [L], [25], [26], [27, Section 6], P9, Section 9], B7], whilst for non-local Dirichlet forms, in10],
[28].

The structure of the paper is as follows.

In Section2 we give all necessary definitions and state our main result — ThedrEgnfor an arbitrary
doubling measur@ and a general scaling functidi(x, r) that may depends or Here we assume that
g e [2,].

In Section3 we state our second main result — Theoi@#) in the setting of an Ahlfors-regular measure
1 and a specific scaling functiot(x, r) := r? for somes > 0. Here we assume thate [1, o].

In Section4 we investigate the properties of conditionR;) and, in particular, prove its monotonicity
with respect ta.

In Section5 we investigate the properties of so-calfetbcal Dirichlet forms, for example, thelocality,
and prove the inequalities related to the associated resolvent. We also study the relation between the semi-
groups associated with the original and truncated Dirichlet forms.

In Section6 we introduce a new metric equivalence to the original metric in some sense, and prove that
the doubling (and reverse doubling) propertieg @fre preserved by this change of metric. The purpose of
this change of metric is to simplify the scaling function.

In Section7 we rephrase all the conditions in question ( for examfléy)( (TPy), (UE;) etc) in terms of
the new metric.

In Section8 we apply the results of Sectiobs7 to obtain the upper estimates of heat kernels as well as
the tail estimates of semigroups for truncated Dirichlet from under the new metric. This section is crucial in
deriving the main results of this paper.

In Section9 we prove the main implication

(FK) + (Gecap + (TJy) = (TPy)

for the new metric, and then come back to the original metric. We also proveTihgtt (UE).
In Section10 we first investigate the consequences of conditit?y), in particular, we prove that

(TPg) = (FK) + (TJ)

(Lemmal0.3and Propositiori0.4). Then we finally conclude the proof of our main Theor2rhs
In Sectionl1we collect some known results needed in this paper.

Let us describe the main steps of the proof of the implicatiarfy {n the general setting.

Step 0. We recall our previous results that will be used below. It was proved4nTheorem 14.1] that
conditions EK), (TJy) and Gcap imply thesurvival estimatglenoted by$,) and §) (see Definitions .2
and7.1) respectively, for alty € [1, o]. Survival estimates play an important role in obtaining the exponen-
tial decay rate of heat kernels for truncated Dirichlet forms. Moreover, it was provéa,i€prollary 2.14]
that the same set of conditions also implied the existence@ardiagonal upper estima{®UE) of the heat
kernel for allg € [2, o] (see also PropositioR.8). So, the rest of the proof mainly focuses ditdiagonal
upper estimate of heat kernels and the tail estimate of semigroups.
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Step 1.We consider a general Dirichlet form with truncated jump part:
) =890+ [[ - 9 -veNdi wves,
MxB(x,0)

wherep > 0 is fixed. We show that the resolvent &%, 7 (Q)) satisfies various comparison inequalities
(Proposition$.3-5.5and Lemméb.6) which together with other conditions will be further used to prove that
the heat kernel of§®), ) decays exponentially in distance. Besides, we investigate the relation between
the semigroups off®), ¥) and €, ) (Propositions.11and Lemmas.12).

Step 2.We introduce a new metrig, (Proposition6.1) under which the scaling function becomes much
simpler: W,(r) = r? for someg > 0. This metricd, is comparable to the original metritin some sense
(Propositions6.2). Moreover, the doubling (and reverse doubling) property: @re also satisfied with
respect tal, (Proposition6.4).

Step 3. We rephrase all the conditio®UE), (S), (S.), (T), (TJ) in terms of the new metrid, as
(DUE)), (S), (S1), (T, (TJ.) respectively (Propositioid.4). Then we set our main task: to obtaiff,)
(see DefinitiorB.2), that is, for any balB.(x, r) and anyt in a finite inteval

1 t
X, o <C A . 1.7
[IPe(X, MllLaeg) (V*(x, AT "\, (x, )V rﬁ) (.7

Step 4.We study the following truncated bilinear form
=90+ [[ (00 -up) v - v di uver,
MxB.(X,0)

wherep > 0 andB.(x, p) is a metric ball in {1, d.). Under {TJ,), we verify that €¥), ¥) is also a regular
Dirichlet form. In Propositior8.2and LemmaB.3, we prove that the heat kerr‘[qﬁ’)(x, y) of (¥, ¥) exists
and satisfies on-diagonal upper estimate under conditDbi&(), (TJ.). In particular, there is a common
regular nestFy} such tha’qg”)(x, ) e C({Fy}) forallt > 0, x € M andp € Q. (see Remari.4).

Step 5.Let{Q;} be the heat semigroup associated with truncated Dirichlet forni@#d be the Dirichlet
semigroup for any balB.. We show that the tail of; decays exponentially as shown in Lemn@8and
8.9 for anyk > 1 and any balB, of radiusr > 4kp,

: t\ 1
QtlB‘,f <1- Qt lB* < C(Q, k) E n ZB*, (18)

wheref > 0 is arbitrary.

Moreover, we give the relation between the tails of heat kerpdlsy) and g;(x, y) outside balls (see
Lemmas3.10and8.11): for anyt > 0 and any balB, withr > 0,

Ct c't

X, - cy < X, - o)+ ——————— exp| — 19
1Pe(X, MlLaesey < lae(X, )llLagee) + Vo )T P p(pg), (1.9)

whereq = q%l € [1, ]. In particular, in the case when= c andq’ = 1, the above inequality gives the
pointwise relation betweep(x,y) andgi(x, y).

Step 6. By (1.9), in order to prove TF;), we need firstly to obtain the followingflediagonal upper
estimate ofy(x, y): for anyt > 0 andx,y € M,

C c't o\ d.(x,y)
ai(x,y) < W exp(ﬁ) (1 + tl_/ﬁ) exp(—c , . (1.10)
We prove this estimate by using.8) and on-diagonal upper estimategpfx, y) as well as other conditions
(see Lemm&.12).

Step 7. Using the semigroup property gf(x,y), the fact thatfM a:(%, y)du(y) < 1 and (.10, we show
that

-1
llge (X, )llLacee) < (_V*(x, {1/) exp(ﬁ) (1 " tl_/ﬂ) ) '
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Consequently, usindL(9) we obtain

(%, )l SRR (1+L)M/q,+Lex o
pcen = G " )\ as) Ve TP )

Sincep € Q. in the above inequality is arbitrary, one can pass the limiz.as p — t/# and obtain the first
term on the right hand side of the inequalify?) (see the first part in the proof of Lemm@gtand9.6).
Step 8.To obtain the second term on the right hand sidelof)( it suffices to consider the case when

P>t

By (1.8), (1.10 and the semigroup property of(x,y), we show that the terrigi(x; -)llLaeey on the right
hand side of1.9) is controlled as follows: for anyx € M, r > 0 andk > 1 so thatr > 4kp,

LI ( c't )(r)zm«/d( ¢ )ﬁ]_%

vioonya SPlae\p)

Consequently, byl(.9), we obtain for any € M, r > 0 andk > 1 so thatr > 4kp,

I e € SR e SL) (VT (YR e e
Pr(X, Lq(B*)_V*(X,I’)l/q, pq/pﬁ o pﬂ V*(X,p)l/q,PB ppﬁ '

In the above inequality we sét= g first and then choodelarge enough such th@f‘é—m - /zgiqt > 1. Moreover
since the left hand side does not depeng ave pass the limit aQ, > p — z and see that the second term
dominates the first term singg < 1. In patrticular, this yields the second term in4), and hence, obtain
(TP;) (see the second part in the proof of LemrBaéand9.6).

Step 9.InLemma9.7, we show thatTPR;) < (TPy); hence, we obtain the tail estimates of heat semigroup
under the original metrid. On the other hand, the conservativeness follows from condiBp(sée Step 0)
by using RO, Lemma 4.6, p. 3327]. Therefore, we obtain the implicatiesi in the equivalence.6).

Step 10.We prove the consequences oF). Itis easy to see thalP.,) < (UE.). Forg € [2, =), using

the semigroup property and thélder inequality, we have fdr> 0 andx,y € M with R := %d*(x, y) > 0,

[0 (X, )llLagey <

P(x.y) = fM By2(X 2)Py2(z Y)du(2)
. Pr/2(X, 2 pry2(z y)du(2)

< [ P dpeyd@ + |
B(x,R)® B(y,R
<|Ipty2(X, Nlcapere) P20 WL + 1By2(%, o [1Pt2( YIILaeey.Ryc)-
Sinceq > 2, and henceq = ﬁ < ¢, we have not onlyTP;) but also TPy) (see Propositiom.1).
Therefore, by TP;), we have

Ct
V(x, RYVIW(x,R)’

1Pt/ 2(X, )llLaexR)e) <

and by TPy),

- C

~ V(y, Wy, Ve

The termd|py2(%, )l andlipt2(-, Y)llLaaw,Rre) can be similarly estimated by conditioriBR;;) and (TPy).
Combining all the above inequalities, one can obtal&{) and the second implication=s" in (1.6) (see
Lemma9.8for the details).

Step 11.Forq € [2, o], the implication TP;) = (DUE) follows from semigroup property and Propo-
sition 4.1 (see Lemmal0.3i)). Then, we use the idea 2§, p. 551-553] to provelJUE) = (FK) (see
Proposition10.4). The implication TPy) = (TJy) + (S) is proved in Lemmd 0.3 and §) = (Gcap was
proved in P4, Theorem 14.1]. This completes the proofs of the implicatiesi in (1.6) and hence our
main result - Theorerd.15

Step 12. The main reason that the paramegen Theorem2.15has to be at least 2 is becauge 2
is used in the implicationHK) + (Gcap + (TJ;) = (DUE) (see Propositior2.8). However, wheru is

IPt/2(> VIl
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Ahlfors-regular, DUE) follows directly from the Nash inequality, which itself follows from the Faber-
Krahn inequality EK;W) (see Lemmd.0.1]). Hence, the parametgrin this setting can take all the values
from [1, o] as stated in our second main result - Theofe

Nortarion. Lettersc, C,C’, Cq, Cy, etc. are used to denote universal positive numbers, whose values may
change at any occurrence. TletterR = diamM € (0, o] denotes the diameter of the metric spabk )
throughout this paper. The usage of other letters depends on the context. The integrﬂ’s?gaaﬁs the
integration is taken over the whole spade For two open setdl,V ¢ M and a measurable functidghon
M x M, in the double integrafoXv F(x, y)dj(x,y), the variablex is taken inU andy in V. Moreover, we
may write ([, ., F(xy)dj(x.y) as [],,,, F(x y)dj for short. For a functiou on M, the notation supjj
means the support of For an open sdfl, the notationA € U means thah is a precompact open subset of
U with A c U. The notationf ~ g means that the ratio of the functiofisandg is bounded from above and
below by two positive constants for a specified range of the arguments. For a measurable funotidn
asetU c M andp € [1, ), we use the notatior|illsu) := (fu |u|pd,u)1/p and||ull =) := esugey IU(X)I-
Also we write||ullp := [|ullLewy for simplicity for p € [1, o].

2. MAIN RESULTS FOR DOUBLING MEASURES

In this section we state our main results in a more general setting. As above, derig(te ymetric
balls in the metric measure spadé,, ) that is

B(x,r):={ye M:d(y,x) <r}.

Since in general a ball as a subseiMtioes not determineandr uniquely, we always require balls to have
fixed centers and radii, even if they are not given explicitly. For any®all B(x, r) and a positive number
4, denote by
AB = B(X, Ar).
SetV(x,r) := u(B(x,r)). We say thatl, d, 1) satisfied thevolume doublingondition, denoted by D),
if there exists a constat > 1 such that, for alk € M and allr > 0,

V(x,2r) < CV(xr). (2.1)

In this case we also say that measutis doubling Condition ¢D) implies that O< V(x,r) < oo for all
r > 0. It is known that condition\(D) is equivalent to the following: there existC > 0 such that, for all
x,ye MandallO<r < R< o0,

V(x,R) d(x,y) + R\*
VoL < C( . . (2.2)
In particular, for allxe Mand all 0O<r < R< oo,
V(x,R) R\*
Voo sc(?) . 2.3)

Throughout the paper, we fix garameteR = diamM, thatis, R is the diameter oM. We say that
(M. d, n) satisfies theeverse volume doublingondition, denoted by conditiorRY¥D), if there exist two
positive number€, o’ such that, foralk e Mand allO<r < R< R,

C—l (B)Q < V(X’ R) )
r V(X 1)
Let (&, ) be aregular Dirichlet form ih? := L2(M, u) (see [L9] for definition). In particular, the bilinear

form &(u, v) is defined for allu, v € 7, whereF is a dense subspacelof, and¥ is complete with respect
to the norm+/&1(u), where

(2.4)

E1(u) = &) + [lul?, and &(u) = &(u, u).

We assume throughout thaf,(F) has no killing part (unless otherwise stated), that is, it admits the
following uniqueBeurling-Deny decompositigfef. [19, Theorem 3.2.1 and Theorem 4.5.2]):

&(u,v) = B, v) + EX(u, v), (2.5)
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for all u,v € ¥, where Heres® is thelocal part (or diffusion par), associated with a unique Radon
measuredl'®) (the notions&®(u, v), drV(u, v) are instead denoted B9 (u, V), %d#?u,v> respectively in
[19, see formula (3.2.22) on p.126]) as follows:

EBw,v) = f dr@qu,v),
M
and&WY is the jump part associated with a unique Radon meajsdedined orM x M\diag:
e = [[ (00 - uy) e - updice ) 2.6)
MxM\diag

In this paper, we always assume that the meaghees the following shape:
dj(xy) = I(x, dy)du(x) in M x M.
Here J(:, ) is kernel onM x B8(M) (whereB(M) be the sigma-algebra of Borel setsMj, that is,

o for every fixedx in M, the mapE — J(x, E) is a measure ofs(M);
o for every fixedE in 8(M), the mapx — J(x, E) is a non-negative measurable functionMdn

By the general theory of Dirichlet forms&E(F) has agenerator denoted by/, that is a hon-positive
definite self-adjoint operator ib? that determines thiseat semigroupP}iso in L2, given byP; = €£. The
integral kernel of P;} (should it exist) is denoted byt (x, y) and is called théeat kernebf (&, ). The heat
kernel coincides with the transition density of the Hunt process associatedSuf).(

LetU c M be an open sef) be a Borel subset df and« > 1 be a real number. A-cutgf functionof
the pair @, U) is any functiony in # such that

e 0< ¢ <kpu-a.e.inM;
o ¢ >1u-a.e.inA
e ¢ =0p-a.e. inUC.
We denote by-cutdf(A, U) the collection of alk-cutoff functions of the pairA, U). Any 1-cutdt function

will be simply referred to as autgf function Clearly,¢ € F is a cutdf function of (A, U) if and only if
0< ¢ <1,¢|a=1andg|yc = 0. Denote also

cutof (A, U) := 1- cutdf(A, U).

Note that for everyx > 1,
cutaf(A, U) c - cutof (A, U),

and that, if¢ € x-cutdf(A,U), then 1A ¢ € cutdf(A, U). Itis known that if €, ) is a regular Dirichlet
form in L2, then cutdf(A, U) is not empty for any non-empty precompact Aetith A c U.
Let ¥’ be avector spacalefined by

F':={v+a:veF, acR},

which, in particular, contains constant functions that may not ke in

Our next purpose is to introduce conditidBdap, that is called thgeneralized capacity conditiorror
that we need the notion of scaling function A function W : M x [0,] — [0, ] is called a scaling
function if it satisfies the following conditions:

(i) for eachx € M, the functionW(x, -) is continuous, strictly increasing, ald(x, 0) = 0, W(X, o) = oo;

(i) there exist three positive constar@ss;, 8, (whereg; < 3,) such that, for all < r < R < oo and for
all x,y e M withd(x,y) <R,

c—l(R)ﬁl < WR) c(?)ﬁz. 2.7)

r) W(y,r) ~
Denote byw-1(x, -) the inverse function of — W(x, r) for everyx € M. Clearly, @.7) implies that, for all
xeMandallO<r < R<

- (R)lfﬁ'z _WIR) (?)“ﬁl 2.8)

) T Wxr) T
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Scaling functions are commonly used, in particular, to describe the ipaescaling for the Hunt process
associated with the Dirichlet form. For example, it is known th&fudiongjump processes on many fractal
sets have the scaling function
W(x,r) :=rP
log5

for somes > 0. For instance, for the flusion on the Sierpiski gasket irR?, we haves = og3- The value

of B is called thewalk dimensiorof the process. It characterizes how fast the process moves away from its
starting point.

Definition 2.1 (Generalized capacity conditianjVe say that conditionGcayp is satisfied if there exist two
numbersc > 1,C > 0 such that, for any € ¥ N L™ and any pair of concentric balBy := B(Xo, R),
B := B(Xp, R+ r) with X € M and 0< R< R+ r < R, there exist® € x-cutaf(By, B) such that

C
E(U¢, ¢) < su fuzd : 2.9
(00 = SiPwocn Jo @9
We remark that the functios in (Gcap may depend o, but the constants, C are independent of
u, Bp, B. Usually it is very dificult to verify (Gcap. However, there are some cases whendp) is trivially
satisfied for certain jump kernels (see conditiohd) @nd (<) below).
For a Borel measurable subsétc M andu € F7, define theenergy measureld; (u) by

dry(U)(x) == dru)(x) + j;/l L1u(Y)(UR) - u(y)dj(x, y). (2.10)

Here we us&®(u) := T (u, u) for short.
The following condition ABB) (which is named after Andres, Barlow and BaHs [4]) is closely related
to (Gecap (see Lemmd.0.6).

Definition 2.2. We say that conditionABB) is satisfied if there exiS€; > 0, C, > 0 such that, for any
ue ¥’ N L and for any three concentric baly := B(xo, R), B := B(xo, R+ r) andQ := B(Xo, R) with
0<R<R+r <R <R, there exist® € cutaf(By, B) such that

C
u?dr scf 2d'g(u) + su 2 fuzd,
.L a(0) £ Ca | dPare(u) + supls | P

wherel'g(u) is defined as inZ.10).

For a non-empty open subdéiof M, denote byCy(U) the space of all continuous functions with compact
supports contained id. Let ¥ (U) be a vector space defined by

F(U) = the closure ofF N Co(U) in the norm+/&;. (2.11)

By the theory of Dirichlet form, & 7 (U)) is a regular Dirichlet form orL?(U, u) if (&, F) is a regular
Dirichlet form onL?(M, i) (see, for example,1P, Theorem 4.4.3]). Denote hy" the generator of the
Dirichlet form (&, 7 (U)) and by1;1(U) the bottomof the spectrum oLV in L?(U, ). It is known that
. &E(u)
A(U)=inf ——. 2.12
)= e Iuli2 (212)
For any metric balB := B(x,r), set
W(B) := W(X,r).

Definition 2.3 (Faber-Krahn inequality)We say that conditionRK) holds if there exist real numbess
(0,1] andC, v > 0 such that, for all ball8 with radii < 'R and all non-empty open subsétof B,
Ct (uB)Y
0= 5 (53)

1)
Sometimes, we label conditiofrK) by (FK,) to emphasize the role of the exponent

(2.13)

We introduce the conditionl(J) that provides estimates wdils of jump measures.
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Definition 2.4 (Tail estimate of jump measureyVe say that conditionT(J) is satisfied if, for any balB in
M,

J(x, BY) := ch J(x,dy) < % (2.14)

whereC € [0, «) is a constant independent Bf
For a given number X g < o, letq’ be theHdlder conjugateof g, that is,
r._ 9
q T q_ 1
sothatg =1if =0, andq = o if g= 1.
Let us introduce the conditioril{(;) that provides dail estimateof the jump kernel outside balls in
L9-norm.

Definition 2.5 (L9-tail estimate of jump kernel)For a given number ¥ q < oo, we say that conditionil{Jy)
is satisfied if there exists a non-negative measurable fundt{oalled thgump kernel on M x M such that
dj(xy) = I y)duly)du(x) in M x M,
and, foranyx e M and anyR > 0,
C
V(x, RV W(x,R)’

13(X, lLaxRy) < (2.15)

whereC € [0, =) is a constant independent xfR.

For example, ifg = 1 then @.15 coincides with 2.14). However, let us emphasize that the jump kernel
J(x,y) may not exist in conditionT(J), whereas it does in conditio ), in particular, in TJ;); hence,
(Td) = (TI). (2.16)
For anyx,y in M, denote by
V(X y) := V(X d(xy) and W(X,y) := W(x, d(x,y)).
(note thatv(x, y) andW(x,y) are not symmetric irx,y in general). Ifg = o (andq’ = 1) then @.15 clearly
becomes

C
J(xy) < W, (2.17)

for all x e M andu-almost ally € M. If (2.17) is satisfied for alk,y € M then we refer to this condition as
(J<) so that
(o) = (T).
Assume thaW(x, R) = R for anyxin M andR > 0. Then the inequalityX, 14 becomes
J(x, B(x, R)°) < % for all xe M andR > 0.

This condition was introduced and studied & ¢n the ultrametric space. If in addition(x, R) ~ R*, then
(2.17) becomes c

J(x,y) < W forall x,y € M.

This pointwiseupper bound of the jump kernel is the starting point in most of literature, see for example
[15], [2]] and the references therein.
Let us recall the notion of a regul&nest(cf. [19, Section 2.1, p.66-69]). For an open et M, let

Cap (V) :=inf{&(u) + ||u||§ :ue ¥ andu > 1 u-almost everywhere od} (2.18)

(note that Cap(U) = oo if the set of functionau in (2.18) is empty). An increasing sequence of closed
subsetgFy},”, of M is called anE-nestof M if

I(Iim Cap(M\ Fy) =0.
An &-nest{Fy} is said to beegular with respect tq if, for eachk,
w(U(X) nFg) >0 for anyx € Fyx and any open neighborhodix) of x.
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For an&-nest{Fg},” ;, denote by
C({Fk}) := {uis a function oM : ulr, is continuous for eacky . (2.19)
Afunctionu: M = R U {eo} is said to beguasi-continuousf u € C({F}) for some&-nest{Fy}. ;.

Definition 2.6. A function p(X, y) of three variablest(x,y) € (0, ) x M x M is referred to as pointwise
heat kernelf it satisfies the following conditions, for all s > 0 andx,y in M.

(1) The measurabilityp(, -) is jointly measurable oM x M.
(2) The Markov propertyp(x,y) > 0 and

fM pe(x Y)u(y) < L

(3) The symmetrypi(X,y) = p(Y, X).
(4) The semigroup property:

Pen(%Y) = fM p( 2Pz Y)Iu ().

(5) Approximation of identity: for anyf € L?,

fM oY) f () ducy) — |

in L2-norm agt — O+.

We say thatpi(x,y) is the pointwise heat kernel of the Dirichlet for&, (F) if it satisfies in addition the
following properties, for alk, y, t.

(1) There exists a reguldrnest{F},” ; such that
p(x, ) € C({F«})
whereC({Fy}) is defined in .19.
(2) If one of pointsx, y lies outsideu,” , Fi, then
pr(%.y) = 0. (2.20)
(3) For anyf € L?,

fM () FY)du(y) € C({Fil)
and
fM () FO)u(y) = Pef.
whereP; = exptL).

The pointwise heat kerngd(x,y) allows to extend the definition of the heat semigroup as follows: for
any 1< p < oo, define goointwise heat semigroup LP still denoted by{P}-0, as follows:

P = fM POy F)duy). feL?

for everyt > 0 and everyx € M.
We define theon-diagonal upper estima{®UE) of the heat kernel.

Definition 2.7 (On-diagonal upper estimaté)\e say that conditionUE) is satisfied if the pointwise heat
kernelp:(x,y) of (&, F) exists and, for anZy > 1, there exists a consta@t> 0 such that, for alk e M and
allt < CoW(x, R),

C
V(x, W-1(x,t))’
The following on-diagonal upper estimate of heat kernel was provezBirJorollary 2.14].

pe(X, X) < (2.21)

Proposition 2.8. Assume thaS, ¥) is a regular Dirichlet form in 2 without killing part. Then, for any
q € [2,09],
(VD) + (FK) + (Gcap + (TJy) = (DUE).
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We will prove that, under the hypothesis of Propositih8, certain type of &-diagonal upper estimate
of heat kernel is also true (see conditidWE;) below). Before that, let us introduce conditioFR), thetail
estimate of the heat semigrolip,} outside balls.

Definition 2.9 (Tail estimate of heat semigroup outside baliJe say that conditionT(P) holds if, for any
ball B = B(x, R) with R € (0, R) and anyt > 0,
ct . 1
PtlBC < —W(B) N Z.B (222)
for a positive constar independent oB, t.

Let us define conditionT(Py) for 1 < q < o, that is anL9-estimate of the tail of the heat kernel outside
balls.

Definition 2.10(L%-tail estimate of the heat kernelVe say that conditionT(Py) is satisfied if the pointwise
heat kernepi(x, y) of the Dirichlet form (in the sense of Definitidh6) exists and, for any baB := B(x, R)
with R € (0, R) and anyt < W(x, R),

1 t
' <c , 2.23
IPt(X, MlLaae) < (V(X, W-L(x, 1))/ " V(x, RYIW(x, R)) 22

whereC is a positive constant independenti®f.

Note that conditionTP) does not require the existence of the heat kernel, while condiliBy) does.
Moreover, the inequality2.23 in the case) = o is equivalent to the following:

pt(x,y)sc( 1, ! )
VX W-L(x, 1)) V(X y)W(X.y)

For example, ifW(x, R) = R? then condition TP) becomes

Ct 1
Pi1 c<— Iin=B
1R = g N2

for any ballB = B(x, R) with R> 0 and anyt > 0. If in additionV(x, R) ~ R* then (TP;) becomes

1 t
Remark 2.11. If R < oo and if 2.22 holds fort < W(x,R), then @.29 automatically holds also for any
t > W(x, R) by adjusting the value of consta@t sinceP;1gc < 1 in M whilst
t W R
WX R) ~ W(XxR)

Therefore, in order to verify222), it suffices to consider only the case when W(x, R).

>1 foranyO< R<R

Remark 2.12. Note that .23 is equivalent to the following inequality

1 .
—— fW(X,R) <t,
l1Pe(X, lLageey < C{ V(x,W—lt(x,t))l/q . xR (2.24)
VORTTWR) if W(X,R) > t,
since we have
V(x, VY t .
<1< if WxX,R) <t,
V(x, W-1(x, t)Ve =~ W(x,R) (xR
V(x, RV t .
>1> if W(x,R) > t.
V(x, W-(x,t)Ta — ~ W(X,R) xR

The equivalence betwee.23 and .24 will be used later on.

Let us introduce conditiorl(Ey) that is called th@ff-diagonal upper estimatef the heat kernel.
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Definition 2.13 (L%-upper estimate of heat kernelfor a given 1< q < oo, we say that conditionUEg)
is satisfied if there exists a pointwise heat kerpgk,y) in the sense of Definitio.6 such that, for all
x,y € M and allt < W(x, R) A W(y,R),

1 t 1 1
9 < i * Vi) o o ) @2

for some positive consta@ independent of, x, y.

For g = oo, we simply write JE) for (UE.,).
Remark 2.14. Consider the case when
V(X r) ~r?  W(xr) =r5,
wherea, B € (0, ). ThenW~1(x,t) = t'/# and
V(x.y) = d(x, )", W(xy) = d(x,y).
The term on the right-hand side &f.25) is equivalent to the following:

1 t 1 1\ 1 (g (dexy) RE AT |
/@B " d(x, y)@/a d(x, y) ) \ te/ (@ * @ | T i@ tuB " 1a/(@)

N ] d(x, y)\ /I
B\ " s '

In this case, conditionyE) is equivalent to

d(x.y) )_Wq’% | (2.26)

C
Pr(X.y) < B (1+ B
In particular, forg = 1, (2.26 becomes

C d(xy)\”
(%) < 25 (1+ B ) :

which is the best heat kernel upper estimate in some cases on ultrametric spa&@s (cf. [
Forqg = oo, (2.26) becomes

2

C d(x,y)\ @
pr(x.y) < talB (1+ B )

which is the best possible heat kernel upper estimate on the fractal metric space, known alsdleslike
estimate (see for exampl&q] and [21]).

Condition (TPy) implies condition UEy) when 2< q < co. However, the inverse implication may not be
true. We will give below an example whergig) holds but TP;) fails when 1< q < 2, see Examplé.2
We say that condition (C) is satisfied if the Dirichlet for& §) is conservativethat is

P:1 = 1 for eacht > O.
The following theorem is one of the main results in this paper.

Theorem 2.15.Assume thaiS, ¥) is a regular Dirichlet form in 2 without killing part. If conditiongVD),
(RVD) hold, then forany® < q < o

(FK) + (Gcap + (TJy) & (FK) + (ABB) + (TJ,)
& (TPy) +(C)
= (UEg) + (C).

Remark 2.16. Note that conditionABB) is stable under bounded perturbation of the Dirichlet form. Con-
sequently, Theorer®.15shows thatTP) is stable under such perturbation.
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The proof of Theoren2.15is highly non-trivial and long. Basically, the proof takes the entire paper and
will be completed at the end of Sectid@, after a series of propositions and lemmas. The most interesting
and dificult part of Theoren2.15is the following key implication:

(FK) + (Gcap + (TJy) = (TPy). (2.27)

whose proof is especially involved and consists of many steps. In the course of proof, we introduce a new
metricd. (see Sectio®) in order to deal with the diculties arising from possible dependencé\(i, -) on
x. Under this new metrid,, the measurg is still doubling, but the scaling function has a simple form, and
various conditions can be rephrased in a much simpler way (see Séxtibime idea of introducing the new
metric was borrowed fron3¢] and [6].

The reverse volume doublingR¢D) is used only in the proof of the implicatio®UE) = (FK) (which
does not hold in general withouR{D)). Note also thatRVD) follows from (VD) if M is connected and
unbounded (cf. 46, Corollary 5.3]); in this case, conditiofR{/D) can be dropped from the hypotheses of
Theorem2.15

3. MAIN RESULTS FOR AHLFORS-REGULAR MEASURES

In our main result Theorer@.15 the parametey is always greater than or equal to 2 because we can only
obtain the on-diagonal upper estima8JE) of heat kernel provided > 2, and DUE) plays an important
role in the proof of Theorer.15

In this section, we assume that the meagui® Ahlfors-regular, which will allow us to state and prove
the main results for the entire range [1, co].

Let us fix two numbersr > 0 and8 > 0. RecallthatR = diamM is the diameter of the metric space
(M, d).

Definition 3.1. We say that measuyeis a-regular, ot satisfies condition\(), if for all xe M andr < R,
V(X ) = r?, (3.1)

In this section we always assume that the conditigh lfolds, and that the scaling functioft is as
follows:
W(x,r) =P, (3.2)
for all xe M andr > 0.

Definition 3.2. We say that conditionHK’) holds if there exist two numbefs,v > 0 such that, for any
non-empty open setd,

B

A1 (V) > Cuu)” -R”. (3.3)

If necessary, we label conditiofK") by (FK') to emphasize the role of the exponent

Remark 3.3. Itis always true thatRK[;/a) = (FKg/q)-

Indeed, assume firshatR = co. Then, by £K5,,) and ), for any ballB of radiusr and any open set
U c B, we have

Sy - ok (L L (@)
w02 =65 () - g (i) o4

which gives EKg/,). Let nawv R < . Let B be a ball of radius < oR wheres > 0 is to be determined
later. Then, for any open skt c B we haveu(U) < u(B) < ¢(ocR)*. Choosingr = o(a.83,¢,C) > 0 small
enough we obtain th& 1(U)#/* > 2R”. Hence, EK},) yields
1
(U) 2 SCuU) P,
which implies €Kg/,) as in 3.4).

The following theorem states our main result when is satisfied andj € [1, «].
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Theorem 3.4. Assume tha{&, 7) is a regular Dirichlet form in 12 without killing part. Assume that
condition (V) is satisfied and the scaling function is given By2[. Then the following equivalences are
satisfied:

(FK5,0) + (Geap + (T)) & (FKj),) + (ABB) + (TJ)

& (TP) + (DUE) + (C) (3.5)

(=4 (Tpl) + (UEl) + (C)
Moreover, we have for any g (1, ],

(FK3,,) + (Geap + (Tdy) & (FK},) + (ABB) + (TJy)

& (TPy) + (DUE) + (C) (3.6)

& (TPg) + (UEg) + (C).
Remark 3.5. The equivalences ir8(5) can be viewed as a version &) for q = 1, where J,) is replaced
by a weaker hypothesigJ) (cf. (2.16).

The proof of Theoren3.4 goes concurrently with that of Theore2ril5and will be completed in Section
10.

4. ConprrioN (TPy)

In this section, we show that conditioKy) is monotone ing. Thus, among all the condition3'®),
(TPy), -- -, (TPy), condition {TP) is the weakest, whilst conditio P.,) is the strongest one.

Proposition 4.1. Assume thavD) holds. Then, foralll < g1 < g2 < o,
(TPy) = (TPy) = (TPy) = (TP). (4.2)

Proof. Assume that conditionTPg,) holds. Fix a balB := B(x, R) with R > 0 and somé < W(x, R). We
distinguish two cases.
Case 1LetW(x, R) < t. By Remark2.12 it suffices to prove that

C
V(x, W-1(x, )%

If g1 = 1 then this is trivially satisfied bypi(x, -)ll.1ge) < 1 andg; = oo. Let nowq; > 1. Using (TPg,), the
Holder inequality with measurg(x, y)du(y) and the fact thatp:(x, )|l < 1, we obtain

1Pt(%, Ml gey <

/a1
Pe(%, )lLay(gey = ( fB i p(x YT pr(x, y)du(y))

a1 g;_j 1_32_:1 v
s“ﬁ;waﬁlﬁﬁ-wawwﬂ ([ poeyysun) ]

1-1/g1

< [ pcneautn) ™ = (pc M)

< ( C )q,z/q’l _ C(a1, %)
~\V(x, W-L(x, 1) M % V(% W-1(x, 1)) Y%

which was to be proved.
Case 2Let W(x, R) > t. For any integen > 0, setB,, := B(x, 2"R) so that

W(Bp) = W(x,2"R) > W(x,R) > t.
By condition (TP;,) we have, for any > 0,

Ct ~ Ct
V(% R)Y%RW(X, R)  u(Bn)Y%W(By)

IPe(%, Loz (agy <
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Using this and the Blder inequality, we obtain, for any> 0,

/o
1Pt (X lLar By, p\Br) = ( fB " pr(X, Y)c“d#()’))
n+1\DBn

1/q2
< (L 5 Pr(X, Y)qu,u(Y)) wu(Bps1 \ Bp)Y a1
n+1\Pn

C’t
< X, - . B 1/q1-1/02 <~ B 1/91-1/q
l1Pt(X, )l ez (ge) #(Bn+1) ,U(Bn)l/qIZW(Bn)M( n)
B C’t < C’t
,U(Bn)l/q,lW(Bn) B ﬂ(B)l/qllw(Bn).

Note that, by 2.7), W(B,,) > c2¥1W(B), so that

00 1/Q1 00
1Pe(X, Yl (gey = {Z;J lIpe(x, ‘)HE%MBM\BQ) = Z; [1ot(%. YL (8, 1180)
n= n=

(o)

C't Ct
< 14, S o ’
=5 u(B)W(Bn)  u(B)Y*W(B)

which proves TPg,) by Remark2.12 m|

One of the claims of Theore&15is that

(TPg) = (UE)
providedq > 2. Let us give an example showing that the opposite implication is not satisfied #, that
is condition {TPy) is strictly stronger thanWEy) whenq = 2. Probably, this is true for atf > 2.

Example 4.2. Let us fix 1< g < 2 and give an example when conditiddEg) holds but conditionTPy)
fails, that is,
(UEg) = (TPy).
LetB, a1, @, be three positi_ve numbers. LeX¥l(, d;, ;) fori = 1,2 be two ultrametric spaces, where each
measurgy; is ai-regular. LetJ®) be a function orM; x M; for i = 1, 2 such that for alk;, y; € M;,

Ji(Xi,yi) ~ di(Xi,yi)_("i+ﬁ)_
Let (€9, 70) for i = 1,2 be two Dirichlet forms ort-*(M;, ;) defined, respectively, by

&0 = ([ (u06) - U)o ). uv e 7O,
i XM
where the spacg () is the closure of the set

n
{ > cils :neN, ¢ eR, Bjisacompact bl
=0
under the inner product

VEOC) + 1 AR
The Dirichlet form €9, 70} is regular and non-local (cf9] Theorem 2.2]). It turns out that the heat kernel
p(x., yi) of the form M, 70) exists and satisfies the following two-sided estimates:

) q di (%, Vi) —(ai+B)
D (v \r) ~ ASA]
pt (thl) - t B (1+ tl/ﬂ )

4.2)

forallt > 0 and allx;, y; in M;, see for exampleld], [21].
Let us construct a new ultrametric spaé# @, 1) by lettingM := M1 X Mg, u = pq X up, and

d(x,y) := maxdi(xa, y1), da(X2, ¥2)} for x = (X1, X2), y = (y1,¥2) in M.
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Clearly, for any pointx = (X1, X2) in M, any metric balB(x,r) in M is a direct product of ball8(xs,r) in
M1 andB(x2,r) in My, that is,

B(x,r) = B(x1,r) X B(X2, ).
It follows that

V(% 1) = u(B(x.1) = u1(B(X1, Nua(B(xz, 1)) = r®+7e2 = 1, (4.3)
wherea := a1 + a. For any pointxin M and anyr > 0, let
W(x,r) = rP.

Define the measurgon B(M x M) by dj(x,y) = J(X, dy)du(x), whereJ(x, dy) is a kernel orM x B(M)
given by
J(x dy) = IV (xe, y1)dhus (Ya)dSsy (v2) + I (2, y2)haa(y2)do, (v2) (4.4)
for any pointsx = (X1, X2), ¥ = (Y1, ¥2) in M, whereddp(X) is the Dirac measure concentrated at poiatR.
By (4.3 and the definition4.4), we have for any > 0,

sup J(x, dy)
X=(x1,X2)eM J B(x,r)¢

= sup (3D, yr)duy (y1)d6s, (y2) + IP(Xz, y2) At (Y2)dos, (1))
x=(X1,X2)eM JB(x,r)¢

< sup IB(xq, y1)duy (y1) + Sup IO (%2, y2)duy(y2)
x1EM1 JB(x1,r)¢ XMz JB(X2.r)°

- C C 2

< r—ﬁ + I'_ﬂ = r_ﬂ

Hence, by 9, Theorem 2.2], the measujaletermines a regular Dirichlet forn&(#) on L?(M, i), and the
heat kernepx(x,y) of (€, ¥) exists. It is known from the general theory thmtx, y) satisfies

p(6y) = PO y)PP 0, y2), X = (%1, %), Y = (Vi,¥2) € M. (4.5)
Letq € (1, 2] be a given number. We chooseg, > so that
9 _a
q - q—l - @0 6[2’00)’

whereag := min{ay, a2}. Let us verify that conditionE) is satisfied orM.
Indeed, we have byi(5), (4.2) that, for any points, yin M and anyt > 0,

(% y) = PO, y1) PP (%2, v2)
1 ( dl(xl,yl))‘(““ﬂ’ 1 ( +olz(xZ,yz))‘(“Z*ﬁ)

= touB t1/B ta2/B t1/B
—(ao+B)
._C d(x.y)
= tleataz)/B t1/B
C —(a/d +B)
S fue )
talB t1/B

thus showing thatEg) holds withW(x,r) = rf.
Let us now disproveT(Py). Fix

t>0, R>tY# and x = (X, X2) € M.

We need to estimate the lower bound|pf(X, -)llLagxR))-
Sincey; (B(x;,r)) ~r*,i = 1,2 for anyr > 0, we can choosa > 1 large enough such that, foe 1, 2,

1 (B(xi, ar) \ B(xi, 1)) = w(B(x;, ar)) — u(B(x,r)) > cr™, r>0. (4.6)
Using @.5) and the fact that
{y = (y1.¥2) € M : di(x1,y1) 2 R € B(x,R)",
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we obtain

f B y)du(y) > f o®(xe, y)duy (1) f 02 %z, y2)du(y2)
B(x,R)® {d1(x1,y1)=R} M2

> f o (xq. y1)9dey (va)
{aR>d1(x1,y1)=R}

o f P2 (X2, y2)Iduy(yn).
{att A 2da(xz,y2)2tH7)

Using @.2) and @.6), we have

aR )—q(al‘*ﬁ)

_Gg
f{ Redy (1) R} pgl)(X1,Y1)qdﬂ1(Y1) >ct B (tl_/ﬁ u1(B(xg,aR) \ B(x1, R))
aR>di(X1,y1)>

> o U (@R A HRn
> C,tq R—(q—l)a/l—qg7
and

QL
2 (%, y2)3du(y2) = S5 up(B(Xa, at) \ B(x,, tVA))

qap | ap _(@-1)ap
>Ct BT =ct #

f{;ltl/ﬁlelz(Xz,W)Zt”ﬁ }

Combining the above three inequalities, we obtain

_ap e
Ipe(% -)llLagerys) = et FRT P

If condition (TP;) were satisfied, then we would have

IPe(X, )lLaBxR)e) < CtR 7P,
Combining the above two inequalities and using that @; + a2, we obtain

trHRITF <R T,

which is equivalent t&R < Ct#. Hence, we obtain a contradiction for large enoy@h

5. TruNCATED DIRICHLET FORMS

In order to obtain the tail estimate of the heat semigrii®r.o of (€, ), we need to truncate the jump
part&L) . In this section, we study the truncation of a general Dirichlet faBn¥{() (not necessarily without
killing part). Recall that any regular Dirichlet forn&(¥) can be decomposed into three parts as follows:

&(u,v) = B, v) + X (u,v) + X, v),

wheres) is the local parts™) is the jump part associated with a unique Radon meajsoneM x M\diag,
and&® is thekilling part.
Fix a real numbep > 0 and set

&P, v) =B, v) + D, v) + MW, V), uveF, (5.1)
where

(D(u,v) = - “vy)dj
£0(u.v) f f{( ., 900~ U 6 ~ )

The symmetric form&®), ¥) may not be in general a regular Dirichlet form. In Subseci@we will
prove that it is a regular Dirichlet form under an additional mild assumption. Currently we assur&Xhat
is a regular Dirichlet form om.2(M) with the domairnF®) := #. We refer to the Dirichlet form&®), 7))
as in 6.1) as ap-local Dirichlet form If in addition&®) = 0, then the Dirichlet form&®, #©)) is said to
be stronglyp-local.

In this section we always assume that the dorfaiof the Dirichlet form satisfies the following property:

cutaf(A, Q) # 0 for any non-empty open s& c M and any bounded sétwith A c Q. (5.2)
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Note that this property is always true under one of condittr),((S;), (S) and §.) introduced in Section
7. Moreover, it is also true for all compact s&dy the regularity of &, 7).

5.1. Some properties ofp-locality. In this subsection, we study some properties-tiical Dirichlet forms.
Recall that the locality property a8(®) means that if the functions,v € ¥ have disjoint compact

supports, the&®(u, v) = 0. The following proposition relaxes this assumption to bounded supports.
For anyr > 0 and setJ c M, denote byJ, ther-neighborhood ol:

U, = U B(zr).

zeU
Proposition 5.1. Let (S, 7) be a regular symmetric Dirichlet form drf, and&® be its strongly local part.
Assume thatg.2) is satisfied.

(i) If functionsu,v € ¥ have disjoint bounded supports, th&# (u, v) = 0.
(i) If functions u,v € ¥ have bounded supports ands constant on a neighbourhood of sugpthen
EL(u,v) = 0.

Proof. (i). Letu,v € ¥ have disjoint bounded supports.
We can choose two open séis V such that supp c U, suppy¢) c V and dist, V) > 0. Moreover,
since suppf), suppy) are bounded, we have by hypothe&i<) that

cutaf(supp),U) # 0 and cutdf(supp), V) # 0.

Consider three cases.
Case 1 Assumefirstthat@ u<landO<v<1.
Choose some functions

¢4 € cutdf(supp(), U) and ¢, e cutaf(suppg), V).
There exist sequencés,}, {va} € F N Cy(M) such that
r!im E1(uh—u)=0 and nIim81(vn -v)=0.

1.4.2(v), p. 28]. Note that bylp, Theorem 1.4.2(ii), p. 28], we havgu, € ¥ for anyn, and

suP VE1(#1Un) < llP1lleo sulp VEi(un) + Sulpllunllm VEi(¢1)
n> n> n=

< sUp&E1(Un) + VE1(¢y) < 0.

n>1

Without loss of generality, we can assume that @, < 1 and 0< v, < 1 foralln > 1 by [19, Theorem

Moreover, ¢, U, converges tap;u = uin L?>-norm asn — co. Hence, by Lemmd1.2in Appendix, a
subsequence af;u, (that we denote again by, u,) converges t@,u = u weakly in&;-norm asn — co.
Similarly, ¢,v, converges t@,v = v weakly in&;-norm asn — co.

Passing again to subsequences we can assume that the Cesaro means

I L L1y
Un = - Z¢1uk and Vj = - Z(bzvk
k=1 k=1
converge tas andv in &1-norm, respectively. In particular, we have
lim EQ@,-w=0 and IIM&EVY T, -Vv)=0.
n—oo N—oo

On the other hand,
suppf,un) € U Nsupp@n) and suppg,vin) € V N Suppin)
for eachn. Hence, for anyn, n > 1 supp(in) and supp{,) are compact and
dist(supp(r), suppgi)) > distU, V) > 0.
Therefore, it follows from the locality o) that, for alln > 1,
EX) (T, W) = 0.
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Pass to the limit as — 0, and obtair&®™(u,v) = 0.

Case 2 Assume now that, v e L*.

Setc := (||lulle V M) ™. Then all functionu,, cu_, cv,, cv_ take values in [01], and by the result of
Case 1, we have

EBcu,, cv,) = EV(cu,, ev) = EV(cu, cvy) = EV(cu, cv) = 0.

Consequenthy&®(u,v) = 0.
Case 3 Consider now the general caseucdindv.
For anyn > 1, define
Up:=(-n)vuAn and vy:=(-n)VVAnN.
Then the supports af, andv, are disjoint, and, hence, by Case 2, we hal(un, v,) = 0 for all n. Since
{un} and{vp} converge inS;-norm tou andv, respectively, we conclude th&f-)(u, v) = 0.
(il). Suppose that the functiomsv € # have bounded supports ands constant on an open sgtwith

suppy) c U.
Case 1 Consider first the case when sugyié compact.

Choose a precompact open ¥esuch that suppj c V c V c U and choose e cutaf(V, U) N Co(M).
Let c be the constant such thalty = c. Sincegly = 1 and suppf) is compact, it follows from the strong
locality of &) that&) (¢, v) = 0. On the other hand, since-c¢ = 0 onV, we have that supp{ c¢) c VC,
so that supp( - c¢¢) is bounded and disjoint with supp( Hence, by the result in (i), we obtain that
EL(u - cg,v) = 0. It follows that

LW, v) = EO(u - ca, v) + EL(cp, V) = 0.

Case 2 Consider the general case when sup¥ just bounded.

Lete = %dist(supp(/), U® > 0 andV := (supp)). be thes-neighborhood of supp) sothatV c U.
Choosey € cutat(suppy), V) (by (56.2). Then, by the argument in Case 1 of the proof of (i), we can take a
sequencé¥,} c ¥ of functions with compact supports such that svpp€V c U for all n and

lim L, -v) = 0.

Sinceu is constant orJ and, hence, on a neighbourhoodwf it follows from the result in Case 1 that
EL(u, ¥,) = 0. Passing to the limit as — oo, and using the above formula, we obt&¥'(u,v) =0. O

The following corollary shows that the (strongpflocal Dirichlet form E©), #©)) (as in 6.1)) possesses
some properties analogous to thos&oi.

Corollary 5.2. Let (¥, #©) be the regulap-local Dirichlet form onL? as in 6.1). Assume thatg.2) is
satisfied.
(i) If functionsu,v € F©) have bounded supports and dist(supupp)) > p, then&®)(u, v) = 0.
(i) Suppose that in additions(), 7)) is stronglyp-local. If functionsu,v € #® have bounded
supports and is constant on a neighbourhooti(supp()),, then&®(u,v) = 0.

Proof. It suffices to prove (ii). Sincg&®) = &, any cutdf function for& is also a cutff function for&®),
Suppose that, v € 7% have bounded supports aods constant on a neighbourhood (suppg)),. It
follows from Propositiorb. 1(ii) that & (u, v) = 0.
It remains to prove thag(u,v) = 0. LetA := supp(). Using the facts that = const onA, so that
V(x) = v(y) = 0 onA, x A, as well asu = 0 onA° 5 AS so thatu(x) — u(y) = 0 onAS x AS, we obtain

gD(uv) = f fM (00 = UV ~ UYLty

) (fprxAp ' ff XAS ’ ffAﬁxAp ’ ffA,exAz] (U0 = uONME) = VYD o<

B ijA‘prﬁ (U(X) = u()(V(x) = V() Lid(xy)<prd ]



TAIL ESTIMATES 21

) 2(ffoA; ’ ff(Aﬁ)\A)XAg) (U() = UMV = V(Y)) Lixy)<p1d ]

=0,

where in the last line we have used thafxy)<,) = 0 on A x AS so that the first integral vanishes, and
u(x) —u(y) = 0 on (A, \ A) x AS (asu = 0 outsideA), so that the second integral is also zero. Finally, it

follows from (5.1) that&®)(u,v) = 0. O

5.2. Resolvents.In this subsection, we give some general facts on the resolvent associated witlothé
Dirichlet form.
Forp > 0 and for any non-empty subs@tof M, let 7©)(Q) be a vector space defined by

FE)(Q) = the closure ofF ¥ N Co(Q) in the norm /&Y. (5.3)
Then ), 7)(Q)) is a regular Dirichlet form i.2(Q, u). Let
Q= QP

be the heat semigroup Ir? associated withg®), 7 )(Q2)). For anyd > 0, letR% := R(f)’g be the resolvent
associated withg®), 7)(Q)) that is defined by

R‘ff:fo e5Q2fds fel? (5.4)

WhenQ = M, we drop the superscrigl by writing
Qt = Q? and R/l = R?
For simplicity, denote by

EXu,v) := EP(u,v) + A(u,v) foranyu,ve F¢). (5.5)
It is known (see for examplelp, formula (1.3.7), p. 20]) that, for any open sub&et
EVRLE,g) = (f.g) forall f € L(Q)andg e F¥(Q). (5.6)

The following statement gives a relation between the functionsf?1, and 1- AR?lg.
Proposition 5.3. For any open subs&€ c M and all t, A > 0,
1- QP < e (1- AR(1g) in M. (5.7)

Proof. Note that the functiors — Q%1 is non-increasing. Hence, for ahy 0,
1-AR}1g = f (1- Q1) 1e*sds > f (1- Q%1)1e*5ds
0 t

> (1-QPLo) [ e = (1- QP
t
which is equivalent tog.7). O

Note that the above the inequality.) is true for general Markovian semigroups and their resolvents.

Proposition 5.4. Letp > 0 and (&®), #)) be a stronglyp-local Dirichlet form in L2. Assume that5(2) is
satisfied. Left > 0 and U be a non-empty bounded open subset of M. If a functierFi) n L=®(M) is
suchtha®<u<1linU, and

g y) <0, Yo<yeFO), (5.8)
wheres(f) is defined by3.5), then
u<1l-aR/1y inU,. (5.9)
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Proof. We will apply elliptic maximum principle (Propositiohl.6in Appendix). It suifices to proveg.9)
in U, since 6.9) is automatically true iJ, \ U asu < 1inU, andR{1y = 0in U, \ U. We show that for
any open se¥ € U,

u<1-ARV1y inV, (5.10)

hen 6.9) will follow by taking an exhaustiov 7T U in (5.10 and using 25, Lemma 4.13, p. 119].
Choose some € cutdf(V,, U,) (by (5.2)), and consider the function

Vi= gu— (¢ — AR} 1y).
Sinceu, ¢ € F©) n L= (M), we conclude by19, Theorem 1.4.2, p. 28],
pu e FO nL2(M).
Consequentlyy € 7®. On the other hand, sinceQu < 1in U,, we have
V=gu— ¢+ ARV1y < ARV1y € FO(V).
It follows from [25, Lemma 4.4, p. 114] that

v, € FOV). (5.11)
Let 0< y € F® N Cy(V). Let us prove that satisfies
v, p) < 0. (5.12)

Indeed, note that supg(t 1)u) c (V,)° and suppg) c V, so that the distance between supp{(1)u) and
supp() is strictly greater thap. By Corollary5.2(i), we have
V(¢ - 1)u,y) = 0.
Combining this andg.8), we obtain,
ePpup) = EVUY) +EP(@ - Dup) < V(¢ - uy) =0,
On the other hand, since supp(c V and¢ = 1 inV, so thatg is constant in the-neighborhood of the
support ofy, it follows from Corollary5.2(ii) that E¥)(¢, ¥) = 0. Hence,
EV(g,u) = EVNg,y) + Ao, ¥) = Ap,¥) = Al
By (5.6), we have
EVRY1v,y) = (v, ¥) = Y.
Therefore, combining the above three formulas, we obtain
EV(v,y) = EV(pu - ¢ + AR 1y, y)
=8V (pu.y) - 8V (p.v) + 1V (R 1y )
< 0— Al + Al =0,

thus showing%.12). For a general function 8 y € ¥ ©)(V), we can apply§.12) for a sequence of functions
{Y,) € F©) N Cy(V) converging tay, and obtain§.12) also for thisy.

Consequently, it follows from5.11) and 6.12 that the functionv satisfies all the assumptions in the
elliptic maximum principle inv (see Propositiod1.6in Appendix). We conclude that

V=gu-(¢-ARV1Ly) <0 inV,
which yields 6.10 as¢ = 1 onV. m|

We remark that Propositidh.4 can be viewed as an extension to thkcal case of 25, Corollary 4.15]
that was proved for strongly local Dirichlet forms.

Proposition 5.5. Assume that.2) is satisfied. Fixt > 0, p > 0. LetQ be a non-empty bounded open
subset of M, and W= Q be an open subset such thag d Q. Then, foru-almost all ze U,

1- IRM0(2) < (1- AR 1u(@) |1 - AR 1al, (5.13)

Up) -
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Observe that the inclusidd c Q implies that
1-AR}1g = f 2851 - Qg) ds< f 28751 - QY1y)ds=1-AR{1y in M (5.14)
0 0

becausefg{J 1y < Qfflg in M for anyt > 0. The inequality %.13 gives a sharper upper bound of the
function 1— /lRflg in terms of 1- /thj 1y. In the next lemma, the inequaliti.(L3 will be used to get the
tail estimateQ;1gc for any metric ballB.

Proof of Propositiorb.5. LetV c U be an arbitrary precompact open subslaaenv_p c U, c Q. Choose
someg € cutdf(V,, U,) (by (5.2)) and consider the function

U= co(¢ — AR 1),
wherecy is a constant given by
¢t =6 - AR Lq|
0 A lLey) -
We will apply Propositiorb.4to show
u<1-aRY1ly inV, (alsoinU,). (5.15)

Indeed, note that € F©) n L*(M) and 0< u < 1in U,. We need to verify that satisfies .8) in V that
is, for all 0< y € F©)(V). By Corollary5.2(ii) and using the fact that = 1 onV,, we have

E9(g.p) = 0.
It follows that
V(0 9) = E9(g,u) + A(g,w) = Ao, ) = Al
On the other hand, byb(6) we have
V(R 10,v) = (Lo,v) = Il
Combining the above two formulas, we obtain that
EV(U,v) = o8P (¢ - IR0, v) = co(EV(9,4) - 1ED (R 10, 1))
= Co (Allylla — Allylla) = O,

thus proving 5.9).
By inequality 6.9) of Proposition5.4, we obtain §.15. Combining 6.19 and the fact thap = 1inV,,
we obtain that

1-RMg = ¢ - AR1g < ¢t (1- ARV1y)
= (1- AR{W)|1 - AR .y, InV, (alsinUy).
0.
Passing to the limit a¥ T U, we obtain §.13. m|

Lemma 5.6. Assume thaty.2) is satisfied. Fixt > 0, p > 0. Let B be a ball in M of radius R- 0, and
k > 1 be an integer satisfying

4kp < R
Assume also that, for any=B,

B 1
1-AR™1g,  <a in 1B@p) (5.16)

for some positive constant a. Then

1
1-ARB1g <a in 2B (5.17)
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Proof. We divide the proof into two steps.
Step 1 Fixy € 2B and prove that

3
1- /le(y"‘R)lB(y,‘_e{R) <a inBy,p). (5.18)
Indeed, for any &< n < k, setB,, := B(y, (2n + 1)p) c B(y, %R) cBand
3
My = ’ 1- R0

2 B(.3R)

Lo(Bn)

Forany 1< n < kand for anyz € B,,_; we haveB(z p) c B(z 20) c B,. Applying (5.13 with Q = B(y, %R),
U = B(z p) for anyz e B,,_1 c Band using $.16), we obtain

1- /lRlB(y"é‘R)lB(y,%R) < (1- AR ™14, (11 - ﬂRf(y’%R)lB(y,gR)||L°“<B(z,2p))
< (1= AR 10, )1 - AR D1 o nlicqe
= (1- AR ™15, ) m,
<am, in %B(Z,p)-
CoveringB,_1 by at most countable balls Iik%B(z,p), we obtain from the above inequality that

< am.
Lm(Bn—l)

Iterating this inequality and using the fact tmat < 1, we obtain

B(Y,:R
Mh-1 = Hl— R Py a0

=mp < amy < &,

3
Hl _ARPER
L= (Bo)

B(y.2R)

which is exactly $.18).
Step 2.SinceB(y, %R) c Bforanyy e %B, we have by %.18),

3
1- ARBlg < 1- ARﬂB(y"‘R)lB(y’%R) <a inB(y,p).
Covering%lB by at most countable family of balls lik&(y, p), we obtain §.17). o

5.3. Relation between two semigroups.n this subsection, we always assume that the following condition
holds:

w(p) ;= sup J(x, dy) < oo (5.19)
XeM J B(x,0)¢

and investigate the relationship between the original heat semi¢iRpuand thep-truncated heat semigroup

{Q}-
Lemma 5.7. Under the hypothesi$(19 the bilinear form(E®), #©)) is a regular Dirichlet form.

Proof. By the symmetry ofj, we have, for all € F,

&(uU) = E9(u,U) + f fM CERT]
XB(x,0)¢

< &P, u) + Zfﬁﬂ o (u(x)2 + u(y)z)dj
XB(x,0)¢

<EP(u,u) + 4 f fM o u(x)2J(x, dy)du(x).
xB(x,0)¢
Using 6.19, we obtain
&(u,u) < EPV)(u,u) + 4 fM u(x)2J(x, B(x, p)°)du(x)

< &¥)(u, u) + dw(p)llull
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< (4w(p) v DEX (U W), ueT,
where&¥ (u,v) = EX)(u,V) + (U, V), u,v € 7. Hence, it follows that
EP(u,U) < E1(U,U) < 2(4w(p) v EV (U, 1), ueF.

Therefore, the quadratic forniél”) and&; are equivalent, which implies tha8), ) is also a regular
Dirichlet form. m]

For anyp > 0, we define the operaté) by

AP (x) = 2 fM (£(5) = F(0) L= (¥) (%, dy). (5.20)

assuming thaf € ¥ and that the integral in the right hand side is well defined. Note that we always use here
a quasi-continuous version 6f since the measukj(x, y) = J(Xx, dy)du(x) charges no set of zero capacity.

Proposition 5.8. Fix somep > 0 and qe [1, ]. Assume thaty.19 is true. Then, for any £ ¥ n LY,
1AL flq < dw(p)llfllq < co. (5.21)

Proof. For the case wheg = o, the inequality $.21) follows directly from Propositiori1.9in Appendix.
Letq € [1, ). By the Hilder inequality, we have, for anfye # n LY,

wng=2 [ fB )(f(y)—f(x»J(x,dy)\qdu(x)
(%)

M

< fM fB LR 10993(x dy) - fB (Xw)cJ(x,dy))q_ldu(x)

< 20)™ | [ 27 00 (O + I )
= 2%w(p)™t | 1f(x dy)d
o [ 1100F [ 300

— 49,00 | 1£001%
Hu(p) fM £ (01 (¥).
thus showing%.21). |

Remark 5.9. Letq = 2. If (5.19 is satisfied then by5(21) the operatoA®) is bounded in_2-norm and,
hence, can be extended to a bounded operator on the entirelspace

Next, we compare the semigrouf#}} and{Q,} by means of the following abstract Phillips theorem.

Proposition 5.10([38, Theorem 3.5 and eq. (13)])-et A be the (non-positive definite) infinitesimal gen-
erator of a strongly continuous semigro§i;}i-o on a Banach spacé{, and let A be a bounded linear
operator fromH to H. Then the semigroufP;}i-0 generated by + A can be expressed by

P = i Q.
n=0
where ¢ = @, and
Q" = f t QsAQ" Vds for each > 1
is well-defined, strongly continuous in ('Z aih. If in addition {Q;}>0 is contractive orH, that is,||Q| < 1,

then
(thAp"
n!

1Ml < for each nx 0. (5.22)

The following statement gives a relationship between two heat semigfByEnd{Q;}.
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Proposition 5.11. Assume that5,19 is satisfied. Then, for aph,t > 0and f e L2,
t
P f = Qf + f QAP P_fds (5.23)
0

where operator &) is defined by§.20).
Proof. Observe that, for alf,g € 7,

&(f.g) = £V (f.g) + f fM IRUCRLCCRED
xB(x,0)¢

~en(1.9-2 [ oo [ (100 16916 e
X,0)¢

= &V(f,g) - (AV1,g).

Since the operatoh®) is bounded, the Dirichlet forr&8®)(f, g) is a bounded perturbation &{ f, g), which
implies that the generator§®) and £ of these Dirichlet forms have the same domains and

Lo 1) 4 A0, (5.24)
Therefore, applying Propositidh10with A = £®), A = A®) we obtain that

Pe=> Qun. (5.25)
n=0
whereQ;o = Q;, and

t
Qtn :f Qt—sA(p)an—ldS n>1.
0

It remains to showq.23.
Indeed, the seriel )’ , Qi n is absolutely convergent in the operator nornfj-fyin L2 since, for anyt > 0,

t t
fHQt_SA(/’)QSanssf||A(”>Q3n||ds (sinceQ; is contractive in_?)
0 0
{
SIIIA(‘))II IQsnllds  (by (5.21) and Remarl6.9)
0
t (p)|yn
< f 1A 3 Was by 5.22)

(o) n+1
- [ 9dss s (oo™ oy 62)

which yields that

n+1
Z f |- SA@>an||ds<Z(4z"(‘j)1)), = exp(dvlp)) -

Exchanging the order of summation and integration, we obtain f@®@&)( that, for anyf € L? and any
t>0,

Ptf—Zme—Qme QAP Qep 1 ds

n=0

:Qf+fo Qt_sA(p)[nZ:;Qs,n_ldes
. oo
:Qtf+f0Qt_sA(/’)[kZ=;)Qs,kf]ds

t
:Qtf+th_sA(p)Psfds (by (5.25 again)
0
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which yields 6.23 by changing variables— sto s. m|

The next lemma was proved i2§, Proposition 4.6, p. 6412] under the assumption that the jump kernel
exists, but the same proof works also in the present setting.

Lemma 5.12. Assume thatq.19) is satisfied. Lef2 ¢ M be a non-empty open set. L&} be the heat
semigroup associated with the part Dirichlet frq@®), 7 ®)(Q)) of the truncatecp-local Dirichlet form
(&), 7€) (cf. (5.2)). Then, for any t- 0 and any fe L*,

P2 — Q2flw < 2w(O)t] flco- (5.26)

6. A NEW METRIC

In this section, we will introduce a new metdg on M, which is topologically equivalent to the original
metricd. Under this new metrid,, the scaling functioW(x, R) becomes independent of poigtwhile the
measure: is still doubling (resp., reverse doubling). The new medriavill be used to construct a truncated
Dirichlet form.

Recall thatW(x,y) := W(x, d(x, y)), wherex,y € M, and set

D(x,Y) := W(X,Y) + W(y, X). (6.1)

By the right inequality in 2.7), we see that, for alkk,y € M,
W(x,d(xy) _ (d(x, y) )ﬁz _c
W(y,d(x.y)) = \d(xy) ’

that is,W(x,y) < CW(y, X), which implies by interchanging, y that

W(X,y) = W(y, X).

It follows from (6.1) that, for allx,y € M,
W(X,y) < D(x,y) < C'W(x,y) (6.2)

for some constar@’ > O.
Clearly, the functiorD is symmetric, that iD(x,y) = D(y, X), and it vanishes if and only it = y. Let us
show thatD(x, y) is a quasi-metric oM.

Proposition 6.1. There exists a constan,G 1 such that for all xy,ze M,

D(x,y) < C1(D(x,2) + D(z Y)). (6.3)
Consequently, there exist two constghit€, > 0 and a metric d on M such that
Cold.(x Y < D(x,y) < Cad.(x, Y)Y (6.4)

forall x,y € M.

Let us observe that W(x, r) = r? for someB > 0, theng = g and
dxy) =~ di(XYy), X yeM.
Proof. By the triangle inequality, we have
d(x,y) <d(x,2) +d(z y) < 2maxd(x, 2),d(z y)}.
Assume without loss of generality that
d(x,y) < 2d(x, 2).
It follows from (6.2), the monotonicity of/(Xx, -) and the right inequality in2.7) that
D(x,y) < C'W(x,y) < C'W(X,2d(x,2)) < C1W(x,d(x,2) < C1D(x,2)

for someC; > 1, thus proving§.3). Hence D(x,y) is a quasi-metric oM.
The second claim follows fron6(3) by [33, Proposition 14.5]. m]
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In the rest of the papes, will always denote the constant from Propositii.
Define the functior by

F(X,R) :=W(xRY, xeM, R>0. (6.5)
Clearly, the functiorf(x, -) is strictly increasing on [(] for any x € M and, by 6.4),
L. (xy) < F(x d(x,Y)) = W(x Y)Y < Ld.(x ), (6.6)

for some constant > 1 and allx,y € M. For ank € M, let F1(x,-) be the inverse of the function
t > F(x,t), so that

Fi(xt) = Wixt¥), t>o0. (6.7)
Denote byB.(x, r) balls with respect to metrid,, that is
B.(x.r) :={ye M :d.(y,x) <r}. (6.8)

Proposition 6.2. There exists a numbepl> L? > 1 such that the following properties are true.
(i) Forallxe Mandallr> 0,

B.(x Ly'r) € B(x, F71(x, L)) € B.(x,T). (6.9)
(i) Forall x e M and all R> 0,
B(x, Ly'R) c B.(x, L"*F(x,R)) c B(x, R). (6.10)

Consequently, the metrics dnd d are topologically equivalent.

Proof. Let Lg > 1 be a constant to be determined later.
(). For some fixedk € M andr > 0, let
R := F1(x L™tr).
We show the left inclusion ing.9). Indeed, for any € B.(X, Lalr), we have
d.(x,y) < L',
and, hence, byg(6),
F(x d(xY)) < Ld.(xy) < LLg*r.
It follows that
d(xy) < F1(x, LLg'r) < Fi(x,L7'r) =R,
providedLLj! < L™ that is,
Lo > L% (6.11)
Thus, the left inclusion of§.9) holds provided.q satisfies §.11).
Let us show the right inclusion ir6(9). Indeed, for any € B(x, R'), we have by §.6) and the definition
of R,
d.(xy) < LF(x.d(x.y)) < LF(xR) = L(LDr =,
whence the right inclusion ir6(9) follows.
(i). For some fixed poink € M andR > 0, let
' = L"'F(x, R).
Let us verify the left inclusion in@.10). Indeed, for any € B(x, L51R), we have

d(x.y) < Ly'R,
and then, by®.6)
d.(x,y) < LF(x d(xY)) < LF(x, Lg'R) < L"'F(x, R = 1",

provided that

LF(x, Ly'R) < L™'F(x,R) for all x e M, (6.12)
which proves the left inclusion ir6(10).

Let us now prove the right inclusion (0. Indeed, for any € B.(x,r’), we have by §.6) and the

definition ofr’ that

F(x,d(x,y)) < Ld.(x,y) < L' = F(x,R),
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showing that
dix,y) <R

This proves the right inclusion ir6(10 providedLg satisfies §.12).
It remains to pick udg > 1 so that both§.11) and 6.12 are satisfied. Indeed, b¥.6) and the left
inequality in @.7), we obtain for allx € M,
1/
LUFR) 1 WxR )7 s 3[R T cge
LF(x L3*R) L2 (W(x L;'R)) ~ L? LR oLk
from which, we see thab(12 is satisfied if
C—lLﬂl 1/8
% >1 o Lg> (CL#)YA,
Therefore, if we choose
Lo := L? v (CL#)VA
then both 6.11) and 6.12 are satisfied, which completes the proof. m|
Denote the diameter &l under the metrid, by
R, := sudd.(x,y)| X,y € M}.
RecallthatR = diamM denotes the diameter M under the metrial.
Proposition 6.3. Let Gy denote the constant ir2(7) and let C:= LC\%ﬁ. Then, for any x M,
Cw(x, RY2 <R, < CW(x, RY. (6.13)

Proof. Fix x € M. By (6.6), we have thawV(x, R) = w if and onlyif R, = c. Hence, it sffices to consider
the casavhenR < .
By the left inequality in 6.6), we have for alk,y € M,

d.(zy) < LF(zd(zy)) < LF(zR) = LWz R"”.
On the other hand, we have B3.7)
— — B\ 1B

W(z R)YA (R) 1B

————— < |Cw|= = . 6.14

woeRYs | VR Cw (6.14)
Combining the above two inequalities and using the arbitrarinegsypfve obtain the right inequality in
(6.13 with C = LC”.

Let us prove the left inequality ir6(13. Indeed, by the right inequality i6(6), we have, for alg,y € M,
F(zd(zy)) <Ld.(zy) < LR..

On the other hand, we have B3.7)

—15_ F(xR
W(x, R = FZdzy) F(zd(zy)) <

Combining the above two inequalities, we obtain

R B2\YE
W(x,ﬁ)l/ﬁs{Cw(—] ] LR..

Ba\ VA
Cw(m)] F(zd(zy)).

d(zy)
Passing to the limit in the above inequality@dg y) T R, we obtain the left inequality in6(13 with the
same constar@ = LC\%ﬁ . m]

For anyx € M andr > 0, letV.(x,r) be the volume of the baB.(x,r), that is,
V(X 1) := u(B.(X%1)).
Proposition 6.4. Assume thafvD) is satisfied. Then the following statements are true.
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(i) Condition(VD.,) is satisfied, that is, there exists a constant © such that, for all x M and r > 0,
V. (X, 2r) < CV.(Xx,1). (6.15)
Consequently, there exists > 0 such that for all xy € M and0 < s< rwith d.(x,y) <,
Vi (%, 1) < C([)ﬂ* '
V.(y,9) S
(i) Assume in addition thgRVD) is satisfied. Then conditifRVD.) is also satisfied, that is, there
existsa, > Osuch thatforall x Mandall0<s<r <R,,
V*(X’ r) -1
>
V.(X,9) ~ c

Proof. LetL, Ly > 1 be the same constants as in Proposifich Fix a pointx € M.
(). Fix r > 0 and set

(5)“; . (6.16)

S

Ri=FY(x2LoLYr) and R, =F%(x L.

SinceF(x, ) is strictly increasing antly > 1, we have O< R, < Ry < o. Using the left inclusion ing.9)
with r replaced by Bgr, we obtain

B.(x, 2r) c B(x, Ry).
Similarly, we have by the right inclusion 16 (9)
B(x, R2) € B.(x,r).
Hence, using the definition &f,, (6.7) and the right inequality inZ.8), we obtain

V.(x, 2r) B V(x, Ry) B ( Rl)“ _ C(F—l(x,ZLoL—lr))"

V.(x1) ~V(XxR) ~ \Re F-1(x, L)

(W, (2LoL )\ (Lol Irp\Y)" "
‘C( W-i(x, (L-ry) ) SC(C(W) ] -eleeLry

thus proving ¥D..).
(i). ForO< s<r <R, let

Rs:= F1(x,6L™'s) and R :=F(x,6L7r),
where the constardt> 0 is small enough such that, b§.(3,
Rs < R = W(x, (6L7rY) < Wi(x, (SLYPCW(X, R)) < Wix, W(x,R) =R
By (6.9), we have
B.(x,6Lgs) € B(x,Rs) and B(x,R) c B.(xr).
Hence, using the definition &f,, (VD,), (6.7), and the left inequality inZ.8), we obtain

V*(Xa r) > C—lM (by (VDX) and I—O > 1)

Vixs) —  Vi(x6Lgts)
SVR) | o (Re)”
> C Ry 2 (R—S) (by (RVD))
B e € ) ) N A Y (S) U
B (F‘l(x, L‘ls)) - (W‘l(x,(L‘ls)ﬁ))
(o (YT ryess,
=C (C ((L—ls)ﬂ) —c(g)

thus proving RVD..) with &, = o/B/B,. O



TAIL ESTIMATES 31

7. HEAT SEMIGROUP AND JUMP MEASURE UNDER THE NEW METRIC

In this section, we shall reformulate some properties of the heat semigroup and jump measure under
the new metriad,. The advantage of the change of metric is that the scaling function under the thetric
becomes

W, (%, 1) = W,(r):=rf xeM, r >0,
wheres > 0 is given by 6.4). The new scaling functioW., (x, r) = r? is independent of point and, hence,
is much simpler to deal with.

Let us first introduce condition$f and . ). For any open se® c M, let{P{}} be the heat semigroup of
the Dirichlet form €, ¥ (Q)).

Definition 7.1. We say that conditionS) (survival estimatgholds if there exist two constantso € (0, 1)
such that, for any baB in M of radius< Rand anyt < 6W(B),

1
PPlg > ¢ in 2B

Definition 7.2. We say that conditiong;) holds if there exist two constantse (0, 1) andc > 0 such that,
for any ballB of radius< Rand allt > 0,

PPlg > e - W) in %B.
Let us emphasize that, in contrast to conditi8)) {here is no restriction on the range of titrie condition
(S:). In fact, we have
S & (S (7.1)
Indeed, it is clear thatS,) = (S) by choosing the constaitin (S) small enough. To show the opposite
implication (§) = (S,), it suffices to consider the case when- §W(B). In this case, this implication
follows by setting the constantin (S,) to bes ! so thatPPlg > 0> e - 1> & — oL

W(B)*
Itis proved in P4, Theorem 14.1] that, under the conditidnX),
(FK) + (Gcap + (T = (S)) = (S) = (Geap. (7.2)

Remark 7.3. We remark that the constaatn the condition (S) in [24, Theorem 14.1] is required to be in
(0, 1), which is diferent from that in this paper. However, condition 8 [24] can be replaced by&() in
this paper, and all the results iB4] are also true.

Itis proved in 3, Proposition 3.1] that, under the conditiovil{), for any 1< g1 < gz < oo,

(Tdy,) = (TIy) = (Th) = (TI). (7.3)
In this section, we look at condition®UE), (S), (S;), (TJ), (TJ) under the new metrid,. For that, let
us introduce conditiondUE.), (S.), (S}), (T, (TJ.) as follows.

e Condition DUE.): The heat kerngb(x, y) of (&, F) exists pointwise on (@o) x M x M, and there
exists a regulag-nest{Fy} such that the following properties are true.
(@) Foranyxe M andt > 0,
pi(x, -) € C({Fk}).
(b) For anyCy > 1, there exists a consta@t> 0 such that for alk,y € M and allt < Co(R.)?,

L —. 7.4
e Condition §.): There exists, . € (0,1) such that, for any metric baB, = B.(xr) of radius
r <2R,, L
PtB*].B* >¢e in ZB*, (7-5)

providedt/? < 6,r.
e Condition §;): There existe € (0,1) andc > 0 such that, for any metric baB, = B.(x,r) with
r < 2R, and anyt > 0,
1

ct .
Pt 1B* ZS—r—ﬁ N ZB* (76)
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e Condition (TJ,): There exist€ € [0, o0) such that, for anx € M and anyr > 0,
J(x, B.(x,1)°) < rgﬁ (7.7)

e Condition (T'J) for some 1< g < co: There exists a non-negative functidrsuch that

dj(x.y) = J(x y)du(y)du(x) in M x M,
and, for anyx € M and anyr > 0,

.09 < g7 79)
whereq = q%l andC € [0, o) is independent of, r.
Proposition 7.4. The following statements are true.
(i) (VD) + (DUE) = (DUE.).
(i) (S) = (S.). Moreover,
(S)) & (SY). (7.9)

(iii) (T & (TJ,), and, for anyl < q < oo,
(VD) +(TJy) = (T
Consequently, undg€kD), for anyl < q; < ¢z < oo,
(Tdy,) = (TT,) = (TF,) = (TI). (7.10)
Proof. Since ¢D) = (VD.), we can assume throughout the proof théd() is satisfied.

(). Fix x € M andt < Co(R,)?. The existence and continuity property of the heat kernel are satisfied by
(DUE), so we need only to verify the inequality.@). Indeed, we have byJUE)
<
V(x W-3(x, 1))’

By (6.13), there exists a small enough constart (0, 1) such that
ct < cCo(R.)P < cCoCPW(x, R) < W(x, R),

Pr(X, X) < (7.11)

whence _ _
R:i=Wxct) <R (& ct=W(xR) <W(xR).

By (6.10, the ballB(x, R) contains a balB.(x,r), where
r:= L'F(x,R) = L*W(x, R = L=(ct)/7,
which implies that
V(X W(x, ct)) = u(B(x, R)) = u(B.(x,1)) = V. (x, L} (ct)A).
Hence, it follows from 7.11), the above inequality and/D..), that
< < < ¢
V(x, W-1(x,t)) = V(x, W-1(x,ct)) =~ V.(x, L-1(ct)/F) ~ V.(x,t1/B)’
which was to be proved.
(ii). Fix xe M andr < 2R,. By (6.13, we have

r < 2R. < 2CW(x, RY# = 2CF(x, R),

pr(X, X) <

whereC = LC\%ﬁ > L. Set
R:=F1x(2C)'r) <R and B:=B(xR).
Using (6.9) with r replaced by (2)~1Lr, we obtain
B.(%, Lg*(2C)7tLr) c B(x, F~1(x, L™}(2C) " Lr))
= B(x,R) c B.(x, (2C)71Lr)
c B.(x,r) =: B..
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It follows that 1 1
282 21B*(x, LoY(2C) ™ Lr) = (471 (2C) " tL)B. =: 1B,
which together with conditionS) yields

1
PP 1g > PElg > ¢ in BB, (7.12)
provided that
t < SW(x, R) = 6(2C) #r?.

Let us show that{.12 holds also in%r B. (not only inyB,). This can be done by using the standard covering
arguments. Indeed, for ame 1B,, sinceU := B.(z r) c B,, we see by7.12) that

, 1
PP 1g, > PY1y > ¢ innB.(z 2
providedt < 6(20)‘ﬂ(%1r)ﬂ. Covering%lB* by a countable family of balls lik8. (z %r), we conclude that
1
PE1g > in 28

providedt < 6(2C)#(3r)?, thus showing that conditiors() holds withs. := 6*/#(8C)~2.
For the equivalencer(9), let us first prove the implicatiorS() = (S;). Fix some balB, := B.(x,r)
with r < 2R, and set
R:= F1(x, L lcor) and B := B(x,R),
wherecy > 0 is a small constant such tHat< R (which can be done thanks t6.(3 and @.8)). Then, by
(6.9) with r replaced bycgr, we see that
B.(X, Ly cor) € B € B.(X, Cor) C B..
Thus, by condition$, ), we obtain, for any > 0,

_ o« o ct _8_cLﬂt in} Cop
W(x,R) ~~ (L)~ rB 4 VT

where the constantsc > 0 come from condition%, ). Moreover, by standard covering arguments, we have

Po'lg, > PPlg > &

1
B> ZB*(X, Lotcor) =

/

ct . 1 . Co
PB1g >e—-— in=B, (notonlyin—B,

for anyr < 2R, and anyt > 0, which proves$:).
It remains to prove the converse implicati@®i ] = (S,). Fix a ballB := B(x, R) with R < R, and
r:=LF(xR).
By (6.10, we have
B(x, Ly'R) c B, := B.(x,r) c B(x,R) = B.
Hence, by §;), we obtain
ct ct 1 1 1
PElg>PPlg >e-—=s-———— in2B,>-B(xLy!R) = —B.
tlezPile 2e-g=e-oyam MaP 2P R =g
where the constants c > 0 come from conditiong;). Moreover, by standard covering arguments, we can

prove the above inequality also hoIds%jB, which proves §,).
(iii). Fix somex € M andr > 0. We have by§.9)

B.(% Lg'r) ¢ B(x,R) ¢ B.(x,1),

where
R:=FxLY) & FxR =L & W(XR) = (L
It follows that
V(% R) = u(B(x, R)) > p(B.(x Lgr)) = V.(x, Lg™r).
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Hence, if TJ) holds, then
C C

0B < 0 B RY) < e = (e

so that conditionTJ.) holds as well.
Similarly, we can use the right inclusion if.(0 to prove [J.) = (TJ). Here we omit the details.
If (TJy) holds for some k g < oo, then we obtain similarly
C
V(x, RYaW(x, R)
< C _ C
T VL LYW R)  Va(x, Lytn)Ya (L=t

" (by (vD.).

13(X, lLa, eryey < 0% lLaeprye) <

< - -
T VL (x, r)Vars

thus proving TJ).
Finally, the implication 7.10 follows from the similar arguments that lead #3). O

Remark 7.5. Proposition7.4 says that if conditions{UE), (S), (S;), (TJy), (TJ) are satisfied for a scaling
function W(x,r), that may depend or, then the parallel condition®UE.), (S.), (S}), (T, (TJ.) are
also satisfied for a new scaling functiwi.(x,r) = r# , that is independent of, under the metricl,. This
property is crucial for the study of a truncated Dirichlet form in the next section.

8. TRUNCATED DIRICHLET FORM UNDER NEW METRIC

In this section, we will consider the-truncated Dirichlet form&®), 7)) defined in Sectios for any
numberp > 0 but under the new metrit., and obtain the heat kernel estimates for the truncated Dirichlet
form. Unless otherwise stated, all balls in this section are defined under the newanetric

Recall that €, ) is a regular Dirichlet form without killing part, and the jump part is asargf. For any
p >0, set

EP(u,v) = B, v) + f fM o )(u(x) —u(y)) (v(X) —v(y)) dj, uveF, (8.1)
XB. (X0

whereB. (X, p) is an open ball under the new metdcas defined inq.8).
Clearly, if condition {J,) or (TJ) (which implies [ J,) by Proposition7.4(iii)) holds, then

w(p) := esupd(x, B.(X, p)°) < oo, (8.2)
XeM

and ¥, 7)) is a regulap-local Dirichlet form by Lemmab.7. Besides, all the results in Subsect®B
can be applied in the present setting.

Denote by{Qf?} the heat semigroup of the Dirichlet forr8(), 7©)(Q)) restricted to a non-empty open
setQ c M (the superscripp in Qf is omitted). IfQ = M, then{Q} := {Qf} is the heat semigroup of
(EP), F0)),

Remark 8.1. SinceF = F®), all the cutdf functions defined for the Dirichlet forn€( ) are also cutfi
functions for €©), 7)),

8.1. On-diagonal upper estimate of truncated heat kernel.We need the notions of the subcaloric and
caloric functions. Let be an interval irR. A functionu : | — L2 is said to beveakly diferentiableatt € I,
if for any ¢ € L2, the function ((-), ¢) is differentiable at, that is, the limit

im (u(t +&)— u(t)"p)

&—0 &

exists. In this case, by the principle of uniform boundedness, there iswame such that

im (u(t + s; - u(t),¢) ~ (W)

&—0
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for any ¢ € L2. The functionw is called theweak derivativeof u att, and we writew = d;u. Weak
derivative satisfies the followingroduct rule Letg : | — R be diferentiable at € | in the classical sense,
andu : | — L? be weakly diferentiable at € |. Then the functiorv := gu : | — L? is also weakly
differentiable at.

For an open subsé€l c M, a functionu : | — ¥ is calledsubcaloricin | x Q with respect to&, F) if u
is weakly diferentiable inL? at anyt € | and, for anyt € | and any non-negative € 7 (Q),

(0tu, @) + E(U(tL, -), ) < 0.

A functionu is calledcaloric if the above inequality is replaced by equality, that is, if
(Gru, @) + E(u(t, ). ¢) = 0.

For example, for any € L2(Q), the functionu(t, -) = P{f is caloric in (Q o) x Q.

Proposition 8.2. LetQ be an open subset of M. Under conditighd), for any t> 0and any0 < f € L?,
we have

QR f < P2t inQ (alsoin M) (8.3)
Consequently, if conditiofr'J,) hold, then

Qe f < exp(%)P?f in Q (also in M) (8.4)

where c> 0 is the same constant as in conditifnl.) (independent gé, t, f and Q).
Proof. Let f € L? be nonnegative iM and
u(t, x) ;= Qf(x) t>0, xe M.
Clearly, the functioru is caloric in (Q o) x Q with respect ta&®), that is, for anyt > 0 and any < ¢ € ¥
@t ), o) + EX (U, ), ¢) = O. (8.5)
Consider the following function defined for &li> 0 andx € M:
V(t, X) := exp2w(p)t)u(t, X) — P f(x)
Clearly, the functiorv(t, -) satisfies the boundary and initial conditions:
Vi (t,-) < exp2w(p)t)ut, X) € FOQ) = F(Q),
V.(t,-) = 0 in the norm ofL?(Q) ast — O.
Note that the functiofP{ f is caloric in (Q o) x Q with respect t&, that is, for anyt > 0 and anyp € 7
(PP 1, p) + E(PPF, ) = 0. (8.6)
Moreover, the functiow is subcaloric with respect ® in (0, ) x Q, since for any < ¢ € ¥(Q)

Guv(t, ), @) + E(VU(L, ). ©) eXp(—Zw(p)t)( — 20(p)(U(t, ), ¢) + (BrU(t, ), ) + EX(U(L, ), )

’ ~fM f*(X,p)c(u(t’ X) - U(t, Y))((,D(X) - Qﬁ(y))dj)
+ (0P o) + E(PP T, )

eXIO(—Zw(p)t)( — 2w(p)(u(t,-).¢)  (by (8.9 and 8.6))

o Sl 10600+ e el )
< exp(-20(p))( — 20(p)(u(t. ). ¢) + 2(p)(U(t. ). ¢))
=0.
Therefore, by the parabolic maximum principle (Propositidn/in Appendix), we obtain
V(t, X) = exp2w(p)t) Qi f(x) < PEf(x) for (t, x) € (0, c0) x Q,

IA



36 GRIGOR'YAN, E. HU, AND J. HU

thus showing §.3).
The inequality 8.4) follows from 8.3) and (T'J.). m]

Next we show the existence and on-diagonal upper bound of the pointwise heat kernel for the truncated
Dirichlet form E®), 7©) for anyp > 0.

Lemma 8.3. Assume that condition(¥D..), (TJ.) and(DUE.) hold. Then, for any > 0, the Dirichlet form
(&P, 7©)) possesses a pointwise heat kerrf@l(g, y) on (0, ) x M x M (see Definitior2.6). Moreover,
for any G > 1, there exist constant,G& > 0 such that, for any x M and any t< Co(R.)?,

ct
—V*(x, {7 exp(ﬁ) . (8.7)

Proof. Fix a ball B, := B(x,r) for somex € M andr > 0. Using conditions\{D.) and QUE,), and
following the arguments in the proofs &3, Lemma 6.3 and Corollary 6.4], one can obtain that

, S (B %
Pl oy < ¢ v (B4 11 f1lo.
L=(B.) e R ”

Using @8.4) with Q = M and (TJ,), we obtain for any > 0, r > 0 andf € L?,

g (x ) <

ct

QI < exp( )HP fll < exp(it) S (L v 1)%* (f + 1)0_22 1]

Therefore, it follows from Theoreml1.8 (with p = 2) in Appendix that the heat kernq(”)(x,y) of
(EP), 7)) exists on (0c0) x M x M, and, moreover, for ange B, = B,(x,r) and anyt > 0,

[4£3

c\ C (r 2B \F
16z sexp(—)—(_—vl) (_+1) |
CETE T i) R t
(See also23, Eq. (6.13) and Remark 6.8].)

Let us verify 8.7). Indeed, for giverCo > 1 andt < Co(R.)?, settingr := t*# < C¢/R. in the above
inequality and usingD..) and @.7), we obtain

qg{)(x, X) < exp(c—t) _c (tﬁ v 1) ’ (E + 1)% < < exp(g),
#l W (R W@y
which proves 8.7).
It remains to observe that tiﬁp)-nest{Flﬁp)}ﬁ"zl is also&-nest, which follows directly from the fact that
&1 and8(1”> are equivalent. O

Remarks 8.4. (i). Note that thé)—nest{Fl(f)}‘;il in Lemma8.3may depend op. Let {Fy} be theS-nest in
condition QUE) (see alsoZ3, Lemma 6.6]). By 19, Theorem 2.1.2(i)] and its proof, there exists a common
regular&-nest{F},” ; such that, for any positive rational numbee Q. and for eaclk,

Fx C Fl((‘)) and Fyc Fy
Consequently, for any € Q.
CUFP) c CUFd)  and  C({F) € C({F),
Hence, we can modify the heat kerngléx, y) andqu)(x, y) by letting
pxy) = g (xy) = 0
for anyt > 0, whenevex, y lie outside the union set;® , Fi.

In the rest of this paper, we renarﬁ:a(}ﬁil by {Fk}, so that 2.20 holds for both heat kernels(x, y)
andqg”)(x, y) simultaneously for alt > 0 andp € Q..
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(i). Under the hypothesis of Lemm&3, for any f € L? andt > 0, the functionP;f has a quasi-
continuous version that belongs @&{{F}), for example,fM p:(, V) f(y)du(y). We always this version of
P f, that is, for anyf € L?,

P f(X) = fM pi(%, y) f(y)du(y) foranyxe M andt >0 (8.8)

so that
Pif € C({Fy}).
Similarly, by LemmaB.3, we can replace the truncated heat semigi@d }~o by its pointwise realization,
by setting
Qf(x) = f g (x.y) f(y)du(y) for anyx e M andt > 0 (8.9)
M

so thatQ; f € C({FI((")}). In particular, for any € Q,, f € L2and anyt > 0,

Qif € C({Fu)).

By the standard arguments, we can first extéhé) (@and @8.9) to all positive functionsf € 8.(M), and
then to allf € B(M) whenever the integrals i8(8) and 8.9) make sense.

(iii). If in addition P;f is continuous for alt > 0 andf e L?, then, by the proof of Theoreril.§ the
&-nest{F} can be taken aBy := M for all k > 1. Similarly, if Q;f is continuous for alt > 0 andf € L2,
thenS(P)-nest{Fl(f)} can also be take a'q(f) := M forall k> 1.

In the remainder of this subsection, we prove the following statements that will be used later on.

Proposition 8.5. Under the hypothesis of Lemr&3, the following statements are true.

(i) Letg be a continuous function in an open subset U of M and f be a non-negative Borel function in
M. If the following inequality
Pef(X) < 9(x) (8.10)

holds for some t 0 and foru-almost all xe U, then it also holds for all x U.
(il) Let h be a continuous function onXU. If the following inequality

Pr(%,y) < h(xy) (8.11)
holds for some t 0 and (u x p)-almost all(x,y) € U x U, then it also holds for al(x,y) € U x U.
The above results are valid for;@nd ({P) (whenp € Q) under similar assumptions.

Proof. (i). Let K c U be compact. Assume first thatOf € L2. Let¢ € Co(U) be such thalk < ¢ < 1.
By (8.10, we have fou-almost allx € M,

p(X)Pf(x) < #(X)9(X). (8.12)

Let {Fx} be the&-nest as in RemarB.4(i). Since¢g € Co(M) and¢Pif € C({Fy}), by [19, Theorem
2.1.2(ii), p. 69], we see tha8(12 holds true for allx € M. In particular, we have8;10 for all x € K, as
¢lk = 1. SinceK c U is arbitrary, we obtaing.10 for all x € U.

For a general non-negative Borel functibnlet

fo:=(f An)lk € L’(M), n>1.

It follows from above that&.10) is true for eachf, and for everyx € U, since 0< f, < f. Passing to the
limitasn — o andK T U, we obtain, for everyx € K,

P f(X) = n_NlimKTU Pifa(X) <0(x), VxeU.

(ii). Let 0 < f € L*(M) with compact support itJ. Multiplying by f both sides of§.11), we obtain,
for u-almost allx e U

P (X) = fM pe(xy) F)du(y) < fM h(x,y) f (y)cu(y). (8.13)
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Sincef € L* has compact support aice C(U x U), it follows that the function

X fM h(x, y) F(y)du(y)

is continuous iNJ. Hence, using§.10, we obtain 8.13 for all x € U. From this, we see thaB(11)
holds for allx € U andyu-almost ally € U. Moreover, by condition[QUE.) (or (DUE)), we see that
pi(X, ) € C({Fk}). Then, similar arguments in (i) will lead to the inequali8/1J) for all (x,y) e U xU. O

Remark 8.6. Recall that there is the relatiob.@3 betweenP; andQ; that holds almost everywhere M.
Under the hypothese¥D..), (TJ.) and DUE.), we conclude by Propositidgh5that (.23 holds pointwise
forallp € Q; andf e L2N L™, that s,

t
Pf(X) = Qf(X) + fo QAPP_sf(x)ds forall x e M. (8.14)

The identity 8.14) plays an important role in deriving the upper bounds of heat kernels.
Indeed, by RemarB.4(ii), we know thatPf, Q;f € C({Fy}) fort > 0 andf € L? whenp € Q,. Fix
p€Q,andf e L2nL>. By (5.21), we have, for any & s <,

QAYP_sf € C({Fu)).
Then it follows from L9, Theorem 2.1.2, p. 69] an®.1) that, for anyx € M,
IQAPP_sf (X)) < QAP Pl

<IQsllLe oL - 4w(p) - IPr-sllLo |l flleo
< 4w()llfllee < 0.

Hence, by the dominated convergence theorem, we obtain

t
f QsAPP_sf € C({Fy)).
0

By [19, Theorem 2.1.2, p. 69], we conclude th@tl4) holds for anyf € L2 n L* andt > 0.

8.2. Tail estimate for truncated semigroup. Recall that, for any open s€t c M, {Qf*} denotes the heat
semigroup associated with the part Dirichlet fro#{, #©)(Q)) of the truncategb-local Dirichlet form
defined by 8.1) for p > 0. In this subsection, we give pointwise tail estimate of the heat semig@%pof
anyp-local Dirichlet form €¥), #©)(B,)) for any ballB,.

Proposition 8.7. If every ball in M has finite measure and conditiai®s), (TJ.) hold, then, for any ball
B. := B.(x,r) withr > 0and any t> O,

1-QPls <1-e+C(r P +p7)t in 3—'18* (8.15)
wheree € (0,1) and C> 0 are two constants independentmt, B..
Proof. By condition '), for any ballB, := B,(x,r) with r < 2R, and anyt > 0,
1-P>15 <1-s+Crtin %B*, (8.16)

wheree € (0, 1) andC > 0 are two constants independentds,. Let us prove thatg.16 holds also when
r > 2R, (andR. < ). Since every ball has finite measure, it follows fro2®,[Lemma 4.6, p. 3327] that
condition 8,) (and, hence &.)) implies that £, ) is conservative. Hence, where 2R, we haveB, = M
whence 1- PtB*ls* =1-P1=0,forallt > 0, which implies 8.16) for all r > 0 andt > 0.

Consequently, it follows from5.26) with Q = B,, f = 1, that

Ct
1-QP1g, <1-PP1g + > 128.]|.,

1
<1-g+CrPt+Cp?t in 21B*,

which proves §.15). O
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In the next two lemma we obtain twoftirent estimates d;1gc.

Lemma 8.8. If every ball in M has finite measure and conditidi®), (TJ.) hold, then there exist positive
constants Cc, ¢’ such that, for any ball B:= B.(Xp, r) of radius r> 0 and any t> 0,

1
Qlge <1-QPF1p < Cexp(—ci + c’i) in =B.. (8.17)
poF 4

Proof. Fix a ball B, := B.(Xp, r) with r > 0 andt > 0. The inequality 8.17) is trivially satisfied ifr < 4p,

since 1- QtB* 1g, < 1in M. In the sequel, assume thrat 4p.
Since €;) and (TJ.) are satisfied, we obtain by Propositi8rv, that, for anyze M,

1
1- QtB*(Lp)lB*(Zp) <l-e+ Co(p_'g +p_ﬁ)t =1-eg+2cp Pt in ZB*(Z,p). (8.18)

Recall that, for anyl > 0 and a balB,(y, r’), the resolvenRE*(y’r') of the heat semigrouf® """} is given
by (5.4), that is, by

REOf = f e QB0 ds for f e L.
0
Then by 8.18), for anyA > 0 andz € B,

1-aRY 15 ) = fo 1651 - Q¥ 1 () ds
< f /le‘ﬂs(l —e+ ZCop_'BS) ds
0

1
=1-s+2c00 P =1¢(p,) in ZB*(Z”O)'

4p

in particular, &o < r. Since §;) = (S.) and every ball has finite measure, 0] Lemma 4.5, p. 3326],
we have that cut®(A, U) # 0 for any bounded measurable geand for any open séf with A c U (that
is, (5.2) is satisfied). Hence, by Lemnta6and 6.17), we obtain, for anyl > 0,

1
1- AR 1g, < clp, )¢ = (1- &+ 201 pP)¢ in 2B~

Settinga = % in the above inequality, we obtain

2 r 2 1
p— B* — k el — — [— —_— — i —_—
1-AR}"1g, < Q1-¢/2) = exp( kin 5 8) < eXp( ( 1 1) In 2 8) In 1B*-

Moreover, with the above choice af using 6.7) with Q = B,, we obtain from the above inequality

1-Qrls <e"(1- AR} 15 ) < €™ exp(—ln 238 (4r_p - 1))

3 2 r 4cot
“os e (1) )

r t 1
= Cexp(—c— + c’—) in =B..
p PP 4

which is exactly 8.17) whereC = 5%, ¢ = 1 In ;£ andc’ = 22, O

Lemma 8.9. If conditions(S}) and (TJ,) hold, then, for any t- 0, 6 > 0O, any integer k> 1, and any ball
B. := B.(Xo, ) with r > 4kp,

ok

5 t\e 1
Qs <1- QP15 <CO.K| ) in 7B. (8.19)

Here the constant (8, k) > 0 is independent of B,, p.
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Proof. Let {Qt(‘_))} be the heat semigroup associated with a regatesnglyp-local truncated Dirichlet form

(&P, 7)) defined by 8.1) for p > 0. Let{ @’U} be the heat semigroup associated with Dirichlet form
(EP), FP(U)) for any open set.
Step 1 Let us prove that for ang > 0, s> 0, any ballB,.(z 1) with ze M andr > 0,

7]
F s\ . 1 _
1- PE*(Z,r)lB*(Zf) < C(0) (F_ﬁ) in ZB*(Z, r). (8.20)

If F—ﬁ > 1, then 8.20 is trivial, since 1- PE*(Z’F)lg*(LF) < 1in M. Hence, let us assume that

s< TP (8.21)

Letp > O be a number to determined later. Applyirtg26 with Q = B.(zT), f = 1g (5 and using
(TJ,), we obtain, for anys > 0,

F 5).B. (2T Cs
1-PE@01g oy < 1- QP* N1 (1) + = 128, - (8.22)
Since €;) and (TJ.) are satisfied, we obtain by combinirg22 and 8.17), that
F T Cs 1
1-PBE@) 1, o <Cexpl-cL 12|+ = in2B.(2 7). 8.23
S B.(zT) = eXp Cﬁ +C ﬁ + l_ﬁ in 4 (Za r) ( )
We will minimize the right hand side of the above inequalitydiyposingo that satisfies
s<p’ and p<T. (8.24)

Assumingthatp satisfies 8.24) for the moment, applying3(23 and using the elementary inequality
e @< cy)a? foralla>0,

we obtain that, for any baB.(z ) with ze B, andr <,

F r S Cs
1-P2@N15 ,n<C exp(—c/:) + c’_—) +—

7’

, [§ Cs
< C€ ex (—C:) + —
ol-es)+ =
—\ 0
0 s| . 1 _
<C() [(F) + ﬁﬁ] in 4B*(z, r). (8.25)
Now choosép such tha@)e = 553 thatis,

1
p=(r"9)".
Note that thenumberp satisfies 8.24), since
0 1
= 7B\ 4B = 75
p—ﬁ:(r—) >1 and /;:(E) <1
S S T I

Therefore, substituting the above valiep into (8.25, we obtain that, for ang > 0, any ballB.(z ) with
Zze M andr > 0 and for anys > 0,

B.(zF P 0 S ﬁ 1
1- PS*(Z’r)lB*(ZF) < ZC(Q) (?) = ZC(Q) (g) n ZB*(L F),
I

thus proving 8.20).
Step 2 We turn to prove§.19. It suffices to consider the case that

t
— < 1

7
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Using (TJ,) and 6.26 with Q = B.(z p) (wherez € B,) andf = 1g, (), we obtain by 8.20 that, for any
6 > 0 and anys > 0,

[
s\ Cs 1
— +— in=B.(zp).
pﬂ) Jd 4

B, B, Cs
1-Qs (Zp)lB*(Zp) <1-Ps (Zp)lB*(Z,p) + E HlB*(ZP)“oo < C(H)(
Then, for anyl > 0 andz e M,
1— /lR/?*(Lp) 1B*(Z.,D) — f /le‘/ls(l _ QS*(ZI))IB*(LP)) ds
0

0
< f Ae s C(e)(ﬁ) ’ Cs)ds
0

sl
= j:o e‘S[C(e) (%)m + %) ds

__0_ —_
<C'(0) (1) ™ +C(1F) Yoice, ) in j—'lB*(Z,p).
Since &p < r, it follows from Lemmab.6that

0 k
1- AR 1g, < c(p, ) = (C’(H) (4f) ™ + C(’lpﬁ)_l) in %B*‘

Moreover, settingl = t~1 in the above inequality and using.{) with Q = B,, we obtain by the above
inequality

0 k
1-Q1s <€"(1-IR}1g ) < €" (C'(e) (16F) ™ +C (/lpﬁ)_l)

C’(a)( t )ﬁ; ol ‘
=e — +C—
e g
£\ 1
=C(0,Kk) (E) in ZB*'
where we also use the assumption thato? and the fact thagf—ﬁ < 1. m|

In the remainder of this subsection, we will obtain the relation of two heat kepaedsy) andgi(x,y) in
the norm ofLY outside balB, for any 1< q < co.

Lemma 8.10. Assume thafvD.), (DUE.), (S}), (TJ,) hold for somel < g < co. Let g(x,y) be the heat

kernel of thep-local truncated Dirichlet form(&®), 7)) defined by §.1) for anyp € Q.. Then, for any
t > 0and any ball B := B.(x,r) with r > 0,

Ct c’t
1Pe(X, lLaceey < llae(X, )llLacee) + Vo0 p) T eXp(E), (8.26)

where CC’ are two positive constants independent,of B,, 0, and d = % as before.

Proof. Since conditionsTJ.) (which follows from (T'J;) by (7.10) and OUE.) hold, we see by Lemm&.3

and Remarl8.4that, for anyp € Q., the truncated Dirichlet formd), #©)) possesses a quasi-continuous
heat kernebfi(x,y) on (Q o) x M x M.

Fix a ball B, := B.(x,r) withr > 0 and fixt > 0. Without loss of generality, assume that
IPe(X, -)llLacaey > O,
otherwise, nothing is needed to prove. Iffges to consider the case< R., as otherwiseB¢ = 0 and
lIpe(X, )llLaeey = 0. The equality §.14) yields that, for anyf € L% 0 L*,

t
f pe(%, )  (y)du(y) = f (% y) f(Y)du(y) + f QAYP_f(x)ds (8.27)
M M 0



42 GRIGOR'YAN, E. HU, AND J. HU

Let us use the operaté{*) defined in 6.20), that is, (under hypothesig.{;))
AP f(y) =2 fM (f@ = £()IY. DL, (y.22p1du(2).
We need to estimate the tei@A®) P_sf(X). To do this, let us introduce the functibgy : M - R, by
hsx(2) = j,;l Os(X, W) Jp(w, 2du(w), ze M,
whereJ, (W, 2) := J(W, 2)Lid,(w.2>p)- Then, for anyse (0,t) and any 0< f L2NL>,
QAPLF(9 = [ aulxy) - ADPe£T ()t

<2 [ ey [ PsT (@902 bi221u(3 ) ) (by dfiniion 6.20)

=2 fM Pi-sf(2 ( fM ds(X, Y)I(y. Z)l{d*(y,z)zp}dﬂ(y))d,u(z)

= 2(Pt—Sf’ hs,x) = 2(f, Pt—shsx)
< 2fllgliPi-shsxllq  (by Holder inequality)
< 2||fllyllhsxlly  (by contractivity ofP; in L9),

whereq’ := q%l Combining this andg.27), we obtain that
t
fM oY) F(y)duty) < fM 6% y) f (5)ducy) + fo QADP,_f(x)ds

t
< fM (% V) F)Iuy) + 20 fllg fo Ihexllgds (8.28)
Let K be a bounded set under the mettic Consider the function

f() == pe(x )T gerk ().
Observe that € L*(M) because bylYUE,) we have, for any € M,

pr(X.y) = fM Pt/2(X, 2) Pr/2(z Y)du(2) < [1pe2(X, ll2llpe2(-, V)2
C
V. )V, (y, )

which together with\YD..) and the fact thaf is supported in a bounded g€t yields thatf is bounded. It
follows that alsof € LY(M) and, hencef € LY (M). Note that

= VP2 X)Pr2(y. ) <

Iflly = ( fB P y)qolu(y))l/q = 1190 Mgy (8.29)
Applying (8.28 with the above functiorf, we obtain
fBng pe(%, Y)du(y) < [ fllglloe(X, liLaee) + 2 fllg fot lIhsxllqds
Dividing by || f|l¢ on the both sides of the above inequality and us 139, we obtain

t
190 ez < 1006 Ylueqas) + 2 fo Ihsxlleds

Since the bounded sktis arbitrary, we conclude that

t
l1Pe(X, lLaceey < llae(X, lLacaey + 2f0 Insxllqds (8.30)
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It remains to estimate the terths|lq. By condition (I'J;), we have
C
bW, g —————, we M. 8.31
13,0 < 7 (8.31)

Defining measure by
dv(w) := gs(X, W)du(w),
and using Minkowski’'s inequality for integrals (cfL§, on p.194]), we obtain that

Iheslly = ( [ ( [ 3w ax w)du(vv))q olu(z>)1/q

q 1/q
- (fM (fl\/l Jp(W’Z)dV(W)) d,U(Z)) SfM”Jp(W’ Mlgdv(w)

C
SLWdV(W) (by (8.3D)

_C [ _asxw)
PP I Vi(w, o)/
Let us estimate the last integral. L& := 0 and
Bk := B.(X ko) fork > 1.

du(w). (8.32)

Then
gs(X, W) S f QS(X w)
— " du(w) = - du(w) = I

M V*(W’P)l/q ) kZ]:_ B\Bi 1 Vs (w, p)l/q dulw) = Z «

By (VD.), we have, for ank > 1 and anyw € B,
L _Vxp) 1 _Clkr1y (6.33)
Viw,p)  ViW,p) Vi(X,p) = Vi(Xp)

and then

QY s

24C f 2%C
I < ——— X, W)du(w) < .
LS V) Jyy B IHW = s

On the other hand, by Propositi@band @8.17) with t, r replaced bys, (k— 1)p respectively, we have, that
for anyk > 2

(k-1)p , S
Qslee ,(X)<C exp(— 5 +c E =Cexp|-ckk-1)+c E .
Combining this, 8.33 and {VD..), we obtain, for ank > 2,

gs(X, W) (C(k+ 1)a*)1/q’ f
! =f Vo oy W) < (== X W)du(w
= Joe . @ MW (G e, G W)

a, \1/d ., \1/d
< (M) ; Qslee (X) < (M) ! -Cexp(—c(k— 1)+ c’i)

V(X p) V. (X, p) P
= V. (%, p) Yo EXp(C E) (k+ 1)™/9 exp(-cK).
Therefore,
_Gs(xw) S\ e
m V. (W, p)d du(w) = Z < W (C ﬁ);(“ 1)*/9 exp(-ck)
C c's
= V() exp(?)‘ (8.34)
Combining this, 8.32 and 8.30), we obtain 8.26). -

The following lemma is an analogue of the above lemma for the case avhen.
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Lemma 8.11. Assume thafvD.), (DUE.), (S}), (&) = (TJ,) hold true. Let g(x,y) be the heat kernel of
the p-local truncated Dirichlet form(&¥), 7)) defined by §.1) for anyp € Q.. Then, for any t~ 0 and
any xy,e M with x#y,

pr(X.y) < (X, y) + v*(fﬁ exp(%). (8.35)

Proof. Let B.(x,r) with r > 0. By (8.28, we see that for any & f € LY(BS) n L*®

t
f pe(x, y) f(y)du(y) < f a(x, y) f(y)du(y) + 2| fll2 f lhsxllods
B¢ B¢ 0

from which, it follows that, foru-almost ally in B,

{
pr(Xy) < a(xy) + 2 fo Ihsxlleds (8.36)

Sincep(x, -) € C({F}) andai(x, ) € C({Fk}) by Remark8.4, we see that§.36) holds true for ally € M
with d.(x,y) > r. It remains to estimate the terfthsx||. Indeed, by the similar arguments in the proof of
Lemmas.1Q we can prove thaig(34) also holds true fo = 1 but using {£) = (TJ,) instead of TJ).
Hence, we obtain

INg xlleo < f gs(X, W) (esupl{d*(w,z)>p}J(W, Z)) du(w)
M zeM

C C qS(X’W)
< X, W) ————du(w) = — du(w
[ sttt = = [ g
“sisree{3)
Combining this and&.36), we finish the proof. ]

8.3. Off-diagonal upper estimate of truncated heat kernel.In this subsection, we deriveffediagonal
upper bound of the heat kerrg(x, y), for the truncated Dirichlet formg®), #©)) wherep € Q,.

Lemma 8.12. Let (8¥), 7)) be a regular Dirichlet form in B with ¥) defined by §.1) for p € Q,. If
conditions(VD..), (DUE.), (S%), (TJ.) hold, then for any @> 1, t < Co(R.)? and any xy € M,

C c't o0\ d.(x,y)
Qt(X, y) < W eXp(E) (1 + tl_/ﬁ) eXp(—CT s (837)
where the constants,C, ¢’ > 0 are independent of X, y, p. Consequently,
c't 0\
(% y) < V.o 0P exp(ﬁ) (1 + tl_/ﬁ) . (8.38)

Proof. Fix Co > 1,t < Co(R.)? andx,y € M. If x =y, then 8.37) follows directly from LemmaB.3. In the
sequel, assume# y and set = %d*(x, y). We consider two cases.

Case 1:p > r. In this case, sincg/2 < 2-1Cy(R.)?, we have by Lemma&.3that

C c't
a(X. Y) = V20 X2y, y) < NPV 2P eXp(E)-

Moreover, by using\(D..) and the fact that > r, we have
V. (x, tY/P) B d.(x,y) + t8 @ . 3p + tU/A @ B ’(l 0 )a*
V.(y, (t/2)YF) ~ (t/2)YF So\w2pE ] T e
Combining the above two inequalities and using the factiﬁp@f—) < 3, we obtain 8.37).
Case 2:p < r. In this case, consider disjoint balls

U:=B.(xr), V:=B.(y,r).
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By Lemmas8.3, we have, for anyv,Z € M ands < Co(R.)?,
C c's
Q2s(W,Z) = V/qs(W,w)gs(Z, Z) < exp(—).
° Vs ° Wow, SUAW,(Z,sU)  \pP
In particular, the functioms(w’, Z) is locally bounded ifR , x M x M. Hence, by Corollart1.5in Appendix,
with s=t andQ = M, we see that, for-almost allwe U, z€ V,

CIZt(W,Z)S(l_QtUlU(W)) sup 16 (- Dll=u,y + (1~ QYv(2) sup lick (- Wl -

<t'<2t <t/ <2t

On the other hand, applyin@.(L7) with B, replaced byJ, we have

t 1
1- Q%J lyw) < Cexp(—cg + Clﬁ) p-a.a.we ZU’

Similarly, applying 8.17) with B, replaced by/, we have

r t 1
1- Q/1y(9 < Cexp|-c- +C¢ —| p-aaze>V.
Q'ly(2 < exp( cp+cpﬁ) ,uaaze4

Therefore, combining the above three inequalities, we obtain thatémost allw € %U, Ze %V,
t
Ozt(w,2) < 2C exp( C—+C —) sup esup qv(w,Z). (8.39)
P g t<t’<2twel,,ZeV,

Let us estimate the term sup. €sUR,cy, zev, I (W, Z). Indeed, sincg < r, we have for anw € U,
andz € V,,
d.(x,W)<r+p<2r, and d.(y,Z)<r+p<2r.

Moreover, sinceé < Co(R.)?, we have for any’ € (t, 2t],
' <2t < 2Co(R.)P.
Therefore, by Lemm&.3, we have

C c't
sup esup qv(w,Z)< esup expl—
t<t<2twel,,zeV, weU,zeV, V., (W, VAV, (z, t1/A) g

c c't ro\®
< —V*(X, tl/,B) eXp(E) (1 + tl_/ﬁ) , (840)
where we have used the fact that, using the doubling prop€Ry), for any pointsw e Up, ZeV,

V*(X’ tl/ﬁ) d*(xa W) + tl/ﬁ - ’ +p ’ 2r
V*(W',tl/ﬁ) < (—tl/ﬁ <C (1+ _tl/ﬁ ) <C'(1+ tl_/ﬁ S
V.(z,t1F) ~ tL/B = 1B
, ar +p , 5r \*
Sc(l‘l'tl—/ﬁ) C(1+tl/ﬁ) .

Now, combining 8.39 and .40, we have

gzt (w, z)<2Cexp( c— +ci) sup esup qv(w,Z)
P PP t<t’<2twel,,zeV,

< —eX cr+20—(1+ r)a*
VAR D WPl | Sy B

Moreover, by Propositio8.5, the above inequality holds true for all pointse %U andz e %V. In
particular, for (v, 2) = (x,y), we obtain

(x )<Lex 2t ex r (1+L)a*
q2t ’y = V*(X, tl/ﬁ) p pﬁ p p tl/ﬁ .
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Finally, let us observe that

r r \& Cr P\
eXp(_C;) (1+ tl—/ﬁ) < Cexp(—ég) (1+ tl_/ﬁ) s

which follows from the elementary inequality exp(> c(1 + 1)*-. Combining the above two inequalities,
we conclude that
(e
) (i)

Oat(X. ) < ﬁ exp( ) (

thus proving 8.37) by renaming by { 5 and substituting =

9. HEAT KERNEL UPPER BOUND

In this section, we will prove the upper estimate|pf(x, -)l|_q(ge) for any 1< g < co. To do this, we first
obtain the upper estimate fp(x, -)ll_q(ge) under metriad,, and then translate to the original metic

9.1. Tail estimate in LY under new metric. Let us first introduce conditiond P.) and (TP).

Definition 9.1 (Condition (TR)). We say that conditionT(P,) is satisfied if

ct .1
PtlBg S r_ﬁ n ZB* (91)

for any ballB, := B,(x, r) of radiusr € (0, R,) and anyt > 0, whereC > 0 is a constant independenttoB,.

Definition 9.2 (Condition (TR)). For a number X< g < o, we say that conditionT(,) is satisfied if the
pointwise heat kerngb(x, y) exists in the sense of Definitidh6, and, for anyCo > 1, there exist& > 0
such that, for any baB, = B,(x,r) of radiusr € (0,R,) and anyt < Co(R.)?,

1 t
I s < C\ G ocmmyma » Vix r)l/Q’rﬁ)’ ©2)

whereq’ = L as before.

We start with the following lemma.
Lemma 9.3. The following implication is true:

(VD.) + (S)) + (TJ) = (TR.).

Proof. Let B, := B,(x,r) with r € (0,R,) and lett > 0. We need to showd(1). We can assume thak r#,
because otherwis® (1) is trivial sinceP;1ge < 1.

Using 6.26 with Q = M, f = 1gc and 8.19, we have, that for any integ&r> 1, any 0< p < z < %,
and any, t > 0,

k
0+
C(e,k)(i +&inle

Ct 0+
Pelge < Qtlpe + — ||l|35 o = pﬁ) e 2

Setting her® = 8,k = 3andp = g = 15,We obtain

3/2 3/2
Plss < C(ﬁ)(153t) 153Ct (15‘%) . 15°Ct oty 15°Ct _ctin }B*’

=CE) BT b B B4

which proves 9.1). O
Let us prove a similar implication foif@;) for 1 < g < co.
Lemma 9.4. For anyl < g < o0, we have

(VD.) + (DUE,) + (S;) + (TX) = (TF).
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Proof. Let B, := B,(x,r) with r € (0,R,) and lett < Co(R.)? with Cy > 1. By remark8.4(i), the pointwise
heat kernepx(x, y) exists in the sense of Definitich6. So, we need only to show the inequalif;3).
Let us first prove that

C
1Pt (%, lLageey < V. (x VA (9.3)

for some positive constafi independent of, x. It suffices to consider the case wherklq < o since

IPe(% MlLreey < 1.
To do this, we need to estimate the tgfga(X, -l in (8.26 for p € Q.. Indeed, we have by8(39 in

Lemma8.12that

lloe (X, -)llLaee) ( fB . (% Y)T - qe(x, y)du(y))q

IA

1
g-1 q q-1
amqqu(j\anm@ﬁ < supaOoy)
yeM M yeM

q-1
C Ct 0 \&\ T
= (\a(xt“ﬁ)exp(EE)(l*'fﬂﬁ) ) '
Therefore, it follows from 8.26) that

1% Meges) < N Yaqes + ————— exp| <
P ey < Nlowx s + G a5 O 5

< —C ex g (l + L)a*/q + —Ct ex J
= V. e P\ 5 |\ V.o p) U pf P\ )

Choose a rational close tot'/?, we obtain 9.3).
Let us next prove that

Ct
1P (X )lLas. (xrye) < V. n)aTh (9.4)
for someC independent of, r, x. By (9.3, it suffices to consider the case when
P>t (9.5)

We also assume that
p€(0r]NQ,. (9.6)

By (8.37 and {/D.), we have that, for any< Co(R.)’ and anyx € M,

C c't o\ d.(x,y)
< [ — — {1+ — —-C——==
)?Eungt(X’ y) )?EUB[S) V* (X’ tl/'B) exp( P ) ( tl/'B ) exp( ¢ P

<o () o#( ) (1 f) "ol <)
C ro\e c't r
<o (s) e0( 53 ool

e (@) ool 55 (&) el

where we have used the fact in the last line that

)" oo{5) =) () ool 5) =<l
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On the other hand, we have b§.{9, Remark8.4 and Propositior8.5 that, for anyd > 0 and for any
integerk > 1 withr > 4kp (noting that 0.6) is clearly satisfied sincg > 4k > 4),
£ \78
[ atenun = et < co ) ©08)

Consequently, combining(7) and ©.8), it follows that, for anyd > 0 and for any integek > 1 with
r > 4kp,

1/ o 1
[0 (X, )llLagsey = (fBC (% VT (%, Y)dﬂ(Y)) < supgi(xy) @ (LC Qe (X y)d,u(y))

yeBs

= (o 1L/,e " exp[ <t " co)(~ )
V. (X,1) (t ) P p

CO o ( c't (L)ZQ*/Q’ t i
T Va(xon)ta AC7IA e

C’(6) 't r 20,/ ¢ ﬁ_%
= ex - L .
V. (x 1) p(q,pﬁ)(p) ( pﬂ)

Therefore, substituting the above inequality ira?@), we obtain

1P Mioges) < 606 Vs + e exp =t
P ey < Nloe(x My + =775 &P\ 5

ok

C'(6) Ct\ [\ (¢ \@h
< - exp - —
w7

ct ct
AR eXp(F)' )

Now letd = 8 and choose the integkr> 1 such that
ok 2w, k 2a.

P
@+p)a Ba 29 B

k=1+ {2q(1+ 2“*)J.
BY

Choosing the rational close toz; and usingYD.) and ©.5), we obtain

for example, let

t )ﬁ—iﬁv t )< C't

C
X’ . C S —_— —_— + =1 " ’
1P (X llLacee) V.(x )i ((rﬁ 8]~ V,.(x r)YarB

thus proving 9.4).
Finally, condition TP;) follows directly from ©.3) and ©.4). m]

Let us define conditionT(P;) for g = .

Definition 9.5 (Condition (TR,)). We say that conditionTP.,) is satisfied if the pointwise heat kernel
p(X, y) exists in the sense of Definiticgh6, and for anyCp > 1, there exist€ > 0 such that for anyx,y € M

and anyt < Co(R.),

1 t
p(x.y) < C(v* 9 " Vo d ooy x y)ﬁ). (9.10)

Lemma 9.6. For q = o0, we have
(VD.) + (DUE,) + (S}) + (TL,) = (TPL).
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Proof. Fix x,y € M andt < Co(R.)? with Cg > 1.

Let us first prove thap;(x,y) < W Indeed, by 8.35 and 8.39, we have for any € Q,,

pe(X,y) < Lexp ct (1+ L)m + ————exp ct )
V..(x, t1/A) o8 tl/8 V,.(x, t1/F) o8

Taking herep close tot/#, we obtain
(x.y) < € exp(<t 1+t1/ﬁ a*+ Ct_ oxp[ <L
AT Rt W A=V BV I
B C
V(% tA)

It remains to show that c
t

V(% A (%, ))ds (X, )P

pr(Xy) < (9.11)

It suffices to consider the case when
d.(x,y) > t.
By (8.395, we need to estimatg(x, y). Let

r=2d.(xy) > 2t¥5,

so thatM c B.(x,r)¢ U B(y, r)C.
By semigroup property dj:(x,y), we have

a(xy) = fM G2(x DG2(2 Y)du(2)

( [+ )qt/z<x,z)qt/z(z,y)du(z)
B.(x,r)¢ B.(y.r)¢

SUpGi,2(Z.Y) f Gy2(x () + suptyz(x. 2 f G2z y)du().
zeM B.(x,r)¢ zeM B..(y.r)¢

IA

IA

We need to estimate the terms on the right hand side of the above inequalitys. 3y, (VD) and the
assumption that > 2tY/#, we obtain

SUPG (2 Y) € ——— exp(i) (l + L)
o VLY, (t/2)18) T\ 208 (t/2)L8

C V. (X 1) c't 0\
=V.00n Vo (v, (2)7P) exp(zpﬂ) (1 * tl_/ﬂ)

. (L) exp 1 (1+L)“"
V.o \@B) P58 wB)

Similarly, we obtain the same estimate of gypa/2(X, 2):

su (%2 < & (L)a ex ot (1 + L)a*

On the other hand, by8(19, Remark8.4 and Propositior8.5, we obtain for any > 0, any integek > 1
andp € Q, with4ko < r,

K
v
I

ok

0+
b

g~

fB ) Gt/2(X, 2)du(2) = Qt/21B.(xr)e(X) < C(6, k)(
L (X,r)C
and

fB Rl @) = Quall ) = O k)(
L (y.r)°

whereC(0, k) is a constant independent ok, y, p.

8]~
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Finally, combining the above five inequalities, we obtain that, foréamy0, k > 1 andp € (0, z) N Qx,

ZC(Q, k) roa. 't p o[t %
a0 = G ) eol35) 00 ) 5)

Substituting the above inequality int8.85, we obtain that
c't

BxY) < (K Y) + exp(—)
T V()P T\ PP

<Toen las) oo{js) () ()

P S (C_‘)
Vo o) P\ pB )

Set in the above inequality= g and take

k=1+ 2(1+2“*)J
B
so that
k_2a*>1
2 B

Passing to the limit ing.12) as the rationgb increases tg, we obtain by ¥D..) that
k
Cl(,B,k)( r )a* c't r/5k\* t )2

POV < G oen ws) P\ sp )\ M ) \ersp

. Ct ex( ct )
V. (x.1/5K)(r /5K P\ (r /5K

k_ 2ax

< C(k) (1)5—7+ C'(K) t
V.(xr) \r8 V.(x,r) B
- C(k)t

VL (x, )8’

where we have used the facts tt#;ak 1 and then

DEF e
() " =5 yve1d.
Thus we have prove®(11).
9.2. Talil estimate in L9 under the original metric.

Lemma 9.7. Assume thafVD) is satisfied. For anyl < g < o, we have
(TP & (TPy),
(TP) & (TP).

(9.12)

(9.13)

(9.14)
(9.15)

Proof. For the equivalencé(14), it suffices to prove the implicatiorT @) = (TPg) since the other direction

can be proved similarly.

Indeed, assume that conditioh|;) is true. Fixx € M, Re (0,R) andt < W(x,R). It follows from (6.13

thatt < Co(R.)? for someCyp > 0. Let
r := L"F(x, R) so thatW(x, R) = F(x, R = (Lr)’.
By (6.10, we have
B(x, Lg*R) € B.(x,r) c B(x,R)
so that
V(X R) = u(B(x, R)) > u(B.(x, 1)) = V(X 1) > V(X, LalR).

(9.16)

(9.17)
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Let us assume thatg g < oo since the case whep= co can be proved similarly. Using conditiomi,),
it follows from above that

1 t
P0G Muscaeeyey < IO Misce. ey < | Gisrmme » Ve r)l/q’rﬁ)

1 t
: C[V*(X, tp) Yo 4 V(X, L51R)1/q/ L-BW(X, R)]'
On the other hand, using the second inclusior6i)(with r = t/#, we have by §.7)
V. (%, tY8) > V(x, F71(x, L=1%YA)) = v(x, WL(x, Lt)).
Therefore, combining the above two inequalities and usiig)(and .8), we conclude that

1 t
X, - o< C A s
” p[( )”LCI(B(X,R) ) (V(X, W_l(X, t))l/q/ V(X, R)l/q/W(X, R))

thus showing that conditionT @) is true.
For the equivalenced(15), it suffices to prove the implicatioP,) = (TP) since the opposite direction
can be handled similarly.
Assuming that conditionT(P,) is true and using9.17), (9.16), we obtain
Ct Ct 1
Pi1 c< Pl c<—=———— in-
t1lB(xRc = FtlB,(xr)c = prz LAW(x R) I 2

By standard covering arguments, this inequality still holdéﬁaﬁx, R), thus proving TP). m|

1
B. o B(X, Zl|_51R).

9.3. Off-diagonal upper bound. We show that conditionT(Py) will lead to condition UE).
Lemma 9.8. For 2 < q £ o, we have
(VD) + (TPg) = (UEy).
Proof. Fix two pointsx,y € M and set
1
R= Ed(x, y).

Lett < W(x, R) A W(y, R).

We first assume that € [2, ). In this case, we havg = q%l < 2 < g. It follows from (4.1) that
condition (TPy) is also true.

Using the semigroup property and thélHer inequality, we have

pi(x.y) = fM P1/2(% 2 Pry2(2 Y)u(?)

sf By2(% 2) (2. Y) (@ + f By2(X 2)Py/2(z Y)du(2)
B(x,R)¢ B(y,R)¢

< |Ipy2(X caere) P20 Wy + 1Pe2(%, g 11y 2(, YllLaewy,Re)- (9.18)
We estimate the termpe2(-, Y)llq -
Indeed, sincé < W(y, R), by condition TPy), there exists a consta@t> 0 such that for anfR’ < R

C
P20 e ey < G Wiy, oyt

SinceR’ < Ris arbitrary, passing to the limit in the above inequalityRag, 0, we obtain
C
V(y, Wy, )1/’

lIpe/2( Wil <

Similarly, sincet < W(x, R), we have

1Pt/2% Mg < V(x, W(x, t))1/a’
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Substituting the above two inequalities and conditidRy) into (9.18, we obtain
(xy) <C 1 . t/2 1
Poey) = V(X W(x, t/2))19  V(x, RYIW(x, R) /] V(y, W-1(y, t/2))a
1 t/2 1
C . 9.19
(Vo " o R w049
We claim that, for < g < oo,
1 t 1 t
<C 9.20
VO Wy, )7 " Yy )T Wy, ) (V(x, WA )T " V) HTWx, y)) 620
for a positive constar@ independent of, x, y.
Indeed, by condition(D) and @.7),

CIIV(Y. ) < V(x.y) < C1V(y, X),
CIIW(Y. X) < W(x,y) < C1W(Y, X)

for a positive constar@, > 1 independent o%, y. Let us divide the proof into two cases.
Case 1:W(y, X) > t. In this case, we hawé(x, y) > W-1(y, t), which gives by 9.21) that

W(x,y) = W(x, d(x,y)) > C;*W(y, d(x, y)) > C;'t.
From this and using.8), we see that
d(xy) = W(x, C7't) > C'W(x, t).
Therefore, it follows from 9.21), (VD) that

1 t t t
- C
V(y, W-L(y, )V 4 V(y, X)YTW(y, x)  V(y, X)YTW(y, X) : V(x, y)YTW(X,y)

(9.21)

t t
~° (V(X, NITW(xy) " V(x, C-IW-L(x, ) 1 (Cilt))

( t c’
<C - A Ak
VX )YIW(xy) V(X W(x )
thus showing .20 in this case.

Case 2:W(y, X) < t. In this case, we hawd(x,y) < W=(y,t). By (11.2 in Appendix,

-1
-1 S V(X’W 1(X’ t)) S
V(y, Wy, 1)

for a positive constant independent ok,y,t. From this and usingX21), we obtain 9.20. This proves

our claim.
By (9.20), the factor in front of the second term on the right-hand sid®dfd is bounded by

1 N t/2 . C( 1 N t )
V(y, W-L(y, t/2))Y/9 * V(y, RYVIW(y,R) ~ \V(y, W1y, ))Vd  V(y,RYIW(Y,R)

(9.22)

1 t
< (Voewr oo " Voo we)
Therefore, combining this an®.(19 and substitutindr = %d(x, y), we obtain
, 1 t 1 1
009 = © (oo " vecgmewon) (VW g VW o)
which is the inequalityZ.29 in (UEg) in the case when 2 g < co.

Consider now the cagg= oo. In this casey = 1. Fixy # xand letR = 1d(x,y). Using .20 and the
fact thatpi(x, -) € C({Fk}), we have by conditionT(P.,) that for every pointz € M with d(x, 2) > R,

1 t
Pr(X, 2) < lIpe(X, llL=BxRy) < C (v(x, W-1(x, 1)) " V(x, RW(x, R))'
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In particular, the above inequality holds true foe y sinced(x,y) > R, thus showing thatZ.25 holds in
the case wheq = . _ _
Therefore, we always have tha. 25 holds fort < W(x, R) A W(y, R), thus showing conditiondEg). O

10. RROOES OF MAIN RESULTS

In this section, we first give some consequences of the tail estim&tg. (And then, we prove main
theorems.

Proposition 10.1. Let (8, 7) be a regular Dirichlet form in B. Let UV c 8(M)withU NV = 0, and
f,g € ¥ be non-negative Borel functions such teapp() c U andsuppg) c V. Then,

o1
709 [ a9 a0x e < timinf 5 | FO9Pig9(x.
U Vv t—-0 2t U
Proof. Since supp{) N supp@) c U NV = 0, we obtain for any > 0,
~(1.g=P9) = (1.P9) = | F(IPLg9du0,
whence by 19, Lemma 1.3.4()],
.1

(1.9 = fim [ 21(1.9- P

On the other hand, using @), we obtain

&(f.g) = 89(f.q) = f fM G RO RO

< Iirp_)igf %fu f () Pa(X)du(x).

— -2 [[  1(90)30x dy)cu(x.
UxV
Combining the above two inequalities we finish the proof. m|

Lemma 10.2. We have
(TP) = (TJ).
Proof. Fix somexg € M andR > 0, and seB := B(Xg, R). Let f,g € # be non-negative Borel functions
such that supf() ¢ B andg < 1(4p)c. By (TP) we have for any > 0,
Ct .
Pig < Pilupye < —— B
tg < FPrlagye = Wio R in
Using the above inequality and applying Propositlénlfor U = BandV = (4B)°, we obtain for any > 0,

C
fB (%) f(4 |, 000 < g fB fdu

Passing to the limit ag T 1(4g)c, We obtain

f f(X)J(x, B(x, 5R))du(x) < f f(X)I(x, B(Xo, 4R)*)du(X)
B(xo.R) B(xo.R)
C

< —
W(X0, R) Jeo.R)

Since f is arbitrary, there exists a Borel sKf, g of measure 0 depending og andR such that, for all
Xe B(XO’ R) \ NXO,R!

fdu.

CI
<
W(x0,R) = W(x,5R)’
where in the last inequality, we have used the fact that by the right inequali2y7n (
W(x, 5R) < cW(Xo, R).

For a fixedR > 0, sinceM can be covered by at most countable balls B{&p, R), there exists a measurable
setNg with u(NR) = 0 such that10.1) holds for allx € M \ Ng.

J(x, B(x, 5R)°) <

(10.1)
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Next, set
N = URe0., Nr.
Thenu(N) = 0 and @0.]) also holds for alk e M \ N and all rationalRR € Q,..
For any reaR > 0, taking a sequend®,} c (0,R) N Q such thalR, T Rasn T oo, we obtain by {0.1)
and the right inequality in2.7),

C
c . . [ I i _—
J0¢ BOGSRY) < fim inf I(x B(x, 5Ra)’) < liminf ==

. C  (RY~ c’
< liminf —|—| = ———,
n—eo W(X, 5R) \ Ry W(x, 5R)
showing that 10.1) holds true for alk e M \ N and allR > 0. Let us setl(x, B(x, 5R)¢) = 0 for anyx € N

so that (0.]) is satisfied for alk € M andR > 0. Renamind@R by R/5 in (10.1), we conclude that condition
(TJ) is true. o

Recall that condition (C) means that the Dirichlet form is conservative.

Lemma 10.3. Let (&, ) be a regular Dirichlet form in B. Then the following statements are true.
(i) For2<q< oo,
(VD) + (TPg) = (DUE).
(i) Forl<q< oo,
(VD) + (TPg) = (Tdy).
(i) Forl<qg< oo,
(TP +(C) = (S.).
Consequently,
(VD) + (TPg) + (C) = (S)).
Proof. (i). Since condition TPy) holds for 2< q < oo, condition {TP,) is also true by4.1). Thus, for any
ball B := B(x, R) of radiusR € (0, R) and anyt < W(x, R),
IPe(X, MlL2ee) < C( L A t ) < ¢ )
V(x, W-1(x,t))/2  V(x, RY2W(x,R) ] = V(x, W-1(x, 1))1/2
Passing to the limit aR | 0 and using the semigroup propertymf we obtain that for anx € M and any
t < W(x R),

2

V(x, W-1(x, 1))
To prove condition PUE), we need to extend the above inequality to &any CoW(x, R) with Cq > 1 if
R < o. Indeed, for any € B(x, W-1(x,t)) and f € L2, applying (0.2 for the pointy andt < W(x, R),
and using {1.2 in Appendix, we have that

PO =| [ P @k@] < Im i

< c Ifll2 < ¢ Ifll2

T VYW, )2 T VW (x )2
thus showing thatd3, Eq. (6.2)] holds true. Therefore, b3, Remark 6.8], the inequalityL0.2 holds true
for anyt < CoW(x, R) with Co > 1, that is, conditionUE) holds true.

(ii). Let us first consider the case wherxlg < . We first prove that the jump kernélexists. Indeed,
fix xo € M andR > 0. Applying Propositiorl0.1for U := B(Xg, R), V := B(Xo, 2R)® and for 0< f,ge ¥
with supp() c B(xo, R) and suppg) c B(xo, 2R)®, we obtain by VD), (2.7), (TPy) and Hlder inequality
that

pe(% %) = 1P, )5 < (10.2)

f F(% f ) I(x. dy)du(x)
U Vv

< limint = fu (% fv oe(% )90 du(y)u(¥)
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1/g 1/q
< liminf fu f(x)( fv gq/du) ( fv m(x,y)qdu(y)) du(x)

P | ,
S “T—J(I;]f EL £O9) - llgll e ()1 (X )llLaerieydu(x) - (sinceV c B(X, R))

. 1 Ct
< timinf gl [ 100 o) (Y (TP)

f
= Cllgllv vy fu " R)l/(;fiN(x’ R (10.3)

CllgllLa (v
= V(xo0, R4 W(x0, R) fu f()du(x) (by (VD) and @.7)).

SinceF N Co(M) is dense inCo(M) and LY (V) is separable, we can choose a sequdger’, € ¥ N
LY (B(Xo0, 2R)°) with supp@n) < B(xo, 2R)C for all n > 1 such thatgn}> , is dense irLY (B(xo, 2R)°). Since
the function O< f e ¥ with supp(f) c U is arbitrary in the above inequality, there exidtg r € B(M)
with Ny, r € B(Xo, R) andu(Nx, r) = 0 such that for alk € B(xp, R) \ Nx,r @and alln > 1,

C'||gn|||_u|’(|3(x0 2R)°)
| 1J(x, dy) < —— .
fB<x0,2R>c SO0 < e AT, R

Since{gn},; is dense inLY (B(xo, 2R)°), by Fatou’s Lemma,\(D) and the right inequality in2.7), we
obtain that for allx € B(xo, R) \ Ny, r andg € LY (B(xo, 2R)°),

f gy dy) < f Ig)II(x dy)
B(x,3R)C B(x0,2R)®

Clignll « c

< liminf — ML (800 27))
N~ V(xo, RIVIW(xo, R

ClldllL (B(xo,2R))
~ V(x, RYYW(xo, R)
CligllLe om)

< - .

V(x, 3R)Y/TW(x, 3R)
For a fixedR > 0, sinceM can be covered by at most countable balls B{&p, R), there exists a measurable

setNg with u(Ng) = 0 such that10.4) holds for allx e M \ Ng andg € LY (M).
Next, set

(by (VD) and @.7)) (10.4)

N = UReQ, NRr.

Thenu(N) = 0 and (0.4 also holds for allk € M \ N, all rationalsR € Q. andg € LY (M).
For any reaR > 0, choosing a sequen¢B,} c (0,R) N Q such thalR, T Rasn 7 oo, by (10.4), (VD)
and the right inequality inZ.7), we obtain for alix e M \ N, all R > 0 andg € LY (M).

.. C||g|||_q’(|v|)
lim inf
fB e 9)II(x, dy) < limin VX 3R)TTW(x 3R)
L. C||g|||_q/(|v|) R @+,
lim inf A= D .
= VX 3RTTW(x 2R) (Rn) (by (VD) and @.7)
C||g|||_q’(|v|)

~ V(% 3RYTW(x, 3R) (10.5)

Therefore, for anyx € M \ N and anyR > 0, J(x, dy) is absolutely continuous with respectda(y) on
B(x, 3R)¢, and hence, the derivative

_J(x.dy)
o duty)

Iu(y) (10.6)
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exists onM \ {x} and satisfies
C
V(x, 3R)Y/IW(x, 3R)
Now, let us prove that the functiodx(y) has a jointly measurable version, s¥, y), in (X,y) € M x M.
Indeed, we fixR > 0, and consider the functiom,fy) — Jx(y)1exRry(Y). First of all, by the fact thad(x, dy)
is a kernel onM x B(M) and (L0.7), we obtain that the mag — Jylgxre from M to LY(M) is weakly
measurable since for amye LY (M), the function

o [ L)y = [ gm)Ieay

B(x,R)

[1IxllLa(B(x,3R)e) < (10.7)

is measurable. Secondly, sint®&M) is separable, by Pettis’ measurability theorem (88 Chapter V,
Section 4]), the map — Jx1gx R from M to LY(M) is strongly measurable. Thirdly, for any b&(o, k)
with o € M andk > R, we have by YD) and the right inequality in2.7),

1 C
<
V(x RYTW(x, R) ~ V(0, YT W(o,k)’

which together with10.7) implies that the functionx — ||Jx1gxrycllLagmy belongs td_-1(B(o, k). This shows
thatx — Jylgx Ry IS Bochner integrable oB(o, k) by Bochner's theorem (se&9, Chapter V, Section 5]).
Finally, by [16, Chapter Ill, Section 11, Theorem 17], any Bochner integrable mapping admits a jointly
measurable version. This shows thats Jx1gxre admits a jointly measurable version (depending=pn

on B(o, k). Sincek > Ris arbitrary, there is a jointly measurable functi® (x, y) in (x,y) € M x M such

that foru-a.a.x € M,

I 1exre®) = IP(xy), w-a.aye M.
Moreover, for anyR > r, we have fop-a.a.y € B(x, R),

IO(xy) = I LexRre) = KW Leene¥) = I0(xY).
Hence, we can define the jointly measurable funcipgy):
— i ®
J(x.y) ngFng (xy), XyeM,

such that for anyr > 0 andu-a.a.x € M,

IV 1laxRre(y) = I(xy), w-a.aye M.
Therefore, by 10.6), we obtain that

dj(x.y) = J(x dy)du(x) = I(x, y)du(y)du(x). (10.8)
Moreover, the function(x,y) can be symmetric since the measurapls symmetric. That is, we have
proved that the jump kerndl(x, y) exists.
Using(10.8 and repeating the arguments that leadli®.p, we obtain for allx e M\ N, allR > 0 and
ge LY (M).
C||g|||_q’(|v|)
J(x,y)d )
S 1993060000 < G

which, by the arbitrariness @f implies that for allx e M \ N andR > 0,
C
V(x, 3RVIW(x,3R)’
RenamingR by R/3, we obtain the inequality in conditioif {y), hence, provingTJ,).
It remains to consider the case whga . Indeed, by Lemma.8, condition UE.,) is true, from which,

one can obtainTJ.). In fact, one can similarly obtairi (.3 directly from condition UE.,), that is, for any
non-negativef, g € F with supp) c U, supp@) c V, andU NV = 0,

f f F(am)di(xy) < C f fu Vv(j(y))\?v((yi 53O0

13X, LaBx3R)e) <
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Hence, the measurgis absolutely continuous with respectgox 4 on M x M\diag, and hence, there is
someB(M x M \ diag)-measurable functiak(x, y) such thatd j(x,y) = J(x, y)du(x)du(y), and

C .

VY WLY) onM x M\ diag
showing that conditionTJ.,) is true. We remark that the similar result was also obtaine®,imThoerem
1.2] and 15, Proposition 3.3], but the conservativeness &%) was used. Here we do not need the
conservativeness.

(iif). We show (/D) + (TPg) + (C) = (TP) + (C) = (S,).

Under /D), since conditionTPy) for 1 < q < « is true, condition TP) is always satisfied by4(1), and
then (TP,) is true by ©.15. That is, for any balB, := B.(x, r) of radiusr < R, and anyt > 0, we have

J(XY) <

Ct 1
Pilge < — in =B..
B = g I 4

Hence, we obtain by usin@f, Lemma 6.1, p. 2634] that
“1g, < 2t in =
R

Moreover, by standard covering arguments, one can extend the above inequality &dg) R)tor e
(0, 2R,). That is, we have provedst), and then, $,) by (7.9).

1-pE

mi
We show that conditionHK) will follow from (D), (RVD), (DUE).
Proposition 10.4. Assume thafS, ¥) is a regular Dirichlet form in [2. Then
(vD) + (RVD) + (DUE) = (FKﬁE/(wﬁz))’ (20.9)

whereqa is the constant from22) andg, 8, are the constants fron2(7).

Proof. Fix B := B(xp, R) with 0 < R < oR, whereo ¢ (0,1) will be determined later on. We divide the
proof into four steps.
Stepl. We show that

forall0<t<T, (10.10)

K
esupp® := esuppB(x,y) < h( )
PP = e oY) < ey M\ Wik

whereT is defined by
T := W(x0, AKYR),
A, K > 1 are two positive constants to be determined, laigdthe function defined by
s if0<s<1
h(s) = - 10.11
S { s¥B2/By if s> 1. ( )

Indeed, by DUE) and 23, Eq. (6.18) in Corollary 6.9], ik,y € B and

t<T <W(XR) AW(Y,R), (10.12)
then we have
PE(X.Y) < pr(x.Y) < Gy
WV W-I(x, D)V (y, W-L(y, 1))
_ G V(%0,R) V(xo, R)
 V(xo,R) \/V(x, W-1(x,1)) \/V(y, W1y, 1)’ (10.13)

We will first choose large, K and then choose a smatlsuch that {0.10Q is satisfied. To do this, we need

to estimate the ter (Z\fvxf’l%)( 5 from above for any € B.
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Indeed, let € (0, T] andx € B. Denote by
Ret = Wi(xo,1) and Ryt := Wi(x1),
xo.t l( ) 1 Xt (x1) (10.14)
R 1= W%, T) = AKYR,
so thatRy, T > Ry, and
W(Xo, Rypt) =t = W(X, Ryt) < T = W(Xo, Ry, T)- (10.15)

Since the following argument is sensitive to constants, we denote the constariy) jifRvD) and @.7) by
Cv, Cr, Cy respectively.
Casel whenR < Ry, . In this case, iRy, > Rxt, then
d(XO, X) < R S R)(o,t7
from which, by the left inequality ind.7) and using 10.15, we see

Cg\}(Rxo,t )ﬁl < W(X0, Rxo.t) _t

< =-=1
Rx,t W(X, Rx,t) t

and so,
Rut = Co "Ryt
If Ry,t < Rxt, the above inequality is also true sinCg > 1. Therefore,
V(XO9 R) — V(XO’ RXO,T) V(X07 R) < V(XO9 RXO,T) V(X09 R)
VX Ret) V(X Rx) V(X0,Re1) — V(x, CQVl/ﬁleo,t) V (X0, Ry, T)

Ror | V(%R
%1/ﬂl RXo,t V(XO’ RXQ,T)

<Cy (by (2.3 and the fact thaRy, T > Ry,t)

a ’

R R \*
<Cu| et —| -ca(m] Gy @RvD)
CW 1Rxo,t RXO!T

AKYeR
-1/B
CW 1RX0,t

CR(ML,R) (by (10.14)

@ " R \*
= CyCrCy 1A% K10 K (—)
RXO7t
/ / R K R
= CyCrCP1 A K /* . Kh|=——]| < —h|— 10.16
VERw (RXOJ)_ C1 (RxO,t)’ ( )
provided that
CvCrC1 A7 K= < L, (10.17)
Sincex € B is arbitrary, we also have fore B
V(x,R) K ( R )
— = 7 < _—h|— 10.18
V(y’ Ry,t) C1 I:exo,t ( )

provided that {0.17 holds.
Plugging (0.19, (10.18 into (10.13, we obtain for any,yin B

o )
pr(xy) < Voo R clh Rt ,J(B)h W-L(xo, 1))

thus showing10.10, provided that{0.17) is satisfied.
Case2 whenR > Ry, . In this case, iRy, < Ry, then by D)

V(xR _ V(x.R) R\ R \%2/h R
= <Cv|lg—| <Cvlg— = Cyh[—].
VR ~ VX Ren) — “\Ret) = Y v
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If Ryt > Rxt, thenR > Ry and so, by(VD),
V(x0,R)

Moreover, by 2.7) and (L0.15,
RVT  W(x,R W(xo, R R \*
Rxt W(X, Rx,t) W(xo, Rxo,t) Ryo.t
It follows from the above two inequalities that

V(%o, R) R\’ L 2006y, [ R
——— <Cy|l=—] <CJC, " |=— =CyC,,*h|—], 10.19
V(X Ryt) V(in) = Vw Ryt Viw Ryt ( )
no matteRy,+ < Ryt Or Ryt > Ryt Sincex € Bis arbitrary, we also hawee B
V(xo0, R) 20/B ( R )
<CyC.,/*h|—]. 10.20
V(y, Ry,t) Viw Ryt ( )

Therefore, plugging10.19, (10.20 into (10.13, we obtain

B C1 V(x0,R) V(x.R)
Pr(%y) < V(xo, R) \/V(X, W-1(x, 1)) \/V(y, W-1(y, 1))
Cy

20/, (R K ( R )
V(xo, R)CVCW h(RxO,r)S u(B)h W-1(xo,1) )

CiCvCoPr < K. (10.21)

<

provided that

thus showing10.10.

So far we have proverl(.10, provided that assumption&.129, (10.17) and (0.2 are all satisfied,
which will be confirmed later on.

Step2. We further show that there exists a constant 0 such that
C h( R
1(B) \W-1(xo, 1)
Indeed, note thatl0.10 holds fort = T. We claim that it also holds far = 2T. As a matter of fact, let
Ru2T := Wi(x0, 2T), that is,

esupp? < ) forallt> 0. (10.22)
B

W(Xo, RXO,ZT) = 2T.
Note that
Rep.2T = Ry T = AKY'R> R
whereRy, 1 is given in (L0.14. By (10.11) and (10.10, we obtain for allx, y in B,

0B, (x.Y) = fB P04 2PHE k(@) < uB)esump?)’

=u(®) (u<KB> " ( R:,T ))2 i ,;;) (RzT )ZQ

22 () 8 ()
=K : . . 10.23
( RoT )/ \RoT/  #(B) \Ry ot ( )

By the left inequality in 2.7), we have
C_l(Rxo,ZT )ﬁl - W(xo,Reor) _ 2T _
w R, ~ W(X0, Ry,T) T
Plugging this inequality into1(0.23 and then usingl(0.14, we obtain

Reot\*( R \* K R \
800 <K (27 (7))
Par(x.y) RoT ) \RoT/)  #(B) \Ry ot

2.
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R K R \*
<K-(2C a/ﬁl.( )
< K- (2w) AKYeR/ u(B) \ Ry 21

K R \
affyy-a, T~
< (2w M(B)(Rxo,zT) |

thus showing thatl(0.10 holds fort = 2T, provided that

(2Cw)¥P1 a7 < 1. (10.24)

We now first choose a large numbesuch that {0.29 is satisfied, and then choose a large numbsuch
that both (0.17 and (0.2]) are satisfied. We will verifyZ0.12 by choosing small enough later. In the
rest of the proof, we will fix these choices ofandK.

We turn to show 10.22. Indeed, we see by induction that((10 holds att = 2"T for any integer

n=0,1,2,---. Since the functioh — esug pE is non-increasing (cf.26, Lemma 3.9]), we obtain that, for
2T <t < 2MIT,

K R
B B
esuppt < esupp2nT < (B)h(W—l(xo 2"T))' (10.25)

Let us estimate the terw Indeed, by 2.7) and the monotonicity oiV-1(xo, -), we have
R _ R W1(xo, 2™1T)
W-1(x0, 2T) — W-1(x0, 2M1T) W-1(x0,27T)
R (o WO W, 27T\
= W%, 21T \ Y W(x0, W-I(x0, 27T))
R 2n+1-|- 1/84 R
< (cw ) R
W-1(xo, ) 20T W-1(xo, 1)
Moreover, using the fact that> 2"T = 2"W(xg, AKY?R) > W(Xo, R) and using {0.11), we have

- (2Cw) YA

R 3 R ¢ R 1/ﬂ1)
(i i0zm) = (Witezn) = wioas@
_ ap (R )a _ alfy ( R )
= (20w (W‘l(Xo,t) = GO W06,
Plugging this inequality into1(0.29, we obtain
K h( R )< K(2Cw)*/As ( R )
u(B) \W-(x0,2T)) = w(B) WL(xo,1) )’

This proves {0.29 by settingC = (2Cw)*/A1K.

Step3. We show EK,).

Indeed, leU be a non-empty open subsetRfLet Ry, = W™(xo, t) be as in £0.14. Using the fact that
pY < pB and the Cauchy-Schwarz inequality, we have frdf.22 that, for anyf € 7 (U) and anyt > 0,

(F10)= [ [ e onueico) < -osh(- it

Cu(U)
oGl

Since the function (f — P%J f, f) monotonously increases & f, f) ast goes to 0, it follows that

esupp <
B

&(f, 1) > %(f - PP f)= %(||f||§— (PP, 1)),

from which, we see that for any non-zefe ¥ (U) and anyt > 0

&(f,f) 1(. CuU) [ R
iz Zf(l_—u(s) h(%)). (10.26)
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Sincet > 0in (10.26 is arbitrary, we will chooséto satisfy the identity
O, (R )]
u(B) Ryt

2’
that is,
R\_ 1 u®B)
hl—|=—=—F+F:=a
(RxO,r) 2C u(U)
If a < 1, we have by definition dfiin (10.17)

h(i)_(i)“_a,
Rot/ \Rot)

that is,Ry,t = W1(xo, t) = aY/?R, and so by 2.7)

1 u(B)

—Bala
xﬁ@) Woe.R)

t = W(xo,a Y*R) < Cw (2 W(xo. R) = CW(

Then, it follows from (0.2 that
et f) 1 c’ (/J(B) )ﬁz/“ .

> =2 —= ifa< 1 10.27
IfE =2~ Woo R \u0) (102
On the other hand, & > 1, then by definition10.11)

R R B /By
h —_— = — =a,
( Ryo.t ) ( Ryt )

that is,Ry,t = W™(xo,t) = a#1/(®2)R, and so by 2.7)

1 ,U(B) )—ﬁ%/(aﬁz)

t = W(xo, a PV(®P2R) < Cyy (a_ﬁl/(“ﬂz))gl W(xo, R) = Cw (ZCH
U

W(Xo, R).

Then, it follows from (0.2 that

amn>£>_c’(M&fM@
1T~ 2~ Wik, R \u(U)

In both casesl(0.27 and (L0.29, we always have that, using the fact tlﬁ% >1,

gff) ¢ (;;(B))V
uU)/ °

if a> 1. (10.28)

Amin(U) = inf
)= W 112~ W(xo,R)

wherey is given by
v = min(By/a. 51/(apy)) = A1/ (aBy)
sinceB; < B,, thus proving conditionRK) with v = ﬁi/(aﬂz).
Step4. Finally, it remains to verify10.12. This can be achieved by choosing the valueroiWithout
loss of generality, assuntatR < co; otherwiseW(x, R) = oo, and (L0.13 is trivially satisfied.
For anyx in B, sinced(x, Xg) < R< R < R, we see byZ.7)

W(xo.R) _ Cu ( B)ﬂz e
wWxR -~ (R '

and so 10.12 will be secured if _
T < CyW(%o,R). (10.29)
On the other hand, R < o'R, then by 2.7),
T = W(xo, AKY*R) < W(x0, AKY*(0R)) < Cuw (AKY ) W(o, R).
Now, we can choose to be sifficiently small such that

Cw (Ko )" < Cyt < 1.
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With the choice of the above, we conclude thatl(.29 is true, which in turn implies thatlQ.12 is
secured. m]

Definition 10.5 (Capacity upper bound)We say that the conditionCap.) is satisfied if there exists a
constantC > 0 such that for all ball$ of radii R lessthanR

capé B, B) < C%. (10.30)

The authors proved in2@, Theorem 2.11] that under mild assumptionScé) < (ABB) + (Cap.).
While, in the following lemma, we prove that under the same assumptidB8 ) = (Cap.), and conse-
quently, Gcap < (ABB).

Lemma 10.6. Let (&, ) be a regular Dirichlet form in B without killing part. Then, we have

(VD) + (TJ + (ABB) = (Cap.). (10.31)
Consequently, under conditiofig¢D), (FK) and(TJ), we have the following equivalence:
(Gecap © (ABB). (10.32)

Proof. Let B := B(Xo, R) with Xo € M andR < R. We divide the proof 0f10.3]) into two cases.
Case 1:R < 3R Applying (ABB) for By := 1B, B, Q := 2B andu = 1, we have that there exists
¢ € cutat(Bp, B) such that
C1 ciu(2B)
dar ssu—fd:su—.
fzs () xezg WX R/2) Jop xezg W(x,R/2)

Then, by 2.5), (VD), (TJ) and @.7), we have
— _ 24
o0.0)= [ ara@+2 [ - w09-s0)dicey)

2
Jparm@ 2 [[ 60073 oot

c1u(2B) c
iggm + ZfBJ(x, B(x, R)*)du(x)

c1u(2B) C2

RSy W
LB WOoR) u@B) ¢ (W(o.R)
~ W(B) xe28 W(X,R/2) u(B)  W(B) Jg W(X,R)
< Cﬂ—(B)
- W(B)’

which is the inequality inCap.).

Case 2:1R < R < R(whenR < ). By (VD), there exists an integéd > 0 depending only on the
constant inYD) and{x;, 1 <i < N} c $Bsuch thaB c Ul B(x, zR). Similar to Case 1, for eack, one
can findg; € cutaf(B(x, 3R), B(x, 3R)) such that

dy(x)

CiV(x, 3R
W(x;, 3R)

N
¢ = \/ é;-
i=1

Clearly,¢ € cutcff(% B, B). Moreover, by the subadditivity of capacity ari7), we have

o GV 3R ZN] CiV(x0.R) W(x0.R) _ Cu(B)
i=1

&(¢. ) < ; W(x. IR) W(xo,R) W(x,3R) = W(B)’

Sy, ¢i) <

Define
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which is the inequality inCap.). Hence we obtainGap.).

Finally, (10.32 follows directly from (L0.31) and 24, Theorem 2.11]. m|
By (7.1), (7.2 and (L0.32, we obtain that under conditioWD),
(FK) + (ABB) + (TJ) = (S:) © (S) = (Gcap. (10.33)

Theorem 10.7.Under condition(VD), we have
(FK) + (Gcap + (TJ) & (FK) + (ABB) + (TJ)
= (9 +(TJ)
= (TP).

Proof. The first equivalence follows directly froni@.32. The rest conclusions follows from the following
implications:

(FK)+ (ABB) + (T = (S;) ((10.33)
S) e (O ((7.1)
(S;) e (S]) (Proposition7.4(ii))
(T) <o (TJ) (Proposition7.4iii))
(VD) = (VD.) (Proposition6.4(i))
(VD) +(S)+(Td) = (TR,) (Lemma9.3
(TP,) = (TP) (Lemma9.?).

O

The next theorem contains a number of equivalent conditiongfey) ¢ (C) that constitute a substantial
part of the proof of the main Theoretnl5below.
Theorem 10.8.Let (&, ) be a regular Dirichlet form in B without killing part.
(i) Forqe (1, ], under conditiongvD) and (DUE), we have
(TPy) + (C) & (9 + (TJy) = (Geap + (TIy) = (ABB) + (T)y) (10.34)
and
(VD) + (FK) + (ABB) + (T) = (9). (10.35)
(i) For g e [2, ], under conditionVD), we have
(TPg) + (C) & (DUE) + () + (T)
= (DUE) + (Gcap + (Tdy) (10.36)
= (DUE) + (ABB) + (TJy)

e (VD) + (FK) + (ABB) + (TJ) = (S) + (DUE). (20.37)
(iii) For g e (1, o], under conditiongVvD), (RVD) and(DUE), we have
(TPy) + (C) & (9 + (TL) & (Geap + (TJy) & (ABB) + (Ty). (10.38)
(iv) For g e [2, o], under conditiongVvD) and (RVD), we have
(TPy) + (C) & (DUE) + (S) + (TJy) @ (DUE) + (Gcap + (TJy) (10.39)
& (FK) + (Geap + (T) & (FK) + (ABB) + (TJy) (10.40)

Proof. (i). In the proof we use§;) instead of §) as these two conditions are equivalent Byl). The
implication
(TPg) + (C) = (S4) + (Tdy)
in (10.39 follows from the following sequence of implications:
(vD) + (DUE) = (DUE,) (Proposition7.4(i))
(VD) +(TJy) = (TJa) (Proposition7 .4(iii))
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(VD)+(T%) = (Td) ((7.10)
(S;) = (S]) (Proposition7.4(ii))
(S})+(Td) = Inequality 8.15 (Proposition8.7)
Inequality 8.19 + (S;) = Inequality 8.17) (Lemma8.8)
Inequality 8.17) + (TJ,) = Inequality 8.19) (Lemma8.9)
(VD) = (VD.) (Proposition6.4)
(VD.) + (DUE,) + (S;) + (TJ.) = upper estimate of truncated heat kerq¢k,y) (Lemma8.12)
(VD.) + (DUE)) +(S)) +(TE) = (TP)forl<qg<c (Lemmasd.4and9.6)
(VD) +(TP) = (TPyforl<qg<oco (Lemma9.7)
(S)) = (S8) = (C) (20, Lemma4.6, p. 3327]).

The implication
(TPg) +(C) = (S)) + (Tdy)
in (10.39 is proved as follows:

(VD) +(TPy) + (C) = (S;) (Lemmal0.Jjii))
(VD) + (TPy) = (TJy) (Lemmal0.Jii)).

The rest implications in1(0.39 follow directly from (10.33 and the following implication:

(VD) +(TXy) = (T) ((7.9)
(Geap +(TJ) = (ABB) ([24, Lemma6.2])

The implication (0.35 follows from the following implications.

(VD)+ (M) = (1) ((7.3)
(VD) + (FK) + (ABB) + (TJ) = (S;) ((10.33).

(ii). The formula (0.39 follows from (10.34 and the following implication:
(VD) +(TPg) = (DUE) (Lemmal0.d(i)).
The implication 0.37) follows from (10.35 and the following implications:

(VD) + (FK) + (ABB) + (TJ) = (Gcap ((10.33)
(VD) + (FK) + (Gcap + (TJy) = (DUE) (Proposition2.8).

(iii). The formula (L0.3§ follows from (10.39, (10.39 and the following implication:
(VD) + (RVD) + (DUE) = (FK) (Propositionl0.9.
(iv). The formula 0.39 follows from (10.39, (10.37% and the following implications:

(VD) + (RVD) + (DUE) = (FK) (Propositionl0.9
(VD) + (FK) + (Gcap + (TJ) = (S)) ((7.2)
(VD) + (FK) + (Gcap + (TJ;) = (DUE). (Proposition2.8)

We now prove the main Theoreiils

Proof of Theorem2.15 The statement of this theorem is contained in the equivaled€e39, (10.40 and
the implication

(TP) = (UEg. (Lemma9.8)
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In the rest of this section, we are to prove Theoi@d) which states the result on heat kernel estimates
when condition Y) is satisfied. Before that we need to introduce the conditias() and to prove some
lemmas. Note that if\() is satisfied, then bothMD) and RVD) are satisfied withr = o’. Recallthat
R = diamM is the diameter oM.

Definition 10.9 (Nash inequality) We say that conditionNash holds if there exist two numbefs, v > 0
such that, for any € 7 n LY(M),

U < ¢ (&, v + R IuZ) Iul. (10.41)
If necessary, we label conditiohlésh by (Nash) to emphasize the role of the exponent

Lemma 10.10. For anyv > O,
(FK)) & (Nash).

Proof. For the implication =", we use the approach o2§, Lemma 5.4]. Fix a quasi-continuous function
ue ¥ n LY(M). Without loss of generality, we can assume that 0 since&(|ul, [ul) < &(u, u). If [jully = 0
then there is nothing to prove. Hence, we assumethiat> 0. For anys > 0, set

Es:={xe M:u(x) > s},
and note that

1 llull2
Es) < — < —.
uE < 3 | vai< g

Fix ¢ > 0 and choose an open ddt be an open set such thet ¢ Ugs andu(Us \ Es) < &. Since
(u-194(x) = 0forall x € EgandEs c Us, we have § — s), € ¥(Us). Then, by the Markov property of
(&) and .12, we have for anys > 0,

E(u,u) = E(U-9)4, (U—-19),) > 21(Us) f (u—-19)2du.
Us
Sinceu > 0, we have
fu (U-9)5du = fM (U-9%du > fM (U® - 2sudu = [lull3 - 2]lulls.

On the other hand, since
H(US) <U(E) + £ < 0L 4 g,

we have by FK)) that

A1(Ug) > cu(Ug)™ _R” > C(% + 8) -R".

Combining the above inequalities and letting»> 0, we obtain, for anyg > 0,

&E(u,u) > (c(%)_v - ﬁ_ﬁ) (lul3 - 29).

2
Choosings = % in the above inequality, we obtai@.47).

Now let us prove the implication&”. Fix a non-empty open subskt. Letu € #(U) \ {0}. It follows
from (Nash) and the inequalityjull; < +/u(U)]ull2 that

¥ — 2v
3 < € (& w + RPIUE) (Vi)

that is
U2 < C(a(u, w+R” ||u||§)ﬂ(U)V,

which together with%.12) yields FK)). O
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Note that under3.1) and @.2), the inequality 2.21) in condition DUE) becomes
(X, x) < Ct™/P, (10.42)
forallt<ﬁ6, X e M.
Lemma 10.11. We have
(FK3,) © (Nashy,) < (DUE).

Proof. By Lemma10.1Q it suffices to prove the second equivalence. Let us first prove the implication
(Nash/,) = (DUE).
Recall that by 10, Theorem 2.1], Nash,,) is equivalent to theltracontractivityof the heat semigroup

{Pt}t=0, that is, to
&7
IPfllo < CER P fll, t>0, feLY(M) (10.43)

On the other hand, by Theorehi.8(for p = 1, S = {M} and¢(M, t) = Ceﬁ_ﬁtt‘“/ﬂ) in Appendix, the heat
semigroup is ultracontractive if and only if there exists a regular &esst{F} such that, for any > 0
andx € M, pi(x,-) € C({Fx}) and
p(xy) <CER W8 t50, xyeM. (10.44)
Clearly, (L0.44 implies (10.42 and, hence JUE).
Let us prove the converse implicatioD(E) = (Naskh/,). By (10.42 and the semigroup property, we
have, for anyt < ﬁB andx,y € M,

pi(x.Y) = fM 2% 2)Py2(z. (@) < l1py20% Mallpy2C- Wiz

= pe(x Q) pely, y) < Ct2,

If R = o then we have0.44 and, hence,10.43 and (Nash/,). Let R < o0. Then we only need to verify
(10.49 fort > R Using the above inequality far= ty := %(ﬁ)ﬂ, we obtain

pi(x.Y) = fM Peoto(% 2P (2 Y)u(@) < CE™ fM Proto(% ()

<Ct# < Clefot b = 'R ok,
O

Now we are to prove Theoref4. Note that underd.1) and @.2), conditions §;), (S.), (TJ.), (TP,) are
the same to%,), (S), (TJ), (TP) respectively.

Proof of Theoren3.4. (i). We first prove the equivalences iB.5). The first equivalence in3(5) follows
from (10.32 in Lemmal0.6
The implication

(FK5,,) + (Geap + (TJ) = (TP) + (DUE) + (C)

Ja

is proved as follows:
(FK},) = (DUE) (Lemmal0.1)
(FK,,) + (Geap +(T) = (S) = (S (Remark3d.3and (7.2)
(SH+(T) = (TP) (Lemma9.d
(9 = (C) (20 Lemma4.6, p. 3327])
The implication

(TP) + (DUE) + (C) = (FK},,) + (Gcap + (TJ)

[a
is proved as follows:

(DUE) = (FKj,) (Lemmal0.1])

(TP +(C) = (S;) (Lemmal0.Jiii))
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S) = (9 = (Geag ((7.2)

(TP = (TJ) (LemmalO.?.
For the last equivalence i), it suffices to prove that

(TP) + (DUE) = (TP7) + (UEy).

Indeed, under conditiorDUE), the heat kernel exists, and then it is trivial thaP{ = (TPy). It remains to
prove that
(TP) + (DUE) = (UEy).

The argument here is similar to the proof 8f Lemma 12.6]. Indeed, fix,y € M with x # y andt < R,
Let

R:=d(xy).
Note that the inequality2.2]) in condition QUE) implies (10.449 (see the proof of Lemm&a0.1]). By
semigroup property andP) + (DUE), we have

pi(x.Y) = fM p2(% 2Py2(Z. Y)du()

- (fB(X,R)C " L(V,R)C) Pu2(X, 2)Py2(2 Y)du(2)
. py2(z Y)du(2)  (by (10.49)

<Ct @b f pr/2(X, 2du(z) + Ct™o/# f
B(x,R)¢ B(y,R

= CtPPyolpxRye(X) + Ct*PPyolpyre(Y)
t

sCt‘“/ﬁ(l/\ —) by (TP)).
= (by (TP))

which yields UE;) (see also Remark.14).

(i). The first equivalence in3.6) follows from the first equivalence ir8(5) and the implicationTJ;) =
(TJ) (by (7.3). For the rest equivalence, the implication

(FKG,0) + (Geap + (Tdg) = (TRy) + (DUE) + (C)
follows from the following implications:

[

(FKém) = (DUE) (Lemmal0.1]
(M) = (1) ((7.9)
(FKG) +(Geap +(T) = (S) = (§ (Remarkd.3and (7.2)
(DUE) +(S,) +(TX) = (TPy) (Lemmas9.4and9.6)
(S = (©) (20, Lemma4.6, p. 3327])

The implication
(TPy) + (DUE) + (C) = (FK;

follows from the following implications:
(DUE) = (FKj,) (Lemmal0.1])
(TP +(C) = (Sy) (LemmalO.Jiii))
S) = (9 = (Geap ((7.2)
(TPy) = (Tk) (Lemmall.Jii)).
For the last equivalence i13.6), it suffices to prove that
(TPg) + (DUE) = (UE).

10) +(Geap + (TJ)

Similar to the above arguments, we fixy € M with x # y andt < R Let

R:=d(x,y) and ¢ := 9

q-1
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Note that the inequality2.21) in condition QUE) implies (L0.44 (see the proof of Lemm&0.1]). By
semigroup property and @;) + (DUE), we have

pi(x.Y) = fM By2(% DPy2(Z. ()

- (j|;(>(,R)C " ‘L(y,R)c) Pt/2(X, 2)Py2(z Y)du(2)

< NIPy2(%, xR P20 Ve xRy
+11Py2(Ys MLay,RolPy2(% e y.Re)

/ t
- /(ﬁq) . ’ . ’
<C (t ¢ A Ra/q'+,8) (||pt/2( YWl @Ry + 1Py2(%, )l (B(y,R)C))

where we have usedPg). Next, using

1 1/
Fllg < I p117

and that by £0.49) ||py/2(:, Y)lle < Ct%# and||py/2(-, Y)ll1 < 1, we obtain

/ t
~a/(Bq’) —a/(B9)
Pe(x.Y) < C(t A FW,+ﬁ)t ,

that is, UEg) (see also Remark.14). m|
11. ApPENDIX
In this appendix, we collect some facts that have been used in this paper.
11.1. Miscellaneous issues.

Proposition 11.1. Assume that conditiofivD) holds and W satisfie(7). Then there exists a constant
C > O'such that, for all t~ 0 and all points xy € M with d(x,y) < W=(x,t) v W(y, 1),

LWk
< Wwigy <C (11.1)
a1 YOOWTY) (11.2)

T VW) T
Proof. Lett > 0. Assume that
d(x,y) < W(x, t) v Wi(y,1).
Without loss of generality, assume that
d(x,y) < W(x,t),

otherwise, both inequalitiesl{.1) and (11.2 are still true by exchanging the order rfy. Denote the
constants in\{D) and @.7) by Cy, Cy respectively. Let us divided the proof into two cases.
Casel. WL(x,t) > W-L(y,1). Sinced(x,y) < W-1(x, t), we have by the left inequality ir2(7)

(W)Y WOOW )t
MWy ) T WL Wiy )t
thus showing thatl(1.1) holds forC := C\%ﬁl.
Let us prove {1.2. Indeed, sincel(x,y) < W-1(x,t), we have by YD) and (L1.1),
V(x, WL(x, 1)) - (W‘l(x, t)
VoW, 1)~ AWy, 1)
thus showing the right inequality ii{.2). On the other hand, Sinakx,y) < W-1(x,t), we see by\{D)
V(y, Wy, 1) _ V(. W(x 1)) Wi(x, 1))
< <Cy =Cy,
V(x, W-1(x,t)) = V(x, W-1(x,1)) W-1(x,t)
thus showing the left inequality iri{.2.

a
) <Cy Cs\;ﬁl s
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Case2. WL(x,t) < Wi(y,t). Sinced(x,y) < W(x,t) < W-i(y,t), we have by the left inequality in
(2.7 that

oot (WY WO W)t
VAWt T WeCWL(t) Tt
thus showing thatl(1.1) holds again foC := C\%ﬁl.
Let us prove {1.2). Indeed, sincel(x,y) < W1(x,t) < WL(y, 1), we have by YD)
VWD) VOOW YY) (W-l(y, t))“ _
VOWI. D) © VWD) AWy D)
thus showing the right inequality irl{.2. On the other hand, Sina¥x,y) < W=1(x,t) < W™(y,1t), we
have by ¥D) and (11.1),

il

VWD) _ o (WD)
VW6 0) ~ Y AW )
thus showing the left inequality iri(.2). i

a
) <Cy Cwﬁl R

The following was proved ind6, Lemma 2.12].
Lemma 11.2. Let (&, ) be a Dirichlet form in 2. If

2

fi i> f, sup&(f,) < oo,
n

then fe ¥, and there exists a subsequence, still denotedjysuch that § & weakly, that is,
E(fn. ) = E(1.¢)

as n— oo foranye € ¥. And there exists a subsequer{dg} such that its Cesaro mea#ZE:l fre
converges to f i©;-norm. Moreover, we have

&(f) < lim inf &(fo).

11.2. Comparison inequalities. Recall the notion of the-local Dirichlet form in SubsectioB.
The following proposition is essentially the same 28, [Theorem 4.3, p. 2627]. Here we replace the
compactness dfl, in [27, Theorem 4.3, p. 2627] by the assumption that ffi(td),, M) # 0.

Proposition 11.3. Assume that&, ) is somep-local regular Dirichlet form forp > 0. Let U be an open
set such thatutaf(U,, M) # 0, and let u be subcaloric if0, To) x U where T € (0, +o0]. Assume that
u(t,-) € L=(M) for each te (0, Tp), and

2
ut) =30 ast—o0. (11.3)

Then for any compact subset K of U, any (0, To), and for almost all x U,,,

u(t.x) < (1= PP1u(¥) sup llu(s =, k).

O<s<t

provided thatsupy s [1U+(S, *)llL=(u,\Kk) < co.

Proof. Note that the set), in [27, Theorem 4.3] is required to be precomact, while we only assume that
cutaf(U,, M) # 0. However, the proof is this proposition is parallel to that2id,[Theorem 4.3].

Indeed, the compactness 0f, is used in three places in the proof &7 Theorem 4.3]. Firstly, the
compactness df), implies that cuté(U,, M) # 0, which is our assumption. Secondly, it is used 2,[
Theorem 2.9] to make sure that the Beth Q is compact. However, this is true sinkeis compact in our
assumption. Thirdly, the compactnesslyf implies thatu(U) < co. To overcome this diiculty, we can
take a sequence of precompact open 8dij-1 such thatU; T U asi — o« andK c U;. Applying [27,
Theorem 4.3] for eacll;, we obtain foru-a.ax € (Uj),,

u(t,x) < (1= PP 15,(%) supllus(s )i, k)

O<s<t
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< (1= PP 1u5,(0) sup liu(s e, k)-

O<s<t
thus showing this proposition by passing to the limit as co. O

By using propositioril.3and repeating the arguments B[ Corollary 4.8 and Remark 4.9], we have
the following result.

Corollary 11.4. Assume thaf&, F) is somep-local regular Dirichlet form forp > 0. Let U Q be open sets
such that U c Q andcutaf(U,, Q) # 0. Then, forany < f € L*(M), any t> 0 and foru-a.a. xe Up,

PET(X) - PYT(X) < (1= PY1u(x) sup [IPSfllL=, k). (11.4)
se(0,4]NQ

where K is a compact subset of U.
Using (L1.4 and repeating the proof o2}, Theorem 5.1], we have the following.

Corollary 11.5. Assume that&, F) is somep-local regular Dirichlet form forp > 0. Let U V, Q be three
open sets such thatW V, c Q. Assume that the Dirichlet heat kerndt pxists and is locally bounded in
R, xQx Q. Thenforany & > 0andu-a.a. xe U,ye V,

p2(x.Y) < f oV (. 2pY (2 Y)du(?)
M

(11.5)
+(1-PY1u(x) _Sup [P e, * (1-PY1v(y)) SUp [[PF g

11.3. Maximum principle. The following is elliptic maximum principle.

Proposition 11.6([25, Proposition 4.6, p. 116])Suppose thaiE, ) is a regular Dirichlet form. Left > 0
andQ be a non-empty open subset of M. K o satisfies

EU, ) +A(u,9) <0, YO0<¢peF(Q),
u+ € ?/(Q)v
thenu< Oa.e. inQ.
The following is parabolic maximum principle.
Proposition 11.7([25, Proposition 4.11, p. 117])Suppose that&, F) is a regular Dirichlet form. Fix
T € (0, +o0] and an open subs€t c M. Ifu: (0, T) — F is a subcaloric function if0, T] x Q and satisfies
u,(t,) e F(Q) foranyte (0,T)
L2(Q)
u () — 0ast— 0,
thenu< Oa.e. on(0, T) x Q.

11.4. The existence of heat kernel.The following result shows that the existence of heat kernels follows
from some generalized ultracontractivity of semigroups.

Theorem 11.8([22, Theorem 2.2]) Let(E, ) be a regular Dirichlet form on &(M, 1) for a metric measure
space(M, d, 1), and let{P}i-o be the associated heat semigroup ¢n Eix T € (0,00] and1 < p < 2.
Assume that there exist a countable fansilgf open sets with M- UysU and a functionp : Sx (0, Tp) -
R, such that, for each & (0, Tp), U € S and each fe LP n L2

P FllLey < (U, DIl fllp.

Then{P;}-o possesses a heat kerng{>py) in (0, ) x M x M that satisfies Definitio2.6 for some regular
&E-nest{Fn} , of M, and

pi(x,y) =0 foranyt> 0
whenever one of points X, y lies outsidg , F,. Moreover, for each € (0, To) and xe U

where p = ;% is the Holder conjugate of p, and for ady< q < p'.

Ipe(% )llq < ((U, 1)@ DD
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11.5. Essential supremum. The notion of theu-regular&-nest{Fy} is given in Sectior?.

Proposition 11.9. Let B, ¢ B; be two metric balls such that;B B, # 0. Then for any quasi-continuous
VeF,

f v(y)J(x, dy) < (esup/)f J(x,dy) forq.e. xe Bo.
B1\Bz B1 Bg

Proof. By [19, Lemma 4.5.4(i), p. 184], the measuyreharges no part dl x M\diag whose projection on
the factorM is exceptional. Furthermore, b9, Theorem 4.2.1(ii), p. 161], a sét c M is exceptional
if and only if Cap(N) = 0. By [19, Theorem 2.1.2(i), p. 69], there isiaregular&-nest{Fy} such that
v € C{Fy}. SetF := |J Fk, whose complement is exceptional.

k>1
Hence, it follows that
f v(y)J(x, dy) = f v(y)J(x,dy) forq.e.xe Bo.
B1\B2 (B1\B2)nF

Moreover, by P4, Proposition 15.3 in Appendix], we have that for agy
f v(y)J(x, dy) < ( sup v)f J(x.dy) < ( supv)f J(x, dy) = (esup/)f J(x, dy).
(B]_\Bz)ﬂl: (B]_\Bz)ﬂl: B(Z: B BS

(Bl\Bz)ﬂF BinF 1 5
O
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