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Abstract. We study the upper bounds of heat kernels of regular Dirichlet forms (with a jump part) on a dou-
bling metric measure space. We prove an equivalent characterization of a certainLq-estimate of the tail of the
heat kernel outside balls in terms of the Faber-Krahn inequality, the generalized capacity condition, and the
Lq-estimate of the tail of the jump kernel. As a consequence, we obtain a pointwise upper bound of the heat
kernel with a polynomial decay in distance depending on the parameterq. In the case of Ahlfors regular mea-
sure, these results are valid for allq ∈ [1,∞], while in the general case of doubling measure we have to assume
thatq ∈ [2,∞]. Thanks to the presence of the parameterq, our results cover much more general class of jump
kernels than was previously possible. The proofs use new methods as well as the results of the previous works
[24, 23] of the authors.
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1. Introduction

In this paper, we are concerned with the heat kernel upper bounds for a regular Dirichlet form (E,F ) with
jump part on a metric space equipped with a doubling measure.

Let (M,d) be a locally compact separable metric space and letμ be a Radon measure onM with full
support. The triple (M,d, μ) is referred to as ametric measure space. Let (E,F ) be a regular jump type
Dirichlet form in L2 := L2(M, μ) associated with a Radon measurej defined onM × M\diag:

E(u, v) =
"

M×M\diag
(u(x) − u(y))(v(x) − v(y))d j(x, y). (1.1)

The Dirichlet form determines the heat semigroupPt = exp(tL) in L2, whereL is the (negative definite)
generator of the Dirichlet form. Theheat kernelof (E,F ), denoted bypt(x, y), is by definition the integral
kernel of the heat semigroup{Pt}t>0. Besides, the heat kernel coincides with the transition density of the
jump process associated with (E,F ).

If j is absolutely continuous with respect toμ × μ, then the densityJ(x, y) := d j
d(μ×μ) is calledthe jump

kernel. For example, ifM = Rn and

J(x, y) =
c

|x− y|n+β
, x, y ∈ Rn

where 0< β < 2 andc = c(n), thenL = −(−Δ)β/2. In this case the heat kernel is the transition density of a
symmetric stable process of indexβ, and it admits the estimate

pt(x, y) '
1

tn/β

(

1+
|x− y|
t1/β

)−(n+β)

. (1.2)

Here the symbol' means that the ratio of both sides are bounded from above and below by two positive
constants.

We aim at similar estimates of the heat kernel in a general metric measure space (M,d, μ). Denote by
B(x, r) open metric balls inM. Suppose for the moment thatμ is α-regular for someα > 0, that is, for all
x ∈ M andr > 0,

μ(B(x, r)) ' rα. (V)

By a result of Grigor’yan and Kumagai (cf. [30]), if the heat kernel is stochastically complete and satisfies
a self-similar estimate

pt(x, y) ' t−γΦ

(
d(x, y)

t1/β

)

for someβ, γ > 0 and some functionΦ then it is necessarily the following estimate:

pt(x, y) '
1

tα/β

(

1+
d(x, y)

t1/β

)−(α+β)

. (1.3)

We refer to (1.3) as astable-likeestimate of the heat kernel because of its similarity to (1.2). A natural
question aries: what conditions on the jump kernelJ ensure (1.3)?

Chen and Kumagai proved in [11] that if β < 2 then (1.3) is equivalent to the following condition:

J(x, y) ' d(x, y)−(α+β) x, y ∈ M. (J)

However, on most of fractal sets there exist regular Dirichlet forms with the jump kernel satisfying (J)
with β ≥ 2. In this case one needs one more condition: thegeneralized capacity conditiondenoted shortly
(Gcap) that will be explained below.

Condition (Gcap) is closely related to thecutoff Sobolev inequalityintroduced by Barlow and Bass in
[4], and to theenergy inequalityof Andres and Barlow in [1]. With help of this condition, the following
result was proved by Grigor’yan, E.Hu and J.Hu in [21] and in a more general setting by Chen, Kumagai
and Wang in [15].

Theorem 1.1. Under the standing assumption (V) we have, for anyβ > 0,

(Gcap) + (J)⇔ (1.3). (1.4)
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The above results deal with Dirichlet forms when the jump kernel admits comparable upper and lower
bounds. However, there are many interesting jump measures when this is not the case. For instance, the
jump kernel can vanish somewhere or may not exist at all. For such jump measures, only very limited results
on heat kernel estimates are available. In paper [9], the authors considered onultrametricspaces a class of
jump kernels satisfying the following rather weak tail estimate: for allx ∈ M andr > 0,

∫

B(x,r)c
J(x, y)dμ(y) <

C

rβ
. (TJ)

In [9, Theorem 2.8], we proved that, under the standing assumption (TJ), a certain Poincaré inequality
(denoted there by (PI)) is equivalent to two sided estimates of the heat kernel that include the following
upper bound

pt(x, y) ≤
C

tα/β

(

1+
d(x, y)

t1/β

)−β
(1.5)

and a certain weak lower bound. Let us emphasize that the exponentβ here is smaller that the optimal
exponentα + β in (1.3). However, the exponentβ cannot be improved in this setting.

In the proof of the above result, the followingtail estimateof the heat semigroup plays an important role:
for any ballB of radiusr > 0 and for anyt > 0,

Pt1Bc ≤
Ct

rβ
in

1
4

B. (TP)

(HereλB for λ > 0 means a ball of radiusλr concentric toB.) Indeed, the most difficult part in [9] was to
prove that (PI)+ (TJ)⇒ (TP). Then the upper bound (1.5) follows easily from (TP) and other conditions.

It is clear that, under the hypothesis (V), the upper bound of the jump kernel in (J) implies (TJ). Similarly,
the upper estimate of the heat kernel in (1.3) implies (1.5) as well as (TP).

One may ask whether there are other shapes of the heat kernel (and jump kernel) estimates between these
two cases (1.3) and (1.5) (reps. between (J) and (TJ)).

In this paper we give a positive answer to this question by introducing one-parameter families of heat
kernel and jump kernel estimates and by proving their equivalence (under certain standing hypotheses).

Assuming for simplicity that (V) holds, fix a parameterq ∈ [1,∞] and define the followingLq tail
estimateof the jump kernel (see also Definition2.5below for a more general case): for allx ∈ M andr > 0,

‖J(x, ∙)‖Lq(B(x,r)c) ≤
C

rα/q′+β
, (TJq)

whereq′ = q
q−1 is the Ḧolder conjugate ofq. Similarly, we introduce theLq tail estimateof the heat kernel

(see also Definition2.10for a more general case): for allx ∈ M, r > 0 andt > 0,

‖pt(x, ∙)‖Lq(B(x,r)c) ≤ C
(
t−

α
βq′ ∧

t

rα/q′+β

)
'

C

tα/(βq′)

(
1+

r

t1/β

)−(α/q′+β)
. (TPq)

as well as the following pointwise upper bound of the heat kernel (see also Definition2.13for a more general
case): for allx, y ∈ M andt > 0,

pt(x, y) ≤ Ct−
α
βq

(

t−
α
βq′ ∧

t

d(x, y)α/q′+β

)

'
1

tα/β

(

1+
d(x, y)

t1/β

)−(α/q′+β)

. (UEq)

Our main result for Ahlfors-regular spaces (Theorem3.4) says the following: if (V) holds true, then

(FK) + (Gcap) + (TJq)⇔ (TPq) + (C)⇒ (UEq). (1.6)

Here (FK) is a certainFaber-Krahn inequality(see Definitions2.3, 3.3for details), and condition (C) means
that the Dirichlet form (E,F ) is conservative, that is,Pt1 = 1 for all t > 0.

In fact, we prove this result in a more general setting of doubling measure (see Theorem2.15) but in this
case we have to assume thatq ∈ [2,∞]. Let us also mention that the most interesting and difficult part of the
proof of (1.6) is the implication:

(FK) + (Gcap) + (TJq)⇒ (TPq).

We remark that the result (1.6) for the case whenq = ∞ was partly proved by Grigor’yan, J. Hu and Lau
in [28] and by Chen, Kumagai and Wang in [15], while (1.6) is entirely new whenq ∈ [2,∞).
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Note that our approach is purely analytical, and the metric space may be bounded or unbounded. Let us
also emphasize the following novelties of this paper:

• Our starting point is theLq-tail estimate of the jump kernel, rather than a more conventional point-
wise estimate ofJ.
• Our main result in Theorem2.15is stated and proved for a general volume functionV(x, r) satisfying

the volume doubling condition as well as for a general scaling functionW(x, r) (that replacesrβ)
that may depend on pointx, which covers many examples of metric measure spaces.

There are many works devoted to the study of heat kernels on metric measure spaces including fractals.
For example, see [7] for the Sierpínski gasket, [17] for affine nested fractals, [32] for post-critically finite
self-similar sets, [2], [3] for the Sierpínski carpets, and [34, 35] for a certain class of self-similar sets.
Equivalent conditions for two-sided estimates of heat kernels for local Dirichlet forms on metric measure
spaces were investigated in [29] and [31], whilst for non-local Dirichlet forms in [8], [11], [12], [13], [14],
[15], [21]. Equivalent conditions only for upper estimates of heat kernels for local Dirichlet forms were
studied in [1], [25], [26], [27, Section 6], [29, Section 9], [37], whilst for non-local Dirichlet forms, in [10],
[28].

The structure of the paper is as follows.
In Section2 we give all necessary definitions and state our main result – Theorem2.15, for an arbitrary

doubling measureμ and a general scaling functionW(x, r) that may depends onx. Here we assume that
q ∈ [2,∞].

In Section3 we state our second main result – Theorem3.4, in the setting of an Ahlfors-regular measure
μ and a specific scaling functionW(x, r) := rβ for someβ > 0. Here we assume thatq ∈ [1,∞].

In Section4 we investigate the properties of condition (TPq) and, in particular, prove its monotonicity
with respect toq.

In Section5 we investigate the properties of so-calledρ-local Dirichlet forms, for example, theρ-locality,
and prove the inequalities related to the associated resolvent. We also study the relation between the semi-
groups associated with the original and truncated Dirichlet forms.

In Section6 we introduce a new metric equivalence to the original metric in some sense, and prove that
the doubling (and reverse doubling) properties ofμ are preserved by this change of metric. The purpose of
this change of metric is to simplify the scaling function.

In Section7 we rephrase all the conditions in question ( for example, (TJq), (TPq), (UEq) etc) in terms of
the new metric.

In Section8 we apply the results of Sections5-7 to obtain the upper estimates of heat kernels as well as
the tail estimates of semigroups for truncated Dirichlet from under the new metric. This section is crucial in
deriving the main results of this paper.

In Section9 we prove the main implication

(FK) + (Gcap) + (TJq)⇒ (TPq)

for the new metric, and then come back to the original metric. We also prove that (TPq)⇒ (UEq).
In Section10we first investigate the consequences of condition (TPq), in particular, we prove that

(TPq)⇒ (FK) + (TJq)

(Lemma10.3and Proposition10.4). Then we finally conclude the proof of our main Theorem2.15.
In Section11we collect some known results needed in this paper.

Let us describe the main steps of the proof of the implications (1.6) in the general setting.
Step 0.We recall our previous results that will be used below. It was proved in [24, Theorem 14.1] that

conditions (FK), (TJq) and (Gcap) imply thesurvival estimates, denoted by (S+) and (S) (see Definitions7.2
and7.1) respectively, for allq ∈ [1,∞]. Survival estimates play an important role in obtaining the exponen-
tial decay rate of heat kernels for truncated Dirichlet forms. Moreover, it was proved in [23, Corollary 2.14]
that the same set of conditions also implied the existence andon-diagonal upper estimate(DUE) of the heat
kernel for allq ∈ [2,∞] (see also Proposition2.8). So, the rest of the proof mainly focuses on off-diagonal
upper estimate of heat kernels and the tail estimate of semigroups.
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Step 1.We consider a general Dirichlet form with truncated jump part:

E(ρ)(u, v) := E(L)(u, v) +
"

M×B(x,ρ)
(u(x) − u(y)) (v(x) − v(y)) d j, u, v ∈ F ,

whereρ > 0 is fixed. We show that the resolvent of (E(ρ),F (Ω)) satisfies various comparison inequalities
(Propositions5.3-5.5and Lemma5.6) which together with other conditions will be further used to prove that
the heat kernel of (E(ρ),F ) decays exponentially in distance. Besides, we investigate the relation between
the semigroups of (E(ρ),F ) and (E,F ) (Proposition5.11and Lemma5.12).

Step 2.We introduce a new metricd∗ (Proposition6.1) under which the scaling function becomes much
simpler: W∗(r) = rβ for someβ > 0. This metricd∗ is comparable to the original metricd in some sense
(Propositions6.2). Moreover, the doubling (and reverse doubling) property ofμ are also satisfied with
respect tod∗ (Proposition6.4).

Step 3. We rephrase all the condition (DUE), (S), (S+), (TJq), (TJ) in terms of the new metricd∗ as
(DUE∗), (S∗), (S∗+), (TJ∗q), (TJ∗) respectively (Proposition7.4). Then we set our main task: to obtain (TP∗q)
(see Definition9.2), that is, for any ballB∗(x, r) and anyt in a finite inteval

‖pt(x, ∙)‖Lq(Bc
∗) ≤ C

(
1

V∗(x, t1/β)1/q′
∧

t

V∗(x, r)1/q′rβ

)

. (1.7)

Step 4.We study the following truncated bilinear form

E(ρ)(u, v) := E(L)(u, v) +
"

M×B∗(x,ρ)
(u(x) − u(y)) (v(x) − v(y)) d j, u, v ∈ F ,

whereρ > 0 andB∗(x, ρ) is a metric ball in (M,d∗). Under (TJ∗), we verify that (E(ρ),F ) is also a regular
Dirichlet form. In Proposition8.2and Lemma8.3, we prove that the heat kernelq(ρ)

t (x, y) of (E(ρ),F ) exists
and satisfies on-diagonal upper estimate under conditions (DUE∗), (TJ∗). In particular, there is a common
regular nest{Fk} such thatq(ρ)

t (x, ∙) ∈ C({Fk}) for all t > 0, x ∈ M andρ ∈ Q+ (see Remark8.4).
Step 5.Let {Qt} be the heat semigroup associated with truncated Dirichlet form and{QB∗ } be the Dirichlet

semigroup for any ballB∗. We show that the tail ofQt decays exponentially as shown in Lemmas8.8 and
8.9: for anyk ≥ 1 and any ballB∗ of radiusr ≥ 4kρ,

Qt1Bc
∗ ≤ 1− QB∗

t 1B∗ ≤ C(θ, k)

(
t

ρβ

) θk
θ+β

in
1
4

B∗, (1.8)

whereθ > 0 is arbitrary.
Moreover, we give the relation between the tails of heat kernelspt(x, y) andqt(x, y) outside balls (see

Lemmas8.10and8.11): for anyt > 0 and any ballB∗ with r > 0,

‖pt(x, ∙)‖Lq(Bc
∗) ≤ ‖qt(x, ∙)‖Lq(Bc

∗) +
Ct

V∗(x, ρ)1/q′ρβ
exp

(
c′t

ρβ

)

, (1.9)

whereq′ = q
q−1 ∈ [1,∞]. In particular, in the case whenq = ∞ andq′ = 1, the above inequality gives the

pointwise relation betweenpt(x, y) andqt(x, y).
Step 6. By (1.9), in order to prove (TP∗q), we need firstly to obtain the following off-diagonal upper

estimate ofqt(x, y): for anyt > 0 andx, y ∈ M,

qt(x, y) ≤
C

V∗(x, t1/β)
exp

(
c′t

ρβ

) (
1+

ρ

t1/β

)α∗
exp

(

−c
d∗(x, y)
ρ

)

. (1.10)

We prove this estimate by using (1.8) and on-diagonal upper estimate ofqt(x, y) as well as other conditions
(see Lemma8.12).

Step 7. Using the semigroup property ofqt(x, y), the fact that
∫

M
qt(x, y)dμ(y) ≤ 1 and (1.10), we show

that

‖qt(x, ∙)‖Lq(Bc
∗) ≤

(
C

V∗(x, t1/β)
exp

(
Ct

ρβ

) (
1+

ρ

t1/β

)α∗
) q−1

q

.
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Consequently, using (1.9) we obtain

‖pt(x, ∙)‖Lq(Bc
∗) ≤

C

V∗(x, t1/β)1/q′
exp

(
Ct

ρβ

) (
1+

ρ

t1/β

)α∗/q′
+

Ct

V∗(x, ρ)1/q′ρβ
exp

(
C′t

ρβ

)

.

Sinceρ ∈ Q+ in the above inequality is arbitrary, one can pass the limit asQ+ 3 ρ→ t1/β and obtain the first
term on the right hand side of the inequality (1.7) (see the first part in the proof of Lemmas9.4and9.6).

Step 8.To obtain the second term on the right hand side of (1.7), it suffices to consider the case when

rβ > t.

By (1.8), (1.10) and the semigroup property ofqt(x, y), we show that the term‖qt(x, ∙)‖Lq(Bc
∗) on the right

hand side of (1.9) is controlled as follows: for anyx ∈ M, r > 0 andk ≥ 1 so thatr ≥ 4kρ,

‖qt(x, ∙)‖Lq(Bc
∗) ≤

C(θ, k)

V∗(x, r)1/q′
exp

(
c′t

q′ρβ

) (
r
ρ

)2α∗/q′ ( t

ρβ

) θk
(θ+β)q−

2α∗
βq′

.

Consequently, by (1.9), we obtain for anyx ∈ M, r > 0 andk ≥ 1 so thatr ≥ 4kρ,

‖pt(x, ∙)‖Lq(Bc
∗) ≤

C(θ, k)

V∗(x, r)1/q′
exp

(
c′t

q′ρβ

) (
r
ρ

)2α∗/q′ ( t

ρβ

) θk
(θ+β)q−

2α∗
βq′

+
Ct

V∗(x, ρ)1/q′ρβ
exp

(
c′t

ρβ

)

.

In the above inequality we setθ = β first and then choosek large enough such thatθk(θ+β)q−
2α∗
βq′ > 1. Moreover

since the left hand side does not depend onρ we pass the limit asQ+ 3 ρ→ r
4k and see that the second term

dominates the first term sincetrβ < 1. In particular, this yields the second term in (1.7), and hence, obtain
(TP∗q) (see the second part in the proof of Lemmas9.4and9.6).

Step 9.In Lemma9.7, we show that (TP∗q)⇔ (TPq); hence, we obtain the tail estimates of heat semigroup
under the original metricd. On the other hand, the conservativeness follows from condition (S) (see Step 0)
by using [20, Lemma 4.6, p. 3327]. Therefore, we obtain the implication “⇒” in the equivalence (1.6).

Step 10.We prove the consequences of (TPq). It is easy to see that (TP∞)⇔ (UE∞). Forq ∈ [2,∞), using
the semigroup property and the Hölder inequality, we have fort > 0 andx, y ∈ M with R := 1

2d∗(x, y) > 0,

pt(x, y) =
∫

M
pt/2(x, z)pt/2(z, y)dμ(z)

≤
∫

B(x,R)c
pt/2(x, z)pt/2(z, y)dμ(z) +

∫

B(y,R)c
pt/2(x, z)pt/2(z, y)dμ(z)

≤ ‖pt/2(x, ∙)‖Lq(B(x,R)c)‖pt/2(∙, y)‖Lq′ + ‖pt/2(x, ∙)‖Lq′ ‖pt/2(∙, y)‖Lq(B(y,R)c).

Sinceq ≥ 2, and hence,q′ =
q

q−1 ≤ q, we have not only (TPq) but also (TPq′) (see Proposition4.1).
Therefore, by (TPq), we have

‖pt/2(x, ∙)‖Lq(B(x,R)c) ≤
Ct

V(x,R)1/q′W(x,R)
,

and by (TPq′),

‖pt/2(∙, y)‖Lq′ ≤
C

V(y,W−1(y, t))1/q
.

The terms‖pt/2(x, ∙)‖Lq′ and‖pt/2(∙, y)‖Lq(B(y,R)c) can be similarly estimated by conditions (TPq) and (TPq′).
Combining all the above inequalities, one can obtain (UEq) and the second implication “⇒” in (1.6) (see
Lemma9.8for the details).

Step 11.For q ∈ [2,∞], the implication (TPq) ⇒ (DUE) follows from semigroup property and Propo-
sition 4.1 (see Lemma10.3(i)). Then, we use the idea in [26, p. 551-553] to prove (DUE) ⇒ (FK) (see
Proposition10.4). The implication (TPq) ⇒ (TJq) + (S) is proved in Lemma10.3, and (S) ⇒ (Gcap) was
proved in [24, Theorem 14.1]. This completes the proofs of the implication “⇐” in (1.6) and hence our
main result - Theorem2.15.

Step 12. The main reason that the parameterq in Theorem2.15has to be at least 2 is becauseq ≥ 2
is used in the implication (FK) + (Gcap) + (TJq) ⇒ (DUE) (see Proposition2.8). However, whenμ is
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Ahlfors-regular, (DUE) follows directly from the Nash inequality, which itself follows from the Faber-
Krahn inequality (FK′β/α) (see Lemma10.11). Hence, the parameterq in this setting can take all the values
from [1,∞] as stated in our second main result - Theorem3.4.

Notation. Lettersc,C,C′,C1,C2, etc. are used to denote universal positive numbers, whose values may
change at any occurrence. TheletterR = diamM ∈ (0,∞] denotes the diameter of the metric space (M,d)
throughout this paper. The usage of other letters depends on the context. The integral sign “

∫
” means the

integration is taken over the whole spaceM. For two open setsU,V ⊂ M and a measurable functionF on
M × M, in the double integral

!
U×V

F(x, y)d j(x, y), the variablex is taken inU andy in V. Moreover, we

may write
!

U×V
F(x, y)d j(x, y) as

!
U×V

F(x, y)d j for short. For a functionu on M, the notation supp(u)
means the support ofu. For an open setU, the notationA b U means thatA is a precompact open subset of
U with A ⊂ U. The notationf ' g means that the ratio of the functionsf andg is bounded from above and
below by two positive constants for a specified range of the arguments. For a measurable functionu on M,

a setU ⊂ M andp ∈ [1,∞), we use the notations‖u‖Lp(U) :=
(∫

U
|u|pdμ

)1/p
and‖u‖L∞(U) := esupx∈U |u(x)|.

Also we write‖u‖p := ‖u‖Lp(M) for simplicity for p ∈ [1,∞].

2. Main results for doubling measures

In this section we state our main results in a more general setting. As above, denote byB(x, r) metric
balls in the metric measure space (M,d, μ) that is

B(x, r) := {y ∈ M : d(y, x) < r}.

Since in general a ball as a subset ofM does not determinex andr uniquely, we always require balls to have
fixed centers and radii, even if they are not given explicitly. For any ballB = B(x, r) and a positive number
λ, denote by

λB := B(x, λr).

SetV(x, r) := μ(B(x, r)). We say that (M,d, μ) satisfied thevolume doublingcondition, denoted by (VD),
if there exists a constantC ≥ 1 such that, for allx ∈ M and allr > 0,

V(x,2r) ≤ CV(x, r). (2.1)

In this case we also say that measureμ is doubling. Condition (VD) implies that 0< V(x, r) < ∞ for all
r > 0. It is known that condition (VD) is equivalent to the following: there existα,C > 0 such that, for all
x, y ∈ M and all 0< r ≤ R< ∞,

V(x,R)
V(y, r)

≤ C

(
d(x, y) + R

r

)α
. (2.2)

In particular, for allx ∈ M and all 0< r ≤ R< ∞,

V(x,R)
V(x, r)

≤ C
(R

r

)α
. (2.3)

Throughout the paper, we fix aparameterR = diamM, that is, R is the diameter ofM. We say that
(M,d, μ) satisfies thereverse volume doublingcondition, denoted by condition (RVD), if there exist two
positive numbersC, α′ such that, for allx ∈ M and all 0< r ≤ R< R,

C−1
(R

r

)α′
≤

V(x,R)
V(x, r)

. (2.4)

Let (E,F ) be a regular Dirichlet form inL2 := L2(M, μ) (see [19] for definition). In particular, the bilinear
form E(u, v) is defined for allu, v ∈ F , whereF is a dense subspace ofL2, andF is complete with respect
to the norm

√
E1(u), where

E1(u) = E(u) + ‖u‖2L2 and E(u) := E(u,u).

We assume throughout that (E,F ) has no killing part (unless otherwise stated), that is, it admits the
following uniqueBeurling-Deny decomposition:(cf. [19, Theorem 3.2.1 and Theorem 4.5.2]):

E(u, v) = E(L)(u, v) + E(J)(u, v), (2.5)
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for all u, v ∈ F , where HereE(L) is the local part (or diffusion part), associated with a unique Radon
measuredΓ(L) (the notionsE(L)(u, v),dΓ(L)(u, v) are instead denoted byE(c)(u, v), 1

2dμc
〈u,v〉 respectively in

[19, see formula (3.2.22) on p.126]) as follows:

E(L)(u, v) =
∫

M
dΓ(L)(u, v),

andE(J) is the jump part associated with a unique Radon measurej defined onM × M\diag:

E(J)(u, v) =
"

M×M\diag
(u(x) − u(y))(v(x) − v(y))d j(x, y). (2.6)

In this paper, we always assume that the measurej has the following shape:

d j(x, y) = J(x,dy)dμ(x) in M × M.

HereJ(∙, ∙) is kernel onM × B(M) (whereB(M) be the sigma-algebra of Borel sets ofM), that is,

• for every fixedx in M, the mapE 7→ J(x,E) is a measure onB(M);
• for every fixedE in B(M), the mapx 7→ J(x,E) is a non-negative measurable function onM.

By the general theory of Dirichlet forms, (E,F ) has agenerator, denoted byL, that is a non-positive
definite self-adjoint operator inL2 that determines theheat semigroup{Pt}t≥0 in L2, given byPt = etL. The
integral kernel of{Pt} (should it exist) is denoted bypt(x, y) and is called theheat kernelof (E,F ). The heat
kernel coincides with the transition density of the Hunt process associated with (E,F ).

Let U ⊂ M be an open set,A be a Borel subset ofU andκ ≥ 1 be a real number. Aκ-cutoff functionof
the pair (A,U) is any functionφ in F such that

• 0 ≤ φ ≤ κ μ-a.e. inM;
• φ ≥ 1 μ-a.e. inA;
• φ = 0 μ-a.e. inUc.

We denote byκ-cutoff(A,U) the collection of allκ-cutoff functions of the pair (A,U). Any 1-cutoff function
will be simply referred to as acutoff function. Clearly,φ ∈ F is a cutoff function of (A,U) if and only if
0 ≤ φ ≤ 1, φ|A = 1 andφ|Uc = 0. Denote also

cutoff(A,U) := 1- cutoff(A,U).

Note that for everyκ ≥ 1,
cutoff(A,U) ⊂ κ- cutoff(A,U),

and that, ifφ ∈ κ-cutoff(A,U), then 1∧ φ ∈ cutoff(A,U). It is known that if (E,F ) is a regular Dirichlet
form in L2, then cutoff(A,U) is not empty for any non-empty precompact setA with A ⊂ U.

LetF ′ be avector spacedefined by

F ′ := {v+ a : v ∈ F , a ∈ R},

which, in particular, contains constant functions that may not be inL2.
Our next purpose is to introduce condition (Gcap), that is called thegeneralized capacity condition. For

that we need the notion of ascaling function. A function W : M × [0,∞] → [0,∞] is called a scaling
function if it satisfies the following conditions:

(i) for eachx ∈ M, the functionW(x, ∙) is continuous, strictly increasing, andW(x,0) = 0, W(x,∞) = ∞;
(ii) there exist three positive constantsC, β1, β2 (whereβ1 ≤ β2) such that, for all 0< r ≤ R< ∞ and for

all x, y ∈ M with d(x, y) ≤ R,

C−1
(R

r

)β1

≤
W(x,R)
W(y, r)

≤ C
(R

r

)β2

. (2.7)

Denote byW−1(x, ∙) the inverse function ofr 7→ W(x, r) for everyx ∈ M. Clearly, (2.7) implies that, for all
x ∈ M and all 0< r ≤ R< ∞

C−1
(R

r

)1/β2

≤
W−1(x,R)
W−1(x, r)

≤ C
(R

r

)1/β1

. (2.8)
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Scaling functions are commonly used, in particular, to describe the space/time scaling for the Hunt process
associated with the Dirichlet form. For example, it is known that diffusions/jump processes on many fractal
sets have the scaling function

W(x, r) := rβ

for someβ > 0. For instance, for the diffusion on the Sierpiński gasket inR2, we haveβ =
log5
log 2. The value

of β is called thewalk dimensionof the process. It characterizes how fast the process moves away from its
starting point.

Definition 2.1 (Generalized capacity condition). We say that condition (Gcap) is satisfied if there exist two
numbersκ ≥ 1,C > 0 such that, for anyu ∈ F ′ ∩ L∞ and any pair of concentric ballsB0 := B(x0,R),
B := B(x0,R+ r) with x0 ∈ M and 0< R< R+ r < R, there existsφ ∈ κ-cutoff(B0, B) such that

E(u2φ, φ) ≤ sup
x∈B

C
W(x, r)

∫

B
u2dμ. (2.9)

We remark that the functionφ in (Gcap) may depend onu, but the constantsκ,C are independent of
u, B0, B. Usually it is very difficult to verify (Gcap). However, there are some cases when (Gcap) is trivially
satisfied for certain jump kernels (see conditions (TJ) and (J≤) below).

For a Borel measurable subsetU ⊂ M andu ∈ F ′, define theenergy measure dΓU(u) by

dΓU(u)(x) := dΓ(L)(u)(x) +
∫

M
1U(y)(u(x) − u(y))2d j(x, y). (2.10)

Here we useΓ(L)(u) := Γ(L)(u,u) for short.
The following condition (ABB) (which is named after Andres, Barlow and Bass [1], [4]) is closely related

to (Gcap) (see Lemma10.6).

Definition 2.2. We say that condition (ABB) is satisfied if there existC1 ≥ 0, C2 > 0 such that, for any
u ∈ F ′ ∩ L∞ and for any three concentric ballsB0 := B(x0,R), B := B(x0,R+ r) andΩ := B(x0,R′) with
0 < R< R+ r < R′ < R, there existsφ ∈ cutoff(B0, B) such that

∫

Ω

u2dΓΩ(φ) ≤ C1

∫

B
φ2dΓB(u) + sup

x∈Ω

C2

W(x, r)

∫

Ω

u2dμ,

whereΓB(u) is defined as in (2.10).

For a non-empty open subsetU of M, denote byC0(U) the space of all continuous functions with compact
supports contained inU. LetF (U) be a vector space defined by

F (U) = the closure ofF ∩C0(U) in the norm
√
E1. (2.11)

By the theory of Dirichlet form, (E,F (U)) is a regular Dirichlet form onL2(U, μ) if (E,F ) is a regular
Dirichlet form on L2(M, μ) (see, for example, [19, Theorem 4.4.3]). Denote byLU the generator of the
Dirichlet form (E,F (U)) and byλ1(U) thebottomof the spectrum ofLU in L2(U, μ). It is known that

λ1(U) = inf
u∈F (U)\{0}

E(u)

‖u‖22
. (2.12)

For any metric ballB := B(x, r), set
W(B) := W(x, r).

Definition 2.3 (Faber-Krahn inequality). We say that condition (FK) holds if there exist real numbersσ ∈
(0,1] andC, ν > 0 such that, for all ballsB with radii < σRand all non-empty open subsetsU of B,

λ1(U) ≥
C−1

W(B)

(
μ(B)
μ(U)

)ν
. (2.13)

Sometimes, we label condition (FK) by (FKν) to emphasize the role of the exponentν.

We introduce the condition (TJ) that provides estimates oftails of jump measures.



10 GRIGOR’YAN, E. HU, AND J. HU

Definition 2.4 (Tail estimate of jump measure). We say that condition (TJ) is satisfied if, for any ballB in
M,

J(x, Bc) :=
∫

Bc
J(x,dy) ≤

C
W(B)

, (2.14)

whereC ∈ [0,∞) is a constant independent ofB.

For a given number 1≤ q ≤ ∞, let q′ be theHölder conjugateof q, that is,

q′ :=
q

q− 1

so thatq′ = 1 if q = ∞, andq′ = ∞ if q = 1.
Let us introduce the condition (TJq) that provides atail estimateof the jump kernel outside balls in

Lq-norm.

Definition 2.5 (Lq-tail estimate of jump kernel). For a given number 1≤ q ≤ ∞, we say that condition (TJq)
is satisfied if there exists a non-negative measurable functionJ (called thejump kernel) on M ×M such that

d j(x, y) = J(x, y)dμ(y)dμ(x) in M × M,

and, for anyx ∈ M and anyR> 0,

‖J(x, ∙)‖Lq(B(x,R)c) ≤
C

V(x,R)1/q′ W(x,R)
, (2.15)

whereC ∈ [0,∞) is a constant independent ofx,R.

For example, ifq = 1 then (2.15) coincides with (2.14). However, let us emphasize that the jump kernel
J(x, y) may not exist in condition (TJ), whereas it does in condition (TJq), in particular, in (TJ1); hence,

(TJ1)⇒ (TJ). (2.16)

For anyx, y in M, denote by

V(x, y) := V(x,d(x, y)) and W(x, y) := W(x,d(x, y)).

(note thatV(x, y) andW(x, y) are not symmetric inx, y in general). Ifq = ∞ (andq′ = 1) then (2.15) clearly
becomes

J(x, y) ≤
C

V(x, y) W(x, y)
, (2.17)

for all x ∈ M andμ-almost ally ∈ M. If (2.17) is satisfied for allx, y ∈ M then we refer to this condition as
(J≤) so that

(J≤)⇒ (TJ∞).

Assume thatW(x,R) = Rβ for anyx in M andR> 0. Then the inequality (2.14) becomes

J(x, B(x,R)c) ≤
C

Rβ
for all x ∈ M andR> 0.

This condition was introduced and studied in [9] on the ultrametric space. If in additionV(x,R) ' Rα, then
(2.17) becomes

J(x, y) ≤
C

d(x, y)α+β
for all x, y ∈ M.

This pointwiseupper bound of the jump kernel is the starting point in most of literature, see for example
[15], [21] and the references therein.

Let us recall the notion of a regularE-nest(cf. [19, Section 2.1, p.66-69]). For an open setU ⊂ M, let

Cap1(U) := inf {E(u) + ‖u‖22 : u ∈ F andu ≥ 1 μ-almost everywhere onU} (2.18)

(note that Cap1(U) = ∞ if the set of functionsu in (2.18) is empty). An increasing sequence of closed
subsets{Fk}∞k=1 of M is called anE-nestof M if

lim
k→∞

Cap1(M \ Fk) = 0.

An E-nest{Fk} is said to beregular with respect toμ if, for eachk,

μ(U(x) ∩ Fk) > 0 for anyx ∈ Fk and any open neighborhoodU(x) of x.
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For anE-nest{Fk}∞k=1, denote by

C({Fk}) :=
{
u is a function onM : u|Fk is continuous for eachk

}
. (2.19)

A functionu : M 7→ R ∪ {∞} is said to bequasi-continuousif u ∈ C({Fk}) for someE-nest{Fk}∞k=1.

Definition 2.6. A function pt(x, y) of three variables (t, x, y) ∈ (0,∞) × M × M is referred to as apointwise
heat kernelif it satisfies the following conditions, for allt, s> 0 andx, y in M.

(1) The measurability:pt(∙, ∙) is jointly measurable onM × M.
(2) The Markov property:pt(x, y) ≥ 0 and

∫

M
pt(x, y)dμ(y) ≤ 1.

(3) The symmetry:pt(x, y) = pt(y, x).
(4) The semigroup property:

ps+t(x, y) =
∫

M
ps(x, z)pt(z, y)dμ(z).

(5) Approximation of identity: for anyf ∈ L2,
∫

M
pt(∙, y) f (y)dμ(y)→ f

in L2-norm ast → 0+.

We say thatpt(x, y) is the pointwise heat kernel of the Dirichlet form (E,F ) if it satisfies in addition the
following properties, for allx, y, t.

(1) There exists a regularE-nest{Fk}∞k=1 such that

pt(x, ∙) ∈ C({Fk})

whereC({Fk}) is defined in (2.19).
(2) If one of pointsx, y lies outside∪∞k=1Fk, then

pt(x, y) = 0. (2.20)

(3) For anyf ∈ L2, ∫

M
pt(∙, y) f (y)dμ(y) ∈ C({Fk})

and ∫

M
pt(∙, y) f (y)dμ(y) = Pt f ,

wherePt = exp(tL).

The pointwise heat kernelpt(x, y) allows to extend the definition of the heat semigroup as follows: for
any 1≤ p ≤ ∞, define apointwise heat semigroupin Lp still denoted by{Pt}t>0, as follows:

Pt f (x) :=
∫

M
pt(x, y) f (y)dμ(y), f ∈ Lp

for everyt > 0 and everyx ∈ M.
We define theon-diagonal upper estimate(DUE) of the heat kernel.

Definition 2.7 (On-diagonal upper estimate). We say that condition (DUE) is satisfied if the pointwise heat
kernelpt(x, y) of (E,F ) exists and, for anyC0 ≥ 1, there exists a constantC > 0 such that, for allx ∈ M and
all t < C0W(x,R),

pt(x, x) ≤
C

V(x,W−1(x, t))
. (2.21)

The following on-diagonal upper estimate of heat kernel was proved in [23, Corollary 2.14].

Proposition 2.8. Assume that(E,F ) is a regular Dirichlet form in L2 without killing part. Then, for any
q ∈ [2,∞],

(VD) + (FK) + (Gcap) + (TJq)⇒ (DUE).
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We will prove that, under the hypothesis of Proposition2.8, certain type of off-diagonal upper estimate
of heat kernel is also true (see condition (UEq) below). Before that, let us introduce condition (TP), thetail
estimate of the heat semigroup{Pt} outside balls.

Definition 2.9 (Tail estimate of heat semigroup outside balls). We say that condition (TP) holds if, for any
ball B = B(x,R) with R ∈ (0,R) and anyt > 0,

Pt1Bc ≤
Ct

W(B)
in

1
4

B (2.22)

for a positive constantC independent ofB, t.

Let us define condition (TPq) for 1 ≤ q ≤ ∞, that is anLq-estimate of the tail of the heat kernel outside
balls.

Definition 2.10(Lq-tail estimate of the heat kernel). We say that condition (TPq) is satisfied if the pointwise
heat kernelpt(x, y) of the Dirichlet form (in the sense of Definition2.6) exists and, for any ballB := B(x,R)
with R ∈ (0,R) and anyt < W(x,R),

‖pt(x, ∙)‖Lq(Bc) ≤ C

(
1

V(x,W−1(x, t))1/q′
∧

t

V(x,R)1/q′W(x,R)

)

, (2.23)

whereC is a positive constant independent ofB, t.

Note that condition (TP) does not require the existence of the heat kernel, while condition (TPq) does.
Moreover, the inequality (2.23) in the caseq = ∞ is equivalent to the following:

pt(x, y) ≤ C

(
1

V(x,W−1(x, t))
∧

t
V(x, y)W(x, y)

)

.

For example, ifW(x,R) = Rβ then condition (TP) becomes

Pt1B(x,R)c ≤
Ct

Rβ
in

1
4

B

for any ballB = B(x,R) with R> 0 and anyt > 0. If in additionV(x,R) ' Rα then (TPq) becomes

‖pt(x, ∙)‖Lq(Bc) ≤ C

(
1

tα/(βq′)
∧

t

Rα/q′+β

)

.

Remark 2.11. If R < ∞ and if (2.22) holds fort < W(x,R), then (2.22) automatically holds also for any
t ≥W(x,R) by adjusting the value of constantC, sincePt1Bc ≤ 1 in M whilst

t
W(x,R)

≥
W(x,R)
W(x,R)

≥ 1 for any 0< R≤ R.

Therefore, in order to verify (2.22), it suffices to consider only the case whent < W(x,R).

Remark 2.12. Note that (2.23) is equivalent to the following inequality

‖pt(x, ∙)‖Lq(Bc) ≤ C





1
V(x,W−1(x,t))1/q′ if W(x,R) ≤ t,

t
V(x,R)1/q′W(x,R)

if W(x,R) ≥ t,
(2.24)

since we have

V(x,R)1/q′

V(x,W−1(x, t))1/q′
≤ 1 ≤

t
W(x,R)

if W(x,R) ≤ t,

V(x,R)1/q′

V(x,W−1(x, t))1/q′
≥ 1 ≥

t
W(x,R)

if W(x,R) ≥ t.

The equivalence between (2.23) and (2.24) will be used later on.

Let us introduce condition (UEq) that is called theoff-diagonal upper estimateof the heat kernel.
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Definition 2.13 (Lq-upper estimate of heat kernel). For a given 1≤ q ≤ ∞, we say that condition (UEq)
is satisfied if there exists a pointwise heat kernelpt(x, y) in the sense of Definition2.6 such that, for all
x, y ∈ M and allt < W(x,R) ∧W(y,R),

pt(x, y) ≤ C

(
1

V(x,W−1(x, t))1/q′
∧

t

V(x, y)1/q′W(x, y)

) (
1

V(x,W−1(x, t))1/q
+

1

V(y,W−1(y, t))1/q

)

(2.25)

for some positive constantC independent oft, x, y.

For q = ∞, we simply write (UE) for (UE∞).

Remark 2.14. Consider the case when

V(x, r) ' rα, W(x, r) = rβ,

whereα, β ∈ (0,∞). ThenW−1(x, t) = t1/β and

V(x, y) ' d(x, y)α, W(x, y) = d(x, y)β.

The term on the right-hand side of (2.25) is equivalent to the following:
(

1

tα/(q′β)
∧

t

d(x, y)α/q′d(x, y)β

) (
1

tα/(qβ)
+

1

tα/(qβ)

)

'
1

tα/(q′β)


1∧

(
d(x, y)

t1/β

)−(α/q′+β) ∙
1

tα/(qβ)

'
1

tα/β

(

1+
d(x, y)

t1/β

)−(α/q′+β)

.

In this case, condition (UEq) is equivalent to

pt(x, y) ≤
C

tα/β

(

1+
d(x, y)

t1/β

)−(α/q′+β)

. (2.26)

In particular, forq = 1, (2.26) becomes

pt(x, y) ≤
C

tα/β

(

1+
d(x, y)

t1/β

)−β
,

which is the best heat kernel upper estimate in some cases on ultrametric spaces (cf. [9]).
For q = ∞, (2.26) becomes

pt(x, y) ≤
C

tα/β

(

1+
d(x, y)

t1/β

)−(α+β)

,

which is the best possible heat kernel upper estimate on the fractal metric space, known also as astable-like
estimate (see for example [15] and [21]).

Condition (TPq) implies condition (UEq) when 2≤ q ≤ ∞. However, the inverse implication may not be
true. We will give below an example where (UEq) holds but (TPq) fails when 1< q ≤ 2, see Example4.2.

We say that condition (C) is satisfied if the Dirichlet form (E,F ) is conservative, that is

Pt1 ≡ 1 for eacht > 0.

The following theorem is one of the main results in this paper.

Theorem 2.15.Assume that(E,F ) is a regular Dirichlet form in L2 without killing part. If conditions(VD),
(RVD) hold, then for any2 ≤ q ≤ ∞

(FK) + (Gcap) + (TJq)⇔ (FK) + (ABB) + (TJq)

⇔ (TPq) + (C)

⇒ (UEq) + (C).

Remark 2.16. Note that condition (ABB) is stable under bounded perturbation of the Dirichlet form. Con-
sequently, Theorem2.15shows that (TPq) is stable under such perturbation.
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The proof of Theorem2.15is highly non-trivial and long. Basically, the proof takes the entire paper and
will be completed at the end of Section10, after a series of propositions and lemmas. The most interesting
and difficult part of Theorem2.15is the following key implication:

(FK) + (Gcap) + (TJq)⇒ (TPq). (2.27)

whose proof is especially involved and consists of many steps. In the course of proof, we introduce a new
metricd∗ (see Section6) in order to deal with the difficulties arising from possible dependence ofW(x, ∙) on
x. Under this new metricd∗, the measureμ is still doubling, but the scaling function has a simple form, and
various conditions can be rephrased in a much simpler way (see Section7). The idea of introducing the new
metric was borrowed from [34] and [6].

The reverse volume doubling (RVD) is used only in the proof of the implication (DUE) ⇒ (FK) (which
does not hold in general without (RVD)). Note also that (RVD) follows from (VD) if M is connected and
unbounded (cf. [26, Corollary 5.3]); in this case, condition (RVD) can be dropped from the hypotheses of
Theorem2.15.

3. Main results for Ahlfors-regular measures

In our main result Theorem2.15, the parameterq is always greater than or equal to 2 because we can only
obtain the on-diagonal upper estimate (DUE) of heat kernel providedq ≥ 2, and (DUE) plays an important
role in the proof of Theorem2.15.

In this section, we assume that the measureμ is Ahlfors-regular, which will allow us to state and prove
the main results for the entire rangeq ∈ [1,∞].

Let us fix two numbersα > 0 andβ > 0. Recallthat R = diamM is the diameter of the metric space
(M,d).

Definition 3.1. We say that measureμ is α-regular, orμ satisfies condition (V), if for all x ∈ M andr < R,

V(x, r) ' rα. (3.1)

In this section we always assume that the condition (V) holds, and that the scaling functionW is as
follows:

W(x, r) := rβ, (3.2)

for all x ∈ M andr > 0.

Definition 3.2. We say that condition (FK′) holds if there exist two numbersC, ν > 0 such that, for any
non-empty open setsU,

λ1(U) ≥ C−1μ(U)−ν − R
−β
. (3.3)

If necessary, we label condition (FK′) by (FK′ν) to emphasize the role of the exponentν.

Remark 3.3. It is always true that (FK′β/α)⇒ (FKβ/α).

Indeed, assume firstthatR = ∞. Then, by (FK′β/α) and (V), for any ballB of radiusr and any open set
U ⊂ B, we have

λ1(U) ≥ C−1μ(U)−β/α = C−1 1
rβ

(
rα

μ(U)

)β/α
'

1
W(B)

(
μ(B)
μ(U)

)β/α
, (3.4)

which gives (FKβ/α). Let now R < ∞. Let B be a ball of radiusr ≤ σR whereσ > 0 is to be determined
later. Then, for any open setU ⊂ B we haveμ(U) ≤ μ(B) ≤ c(σR)α. Choosingσ = σ(α, β, c,C) > 0 small

enough we obtain thatC−1μ(U)−β/α ≥ 2R
−β

. Hence, (FK′β/α) yields

λ1(U) ≥
1
2

C−1μ(U)−β/α,

which implies (FKβ/α) as in (3.4).

The following theorem states our main result when (V) is satisfied andq ∈ [1,∞].
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Theorem 3.4. Assume that(E,F ) is a regular Dirichlet form in L2 without killing part. Assume that
condition (V) is satisfied and the scaling function is given by (3.2). Then the following equivalences are
satisfied:

(FK′β/α) + (Gcap) + (TJ)⇔ (FK′β/α) + (ABB) + (TJ)

⇔ (TP) + (DUE) + (C)

⇔ (TP1) + (UE1) + (C).

(3.5)

Moreover, we have for any q∈ (1,∞],

(FK′β/α) + (Gcap) + (TJq)⇔ (FK′β/α) + (ABB) + (TJq)

⇔ (TPq) + (DUE) + (C)

⇔ (TPq) + (UEq) + (C).

(3.6)

Remark 3.5. The equivalences in (3.5) can be viewed as a version of (3.6) for q = 1, where (TJ1) is replaced
by a weaker hypothesis (TJ) (cf. (2.16)).

The proof of Theorem3.4goes concurrently with that of Theorem2.15and will be completed in Section
10.

4. Condition (TPq)

In this section, we show that condition (TPq) is monotone inq. Thus, among all the conditions (TP),
(TP1), ∙ ∙ ∙ , (TP∞), condition (TP) is the weakest, whilst condition (TP∞) is the strongest one.

Proposition 4.1. Assume that(VD) holds. Then, for all1 ≤ q1 < q2 ≤ ∞,

(TPq2) ⇒ (TPq1)⇒ (TP1)⇒ (TP). (4.1)

Proof. Assume that condition (TPq2) holds. Fix a ballB := B(x,R) with R > 0 and somet < W(x,R). We
distinguish two cases.

Case 1.Let W(x,R) ≤ t. By Remark2.12, it suffices to prove that

‖pt(x, ∙)‖Lq1(Bc) ≤
C

V(x,W−1(x, t))1/q′1
.

If q1 = 1 then this is trivially satisfied by‖pt(x, ∙)‖L1(Bc) ≤ 1 andq′1 = ∞. Let nowq1 > 1. Using (TPq2), the
Hölder inequality with measurept(x, y)dμ(y) and the fact that‖pt(x, ∙)‖L1 ≤ 1, we obtain

‖pt(x, ∙)‖Lq1(Bc) =

(∫

Bc
pt(x, y)q1−1 ∙ pt(x, y)dμ(y)

)1/q1

≤




(∫

Bc
pt(x, y)(q1−1)

q2−1
q1−1 ∙ pt(x, y)dμ(y)

) q1−1
q2−1

(∫

Bc
pt(x, y)dμ(y)

)1−
q1−1
q2−1




1/q1

≤

(∫

Bc
pt(x, y)q2dμ(y)

) 1−1/q1
q2−1

=
(
‖pt(x, ∙)‖Lq2(Bc)

)q′2/q
′
1

≤

(
C

V(x,W−1(x, t))1/q′2

)q′2/q
′
1

=
C(q1,q2)

V(x,W−1(x, t))1/q′1
,

which was to be proved.
Case 2.Let W(x,R) > t. For any integern ≥ 0, setBn := B(x,2nR) so that

W(Bn) = W(x,2nR) ≥W(x,R) > t.

By condition (TPq2) we have, for anyn ≥ 0,

‖pt(x, ∙)‖Lq2(Bc
n) ≤

Ct

V(x,Rn)1/q′2W(x,Rn)
=

Ct

μ(Bn)1/q′2W(Bn)
.



16 GRIGOR’YAN, E. HU, AND J. HU

Using this and the Ḧolder inequality, we obtain, for anyn ≥ 0,

‖pt(x, ∙)‖Lq1(Bn+1\Bn) =

(∫

Bn+1\Bn

pt(x, y)q1dμ(y)

)1/q1

≤

(∫

Bn+1\Bn

pt(x, y)q2dμ(y)

)1/q2

μ(Bn+1 \ Bn)1/q1−1/q2

≤ ‖pt(x, ∙)‖Lq2(Bc
n) μ(Bn+1)1/q1−1/q2 ≤

C′t

μ(Bn)1/q′2W(Bn)
μ(Bn)1/q1−1/q2

=
C′t

μ(Bn)1/q′1W(Bn)
≤

C′t

μ(B)1/q′1W(Bn)
.

Note that, by (2.7), W(Bn) ≥ c2nβ1W(B), so that

‖pt(x, ∙)‖Lq1(Bc) =




∞∑

n=0

‖pt(x, ∙)‖
q1

Lq1(Bn+1\Bn)




1/q1

≤
∞∑

n=0

‖pt(x, ∙)‖Lq1(Bn+1\Bn)

≤
∞∑

n=0

C′t

μ(B)1/q′1W(Bn)
≤

Ct

μ(B)1/q′1W(B)
,

which proves (TPq1) by Remark2.12. �

One of the claims of Theorem2.15is that

(TPq)⇒ (UEq)

providedq ≥ 2. Let us give an example showing that the opposite implication is not satisfied ifq = 2, that
is condition (TPq) is strictly stronger than (UEq) whenq = 2. Probably, this is true for allq ≥ 2.

Example 4.2. Let us fix 1< q ≤ 2 and give an example when condition (UEq) holds but condition (TPq)
fails, that is,

(UEq); (TPq).

Let β, α1, α2 be three positive numbers. Let (Mi ,di , μi) for i = 1,2 be two ultrametric spaces, where each
measureμi is αi-regular. LetJ(i) be a function onMi × Mi for i = 1,2 such that for allxi , yi ∈ Mi ,

Ji(xi , yi) ' di(xi , yi)
−(αi+β).

Let (E(i),F (i)) for i = 1,2 be two Dirichlet forms onL2(Mi , μi) defined, respectively, by

E(i)(u, v) =
"

Mi×Mi

(u(xi) − u(yi))(v(xi) − v(yi))Ji(xi , yi)dμ(xi)dμ(yi), u, v ∈ F (i),

where the spaceF (i) is the closure of the set

{ n∑

j=0

cj1Bj : n ∈ N, cj ∈ R, Bj is a compact ball
}

under the inner product √
E(i)(∙, ∙) + ‖∙, ∙‖2

L2(Mi ,μi )
.

The Dirichlet form (E(i),F (i)) is regular and non-local (cf. [9, Theorem 2.2]). It turns out that the heat kernel
p(i)

t (xi , yi) of the form (E(i),F (i)) exists and satisfies the following two-sided estimates:

p(i)
t (xi , yi) ' t−

αi
β

(

1+
di(xi , yi)

t1/β

)−(αi+β)

(4.2)

for all t > 0 and allxi , yi in Mi , see for example [14], [21].
Let us construct a new ultrametric space (M,d, μ) by lettingM := M1 × M2, μ := μ1 × μ2, and

d(x, y) := max{d1(x1, y1),d2(x2, y2)} for x = (x1, x2), y = (y1, y2) in M.
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Clearly, for any pointx = (x1, x2) in M, any metric ballB(x, r) in M is a direct product of ballsB(x1, r) in
M1 andB(x2, r) in M2, that is,

B(x, r) = B(x1, r) × B(x2, r).

It follows that
V(x, r) = μ(B(x, r)) = μ1(B(x1, r))μ2(B(x2, r)) ' rα1+α2 ' rα, (4.3)

whereα := α1 + α2. For any pointx in M and anyr > 0, let

W(x, r) = rβ.

Define the measurej onB(M × M) by d j(x, y) = J(x,dy)dμ(x), whereJ(x,dy) is a kernel onM × B(M)
given by

J(x,dy) = J(1)(x1, y1)dμ1(y1)dδx2(y2) + J(2)(x2, y2)dμ2(y2)dδx1(y1) (4.4)

for any pointsx = (x1, x2), y = (y1, y2) in M, wheredδb(x) is the Dirac measure concentrated at pointb ∈ R.
By (4.3) and the definition (4.4), we have for anyr > 0,

sup
x=(x1,x2)∈M

∫

B(x,r)c
J(x,dy)

= sup
x=(x1,x2)∈M

∫

B(x,r)c

(
J(1)(x1, y1)dμ1(y1)dδx2(y2) + J(2)(x2, y2)dμ2(y2)dδx1(y1)

)

≤ sup
x1∈M1

∫

B(x1,r)c
J(1)(x1, y1)dμ1(y1) + sup

x2∈M2

∫

B(x2,r)c
J(2)(x2, y2)dμ2(y2)

≤
C

rβ
+

C

rβ
=

2C

rβ
.

Hence, by [9, Theorem 2.2], the measurej determines a regular Dirichlet form (E,F ) on L2(M, μ), and the
heat kernelpt(x, y) of (E,F ) exists. It is known from the general theory thatpt(x, y) satisfies

pt(x, y) = p(1)
t (x1, y1)p(2)

t (x2, y2), x = (x1, x2), y = (y1, y2) ∈ M. (4.5)

Let q ∈ (1,2] be a given number. We chooseα1, α2 so that

q′ =
q

q− 1
=
α

α0
∈ [2,∞),

whereα0 := min{α1, α2}. Let us verify that condition (UEq) is satisfied onM.
Indeed, we have by (4.5), (4.2) that, for any pointsx, y in M and anyt > 0,

pt(x, y) = p(1)
t (x1, y1)p(2)

t (x2, y2)

'
1

tα1/β

(

1+
d1(x1, y1)

t1/β

)−(α1+β) 1

tα2/β

(

1+
d2(x2, y2)

t1/β

)−(α2+β)

≤
C

t(α1+α2)/β

(

1+
d(x, y)

t1/β

)−(α0+β)

=
C

tα/β

(

1+
d(x, y)

t1/β

)−(α/q′+β)

,

thus showing that (UEq) holds withW(x, r) = rβ.
Let us now disprove (TPq). Fix

t > 0, R> t1/β and x = (x1, x2) ∈ M.

We need to estimate the lower bound of‖pt(x, ∙)‖Lq(B(x,R)c).
Sinceμi(B(xi , r)) ' rαi , i = 1,2 for anyr > 0, we can choosea ≥ 1 large enough such that, fori = 1,2,

μi(B(xi ,ar) \ B(xi , r)) = μi(B(xi ,ar)) − μ(B(xi , r)) ≥ crαi , r > 0. (4.6)

Using (4.5) and the fact that

{y = (y1, y2) ∈ M : d1(x1, y1) ≥ R} ⊂ B(x,R)c,
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we obtain ∫

B(x,R)c
pt(x, y)qdμ(y) ≥

∫

{d1(x1,y1)≥R}
p(1)

t (x1, y1)qdμ1(y1)
∫

M2

p(2)
t (x2, y2)qdμ2(y2)

≥
∫

{aR≥d1(x1,y1)≥R}
p(1)

t (x1, y1)qdμ1(y1)

×
∫

{at1/β≥d2(x2,y2)≥t1/β}
p(2)

t (x2, y2)qdμ2(y2).

Using (4.2) and (4.6), we have
∫

{aR≥d1(x1,y1)≥R}
p(1)

t (x1, y1)qdμ1(y1) ≥ ct−
qα1
β

( aR

t1/β

)−q(α1+β)

μ1(B(x1,aR) \ B(x1,R))

≥ ct−
qα1
β +

q(α1+β)
β (aR)−q(α1+β)Rα1

≥ c′tqR−(q−1)α1−qβ,

and ∫

{at1/β≥d2(x2,y2)≥t1/β}
p(2)

t (x2, y2)qdμ2(y2) ≥ ct−
qα2
β μ2(B(x2,at1/β) \ B(x2, t

1/β))

≥ c′t−
qα2
β +

α2
β = c′t−

(q−1)α2
β .

Combining the above three inequalities, we obtain

‖pt(x, ∙)‖Lq(B(x,R)c) ≥ ct1−
α2
q′β R−

α1
q′ −β.

If condition (TPq) were satisfied, then we would have

‖pt(x, ∙)‖Lq(B(x,R)c) ≤ CtR−
α
q′ −β.

Combining the above two inequalities and using thatα = α1 + α2, we obtain

t1−
α2
q′β R−

α1
q′ −β ≤ CtR−

α
q′ −β,

which is equivalent toR≤ Ct1/β. Hence, we obtain a contradiction for large enoughR
t1/β

.

5. Truncated Dirichlet forms

In order to obtain the tail estimate of the heat semigroup{Pt}t≥0 of (E,F ), we need to truncate the jump
partE(J) . In this section, we study the truncation of a general Dirichlet form (E,F ) (not necessarily without
killing part). Recall that any regular Dirichlet form (E,F ) can be decomposed into three parts as follows:

E(u, v) = E(L)(u, v) + E(J)(u, v) + E(K)(u, v),

whereE(L) is the local part,E(J) is the jump part associated with a unique Radon measurej on M ×M\diag,
andE(K) is thekilling part.

Fix a real numberρ > 0 and set

E(ρ)(u, v) := E(L)(u, v) + E( j)(u, v) + E(K)(u, v), u, v ∈ F , (5.1)

where

E( j)(u, v) :=
"

{(x,y)∈M×M:d(x,y)<ρ}
(u(x) − u(y)) (v(x) − v(y)) d j.

The symmetric form (E(ρ),F ) may not be in general a regular Dirichlet form. In Subsection5.3we will
prove that it is a regular Dirichlet form under an additional mild assumption. Currently we assume thatE(ρ)

is a regular Dirichlet form onL2(M) with the domainF (ρ) := F . We refer to the Dirichlet form (E(ρ),F (ρ))
as in (5.1) as aρ-local Dirichlet form. If in additionE(K) ≡ 0, then the Dirichlet form (E(ρ),F (ρ)) is said to
bestronglyρ-local.

In this section we always assume that the domainF of the Dirichlet form satisfies the following property:

cutoff(A,Ω) , ∅ for any non-empty open setΩ ⊂ M and any bounded setA with A ⊂ Ω. (5.2)
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Note that this property is always true under one of condition (S+), (S∗+), (S) and (S∗) introduced in Section
7. Moreover, it is also true for all compact setsA by the regularity of (E,F ).

5.1. Some properties ofρ-locality. In this subsection, we study some properties ofρ-local Dirichlet forms.
Recall that the locality property ofE(L) means that if the functionsu, v ∈ F have disjoint compact

supports, thenE(L)(u, v) = 0. The following proposition relaxes this assumption to bounded supports.
For anyr > 0 and setU ⊂ M, denote byUr ther-neighborhood ofU:

Ur :=
⋃

z∈U

B(z, r).

Proposition 5.1. Let (E,F ) be a regular symmetric Dirichlet form onL2, andE(L) be its strongly local part.
Assume that (5.2) is satisfied.

(i) If functionsu, v ∈ F have disjoint bounded supports, thenE(L)(u, v) = 0.
(ii) If functions u, v ∈ F have bounded supports andu is constant on a neighbourhood of supp(v), then
E(L)(u, v) = 0.

Proof. (i). Let u, v ∈ F have disjoint bounded supports.
We can choose two open setsU, V such that supp(u) ⊂ U, supp(v) ⊂ V and dist(U,V) > 0. Moreover,

since supp(u), supp(v) are bounded, we have by hypothesis (5.2) that

cutoff(supp(u),U) , ∅ and cutoff(supp(v),V) , ∅.

Consider three cases.
Case 1. Assume first that 0≤ u ≤ 1 and 0≤ v ≤ 1.
Choose some functions

φ1 ∈ cutoff(supp(u),U) and φ2 ∈ cutoff(supp(v),V).

There exist sequences{un}, {vn} ⊂ F ∩C0(M) such that

lim
n→∞
E1(un − u) = 0 and lim

n→∞
E1(vn − v) = 0.

Without loss of generality, we can assume that 0≤ un ≤ 1 and 0≤ vn ≤ 1 for all n ≥ 1 by [19, Theorem
1.4.2(v), p. 28]. Note that by [19, Theorem 1.4.2(ii), p. 28], we haveφ1un ∈ F for anyn, and

sup
n≥1

√
E1(φ1un) ≤ ‖φ1‖∞ sup

n≥1

√
E1(un) + sup

n≥1
‖un‖∞

√
E1(φ1)

≤ sup
n≥1

√
E1(un) +

√
E1(φ1) < ∞.

Moreover,φ1un converges toφ1u = u in L2-norm asn → ∞. Hence, by Lemma11.2 in Appendix, a
subsequence ofφ1un (that we denote again byφ1un) converges toφ1u = u weakly inE1-norm asn → ∞.
Similarly, φ2vn converges toφ2v = v weakly inE1-norm asn→ ∞.

Passing again to subsequences we can assume that the Cesaro means

ũn :=
1
n

n∑

k=1

φ1uk and ṽn :=
1
n

n∑

k=1

φ2vk

converge tou andv in E1-norm, respectively. In particular, we have

lim
n→∞
E(L)(ũn − u) = 0 and lim

n→∞
E(L)(ṽn − v) = 0.

On the other hand,

supp(φ1un) ⊂ U ∩ supp(un) and supp(φ2vn) ⊂ V ∩ supp(vn)

for eachn. Hence, for anym,n ≥ 1 supp(ũn) and supp(˜vn) are compact and

dist(supp(˜un), supp(ṽn)) ≥ dist(U,V) > 0.

Therefore, it follows from the locality ofE(L) that, for alln ≥ 1,

E(L)(ũn, ṽn) = 0.
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Pass to the limit asn→ ∞, and obtainE(L)(u, v) = 0.
Case 2. Assume now thatu, v ∈ L∞.
Setc := (‖u‖∞ ∨ ‖v‖∞)−1. Then all functionscu+, cu−, cv+, cv− take values in [0,1], and by the result of

Case 1, we have

E(L)(cu+, cv+) = E(L)(cu+, cv−) = E
(L)(cu−, cv+) = E(L)(cu−, cv−) = 0.

Consequently,E(L)(u, v) = 0.
Case 3. Consider now the general case ofu andv.
For anyn ≥ 1, define

un := (−n) ∨ u∧ n and vn := (−n) ∨ v∧ n.

Then the supports ofun andvn are disjoint, and, hence, by Case 2, we haveE(L)(un, vn) = 0 for all n. Since
{un} and{vn} converge inE1-norm tou andv, respectively, we conclude thatE(L)(u, v) = 0.

(ii) . Suppose that the functionsu, v ∈ F have bounded supports andu is constant on an open setU with
supp(v) ⊂ U.

Case 1. Consider first the case when supp(v) is compact.
Choose a precompact open setV such that supp(v) ⊂ V ⊂ V ⊂ U and chooseφ ∈ cutoff(V,U) ∩C0(M).

Let c be the constant such thatu|U = c. Sinceφ|V = 1 and supp(φ) is compact, it follows from the strong
locality ofE(L) thatE(L)(φ, v) = 0. On the other hand, sinceu−cφ = 0 onV, we have that supp(u−cφ) ⊂ Vc,
so that supp(u − cφ) is bounded and disjoint with supp(v). Hence, by the result in (i), we obtain that
E(L)(u− cφ, v) = 0. It follows that

E(L)(u, v) = E(L)(u− cφ, v) + E(L)(cφ, v) = 0.

Case 2. Consider the general case when supp(v) is just bounded.
Let ε := 1

2dist(supp(v),Uc) > 0 andV := (supp(v))ε be theε-neighborhood of supp(v) so thatV ⊂ U.
Chooseψ ∈ cutoff(supp(v),V) (by (5.2)). Then, by the argument in Case 1 of the proof of (i), we can take a
sequence{ṽn} ⊂ F of functions with compact supports such that supp(˜vn) ⊂ V ⊂ U for all n and

lim
n→∞
E(L)(ṽn − v) = 0.

Sinceu is constant onU and, hence, on a neighbourhood of ˜vn, it follows from the result in Case 1 that
E(L)(u, ṽn) = 0. Passing to the limit asn→ ∞, and using the above formula, we obtainE(L)(u, v) = 0. �

The following corollary shows that the (strongly)ρ-local Dirichlet form (E(ρ),F (ρ)) (as in (5.1)) possesses
some properties analogous to those ofE(L).

Corollary 5.2. Let (E(ρ),F (ρ)) be the regularρ-local Dirichlet form onL2 as in (5.1). Assume that (5.2) is
satisfied.

(i) If functionsu, v ∈ F (ρ) have bounded supports and dist(supp(u), supp(v)) > ρ, thenE(ρ)(u, v) = 0.
(ii) Suppose that in addition (E(ρ),F (ρ)) is stronglyρ-local. If functionsu, v ∈ F (ρ) have bounded

supports andv is constant on a neighbourhoodof (supp(u))ρ, thenE(ρ)(u, v) = 0.

Proof. It suffices to prove (ii). SinceF (ρ) = F , any cutoff function forE is also a cutoff function forE(ρ).
Suppose thatu, v ∈ F (ρ) have bounded supports andu is constant on a neighbourhoodof (supp(v))ρ. It

follows from Proposition5.1(ii) that E(L)(u, v) = 0.
It remains to prove thatE( j)(u, v) = 0. Let A := supp(u). Using the facts thatv = const onAρ so that

v(x) − v(y) = 0 onAρ × Aρ as well asu = 0 onAc ⊃ Ac
ρ so thatu(x) − u(y) = 0 onAc

ρ × Ac
ρ, we obtain

E( j)(u, v) =
"

M×M
(u(x) − u(y))(v(x) − v(y))1{d(x,y)<ρ}d j

=




"

Aρ×Aρ
+

"

Aρ×Ac
ρ

+

"

Ac
ρ×Aρ

+

"

Ac
ρ×Ac

ρ


 (u(x) − u(y))(v(x) − v(y))1{d(x,y)<ρ}d j

= 2
"

Aρ×Ac
ρ

(u(x) − u(y))(v(x) − v(y))1{d(x,y)<ρ}d j
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= 2




"

A×Ac
ρ

+

"

(Aρ\A)×Ac
ρ


 (u(x) − u(y))(v(x) − v(y))1{d(x,y)<ρ}d j

= 0,

where in the last line we have used that1{d(x,y)<ρ} = 0 on A × Ac
ρ so that the first integral vanishes, and

u(x) − u(y) = 0 on (Aρ \ A) × Ac
ρ (asu = 0 outsideA), so that the second integral is also zero. Finally, it

follows from (5.1) thatE(ρ)(u, v) = 0. �

5.2. Resolvents.In this subsection, we give some general facts on the resolvent associated with theρ-local
Dirichlet form.

Forρ > 0 and for any non-empty subsetΩ of M, letF (ρ)(Ω) be a vector space defined by

F (ρ)(Ω) = the closure ofF (ρ) ∩C0(Ω) in the norm
√
E(ρ)

1 . (5.3)

Then (E(ρ),F (ρ)(Ω)) is a regular Dirichlet form inL2(Ω, μ). Let

QΩ
t := Q(ρ),Ω

t

be the heat semigroup inL2 associated with (E(ρ),F (ρ)(Ω)). For anyλ > 0, letRΩ
λ := R(ρ),Ω

λ be the resolvent
associated with (E(ρ),F (ρ)(Ω)) that is defined by

RΩ
λ f =

∫ ∞

0
e−λsQΩ

s f ds, f ∈ L2. (5.4)

WhenΩ = M, we drop the superscriptΩ by writing

Qt := QΩ
t and Rλ := RΩ

λ .

For simplicity, denote by

E(ρ)
λ (u, v) := E(ρ)(u, v) + λ(u, v) for anyu, v ∈ F (ρ). (5.5)

It is known (see for example [19, formula (1.3.7), p. 20]) that, for any open subsetΩ,

E(ρ)
λ (RΩ

λ f ,g) = ( f ,g) for all f ∈ L2(Ω) andg ∈ F (ρ)(Ω). (5.6)

The following statement gives a relation between the functions 1− QΩ
t 1Ω and 1− λRΩ

λ 1Ω.

Proposition 5.3. For any open subsetΩ ⊂ M and all t, λ > 0,

1− QΩ
t 1Ω ≤ eλt

(
1− λRΩ

λ 1Ω
)

in M. (5.7)

Proof. Note that the functions 7→ QΩ
s 1Ω is non-increasing. Hence, for anyt > 0,

1− λRΩ
λ 1Ω =

∫ ∞

0
(1− QΩ

s 1Ω)λe−λsds≥
∫ ∞

t
(1− QΩ

s 1Ω)λe−λsds

≥ (1− QΩ
t 1Ω)

∫ ∞

t
λe−λsds= (1− QΩ

t 1Ω)e−λt,

which is equivalent to (5.7). �

Note that the above the inequality (5.7) is true for general Markovian semigroups and their resolvents.

Proposition 5.4. Let ρ ≥ 0 and(E(ρ),F (ρ)) be a stronglyρ-local Dirichlet form in L2. Assume that (5.2) is
satisfied. Letλ > 0 and U be a non-empty bounded open subset of M. If a function u∈ F (ρ) ∩ L∞(M) is
such that0 ≤ u ≤ 1 in Uρ and

E(ρ)
λ (u, ψ) ≤ 0, ∀ 0 ≤ ψ ∈ F (ρ)(U), (5.8)

whereE(ρ)
λ is defined by (5.5), then

u ≤ 1− λRU
λ 1U in Uρ. (5.9)
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Proof. We will apply elliptic maximum principle (Proposition11.6in Appendix). It suffices to prove (5.9)
in U, since (5.9) is automatically true inUρ \ U asu ≤ 1 in Uρ andRU

λ 1U = 0 in Uρ \ U. We show that for
any open setV b U,

u ≤ 1− λRV
λ1V in V. (5.10)

hen (5.9) will follow by taking an exhaustionV ↑ U in (5.10) and using [25, Lemma 4.13, p. 119].
Choose someφ ∈ cutoff(Vρ,Uρ) (by (5.2)), and consider the function

v := φu− (φ − λRV
λ1V).

Sinceu, φ ∈ F (ρ) ∩ L∞(M), we conclude by [19, Theorem 1.4.2, p. 28],

φu ∈ F (ρ) ∩ L∞(M).

Consequently,v ∈ F (ρ). On the other hand, since 0≤ u ≤ 1 in Uρ, we have

v = φu− φ + λRV
λ1V ≤ λRV

λ1V ∈ F
(ρ)(V).

It follows from [25, Lemma 4.4, p. 114] that

v+ ∈ F
(ρ)(V). (5.11)

Let 0≤ ψ ∈ F (ρ) ∩C0(V). Let us prove thatv satisfies

E(ρ)
λ (v, ψ) ≤ 0. (5.12)

Indeed, note that supp((φ − 1)u) ⊂ (Vρ)c and supp(ψ) ⊂ V, so that the distance between supp((φ − 1)u) and
supp(ψ) is strictly greater thanρ. By Corollary5.2(i), we have

E(ρ)
λ ((φ − 1)u, ψ) = 0.

Combining this and (5.8), we obtain,

E(ρ)
λ (φu, ψ) = E(ρ)

λ (u, ψ) + E(ρ)
λ ((φ − 1)u, ψ) ≤ E(ρ)

λ ((φ − 1)u, ψ) = 0.

On the other hand, since supp(ψ) ⊂ V andφ = 1 in Vρ so thatφ is constant in theρ-neighborhood of the
support ofψ, it follows from Corollary5.2(ii) that E(ρ)(φ, ψ) = 0. Hence,

E(ρ)
λ (φ, ψ) = E(ρ)(φ, ψ) + λ(φ, ψ) = λ(φ, ψ) = λ‖ψ‖1.

By (5.6), we have
E(ρ)
λ (RV

λ1V, ψ) = (1V, ψ) = ‖ψ‖1.

Therefore, combining the above three formulas, we obtain

E(ρ)
λ (v, ψ) = E(ρ)

λ (φu− φ + λRV
λ1V, ψ)

= E(ρ)
λ (φu, ψ) − E(ρ)

λ (φ, ψ) + λE(ρ)
λ (RV

λ1V, ψ)

≤ 0− λ‖ψ‖1 + λ‖ψ‖1 = 0,

thus showing (5.12). For a general function 0≤ ψ ∈ F (ρ)(V), we can apply (5.12) for a sequence of functions
{ψn} ⊂ F

(ρ) ∩C0(V) converging toψ, and obtain (5.12) also for thisψ.
Consequently, it follows from (5.11) and (5.12) that the functionv satisfies all the assumptions in the

elliptic maximum principle inV (see Proposition11.6in Appendix). We conclude that

v = φu− (φ − λRV
λ1V) ≤ 0 in V,

which yields (5.10) asφ = 1 onV. �

We remark that Proposition5.4can be viewed as an extension to theρ-local case of [25, Corollary 4.15]
that was proved for strongly local Dirichlet forms.

Proposition 5.5. Assume that (5.2) is satisfied. Fixλ > 0, ρ > 0. LetΩ be a non-empty bounded open
subset of M, and U⊂ Ω be an open subset such that Uρ ⊂ Ω. Then, forμ-almost all z∈ Uρ

1− λRΩ
λ 1Ω(z) ≤

(
1− λRU

λ 1U(z)
) ∥∥∥1− λRΩ

λ 1Ω
∥∥∥

L∞(Uρ)
. (5.13)
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Observe that the inclusionU ⊂ Ω implies that

1− λRΩ
λ 1Ω =

∫ ∞

0
λe−λs(1− QΩ

s 1Ω) ds≤
∫ ∞

0
λe−λs(1− QU

s 1U)ds= 1− λRU
λ 1U in M (5.14)

becauseQU
t 1U ≤ QΩ

t 1Ω in M for any t > 0. The inequality (5.13) gives a sharper upper bound of the
function 1− λRΩ

λ 1Ω in terms of 1− λRU
λ 1U . In the next lemma, the inequality (5.13) will be used to get the

tail estimateQt1Bc for any metric ballB.

Proof of Proposition5.5. Let V ⊂ U be an arbitrary precompact open subset;thenVρ ⊂ Uρ ⊂ Ω. Choose
someφ ∈ cutoff(Vρ,Uρ) (by (5.2)) and consider the function

u := c0(φ − λRΩ
λ 1Ω),

wherec0 is a constant given by

c−1
0 =

∥∥∥φ − λRΩ
λ 1Ω

∥∥∥
L∞(Uρ)

.

We will apply Proposition5.4to show

u ≤ 1− λRV
λ1V in Vρ (also inUρ). (5.15)

Indeed, note thatu ∈ F (ρ) ∩ L∞(M) and 0≤ u ≤ 1 in Uρ. We need to verify thatu satisfies (5.8) in V that
is, for all 0≤ ψ ∈ F (ρ)(V). By Corollary5.2(ii) and using the fact thatφ = 1 onVρ, we have

E(ρ)(φ, ψ) = 0.

It follows that

E(ρ)
λ (φ, ψ) = E(ρ)(φ, ψ) + λ(φ, ψ) = λ(φ, ψ) = λ‖ψ‖1.

On the other hand, by (5.6) we have

E(ρ)
λ (RΩ

λ 1Ω, ψ) = (1Ω, ψ) = ‖ψ‖1.

Combining the above two formulas, we obtain that

E(ρ)
λ (u, ψ) = c0E

(ρ)
λ (φ − λRΩ

λ 1Ω, ψ) = c0

(
E(ρ)
λ (φ, ψ) − λE(ρ)

λ (RΩ
λ 1Ω, ψ)

)

= c0 (λ‖ψ‖1 − λ‖ψ‖1) = 0,

thus proving (5.8).
By inequality (5.9) of Proposition5.4, we obtain (5.15). Combining (5.15) and the fact thatφ = 1 in Vρ,

we obtain that

1− λRΩ
λ 1Ω = φ − λRΩ

λ 1Ω ≤ c−1
0

(
1− λRV

λ1V

)

=
(
1− λRV

λ1V

) ∥∥∥1− λRΩ
λ 1Ω

∥∥∥
L∞(Uρ)

in Vρ ( also inUρ).

Passing to the limit asV ↑ U, we obtain (5.13). �

Lemma 5.6. Assume that (5.2) is satisfied. Fixλ > 0, ρ > 0. Let B be a ball in M of radius R> 0, and
k ≥ 1 be an integer satisfying

4kρ < R.

Assume also that, for any z∈ B,

1− λRB(z,ρ)
λ 1B(z,ρ) ≤ a in

1
4

B(z, ρ) (5.16)

for some positive constant a. Then

1− λRB
λ1B ≤ ak in

1
4

B. (5.17)
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Proof. We divide the proof into two steps.
Step 1. Fix y ∈ 1

4B and prove that

1− λR
B(y, 34R)
λ 1B(y, 34R) ≤ ak in B(y, ρ). (5.18)

Indeed, for any 0≤ n ≤ k, setBn := B(y, (2n+ 1)ρ) ⊂ B(y, 3
4R) ⊂ B and

mn :=
∥∥∥∥∥1− λR

B(y, 34R)
λ 1B(y, 34R)

∥∥∥∥∥
L∞(Bn)

.

For any 1≤ n ≤ k and for anyz ∈ Bn−1 we have,B(z, ρ) ⊂ B(z,2ρ) ⊂ Bn. Applying (5.13) with Ω = B(y, 3
4R),

U = B(z, ρ) for anyz ∈ Bn−1 ⊂ B and using (5.16), we obtain

1− λR
B(y, 34R)
λ 1B(y, 34R) ≤

(
1− λRB(z,ρ)

λ 1B(z,ρ)

)
‖1− λR

B(y, 34R)
λ 1B(y, 34R)‖L∞(B(z,2ρ))

≤
(
1− λRB(z,ρ)

λ 1B(z,ρ)

)
‖1− λR

B(y, 34R)
λ 1B(y, 34R)‖L∞(Bn)

=
(
1− λRB(z,ρ)

λ 1B(z,ρ)

)
mn

≤ amn in
1
4

B(z, ρ).

CoveringBn−1 by at most countable balls like14B(z, ρ), we obtain from the above inequality that

mn−1 =

∥∥∥∥∥1− λR
B(y, 34R)
λ 1B(y, 34R)

∥∥∥∥∥
L∞(Bn−1)

≤ amn.

Iterating this inequality and using the fact thatmk ≤ 1, we obtain
∥∥∥∥∥1− λR

B(y, 34R)
λ 1B(y, 34R)

∥∥∥∥∥
L∞(B0)

= m0 ≤ akmk ≤ ak,

which is exactly (5.18).
Step 2.SinceB(y, 3

4R) ⊂ B for anyy ∈ 1
4B, we have by (5.18),

1− λRB
λ1B ≤ 1− λR

B(y, 34R)
λ 1B(y, 34R) ≤ ak in B(y, ρ).

Covering1
4B by at most countable family of balls likeB(y, ρ), we obtain (5.17). �

5.3. Relation between two semigroups.In this subsection, we always assume that the following condition
holds:

ω(ρ) := sup
x∈M

∫

B(x,ρ)c
J(x,dy) < ∞ (5.19)

and investigate the relationship between the original heat semigroup{Pt} and theρ-truncated heat semigroup
{Qt}.

Lemma 5.7. Under the hypothesis (5.19) the bilinear form(E(ρ)),F (ρ)) is a regular Dirichlet form.

Proof. By the symmetry ofj, we have, for allu ∈ F ,

E(u,u) = E(ρ)(u,u) +
"

M×B(x,ρ)c
(u(x) − u(y))2 d j

≤ E(ρ)(u,u) + 2
"

M×B(x,ρ)c

(
u(x)2 + u(y)2

)
d j

≤ E(ρ)(u,u) + 4
"

M×B(x,ρ)c
u(x)2J(x,dy)dμ(x).

Using (5.19), we obtain

E(u,u) ≤ E(ρ)(u,u) + 4
∫

M
u(x)2J(x, B(x, ρ)c)dμ(x)

≤ E(ρ)(u,u) + 4ω(ρ)‖u‖22
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≤ (4ω(ρ) ∨ 1)E(ρ)
1 (u,u), u ∈ F ,

whereE(ρ)
1 (u, v) = E(ρ)(u, v) + (u, v), u, v ∈ F . Hence, it follows that

E(ρ)
1 (u,u) ≤ E1(u,u) ≤ 2(4ω(ρ) ∨ 1)E(ρ)

1 (u,u), u ∈ F .

Therefore, the quadratic formsE(ρ)
1 andE1 are equivalent, which implies that (E(ρ),F ) is also a regular

Dirichlet form. �

For anyρ > 0, we define the operatorA(ρ) by

A(ρ) f (x) = 2
∫

M
( f (y) − f (x))1B(x,ρ)c(y)J(x,dy). (5.20)

assuming thatf ∈ F and that the integral in the right hand side is well defined. Note that we always use here
a quasi-continuous version off , since the measured j(x, y) = J(x,dy)dμ(x) charges no set of zero capacity.

Proposition 5.8. Fix someρ > 0 and q∈ [1,∞]. Assume that (5.19) is true. Then, for any f∈ F ∩ Lq,

‖A(ρ) f ‖q ≤ 4ω(ρ)‖ f ‖q < ∞. (5.21)

Proof. For the case whenq = ∞, the inequality (5.21) follows directly from Proposition11.9in Appendix.
Let q ∈ [1,∞). By the Ḧolder inequality, we have, for anyf ∈ F ∩ Lq,

‖A(ρ) f ‖qq = 2q
∫

M

∣∣∣∣∣

∫

B(x,ρ)c
( f (y) − f (x))J(x,dy)

∣∣∣∣∣
q

dμ(x)

≤ 2q
∫

M

∫

B(x,ρ)c
| f (y) − f (x)|qJ(x,dy) ∙

( ∫

B(x,ρ)c
J(x,dy)

)q−1
dμ(x)

≤ 2qω(ρ)q−1
∫

M

∫

M
2q−11{d(x,y)≥ρ}(| f (x)|q + | f (y)|q)J(x,dy)dμ(x)

= 22qω(ρ)q−1
∫

M
| f (x)|q

∫

B(x,ρ)c
J(x,dy)dμ(x)

= 4qω(ρ)q
∫

M
| f (x)|qdμ(x),

thus showing (5.21). �

Remark 5.9. Let q = 2. If (5.19) is satisfied then by (5.21) the operatorA(ρ) is bounded inL2-norm and,
hence, can be extended to a bounded operator on the entire spaceL2.

Next, we compare the semigroups{Pt} and{Qt} by means of the following abstract Phillips theorem.

Proposition 5.10([38, Theorem 3.5 and eq. (13)]). LetΔ be the (non-positive definite) infinitesimal gen-
erator of a strongly continuous semigroup{Qt}t≥0 on a Banach spaceH , and let A be a bounded linear
operator fromH toH . Then the semigroup{Pt}t≥0 generated byΔ + A can be expressed by

Pt =

∞∑

n=0

Q(n)
t ,

where Q(0)
t = Qt, and

Q(n)
t =

∫ t

0
Qt−sAQ(n−1)

s ds for each n≥ 1

is well-defined, strongly continuous in t onH . If in addition {Qt}t≥0 is contractive onH , that is,‖Qt‖ ≤ 1,
then

‖Q(n)
t ‖ ≤

(t‖A‖)n

n!
for each n≥ 0. (5.22)

The following statement gives a relationship between two heat semigroups{Pt} and{Qt}.
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Proposition 5.11. Assume that (5.19) is satisfied. Then, for allρ, t > 0 and f ∈ L2,

Pt f = Qt f +
∫ t

0
QsA

(ρ)Pt−s f ds, (5.23)

where operator A(ρ) is defined by (5.20).

Proof. Observe that, for allf ,g ∈ F ,

E( f ,g) = E(ρ)( f ,g) +
"

M×B(x,ρ)c
( f (x) − f (y))(g(x) − g(y))d j

= E(ρ)( f ,g) − 2
∫

M
g(x)

(∫

B(x,ρ)c
( f (y) − f (x))J(x,dy)

)

dμ(x)

= E(ρ)( f ,g) − (A(ρ) f ,g).

Since the operatorA(ρ) is bounded, the Dirichlet formE(ρ)( f ,g) is a bounded perturbation ofE( f ,g), which
implies that the generatorsL(ρ) andL of these Dirichlet forms have the same domains and

L = L(ρ) + A(ρ). (5.24)

Therefore, applying Proposition5.10with Δ = L(ρ), A = A(ρ) we obtain that

Pt =

∞∑

n=0

Qt,n, (5.25)

whereQt,0 = Qt, and

Qt,n =

∫ t

0
Qt−sA

(ρ)Qs,n−1ds, n ≥ 1.

It remains to show (5.23).
Indeed, the series

∑∞
n=0 Qt,n is absolutely convergent in the operator norm of‖∙‖ in L2 since, for anyt > 0,

∫ t

0

∥∥∥Qt−sA
(ρ)Qs,n

∥∥∥ ds≤
∫ t

0

∥∥∥A(ρ)Qs,n

∥∥∥ ds (sinceQt is contractive inL2)

≤
∫ t

0
‖A(ρ)‖ ‖Qs,n‖ds (by (5.21) and Remark5.9)

≤
∫ t

0
‖A(ρ)‖

(s‖A(ρ)‖)n

n!
ds (by (5.22))

=
‖A(ρ)‖n+1

n!

∫ t

0
snds≤

1
(n+ 1)!

(4ω(ρ)t)n+1 (by (5.21)),

which yields that
∞∑

n=0

∫ t

0

∥∥∥Qt−sA
(ρ)Qs,n

∥∥∥ ds≤
∞∑

n=0

(4ω(ρ)t)n+1

(n+ 1)!
= exp(4ω(ρ)t) − 1.

Exchanging the order of summation and integration, we obtain from (5.25) that, for any f ∈ L2 and any
t > 0,

Pt f =

∞∑

n=0

Qt,n f = Qt f +
∞∑

n=1

∫ t

0
Qt−sA

(ρ)Qs,n−1 f ds

= Qt f +
∫ t

0
Qt−sA

(ρ)




∞∑

n=1

Qs,n−1 f


 ds

= Qt f +
∫ t

0
Qt−sA

(ρ)




∞∑

k=0

Qs,k f


 ds

= Qt f +
∫ t

0
Qt−sA

(ρ)Psf ds (by (5.25) again),
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which yields (5.23) by changing variablest − s to s. �

The next lemma was proved in [28, Proposition 4.6, p. 6412] under the assumption that the jump kernel
exists, but the same proof works also in the present setting.

Lemma 5.12. Assume that (5.19) is satisfied. LetΩ ⊂ M be a non-empty open set. Let{QΩ
t } be the heat

semigroup associated with the part Dirichlet from(E(ρ),F (ρ)(Ω)) of the truncatedρ-local Dirichlet form
(E(ρ),F (ρ)) (cf. (5.1)). Then, for any t> 0 and any f∈ L∞,

‖PΩ
t f − QΩ

t f ‖∞ ≤ 2ω(ρ)t‖ f ‖∞. (5.26)

6. A new metric

In this section, we will introduce a new metricd∗ on M, which is topologically equivalent to the original
metricd. Under this new metricd∗, the scaling functionW(x,R) becomes independent of pointx, while the
measureμ is still doubling (resp., reverse doubling). The new metricd∗ will be used to construct a truncated
Dirichlet form.

Recall thatW(x, y) := W(x,d(x, y)), wherex, y ∈ M, and set

D(x, y) := W(x, y) + W(y, x). (6.1)

By the right inequality in (2.7), we see that, for allx, y ∈ M,

W(x,d(x, y))
W(y,d(x, y))

≤ C

(
d(x, y)
d(x, y)

)β2

= C,

that is,W(x, y) ≤ CW(y, x), which implies by interchangingx, y that

W(x, y) 'W(y, x).

It follows from (6.1) that, for allx, y ∈ M,

W(x, y) ≤ D(x, y) ≤ C′W(x, y) (6.2)

for some constantC′ > 0.
Clearly, the functionD is symmetric, that isD(x, y) = D(y, x), and it vanishes if and only ifx = y. Let us

show thatD(x, y) is a quasi-metric onM.

Proposition 6.1. There exists a constant C1 ≥ 1 such that for all x, y, z ∈ M,

D(x, y) ≤ C1(D(x, z) + D(z, y)). (6.3)

Consequently, there exist two constantsβ, C2 > 0 and a metric d∗ on M such that

C−1
2 d∗(x, y)β ≤ D(x, y) ≤ C2d∗(x, y)β (6.4)

for all x, y ∈ M.

Let us observe that ifW(x, r) = r β̃ for somẽβ > 0, thenβ = β̃ and

d(x, y) ' d∗(x, y), x, y ∈ M.

Proof. By the triangle inequality, we have

d(x, y) ≤ d(x, z) + d(z, y) ≤ 2 max{d(x, z),d(z, y)}.

Assume without loss of generality that
d(x, y) ≤ 2d(x, z).

It follows from (6.2), the monotonicity ofW(x, ∙) and the right inequality in (2.7) that

D(x, y) ≤ C′W(x, y) ≤ C′W(x,2d(x, z)) ≤ C1W(x,d(x, z)) ≤ C1D(x, z)

for someC1 ≥ 1, thus proving (6.3). Hence,D(x, y) is a quasi-metric onM.
The second claim follows from (6.3) by [33, Proposition 14.5]. �
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In the rest of the paper,β will always denote the constant from Proposition6.1.
Define the functionF by

F(x,R) := W(x,R)1/β, x ∈ M, R> 0. (6.5)

Clearly, the functionF(x, ∙) is strictly increasing on [0,∞] for any x ∈ M and, by (6.4),

L−1d∗(x, y) ≤ F(x,d(x, y)) = W(x, y)1/β ≤ Ld∗(x, y), (6.6)

for some constantL > 1 and all x, y ∈ M. For anyx ∈ M, let F−1(x, ∙) be the inverse of the function
t 7→ F(x, t), so that

F−1(x, t) = W−1(x, tβ), t > 0. (6.7)

Denote byB∗(x, r) balls with respect to metricd∗, that is

B∗(x, r) := {y ∈ M : d∗(y, x) < r}. (6.8)

Proposition 6.2. There exists a number L0 ≥ L2 > 1 such that the following properties are true.

(i) For all x ∈ M and all r > 0,

B∗(x, L
−1
0 r) ⊂ B(x, F−1(x, L−1r)) ⊂ B∗(x, r). (6.9)

(ii) For all x ∈ M and all R> 0,

B(x, L−1
0 R) ⊂ B∗(x, L

−1F(x,R)) ⊂ B(x,R). (6.10)

Consequently, the metrics d∗ and d are topologically equivalent.

Proof. Let L0 > 1 be a constant to be determined later.
(i). For some fixedx ∈ M andr > 0, let

R′ := F−1(x, L−1r).

We show the left inclusion in (6.9). Indeed, for anyy ∈ B∗(x, L−1
0 r), we have

d∗(x, y) < L−1
0 r,

and, hence, by (6.6),
F(x,d(x, y)) ≤ Ld∗(x, y) < LL−1

0 r.

It follows that
d(x, y) < F−1(x, LL−1

0 r) ≤ F−1(x, L−1r) = R′,

providedLL−1
0 ≤ L−1 that is,

L0 ≥ L2. (6.11)

Thus, the left inclusion of (6.9) holds providedL0 satisfies (6.11).
Let us show the right inclusion in (6.9). Indeed, for anyy ∈ B(x,R′), we have by (6.6) and the definition

of R′,
d∗(x, y) ≤ LF(x,d(x, y)) ≤ LF(x,R′) = L(L−1)r = r,

whence the right inclusion in (6.9) follows.
(ii). For some fixed pointx ∈ M andR> 0, let

r ′ := L−1F(x,R).

Let us verify the left inclusion in (6.10). Indeed, for anyy ∈ B(x, L−1
0 R), we have

d(x, y) < L−1
0 R,

and then, by (6.6)
d∗(x, y) ≤ LF(x,d(x, y)) < LF(x, L−1

0 R) ≤ L−1F(x,R) = r ′,

provided that
LF(x, L−1

0 R) ≤ L−1F(x,R) for all x ∈ M, (6.12)

which proves the left inclusion in (6.10).
Let us now prove the right inclusion in (6.10). Indeed, for anyy ∈ B∗(x, r ′), we have by (6.6) and the

definition ofr ′ that
F(x,d(x, y)) ≤ Ld∗(x, y) < Lr ′ = F(x,R),
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showing that
d(x, y) < R.

This proves the right inclusion in (6.10) providedL0 satisfies (6.12).
It remains to pick upL0 ≥ 1 so that both (6.11) and (6.12) are satisfied. Indeed, by (6.5) and the left

inequality in (2.7), we obtain for allx ∈ M,

L−1F(x,R)

LF(x, L−1
0 R)

=
1
L2




W(x,R)

W(x, L−1
0 R)




1/β

≥
1
L2


C
−1




R

L−1
0 R




β1



1/β

=
(CLβ1

0 )1/β

L2
,

from which, we see that (6.12) is satisfied if

(C−1Lβ1
0 )1/β

L2
≥ 1 ⇔ L0 ≥ (CL2β)1/β1.

Therefore, if we choose
L0 := L2 ∨ (CL2β)1/β1

then both (6.11) and (6.12) are satisfied, which completes the proof. �

Denote the diameter ofM under the metricd∗ by

R∗ := sup{d∗(x, y)| x, y ∈ M}.

RecallthatR= diamM denotes the diameter ofM under the metricd.

Proposition 6.3. Let CW denote the constant in (2.7) and let C:= LC1/β
W . Then, for any x∈ M,

C−1W(x,R)1/β ≤ R∗ ≤ CW(x,R)1/β. (6.13)

Proof. Fix x ∈ M. By (6.6), we have thatW(x,R) = ∞ if and onlyif R∗ = ∞. Hence, it suffices to consider
the casewhenR< ∞.

By the left inequality in (6.6), we have for allz, y ∈ M,

d∗(z, y) ≤ LF(z,d(z, y)) ≤ LF(z,R) = LW(z,R)1/β.

On the other hand, we have by (2.7)

W(z,R)1/β

W(x,R)1/β
≤


CW



R

R




β2



1/β

= C1/β
W . (6.14)

Combining the above two inequalities and using the arbitrariness ofz, y, we obtain the right inequality in
(6.13) with C = LC1/β

W .
Let us prove the left inequality in (6.13). Indeed, by the right inequality in (6.6), we have, for allz, y ∈ M,

F(z,d(z, y)) ≤ Ld∗(z, y) ≤ LR∗.

On the other hand, we have by (2.7)

W(x,R)1/β =
F(x,R)

F(z,d(z, y))
F(z,d(z, y)) ≤


CW




R
d(z, y)




β2



1/β

F(z,d(z, y)).

Combining the above two inequalities, we obtain

W(x,R)1/β ≤


CW




R
d(z, y)




β2



1/β

LR∗.

Passing to the limit in the above inequality asd(z, y) ↑ R, we obtain the left inequality in (6.13) with the
same constantC = LC1/β

W . �

For anyx ∈ M andr > 0, letV∗(x, r) be the volume of the ballB∗(x, r), that is,

V∗(x, r) := μ(B∗(x, r)).

Proposition 6.4. Assume that(VD) is satisfied. Then the following statements are true.
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(i) Condition(VD∗) is satisfied, that is, there exists a constant C> 0 such that, for all x∈ M and r> 0,

V∗(x,2r) ≤ CV∗(x, r). (6.15)

Consequently, there existsα∗ > 0 such that for all x, y ∈ M and0 < s≤ r with d∗(x, y) ≤ r,

V∗(x, r)
V∗(y, s)

≤ C
( r
s

)α∗
.

(ii) Assume in addition that(RVD) is satisfied. Then condition(RVD∗) is also satisfied, that is, there
existsα′∗ > 0 such that for all x∈ M and all0 < s≤ r < R∗,

V∗(x, r)
V∗(x, s)

≥ C−1
( r
s

)α′∗
. (6.16)

Proof. Let L, L0 ≥ 1 be the same constants as in Proposition6.2. Fix a pointx ∈ M.
(i). Fix r > 0 and set

R1 = F−1(x,2L0L−1r) and R2 = F−1(x, L−1r).

SinceF(x, ∙) is strictly increasing andL0 ≥ 1, we have 0< R2 < R1 < ∞. Using the left inclusion in (6.9)
with r replaced by 2L0r, we obtain

B∗(x,2r) ⊂ B(x,R1).

Similarly, we have by the right inclusion in (6.9)

B(x,R2) ⊂ B∗(x, r).

Hence, using the definition ofV∗, (6.7) and the right inequality in (2.8), we obtain

V∗(x,2r)
V∗(x, r)

≤
V(x,R1)
V(x,R2)

≤ C

(
R1

R2

)α
= C

(
F−1(x,2L0L−1r)

F−1(x, L−1r)

)α

= C

(
W−1(x, (2L0L−1r)β)

W−1(x, (L−1r)β)

)α
≤ C


C

(
(2L0L−1r)β

(L−1r)β

)1/β1



α

= C
(
C(2L0)β/β1

)α
,

thus proving (VD∗).
(ii). For 0 < s≤ r < R∗, let

Rs := F−1(x, δL−1s) and Rr := F−1(x, δL−1r),

where the constantδ > 0 is small enough such that, by (6.13),

Rs ≤ Rr = W−1(x, (δL−1r)β) < W−1(x, (δL−1)βCW(x,R)) ≤W−1(x,W(x,R)) = R.

By (6.9), we have

B∗(x, δL
−1
0 s) ⊂ B(x,Rs) and B(x,Rr ) ⊂ B∗(x, r).

Hence, using the definition ofV∗, (VD∗), (6.7), and the left inequality in (2.8), we obtain

V∗(x, r)
V∗(x, s)

≥ C−1 V∗(x, r)

V∗(x, δL−1
0 s)

(by (VD∗) andL0 ≥ 1)

≥ C−1 V(x,Rr )
V(x,Rs)

≥ C′
(
Rr

Rs

)α′

(by (RVD))

= C′
(
F−1(x, L−1r)
F−1(x, L−1s)

)α′

= C′
(
W−1(x, (L−1r)β)
W−1(x, (L−1s)β)

)α′

≥ C′

C
−1

(
(L−1r)β

(L−1s)β

)1/β2



α′

= C
( r
s

)α′β/β2

,

thus proving (RVD∗) with α′∗ = α′β/β2. �
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7. Heat semigroup and jump measure under the new metric

In this section, we shall reformulate some properties of the heat semigroup and jump measure under
the new metricd∗. The advantage of the change of metric is that the scaling function under the metricd∗
becomes

W∗(x, r) := W∗(r) := rβ x ∈ M, r > 0,

whereβ > 0 is given by (6.4). The new scaling functionW∗(x, r) = rβ is independent of pointx and, hence,
is much simpler to deal with.

Let us first introduce conditions (S) and (S+). For any open setΩ ⊂ M, let {PΩ
t } be the heat semigroup of

the Dirichlet form (E,F (Ω)).

Definition 7.1. We say that condition (S) (survival estimate) holds if there exist two constantsε, δ ∈ (0,1)
such that, for any ballB in M of radius< Rand anyt ≤ δW(B),

PB
t 1B ≥ ε in

1
4

B.

Definition 7.2. We say that condition (S+) holds if there exist two constantsε ∈ (0,1) andc > 0 such that,
for any ballB of radius< Rand allt > 0,

PB
t 1B ≥ ε −

ct
W(B)

in
1
4

B.

Let us emphasize that, in contrast to condition (S), there is no restriction on the range of timet in condition
(S+). In fact, we have

(S)⇔ (S+). (7.1)

Indeed, it is clear that (S+) ⇒ (S) by choosing the constantδ in (S) small enough. To show the opposite
implication (S) ⇒ (S+), it suffices to consider the case whent > δW(B). In this case, this implication
follows by setting the constantc in (S+) to beδ−1 so thatPB

t 1B ≥ 0 > ε − 1 > ε − ct
W(B) .

It is proved in [24, Theorem 14.1] that, under the condition (VD),

(FK) + (Gcap) + (TJ)⇒ (S+)⇒ (S)⇒ (Gcap). (7.2)

Remark 7.3. We remark that the constantc in the condition (S+) in [24, Theorem 14.1] is required to be in
(0,1), which is different from that in this paper. However, condition (S+) in [24] can be replaced by (S+) in
this paper, and all the results in [24] are also true.

It is proved in [23, Proposition 3.1] that, under the condition (VD), for any 1≤ q1 ≤ q2 ≤ ∞,

(TJq2)⇒ (TJq1)⇒ (TJ1)⇒ (TJ). (7.3)

In this section, we look at conditions (DUE), (S), (S+), (TJq), (TJ) under the new metricd∗. For that, let
us introduce conditions (DUE∗), (S∗), (S∗+), (TJ∗q), (TJ∗) as follows.

• Condition (DUE∗): The heat kernelpt(x, y) of (E,F ) exists pointwise on (0,∞)×M ×M, and there
exists a regularE-nest{Fk} such that the following properties are true.
(a) For anyx ∈ M andt > 0,

pt(x, ∙) ∈ C({Fk}).

(b) For anyC0 ≥ 1, there exists a constantC > 0 such that for allx, y ∈ M and allt < C0(R∗)β,

pt(x, x) ≤
C

V∗(x, t1/β)
. (7.4)

• Condition (S∗): There existε, δ∗ ∈ (0,1) such that, for any metric ballB∗ = B∗(x, r) of radius
r < 2R∗,

PB∗
t 1B∗ ≥ ε in

1
4

B∗, (7.5)

providedt1/β ≤ δ∗r.
• Condition (S∗+): There existε ∈ (0,1) andc > 0 such that, for any metric ballB∗ = B∗(x, r) with

r < 2R∗ and anyt > 0,

PB∗
t 1B∗ ≥ ε −

ct

rβ
in

1
4

B∗. (7.6)
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• Condition (TJ∗): There existsC ∈ [0,∞) such that, for anyx ∈ M and anyr > 0,

J(x, B∗(x, r)
c) ≤

C

rβ
. (7.7)

• Condition (TJ∗q) for some 1≤ q ≤ ∞: There exists a non-negative functionJ such that

d j(x, y) = J(x, y)dμ(y)dμ(x) in M × M,

and, for anyx ∈ M and anyr > 0,

‖J(x, ∙)‖Lq(B∗(x,r)c) ≤
C

V∗(x, r)1/q′rβ
, (7.8)

whereq′ = q
q−1 andC ∈ [0,∞) is independent ofx, r.

Proposition 7.4. The following statements are true.

(i) (VD) + (DUE)⇒ (DUE∗).
(ii) (S)⇒ (S∗). Moreover,

(S+)⇔ (S∗+). (7.9)

(iii) ( TJ)⇔ (TJ∗), and, for any1 ≤ q ≤ ∞,

(VD) + (TJq)⇒ (TJ∗q).

Consequently, under(VD), for any1 ≤ q1 ≤ q2 ≤ ∞,

(TJq2)⇒ (TJ∗q2
)⇒ (TJ∗q1

)⇒ (TJ∗). (7.10)

Proof. Since (VD)⇒ (VD∗), we can assume throughout the proof that (VD∗) is satisfied.
(i). Fix x ∈ M andt < C0(R∗)β. The existence and continuity property of the heat kernel are satisfied by

(DUE), so we need only to verify the inequality (7.4). Indeed, we have by (DUE)

pt(x, x) ≤
C

V(x,W−1(x, t))
. (7.11)

By (6.13), there exists a small enough constantc ∈ (0,1) such that

ct < cC0(R∗)
β ≤ cC0C

βW(x,R) < W(x,R),

whence
R := W−1(x, ct) < R

(
⇔ ct = W(x,R) < W(x,R)

)
.

By (6.10), the ballB(x,R) contains a ballB∗(x, r), where

r := L−1F(x,R) = L−1W(x,R)1/β = L−1(ct)1/β,

which implies that

V(x,W−1(x, ct)) = μ(B(x,R)) ≥ μ(B∗(x, r)) = V∗(x, L
−1(ct)1/β).

Hence, it follows from (7.11), the above inequality and (VD∗), that

pt(x, x) ≤
C

V(x,W−1(x, t))
≤

C

V(x,W−1(x, ct))
≤

C

V∗(x, L−1(ct)1/β)
≤

C′

V∗(x, t1/β)
,

which was to be proved.
(ii). Fix x ∈ M andr < 2R∗. By (6.13), we have

r < 2R∗ ≤ 2CW(x,R)1/β = 2CF(x,R),

whereC = LC1/β
W ≥ L. Set

R := F−1(x, (2C)−1r) < R and B := B(x,R).

Using (6.9) with r replaced by (2C)−1Lr, we obtain

B∗(x, L
−1
0 (2C)−1Lr) ⊂ B(x, F−1(x, L−1(2C)−1Lr))

= B(x,R) ⊂ B∗(x, (2C)−1Lr)

⊂ B∗(x, r) =: B∗.



TAIL ESTIMATES 33

It follows that
1
4

B ⊃
1
4

B∗(x, L
−1
0 (2C)−1Lr) = (4−1L−1

0 (2C)−1L)B∗ =: ηB∗

which together with condition (S) yields

PB∗
t 1B∗ ≥ PB

t 1B ≥ ε in
1
4

B ⊃ ηB∗ (7.12)

provided that
t ≤ δW(x,R) = δ(2C)−βrβ.

Let us show that (7.12) holds also in1
4B∗ (not only inηB∗). This can be done by using the standard covering

arguments. Indeed, for anyz ∈ 1
4B∗, sinceU := B∗(z, 1

4r) ⊂ B∗, we see by (7.12) that

PB∗
t 1B∗ ≥ PU

t 1U ≥ ε in ηB∗(z,
1
4

r)

providedt ≤ δ(2C)−β(1
4r)β. Covering1

4B∗ by a countable family of balls likeB∗(z,
η
4r), we conclude that

PB∗
t 1B∗ ≥ ε in

1
4

B∗

providedt ≤ δ(2C)−β(1
4r)β, thus showing that condition (S∗) holds withδ∗ := δ1/β(8C)−1.

For the equivalence (7.9), let us first prove the implication (S+) ⇒ (S∗+). Fix some ballB∗ := B∗(x, r)
with r < 2R∗ and set

R := F−1(x, L−1c0r) and B := B(x,R),

wherec0 > 0 is a small constant such thatR < R (which can be done thanks to (6.13) and (2.8)). Then, by
(6.9) with r replaced byc0r, we see that

B∗(x, L
−1
0 c0r) ⊂ B ⊂ B∗(x, c0r) ⊂ B∗.

Thus, by condition (S+), we obtain, for anyt > 0,

PB∗
t 1B∗ ≥ PB

t 1B ≥ ε −
ct

W(x,R)
= ε −

ct

(L−1r)β
= ε −

cLβt

rβ
in

1
4

B ⊃
1
4

B∗(x, L
−1
0 c0r) =

c0

4L0
B∗,

where the constantsε, c > 0 come from condition (S+). Moreover, by standard covering arguments, we have

PB∗
t 1B∗ ≥ ε −

c′t

rβ
in

1
4

B∗ (not only in
c0

4L0
B∗)

for anyr < 2R∗ and anyt > 0, which proves (S∗+).
It remains to prove the converse implication (S∗+)⇒ (S+). Fix a ballB := B(x,R) with R< R, and

r := L−1F(x,R).

By (6.10), we have
B(x, L−1

0 R) ⊂ B∗ := B∗(x, r) ⊂ B(x,R) = B.

Hence, by (S∗+), we obtain

PB
t 1B ≥ PB∗

t 1B∗ ≥ ε −
ct

rβ
= ε −

ct

L−βW(x,R)
in

1
4

B∗ ⊃
1
4

B(x, L−1
0 R) =

1
4L0

B.

where the constantsε, c > 0 come from condition (S∗+). Moreover, by standard covering arguments, we can
prove the above inequality also holds in1

4B, which proves (S+).
(iii). Fix somex ∈ M andr > 0. We have by (6.9)

B∗(x, L
−1
0 r) ⊂ B(x,R) ⊂ B∗(x, r),

where
R := F−1(x, L−1r) ⇔ F(x,R) = L−1r ⇔ W(x,R) = (L−1r)β.

It follows that
V(x,R) = μ(B(x,R)) ≥ μ(B∗(x, L

−1
0 r)) = V∗(x, L

−1
0 r).
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Hence, if (TJ) holds, then

J(x, B∗(x, r)
c) ≤ J(x, B(x,R)c) ≤

C
W(x,R)

=
C

(L−1r)β
,

so that condition (TJ∗) holds as well.
Similarly, we can use the right inclusion in (6.10) to prove (TJ∗)⇒ (TJ). Here we omit the details.
If (TJq) holds for some 1≤ q ≤ ∞, then we obtain similarly

‖J(x, ∙)‖Lq(B∗(x,r)c) ≤ ‖J(x, ∙)‖Lq(B(x,R)c) ≤
C

V(x,R)1/q′W(x,R)

≤
C

V∗(x, L−1
0 r)1/q′W(x,R)

=
C

V∗(x, L−1
0 r)1/q′(L−1r)β

≤
C′

V∗(x, r)1/q′rβ
(by (VD∗)),

thus proving (TJ∗q).
Finally, the implication (7.10) follows from the similar arguments that lead to (7.3). �

Remark 7.5. Proposition7.4says that if conditions (DUE), (S), (S+), (TJq), (TJ) are satisfied for a scaling
function W(x, r), that may depend onx, then the parallel conditions (DUE∗), (S∗), (S∗+), (TJ∗q), (TJ∗) are
also satisfied for a new scaling functionW∗(x, r) = rβ , that is independent ofx, under the metricd∗. This
property is crucial for the study of a truncated Dirichlet form in the next section.

8. Truncated Dirichlet form under new metric

In this section, we will consider theρ-truncated Dirichlet form (E(ρ),F (ρ)) defined in Section5 for any
numberρ > 0 but under the new metricd∗, and obtain the heat kernel estimates for the truncated Dirichlet
form. Unless otherwise stated, all balls in this section are defined under the new metricd∗.

Recall that (E,F ) is a regular Dirichlet form without killing part, and the jump part is as in (2.6). For any
ρ > 0, set

E(ρ)(u, v) := E(L)(u, v) +
"

M×B∗(x,ρ)
(u(x) − u(y)) (v(x) − v(y)) d j, u, v ∈ F , (8.1)

whereB∗(x, ρ) is an open ball under the new metricd∗ as defined in (6.8).
Clearly, if condition (TJ∗) or (TJ) (which implies (TJ∗) by Proposition7.4(iii)) holds, then

ω(ρ) := esup
x∈M

J(x, B∗(x, ρ)c) < ∞, (8.2)

and (E(ρ),F (ρ)) is a regularρ-local Dirichlet form by Lemma5.7. Besides, all the results in Subsection5.3
can be applied in the present setting.

Denote by{QΩ
t } the heat semigroup of the Dirichlet form (E(ρ),F (ρ)(Ω)) restricted to a non-empty open

setΩ ⊂ M (the superscriptρ in QΩ
t is omitted). IfΩ = M, then{Qt} := {QΩ

t } is the heat semigroup of
(E(ρ),F (ρ)).

Remark 8.1. SinceF = F (ρ), all the cutoff functions defined for the Dirichlet form (E,F ) are also cutoff
functions for (E(ρ),F (ρ)).

8.1. On-diagonal upper estimate of truncated heat kernel.We need the notions of the subcaloric and
caloric functions. LetI be an interval inR. A functionu : I → L2 is said to beweakly differentiableat t ∈ I ,
if for any ϕ ∈ L2, the function (u(∙), ϕ) is differentiable att, that is, the limit

lim
ε→0

(
u(t + ε) − u(t)

ε
, ϕ

)

exists. In this case, by the principle of uniform boundedness, there is somew ∈ L2 such that

lim
ε→0

(
u(t + ε) − u(t)

ε
, ϕ

)

= (w, ϕ)
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for any ϕ ∈ L2. The functionw is called theweak derivativeof u at t, and we writew = ∂tu. Weak
derivative satisfies the followingproduct rule. Let g : I 7→ R be differentiable att ∈ I in the classical sense,
andu : I → L2 be weakly differentiable att ∈ I . Then the functionv := gu : I → L2 is also weakly
differentiable att.

For an open subsetΩ ⊂ M, a functionu : I → F is calledsubcaloricin I × Ω with respect to (E,F ) if u
is weakly differentiable inL2 at anyt ∈ I and, for anyt ∈ I and any non-negativeϕ ∈ F (Ω),

(∂tu, ϕ) + E(u(t, ∙), ϕ) ≤ 0.

A functionu is calledcaloric if the above inequality is replaced by equality, that is, if

(∂tu, ϕ) + E(u(t, ∙), ϕ) = 0.

For example, for anyf ∈ L2(Ω), the functionu(t, ∙) = PΩ
t f is caloric in (0,∞) × Ω.

Proposition 8.2. LetΩ be an open subset of M. Under condition (8.2), for any t> 0 and any0 ≤ f ∈ L2,
we have

QΩ
t f ≤ e2ω(ρ)tPΩ

t f in Ω (also in M). (8.3)

Consequently, if condition(TJ∗) hold, then

QΩ
t f ≤ exp

(2ct

ρβ

)
PΩ

t f in Ω (also in M), (8.4)

where c> 0 is the same constant as in condition(TJ∗) (independent ofρ, t, f andΩ).

Proof. Let f ∈ L2 be nonnegative inM and

u(t, x) := QΩ
t f (x) t > 0, x ∈ M.

Clearly, the functionu is caloric in (0,∞) × Ω with respect toE(ρ), that is, for anyt > 0 and any 0≤ ϕ ∈ F

(∂tu(t, ∙), ϕ) + E(ρ)(u(t, ∙), ϕ) = 0. (8.5)

Consider the following function defined for allt > 0 andx ∈ M:

v(t, x) := exp(−2ω(ρ)t)u(t, x) − PΩ
t f (x)

Clearly, the functionv(t, ∙) satisfies the boundary and initial conditions:

v+(t, ∙) ≤ exp(−2ω(ρ)t)u(t, x) ∈ F (ρ)(Ω) = F (Ω),

v+(t, ∙)→ 0 in the norm ofL2(Ω) ast → 0.

Note that the functionPΩ
t f is caloric in (0,∞) ×Ω with respect toE, that is, for anyt > 0 and anyϕ ∈ F

(∂tP
Ω
t f , ϕ) + E(PΩ

t f , ϕ) = 0. (8.6)

Moreover, the functionv is subcaloric with respect toE in (0,∞) × Ω, since for any 0≤ ϕ ∈ F (Ω)

(∂tv(t, ∙), ϕ) + E(v(t, ∙), ϕ) = exp(−2ω(ρ)t)
(
− 2ω(ρ)(u(t, ∙), ϕ) + (∂tu(t, ∙), ϕ) + E(ρ)(u(t, ∙), ϕ)

+

∫

M

∫

B∗(x,ρ)c
(u(t, x) − u(t, y))(ϕ(x) − ϕ(y))d j

)

+ (∂tP
Ω
t f , ϕ) + E(PΩ

t f , ϕ)

≤ exp(−2ω(ρ)t)
(
− 2ω(ρ)(u(t, ∙), ϕ) (by (8.5) and (8.6))

+

∫

M

∫

B∗(x,ρ)c

[
u(t, x)ϕ(x) + u(t, y)ϕ(y)

]
d j

)

≤ exp(−2ω(ρ)t)
(
− 2ω(ρ)(u(t, ∙), ϕ) + 2ω(ρ)(u(t, ∙), ϕ)

)

= 0.

Therefore, by the parabolic maximum principle (Proposition11.7in Appendix), we obtain

v(t, x) = exp(−2ω(ρ)t)QΩ
t f (x) ≤ PΩ

t f (x) for (t, x) ∈ (0,∞) × Ω,
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thus showing (8.3).
The inequality (8.4) follows from (8.3) and (TJ∗). �

Next we show the existence and on-diagonal upper bound of the pointwise heat kernel for the truncated
Dirichlet form (E(ρ),F (ρ)) for anyρ > 0.

Lemma 8.3. Assume that conditions(VD∗), (TJ∗) and(DUE∗) hold. Then, for anyρ > 0, the Dirichlet form
(E(ρ),F (ρ)) possesses a pointwise heat kernel q(ρ)

t (x, y) on (0,∞) × M × M (see Definition2.6). Moreover,
for any C0 ≥ 1, there exist constant C, c > 0 such that, for any x∈ M and any t< C0(R∗)β,

q(ρ)
t (x, x) ≤

C

V∗(x, t1/β)
exp

(
ct

ρβ

)

. (8.7)

Proof. Fix a ball B∗ := B(x, r) for somex ∈ M and r > 0. Using conditions (VD∗) and (DUE∗), and
following the arguments in the proofs of [23, Lemma 6.3 and Corollary 6.4], one can obtain that

‖Pt f ‖L∞(B∗) ≤
C′

√
μ(B∗)

(
r

R∗
∨ 1

) α∗
2

(
rβ

t
+ 1

) α∗
2β

‖ f ‖2.

Using (8.4) with Ω = M and (TJ∗), we obtain for anyt > 0, r > 0 and f ∈ L2,

‖Qt f ‖L∞(B∗) ≤ exp

(
ct

ρβ

)

‖Pt f ‖L∞(B∗) ≤ exp

(
ct

ρβ

)
C′

√
μ(B∗)

(
r

R∗
∨ 1

) α∗
2

(
rβ

t
+ 1

) α∗
2β

‖ f ‖2.

Therefore, it follows from Theorem11.8 (with p = 2) in Appendix that the heat kernelq(ρ)
t (x, y) of

(E(ρ),F (ρ)) exists on (0,∞) × M × M, and, moreover, for anyz ∈ B∗ = B∗(x, r) and anyt > 0,

‖q(ρ)
t (z, ∙)‖L2 ≤ exp

(
ct

ρβ

)
C′

√
μ(B∗)

(
r

R∗
∨ 1

) α∗
2

(
rβ

t
+ 1

) α∗
2β

.

(See also [23, Eq. (6.13) and Remark 6.8].)
Let us verify (8.7). Indeed, for givenC0 ≥ 1 andt < C0(R∗)β, settingr := t1/β < C1/β

0 R∗ in the above
inequality and using (VD∗) and (2.7), we obtain

q(ρ)
2t (x, x) ≤ exp

(
ct

ρβ

)
C′

√
V∗(x, t1/β)

(
t1/β

R∗
∨ 1

) α∗
2 ( t

t
+ 1

) α∗
2β
≤

C′′
√

V∗(x, (2t)1/β)
exp

(
ct

ρβ

)

,

which proves (8.7).
It remains to observe that theE(ρ)-nest{F(ρ)

k }
∞
k=1 is alsoE-nest, which follows directly from the fact that

E1 andE(ρ)
1 are equivalent. �

Remarks 8.4. (i). Note that theE-nest{F(ρ)
k }
∞
k=1 in Lemma8.3may depend onρ. Let {Fk} be theE-nest in

condition (DUE) (see also [23, Lemma 6.6]). By [19, Theorem 2.1.2(i)] and its proof, there exists a common
regularE-nest{F̃k}∞k=1 such that, for any positive rational numberρ ∈ Q+ and for eachk,

F̃k ⊂ F(ρ)
k and F̃k ⊂ Fk.

Consequently, for anyρ ∈ Q+,

C({F(ρ)
k }) ⊂ C({F̃k}) and C({Fk}) ⊂ C({F̃k}),

Hence, we can modify the heat kernelspt(x, y) andq(ρ)
t (x, y) by letting

pt(x, y) = q(ρ)
t (x, y) = 0

for anyt > 0, wheneverx, y lie outside the union set∪∞k=1F̃k.
In the rest of this paper, we rename{F̃k}∞k=1 by {Fk}∞k=1 so that (2.20) holds for both heat kernelspt(x, y)

andq(ρ)
t (x, y) simultaneously for allt > 0 andρ ∈ Q+.
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(ii). Under the hypothesis of Lemma8.3, for any f ∈ L2 and t > 0, the functionPt f has a quasi-
continuous version that belongs toC({Fk}), for example,

∫
M

pt(∙, y) f (y)dμ(y). We always this version of
Pt f , that is, for anyf ∈ L2,

Pt f (x) =
∫

M
pt(x, y) f (y)dμ(y) for anyx ∈ M andt > 0 (8.8)

so that
Pt f ∈ C({Fk}).

Similarly, by Lemma8.3, we can replace the truncated heat semigroup{Qt f }t>0 by its pointwise realization,
by setting

Qt f (x) =
∫

M
q(ρ)

t (x, y) f (y)dμ(y) for anyx ∈ M andt > 0 (8.9)

so thatQt f ∈ C({F(ρ)
k }). In particular, for anyρ ∈ Q+, f ∈ L2 and anyt > 0,

Qt f ∈ C({Fk}).

By the standard arguments, we can first extend (8.8) and (8.9) to all positive functionsf ∈ B+(M), and
then to all f ∈ B(M) whenever the integrals in (8.8) and (8.9) make sense.

(iii). If in addition Pt f is continuous for allt > 0 and f ∈ L2, then, by the proof of Theorem11.8, the
E-nest{Fk} can be taken asFk := M for all k ≥ 1. Similarly, if Qt f is continuous for allt > 0 and f ∈ L2,
thenE(ρ)-nest{F(ρ)

k } can also be take asF(ρ)
k := M for all k ≥ 1.

In the remainder of this subsection, we prove the following statements that will be used later on.

Proposition 8.5. Under the hypothesis of Lemma8.3, the following statements are true.

(i) Let g be a continuous function in an open subset U of M and f be a non-negative Borel function in
M. If the following inequality

Pt f (x) ≤ g(x) (8.10)

holds for some t> 0 and forμ-almost all x∈ U, then it also holds for all x∈ U.
(ii) Let h be a continuous function on U× U. If the following inequality

pt(x, y) ≤ h(x, y) (8.11)

holds for some t> 0 and(μ × μ)-almost all(x, y) ∈ U × U, then it also holds for all(x, y) ∈ U × U.

The above results are valid for Qt and q(ρ)
t (whenρ ∈ Q+) under similar assumptions.

Proof. (i). Let K ⊂ U be compact. Assume first that 0≤ f ∈ L2. Let φ ∈ C0(U) be such that1K ≤ φ ≤ 1U .
By (8.10), we have forμ-almost allx ∈ M,

φ(x)Pt f (x) ≤ φ(x)g(x). (8.12)

Let {Fk} be theE-nest as in Remark8.4(i). Sinceφg ∈ C0(M) andφPt f ∈ C({Fk}), by [19, Theorem
2.1.2(ii), p. 69], we see that (8.12) holds true for allx ∈ M. In particular, we have (8.10) for all x ∈ K, as
φ|K = 1. SinceK ⊂ U is arbitrary, we obtain (8.10) for all x ∈ U.

For a general non-negative Borel functionf , let

fn := ( f ∧ n)1K ∈ L2(M), n ≥ 1.

It follows from above that (8.10) is true for eachfn and for everyx ∈ U, since 0≤ fn ≤ f . Passing to the
limit as n→ ∞ andK ↑ U, we obtain, for everyx ∈ K,

Pt f (x) = lim
n→∞, K↑U

Pt fn(x) ≤ g(x), ∀ x ∈ U.

(ii). Let 0 ≤ f ∈ L∞(M) with compact support inU. Multiplying by f both sides of (8.11), we obtain,
for μ-almost allx ∈ U

Pt f (x) =
∫

M
pt(x, y) f (y)dμ(y) ≤

∫

M
h(x, y) f (y)dμ(y). (8.13)
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Since f ∈ L∞ has compact support andh ∈ C(U × U), it follows that the function

x 7→
∫

M
h(x, y) f (y)dμ(y)

is continuous inU. Hence, using (8.10), we obtain (8.13) for all x ∈ U. From this, we see that (8.11)
holds for all x ∈ U andμ-almost ally ∈ U. Moreover, by condition (DUE∗) (or (DUE)), we see that
pt(x, ∙) ∈ C({Fk}). Then, similar arguments in (i) will lead to the inequality (8.11) for all (x, y) ∈ U × U. �

Remark 8.6. Recall that there is the relation (5.23) betweenPt andQt that holds almost everywhere inM.
Under the hypotheses (VD∗), (TJ∗) and (DUE∗), we conclude by Proposition8.5that (5.23) holds pointwise
for all ρ ∈ Q+ and f ∈ L2 ∩ L∞, that is,

Pt f (x) = Qt f (x) +
∫ t

0
QsA

(ρ)Pt−s f (x)ds for all x ∈ M. (8.14)

The identity (8.14) plays an important role in deriving the upper bounds of heat kernels.
Indeed, by Remark8.4(ii), we know thatPt f , Qt f ∈ C({Fk}) for t > 0 and f ∈ L2 whenρ ∈ Q+. Fix

ρ ∈ Q+ and f ∈ L2 ∩ L∞. By (5.21), we have, for any 0< s< t,

QsA
(ρ)Pt−s f ∈ C({Fk}).

Then it follows from [19, Theorem 2.1.2, p. 69] and (5.21) that, for anyx ∈ M,

|QsA
(ρ)Pt−s f (x)| ≤ ‖QsA

(ρ)Pt−s f ‖∞
≤ ‖Qs‖L∞→L∞ ∙ 4ω(ρ) ∙ ‖Pt−s‖L∞→L∞‖ f ‖∞
≤ 4ω(ρ)‖ f ‖∞ < ∞.

Hence, by the dominated convergence theorem, we obtain
∫ t

0
QsA

(ρ)Pt−s f ∈ C({Fk}).

By [19, Theorem 2.1.2, p. 69], we conclude that (8.14) holds for anyf ∈ L2 ∩ L∞ andt > 0.

8.2. Tail estimate for truncated semigroup. Recall that, for any open setΩ ⊂ M, {QΩ
t } denotes the heat

semigroup associated with the part Dirichlet from (E(ρ),F (ρ)(Ω)) of the truncatedρ-local Dirichlet form
defined by (8.1) for ρ > 0. In this subsection, we give pointwise tail estimate of the heat semigroup{QB∗

t } of
anyρ-local Dirichlet form (E(ρ),F (ρ)(B∗)) for any ballB∗.

Proposition 8.7. If every ball in M has finite measure and conditions(S∗+), (TJ∗) hold, then, for any ball
B∗ := B∗(x, r) with r > 0 and any t> 0,

1− QB∗
t 1B∗ ≤ 1− ε + C

(
r−β + ρ−β

)
t in

1
4

B∗ (8.15)

whereε ∈ (0,1) and C> 0 are two constants independent ofρ, t, B∗.

Proof. By condition (S∗+), for any ballB∗ := B∗(x, r) with r < 2R∗ and anyt > 0,

1− PB∗
t 1B∗ ≤ 1− ε + Cr−βt in

1
4

B∗, (8.16)

whereε ∈ (0,1) andC > 0 are two constants independent oft, B∗. Let us prove that (8.16) holds also when
r ≥ 2R∗ (andR∗ < ∞). Since every ball has finite measure, it follows from [20, Lemma 4.6, p. 3327] that
condition (S∗) (and, hence, (S∗+)) implies that (E,F ) is conservative. Hence, whenr ≥ 2R∗, we haveB∗ = M
whence 1− PB∗

t 1B∗ = 1− Pt1 = 0, for all t > 0, which implies (8.16) for all r > 0 andt > 0.
Consequently, it follows from (5.26) with Ω = B∗, f = 1B∗ that

1− QB∗
t 1B∗ ≤ 1− PB∗

t 1B∗ +
Ct

ρβ

∥∥∥1B∗

∥∥∥
∞

≤ 1− ε + Cr−βt + Cρ−βt in
1
4

B∗,

which proves (8.15). �
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In the next two lemma we obtain two different estimates ofQt1Bc
∗ .

Lemma 8.8. If every ball in M has finite measure and conditions(S∗+), (TJ∗) hold, then there exist positive
constants C, c, c′ such that, for any ball B∗ := B∗(x0, r) of radius r> 0 and any t> 0,

Qt1Bc
∗ ≤ 1− QB∗

t 1B∗ ≤ C exp

(

−c
r
ρ
+ c′

t

ρβ

)

in
1
4

B∗. (8.17)

Proof. Fix a ball B∗ := B∗(x0, r) with r > 0 andt > 0. The inequality (8.17) is trivially satisfied ifr ≤ 4ρ,
since 1− QB∗

t 1B∗ ≤ 1 in M. In the sequel, assume thatr > 4ρ.
Since (S∗+) and (TJ∗) are satisfied, we obtain by Proposition8.7, that, for anyz ∈ M,

1− QB∗(z,ρ)
t 1B∗(z,ρ) ≤ 1− ε + c0

(
ρ−β + ρ−β

)
t = 1− ε + 2c0ρ

−βt in
1
4

B∗(z, ρ). (8.18)

Recall that, for anyλ > 0 and a ballB∗(y, r ′), the resolventRB∗(y,r ′)
λ of the heat semigroup{QB∗(y,r ′)

t } is given
by (5.4), that is, by

RB∗(y,r ′)
λ f =

∫ ∞

0
e−λsQB∗(y,r ′)

s f ds for f ∈ L2.

Then by (8.18), for anyλ > 0 andz ∈ B∗

1− λRB∗(z,ρ)
λ 1B∗(z,ρ) =

∫ ∞

0
λe−λs(1− QB∗(z,ρ)

s 1B∗(z,ρ)) ds

≤
∫ ∞

0
λe−λs

(
1− ε + 2c0ρ

−βs
)

ds

= 1− ε + 2c0λ
−1ρ−β =: c(ρ, λ) in

1
4

B∗(z, ρ).

Next, letk ≥ 1 be an integer such that

k <
r

4ρ
≤ k+ 1,

in particular, 4kρ < r. Since (S∗+) ⇒ (S∗) and every ball has finite measure, by [20, Lemma 4.5, p. 3326],
we have that cutoff(A,U) , ∅ for any bounded measurable setA and for any open setU with A ⊂ U (that
is, (5.2) is satisfied). Hence, by Lemma5.6and (5.17), we obtain, for anyλ > 0,

1− λRB∗
λ 1B∗ ≤ c(ρ, λ)k = (1− ε + 2c0λ

−1ρ−β)k in
1
4

B∗.

Settingλ =
4c0
ερβ

in the above inequality, we obtain

1− λRB∗
λ 1B∗ ≤ (1− ε/2)k = exp

(

−k ln
2

2− ε

)

≤ exp

(

−

(
r

4ρ
− 1

)

ln
2

2− ε

)

in
1
4

B∗.

Moreover, with the above choice ofλ, using (5.7) with Ω = B∗, we obtain from the above inequality

1− QB∗
t 1B∗ ≤ eλt

(
1− λRB∗

λ 1B∗

)
≤ eλt exp

(

− ln
2

2− ε

(
r

4ρ
− 1

))

= exp

(

− ln
2

2− ε

(
r

4ρ
− 1

)

+
4c0t

ερβ

)

= C exp

(

−c
r
ρ
+ c′

t

ρβ

)

in
1
4

B∗.

which is exactly (8.17) whereC = 2
2−ε , c = 1

4 ln 2
2−ε andc′ = 4c0

ε . �

Lemma 8.9. If conditions(S∗+) and (TJ∗) hold, then, for any t> 0, θ > 0, any integer k≥ 1, and any ball
B∗ := B∗(x0, r) with r > 4kρ,

Qt1Bc
∗ ≤ 1− QB∗

t 1B∗ ≤ C(θ, k)

(
t

ρβ

) θk
θ+β

in
1
4

B∗. (8.19)

Here the constant C(θ, k) > 0 is independent of t, B∗, ρ.
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Proof. Let {Q(ρ)
t } be the heat semigroup associated with a regular,stronglyρ-local truncated Dirichlet form

(E(ρ),F (ρ)) defined by (8.1) for ρ > 0. Let {Q(ρ),U
t } be the heat semigroup associated with Dirichlet form

(E(ρ),F (ρ)(U)) for any open setU.
Step 1. Let us prove that for anyθ > 0, s> 0, any ballB∗(z, r) with z ∈ M andr > 0,

1− PB∗(z,r)
s 1B∗(z,r) ≤ C(θ)

(
s

rβ

) θ
θ+β

in
1
4

B∗(z, r). (8.20)

If s
rβ
≥ 1, then (8.20) is trivial, since 1− PB∗(z,r)

s 1B∗(z,r) ≤ 1 in M. Hence, let us assume that

s< rβ. (8.21)

Let ρ > 0 be a number to determined later. Applying (5.26) with Ω = B∗(z, r), f = 1B∗(z,r) and using
(TJ∗), we obtain, for anys> 0,

1− PB∗(z,r)
s 1B∗(z,r) ≤ 1− Q(ρ),B∗(z,r)

s 1B∗(z,r) +
Cs

ρβ

∥∥∥1B∗(z,r)

∥∥∥
∞ . (8.22)

Since (S∗+) and (TJ∗) are satisfied, we obtain by combining (8.22) and (8.17), that

1− PB∗(z,r)
s 1B∗(z,r) ≤ C exp

(

−c
r
ρ
+ c′

s

ρβ

)

+
Cs

ρβ
in

1
4

B∗(z, r). (8.23)

We will minimize the right hand side of the above inequality bychoosingρ that satisfies

s≤ ρβ and ρ ≤ r . (8.24)

Assumingthatρ satisfies (8.24) for the moment, applying (8.23) and using the elementary inequality

e−ca ≤ c2(θ)a−θ for all a > 0,

we obtain that, for any ballB∗(z, r) with z ∈ B∗ andr < r,

1− PB∗(z,r)
s 1B∗(z,r) ≤ C exp

(

−c
r
ρ
+ c′

s

ρβ

)

+
Cs

ρβ

≤ Cec′ exp

(

−c
r
ρ

)

+
Cs

ρβ

≤ C(θ)




(
ρ

r

)θ
+

s

ρβ


 in

1
4

B∗(z, r). (8.25)

Now chooseρ such that
(
ρ
r

)θ
= s

ρβ
, thatis,

ρ =
(
rθs

) 1
θ+β .

Note that thenumberρ satisfies (8.24), since

ρβ

s
=

(
rβ

s

) θ
θ+β

> 1 and
ρ

r
=

(
s

rβ

) 1
θ+β

< 1.

Therefore, substituting the above valueof ρ into (8.25), we obtain that, for anyθ > 0, any ballB∗(z, r) with
z ∈ M andr > 0 and for anys> 0,

1− PB∗(z,r)
s 1B∗(z,r) ≤ 2C(θ)

(
ρ

r

)θ
= 2C(θ)

(
s

rβ

) θ
θ+β

in
1
4

B∗(z, r),

thus proving (8.20).
Step 2. We turn to prove (8.19). It suffices to consider the case that

t

ρβ
< 1.
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Using (TJ∗) and (5.26) with Ω = B∗(z, ρ) (wherez ∈ B∗) and f = 1B∗(z,ρ), we obtain by (8.20) that, for any
θ > 0 and anys> 0,

1− QB∗(z,ρ)
s 1B∗(z,ρ) ≤ 1− PB∗(z,ρ)

s 1B∗(z,ρ) +
Cs

ρβ

∥∥∥1B∗(z,ρ)

∥∥∥
∞ ≤ C(θ)

(
s

ρβ

) θ
θ+β

+
Cs

ρβ
in

1
4

B∗(z, ρ).

Then, for anyλ > 0 andz ∈ M,

1− λRB∗(z,ρ)
λ 1B∗(z,ρ) =

∫ ∞

0
λe−λs(1− QB∗(z,ρ)

s 1B∗(z,ρ)) ds

≤
∫ ∞

0
λe−λs


C(θ)

(
s

ρβ

) θ
θ+β

+
Cs

ρβ


 ds

=

∫ ∞

0
e−s


C(θ)

(
s

λρβ

) θ
θ+β

+
Cs

λρβ


 ds

≤ C′(θ)
(
λρβ

)− θ
θ+β + C

(
λρβ

)−1
=: c(ρ, λ) in

1
4

B∗(z, ρ).

Since 4kρ < r, it follows from Lemma5.6that

1− λRB∗
λ 1B∗ ≤ c(ρ, λ)k =

(

C′(θ)
(
λρβ

)− θ
θ+β + C

(
λρβ

)−1
)k

in
1
4

B∗.

Moreover, settingλ = t−1 in the above inequality and using (5.7) with Ω = B∗, we obtain by the above
inequality

1− QB∗
t 1B∗ ≤ eλt

(
1− λRB∗

λ 1B∗

)
≤ eλt

(

C′(θ)
(
λρβ

)− θ
θ+β + C

(
λρβ

)−1
)k

= e


C
′(θ)

(
t

ρβ

) θ
θ+β

+ C
t

ρβ




k

= C(θ, k)

(
t

ρβ

) θk
θ+β

in
1
4

B∗.

where we also use the assumption thatt < ρβ and the fact that θθ+β < 1. �

In the remainder of this subsection, we will obtain the relation of two heat kernelspt(x, y) andqt(x, y) in
the norm ofLq outside ballB∗ for any 1< q ≤ ∞.

Lemma 8.10. Assume that(VD∗), (DUE∗), (S∗+), (TJ∗q) hold for some1 < q < ∞. Let qt(x, y) be the heat
kernel of theρ-local truncated Dirichlet form(E(ρ),F (ρ)) defined by (8.1) for anyρ ∈ Q+. Then, for any
t > 0 and any ball B∗ := B∗(x, r) with r > 0,

‖pt(x, ∙)‖Lq(Bc
∗) ≤ ‖qt(x, ∙)‖Lq(Bc

∗) +
Ct

V∗(x, ρ)1/q′ρβ
exp

(
c′t

ρβ

)

, (8.26)

where C,C′ are two positive constants independent of t, x, B∗, ρ, and q′ = q
q−1 as before.

Proof. Since conditions (TJ∗) (which follows from (TJ∗q) by (7.10)) and (DUE∗) hold, we see by Lemma8.3
and Remark8.4 that, for anyρ ∈ Q+, the truncated Dirichlet form (E(ρ),F (ρ)) possesses a quasi-continuous
heat kernelqt(x, y) on (0,∞) × M × M.

Fix a ballB∗ := B∗(x, r) with r > 0 and fixt > 0. Without loss of generality, assume that

‖pt(x, ∙)‖Lq(Bc
∗) > 0,

otherwise, nothing is needed to prove. It suffices to consider the caser < R∗, as otherwise,Bc
∗ = ∅ and

‖pt(x, ∙)‖Lq(Bc
∗) = 0. The equality (8.14) yields that, for anyf ∈ L2 ∩ L∞,

∫

M
pt(x, y) f (y)dμ(y) =

∫

M
qt(x, y) f (y)dμ(y) +

∫ t

0
QsA

(ρ)Pt−s f (x)ds. (8.27)
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Let us use the operatorA(ρ) defined in (5.20), that is, (under hypothesis (TJ∗q))

A(ρ) f (y) = 2
∫

M
( f (z) − f (y))J(y, z)1{d∗(y,z)≥ρ}dμ(z).

We need to estimate the termQsA(ρ)Pt−s f (x). To do this, let us introduce the functionhs,x : M 7→ R+ by

hs,x(z) :=
∫

M
qs(x,w)Jρ(w, z)dμ(w), z ∈ M,

whereJρ(w, z) := J(w, z)1{d∗(w,z)≥ρ}. Then, for anys ∈ (0, t) and any 0≤ f ∈ L2 ∩ L∞,

QsA
(ρ)Pt−s f (x) =

∫

M
qs(x, y) ∙ A(ρ)Pt−s f (y)dμ(y)

≤ 2
∫

M
qs(x, y)

(∫

M
Pt−s f (z)J(y, z)1{d∗(y,z)≥ρ}dμ(z)

)

dμ(y) (by definition (5.20))

= 2
∫

M
Pt−s f (z)

(∫

M
qs(x, y)J(y, z)1{d∗(y,z)≥ρ}dμ(y)

)

dμ(z)

= 2(Pt−s f ,hs,x) = 2( f ,Pt−shs,x)

≤ 2‖ f ‖q′ ‖Pt−shs,x‖q (by Hölder inequality)

≤ 2‖ f ‖q′ ‖hs,x‖q (by contractivity ofPt in Lq),

whereq′ := q
q−1. Combining this and (8.27), we obtain that

∫

M
pt(x, y) f (y)dμ(y) ≤

∫

M
qt(x, y) f (y)dμ(y) +

∫ t

0
QsA

(ρ)Pt−s f (x)ds

≤
∫

M
qt(x, y) f (y)dμ(y) + 2‖ f ‖q′

∫ t

0
‖hs,x‖qds. (8.28)

Let K be a bounded set under the metricd∗. Consider the function

f (∙) := pt(x, ∙)
q−11Bc

∗∩K(∙).

Observe thatf ∈ L∞(M) because by (DUE∗) we have, for anyy ∈ M,

pt(x, y) =
∫

M
pt/2(x, z)pt/2(z, y)dμ(z) ≤ ‖pt/2(x, ∙)‖2‖pt/2(∙, y)‖2

=
√

pt/2(x, x)pt/2(y, y) ≤
C

√
V∗(x, t1/β)V∗(y, t1/β)

,

which together with (VD∗) and the fact thatf is supported in a bounded setK, yields thatf is bounded. It
follows that alsof ∈ L1(M) and, hence,f ∈ Lq′(M). Note that

‖ f ‖q′ =

(∫

Bc
∗∩K

pt(x, y)qdμ(y)

)1/q′

= ‖pt(x, ∙)‖
q−1
Lq(Bc

∗∩K). (8.29)

Applying (8.28) with the above functionf , we obtain
∫

Bc
∗∩K

pt(x, y)qdμ(y) ≤ ‖ f ‖q′ ‖qt(x, ∙)‖Lq(Bc
∗) + 2‖ f ‖q′

∫ t

0
‖hs,x‖qds.

Dividing by ‖ f ‖q′ on the both sides of the above inequality and using (8.29), we obtain

‖pt(x, ∙)‖Lq(Bc
∗∩K) ≤ ‖qt(x, ∙)‖Lq(Bc

∗) + 2
∫ t

0
‖hs,x‖qds.

Since the bounded setK is arbitrary, we conclude that

‖pt(x, ∙)‖Lq(Bc
∗) ≤ ‖qt(x, ∙)‖Lq(Bc

∗) + 2
∫ t

0
‖hs,x‖qds. (8.30)
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It remains to estimate the term‖hs,x‖q. By condition (TJ∗q), we have

‖Jρ(w, ∙)‖q ≤
C

V∗(w, ρ)1/q′ρβ
, w ∈ M. (8.31)

Defining measureν by
dν(w) := qs(x,w)dμ(w),

and using Minkowski’s inequality for integrals (cf. [18, on p.194]), we obtain that

‖hs,x‖q =

(∫

M

(∫

M
Jρ(w, z) ∙ qs(x,w)dμ(w)

)q

dμ(z)

)1/q

=

(∫

M

(∫

M
Jρ(w, z)dν(w)

)q

dμ(z)

)1/q

≤
∫

M
‖Jρ(w, ∙)‖qdν(w)

≤
∫

M

C

V∗(w, ρ)1/q′ρβ
dν(w) (by (8.31))

=
C

ρβ

∫

M

qs(x,w)

V∗(w, ρ)1/q′
dμ(w). (8.32)

Let us estimate the last integral. LetB0 := ∅ and

Bk := B∗(x, kρ) for k ≥ 1.

Then ∫

M

qs(x,w)

V∗(w, ρ)1/q′
dμ(w) =

∞∑

k=1

∫

Bk\Bk−1

qs(x,w)

V∗(w, ρ)1/q′
dμ(w) =:

∞∑

k=1

Ik.

By (VD∗), we have, for anyk ≥ 1 and anyw ∈ Bk,

1
V∗(w, ρ)

=
V∗(x, ρ)
V∗(w, ρ)

1
V∗(x, ρ)

≤
C(k+ 1)α∗

V∗(x, ρ)
, (8.33)

and then

I1 ≤
2α∗C

V(x, ρ)

∫

M
qs(x,w)dμ(w) ≤

2α∗C
V(x, ρ)

.

On the other hand, by Proposition8.5and (8.17) with t, r replaced bys, (k−1)ρ respectively, we have, that
for anyk ≥ 2

Qs1Bc
k−1

(x) ≤ C exp

(

−c
(k− 1)ρ

ρ
+ c′

s

ρβ

)

= C exp

(

−c(k− 1)+ c′
s

ρβ

)

.

Combining this, (8.33) and (VD∗), we obtain, for anyk ≥ 2,

Ik =

∫

Bk\Bk−1

qs(x,w)

V∗(w, ρ)1/q′
dμ(w) ≤

(
C(k+ 1)α∗

V∗(x, ρ)

)1/q′ ∫

Bk\Bk−1

qs(x,w)dμ(w)

≤

(
C(k+ 1)α∗

V∗(x, ρ)

)1/q′

Qs1Bc
k−1

(x) ≤

(
C(k+ 1)α∗

V∗(x, ρ)

)1/q′

∙C exp

(

−c(k− 1)+ c′
s

ρβ

)

≤
C′

V∗(x, ρ)1/q′
exp

(

c′
s

ρβ

)

∙ (k+ 1)α∗/q
′
exp(−ck).

Therefore,
∫

M

qs(x,w)

V∗(w, ρ)1/q′
dμ(w) =

∞∑

k=1

Ik ≤
C′

V∗(x, ρ)1/q′
exp

(

c′
s

ρβ

) ∞∑

k=1

(k+ 1)α∗/q
′
exp(−ck)

≤
C

V∗(x, ρ)1/q′
exp

(
c′s

ρβ

)

. (8.34)

Combining this, (8.32) and (8.30), we obtain (8.26). �

The following lemma is an analogue of the above lemma for the case whenq = ∞.
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Lemma 8.11. Assume that(VD∗), (DUE∗), (S∗+), (J∗≤) = (TJ∗∞) hold true. Let qt(x, y) be the heat kernel of
theρ-local truncated Dirichlet form(E(ρ),F (ρ)) defined by (8.1) for anyρ ∈ Q+. Then, for any t> 0 and
any x, y, ∈ M with x, y,

pt(x, y) ≤ qt(x, y) +
Ct

V∗(x, ρ)ρβ
exp

(
c′t

ρβ

)

. (8.35)

Proof. Let B∗(x, r) with r > 0. By (8.28), we see that for any 0≤ f ∈ L1(Bc
∗) ∩ L∞

∫

Bc
∗

pt(x, y) f (y)dμ(y) ≤
∫

Bc
∗

qt(x, y) f (y)dμ(y) + 2‖ f ‖1

∫ t

0
‖hs,x‖∞ds,

from which, it follows that, forμ-almost ally in Bc
∗,

pt(x, y) ≤ qt(x, y) + 2
∫ t

0
‖hs,x‖∞ds. (8.36)

Sincept(x, ∙) ∈ C({Fk}) andqt(x, ∙) ∈ C({Fk}) by Remark8.4, we see that (8.36) holds true for ally ∈ M
with d∗(x, y) > r. It remains to estimate the term‖hs,x‖∞. Indeed, by the similar arguments in the proof of
Lemma8.10, we can prove that (8.34) also holds true forq′ = 1 but using (J∗≤) = (TJ∗∞) instead of (TJ∗q).
Hence, we obtain

‖hs,x‖∞ ≤
∫

M
qs(x,w)

(

esup
z∈M

1{d∗(w,z)>ρ}J(w, z)

)

dμ(w)

≤
∫

M
qs(x,w)

C

V∗(w, ρ)ρβ
dμ(w) =

C

ρβ

∫

M

qs(x,w)
V∗(w, ρ)

dμ(w)

≤
C

V∗(x, ρ)ρβ
exp

(
c′s

ρβ

)

.

Combining this and (8.36), we finish the proof. �

8.3. Off-diagonal upper estimate of truncated heat kernel.In this subsection, we derive off-diagonal
upper bound of the heat kernelqt(x, y), for the truncated Dirichlet form (E(ρ),F (ρ)) whereρ ∈ Q+.

Lemma 8.12. Let (E(ρ),F (ρ)) be a regular Dirichlet form in L2 with E(ρ) defined by (8.1) for ρ ∈ Q+. If
conditions(VD∗), (DUE∗), (S∗+), (TJ∗) hold, then for any C0 ≥ 1, t < C0(R∗)β and any x, y ∈ M,

qt(x, y) ≤
C

V∗(x, t1/β)
exp

(
c′t

ρβ

) (
1+

ρ

t1/β

)α∗
exp

(

−c
d∗(x, y)
ρ

)

, (8.37)

where the constants C, c, c′ > 0 are independent of t, x, y, ρ. Consequently,

qt(x, y) ≤
C

V∗(x, t1/β)
exp

(
c′t

ρβ

) (
1+

ρ

t1/β

)α∗
. (8.38)

Proof. Fix C0 ≥ 1, t < C0(R∗)β andx, y ∈ M. If x = y, then (8.37) follows directly from Lemma8.3. In the
sequel, assumex , y and setr := 1

3d∗(x, y). We consider two cases.
Case 1:ρ ≥ r. In this case, sincet/2 < 2−1C0(R∗)β, we have by Lemma8.3that

qt(x, y) =
√

qt/2(x, x)qt/2(y, y) ≤
C

√
V∗(x, (t/2)1/β)V∗(y, (t/2)1/β)

exp

(
c′t

ρβ

)

.

Moreover, by using (VD∗) and the fact thatρ ≥ r, we have

V∗(x, t1/β)

V∗(y, (t/2)1/β)
≤ C

(
d∗(x, y) + t1/β

(t/2)1/β

)α∗
≤ C

(
3ρ + t1/β

(t/2)1/β

)α∗
≤ C′

(
1+

ρ

t1/β

)α∗
.

Combining the above two inequalities and using the fact thatd∗(x,y)
ρ ≤ 3, we obtain (8.37).

Case 2:ρ < r. In this case, consider disjoint balls

U := B∗(x, r), V := B∗(y, r).
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By Lemma8.3, we have, for anyw′, z′ ∈ M ands< C0(R∗)β,

q2s(w
′, z′) =

√
qs(w′,w′)qs(z′, z′) ≤

C
√

V∗(w′, s1/β)V∗(z′, s1/β)
exp

(
c′s

ρβ

)

.

In particular, the functionqs(w′, z′) is locally bounded inR+×M×M. Hence, by Corollary11.5in Appendix,
with s= t andΩ = M, we see that, forμ-almost allw ∈ U, z ∈ V,

q2t(w, z) ≤
(
1− QU

t 1U(w)
)

sup
t<t′≤2t

‖qt′(∙, z)‖L∞(Uρ) +
(
1− QV

t 1V(z)
)

sup
t<t′≤2t

‖qt′(∙,w)‖L∞(Vρ) .

On the other hand, applying (8.17) with B∗ replaced byU, we have

1− QU
t 1U(w) ≤ C exp

(

−c
r
ρ
+ c′

t

ρβ

)

μ-a.a.w ∈
1
4

U.

Similarly, applying (8.17) with B∗ replaced byV, we have

1− QV
t 1V(z) ≤ C exp

(

−c
r
ρ
+ c′

t

ρβ

)

μ-a.a.z ∈
1
4

V.

Therefore, combining the above three inequalities, we obtain that forμ-almost allw ∈ 1
4U, z ∈ 1

4V,

q2t(w, z) ≤ 2C exp

(

−c
r
ρ
+ c′

t

ρβ

)

sup
t<t′≤2t

esup
w′∈Uρ,z′∈Vρ

qt′(w
′, z′). (8.39)

Let us estimate the term supt<t′≤2t esupw′∈Uρ,z′∈Vρ qt′(w′, z′). Indeed, sinceρ < r, we have for anyw′ ∈ Uρ

andz′ ∈ Vρ,
d∗(x,w

′) ≤ r + ρ < 2r, and d∗(y, z
′) ≤ r + ρ < 2r.

Moreover, sincet < C0(R∗)β, we have for anyt′ ∈ (t,2t],

t′ ≤ 2t < 2C0(R∗)
β.

Therefore, by Lemma8.3, we have

sup
t<t′≤2t

esup
w′∈Uρ,z′∈Vρ

qt′(w
′, z′) ≤ esup

w′∈Uρ,z′∈Vρ

C
√

V∗(w′, t1/β)V∗(z′, t1/β)
exp

(
c′t

ρβ

)

≤
C′

V∗(x, t1/β)
exp

(
c′t

ρβ

) (
1+

r

t1/β

)α∗
, (8.40)

where we have used the fact that, using the doubling property (VD∗), for any pointsw′ ∈ Uρ, z′ ∈ Vρ

V∗(x, t1/β)

V∗(w′, t1/β)
≤ C

(
d∗(x,w′) + t1/β

t1/β

)α∗
≤ C′

(
1+

r + ρ

t1/β

)α∗
≤ C′

(

1+
2r

t1/β

)α∗
,

V∗(x, t1/β)

V∗(z′, t1/β)
≤ C

(
d∗(x, z′) + t1/β

t1/β

)α∗
≤ C

(
d∗(x, y) + d∗(y, z′) + t1/β

t1/β

)α∗

≤ C′
(

1+
4r + ρ

t1/β

)α∗
≤ C′

(

1+
5r

t1/β

)α∗
.

Now, combining (8.39) and (8.40), we have

q2t(w, z) ≤ 2C exp

(

−c
r
ρ
+ c′

t

ρβ

)

sup
t<t′≤2t

esup
w′∈Uρ,z′∈Vρ

qt′(w
′, z′)

≤
C′

V∗(x, t1/β)
exp

(

−c
r
ρ
+ 2c′

t

ρβ

) (
1+

r

t1/β

)α∗
.

Moreover, by Proposition8.5, the above inequality holds true for all pointsw ∈ 1
4U andz ∈ 1

4V. In
particular, for (w, z) = (x, y), we obtain

q2t(x, y) ≤
C

V∗(x, t1/β)
exp

(
2c′t

ρβ

)

exp

(

−c
r
ρ

) (
1+

r

t1/β

)α∗
.
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Finally, let us observe that

exp

(

−c
r
ρ

) (
1+

r

t1/β

)α∗
≤ C exp

(

−
c
2

r
ρ

) (
1+

ρ

t1/β

)α∗
,

which follows from the elementary inequality exp(λ) ≥ c(1+ λ)α∗ . Combining the above two inequalities,
we conclude that

q2t(x, y) ≤
C′

V∗(x, t1/β)
exp

(
2c′t

ρβ

)

exp

(

−
c
2

r
ρ

) (
1+

ρ

t1/β

)α∗
,

thus proving (8.37) by renamingt by t
2 and substitutingr = d∗(x,y)

3 . �

9. Heat kernel upper bound

In this section, we will prove the upper estimate of‖pt(x, ∙)‖Lq(Bc) for any 1≤ q ≤ ∞. To do this, we first
obtain the upper estimate for‖pt(x, ∙)‖Lq(Bc

∗) under metricd∗, and then translate to the original metricd.

9.1. Tail estimate in Lq under new metric. Let us first introduce conditions (TP∗) and (TP∗q).

Definition 9.1 (Condition (TP∗)). We say that condition (TP∗) is satisfied if

Pt1Bc
∗ ≤

Ct

rβ
in

1
4

B∗ (9.1)

for any ballB∗ := B∗(x, r) of radiusr ∈ (0,R∗) and anyt > 0, whereC > 0 is a constant independent oft, B∗.

Definition 9.2 (Condition (TP∗q)). For a number 1≤ q < ∞, we say that condition (TP∗q) is satisfied if the
pointwise heat kernelpt(x, y) exists in the sense of Definition2.6, and, for anyC0 ≥ 1, there existsC > 0
such that, for any ballB∗ = B∗(x, r) of radiusr ∈ (0,R∗) and anyt < C0(R∗)β,

‖pt(x, ∙)‖Lq(Bc
∗) ≤ C

(
1

V∗(x, t1/β)1/q′
∧

t

V∗(x, r)1/q′rβ

)

, (9.2)

whereq′ = q
q−1 as before.

We start with the following lemma.

Lemma 9.3. The following implication is true:

(VD∗) + (S∗+) + (TJ∗)⇒ (TP∗).

Proof. Let B∗ := B∗(x, r) with r ∈ (0,R∗) and lett > 0. We need to show (9.1). We can assume thatt < rβ,
because otherwise (9.1) is trivial sincePt1Bc

∗ ≤ 1.

Using (5.26) with Ω = M, f = 1Bc
∗ and (8.19), we have, that for any integerk ≥ 1, any 0< ρ < r

4k <
R∗
4k ,

and anyθ, t > 0,

Pt1Bc
∗ ≤ Qt1Bc

∗ +
Ct

ρβ

∥∥∥1Bc
∗

∥∥∥
∞ ≤ C(θ, k)

(
t

ρβ

) θk
θ+β

+
Ct

ρβ
in

1
4

B∗.

Setting hereθ = β, k = 3 andρ = r
5k = r

15, we obtain

Pt1Bc
∗ ≤ C(β)

(
15βt
rβ

)3/2

+
15βCt

rβ
≤ C(β)

(
15βt
rβ

)3/2

+
15βCt

rβ
≤ C′

t

rβ
+

15βCt

rβ
= C

t

rβ
in

1
4

B∗,

which proves (9.1). �

Let us prove a similar implication for (TP∗q) for 1 ≤ q < ∞.

Lemma 9.4. For any1 ≤ q < ∞, we have

(VD∗) + (DUE∗) + (S∗+) + (TJ∗q)⇒ (TP∗q).
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Proof. Let B∗ := B∗(x, r) with r ∈ (0,R∗) and lett < C0(R∗)β with C0 ≥ 1. By remark8.4(i), the pointwise
heat kernelpt(x, y) exists in the sense of Definition2.6. So, we need only to show the inequality (9.2).

Let us first prove that

‖pt(x, ∙)‖Lq(Bc
∗) ≤

C

V∗(x, t1/β)1/q′
, (9.3)

for some positive constantC independent oft, x. It suffices to consider the case when 1< q < ∞ since
‖pt(x, ∙)‖L1(Bc

∗) ≤ 1.
To do this, we need to estimate the term‖qt(x, ∙)‖Lq(Bc

∗) in (8.26) for ρ ∈ Q+. Indeed, we have by (8.38) in
Lemma8.12that

‖qt(x, ∙)‖Lq(Bc
∗) =

(∫

Bc
∗

qt(x, y)q−1 ∙ qt(x, y)dμ(y)

) 1
q

≤ sup
y∈M

qt(x, y)
q−1

q

(∫

M
qt(x, y)dμ(y)

) 1
q

≤ sup
y∈M

qt(x, y)
q−1

q

≤

(
C

V∗(x, t1/β)
exp

(
Ct

ρβ

) (
1+

ρ

t1/β

)α∗
) q−1

q

.

Therefore, it follows from (8.26) that

‖pt(x, ∙)‖Lq(Bc
∗) ≤ ‖qt(x, ∙)‖Lq(Bc

∗) +
Ct

V∗(x, ρ)1/q′ρβ
exp

(
c′t

ρβ

)

≤
C

V∗(x, t1/β)1/q′
exp

(
Ct

ρβ

) (
1+

ρ

t1/β

)α∗/q′
+

Ct

V∗(x, ρ)1/q′ρβ
exp

(
C′t

ρβ

)

.

Choose a rationalρ close tot1/β, we obtain (9.3).
Let us next prove that

‖pt(x, ∙)‖Lq(B∗(x,r)c) ≤
Ct

V∗(x, r)1/q′rβ
(9.4)

for someC independent oft, r, x. By (9.3), it suffices to consider the case when

rβ > t. (9.5)

We also assume that

ρ ∈ (0, r] ∩ Q+. (9.6)

By (8.37) and (VD∗), we have that, for anyt < C0(R∗)β and anyx ∈ M,

sup
y∈Bc

∗

qt(x, y) ≤ sup
y∈Bc

∗

C

V∗(x, t1/β)
exp

(
c′t

ρβ

) (
1+

ρ

t1/β

)α∗
exp

(

−c
d∗(x, y)
ρ

)

≤
C

V∗(x, r)

( r

t1/β

)α∗
exp

(
c′t

ρβ

) (
1+

ρ

t1/β

)α∗
exp

(

−c
r
ρ

)

≤
C

V∗(x, r)

( r

t1/β

)α∗
exp

(
c′t

ρβ

)

exp

(

−c
r
ρ

)

+
C

V∗(x, r)

( r

t1/β

)α∗
exp

(
c′t

ρβ

) (
ρ

t1/β

)α∗
exp

(

−c
r
ρ

)

≤
C′

V∗(x, r)

( r

t1/β

)2α∗
exp

(
c′t

ρβ

)

(9.7)

where we have used the fact in the last line that
(
ρ

t1/β

)α∗
exp

(

−c
r
ρ

)

=

( r

t1/β

)α∗
(
r
ρ

)−α∗
exp

(

−c
r
ρ

)

≤ C
( r

t1/β

)α∗
.
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On the other hand, we have by (8.19), Remark8.4 and Proposition8.5 that, for anyθ > 0 and for any
integerk ≥ 1 with r > 4kρ (noting that (9.6) is clearly satisfied sincerρ > 4k ≥ 4),

∫

Bc
∗

qt(x, y)dμ(y) = Qt1Bc
∗(x) ≤ C(θ)

(
t

ρβ

) θk
θ+β

. (9.8)

Consequently, combining (9.7) and (9.8), it follows that, for anyθ > 0 and for any integerk ≥ 1 with
r > 4kρ,

‖qt(x, ∙)‖Lq(Bc
∗) =

(∫

Bc
∗

qt(x, y)q−1 ∙ qt(x, y)dμ(y)

)1/q

≤ sup
y∈Bc

∗

qt(x, y)
q−1

q

(∫

Bc
∗

qt(x, y)dμ(y)

)1/q

≤

(
C′

V∗(x, r)

( r

t1/β

)2α∗
exp

(
c′t

ρβ

))1/q′

∙


C(θ)

(
t

ρβ

) θk
θ+β




1/q

≤
C′(θ)

V∗(x, r)1/q′
exp

(
c′t

q′ρβ

) ( r

t1/β

)2α∗/q′
(

t

ρβ

) θk
(θ+β)q

=
C′(θ)

V∗(x, r)1/q′
exp

(
c′t

q′ρβ

) (
r
ρ

)2α∗/q′ ( t

ρβ

) θk
(θ+β)q−

2α∗
βq′

.

Therefore, substituting the above inequality into (8.26), we obtain

‖pt(x, ∙)‖Lq(Bc
∗) ≤ ‖qt(x, ∙)‖Lq(Bc

∗) +
Ct

V∗(x, ρ)1/q′ρβ
exp

(
C′t

ρβ

)

≤
C′(θ)

V∗(x, r)1/q′
exp

(
c′t

q′ρβ

) (
r
ρ

)2α∗/q′ ( t

ρβ

) θk
(θ+β)q−

2α∗
βq′

+
Ct

V∗(x, ρ)1/q′ρβ
exp

(
c′t

ρβ

)

. (9.9)

Now let θ = β and choose the integerk ≥ 1 such that

θk
(θ + β)q

−
2α∗
βq′

=
k
2q
−

2α∗
βq′
≥ 1,

for example, let

k = 1+

⌊

2q

(

1+
2α∗
βq′

)⌋

.

Choosing the rationalρ close to r
4k and using (VD∗) and (9.5), we obtain

‖pt(x, ∙)‖Lq(Bc
∗) ≤

C

V∗(x, r)1/q′



( t

rβ

) θk
(θ+β)q−

2α∗
βq′

+
t

rβ


 ≤

C′t

V∗(x, r)1/q′rβ
,

thus proving (9.4).
Finally, condition (TP∗q) follows directly from (9.3) and (9.4). �

Let us define condition (TP∗q) for q = ∞.

Definition 9.5 (Condition (TP∗∞)). We say that condition (TP∗∞) is satisfied if the pointwise heat kernel
pt(x, y) exists in the sense of Definition2.6, and for anyC0 ≥ 1, there existsC > 0 such that for anyx, y ∈ M
and anyt < C0(R∗)β,

pt(x, y) ≤ C

(
1

V∗(x, t1/β)
∧

t

V∗(x,d∗(x, y))d∗(x, y)β

)

. (9.10)

Lemma 9.6. For q = ∞, we have

(VD∗) + (DUE∗) + (S∗+) + (TJ∗∞)⇒ (TP∗∞).
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Proof. Fix x, y ∈ M andt < C0(R∗)β with C0 ≥ 1.
Let us first prove thatpt(x, y) ≤ C

V∗(x,t1/β)
. Indeed, by (8.35) and (8.38), we have for anyρ ∈ Q+,

pt(x, y) ≤
C

V∗(x, t1/β)
exp

(
c′t

ρβ

) (
1+

ρ

t1/β

)α∗
+

C

V∗(x, t1/β)
exp

(
c′t

ρβ

)

.

Taking hereρ close tot1/β, we obtain

pt(x, y) ≤
C′

V∗(x, t1/β)
exp

(
c′t
t

) (

1+
t1/β

t1/β

)α∗
+

Ct

V∗(x, t1/β)t
exp

(
c′t
t

)

=
C

V∗(x, t1/β)
.

It remains to show that

pt(x, y) ≤
Ct

V∗(x,d∗(x, y))d∗(x, y)β
. (9.11)

It suffices to consider the case when
d∗(x, y)β > t.

By (8.35), we need to estimateqt(x, y). Let

r := 2d∗(x, y) > 2t1/β,

so thatM ⊂ B∗(x, r)c ∪ B(y, r)c.
By semigroup property ofqt(x, y), we have

qt(x, y) =
∫

M
qt/2(x, z)qt/2(z, y)dμ(z)

≤

(∫

B∗(x,r)c
+

∫

B∗(y,r)c

)

qt/2(x, z)qt/2(z, y)dμ(z)

≤ sup
z∈M

qt/2(z, y)
∫

B∗(x,r)c
qt/2(x, z)dμ(z) + sup

z∈M
qt/2(x, z)

∫

B∗(y,r)c
qt/2(z, y)dμ(z).

We need to estimate the terms on the right hand side of the above inequality. By (8.38), (VD) and the
assumption thatr > 2t1/β, we obtain

sup
z∈M

qt/2(z, y) ≤
C

V∗(y, (t/2)1/β)
exp

(
c′t

2ρβ

) (

1+
ρ

(t/2)1/β

)α∗

≤
C

V∗(x, r)
V∗(x, r)

V∗(y, (t/2)1/β)
exp

(
c′t

2ρβ

) (
1+

ρ

t1/β

)α∗

≤
C′

V∗(x, r)

( r

t1/β

)α∗
exp

(
c′t

2ρβ

) (
1+

ρ

t1/β

)α∗
.

Similarly, we obtain the same estimate of supz∈M qt/2(x, z):

sup
z∈M

qt/2(x, z) ≤
C′

V∗(x, r)

( r

t1/β

)α∗
exp

(
c′t

2ρβ

) (
1+

ρ

t1/β

)α∗
.

On the other hand, by (8.19), Remark8.4 and Proposition8.5, we obtain for anyθ > 0, any integerk ≥ 1
andρ ∈ Q+ with 4kρ < r,

∫

B∗(x,r)c
qt/2(x, z)dμ(z) = Qt/21B∗(x,r)c(x) ≤ C(θ, k)

(
t

2ρβ

) θk
θ+β

,

and
∫

B∗(y,r)c
qt/2(z, y)dμ(z) = Qt/21B∗(y,r)c(y) ≤ C(θ, k)

(
t

2ρβ

) θk
θ+β

,

whereC(θ, k) is a constant independent oft, x, y, ρ.
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Finally, combining the above five inequalities, we obtain that, for anyθ > 0, k ≥ 1 andρ ∈ (0, r
4k) ∩ Q+,

qt(x, y) ≤
2C(θ, k)
V∗(x, r)

( r

t1/β

)α∗
exp

(
c′t

ρβ

) (
1+

ρ

t1/β

)α∗
(

t

ρβ

) θk
θ+β

,

Substituting the above inequality into (8.35), we obtain that

pt(x, y) ≤ qt(x, y) +
Ct

V∗(x, ρ)ρβ
exp

(
c′t

ρβ

)

≤
2C(θ, k)
V∗(x, r)

( r

t1/β

)α∗
exp

(
c′t

ρβ

) (
1+

ρ

t1/β

)α∗
(

t

ρβ

) θk
θ+β

+
Ct

V∗(x, ρ)ρβ
exp

(
c′t

ρβ

)

. (9.12)

Set in the above inequalityθ = β and take

k = 1+

⌊

2

(

1+
2α∗
β

)⌋

so that
k
2
−

2α∗
β
≥ 1. (9.13)

Passing to the limit in (9.12) as the rationalρ increases tor
5k, we obtain by (VD∗) that

pt(x, y) ≤
C1(β, k)
V∗(x, r)

( r

t1/β

)α∗
exp

(
c′t

(r/5k)β

) (

1+
r/5k

t1/β

)α∗ ( t

(r/5k)β

) k
2

+
Ct

V∗(x, r/5k)(r/5k)β
exp

(
c′t

(r/5k)β

)

≤
C(k)

V∗(x, r)

( t

rβ

) k
2−

2α∗
β

+
C′(k)

V∗(x, r)
t

rβ

≤
C(k)t

V∗(x, r)rβ
,

where we have used the facts thatt
rβ < 1 and then

( t

rβ

) k
2−

2α∗
β

≤
t

rβ
(by (9.13)).

Thus we have proved (9.11). �

9.2. Tail estimate in Lq under the original metric.

Lemma 9.7. Assume that(VD) is satisfied. For any1 ≤ q ≤ ∞, we have

(TP∗q) ⇔ (TPq), (9.14)

(TP∗) ⇔ (TP). (9.15)

Proof. For the equivalence (9.14), it suffices to prove the implication (TP∗q)⇒ (TPq) since the other direction
can be proved similarly.

Indeed, assume that condition (TP∗q) is true. Fixx ∈ M, R ∈ (0,R) andt < W(x,R). It follows from (6.13)

thatt < C0(R∗)β for someC0 > 0. Let

r := L−1F(x,R) so thatW(x,R) = F(x,R)β = (Lr)β. (9.16)

By (6.10), we have
B(x, L−1

0 R) ⊂ B∗(x, r) ⊂ B(x,R) (9.17)

so that
V(x,R) = μ(B(x,R)) ≥ μ(B∗(x, r)) = V∗(x, r) ≥ V(x, L−1

0 R).
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Let us assume that 1≤ q < ∞ since the case whenq = ∞ can be proved similarly. Using condition (TP∗q),
it follows from above that

‖pt(x, ∙)‖Lq(B(x,R)c) ≤ ‖pt(x, ∙)‖Lq(B∗(x,r)c) ≤ C

(
1

V∗(x, t1/β)1/q′
∧

t

V∗(x, r)1/q′rβ

)

≤ C




1

V∗(x, t1/β)1/q′
∧

t

V(x, L−1
0 R)1/q′L−βW(x,R)


 .

On the other hand, using the second inclusion in (6.9) with r = t1/β, we have by (6.7)

V∗(x, t
1/β) ≥ V(x, F−1(x, L−1t1/β)) = V(x,W−1(x, L−βt)).

Therefore, combining the above two inequalities and using (VD) and (2.8), we conclude that

‖pt(x, ∙)‖Lq(B(x,R)c) ≤ C′
(

1

V(x,W−1(x, t))1/q′
∧

t

V(x,R)1/q′W(x,R)

)

,

thus showing that condition (TPq) is true.
For the equivalence (9.15), it suffices to prove the implication (TP∗) ⇒ (TP) since the opposite direction

can be handled similarly.
Assuming that condition (TP∗) is true and using (9.17), (9.16), we obtain

Pt1B(x,R)c ≤ Pt1B∗(x,r)c ≤
Ct

rβ
=

Ct

L−βW(x,R)
in

1
4

B∗ ⊃ B(x,
1
4

L−1
0 R).

By standard covering arguments, this inequality still holds in1
4B(x,R), thus proving (TP). �

9.3. Off-diagonal upper bound. We show that condition (TPq) will lead to condition (UEq).

Lemma 9.8. For 2 ≤ q ≤ ∞, we have

(VD) + (TPq)⇒ (UEq).

Proof. Fix two pointsx, y ∈ M and set

R=
1
2

d(x, y).

Let t < W(x,R) ∧W(y,R).
We first assume thatq ∈ [2,∞). In this case, we haveq′ = q

q−1 ≤ 2 ≤ q. It follows from (4.1) that
condition (TPq′) is also true.

Using the semigroup property and the Hölder inequality, we have

pt(x, y) =
∫

M
pt/2(x, z)pt/2(z, y)dμ(z)

≤
∫

B(x,R)c
pt/2(x, z)pt/2(z, y)dμ(z) +

∫

B(y,R)c
pt/2(x, z)pt/2(z, y)dμ(z)

≤ ‖pt/2(x, ∙)‖Lq(B(x,R)c)‖pt/2(∙, y)‖q′ + ‖pt/2(x, ∙)‖q′ ‖pt/2(∙, y)‖Lq(B(y,R)c). (9.18)

We estimate the term‖pt/2(∙, y)‖q′ .
Indeed, sincet < W(y,R), by condition (TPq′), there exists a constantC > 0 such that for anyR′ < R,

‖pt/2(∙, y)‖Lq′ (B(y,R′)c) ≤
C

V(y,W−1(y, t))1/q
.

SinceR′ < R is arbitrary, passing to the limit in the above inequality asR′ ↓ 0, we obtain

‖pt/2(∙, y)‖q′ ≤
C

V(y,W−1(y, t))1/q
.

Similarly, sincet < W(x,R), we have

‖pt/2(x, ∙)‖q′ ≤
C

V(x,W−1(x, t))1/q
.
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Substituting the above two inequalities and condition (TPq) into (9.18), we obtain

pt(x, y) ≤ C

(
1

V(x,W−1(x, t/2))1/q′
∧

t/2

V(x,R)1/q′W(x,R)

)
1

V(y,W−1(y, t/2))1/q

+ C

(
1

V(y,W−1(y, t/2))1/q′
∧

t/2

V(y,R)1/q′W(y,R)

)
1

V(x,W−1(x, t/2))1/q
. (9.19)

We claim that, for 2≤ q < ∞,

1

V(y,W−1(y, t))1/q′
∧

t

V(y, x)1/q′W(y, x)
≤ C

(
1

V(x,W−1(x, t))1/q′
∧

t

V(x, y)1/q′W(x, y)

)

(9.20)

for a positive constantC independent oft, x, y.
Indeed, by condition (VD) and (2.7),

C−1
1 V(y, x) ≤ V(x, y) ≤ C1V(y, x),

C−1
1 W(y, x) ≤W(x, y) ≤ C1W(y, x)

(9.21)

for a positive constantC1 ≥ 1 independent ofx, y. Let us divide the proof into two cases.
Case 1:W(y, x) > t. In this case, we haved(x, y) > W−1(y, t), which gives by (9.21) that

W(x, y) = W(x,d(x, y)) ≥ C−1
1 W(y,d(x, y)) > C−1

1 t.

From this and using (2.8), we see that

d(x, y) ≥W−1(x,C−1
1 t) ≥ C−1W−1(x, t).

Therefore, it follows from (9.21), (VD) that

1

V(y,W−1(y, t))1/q′
∧

t

V(y, x)1/q′W(y, x)
=

t

V(y, x)1/q′W(y, x)
≤ C

t

V(x, y)1/q′W(x, y)

= C




t

V(x, y)1/q′W(x, y)
∧

t

V(x,C−1W−1(x, t))1/q′(C−1
1 t)




≤ C

(
t

V(x, y)1/q′W(x, y)
∧

C′

V(x,W−1(x, t))1/q′

)

,

thus showing (9.20) in this case.
Case 2:W(y, x) ≤ t. In this case, we haved(x, y) ≤W−1(y, t). By (11.2) in Appendix,

C−1 ≤
V(x,W−1(x, t))
V(y,W−1(y, t))

≤ C (9.22)

for a positive constantC independent ofx, y, t. From this and using (9.21), we obtain (9.20). This proves
our claim.

By (9.20), the factor in front of the second term on the right-hand side of (9.19) is bounded by

1

V(y,W−1(y, t/2))1/q′
∧

t/2

V(y,R)1/q′W(y,R)
≤ C

(
1

V(y,W−1(y, t))1/q′
∧

t

V(y,R)1/q′W(y,R)

)

≤ C′
(

1

V(x,W−1(x, t))1/q′
∧

t

V(x, y)1/q′W(x, y)

)

.

Therefore, combining this and (9.19) and substitutingR= 1
2d(x, y), we obtain

pt(x, y) ≤ C′
(

1

V(x,W−1(x, t))1/q′
∧

t

V(x, y)1/q′W(x, y)

) (
1

V(y,W−1(y, t))1/q
+

1

V(x,W−1(x, t))1/q

)

,

which is the inequality (2.25) in (UEq) in the case when 2≤ q < ∞.
Consider now the caseq = ∞. In this caseq′ = 1. Fix y , x and letR = 1

2d(x, y). Using (2.20) and the
fact thatpt(x, ∙) ∈ C({Fk}), we have by condition (TP∞) that for every pointz ∈ M with d(x, z) > R,

pt(x, z) ≤ ‖pt(x, ∙)‖L∞(B(x,R)c) ≤ C

(
1

V(x,W−1(x, t))
∧

t
V(x,R)W(x,R)

)

.
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In particular, the above inequality holds true forz = y sinced(x, y) > R, thus showing that (2.25) holds in
the case whenq = ∞.

Therefore, we always have that (2.25) holds fort < W(x,R) ∧W(y,R), thus showing condition (UEq). �

10. Proofs of main results

In this section, we first give some consequences of the tail estimate (TPq). And then, we prove main
theorems.

Proposition 10.1. Let (E,F ) be a regular Dirichlet form in L2. Let U,V ⊂ B(M) with U ∩ V = ∅, and
f ,g ∈ F be non-negative Borel functions such thatsupp(f ) ⊂ U andsupp(g) ⊂ V. Then,

∫

U
f (x)

∫

V
g(y)J(x,dy)dμ(x) ≤ lim inf

t→0

1
2t

∫

U
f (x)Ptg(x)dμ(x).

Proof. Since supp(f ) ∩ supp(g) ⊂ U ∩ V = ∅, we obtain for anyt > 0,

−( f ,g− Ptg) = ( f ,Ptg) =
∫

U
f (x)Ptg(x)dμ(x),

whence by [19, Lemma 1.3.4(i)],

|E( f ,g)| = lim
t→0

∣∣∣∣∣
1
t
|( f ,g− Ptg)

∣∣∣∣∣ ≤ lim inf
t→0

1
t

∫

U
f (x)Ptg(x)dμ(x).

On the other hand, using (2.6), we obtain

E( f ,g) = E(J)( f ,g) =
"

M×M\diag
( f (x) − f (y))(g(x) − g(y))d j(x, y)

= − 2
"

U×V
f (x)g(y)J(x,dy)dμ(x).

Combining the above two inequalities we finish the proof. �

Lemma 10.2. We have
(TP)⇒ (TJ).

Proof. Fix somex0 ∈ M andR > 0, and setB := B(x0,R). Let f ,g ∈ F be non-negative Borel functions
such that supp(f ) ⊂ B andg ≤ 1(4B)c. By (TP) we have for anyt > 0,

Ptg ≤ Pt1(4B)c ≤
Ct

W(x0,R)
in B.

Using the above inequality and applying Proposition10.1for U = B andV = (4B)c, we obtain for anyt > 0,
∫

B
f (x)

∫

(4B)c
g(y)J(x,dy)dμ(x) ≤

C
W(x0,R)

∫

B
f dμ.

Passing to the limit asg ↑ 1(4B)c, we obtain
∫

B(x0,R)
f (x)J(x, B(x,5R)c)dμ(x) ≤

∫

B(x0,R)
f (x)J(x, B(x0,4R)c)dμ(x)

≤
C

W(x0,R)

∫

B(x0,R)
f dμ.

Since f is arbitrary, there exists a Borel setNx0,R of measure 0 depending onx0 andR such that, for all
x ∈ B(x0,R) \ Nx0,R,

J(x, B(x,5R)c) ≤
C

W(x0,R)
≤

C′

W(x,5R)
, (10.1)

where in the last inequality, we have used the fact that by the right inequality in (2.7),

W(x,5R) ≤ cW(x0,R).

For a fixedR> 0, sinceM can be covered by at most countable balls likeB(x0,R), there exists a measurable
setNR with μ(NR) = 0 such that (10.1) holds for allx ∈ M \ NR.
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Next, set
N := ∪R∈Q+

NR.

Thenμ(N) = 0 and (10.1) also holds for allx ∈ M \ N and all rationalsR ∈ Q+.
For any realR > 0, taking a sequence{Rn} ⊂ (0,R) ∩ Q such thatRn ↑ R asn ↑ ∞, we obtain by (10.1)

and the right inequality in (2.7),

J(x, B(x,5R)c) ≤ lim inf
n→∞

J(x, B(x,5Rn)c) ≤ lim inf
n→∞

C
W(x,5Rn)

≤ lim inf
n→∞

C′

W(x,5R)

(
R
Rn

)β2

=
C′

W(x,5R)
,

showing that (10.1) holds true for allx ∈ M \ N and allR > 0. Let us setJ(x, B(x,5R)c) = 0 for anyx ∈ N
so that (10.1) is satisfied for allx ∈ M andR> 0. RenamingRby R/5 in (10.1), we conclude that condition
(TJ) is true. �

Recall that condition (C) means that the Dirichlet form is conservative.

Lemma 10.3. Let (E,F ) be a regular Dirichlet form in L2. Then the following statements are true.

(i) For 2 ≤ q ≤ ∞,
(VD) + (TPq)⇒ (DUE).

(ii) For 1 < q ≤ ∞,
(VD) + (TPq)⇒ (TJq).

(iii) For 1 ≤ q ≤ ∞,
(TP) + (C)⇒ (S+).

Consequently,
(VD) + (TPq) + (C)⇒ (S+).

Proof. (i). Since condition (TPq) holds for 2≤ q ≤ ∞, condition (TP2) is also true by (4.1). Thus, for any
ball B := B(x,R) of radiusR ∈ (0,R) and anyt < W(x,R),

‖pt(x, ∙)‖L2(Bc) ≤ C

(
1

V(x,W−1(x, t))1/2
∧

t

V(x,R)1/2W(x,R)

)

≤
C

V(x,W−1(x, t))1/2
.

Passing to the limit asR ↓ 0 and using the semigroup property ofpt, we obtain that for anyx ∈ M and any
t < W(x,R),

pt(x, x) = ‖pt(x, ∙)‖
2
2 ≤

C2

V(x,W−1(x, t))
(10.2)

To prove condition (DUE), we need to extend the above inequality to anyt < C0W(x,R) with C0 ≥ 1 if
R < ∞. Indeed, for anyy ∈ B(x, 1

2W−1(x, t)) and f ∈ L2, applying (10.2) for the pointy andt < W(x,R),
and using (11.2) in Appendix, we have that

|Pt f (y)| =
∣∣∣∣

∫

M
pt(y, z) f (z)dμ(z)

∣∣∣∣ ≤ ‖pt(y, ∙)‖2‖ f ‖2

≤
C

V(y,W−1(y, t))1/2
‖ f ‖2 ≤

C′

V(x,W−1(x, t))1/2
‖ f ‖2,

thus showing that [23, Eq. (6.2)] holds true. Therefore, by [23, Remark 6.8], the inequality (10.2) holds true
for anyt < C0W(x,R) with C0 ≥ 1, that is, condition (DUE) holds true.

(ii). Let us first consider the case when 1< q < ∞. We first prove that the jump kernelJ exists. Indeed,
fix x0 ∈ M andR > 0. Applying Proposition10.1for U := B(x0,R), V := B(x0,2R)c and for 0≤ f ,g ∈ F
with supp(f ) ⊂ B(x0,R) and supp(g) ⊂ B(x0,2R)c, we obtain by (VD), (2.7), (TPq) and Ḧolder inequality
that ∫

U
f (x)

∫

V
g(y)J(x,dy)dμ(x)

≤ lim inf
t→0

1
2t

∫

U
f (x)

∫

V
pt(x, y)g(y)dμ(y)dμ(x)
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≤ lim inf
t→0

1
2t

∫

U
f (x)

(∫

V
gq′dμ

)1/q′ (∫

V
pt(x, y)qdμ(y)

)1/q

dμ(x)

≤ lim inf
t→0

1
2t

∫

U
f (x) ∙ ‖g‖Lq′ (V)‖pt(x, ∙)‖Lq(B(x,R)c)dμ(x) (sinceV ⊂ B(x,R)c)

≤ lim inf
t→0

‖g‖Lq′ (V)
1
2t

∫

U
f (x) ∙

Ct

V(x,R)1/q′W(x,R)
dμ(x) (by (TPq))

= C‖g‖Lq′ (V)

∫

U

f (x)

V(x,R)1/q′W(x,R)
dμ(x) (10.3)

≤
C′‖g‖Lq′ (V)

V(x0,R)1/q′W(x0,R)

∫

U
f (x)dμ(x) (by (VD) and (2.7)).

SinceF ∩ C0(M) is dense inC0(M) and Lq′(V) is separable, we can choose a sequence{gn}∞n=1 ⊂ F ∩
Lq′(B(x0,2R)c) with supp(gn) ⊂ B(x0,2R)c for all n ≥ 1 such that{gn}∞n=1 is dense inLq′(B(x0,2R)c). Since
the function 0≤ f ∈ F with supp(f ) ⊂ U is arbitrary in the above inequality, there existsNx0,R ∈ B(M)
with Nx0,R ⊂ B(x0,R) andμ(Nx0,R) = 0 such that for allx ∈ B(x0,R) \ Nx0,R and alln ≥ 1,

∫

B(x0,2R)c
|gn(y)|J(x,dy) ≤

C′‖gn‖Lq′ (B(x0,2R)c)

V(x0,R)1/q′W(x0,R)
.

Since{gn}∞n=1 is dense inLq′(B(x0,2R)c), by Fatou’s Lemma, (VD) and the right inequality in (2.7), we
obtain that for allx ∈ B(x0,R) \ Nx0,R andg ∈ Lq′(B(x0,2R)c),

∫

B(x,3R)c
|g(y)|J(x,dy) ≤

∫

B(x0,2R)c
|g(y)|J(x,dy)

≤ lim inf
n→∞

C‖gn‖Lq′ (B(x0,2R)c)

V(x0,R)1/q′W(x0,R)

≤
C‖g‖Lq′ (B(x0,2R)c)

V(x0,R)1/q′W(x0,R)

≤
C‖g‖Lq′ (M)

V(x,3R)1/q′W(x,3R)
. (by (VD) and (2.7)) (10.4)

For a fixedR> 0, sinceM can be covered by at most countable balls likeB(x0,R), there exists a measurable
setNR with μ(NR) = 0 such that (10.4) holds for allx ∈ M \ NR andg ∈ Lq′(M).

Next, set

N := ∪R∈Q+
NR.

Thenμ(N) = 0 and (10.4) also holds for allx ∈ M \ N, all rationalsR ∈ Q+ andg ∈ Lq′(M).
For any realR > 0, choosing a sequence{Rn} ⊂ (0,R) ∩ Q such thatRn ↑ R asn ↑ ∞, by (10.4), (VD)

and the right inequality in (2.7), we obtain for allx ∈ M \ N, all R> 0 andg ∈ Lq′(M).
∫

B(x,3R)c
|g(y)|J(x,dy) ≤ lim inf

n→∞

C‖g‖Lq′ (M)

V(x,3Rn)1/q′W(x,3Rn)

≤ lim inf
n→∞

C‖g‖Lq′ (M)

V(x,3R)1/q′W(x,3R)
∙

(
R
Rn

)α+β2

(by (VD) and (2.7))

=
C‖g‖Lq′ (M)

V(x,3R)1/q′W(x,3R)
. (10.5)

Therefore, for anyx ∈ M \ N and anyR > 0, J(x,dy) is absolutely continuous with respect todμ(y) on
B(x,3R)c, and hence, the derivative

Jx(y) :=
J(x,dy)
dμ(y)

, (10.6)
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exists onM \ {x} and satisfies

‖Jx‖Lq(B(x,3R)c) ≤
C

V(x,3R)1/q′W(x,3R)
. (10.7)

Now, let us prove that the functionJx(y) has a jointly measurable version, sayJ(x, y), in (x, y) ∈ M × M.
Indeed, we fixR> 0, and consider the function (x, y) 7→ Jx(y)1B(x,R)c(y). First of all, by the fact thatJ(x,dy)
is a kernel onM × B(M) and (10.7), we obtain that the mapx 7→ Jx1B(x,R)c from M to Lq(M) is weakly
measurable since for anyg ∈ Lq′(M), the function

x 7→
∫

M
1B(x,R)c(y)g(y)J(x,dy) =

∫

B(x,R)c
g(y)J(x,dy)

is measurable. Secondly, sinceLq(M) is separable, by Pettis’ measurability theorem (see [39, Chapter V,
Section 4]), the mapx 7→ Jx1B(x,R)c from M to Lq(M) is strongly measurable. Thirdly, for any ballB(o, k)
with o ∈ M andk > R, we have by (VD) and the right inequality in (2.7),

1

V(x,R)1/q′W(x,R)
≤

C

V(o, k)1/q′W(o, k)
,

which together with (10.7) implies that the functionx 7→ ‖Jx1B(x,R)c‖Lq(M) belongs toL1(B(o, k)). This shows
that x 7→ Jx1B(x,R)c is Bochner integrable onB(o, k) by Bochner’s theorem (see [39, Chapter V, Section 5]).
Finally, by [16, Chapter III, Section 11, Theorem 17], any Bochner integrable mapping admits a jointly
measurable version. This shows thatx 7→ Jx1B(x,R)c admits a jointly measurable version (depending onR)
on B(o, k). Sincek > R is arbitrary, there is a jointly measurable functionJ(R)(x, y) in (x, y) ∈ M × M such
that forμ-a.a.x ∈ M,

Jx(y)1B(x,R)c(y) = J(R)(x, y), μ-a.ay ∈ M.

Moreover, for anyR> r, we have forμ-a.a.y ∈ B(x,R)c,

J(R)(x, y) = Jx(y)1B(x,R)c(y) = Jx(y)1B(x,r)c(y) = J(r)(x, y).

Hence, we can define the jointly measurable functionJ(x, y):

J(x, y) = lim
Q+3R↓0

J(R)(x, y), x, y ∈ M,

such that for anyR> 0 andμ-a.a.x ∈ M,

Jx(y)1B(x,R)c(y) = J(x, y), μ-a.ay ∈ M.

Therefore, by (10.6), we obtain that

d j(x, y) = J(x,dy)dμ(x) = J(x, y)dμ(y)dμ(x). (10.8)

Moreover, the functionJ(x, y) can be symmetric since the measurablej is symmetric. That is, we have
proved that the jump kernelJ(x, y) exists.

Using(10.8) and repeating the arguments that lead to (10.5), we obtain for allx ∈ M \ N, all R > 0 and
g ∈ Lq′(M).

∫

B(x,3R)c
|g(y)|J(x, y)dμ(y) ≤

C‖g‖Lq′ (M)

V(x,3R)1/q′W(x,3R)
,

which, by the arbitrariness ofg, implies that for allx ∈ M \ N andR> 0,

‖J(x, ∙)‖Lq(B(x,3R)c) ≤
C

V(x,3R)1/q′W(x,3R)
.

RenamingRby R/3, we obtain the inequality in condition (TJq), hence, proving (TJq).
It remains to consider the case whenq = ∞. Indeed, by Lemma9.8, condition (UE∞) is true, from which,

one can obtain (TJ∞). In fact, one can similarly obtain (10.3) directly from condition (UE∞), that is, for any
non-negativef ,g ∈ F with supp(f ) ⊂ U, supp(g) ⊂ V, andU ∩ V = ∅,

"

U×V
f (x)g(y)d j(x, y) ≤ C

"

U×V

f (x)g(y)
V(x, y)W(x, y)

dμ(y)dμ(x).
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Hence, the measurej is absolutely continuous with respect toμ × μ on M × M\diag, and hence, there is
someB(M × M \ diag)-measurable functionJ(x, y) such thatd j(x, y) = J(x, y)dμ(x)dμ(y), and

J(x, y) ≤
C

V(x, y)W(x, y)
on M × M \ diag,

showing that condition (TJ∞) is true. We remark that the similar result was also obtained in [5, Thoerem
1.2] and [15, Proposition 3.3], but the conservativeness of (E,F ) was used. Here we do not need the
conservativeness.

(iii). We show (VD) + (TPq) + (C)⇒ (TP) + (C)⇒ (S+).
Under (VD), since condition (TPq) for 1 ≤ q ≤ ∞ is true, condition (TP) is always satisfied by (4.1), and

then (TP∗) is true by (9.15). That is, for any ballB∗ := B∗(x, r) of radiusr < R∗ and anyt > 0, we have

Pt1Bc
∗ ≤

Ct

rβ
in

1
4

B∗.

Hence, we obtain by using [27, Lemma 6.1, p. 2634] that

1− PB∗
t 1B∗ ≤

2Ct

(r/2)β
in

1
4

B∗.

Moreover, by standard covering arguments, one can extend the above inequality fromr ∈ (0,R∗) to r ∈
(0, 2R∗). That is, we have proved (S∗+), and then, (S+) by (7.9).

�

We show that condition (FK) will follow from ( VD), (RVD), (DUE).

Proposition 10.4. Assume that(E,F ) is a regular Dirichlet form in L2. Then

(VD) + (RVD) + (DUE)⇒ (FKβ2
1/(αβ2)), (10.9)

whereα is the constant from (2.2) andβ1, β2 are the constants from (2.7).

Proof. Fix B := B(x0,R) with 0 < R < σR, whereσ ∈ (0,1) will be determined later on. We divide the
proof into four steps.

Step1. We show that

esup
B

pB
t := esup

x,y∈B
pB

t (x, y) ≤
K
μ(B)

h

(
R

W−1(x0, t)

)

for all 0 < t ≤ T, (10.10)

whereT is defined by

T := W(x0, λK1/αR),

λ,K ≥ 1 are two positive constants to be determined, andh is the function defined by

h(s) =





sα if 0 < s≤ 1,

sαβ2/β1 if s> 1.
(10.11)

Indeed, by (DUE) and [23, Eq. (6.18) in Corollary 6.9], ifx, y ∈ B and

t ≤ T < W(x,R) ∧W(y,R), (10.12)

then we have

pB
t (x, y) ≤ pt(x, y) ≤

C1
√

V(x,W−1(x, t))V(y,W−1(y, t))

=
C1

V(x0,R)

√
V(x0,R)

V(x,W−1(x, t))

√
V(x0,R)

V(y,W−1(y, t))
. (10.13)

We will first choose largeλ,K and then choose a smallσ such that (10.10) is satisfied. To do this, we need
to estimate the term V(x0,R)

V(x,W−1(x,t)) from above for anyx ∈ B.
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Indeed, lett ∈ (0,T] andx ∈ B. Denote by

Rx0,t := W−1(x0, t) and Rx,t := W−1(x, t),

Rx0,T := W−1(x0,T) = λK1/αR,
(10.14)

so thatRx0,T ≥ Rx0,t, and

W(x0,Rx0,t) = t = W(x,Rx,t) ≤ T = W(x0,Rx0,T). (10.15)

Since the following argument is sensitive to constants, we denote the constants in (VD), (RVD) and (2.7) by
CV,CR,CW respectively.

Case1 whenR≤ Rx0,t. In this case, ifRx0,t > Rx,t, then

d(x0, x) < R≤ Rx0,t,

from which, by the left inequality in (2.7) and using (10.15), we see

C−1
W

(
Rx0,t

Rx,t

)β1

≤
W(x0,Rx0,t)

W(x,Rx,t)
=

t
t
= 1,

and so,

Rx,t ≥ C−1/β1
W Rx0,t.

If Rx0,t ≤ Rx,t, the above inequality is also true sinceCW ≥ 1. Therefore,

V(x0,R)
V(x,Rx,t)

=
V(x0,Rx0,T)

V(x,Rx,t)
V(x0,R)

V(x0,Rx0,T)
≤

V(x0,Rx0,T)

V(x,C−1/β1
W Rx0,t)

V(x0,R)
V(x0,Rx0,T)

≤ CV




Rx0,T

C−1/β1
W Rx0,t




α
V(x0,R)

V(x0,Rx0,T)
(by (2.3) and the fact thatRx0,T ≥ Rx0,t)

≤ CV




Rx0,T

C−1/β1
W Rx0,t




α

∙CR

(
R

Rx0,T

)α′

(by (RVD))

= CV



λK1/αR

C−1/β1
W Rx0,t




α

∙CR

( R

λK1/αR

)α′
(by (10.14))

= CVCRCα/β1
W λα−α

′
K−α

′/α ∙ K

(
R

Rx0,t

)α

= CVCRCα/β1
W λα−α

′
K−α

′/α ∙ Kh

(
R

Rx0,t

)

≤
K
C1

h

(
R

Rx0,t

)

, (10.16)

provided that

CVCRCα/β1
W λα−α

′
K−α

′/α ≤ C−1
1 . (10.17)

Sincex ∈ B is arbitrary, we also have fory ∈ B

V(x0,R)
V(y,Ry,t)

≤
K
C1

h

(
R

Rx0,t

)

(10.18)

provided that (10.17) holds.
Plugging (10.16), (10.18) into (10.13), we obtain for anyx, y in B

pB
t (x, y) ≤

C1

V(x0,R)
K

C1
h

(
R

Rx0,t

)

=
K
μ(B)

h

(
R

W−1(x0, t)

)

,

thus showing (10.10), provided that (10.17) is satisfied.
Case2 whenR> Rx0,t. In this case, ifRx0,t ≤ Rx,t, then by (VD)

V(x0,R)
V(x,Rx,t)

≤
V(x0,R)

V(x,Rx0,t)
≤ CV

(
R

Rx0,t

)α
≤ CV

(
R

Rx0,t

)αβ2/β1

= CVh

(
R

Rx0,t

)

.



TAIL ESTIMATES 59

If Rx0,t > Rx,t, thenR> Rx,t and so, by(VD),

V(x0,R)
V(x,Rx,t)

≤ CV

(
R

Rx,t

)α
.

Moreover, by (2.7) and (10.15),

C−1
W

(
R

Rx,t

)β1

≤
W(x0,R)
W(x,Rx,t)

=
W(x0,R)

W(x0,Rx0,t)
≤ CW

(
R

Rx0,t

)β2

.

It follows from the above two inequalities that

V(x0,R)
V(x,Rx,t)

≤ CV

(
R

Rx,t

)α
≤ CVC2α/β1

W

(
R

Rx0,t

)αβ2/β1

= CVC2α/β1
W h

(
R

Rx0,t

)

, (10.19)

no matterRx0,t ≤ Rx,t or Rx0,t > Rx,t. Sincex ∈ B is arbitrary, we also havey ∈ B

V(x0,R)
V(y,Ry,t)

≤ CVC2α/β1
W h

(
R

Rx0,t

)

. (10.20)

Therefore, plugging (10.19), (10.20) into (10.13), we obtain

pB
t (x, y) ≤

C1

V(x0,R)

√
V(x0,R)

V(x,W−1(x, t))

√
V(x0,R)

V(y,W−1(y, t))

≤
C1

V(x0,R)
CVC2α/β1

W h

(
R

Rx0,t

)

≤
K
μ(B)

h

(
R

W−1(x0, t)

)

,

provided that
C1CVC2α/β1

W ≤ K. (10.21)

thus showing (10.10).
So far we have proven (10.10), provided that assumptions (10.12), (10.17) and (10.21) are all satisfied,

which will be confirmed later on.
Step2. We further show that there exists a constantC > 0 such that

esup
B

pB
t ≤

C
μ(B)

h

(
R

W−1(x0, t)

)

for all t > 0. (10.22)

Indeed, note that (10.10) holds fort = T. We claim that it also holds fort = 2T. As a matter of fact, let
Rx0,2T := W−1(x0,2T), that is,

W(x0,Rx0,2T) = 2T.

Note that
Rx0,2T ≥ Rx0,T = λK1/αR≥ R,

whereRx0,T is given in (10.14). By (10.11) and (10.10), we obtain for allx, y in B,

pB
2T(x, y) =

∫

B
pB

T(x, z)pB
T(z, y)dμ(z) ≤ μ(B)(esup

B
pB

T)2

≤ μ(B)

(
K
μ(B)

h

(
R

Rx0,T

))2

=
K2

μ(B)

(
R

Rx0,T

)2α

= K

(
Rx0,2T

Rx0,T

)α (
R

Rx0,T

)α
∙

K
μ(B)

(
R

Rx0,2T

)α
. (10.23)

By the left inequality in (2.7), we have

C−1
W

(
Rx0,2T

Rx0,T

)β1

≤
W(x0,Rx0,2T)

W(x0,Rx0,T)
=

2T
T

= 2.

Plugging this inequality into (10.23) and then using (10.14), we obtain

pB
2T(x, y) ≤ K

(
Rx0,2T

Rx0,T

)α (
R

Rx0,T

)α
∙

K
μ(B)

(
R

Rx0,2T

)α
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≤ K ∙ (2CW)α/β1 ∙
( R

λK1/αR

)α
∙

K
μ(B)

(
R

Rx0,2T

)α

≤ (2CW)α/β1λ−α ∙
K
μ(B)

(
R

Rx0,2T

)α
,

thus showing that (10.10) holds fort = 2T, provided that

(2CW)α/β1λ−α ≤ 1. (10.24)

We now first choose a large numberλ such that (10.24) is satisfied, and then choose a large numberK such
that both (10.17) and (10.21) are satisfied. We will verify (10.12) by choosing small enoughσ later. In the
rest of the proof, we will fix these choices ofλ andK.

We turn to show (10.22). Indeed, we see by induction that (10.10) holds att = 2nT for any integer
n = 0,1,2, ∙ ∙ ∙ . Since the functiont 7→ esupB pB

t is non-increasing (cf. [26, Lemma 3.9]), we obtain that, for
2nT ≤ t < 2n+1T,

esup
B

pB
t ≤ esup

B
pB

2nT ≤
K
μ(B)

h

(
R

W−1(x0,2nT)

)

. (10.25)

Let us estimate the term R
W−1(x0,2nT) . Indeed, by (2.7) and the monotonicity ofW−1(x0, ∙), we have

R

W−1(x0,2nT)
=

R

W−1(x0,2n+1T)
W−1(x0,2n+1T)
W−1(x0,2nT)

≤
R

W−1(x0,2n+1T)

(

CW
W(x0,W−1(x0,2n+1T))
W(x0,W−1(x0,2nT))

)1/β1

≤
R

W−1(x0, t)
∙

(

CW
2n+1T
2nT

)1/β1

=
R

W−1(x0, t)
∙ (2CW)1/β1 .

Moreover, using the fact thatt ≥ 2nT = 2nW(x0, λK1/αR) ≥W(x0,R) and using (10.11), we have

h

(
R

W−1(x0,2nT)

)

=

(
R

W−1(x0,2nT)

)α
≤

(
R

W−1(x0, t)
(2CW)1/β1

)α

= (2CW)α/β1

(
R

W−1(x0, t)

)α
= (2CW)α/β1h

(
R

W−1(x0, t)

)

.

Plugging this inequality into (10.25), we obtain

esup
B

pB
t ≤

K
μ(B)

h

(
R

W−1(x0,2nT)

)

≤
K(2CW)α/β1

μ(B)
h

(
R

W−1(x0, t)

)

,

This proves (10.22) by settingC = (2CW)α/β1K.
Step3. We show (FKν).
Indeed, letU be a non-empty open subset ofB. Let Rx0,t = W−1(x0, t) be as in (10.14). Using the fact that

pU
t ≤ pB

t and the Cauchy-Schwarz inequality, we have from (10.22) that, for anyf ∈ F (U) and anyt > 0,

(
PU

t f , f
)
=

∫

U

∫

U
pU

t (x, y) f (x) f (y)dμ(x)dμ(y) ≤
C
μ(B)

h

(
R

Rx0,t

)

‖ f ‖21

≤
Cμ(U)
μ(B)

h

(
R

Rx0,t

)

‖ f ‖22.

Since the functiont−1( f − PU
t f , f ) monotonously increases toE( f , f ) ast goes to 0, it follows that

E( f , f ) ≥
1
t

(
f − PU

t f , f
)
=

1
t

(
‖ f ‖22 − (PU

t f , f )
)
,

from which, we see that for any non-zerof ∈ F (U) and anyt > 0

E( f , f )

‖ f ‖22
≥

1
t

(

1−
Cμ(U)
μ(B)

h

(
R

Rx0,t

))

. (10.26)
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Sincet > 0 in (10.26) is arbitrary, we will chooset to satisfy the identity

Cμ(U)
μ(B)

h

(
R

Rx0,t

)

=
1
2
,

that is,

h

(
R

Rx0,t

)

=
1

2C
μ(B)
μ(U)

:= a.

If a ≤ 1, we have by definition ofh in (10.11)

h

(
R

Rx0,t

)

=

(
R

Rx0,t

)α
= a,

that is,Rx0,t = W−1(x0, t) = a−1/αR, and so by (2.7)

t = W(x0,a
−1/αR) ≤ CW

(
a−1/α

)β2 W(x0,R) = CW

(
1

2C
μ(B)
μ(U)

)−β2/α

W(x0,R).

Then, it follows from (10.26) that

E( f , f )

‖ f ‖22
≥

1
2t
≥

C′

W(x0,R)

(
μ(B)
μ(U)

)β2/α

if a ≤ 1. (10.27)

On the other hand, ifa > 1, then by definition (10.11)

h

(
R

Rx0,t

)

=

(
R

Rx0,t

)αβ2/β1

= a,

that is,Rx0,t = W−1(x0, t) = a−β1/(αβ2)R, and so by (2.7)

t = W(x0,a
−β1/(αβ2)R) ≤ CW

(
a−β1/(αβ2)

)β1 W(x0,R) = CW

(
1

2C
μ(B)
μ(U)

)−β2
1/(αβ2)

W(x0,R).

Then, it follows from (10.26) that

E( f , f )

‖ f ‖22
≥

1
2t
≥

C′

W(x0,R)

(
μ(B)
μ(U)

)β2
1/(αβ2)

if a > 1. (10.28)

In both cases (10.27) and (10.28), we always have that, using the fact thatμ(B)
μ(U) ≥ 1,

λmin(U) = inf
f∈F (U)\{0}

E( f , f )

‖ f ‖22
≥

C′

W(x0,R)

(
μ(B)
μ(U)

)ν
,

whereν is given by
ν = min{β2/α, β

2
1/(αβ2)} = β2

1/(αβ2)

sinceβ1 ≤ β2, thus proving condition (FK) with ν = β2
1/(αβ2).

Step4. Finally, it remains to verify (10.12). This can be achieved by choosing the value ofσ. Without
loss of generality, assumethatR< ∞; otherwiseW(x,R) = ∞, and (10.12) is trivially satisfied.

For anyx in B, sinced(x, x0) < R< σR< R, we see by (2.7)

W(x0,R)

W(x,R)
≤ CW



R

R




β2

= CW,

and so (10.12) will be secured if
T < C−1

W W(x0,R). (10.29)

On the other hand, ifR< σR, then by (2.7),

T = W(x0, λK1/αR) ≤W(x0, λK1/α(σR)) ≤ CW

(
λK1/ασ

)β1 W(x0,R).

Now, we can chooseσ to be sufficiently small such that

CW

(
λK1/ασ

)β1 ≤ C−1
W < 1.
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With the choice of the aboveσ, we conclude that (10.29) is true, which in turn implies that (10.12) is
secured. �

Definition 10.5 (Capacity upper bound). We say that the condition (Cap≤) is satisfied if there exists a
constantC > 0 such that for all ballsB of radii R lessthanR

cap(
1
2

B, B) ≤ C
μ(B)
W(B)

. (10.30)

The authors proved in [24, Theorem 2.11] that under mild assumptions, (Gcap) ⇔ (ABB) + (Cap≤).
While, in the following lemma, we prove that under the same assumptions, (ABB) ⇒ (Cap≤), and conse-
quently, (Gcap)⇔ (ABB).

Lemma 10.6. Let (E,F ) be a regular Dirichlet form in L2 without killing part. Then, we have

(VD) + (TJ) + (ABB) ⇒ (Cap≤). (10.31)

Consequently, under conditions(VD), (FK) and(TJ), we have the following equivalence:

(Gcap)⇔ (ABB). (10.32)

Proof. Let B := B(x0,R) with x0 ∈ M andR< R. We divide the proof of (10.31) into two cases.
Case 1:R < 1

2R. Applying (ABB) for B0 := 1
2B, B, Ω := 2B andu = 1, we have that there exists

φ ∈ cutoff(B0, B) such that
∫

2B
dΓ2B(φ) ≤ sup

x∈2B

c1

W(x,R/2)

∫

2B
dμ = sup

x∈2B

c1μ(2B)
W(x,R/2)

.

Then, by (2.5), (VD), (TJ) and (2.7), we have

E(φ, φ) =
∫

2B
dΓ2B(φ) + 2

"

(2B)×(2B)c
(φ(x) − φ(y))2d j(x, y)

=

∫

2B
dΓ2B(φ) + 2

"

B×(2B)c
φ(x)2J(x,dy)dμ(x)

≤ sup
x∈2B

c1μ(2B)
W(x,R/2)

+ 2
∫

B
J(x, B(x,R)c)dμ(x)

≤ sup
x∈2B

c1μ(2B)
W(x,R/2)

+

∫

B

c2

W(x,R)
dμ(x)

≤
c1μ(B)
W(B)

sup
x∈2B

W(x0,R)
W(x,R/2)

μ(2B)
μ(B)

+
c2

W(B)

∫

B

W(x0,R)
W(x,R)

dμ(x)

≤
Cμ(B)
W(B)

,

which is the inequality in (Cap≤).
Case 2: 1

2R ≤ R < R (whenR < ∞). By (VD), there exists an integerN > 0 depending only on the
constant in (VD) and{xi , 1 ≤ i ≤ N} ⊂ 1

2B such that12B ⊂ ∪N
i=1B(xi ,

1
4R). Similar to Case 1, for eachxi , one

can findφi ∈ cutoff(B(xi ,
1
4R), B(xi ,

1
2R)) such that

E(φi , φi) ≤
CiV(xi ,

1
2R)

W(xi ,
1
2R)

.

Define

φ :=
N∨

i=1

φi .

Clearly,φ ∈ cutoff(1
2B, B). Moreover, by the subadditivity of capacity and (2.7), we have

E(φ, φ) ≤
N∑

i=1

CiV(xi ,
1
2R)

W(xi ,
1
2R)

≤
N∑

i=1

CiV(x0,R)
W(x0,R)

W(x0,R)

W(xi ,
1
2R)
≤

Cμ(B)
W(B)

,
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which is the inequality in (Cap≤). Hence we obtain (Cap≤).
Finally, (10.32) follows directly from (10.31) and [24, Theorem 2.11]. �

By (7.1), (7.2) and (10.32), we obtain that under condition (VD),

(FK) + (ABB) + (TJ)⇒ (S+)⇔ (S)⇒ (Gcap). (10.33)

Theorem 10.7.Under condition(VD), we have

(FK) + (Gcap) + (TJ)⇔ (FK) + (ABB) + (TJ)

⇒ (S) + (TJ)

⇒ (TP).

Proof. The first equivalence follows directly from (10.32). The rest conclusions follows from the following
implications:

(FK) + (ABB) + (TJ) ⇒ (S+) ((10.33))

(S+) ⇔ (S) ((7.1))

(S+) ⇔ (S∗+) (Proposition7.4(ii))

(TJ) ⇔ (TJ∗) (Proposition7.4(iii))

(VD) ⇒ (VD∗) (Proposition6.4(i))

(VD∗) + (S∗+) + (TJ∗) ⇒ (TP∗) (Lemma9.3)

(TP∗) ⇒ (TP) (Lemma9.7).

�

The next theorem contains a number of equivalent conditions for (TPq) + (C) that constitute a substantial
part of the proof of the main Theorem2.15below.

Theorem 10.8.Let (E,F ) be a regular Dirichlet form in L2 without killing part.

(i) For q ∈ (1,∞], under conditions(VD) and(DUE), we have

(TPq) + (C)⇔ (S) + (TJq)⇒ (Gcap) + (TJq)⇒ (ABB) + (TJq) (10.34)

and
(VD) + (FK) + (ABB) + (TJq)⇒ (S). (10.35)

(ii) For q ∈ [2,∞], under condition(VD), we have

(TPq) + (C)⇔ (DUE) + (S) + (TJq)

⇒ (DUE) + (Gcap) + (TJq)

⇒ (DUE) + (ABB) + (TJq)
(10.36)

and
(VD) + (FK) + (ABB) + (TJq)⇒ (S) + (DUE). (10.37)

(iii) For q ∈ (1,∞], under conditions(VD), (RVD) and(DUE), we have

(TPq) + (C)⇔ (S) + (TJq)⇔ (Gcap) + (TJq)⇔ (ABB) + (TJq). (10.38)

(iv) For q ∈ [2,∞], under conditions(VD) and(RVD), we have

(TPq) + (C)⇔ (DUE) + (S) + (TJq)⇔ (DUE) + (Gcap) + (TJq) (10.39)

⇔ (FK) + (Gcap) + (TJq)⇔ (FK) + (ABB) + (TJq) (10.40)

Proof. (i). In the proof we use (S+) instead of (S) as these two conditions are equivalent by (7.1). The
implication

(TPq) + (C)⇐ (S+) + (TJq)

in (10.34) follows from the following sequence of implications:

(VD) + (DUE) ⇒ (DUE∗) (Proposition7.4(i))

(VD) + (TJq) ⇒ (TJ∗q) (Proposition7.4(iii))
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(VD) + (TJ∗q) ⇒ (TJ∗) ((7.10))

(S+) ⇒ (S∗+) (Proposition7.4(ii))

(S∗+) + (TJ∗) ⇒ Inequality (8.15) (Proposition8.7)

Inequality (8.15) + (S∗+) ⇒ Inequality (8.17) (Lemma8.8)

Inequality (8.17) + (TJ∗) ⇒ Inequality (8.19) (Lemma8.9)

(VD) ⇒ (VD∗) (Proposition6.4)

(VD∗) + (DUE∗) + (S∗+) + (TJ∗) ⇒ upper estimate of truncated heat kernelqt(x, y) (Lemma8.12)

(VD∗) + (DUE∗) + (S∗+) + (TJ∗q) ⇒ (TP∗q) for 1 < q ≤ ∞ (Lemmas9.4and9.6)

(VD) + (TP∗q) ⇒ (TPq) for 1 ≤ q ≤ ∞ (Lemma9.7)

(S∗+) ⇒ (S∗) ⇒ (C) ([20, Lemma 4.6, p. 3327]).

The implication

(TPq) + (C)⇒ (S+) + (TJq)

in (10.34) is proved as follows:

(VD) + (TPq) + (C) ⇒ (S+) (Lemma10.3(iii))

(VD) + (TPq) ⇒ (TJq) (Lemma10.3(ii)) .

The rest implications in (10.34) follow directly from (10.33) and the following implication:

(VD) + (TJq) ⇒ (TJ) ((7.3))

(Gcap) + (TJ) ⇒ (ABB) ([24, Lemma 6.2]).

The implication (10.35) follows from the following implications.

(VD) + (TJq) ⇒ (TJ) ((7.3))

(VD) + (FK) + (ABB) + (TJ) ⇒ (S+) ((10.33)).

(ii). The formula (10.36) follows from (10.34) and the following implication:

(VD) + (TPq) ⇒ (DUE) (Lemma10.3(i)).

The implication (10.37) follows from (10.35) and the following implications:

(VD) + (FK) + (ABB) + (TJ) ⇒ (Gcap) ((10.33))

(VD) + (FK) + (Gcap) + (TJq) ⇒ (DUE) (Proposition2.8).

(iii). The formula (10.38) follows from (10.34), (10.35) and the following implication:

(VD) + (RVD) + (DUE) ⇒ (FK) (Proposition10.9).

(iv). The formula (10.39) follows from (10.36), (10.37) and the following implications:

(VD) + (RVD) + (DUE) ⇒ (FK) (Proposition10.9)

(VD) + (FK) + (Gcap) + (TJ) ⇒ (S+) ((7.2))

(VD) + (FK) + (Gcap) + (TJq) ⇒ (DUE). (Proposition2.8)

�

We now prove the main Theorem2.15.

Proof of Theorem2.15. The statement of this theorem is contained in the equivalences (10.39), (10.40) and
the implication

(TPq) ⇒ (UEq). (Lemma9.8)

�
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In the rest of this section, we are to prove Theorem3.4, which states the result on heat kernel estimates
when condition (V) is satisfied. Before that we need to introduce the condition (Nash) and to prove some
lemmas. Note that if (V) is satisfied, then both (VD) and (RVD) are satisfied withα = α′. Recall that
R= diamM is the diameter ofM.

Definition 10.9 (Nash inequality). We say that condition (Nash) holds if there exist two numbersC, ν > 0
such that, for anyu ∈ F ∩ L1(M),

‖u‖2(1+ν)
2 ≤ C

(
E(u,u) + R

−β
‖u‖22

)
‖u‖2ν1 . (10.41)

If necessary, we label condition (Nash) by (Nashν) to emphasize the role of the exponentν.

Lemma 10.10.For anyν > 0,

(FK′ν)⇔ (Nashν).

Proof. For the implication ”⇒”, we use the approach of [26, Lemma 5.4]. Fix a quasi-continuous function
u ∈ F ∩ L1(M). Without loss of generality, we can assume thatu ≥ 0 sinceE(|u|, |u|) ≤ E(u,u). If ‖u‖1 = 0
then there is nothing to prove. Hence, we assume that‖u‖1 > 0. For anys> 0, set

Es := {x ∈ M : u(x) > s},

and note that

μ(Es) ≤
1
s

∫

Es

udμ ≤
‖u‖1

s
.

Fix ε > 0 and choose an open setUs be an open set such thatEs ⊂ Us and μ(Us \ Es) < ε. Since
(u − s)+(x) = 0 for all x ∈ Ec

s andEs ⊂ Us, we have (u − s)+ ∈ F (Us). Then, by the Markov property of
(E,F ) and (2.12), we have for anys> 0,

E(u,u) ≥ E((u− s)+, (u− s)+) ≥ λ1(Us)
∫

Us

(u− s)2
+dμ.

Sinceu ≥ 0, we have
∫

Us

(u− s)2
+dμ =

∫

M
(u− s)2

+dμ ≥
∫

M
(u2 − 2su)dμ = ‖u‖22 − 2s‖u‖1.

On the other hand, since

μ(Us) ≤ μ(Es) + ε ≤
‖u‖1

s
+ ε,

we have by (FK′ν) that

λ1(Us) ≥ cμ(Us)
−ν − R

−β
≥ c

(
‖u‖1

s
+ ε

)−ν
− R

−β
.

Combining the above inequalities and lettingε→ 0, we obtain, for anys> 0,

E(u,u) ≥

(

c

(
‖u‖1

s

)−ν
− R

−β
)

(‖u‖22 − 2s).

Choosings=
‖u‖22
4‖u‖1

in the above inequality, we obtain (10.41).
Now let us prove the implication ”⇐”. Fix a non-empty open subsetU. Let u ∈ F (U) \ {0}. It follows

from (Nashν) and the inequality‖u‖1 ≤
√
μ(U)‖u‖2 that

‖u‖2(1+ν)
2 ≤ C

(
E(u,u) + R

−β
‖u‖22

) ( √
μ(U)‖u‖2

)2ν
,

that is

‖u‖22 ≤ C
(
E(u,u) + R

−β
‖u‖22

)
μ(U)ν,

which together with (2.12) yields (FK′ν). �
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Note that under (3.1) and (3.2), the inequality (2.21) in condition (DUE) becomes

pt(x, x) ≤ Ct−α/β, (10.42)

for all t < R
β
, x ∈ M.

Lemma 10.11.We have
(FK′β/α)⇔ (Nashβ/α)⇔ (DUE).

Proof. By Lemma10.10, it suffices to prove the second equivalence. Let us first prove the implication
(Nashβ/α)⇒ (DUE).

Recall that by [10, Theorem 2.1], (Nashβ/α) is equivalent to theultracontractivityof the heat semigroup
{Pt}t≥0, that is, to

‖Pt f ‖∞ ≤ CeR
−β

tt−α/β‖ f ‖1, t > 0, f ∈ L1(M). (10.43)

On the other hand, by Theorem11.8(for p = 1,S = {M} andφ(M, t) = CeR
−β

tt−α/β) in Appendix, the heat
semigroup is ultracontractive if and only if there exists a regular nestE-nest{Fk} such that, for anyt > 0
andx ∈ M, pt(x, ∙) ∈ C({Fk}) and

pt(x, y) ≤ CeR
−β

tt−α/β, t > 0, x, y ∈ M. (10.44)

Clearly, (10.44) implies (10.42) and, hence, (DUE).
Let us prove the converse implication (DUE) ⇒ (Nashβ/α). By (10.42) and the semigroup property, we

have, for anyt < R
β

andx, y ∈ M,

pt(x, y) =
∫

M
pt/2(x, z)pt/2(z, y)dμ(z) ≤ ‖pt/2(x, ∙)‖2‖pt/2(∙, y)‖2

=
√

pt(x, x)pt(y, y) ≤ Ct−α/β.

If R= ∞ then we have (10.44) and, hence, (10.43) and (Nashβ/α). Let R< ∞. Then we only need to verify

(10.44) for t ≥ R
β
. Using the above inequality fort = t0 := 1

2(R)β, we obtain

pt(x, y) =
∫

M
pt−t0(x, z)pt0(z, y)dμ(z) ≤ Ct−α/β0

∫

M
pt−t0(x, z)dμ(z)

≤ Ct−α/β0 ≤ C′e
t

2t0 t−α/β = C′eR
−β

tt−α/β.

�

Now we are to prove Theorem3.4. Note that under (3.1) and (3.2), conditions (S∗+), (S∗), (TJ∗), (TP∗) are
the same to (S+), (S), (TJ), (TP) respectively.

Proof of Theorem3.4. (i). We first prove the equivalences in (3.5). The first equivalence in (3.5) follows
from (10.32) in Lemma10.6.

The implication
(FK′β/α) + (Gcap) + (TJ)⇒ (TP) + (DUE) + (C)

is proved as follows:

(FK′β/α) ⇒ (DUE) (Lemma10.11)

(FK′β/α) + (Gcap) + (TJ) ⇒ (S+) ⇒ (S) (Remark3.3and (7.2))

(S+) + (TJ) ⇒ (TP) (Lemma9.3)

(S) ⇒ (C) ([20, Lemma 4.6, p. 3327])

The implication
(TP) + (DUE) + (C)⇒ (FK′β/α) + (Gcap) + (TJ)

is proved as follows:

(DUE) ⇒ (FK′β/α) (Lemma10.11)

(TP) + (C) ⇒ (S+) (Lemma10.3(iii))
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(S+) ⇒ (S) ⇒ (Gcap) ((7.2))

(TP) ⇒ (TJ) (Lemma10.2).

For the last equivalence in (3.5), it suffices to prove that

(TP) + (DUE)⇒ (TP1) + (UE1).

Indeed, under condition (DUE), the heat kernel exists, and then it is trivial that (TP) = (TP1). It remains to
prove that

(TP) + (DUE)⇒ (UE1).

The argument here is similar to the proof of [9, Lemma 12.6]. Indeed, fixx, y ∈ M with x , y andt < R
β
.

Let
R := d(x, y).

Note that the inequality (2.21) in condition (DUE) implies (10.44) (see the proof of Lemma10.11). By
semigroup property and (TP) + (DUE), we have

pt(x, y) =
∫

M
pt/2(x, z)pt/2(z, y)dμ(z)

≤

(∫

B(x,R)c
+

∫

B(y,R)c

)

pt/2(x, z)pt/2(z, y)dμ(z)

≤ Ct−α/β
∫

B(x,R)c
pt/2(x, z)dμ(z) + Ct−α/β

∫

B(y,R)c
pt/2(z, y)dμ(z) (by (10.44))

= Ct−α/βPt/21B(x,R)c(x) + Ct−α/βPt/21B(y,R)c(y)

≤ Ct−α/β
(
1∧

t

Rβ

)
(by (TP)),

which yields (UE1) (see also Remark2.14).

(ii). The first equivalence in (3.6) follows from the first equivalence in (3.5) and the implication (TJq)⇒
(TJ) (by (7.3)). For the rest equivalence, the implication

(FK′β/α) + (Gcap) + (TJq)⇒ (TPq) + (DUE) + (C)

follows from the following implications:

(FK′β/α) ⇒ (DUE) (Lemma10.11)

(TJq) ⇒ (TJ) ((7.3))

(FK′β/α) + (Gcap) + (TJ) ⇒ (S+) ⇒ (S) (Remark3.3and (7.2))

(DUE) + (S+) + (TJq) ⇒ (TPq) (Lemmas9.4and9.6)

(S) ⇒ (C) ([20, Lemma 4.6, p. 3327])

The implication
(TPq) + (DUE) + (C)⇒ (FK′β/α) + (Gcap) + (TJ)

follows from the following implications:

(DUE) ⇒ (FK′β/α) (Lemma10.11)

(TPq) + (C) ⇒ (S+) (Lemma10.3(iii))

(S+) ⇒ (S) ⇒ (Gcap) ((7.2))

(TPq) ⇒ (TJq) (Lemma10.3(ii)) .

For the last equivalence in (3.6), it suffices to prove that

(TPq) + (DUE)⇒ (UEq).

Similar to the above arguments, we fixx, y ∈ M with x , y andt < R
β
. Let

R := d(x, y) and q′ :=
q

q− 1
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Note that the inequality (2.21) in condition (DUE) implies (10.44) (see the proof of Lemma10.11). By
semigroup property and (TPq) + (DUE), we have

pt(x, y) =
∫

M
pt/2(x, z)pt/2(z, y)dμ(z)

≤

(∫

B(x,R)c
+

∫

B(y,R)c

)

pt/2(x, z)pt/2(z, y)dμ(z)

≤ ‖pt/2(x, ∙)‖Lq(B(x,R)c)‖pt/2(∙, y)‖Lq′ (B(x,R)c)

+ ‖pt/2(y, ∙)‖Lq(B(y,R)c)‖pt/2(x, ∙)‖Lq′ (B(y,R)c)

≤ C
(
t−α/(βq′) ∧

t

Rα/q′+β

) (
‖pt/2(∙, y)‖Lq′ (B(x,R)c) + ‖pt/2(x, ∙)‖Lq′ (B(y,R)c)

)

where we have used (TPq). Next, using

‖ f ‖q′ ≤ ‖ f ‖
1/q
∞ ‖ f ‖

1/q′

1

and that by (10.44) ‖pt/2(∙, y)‖∞ ≤ Ct−α/β and‖pt/2(∙, y)‖1 ≤ 1, we obtain

pt(x, y) ≤ C
(
t−α/(βq′) ∧

t

Rα/q′+β

)
t−α/(βq),

that is, (UEq) (see also Remark2.14). �

11. Appendix

In this appendix, we collect some facts that have been used in this paper.

11.1. Miscellaneous issues.

Proposition 11.1. Assume that condition(VD) holds and W satisfies (2.7). Then there exists a constant
C > 0 such that, for all t> 0 and all points x, y ∈ M with d(x, y) ≤W−1(x, t) ∨W−1(y, t),

C−1 ≤
W−1(x, t)
W−1(y, t)

≤ C, (11.1)

C−1 ≤
V(x,W−1(x, t))
V(y,W−1(y, t))

≤ C, (11.2)

Proof. Let t > 0. Assume that
d(x, y) ≤W−1(x, t) ∨W−1(y, t).

Without loss of generality, assume that
d(x, y) ≤W−1(x, t),

otherwise, both inequalities (11.1) and (11.2) are still true by exchanging the order ofx, y. Denote the
constants in (VD) and (2.7) by CV,CW respectively. Let us divided the proof into two cases.

Case1. W−1(x, t) ≥W−1(y, t). Sinced(x, y) ≤W−1(x, t), we have by the left inequality in (2.7)

C−1
W

(
W−1(x, t)
W−1(y, t)

)β1

≤
W(x,W−1(x, t))
W(y,W−1(y, t))

=
t
t
= 1,

thus showing that (11.1) holds forC := C1/β1
W .

Let us prove (11.2). Indeed, sinced(x, y) ≤W−1(x, t), we have by (VD) and (11.1),

V(x,W−1(x, t))
V(y,W−1(y, t))

≤ CV

(
W−1(x, t)
W−1(y, t)

)α
≤ CVCα/β1

W ,

thus showing the right inequality in (11.2). On the other hand, Sinced(x, y) ≤W−1(x, t), we see by (VD)

V(y,W−1(y, t))
V(x,W−1(x, t))

≤
V(y,W−1(x, t))
V(x,W−1(x, t))

≤ CV

(
W−1(x, t)
W−1(x, t)

)α
= CV,

thus showing the left inequality in (11.2).
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Case2. W−1(x, t) < W−1(y, t). Sinced(x, y) ≤ W−1(x, t) < W−1(y, t), we have by the left inequality in
(2.7) that

C−1
W

(
W−1(y, t)
W−1(x, t)

)β1

≤
W(y,W−1(y, t))
W(x,W−1(x, t))

=
t
t
= 1,

thus showing that (11.1) holds again forC := C1/β1
W .

Let us prove (11.2). Indeed, sinced(x, y) ≤W−1(x, t) < W−1(y, t), we have by (VD)

V(x,W−1(x, t))
V(y,W−1(y, t))

≤
V(x,W−1(y, t))
V(y,W−1(y, t))

≤ CV

(
W−1(y, t)
W−1(y, t)

)α
= CV,

thus showing the right inequality in (11.2). On the other hand, Sinced(x, y) ≤ W−1(x, t) < W−1(y, t), we
have by (VD) and (11.1),

V(y,W−1(y, t))
V(x,W−1(x, t))

≤ CV

(
W−1(y, t)
W−1(x, t)

)α
≤ CVCα/β1

W ,

thus showing the left inequality in (11.2). �

The following was proved in [36, Lemma 2.12].

Lemma 11.2. Let (E,F ) be a Dirichlet form in L2. If

fn
L2

→ f , sup
n
E( fn) < ∞,

then f ∈ F , and there exists a subsequence, still denoted by{ fn}, such that fn
E
⇀ f weakly, that is,

E( fn, ϕ)→ E( f , ϕ)

as n→ ∞ for any ϕ ∈ F . And there exists a subsequence{ fnk} such that its Cesaro mean1n
∑n

k=1 fnk

converges to f inE1-norm. Moreover, we have

E( f ) ≤ lim inf
n→∞

E( fn).

11.2. Comparison inequalities. Recall the notion of theρ-local Dirichlet form in Subsection5.
The following proposition is essentially the same as [27, Theorem 4.3, p. 2627]. Here we replace the

compactness ofUρ in [27, Theorem 4.3, p. 2627] by the assumption that cutoff(Uρ,M) , ∅.

Proposition 11.3. Assume that(E,F ) is someρ-local regular Dirichlet form forρ ≥ 0. Let U be an open
set such thatcutoff(Uρ,M) , ∅, and let u be subcaloric in(0,T0) × U where T0 ∈ (0,+∞]. Assume that
u(t, ∙) ∈ L∞(M) for each t∈ (0,T0), and

u+(t, ∙)
L2(U)
−→ 0 as t→ 0. (11.3)

Then for any compact subset K of U, any t∈ (0,T0), and for almost all x∈ Uρ,

u(t, x) ≤
(
1− PU

t 1U(x)
)

sup
0<s≤t
‖u+(s, ∙)‖L∞(Uρ\K),

provided thatsup0<s≤t ‖u+(s, ∙)‖L∞(Uρ\K) < ∞.

Proof. Note that the setUρ in [27, Theorem 4.3] is required to be precomact, while we only assume that
cutoff(Uρ,M) , ∅. However, the proof is this proposition is parallel to that in [27, Theorem 4.3].

Indeed, the compactness ofUρ is used in three places in the proof of [27, Theorem 4.3]. Firstly, the
compactness ofUρ implies that cutoff(Uρ,M) , ∅, which is our assumption. Secondly, it is used in [27,
Theorem 2.9] to make sure that the setK ∩ Ω is compact. However, this is true sinceK is compact in our
assumption. Thirdly, the compactness ofUρ implies thatμ(U) < ∞. To overcome this difficulty, we can
take a sequence of precompact open sets{Ui}i≥1 such thatUi ↑ U as i → ∞ andK ⊂ U1. Applying [27,
Theorem 4.3] for eachUi , we obtain forμ-a.ax ∈ (Ui)ρ,

u(t, x) ≤
(
1− PUi

t 1Ui (x)
)

sup
0<s≤t
‖u+(s, ∙)‖L∞((Ui )ρ\K)
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≤
(
1− PUi

t 1Ui (x)
)

sup
0<s≤t
‖u+(s, ∙)‖L∞(Uρ\K),

thus showing this proposition by passing to the limit asi → ∞. �

By using proposition11.3and repeating the arguments in [27, Corollary 4.8 and Remark 4.9], we have
the following result.

Corollary 11.4. Assume that(E,F ) is someρ-local regular Dirichlet form forρ ≥ 0. Let U,Ω be open sets
such that Uρ ⊂ Ω andcutoff(Uρ,Ω) , ∅. Then, for any0 ≤ f ∈ L∞(M), any t> 0 and forμ-a.a. x∈ Uρ,

PΩ
t f (x) − PU

t f (x) ≤
(
1− PU

t 1U(x)
)

sup
s∈(0,t]∩Q

‖PΩ
s f ‖L∞(Uρ\K), (11.4)

where K is a compact subset of U.

Using (11.4) and repeating the proof of [27, Theorem 5.1], we have the following.

Corollary 11.5. Assume that(E,F ) is someρ-local regular Dirichlet form forρ ≥ 0. Let U,V,Ω be three
open sets such that Uρ ∪ Vρ ⊂ Ω. Assume that the Dirichlet heat kernel pΩ

t exists and is locally bounded in
R+ × Ω × Ω. Then for any s, t > 0 andμ-a.a. x∈ U, y ∈ V,

pΩt+s(x, y) ≤
∫

M
pU

t (x, z)pV
s (z, y)dμ(z)

+
(
1− PU

t 1U(x)
)

sup
s<t′≤t+s

∥∥∥pΩt′ (∙, y)
∥∥∥

L∞(Uρ)
+

(
1− PV

t 1V(y)
)

sup
t<t′≤t+s

∥∥∥pΩt′ (∙, x)
∥∥∥

L∞(Vρ)
.

(11.5)

11.3. Maximum principle. The following is elliptic maximum principle.

Proposition 11.6([25, Proposition 4.6, p. 116]). Suppose that(E,F ) is a regular Dirichlet form. Letλ > 0
andΩ be a non-empty open subset of M. If u∈ F satisfies




E(u, φ) + λ(u, φ) ≤ 0, ∀ 0 ≤ φ ∈ F (Ω),

u+ ∈ F (Ω),

then u≤ 0 a.e. inΩ.

The following is parabolic maximum principle.

Proposition 11.7([25, Proposition 4.11, p. 117]). Suppose that(E,F ) is a regular Dirichlet form. Fix
T ∈ (0,+∞] and an open subsetΩ ⊂ M. If u : (0,T) 7→ F is a subcaloric function in(0,T]×Ω and satisfies





u+(t, ∙) ∈ F (Ω) for any t∈ (0,T)

u+(t, ∙)
L2(Ω)
−→ 0 as t→ 0,

then u≤ 0 a.e. on(0,T) × Ω.

11.4. The existence of heat kernel.The following result shows that the existence of heat kernels follows
from some generalized ultracontractivity of semigroups.

Theorem 11.8([22, Theorem 2.2]). Let (E,F ) be a regular Dirichlet form on L2(M, μ) for a metric measure
space(M,d, μ), and let{Pt}t>0 be the associated heat semigroup on L2. Fix T0 ∈ (0,∞] and 1 ≤ p ≤ 2.
Assume that there exist a countable familyS of open sets with M= ∪U∈SU and a functionϕ : S× (0,T0) 7→
R+ such that, for each t∈ (0,T0), U ∈ S and each f∈ Lp ∩ L2

‖Pt f ‖L∞(U) ≤ ϕ(U, t)‖ f ‖p.

Then{Pt}t>0 possesses a heat kernel pt(x, y) in (0,∞)×M ×M that satisfies Definition2.6for some regular
E-nest{Fn}∞n=1 of M, and

pt(x, y) = 0 for any t> 0

whenever one of points x, y lies outside∪∞n=1Fn. Moreover, for each t∈ (0,T0) and x∈ U

‖pt(x, ∙)‖p′ ≤ ϕ(U, t),

where p′ = p
p−1 is the Hölder conjugate of p, and for any1 ≤ q ≤ p′.

‖pt(x, ∙)‖q ≤ (ϕ(U, t))(q−1)(p−1) .
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11.5. Essential supremum.The notion of theμ-regularE-nest{Fk} is given in Section2.

Proposition 11.9. Let B2 ⊂ B1 be two metric balls such that B1 \ B2 , ∅. Then for any quasi-continuous
v ∈ F , ∫

B1\B2

v(y)J(x,dy) ≤
(
esup

B1

v
) ∫

Bc
2

J(x,dy) for q.e. x∈ B2.

Proof. By [19, Lemma 4.5.4(i), p. 184], the measurej charges no part ofM × M\diag whose projection on
the factorM is exceptional. Furthermore, by [19, Theorem 4.2.1(ii), p. 161], a setN ⊂ M is exceptional
if and only if Cap1(N) = 0. By [19, Theorem 2.1.2(i), p. 69], there is aμ-regularE-nest{Fk} such that
v ∈ C{Fk}. SetF :=

⋃

k≥1
Fk, whose complement is exceptional.

Hence, it follows that
∫

B1\B2

v(y)J(x,dy) =
∫

(B1\B2)∩F
v(y)J(x,dy) for q.e.x ∈ B2.

Moreover, by [24, Proposition 15.3 in Appendix], we have that for anyx,
∫

(B1\B2)∩F
v(y)J(x,dy) ≤

(
sup

(B1\B2)∩F
v
) ∫

(B1\B2)∩F
J(x,dy) ≤

(
sup
B1∩F

v
) ∫

Bc
2

J(x,dy) =
(
esup

B1

v
) ∫

Bc
2

J(x,dy).

�
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