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Abstract. We describe the Lp-parabolicity of a Riemannian manifold in terms of a
unified theory of nonlinear Lp-capacities, for the whole range 1 ≤ p ≤ ∞. For exam-
ple, the L1-parabolicity is equivalent to the usual notion of parabolicity/recurrence,
while L2-parabolicity is equivalent to biparabolicity. For any 1 ≤ p ≤ ∞, the Lp-
parabolicity turns out to be equivalent to the Lq-Liouville property for positive super-
harmonic functions, where p and q are Hölder conjugate exponents. We also provide
a new capacitary characterization of the L1-Liouville property. Finally we obtain an
almost optimal volume growth conditions for Lp-parabolicity for 1 < p ≤ 2 as well
as a sharp volume condition for all 1 < p < ∞ for manifolds of non-negative Ricci
curvature and for model manifolds.
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1. Introduction

The properties of diffusion processes on Riemannian manifolds have been extensively
investigated and have proven to be useful in the study of the geometric structure of
the manifolds and the analytic properties of differential operators such as the Laplace-
Beltrami operator (see, e.g., [3, 12, 17, 21, 25] and references therein).

One of such properties is recurrence: Brownian motion Xt on a manifold M is called
recurrent, and the manifold M is called parabolic, if the process Xt starting at any
point x ∈ M visits infinitely often every neighborhood of x almost surely. The notion
of parabolicity plays a crucial role in the classification of Riemann surfaces (cf. [2]),
and it reveals deep connections between Stochastic Analysis, Potential Theory, Analysis
and Geometry.

Parabolicity admits several equivalent characterizations, such as the non-existence of
a positive Green function of the Laplace-Beltrami operator, the validity of the Liouville
property for positive superharmonic functions, and also the vanishing of the harmonic
capacity of some/every pre-compact set, to quote a few (see, e.g., [12]), which makes this
notion an indispensable tool in Potential Theory and PDEs on Riemannian manifolds.

We say that a manifold M admits Lq-Liouville property for superharmonic functions
if any positive superharmonic function from Lq(M) is constant. For example, the
L∞-Liouville property is equivalent to the parabolicity of M (since the minimum of a
superharmonic function with a constant is again superharmonic).

Key words and phrases. Lp-Parabolicity, Lq-Liouville property, Nonlinear Lp-capacity, Volume
growth conditions.
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At the other end of the scale, the L1-Liouville property for superharmonic functions
is equivalent to the fact that the expected lifetime of Brownian motion on M is infinite.
This is closely related (although not equivalent) to the stochastic completeness of the
manifold, which means that the lifetime of Brownian motion is infinite with probability
one (cf. [12] and [5, 11, 20]).

It is natural to extend the investigation of the Lq-Liouville property for positive
superharmonic functions to the entire scale of exponents 1 ≤ q ≤ ∞, which is the main
subject of this paper. In fact, the main purpose of this paper is to introduce a unified
theory of nonlinear capacities in the setting of Riemannian manifolds and to describe
the Lq-Liouville property in terms of Lp-capacities, where p and q are Hölder conjugate
exponents.

In [1] D.R. Adams and L.I. Hedberg gave a systematic treatment of a general theory
of Lp-capacities on the Euclidean space as a generalization of the so called (α, p)-
capacities related to nonlinear potentials developed in [10, 14, 15, 19, 22]. For the
problems we want to deal with we will restrict our attention to Lp-capacities defined in
terms of the positive Green kernel of the manifold or of open subsets thereof, typically
with Dirichlet boundary conditions.

Since on parabolic manifolds Lq-Liouville theorem holds for all q ∈ [1,∞], we assume
in what follows that M is non-parabolic, in particular, M possesses a positive Green
function of the Laplace-Beltrami operator. Let 1 ≤ p < ∞. Denote by g(x, y) the
minimal positive Green function on M and define the Lp-capacity of a compact subset
K ⊂ M by

(1.1) Cp(K)
1
p = sup

{
ν(K) : ν ∈ M+(K), ||Gν||Lq(M) ≤ 1

}
,

where p−1 + q−1 = 1 and the potential Gν is given by

Gν(x) =
∫

K
g(x, y)dν(y).

In the limiting case p = 1, the L1-capacity coincides with the usual harmonic capacity
Cap(K). The equivalence of these two notions of capacity is valid also in the case when
M is parabolic as in this case g ≡ ∞ and, hence, the capacity of any compact set is
zero.

We say that a manifold M is Lp-parabolic if the Lp-capacity of every compact subset
of M has zero Cp-capacity. One of the main results of this paper, Theorem 3.11, says
that, for any 1 ≤ p < ∞, the Lp-parabolicity is equivalent to the Lq-Liouville property.
This result extends the aforementioned equivalence between the parabolicity and the
L∞-Liouville property.

Although the other limiting case, namely p = ∞, is not covered by the definition
given in (1.1), we obtain a characterization of the L1-Liouville property in terms of a
suitable L∞-capacity (see Theorem 4.2). This in turn allows us to define a notion of
L∞-parabolicity equivalent to the L1-Liouville property.

An important tool in establishing these equivalences, which is useful in its own right,
is the characterization of the Lq-Liouville property, 1 ≤ q < ∞, by means of the non-
integrability of g(x, ∙)q outside a pre-compact open set containing x, for some/every
x ∈ M (see Theorem 3.6). As a consequence of this characterization we prove that
the L2-parabolicity coincides with the biparabolicity of M , where the latter notion was
introduced in [9] (see Subsection 3). Besides, this allows us to show that Lp-parabolicity
implies Ls-parabolicity for every 1 ≤ p ≤ s < ∞ (cf. Corollary 3.14).

As a further application of our results we also show that, on a complete Riemannian
manifold M , if, for some o ∈ M and sufficiently large r > 1, the volume V (r) of the
ball Br(o) centered at o of radius r satisfies
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(1.2) V (r) ≤ C
r2p

log r
,

for some constant C > 0, then M is Lp-parabolic provided 1 < p ≤ 2 (cf. Theorem
5.1).

This extends the nearly optimal sufficient volume condition established in [9] for
biparabolicity (p = 2), and is compatible with the known volume conditions for the
usual parabolicity in the limiting case p = 1. For manifolds with non-negative Ricci
curvature we obtain a sufficient integral condition (5.6) in the entire range 1 < p < ∞
that implies the sharp volume condition

V (r) ≤ Cr2p(log r)p−1.

Moreover, the integral condition (5.6) turns out to be always valid for general model
manifolds (see Section 5).

The paper is organized as follows. In Section 2 we describe the general theory
of Lp-capacities on domains of a Riemannian manifold. In particular we show that
they satisfy natural monotonicity and limit properties with respect to exhaustions (cf.
Proposition 2.5), and we establish some useful results valid in this setting, for instance,
Remark 2.9 dealing with the case p = 1, and Theorem 2.15, where we establish the
equivalence between the Cp-capacity and a suitable Laplacian capacity.

Our main results are stated in Section 3. We establish there the connection between
the Lp-parabolicity and the non-integrability of g(x, ∙)q, which yields the equivalence
between the Lp-parabolicity and the Lq-Liouville property. Besides, it also shows that a
pre-compact open set has zero Cp-capacity if and only if this holds for every such set (cf.
Corollary 3.13). We end this section showing the equivalence between biparabolicity
and L2-parabolicity.

Section 4 is devoted to the limiting case q = 1. There, we introduce a C∞-capacity
and, by describing the extremal capacitary measure of compact sets in terms of the mean
exit time of the manifold, we obtain a capacitary characterization of the L1-Liouville
property (see Theorem 4.2). We end the section collecting several properties of the
C∞-capacity which in particular imply that it is a Choquet capacity (cf. Proposition
4.3). The volume growth conditions for Lp-parabolicity are discussed in Section 5.

2. Lp-capacity

Let (M,μ) be a Riemannian manifold without boundary endowed with the usual
Riemannian measure μ and, for 1 < p < ∞, denote by Lp

+(M) the set of non-negative
functions in Lp(M). The general theory of nonlinear capacities presented in [1, Sect.2.3]
is based on considering generic kernels, that is, non-negative functions g : M ×M → R,
such that g(x, ∙) is lower semicontinuous on M and g(∙, y) is measurable on M .

In what follows we will restrict our attention to subsets U ⊂ M that admit a finite
positive Dirichlet Green kernel gU (x, y) with zero boundary data, which is obtained by
the usual exhaustion procedure (see e.g. [8, 20]), and satisfies gU (x, y) ≤ gV (x, y) for
every x, y ∈ U ⊂ V . In particular, when U = M , we denote by g(x, y) the positive
minimal Green kernel of M .

Let M+(U) be the set of non-negative Radon measure supported in U . For ν ∈
M+(U) define the potential GUν by

GUν(y) =
∫

U
gU (x, y)dν(x), y ∈ U.

If ν = fμ for some measurable non-negative function f , we will write GUf = GU (fμ).
The potential GUν is well defined provided we allow it to take the value ∞.
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As in [1, Sect.2.3], we define the relative variational Cp-capacity of the capacitor
(E,U) as follows.

Definition 2.1. For every 1 < p < ∞ and E ⊂ U , let

ΩU
E = {f ∈ Lp

+(U) : GUf(x) ≥ 1 for all x ∈ E},

and define

(2.1) Cp(E,U) = inf
ΩU

E

∫

U
fpdμ.

We set Cp(E,U) = ∞ whenever ΩU
E = ∅, and write Cp(E) instead of Cp(E,M) if

U = M .

Remark 2.2. As we will see in Theorem 2.8 below, the quantity defined in (1.1) agrees
with that defined in (2.1) for all Borel subsets.

This set function is countably subadditive (see [1, Sec.2.3]), and it is easily seen to
be monotone in E, that is, if E1 ⊂ E2 ⊂ U then

Cp(E1, U) ≤ Cp(E2, U).

Furthermore, Cp(E,U) is a Choquet capacity for every 1 < p < ∞ (cf. [1, Prop.2.3.12]).
The usual monotonicity property with respect to U follows from the fact that if f ∈
Lp

+(U1) is such that GU1f ≥ 1 on E, extending f by zero on U2\U1, by monotonicity,
GU2f ≥ 1 and therefore ΩU1

E ⊆ ΩU2
E .

We recall the following characterization of subsets with null capacity.

Proposition 2.3 (Prop. 2.3.7 in [1]). Let E ⊂ U and 1 < p < ∞. Then Cp(E,U) = 0
if and only if there is f ∈ Lp

+(U) such that

E ⊂ {x ∈ U : GUf(x) ≡ ∞}.

We shall say that a property holds Cp-quasieverywhere, Cp-q.e. for short, if it holds
except on a subset E with Cp(E,U) = 0.

Remark 2.4. One can extend the definition of GUf to arbitrary measurable functions
f by setting

GUf(x) = GUf+(x) − GUf−(x),

whenever at least one of the summands on the right hand side is finite. Then, GUf(x)
is well defined and finite Cp-q.e. by Proposition 2.3. It is easy to see that the restriction
on the sign of the test functions in ΩU

E can be dropped, that is

Cp(E,U) = inf
{
||f ||pLp(U) : f ∈ Lp(U), GUf ≥ 1 Cp-q.e on E

}
.

The main advantage in using Lp spaces, for 1 < p < ∞, is to have the existence
of a capacitary function. Indeed, since ΩU

E is a convex subset of the uniformly convex
Banach space Lp(M), by standard Functional Analysis results there exists an extremal
function fE belonging to the closure of ΩU

E in Lp(M) that minimizes the above capacity,
i.e.,

Cp(E,U) =
∫

U
(fE)pdμ.

The function fE is called the capacitary function of E, and GUfE is called the capaci-
tary potential of E. Furthermore, ΩU

E can be explicitly described as (cf. [1, Prop.2.3.9])

ΩU
E = {f ∈ Lp

+(U) : GUf(x) ≥ 1 Cp-q.e. on E}.

In the setting of Riemannian manifolds we have the following density result which
will be instrumental in establishing connections between different nonlinear capacities.
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Proposition 2.5. Let U ⊂ M be an open set and let E ⊂ U be a compact subset.
Then, for every 1 < p < ∞, it holds

(2.2) Cp(E,U) = inf

{∫

U
φp dμ : 0 ≤ φ ∈ C∞

c (U), GUφ ≥ 1 on E

}

.

Proof. By definition, for every ε > 0, there exists f ∈ Lp
+(U) such that

GUf(x) ≥ 1 on E and
∫

U
fpdμ < Cp(E,U) + ε/2.

Since ∫

U
fpdμ = inf

c>1

∫

U
(cf)pdμ

and, by homogeneity, GU (cf)(x) = cGUf(x), choosing c > 1 close enough to 1 and
replacing f with cf show that for every ε > 0 there exists f ∈ Lp

+(U) such that

(2.3)
∫

U
fpdμ < Cp(E,U) + ε and GUf(x) ≥ c > 1 on E.

Finally, let Un be an exhaustion of U by an increasing sequence of pre-compact open
sets and set

fn = min{n, f}1Un ,

where f is a function as in (2.3). Then for every n, fn ∈ Lp
+(U)∩L∞(U) with compact

support in U . Since fn ↗ f , by monotone convergence,
∫

U
fp

ndμ ↗
∫

U
fpdμ

and
GUfn(x) ↗ GUf(x) pointwise on U.

We claim there exists no such that GUfn(x) > (1 + c)/2 for every x ∈ E and n ≥ no.
Indeed, for every n let

Vn = {x ∈ U : GUfn(x) > (1 + c)/2}.

Then, Vn is open, since GUfn is lower semi-continuous, Vn ⊆ Vn+1 and E ⊂ ∪nVn, since
GUfn(x) → GUf(x) ≥ c > (1 + c)/2 for every x ∈ E. By compactness there exists n0

such that E ⊂ Vn for every n ≥ n0.
By taking n large enough, and replacing f with fn we conclude that for every ε > 0

there exists f ∈ Lp
+(U) ∩ L∞

c (U) satisfying

(2.4)
∫

U
fpdμ < Cp(E,U) + ε and GUf ≥ 1 + δ > 1 on E,

for some δ > 0.
Suppose now that U is bounded with smooth boundary. Fix 1 < q < m/(m − 2)

and let m/2 < q′ < ∞ be its conjugate exponent. Let f be as in (2.4) and let
0 ≤ ϕk ∈ C∞

c (U) be such that

ϕk → f in Lq′(U),

and therefore in every Ls(U) with s ≤ q′. Thus
∫

U
ϕp

kdμ →
∫

U
fpdμ < Cp(E,U) + ε.

On the other hand, we claim that h → GUh defines a bounded operator from Lq′(U)
into L∞(E). Assuming the claim, we conclude that

||GUf − GUϕk||L∞(E) ≤ C||f − ϕk||Lq′ → 0, as k → ∞,
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so that, for k sufficiently large

GUϕk(x) > (1 + c)/2 > 1 ∀x ∈ E,

and (2.2) holds for U bounded with smooth boundary.
It remains to prove the claim. Indeed, according to [4, Thm. 4.17], there exists a

constant C which depends only on the distance of x from ∂U such that

gU (x, y) ≤ Cd(x, y)2−m ∀y ∈ U,

and it follows that for every x ∈ E and fixed 1 < s < m/(m − 2)
∫

U
gU (x, y)sdμ(y) ≤ Cs

∫

B(x,R)
d(x, y)s(2−m)dμ(y)

≤ Cs

∫ R

0
rs(2−m)

(
B−1 sinh(Br)

)m−1
dr = C1(s)

s,

where R = diam U and B > 0 is such that

RicM ≥ −(m − 1)B2 on {x : d(x, U) < R + 1}.

Thus, if s′ is the exponent conjugate to s and h ∈ Ls′ , for every x ∈ E,

|GUh(x)| = |
∫

U
gU (x, y)h(y)dμ(y)|

≤

(∫

U
gU (x, y)sdμ(y)

)1/s

||h||Ls′ (U) = C1(s)||h||Ls′ (U),

and the claim follows.
To conclude, let U be a general open set which admits a positive Dirichlet Green

kernel gU = g, and let Un be an increasing exhaustion of U by pre-compact open sets
with smooth boundary with U1 ⊃ E. Recall that, denoting by gn the Dirichlet Green
kernel of Un, we have (essentially by definition)

g(x, y) = lim
n

gn(x, y).

Let f be a function as in (2.4) and let n1 be such that supp f ⊂ Un1 . Since gn(x, y) ↗
g(x, y) in Un1 , for every n ≥ n1 and x ∈ E,

GUnf(x) =
∫

Un1

gn(x, y)f(y)dμ ↗
∫

Un1

g(x, y)f(y)dμ = GUf(x),

and arguing as above we deduce that for sufficiently large n, GUnf(x) > 1 + δ/2 > 1
on E and therefore

Cp(E,U) ≤ Cp(E,Un) ≤
∫

Un1

fpdμ ≤ Cp(E,U) + ε.

Since we have proved that

Cp(E,Un) = inf

{∫

Un

ϕpdμ : 0 ≤ ϕ ∈ C∞
c (Un) and GUnf(x) ≥ 1

}

the required conclusion follows. �

We note that in the last part of the above proof we have also shown the following.

Proposition 2.6. Let U be an open set of M and let K ⊂ U be a compact set. Let also
Un be an increasing exhaustion of U by open sets with K ⊂ U1 and denote by g(x, y),
gn(x, y) the Dirichlet Green kernels of U , Un, respectively. Then

Cp(K,U) = lim
n→∞

Cp(K,Un).
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Remark 2.7. For 1 < p < ∞, Cp(∙, U) is a Choquet capacity, thus Borel subsets are
capacitable, and the conclusions of Propositions 2.5 and 2.6 hold for every Borel subset
E ⊂ U .

The capacity we have introduced admits a dual representation by means of non-
negative Radon measures. This duality is possible due to a general version of the von
Neumann minimax theorem (cf. [1, Thm.2.4.1]). For any 1 < p < ∞, let 1 < q < ∞
be its Hölder conjugate exponent, that is, pq = p + q.

Theorem 2.8 (Thm.2.5.1 in [1]). Let K ⊂ M be a compact subset, and let 1 < p < ∞.
Then

(2.5) Cp(K,U)
1
p = sup{ν(K) : ν ∈ M+(K), ||GUν||Lq(U) ≤ 1}.

Remark 2.9. The limit case p = 1 corresponds to the standard capacity Cap(K,U)
since

Cap(K,U) = sup{ν(K) : ν ∈ M+(K), ||GUν||L∞(U) ≤ 1}.

Indeed, Cap(K,U) is minimized by a function w ∈ W 1,2
0 (U) that satisfies

{
4w = 0 in U\K,
w = 0 on ∂U,w = 1 on ∂K.

Moreover, w can be extended on K such that 4w ≤ 0 weakly in U , and w = 1 in K.
Now, let h = GUν be the potential of a measure ν ∈ M+(K) such that ||GUν||L∞(U) ≤
1. Since 4h = −ν weakly, we have that

ν(K) = −
∫

∂K
∂ηh dμ′,

where μ′ denotes the induced measure on ∂K, and η is the outward unit normal. Thus

(2.6) ν(K)2 =

(

−
∫

∂K
∂ηh dμ′

)2

=

(

−
∫

∂(U\K)
w∂ηh dμ′

)2

=

(∫

U\K
〈∇w,∇h〉dμ

)2

≤

(∫

U\K
|∇w|2dμ

)(∫

U\K
|∇h|2dμ

)

.

On the other hand,
∫

U\K
|∇h|2dμ = −

∫

U\K
h4hdμ +

∫

∂(U\K)
h∂ηh dμ′(2.7)

≤ ||h||L∞(K)

∫

∂K
−∂ηh dμ′ ≤ ν(K),

and, inserting into (2.6), we obtain

ν(K) ≤
∫

U\K
|∇w|2dμ = Cap(K,U).

By Riesz decomposition theorem [16, Thm.4.5.11] there is a unique measure νK ∈
M+(K) with w = GUνK . Choosing h = w, the inequalities in (2.6) and (2.7) become
equalities, and the conclusion follows.

The set function defined by the right hand side of (2.5), replacing compact subsets K
by arbitrary Borel subsets E, is easily seen to be monotone in E, and as a consequence
of Theorem 2.8 and Remark 2.9, it satisfies the conditions of the capacitability given in
[1, Prop.2.3.12]. It follows that the equality in (2.5) holds for every Borel subsets (see
also [1, Cor.2.5.2]).
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Definition 2.10. For a Borel subset E ⊂ U and p ∈ [1,∞) we define the Lp-capacity
of the capacitor (E,U) by

Cp(E,U) = sup{ν(E)p : ν ∈ M+(E), ||GUν||Lq(U) ≤ 1},

where q ∈ (1,∞] is the Hölder conjugate exponent of p.

As in the case p = 1, for 1 < p < ∞ there exists an extremal measure νK ∈ M+(K)
realizing the Cp-capacity of a compact set K ⊂ U , whose potential is the extremal
function fK ∈ Lp

+(U).

Corollary 2.11 (Thm.2.5.3 in [1]). Let K ⊂ U be a compact set, and 1 < p < ∞.
Then there is νK ∈ M+(K), called the capacitary measure of K, and a capacitary
function fK = (GUνK)q−1, such that GUfK(x) ≥ 1 Cp-q.e on K, and

νK(K) =
∫

U

(
GUνK

)q
dμ =

∫

U
GUfKdνK = Cp(K,U).

We end this section providing alternatives characterizations of the Lp-capacity. First
of all, guided by Corollary 2.11, the capacitary potential of a measure ν ∈ M+(U) is
defined by

V ν
p (x) = GU (GUν)q−1(x)(2.8)

=
∫

U
gU (x, y)

(∫

U
gU (z, y)dν(z)

)q−1

dμ(y).

By analogy with the classical potential theory, the quantity
∫

U
V ν

p dν =
∫

U
(GUν)qdμ

is called the generalized energy (see [1, Def.2.5.4]).

Proposition 2.12 (Thm.2.5.5 in [1]). Let K ⊂ U be a compact set of M , and 1 < p <
∞. Then

GUfK(x) = V νK

p ≤ 1 for all x ∈ supp νK ,

GUfK(x) = V νK

p ≥ 1 Cp-q.e on K.

Moreover,

Cp(K,U) = max{ν(K) : ν ∈ M+(K), V ν
p (x) ≤ 1 for all x ∈ supp ν}.

Inspired by the variational definition of capacity by means of the generalized energy
functional in the classical potential theory, we introduce the following set function which
will provide a first alternative definition of Cp.

Definition 2.13. Let K ⊂ M be a compact set, and 1 < p < ∞. We define

CapVp
(K,U) = inf

{∫

U
V ν

p dν : ν ∈ M+(K), V ν
p ≥ 1 Cp-q.e on K

}

,

where V ν
p is a capacitary potential for ν.

In the next result we are going to show the announced equivalence on compact sets.

Theorem 2.14. Let K ⊂ U be a compact subset of an open set U ⊂ M , and let
1 < p < ∞. Then

Cp(K,U) = CapVp
(K,U).
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Proof. By Corollary 2.11, there is νK ∈ M+(K) such that

Cp(K,U) =
∫

U

(
GUνK

)q
dμ =

∫

U
V νK

dν,

where V νK
is the capacitary potential for K. Hence, taking infimum in the right hand

side we obtain CapVp
(K,U) ≤ Cp(K,U). For the reverse inequality we may assume

CapVp
(K,U) < ∞, for otherwise there is nothing to prove. So, let ν ∈ M+(K) such

that V ν
p ∈ L1(U, dν) and V ν

p (x) ≥ 1 Cp-q.e on K. Define h(x) = (GUν)q−1(x). Since
pq − p = q, V ν

p = GU (GUν)q−1 and supp ν ⊂ K, we can conclude that h ∈ Lp
+(U).

Furthermore,

GUh(x) = GU (GUν)q−1(x) = V ν
p (x) ≥ 1, Cp-q.e on K.

Therefore,

Cp(K,U) ≤
∫

U
hpdμ =

∫

U

(
GUν

)q
dμ =

∫

U
V ν

p dν

and taking infimum we conclude the proof. �

The last result in this section establishes the equivalence between the Cp-capacity
and the (2, p)-capacity (Laplacian capacity) with 1 < p < ∞.

Let U ⊂ M be a bounded open subset. Recall that W 2,p
0 (U) is the closure of C∞

0 (U)
in the norm of W 2,p(M). For a compact subset K ⊂ U we define

Cap2,p(K,U) = inf

{∫

U
|Δu|pdμ : u ∈ W 2,p

0 (U), u ≥ 1 on K

}

= inf

{∫

U
|Δu|pdμ : u ∈ C∞

c (U), u ≥ 1 on K

}

.

The following result is a consequence of Proposition 2.5.

Theorem 2.15. Let K ⊂ U be a compact subset of an open set U ⊂ M . Then for
every 1 < p < ∞ we have

Cap2,p(K,U) = Cp(K,U).

Proof. Let us assume, without loss of generality, that Cp(K,U) < ∞. Due to Propo-
sition 2.5 we can pick 0 ≤ φ ∈ C∞

c (U) such that GUφ(x) ≥ 1 on K as a test function
for Cp(K,U). Setting u(x) = GUφ(x) ∈ C∞

c (U), and observing that u(x) ≥ 1 on K,
by definition we have

Cap2,p(K,U) ≤
∫

U
|Δu|pdμ =

∫

U
φpdμ.

Hence, taking infimum on φ we conclude that

Cap2,p(K,U) ≤ Cp(K,U).

For the reverse inequality, we take u ∈ C∞
c (U) such that u ≥ 1 on K. By Green

representation we have u = GU (−Δu). By Remark 2.4 the function −Δu ∈ Lp(U) is a
test for Cp(K,U), and thus

Cp(K,U) ≤
∫

U
|Δu|pdμ.

Again the result follows by taking infimum in the right hand side. �

Remark 2.16. It is worth to mention that in the limiting case p = 1 the C1-capacity
does not coincide with the Cap2,1-capacity. In fact, in [6, Thm.E.1] the authors proved
the equality C1(K) = 2Cap2,1(K) for every compact set K ⊂ Rn. It would be interesting
to establish this equality on a general manifold.
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3. Lp-parabolicity and the Lq-Liouville property

Let 1 ≤ q ≤ ∞. A manifold M satisfies the Lq-Liouville property, briefly M is
Lq-Liouville, if every superharmonic function u ∈ Lq

+(M) is constant. Since parabolic
manifolds are trivially Lq-Liouville, we will restrict ourselves to the non-parabolic case,
and let g(x, y) be the positive finite Green kernel of M . Our main purpose in this
section is to show that, for 1 < q < ∞, the Lq-Liouville property holds on M if and
only if Cp(E,M) = 0 for some/every pre-compact open set E ⊂ M , with pq = p + q.
The L1-Liouville property and its capacitary description will be the topic of Section 4.

Extending the usual definition of parabolicity we set the following

Definition 3.1. Let 1 ≤ p < ∞. A manifold M is said to be Lp-parabolic if Cp(E) = 0
for every pre-compact open set E ⊂ M .

With this definition we are going to prove that the Lq-Liouville property is equivalent
to the Lp-parabolicity. As a first step in this direction, generalizing the characterization
for the L1-Liouville property, we show that the Lq-Liouville property amounts to the
non-integrability of g(x, ∙)q in the complement of a compact neighborhood of x ∈ M .

Proposition 3.2. The Lq-Liouville property holds on M for 1 ≤ q < ∞ if and only if
g(x, ∙)q is non-integrable outside a ball Br(x) centered at x ∈ M with radius r > 0.

Proof. In one direction, if g(x, ∙)q is integrable on M\Br(x), then u(y) = min{g(x, y), 1}
is a superharmonic function in Lq

+(M) and M is not Lq-Liouville. Reciprocally, suppose
that f ∈ Lq

+(M) is a non-identically zero superharmonic function. By the minimum
principle, f is positive on M . Let E be a pre-compact open set and x0 ∈ M such that
Br(x0) ⊂ E. The usual exhaustion argument applied to the Green function centered
at x0 gives the existence of a constant C > 0 such that g(x0, y) ≤ Cf(y) for every
y /∈ Br(x0). Then,

∫

M\Br(x0)
g(x0, y)qdμ(y) ≤

∫

M\Br(x0)
f(y)qdμ(y) < ∞.

�

As a corollary of the above proposition we have the following hierarchy for the Lq-
Liouville property.

Corollary 3.3. If M is Lq-Liouville, then M is also Lr-Liouville for every 1 ≤ r ≤
q ≤ ∞.

Proof. Since the Green kernel g(x, ∙) is harmonic in M\{x}, and it is obtained as limit
of the Dirichlet Green kernel of an exhaustion, we have that

sup
M\Br(x)

g(x, ∙) ≤ sup
∂Br(x)

g(x, ∙),

for any Br(x) ⊂ M . The conclusion follows immediately from Proposition 3.2. �

Specializing (2.8) to measures with densities, we define the nonlinear Green operator
Gq acting on all non-negative measurable functions f by the formula

(3.1) Gqf(x) = G(Gf)q−1(x) =
∫

M
g(x, z)

(∫

M
g(z, y)f(y)dμ(y)

)q−1

dμ(z).

We begin with the following simple comparison result.

Lemma 3.4. Given x0 ∈ M and two concentric balls B0 ⊂ B1 centered at x0, there
exists a constant C > 0, depending only on B1, such that

g(x, z) ≤ Cg(x′, z), for every x, x′ ∈ B0 and z ∈ Bc
1.
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Proof. It is a simple application of Harnack’s inequality once it is noticed that for every
z ∈ Bc

1, x 7→ g(x, z) is a positive harmonic function on B1. �

Remark 3.5. As a direct consequence of Lemma 3.4 we have that, for every function
f ∈ C∞

c (M), if Gqf(x0) = ∞ for some point x0 ∈ M , then Gqf(x) = ∞ for every point
x ∈ M . Indeed, assume the contrary and suppose that there exists x1 ∈ M satisfying
Gqf(x1) < ∞. Let B0 ⊂ B1 be concentric balls with x0, x1 ∈ B0. By the lemma there
exists a constant C > 0 such that

g(x0, z) ≤ Cg(x1, z), for any z ∈ Bc
1.

Since

Gf(z) =
∫

M
g(z, y)f(y)dμ(y) ∈ C∞(M)

is bounded on B1 and since the Green kernel is locally integrable, we have

Gqf(x0) =
∫

M
g(x0, z)

(∫

M
g(z, y)f(y)dμ(y)

)q−1

dμ(z)

=
∫

B1

g(x0, z)(Gf(z))q−1dμ(z) +
∫

Bc
1

g(x0, z)(Gf(z))q−1dμ(z)

≤ sup
B1

(Gf)q−1||g(x0, ∙)||L1(B1) + c

∫

Bc
1

g(x1, z)(Gf(z))q−1dμ(z)

< ∞,

which proves the claim. Indeed, the above argument also shows that Gqf(x0) is uni-
formly bounded in B0 with a bound which depends only on Gqf(x1), on supB1

(Gf)q−1

and on

||g(x0, ∙)||L1(B1) ≤ sup
B0

Gϕ < ∞

where ϕ ∈ C∞
c (M) is such that 1B1

≤ ϕ.

In the next result we establish the relation between the non-integrability of g(x, ∙)q

outside a ball and the explosion of the nonlinear Green operator Gq.

Theorem 3.6. For q ∈ [1,∞) the following assertions are equivalent.

i) Gq ≡ ∞.
ii) Gqf(x0) = ∞ for some x0 ∈ M , and some 0 ≤ f ∈ C∞

0 (M).
iii) There exist x ∈ M and r > 0 such that g(x, ∙) /∈ Lq(M\Br(x)).
iv) For every x ∈ M and every r > 0, g(x, ∙) /∈ Lq(M\Br(x)).
v) M is Lq-Liouville.

Proof. The equivalence iv) ⇔ v) is the content of Proposition 3.2.
i) ⇒ ii) : Obvious.
ii) ⇒ iii) : Let f ∈ C∞

0 (M) be a non-negative function and let x0 ∈ M be such that
Gqf(x0) = ∞. Take r > 0 sufficiently large to have supp f ⊂ Br(x0). By the local
integrability of g(x0, ∙),

(3.2)
∫

B2r(x0)
g(x0, z)

(∫

M
g(z, y)f(y)dμ(y)

)q−1

dμ(z)

=
∫

B2r(x0)
g(x0, z)

(∫

Br(x0)
g(z, y)f(y)dμ(y)

)q−1

dμ(z) < ∞.
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On the other hand, by Lemma 3.4, there exists C > 0, which depends only on
B2r(x0), such that

g(z, y) ≤ Cg(z, x0) ∀z 6∈ B2r(x0) and y ∈ Br(x0).

Therefore,

(3.3)
∫

B2r(x0)c

g(x0, z)

(∫

M
g(z, y)f(y)dμ(y)

)q−1

dμ(z)

≤ (C||f ||L1(M))
q−1

∫

B2r(x0)c

g(x0, z)g(z, x0)
q−1dμ(z)

≤ (C||f ||L1(M))
q−1

∫

Br(x0)c

g(x0, z)qdμ(z).

The assumption and (3.2) imply that the left hand side in (3.3) is infinite and we
conclude that g(x0, ∙) /∈ Lq(M\Br(x0)).
iii) ⇒ iv) : Assume that g(x0, ∙) /∈ Lq(M\Br(x0)) for given x0 ∈ M and r0 > 0. Since
g(x0, ∙) is bounded in every annulus centered at x0 it follows easily that iv) holds for
x0 ∈ M and for every r > 0. Now, given x ∈ M , Lemma 3.4 applied to the ball BR(x0)
with R = d(x, x0) + 1 shows that there exists C > 0 such that g(x0, z) ≤ Cg(x, z) for
every z ∈ M\BR(x0). Thus,

∞ = C−q

∫

M\BR(x0)
g(x0, z)q dμ(z) ≤

∫

M\BR(x0)
g(x, z)q dμ(z)

≤
∫

M\B1(x)
g(x, z)q dμ(z).

iv) ⇒ i) : Given a non-identically zero function 0 ≤ f ∈ C∞
c (M) let Br(x0) ⊂ supp f

such that minBr(x0) f = C0 > 0. Using Lemma 3.4 we can compute
∫

M\Br(x0)
g(x0, z)qdμ(z) =

∫

M\Br(x0)
g(x0, z)[g(x0, z)]q−1dμ(z) ≤

∫

M\Br(x0)
g(x0, z)

[
c

C0μ(Br(x0))

∫

Br(x0)
g(z, y)f(y)dμ(y)

]q−1

dμ(z),

which yields
∫

M\Br(x0)
g(x0, z)qdμ(z) ≤

(
c

C0μ(Br(x0))

)q−1

Gqf(x0).

Thus, by our assumption we have Gqf(x0) = ∞ and the conclusion follows by Remark
3.5. �

Remark 3.7. We observe for future use that the above proof actually shows that
Gq ≡ ∞ if and only if, for some/every x 6= y in M and some/every pre-compact open
set U containing x and y,

∫

M\U
g(x, z)g(z, y)q−1dμ(z) = ∞.

Remark 3.8. If Gq < ∞, then Theorem 3.6 can be used to prove that for every x ∈ M ,
and every r > 0, there exists a constant C > 0, which depends only upon B2r(x), such
that

∫

M\B2r(x)
g(y, z)qdμ(z) < C for all y ∈ Br(x).
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Indeed, by assumption and Theorem 3.6,
∫

M\B2r(x)
g(x, z)qdμ(z) < ∞,

and the conclusion follows again from Lemma 3.4.

Proposition 3.9. M is Lq-Liouville, for q ∈ [1,∞), if and only if for every positive
superharmonic function f : M → R, we have G[f q−1](x) ≡ ∞ for some/every x ∈ M .

Proof. Assume that M is Lq-Liouville and let f be a positive superharmonic function
on M . Fix y ∈ M and let U be a pre-compact neighborhood of y. As in Proposition
3.2 there is a constant c > 0 such that

g(z, y) ≤ cf(z), for any z /∈ U.

So that, raising to power q − 1 and integrating we obtain

G[f q−1](x) ≥ c−1

∫

M\U
g(x, z)g(z, y)q−1dμ(z) = ∞.

The conclusion then follows by Remark 3.7. Conversely, let δ > 0 be a small constant
such that m = infBδ(y) g(y, ∙) > sup∂B1(y) g(y, ∙) and define f = min{m, g(y, ∙)}. Then
f is a positive superharmonic function in M and

∫

M
g(x, z)g(z, y)q−1dμ(z) ≥ G[f q−1](x) = ∞,

and the conclusion follows by Theorem 3.6. �

Remark 3.10. In Proposition 3.9 we can use positive functions defined and harmonic
in a complement of a compact set. In this case, if we fix a compact set E ⊂ M , we
then have

Gq ≡ ∞ if and only if
∫

M\E
g(x, y)h(y)q−1dμ(y) = ∞.

As an application of Theorem 3.6 we now extend, from the classical case q = ∞, the
characterization of the Lq-Liouville property in terms of the existence of pre-compact
open sets with zero Cp-capacity to the range 1 < q ≤ ∞, with p and q Hölder conjugate
exponents.

Theorem 3.11. Let M be a manifold and p ∈ [1,∞). Then Cp(E) = 0 for some/every
pre-compact open subset E ⊂ M if and only if M is Lq-Liouville. Therefore, M is
Lp-parabolic if and only it is Lq-Liouville.

Proof. By Theorem 3.6 we assume Gq ≡ ∞ and let E ⊂ M be a pre-compact open set.
Since the Cp-capacity is monotone and subadditive and E is pre-compact, it suffices to
prove that C(B1(y0)) = 0 for any y0 ∈ M . As in the proof of Theorem 3.6, by Lemma
3.4 there exists C > 0, depending only on B2(y0), such that g(y0, z) ≤ Cg(y, z) for
all y ∈ B1(y0) and for all z /∈ B2(y0). Given any measure 0 6= ν ∈ M+(B1(y0)) we
estimate

||Gν||Lq(M) ≥

(∫

M\B2(y0)

(∫

B1(y0)
g(y, z)dν(y)

)q

dμ(z)

) 1
q

≥ Cν(B1(y0))

(∫

M\B2(y0)
g(y0, z)qdμ(z)

) 1
q

= ∞,

where in the last equality we have applied Theorem 3.6 item iv). Thus, if ||Gν||Lq(M) ≤
1, ν ≡ 0 and by Theorem 2.8 we have Cp(B1(y0)) = 0.
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For the converse, we are going to show that if Gq < ∞ then Cp(E) > 0 for every
pre-compact open subset E with μ(E) > 0. So, assume Gq < ∞ and that there exists
some pre-compact open subset E such that Cp(E) = 0. For every x, let Fx = B1(x)∩E
whenever the right hand side is not empty.

Notice first of all that since Gq < ∞, then GχFx ∈ Lq(M). Indeed, if ψ ∈ C∞
c (M) is

non-negative and ψ = 1 on B1(x), then
∫

B2(x)
(GχFx)q(y)dμ(y) ≤

∫

B2(x)

(∫

M
g(y, z)ψ(z)dμ(z)

)q

dμ(y)

≤ μ(B2(x)) sup
B2(x)

|Gψ|q < ∞.

On the other hand, by Remark 3.8, there exists a constant C depending only on B2(x)
such that ∫

M\B2(x)
g(y, z)qdμ(y) ≤ C, ∀z ∈ B1(x),

and therefore, by Minkowski’s integral inequality,
[∫

M\B2(x)
(GχFx(y))qdμ(y)

] 1
q

=

[∫

M\B2(x)

(∫

Fx

g(y, z)dμ(z)

)q

dμ(y)

] 1
q

≤
∫

Fx

(∫

M\B2(x)
g(y, z)qdμ(y)

) 1
q

dμ(z)

≤ C
1
q μ(B1(x)),

and our claim follows.
Next, since Cp(E) = 0, by definition of capacity, for every ε > 0 there exists a

function f ∈ Lp
+(M) such that Gf ≥ 1 on E and

∫

M
fpdμ < εp.

We can therefore estimate

μ(Fx) ≤
∫

Fx

Gf(y)dμ(y)

=
∫

M
χFx(y)Gf(y)dμ(y)

=
∫

M×M
g(y, z)f(z)χFx(y)dμ(z)dμ(y)

=
∫

M
f(z)GχFx(z)dμ(z)

≤ ||f ||Lp(M)||GχFx ||Lq(M) < ε||GχFx ||Lq(M),

and, letting ε → 0, we conclude that

μ(Fx) = μ(B1(x) ∩ E) = 0

for every x such that B1(x) ∩ E 6= ∅. Since E is compact, it can be covered by a
countable family of balls B1(xk). Hence, E = ∪kFxk

and by subadditivity we conclude
that μ(E) = 0, as required. �

Remark 3.12. In the above proof, since M is second countable, we have proved that
if Gq < ∞ then Cp(K) = 0 implies μ(K) = 0 for every compact set K. It means
that, in this case, the capacity Cp gives a more refined measure than the Lebesgue one.
Furthermore, if Gq = ∞ then Cp(E) = 0 for all subsets E ⊂ M .
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Corollary 3.13. There is a pre-compact open subset E ⊂ M with Cp(E) > 0 if and
only if Cp(F ) > 0 for every pre-compact open set F ⊂ M .

As a notable consequence of Theorem 3.11 and Corollary 3.3 we can derive the
hierarchy of the Lp-parabolicity.

Corollary 3.14. If M is Lp-parabolic, then M is also Ls-parabolic for every 1 ≤ p ≤
s < ∞.

In the recent paper [9] the authors introduced the concept of biparabolicity for a
Riemannian manifold in terms of a Liouville type condition for the bilaplacian operator.
A function u ∈ C4(M) is said to be bi-superharmonic if Δu ≤ 0 and Δ2u ≥ 0.

Definition 3.15. A manifold M is biparabolic if any positive bi-superharmonic function
u ∈ C4(M) is harmonic, Δu = 0.

One of the main results in [9], Theorem 3.1, is a characterization of the biparabolicity
of M by the explosion of the Green operator G2 defined in (3.1). Thus, Theorems 3.6
and 3.11 give rise to the following application.

Corollary 3.16. A manifold M is biparabolic if and only if M is L2-parabolic, equiv-
alently, L2-Liouville.

In this connection, we note that Proposition 3.9 and Remark 3.10 extend [9, Lem.3.2].

4. A capacitary approach to the L1-Liouville property

Since the positive minimal Green kernel is locally integrable, according to Proposition
3.2, the L1-Liouville property on a manifold M is equivalent to the non-integrability
of g(x, ∙) (see also [11, 12]). From this one can easily deduce that every stochastically
complete manifold satisfies the L1-Liouville property and, on model manifolds, the two
properties are equivalent. In general this equivalence is not true in any dimension (see
[5, 20]). Note that, if M is not L1-Liouville, the function

E(x) =
∫

M
g(x, y)dμ(y),

which is usually referred to as the mean exit time of M , is a positive solution to the
equation

ΔE + 1 = 0.

As in the previous subsection we are going to restrict ourselves to the non-parabolic
case. Since there is no duality when q = 1, we will define the relevant capacity via
positive measures.

Definition 4.1. Let K ⊂ U be a compact subset of an open set U ⊆ M , we define

C∞(K,U) = sup{ν(K) : ν ∈ M+(K), ||GUν||L1(U) ≤ 1}.

When U = M , we simply write C∞(K) in place of C∞(K,M). A manifold M is then
said to be L∞-parabolic if C∞(K) = 0 for every compact subset K ⊂ M .

The set function C∞ is monotone increasing in K, and monotone decreasing in U .
In the next theorem we provide a description of the extremal measures for the C∞-
capacity which in turn will easily yield the required capacitary characterization of the
L1-Liouville property and its equivalence with the L∞-parabolicity defined above.

Theorem 4.2. Let K be a compact subset of an open set U ⊆ M . There exists an
extremal measure νK ∈ M+(K) such that

C∞(K,U) = νK(K).
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Moreover, νK =
(
minK EU

)−1
δx0 where δx0 is the Dirac measure centered at x0 ∈ ∂K,

and EU (x0) = minK EU . In particular, a manifold M is L1-Liouville if and only if
C∞(K) = 0 for some/every compact set K.

Proof. We first consider the case where, for some/every point x ∈ U , we have

EU (x) =
∫

U
gU (x, y)dμ(y) < ∞.

In this case, EU is a smooth function, and for any test measure ν ∈ M+(K) there
holds

1 ≥
∫

U
GUν(y)dμ(y) ≥ ν(K)min

K
EU .

Hence,

C∞(K,U) ≤
1

minK EU
∙

On the other hand, if EU (x0) = minK EU for some x0 ∈ ∂K (here we use that EU is
superharmonic), then the Dirac measure ν0 = (EU (x0))−1δx0 ∈ M+(K) satisfies

∫

U
GUν0(y)dμ(y) =

1
EU (x0)

∫

U
gU (x0, y)dμ(y) = 1.

Moreover,

ν0(K) =
1

EU (x0)
≥ C∞(K,U),

that is, ν0 is the extremal measure for the capacity. Now, assume that

EU (x) =
∫

M
gU (x, y)dμ(y) = ∞

for some/every x ∈ U , and let ν ∈ M+(K) be such that ν(K) > 0. Then
∫

U
GUν(y)dμ(y) =

∫

U
dμ(y)

∫

U
gU (x, y)dν(x)

=
∫

K
dν(x)

∫

U
gU (x, y)dμ(y) = ∞,

showing that
C∞(K,U) = 0.

The second statement is now a consequence of the already noted fact that M is L1-
Liouville if and only if E ≡ ∞. �

As in Proposition 2.6 the monotonicity of C∞(K,U) with respect to U gives rise to
the following identity

C∞(K,U) = lim
n→∞

C∞(K,Un),

where {Un} is a compact exhaustion of any open set U ⊂ M , such that K ⊂ U1. It is
easy to see that such a limit does not depend on the exhaustion and satisfies

C∞(K,U) ≤ lim
n→∞

C∞(K,Un).

For the other inequality we consider gn(x, y) the Dirichlet Green function associated to
Un, and extend gn(x, y) by zero on U\Un. For every y ∈ U , and x ∈ U fixed, we know
that gn(x, y) ↗ gU (x, y). It follows that

En(x)
.
=
∫

U
gn(x, y)dμ(y) ↗

∫

U
gU (x, y)dμ(y)

.
= EU (x)

for any x ∈ U . As before, if EU (x) < ∞ then EU is a smooth function, and by Dini’s
theorem we have En ↗ EU uniformly on compact sets, in particular on K. Now, by
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uniform convergence minK En → minK EU and the conclusion follows from Theorem
4.2. If EU (x) = ∞, since En → EU locally uniformly it follows that minK En → ∞.

We may extend the definition of the set function C∞( ∙ , U) to arbitrary sets via the
standard min-max procedure. First, if G ⊂ U is an open subset we let

C∞(G,U)
.
= sup{C∞(K,U) : K ⊂ G is compact},

and, for every F ⊂ U , we define

C∞(F,U)
.
= inf{C∞(G,U) : G ⊃ F is open}.

For any open subset F ⊂ U we can show that

(4.1) C∞(F,U) =

(

inf
F

EU

)−1

.

Indeed, if G ⊂ U is open, it follows easily from the properties of inf/sup that, for every
G ⊂ U open,

inf
G

EU = inf
K⊂G

inf
K

EU ,

where K ⊂ G is compact, whence

C∞(G,U) = sup
K⊂G

C∞(K,U) =

(

inf
K⊂G

inf
K

EU

)−1

=

(

inf
G

EU

)−1

.

Similarly, using the fact that, for every F ⊂ U ,

inf
F

EU = sup
G⊃F

inf
G

EU ,

where G ⊂ U is open, we deduce that

C∞(F,U) = inf
G⊃F

C∞(G,U) =

(

inf
F

EU

)−1

.

We now collect the properties of the set function C∞ in the following proposition.

Proposition 4.3. C∞ enjoys the following properties.

1) Given F1 ⊂ F2 ⊂ U subsets of an open set U ⊂ M , we have

C∞(F1, U) ≤ C∞(F2, U).

2) Given U1 ⊂ U2 ⊂ M open sets such that F ⊂ U1, it holds

C∞(F,U1) ≥ C∞(F,U2).

3) Given F1, F2 arbitrary subsets of an open set U ⊂ M , there holds

C∞(F1 ∪ F2, U) ≤ C∞(F1, U) + C∞(F2, U) − C∞(F1 ∩ F2, U).

4) Let Ki be a decreasing sequence of compact sets contained in an open set U ⊂ M ,
then

C∞(∩∞
i=1Ki, U) = lim

i→∞
C∞(Ki, U).

5) Given an increasing sequence of arbitrary sets Fi contained in an open set U ⊂
M there holds

C∞(∪iFi, U) = lim
i→∞

C∞(Fi, U).
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Proof. Items 1) and 2) are an easy consequence of (4.1). For item 3), let F1, F2 ⊂ U
be arbitrary sets. Equation (4.1) yields

C∞(F1 ∪ F2, U) =

(

inf
F1∪F2

EU

)−1

=

[

min{inf
F1

EU , inf
F2

EU}

]−1

≤

(

inf
F1

EU

)−1

+

(

inf
F2

EU

)−1

−

(

inf
F1∩F2

EU

)−1

= C∞(F1, U) + C∞(F2, U) − C∞(F1 ∩ F2, U).

Item 4) will follow from the following identity

min
∩nKi

EU = lim
i→∞

min
Ki

EU .

Indeed, by monotonicity it is clear that the limit exists, and the left hand side is no
less than the right hand side. On the other hand, for every i let xi ∈ Ki be the point
minimizing EU on Ki. By passing to a subsequence we may assume that xi → x ∈ ∩iKi.
Hence,

min
∩iKi

EU ≤ EU (x) = lim
i→∞

EU (xi) = lim
i→∞

min
Ki

EU .

To prove item 5) let us set F = ∪iFi. The claim follows from the fact that infF EU =
limi infFi EU which in turn is easily seen as follows. On the one hand, monotonicity
shows that the limit exists and the left hand side is less than or equal to the right hand
side. On the other hand, for every ε > 0, there exists xε ∈ F such that EU (xε) <
infF EU + ε. Since xε ∈ Fi for large enough i, for such i’s infFi EU ≤ EU (xε) ≤
infF EU +ε, whence letting i → ∞ and ε → 0 we conclude that limi infFi EU ≤ infF EU

and our claim follows. �

The properties listed in Proposition 4.3 show that C∞(∙, U) is a Choquet capacity,
and thus, all Borel sets F ⊂ U are capacitable (cf. [1, Thm.2.3.11]), that is,

C∞(F,U) = inf{C∞(G,U) : G ⊃ F,G open}

= sup{C∞(K,U) : K ⊂ F,K compact}.

5. Volume conditions for the Lp-parabolicity

In this section we first provide a sufficient pointwise volume condition for the validity
of the Lp-parabolicity of a complete manifold M in the range 1 < p ≤ 2, which extends
the results obtained in [9] for p = 2, and is compatible with the known volume conditions
for the usual parabolicity in the limit p → 1. For manifolds with non-negative Ricci
curvature we obtain a sufficient integral condition in the whole range 1 < p < ∞ that
implies an improved volume condition. Moreover, this integral condition turns out to
be always valid, and essentially sharp, for general model manifolds.

In what follows we are going to denote by V (o, r), or simply V (r), the volume of the
ball Br(o) and by S(o, r), or simply S(r), the area of the sphere ∂Br(o), where o ∈ M
is a given reference point.

Theorem 5.1. Let M be a complete manifold and let 1 < p ≤ 2. Assume that, for
some o ∈ M and sufficiently large r, it holds

(5.1) V (r) ≤ C
r2p

log r
,

for some constant C > 0. Then M is Lp-parabolic.



Lp-PARABOLICITY 19

Proof. From Theorems 3.6 and 3.11 it is sufficient to prove that Gqϕ ≡ ∞ for some
0 ≤ ϕ ∈ C∞

c (M), and pq = p + q. Recall that the Green kernel is given by

g(x, y) =
∫

M
pt(x, y)dμ(y),

where pt(x, y) is the heat kernel of M . By Jensen’s inequality and the semi-group
property of the heat kernel we obtain

Gqϕ(o) =
∫ ∞

0
dt

∫

M

(∫

M
g(y, z)ϕ(z)dμ(z)

)q−1

pt(o, y)dμ(y)

≥
∫ ∞

0

(∫

M
pt(o, y)

∫

M
g(y, z)ϕ(z)dμ(z)dμ(y)

)q−1

dt

=
∫ ∞

0

(∫ ∞

0
Pt+sϕ(o)ds

)q−1

dt

=
∫ ∞

0

(∫ ∞

t
Pτϕ(o)dτ

)q−1

dt,

where Pt is the heat operator acting on C∞
c (M) by

Ptϕ(x) =
∫

M
pt(x, y)ϕ(y)dμ(y).

To estimate Ptϕ(o) from below we argue as in [9]: let supp ϕ ⊂ BR(o). It is proved in
[7] (see also [13, Thm.16.5]) that a polynomial volume estimate of the form V (r) ≤ Crν ,
for r ≥ r0 implies that there exist constants t0 = t0(r0) and K = K(o, r0, C, ν) such
that the following heat kernel diagonal lower bound

pt(o, o) ≥
1
4
[V (
√

Kt log t)]−1

holds for every t ≥ t0 = t0(r0). Together with the local parabolic Härnack inequality
in [23, 24] we obtain

Pτϕ(o) =
∫

BR(o)
pτ (o, y)ϕ(y) ≥ c

∫

BR(o)
pt(o, o)ϕ(y)

≥ c||ϕ||L1τ
− q

q−1 (log τ)−
1

q−1 for τ ≥ τ0,

(5.2)

where c > 0 depends on ro, C, ν,R and on the geometry of BR(o) ⊂ M . Inserting this
into the above inequality we conclude that

Gqϕ(o) ≥ c

∫ ∞

τ0

(∫ ∞

t
τ
− q

q−1 (log τ)−
1

q−1 dτ

)q−1

dt

�
∫ ∞

τ0

dt

t log t
= ∞.

�

Remark 5.2. A sharp estimate in the range 1 < p ≤ 2 can be obtained if we assume
that M satisfies the following heat kernel diagonal lower bound

(5.3) pt(o, o) ≥
c

V (
√

t)
,

for some c > 0 and for all t > 0. In this case, we can replace (5.1) by the sharp
inequality

V (r) ≤ Cr2p(log r)p−1,
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to obtain (5.2). Thus, the result follows as in the proof of Theorem 5.1. For instance,
(5.3) holds if M satisfies the volume doubling condition and a comparable diagonal
heat kernel upper estimate or, equivalently, the relative Faber-Krahn inequality (see
[13, Thm.15.21 and Cor.16.7]).

Let us now consider the class of geodesically complete Riemannian manifolds with
non-negative Ricci curvature. In this class, P. Li and S.-T. Yau [18] established the
following Green function estimate

(5.4) C−1

∫ ∞

r

t dt

V (x, t)
≤ g(x, y) ≤ C

∫ ∞

r

t dt

V (x, t)
,

where r = d(x, y) and C > 0. A characterization of Lp-parabolicity in the whole range
1 < p < ∞ can be deduced from Theorems 3.6 and 3.11.

To state the next results, fix some x ∈ M and set V (r) = V (x, r).

Proposition 5.3. Let M be a complete Riemannian manifold with Ric ≥ 0, and let
1 < p < ∞. Then M is Lp-parabolic if and only if

(5.5)
∫ ∞(∫ ∞

r

t dt

V (t)

) p
p−1

V ′(r)dr = ∞.

Proof. By Theorem 3.6, M is Lq-Liouville with q = p
p−1 if and only if for some/all ε > 0

∫

M\Bε(x)
g(x, y)qdμ(y) = ∞.

Integrating the Li-Yau Green function estimate (5.4) we obtain
∫

M\Bε(x)
g(x, y)qdμ(y) �

∫ ∞

ε

(∫ ∞

r

t dt

V (t)

)q

V ′(r)dr.

Finally, by Theorem 3.11, M is Lp-parabolic if and only if M is Lq-Liouville. �

As a first consequence, we can obtain a sharp sufficient integral volume condition to
the validity of the Lp-parabolicity.

Corollary 5.4. Let M be a complete Riemannian manifold with Ric ≥ 0, and let
1 < p < ∞. If

(5.6)
∫ ∞

r

(∫ ∞

r

tdt

V (t)

) 1
p−1

dr = ∞,

where V (t) = V (x, t) for some x ∈ M, then M is Lp-parabolic.

Proof. Since every parabolic manifold is Lp-parabolic for every 1 < p < ∞, let us
assume that M is non-parabolic. By the Li-Yau estimate (5.4) the inner integral in
(5.6) is finite for any r > 0. Integration by parts yields

∫ ∞

1

(∫ ∞

r

tdt

V (t)

) p
p−1

V ′(r)dr ≥−
∫ ∞

1
V (r)

d

dr

(∫ ∞

r

tdt

V (t)

) p
p−1

dr

− V (1)

(∫ ∞

1

tdt

V (t)

) p
p−1

=
p

p − 1

∫ ∞

1
r

(∫ ∞

r

tdt

V (t)

) 1
p−1

dr

− V (1)

(∫ ∞

1

tdt

V (t)

) p
p−1

,

and the conclusion follows by Proposition 5.3. �
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Remark 5.5. For example, if

V (r) ≤ Cr2p (log r)p−1

then (5.6) is satisfied. In particular, if M has dimension n ≥ 2 and satisfies Ric ≥ 0,
by the Bishop-Gromov volume comparison theorem V (r) ≤ Crn, for some C > 0, and
therefore M is Lp-parabolic for every p ≥ n/2.

Motivated by this result we make the following

Conjecture 5.6. Let M be a complete Riemannian manifold, and let p ∈ (1,∞). If
∫ ∞

r

(∫ ∞

r

tdt

V (t)

) 1
p−1

dr = ∞,

then M is Lp-parabolic.

We conclude this section by observing that Conjecture 5.6 holds also for the class of
model manifolds (Mσ, ds2), where Mσ = Rn and, in polar coordinates (r, θ),

ds2 = dr2 + σ2(r)dθ2

for a smooth, positive function σ on (0,∞). In this case, the Green kernel with pole at
o = 0 is radial and it is given by

g(o, x) =
∫ ∞

r

dt

S(t)
, if x = (r, θ),

where S(r) = cmσm−1(r) is the Riemannian volume of the sphere ∂Br(o) centered at
the pole o with radius r > 0.

Similarly to Proposition 5.3, Theorems 3.6 and 3.11 give the following characteriza-
tion for the Lp-parabolicity of model manifolds.

Proposition 5.7. Let Mσ be a model manifold as above and p ∈ (1,∞). Then Mσ is
Lp-parabolic if and only if

(5.7)
∫ ∞(∫ ∞

r

dt

S(t)

) p
p−1

S(r)dr = ∞.

To show that Conjecture 5.6 holds for the class of model manifolds we will need the
next lemma.

Lemma 5.8. Let f be a continuously differentiable function on an interval (a, b) such
that f > 0 and f ′ > 0. Then

(5.8)
∫ b

a

dt

f ′(t)
≥

1
2

∫ b

a

(t − a) dt

f(t)
.

Proof. Changing t to t − a, we reduce (5.8) to
∫ b−a

0

dt

f ′(t + a)
≥

1
2

∫ b−a

0

tdt

f(t + a)
.

Hence, renaming b − a into b and f(t + a) into f , we see that it suffices to prove that

(5.9)
∫ b

0

dt

f ′(t)
≥

1
2

∫ b

0

tdt

f(t)

that is, (5.8) in the case a = 0.

Multiplying and dividing by f ′(t)1/2 and using the Cauchy-Schwarz inequality we
get

∫ b

0

t

f(t)
dt ≤

(∫ b

0

t2

f(t)2
f ′(t)dt

)1/2(∫ b

0

1
f ′(t)

dt

)1/2

.
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Integrating by parts in the first integral on the right hand side gives
∫ b

0

t2

f(t)2
f ′(t)dt = −

b2

f(b)
+ 2

∫ b

0

t

f(t)
dt ≤ 2

∫ b

0

t

f(t)
dt,

whence inserting into the above inequality and simplifying yield (5.8). �

Corollary 5.9. Let p ∈ (1,∞). If

(5.10)
∫ ∞

r

(∫ ∞

r

tdt

V (t)

) 1
p−1

dr = ∞

then Mσ is Lp-parabolic.

Proof. From a simple change of variables in the external integral we can rewrite (5.6)
as

∫ ∞

r

(∫ ∞

2r

tdt

V (t)

) 1
p−1

dr = ∞.

By Lemma 5.8, we have
∫ ∞

2r

tdt

V (t)
≤ 2

∫ ∞

r

(t − r) dt

V (t)
≤ 4

∫ ∞

r

dt

S(t)
.

Hence, (5.6) implies that

(5.11)
∫ ∞

r

(∫ ∞

r

dt

S(t)

) 1
p−1

dr = ∞.

Let us show that (5.11) implies (5.7). For that, consider the function

f(r) =

(∫ ∞

r

dt

S(t)

)− 1
p−1

.

We may assume that Mσ is non-parabolic, and therefore f(r) > 0, for otherwise Mσ is
automatically Lp-parabolic. It follows from (5.11) that

∫ ∞

1

rdr

f(r)
= ∞,

whence also ∫ ∞

1

(r − 1) dr

f(r)
= ∞.

By Lemma 5.8 we have ∫ ∞

1

(r − 1) dr

f(r)
≤ 2

∫ ∞

1

dr

f ′(r)
,

and, hence,

(5.12)
∫ ∞

1

dr

f ′(r)
= ∞.

We clearly have

f ′(r) =
1

p − 1

(∫ ∞

r

dt

S(t)

)− p
p−1 1

S(r)
.

Substituting this into (5.12) we obtain (5.7). Hence, Mσ is Lp-parabolic by Proposi-
tion 5.7. �

The next example shows the almost optimality of the pointwise volume condition
described in Theorem 5.1 and the optimality of the integral volume condition given in
Corollaries 5.4 and 5.9.
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Example 5.10. Let Mσ be a model manifold with

S(r) = cmσ(r)m−1 = cmrα−1(log r)β

for r ≥ 2, with α > 2 and real β. Note that in this case

V (r) � rα(log r)β .

Since S(r)−1 is integrable at infinity, the manifold Mσ is non-parabolic and its Green
kernel with pole at o satisfies for all r � 1

g(r) =
∫ ∞

r

dt

S(t)
� r2−α (log r)−β .

It follows that
(∫ ∞

r

dt

S(t)

) p
p−1

S(r) � r
p+1−α

p−1 (log r)−
β

p−1 .

Therefore, the integral in (5.7) is divergent and, hence, Mσ is Lp-parabolic by Propo-
sition 5.7, if and only if either α < 2p, or α = 2p and β ≤ p − 1.
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