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Abstract

We consider on Riemannian manifolds the Leibenson equation

∂tu = Δpu
q

that is also known as a doubly nonlinear evolution equation. We prove upper estimates
of weak subsolutions to this equation on Riemannian manifolds with non-negative Ricci
curvature in the case when p and q satisfy the conditions

1 < p < 2 and 1 ≤ q <
1

p − 1
.

We show that these estimates are optimal in terms of long time behaviour and near-
optimal in terms of long distance behavior.
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1 Introduction

Let M be an arbitrary Riemannian manifold. We consider solutions of the non-linear evolu-
tion equation

∂tu = Δpu
q, (1.1)

where p > 1, q > 0, u = u(x, t) is an unknown non-negative function of x ∈ M , t ≥ 0, and
Δp is the Riemannian p-Laplacian:

Δpv = div
(
|∇v|p−2∇v

)
.

The equation (1.1) is frequently referred to as a doubly non-linear parabolic equation. For
the physical meaning of this equation see [13, 20, 21].

When M = Rn, G. I. Barenblatt [1] constructed for all p > 1, q > 0 spherically symmetric
self-similar solutions of (1.1), that are nowadays called Barenblatt solutions.

Let us denote
D = 1 − q(p − 1).

If D < 0, then the Barenblatt solution has a finite propagation speed, and the same phe-
nomenon occurs on arbitrary Riemannian manifolds (see [2, 6, 7, 13, 14, 15, 26]).

In the borderline case D = 0, the Barenblatt solutions is positive but decays exponentially
in distance. Similar sub-Gaussian upper bounds of solutions of (1.1) on Riemannian manifolds
were proved in the case D = 0 in [25].

In the present paper we are concerned with the case D > 0, that is, when

q(p − 1) < 1. (1.2)

In this case, equation (1.1) is also called singular. If in addition

β := p − nD > 0,

then the Barenblatt solution satisfies the estimate

u(x, t) '
1

tn/β

(

1 +
|x|
t1/β

)− p
D

(1.3)

(cf. Section 7.1), where the symbol ”'” means that the ratio of the terms is bounded from
above and below by a positive constant.

In the present paper we prove upper bounds for solutions of the Leibenson equation (1.1)
on geodesically complete Riemannian manifolds in the restricted singular case

1 < p < 2 and 1 ≤ q <
1

p − 1
(1.4)

(note that (1.4) implies (1.2)). We understand solutions of (1.1) in M ×R+ in a certain weak
sense (see Section 2 for the definition).

Assume that the Riemannian manifold M is geodesically complete. Denote by μ the
Riemannian measure on M , by d the geodesic distance and by B(x, r) the geodesic ball of
radius r centered at x.

The main result of the present paper is as follows (cf. Theorem 6.1).

Theorem 1.1. Let M satisfy a relative Faber-Krahn inequality (see Section 3 for definition)
and assume that, for all x ∈ M and all R ≥ 1,

μ(B(x,R)) ≥ cRα, (1.5)
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for some c, α > 0. Assume that (1.4) holds and that

β := p − αD > 0. (1.6)

Let u be a bounded non-negative solution of (1.1) in M × [0,∞) with initial function u0 =
u (∙, 0) ∈ L1(M) ∩ L∞(M). Set A = supp u0 and denote |x| = d(x,A). Then, for all t > 0
and all x ∈ M , we have

‖u (∙, t)‖L∞(B(x, 1
2
|x|)) ≤

C

t
α
β

Φ

(

1 +
|x|
t1/β

)

, (1.7)

where
Φ(s) = s−

p
D logγ(1 + s),

where the positive constants C and γ depend on c, α, p, q, ||u0||L∞(M), ||u0||L1(M) and on the
constants in the relative Faber-Krahn inequality.

In particular, if the solution u is continuous then the left hand side of (1.7) can be replaced
by u(x, t).

Note that the relative Faber-Krahn inequality is satisfied if, for example, M has non-
negative Ricci curvature (see [4, 11, 23]).

Comparing the upper bound (1.7) from Theorem 1.1 with the estimate (1.3) of the Baren-
blatt solution, we see that the estimate (1.7) is sharp in Rn up to a logarithmic term. A similar
comparison takes place for some class of spherically symmetric manifolds (model manifolds)
satisfying the relative Faber-Krahn inequality (cf. Section 7.1).

The restrictions (1.4) seem to be technical and we think, that the result should be true
for a general range of p, q given by (1.2), as it is stated in the next conjecture.

Conjecture 1.2. Let M satisfy the relative Faber-Krahn inequality and (1.5). Assume that
(1.2) and (1.6) hold, that is, D > 0 and β > 0. Then the estimate (1.7) holds with

Φ(s) = s−
p
D .

If p = 2 then (1.2) becomes q < 1. In this case, assuming that the n-dimensional
Riemannian manifold satisfies a uniform Sobolev inequality, the long time decay of order
t−n/β for solutions of (1.1) (thus matching (1.3)) was proved in [3].

If q = 1 then (1.2) amounts to p < 2. In this case qualitative properties of weak solutions
of (1.1) in Rn were proved in [8, 10].

The structure of the present paper is as follows.
In Section 2 we define the notion of a weak solution of the equation (1.1).
In Section 3 the aforementioned relative Faber-Krahn inequality is discussed.
In Section 4 we prove the main technical lemma (Lemma 4.2) about the long distance

decay of solutions of (1.1). It says the following. Let u be a bounded non-negative solution
of (1.1) in M × [0,∞). Let B0 = B (x0, R) be a ball such that the initial function u(∙, 0) = u0

satisfies
u0 = 0 in B0.

Then, for all t > 0,

‖u‖L∞( 1
2
B0×[0,t]) ≤ CB0

(
t

Rp

) 1
D

logγ

(

2 +

(
Rp

t

) 1
D ||u0||L1(M)

μ (B0)

)

, (1.8)

where the positive constant CB0 depends on the intrinsic geometry of B0 and γ depends on
p, q and on the constants in the relative Faber-Krahn inequality.
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Let us emphasize that this Lemma 4.2 is valid for an arbitrary complete Riemannian
manifold, and the estimate (1.8) depends on the local geometry of the manifold inside the
ball B0.

In the proof of Lemma 4.2 we use a certain mean value inequality that is stated in Lemma
4.1 that we borrowed from our previous paper [14]. If one could improve the upper bound
(1.8) to get rid of the log term then this would then imply the validity of Conjecture 1.2.

In Section 5 we prove the main lemma (Lemma 5.4) about the long time decay of solutions
of (1.1). The main technical ingredient is a non-linear mean value inequality (Lemma 5.2)
for solutions of (1.1), which says the following. Let u be a non-negative bounded solution in
Q = B × [0, T ] , B = B(x0, R), T > 0. Then, for the cylinder

Q′ =
1
2
B × [

1
2
T, T ],

we have

‖u‖L∞(Q′) ≤

(
CBS

μ(B)

∫

Q
uσ

)1/(σ+D)

,

where

S =
‖u‖D

L∞(Q)

T
+

1
Rp

,

σ > 0 is any and the constant CB depends on p, q, σ and the intrinsic geometry of the ball B
(in fact, on the Faber-Krahn inequality in B).

The proof of the mean value inequality of Lemma 5.2 in the present paper is inspired by
the proof of a mean value inequality in our previous paper [14] and uses a modification of
the classical De Giorgi iteration argument [5].

In Section 7 (Appendix) we mention the exact solutions of (1.1) on the model manifolds
(generalizing the Barenblatt solutions).

We denote by c, c′, C, C ′ positive constants whose value might change at each occurance.

2 Weak subsolutions

We consider in what follows the following evolution equation on a Riemannian manifold M :

∂tu = Δpu
q. (2.9)

By a subsolution of (2.9) we mean a non-negative function u satisfying

∂tu ≤ Δpu
q (2.10)

in a certain weak sense as explained below.
We assume throughout that

p > 1 and q > 0.

Set
D = 1 − q(p − 1).

Let μ denote the Riemannian measure on M . For simplicity of notation, we frequently
omit in integrations the notation of measure. All integration in M is done with respect to
dμ, and in M × R – with respect to dμdt, unless otherwise specified.

Let Ω be an open subset of M and I be an interval in [0,∞).
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Definition 2.1. We say that a non-negative function u = u(x, t) is a weak subsolution of
(2.9) in Ω × I, if

u ∈ C
(
I; L1(Ω)

)
and uq ∈ Lp

loc

(
I; W 1,p(Ω)

)
(2.11)

and (2.10) holds weakly in Ω × I, which means that for all t1, t2 ∈ I with t1 < t2, and all
non-negative test functions

ψ ∈ W 1,∞
loc (I; L∞(Ω)) ∩ Lp

loc

(
I; W 1,p

0 (Ω)
)

, (2.12)

we have [∫

Ω
uψ

]t2

t1

+
∫ t2

t1

∫

Ω
−u∂tψ + |∇uq|p−2〈∇uq,∇ψ〉 ≤ 0. (2.13)

For different notions of weak solutions see also [9, 24]. Existence and uniqueness results
for the Cauchy problem with the above notion of weak solutions of (2.9) were obtained in the
euclidean case for example in [17, 18, 19, 22] and on manifolds in [16].

If u is of the class (2.11) then ∇(uq) is defined as an element of Lp(Ω). Then we define
∇u as follows:

∇u :=

{
q−1u1−q∇(uq), u > 0,
0, u = 0.

Remark 2.2. Note that it follows from (2.11) and (2.12) that the integrals in (2.13) are
finite. Indeed, we have by Hölder’s inequality

∫ t2

t1

∫

Ω
|∇uq|p−2 |〈∇uq,∇ψ〉| ≤

∫ t2

t1

∫

Ω
|∇uq|p−1|∇ψ|

≤

(∫ t2

t1

∫

Ω
(|∇uq|)p

) p−1
p
(∫ t2

t1

∫

Ω
|∇ψ|p

) 1
p

.

Lemma 2.3. Let u(x, t) be a non-negative weak subsolution of (2.9) in Ω × [0,∞). Then
au(x, a−Dt) is a weak subsolution of (2.9) in Ω × [0,∞) for any a > 0.

Proof. Let us apply (2.13) with aψ(x, t̃) = aψ(x, aDt) noticing that aψ(x, aDt) lies again in
the class (2.12) if ψ(x, t) does. Hence, for all t1, t2 ∈ [0,∞) with t1 < t2,

[∫

Ω
u(x, t)aψ(x, aDt)

]t2

t1

+
∫ t2

t1

∫

Ω
−au(x, t)∂tψ(x, aDt) + a|∇u(x, t)q|p−2〈∇u(x, t)q,∇ψ(x, aDt)〉dtdμ ≤ 0.

We have
|∇(au)q|p−2∇(au)q = a−D+1|∇uq|p−2∇uq.

Thus, using that dt = a−Ddt̃, we obtain
∫ t2

t1

∫

Ω
a|∇u(x, t)q|p−2〈∇u(x, t)q,∇ψ(x, aDt)〉dtdμ

=
∫ t̃2

t̃1

∫

Ω
|∇(au(x, a−D t̃))q|p−2〈∇(au(x, a−D t̃))q,∇ψ(x, t̃)〉dt̃dμ,

where t̃1 = aDt1 and t̃2 = aDt2. It follows that

[∫

Ω
au(x, aδ t̃)ψ(x, t̃)

]t̃2

t̃1
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+
∫ t̃2

t̃1

∫

Ω
−u(x, a−D t̃)∂t̃ψ(x, t̃) + |∇u(x, a−D t̃)q|p−2〈∇u(x, a−D t̃)q,∇ψ(x, t̃)〉dt̃dμ ≤ 0,

which proves the claim.
We cite from [13] and [14] the next three lemma.

Lemma 2.4. [14] Let u be a non-negative bounded weak subsolution of (2.9) in Ω × [0, T ).
Assume that

1 < p < 2 and 1 ≤ q <
1

p − 1
. (2.14)

For any θ ≥ 0, define
f(s) = (sa − θ)1/a

+ ,

where

a =
1 − q(p − 1)

2 − p
=

D

2 − p
. (2.15)

Then f(u) is also a weak subsolution of (2.9).

Figure 1: Function f(s)

Lemma 2.5. [13] (Caccioppoli type inequality) Let v = v (x, t) be a non-negative bounded
subsolution to (2.9) in a cylinder Ω × [0, T ). Let η (x, t) be a locally Lipschitz non-negative
bounded function in Ω × [0, T ) such that η (∙, t) has compact support in Ω for all t ∈ [0, T ).
Fix some real σ such that

σ ≥ max (p, pq) (2.16)

and set
λ = σ + D and α =

σ

p
. (2.17)

Choose 0 ≤ t1 < t2 < T and set Q = Ω × [t1, t2]. Then
[∫

Ω
vληp

]t2

t1

+ c1

∫

Q
|∇ (vαη)|p ≤

∫

Q

[
pvληp−1∂tη + c2v

σ |∇η|p
]
, (2.18)

where c1, c2 are positive constants depending on p, q, λ.

In particular, if η does not depend on t, then
[∫

Ω
vληp

]t2

t1

+ c1

∫

Q
|∇ (vαη)|p ≤ c2

∫

Q
vσ |∇η|p . (2.19)

Let us observe for a later usage that

vαη ∈ Lp
loc

(
[0, T ]; W 1,p

0 (Ω)
)

. (2.20)
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Indeed, using α ≥ q, we get that the function Φ(s) = s
α
q is Lipschitz on any bounded interval

in [0,∞). Thus, vα = Φ(vq) ∈ W 1,p(Ω) and

|∇vα| =
∣
∣Φ′(vq)∇vq

∣
∣ ≤ C |∇vq| ,

whence
∫

Q
|∇ (vαη)|p ≤ C ′

∫

Q
|∇vα|p ηp + vαp|∇η|p = C ′

∫

Q
|∇vq|p ηp + vσ|∇η|p,

which is finite since ∫

Q
vσ|∇η|p ≤ const ||v||σ−pq

L∞

∫

Q
vpq

and proves (2.20).

Lemma 2.6. [14] Let M be geodesically complete and v = v (x, t) be a bounded non-negative
subsolution to (2.9) in M × [0, T ). For any λ ∈ [1,∞], the function

t 7→ ‖v(∙, t)‖Lλ(M)

is monotone decreasing in [0, T ).

3 Faber-Krahn inequality

Let M be a connected Riemannian manifold of dimension n and d be the geodesic distance
on M . For any x ∈ M and r > 0, denote by B(x, r) the geodesic ball of radius r centered at
x, that is,

B(x, r) = {y ∈ M : d(x, y) < r} .

Let the ball B be precompact. Then the following Faber-Krahn inequality in B of order
p ≥ 1 holds: if w ∈ W 1,p

0 (B) is non-negative,

E = {w > 0}

and r(B) denotes the radius of the ball B, then

∫

B
|∇w|p ≥

1
r(B)p

(

ι(B)
μ(B)
μ(E)

)ν ∫

B
wp, (3.21)

where ν > 0 and ι(B) is a positive constant that depends on the geometry of B. The value
of ν is independent of B and can be chosen as follows:

ν =

{ p

n
, if n > p,

any number ∈ (0, 1), if n ≤ p.
(3.22)

Choosing ι(B) to be an optimal constant in (3.21) we obtain that the function

B 7→
(ι(B)μ(B))ν

r(B)p
(3.23)

is monotone decreasing with respect to the partial order ⊂ on balls.
We say that M satisfies a relative Faber-Krahn inequality of order p if (3.21) holds with

ι(B) ≥ const > 0 for all geodesic balls B. For example, this holds if M is complete, non-
compact and satisfies RicciM ≥ 0 (see [4, 11, 23]).
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4 Long distance decay

From now on we always assume that

1 < p < 2 and 1 ≤ q <
1

p − 1
. (4.24)

Let us denote
D = 1 − q(p − 1)

and note that, under condition (4.24), we have D ∈ (0, 1). We start with the following
mean-value type inequality from [14].

Lemma 4.1. [14] Let the ball B = B (x0, r) be precompact. Let u be a non-negative bounded
subsolution in

Q = B × [0, t]

such that
u (∙, 0) = 0 in B.

Let σ and λ be reals such that

σ > 0 and λ = σ + D. (4.25)

Then, for the cylinder

Q′ =
1
2
B × [0, t] ,

we have

‖u‖L∞(Q′) ≤

(
C

ι(B)μ(B)rp

∫

Q
uσ

)1/λ

, (4.26)

where ι(B) is the Faber-Krahn constant in B, and the constant C depends on p, q, λ and the
Faber-Krahn exponent ν.

Figure 2: Cylinders Q and Q′

The next lemma is the main result of this section.

Lemma 4.2. Assume that M is geodesically complete and let u be a bounded non-negative
subsolution in M × [0, T ]. Let B0 = B (x0, R) be a ball such that

u0 := u(∙, 0) = 0 in B0.
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Then, for all t ∈ [0, T ],

‖u‖L∞( 1
2
B0×[0,t]) ≤ C

(
t

ι(B0)Rp

) 1
D

lnγ

(

2 +

(
ι(B0)Rp

t

) 1
D ||u0||L1(M)

μ (B0)

)

,

where the positive constants C and γ depend on p, q and the Faber-Krahn exponent ν.

Proof. Fix a point x ∈ 1
2B0 and r ≤ 1

2R so that B := B (x, r) ⊂ B0. Fix also some t ≤ T
and set, for all 0 ≤ k ≤ l,

Qk = 2kB × [0, t] and Jk =
∫

Qk

u,

where l is the maximal non-negative integer such that

2lr ≤
1
2
R, (4.27)

which implies 2kB ⊂ B0 for all 0 ≤ k ≤ l.
By Lemma 4.1 with σ = 1 and λ = 1 + D, we obtain for all 1 ≤ k ≤ l,

‖u‖L∞(Qk−1) ≤

(
C

ι(2kB)μ (2kB) (2kr)p

∫

Qk

u

)1/λ

.

It follows that

Jk−1 =
∫

Qk−1

u ≤ μ
(
2k−1B

)
t ‖u‖L∞(Qk−1)

≤ μ(B0)t

(
C

ι(2kB)μ (2kB) (2kr)p Jk

)1/λ

whence

Jk ≥ C−1ι(2kB)μ
(
2kB

)(
2kr
)p
(

Jk−1

μ (B0) t

)λ

.

Since by the monotonicity of the function (3.23),

ι(2kB)μ
(
2kB

)

(2kr)p/ν
≥

ι(B0)μ(B0)
Rp/ν

,

it follows that

ι(2kB)μ
(
2kB

)(
2kr
)p

≥ ι(B0)μ(B0)R
p

(
2kr

R

)p+p/ν

and

Jk ≥ C−1ι(B0)μ(B0)R
p

(
2kr

R

)p+p/ν (
Jk−1

μ (B0) t

)λ

=
Ak

Θ
J1+D

k−1 ,

where A = 2p+p/ν and Θ = C μ(B0)Dtλ

ι(B0)Rp

(
R
r

)p+p/ν
. By Lemma 7.2 with ω = D we obtain

Jk ≥

(
J0

(
A−1/DΘ

)1/D

)λk
(
A−k−1/DΘ

)1/D
,

that is,

J0 ≤

(

Ak/D Jk

ξ

) 1

λk

ξ = A
k

Dλk ξ
1− 1

λk J
1

λk

k ,
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where ξ =
(
A−1/DΘ

)1/D
. We have by Lemma 2.6

Jk ≤
∫

B0×[0,t]
u ≤ t

∫

M
u(∙, 0).

On the other hand, by Lemma 4.1,

‖u‖λ
L∞( 1

2
B×[0,t]) ≤

C

ι(B)μ(B)rp
J0.

It follows that

‖u‖λ
L∞( 1

2
B×[0,t]) ≤

CA
k

Dλk

ι(B)μ(B)rp
ξ
1− 1

λk
(
t||u0||L1(M)

) 1

λk .

Using that

ι(B)μ (B) rp ≥
ι(B0)μ(B0)

Rp/ν
rp+p/ν = ι(B0)μ(B0)R

p
( r

R

)p+p/ν

we obtain

‖u‖λ
L∞( 1

2
B×[0,t]) ≤

CA
k

Dλk

ι(B0)μ(B0)Rp

( r

R

)p+p/ν
ξ
1− 1

λk
(
t‖|u0||L1(M)

) 1

λk

=
CA

k

Dλk

ι(B0)μ(B0)Rp

( r

R

)p+p/ν

×

(

A−1/D μ (B0)
D tλ

ι(B0)Rp

(
R

r

)p+p/ν
) 1

D

(
1− 1

λk

)

(
t||u0||L1(M)

) 1

λk .

Let us choose k maximal possible, that is, k = l. Recall that λ = 1 + D, so that

Γ := λ
1
D

(

1 −
1

λl

)

+
1

λl
= 1 +

1
D

−
1

Dλl

and we obtain

‖u‖λ
L∞( 1

2
B×[0,t]) ≤ CA

l

Dλl −
1

D2

(
1− 1

λl

)(
R

r

)(p+ p
ν )
(

1
D

(
1− 1

λl

)
−1
)(

||u0||L1(M)

μ(B0)

) 1

λl
(

t

ι(B0)Rp

)Γ

.

It follows from (4.27) that R
r ' 2l, which yields

‖u‖λ
L∞( 1

2
B×[0,t]) ≤ C2

l(p+ p
ν )
(

1
D

(
1− 1

λl

)
−1
)(

||u0||L1(M)

μ(B0)

) 1

λl
(

t

ι(B0)Rp

)Γ

. (4.28)

Also, since Γ
λ = 1

D − 1
Dλl+1 , we deduce from (4.28),

‖u‖L∞( 1
2
B×[0,t]) ≤ C2l 1

λ(p+ p
ν )( 1

D
−1)

(
t

ι(B0)Rp

) 1
D

[(
t

ι(B0)Rp

)− 1
D ||u0||L1(M)

μ (B0)

] 1

λl+1

= C

(
t

ι(B0)Rp

) 1
D

alb
1

λl+1 , (4.29)

where

a = 2
1
λ(p+ p

ν )( 1
D
−1) and b =

(
ι(B0)Rp

t

) 1
D ||u0||L1(M)

μ (B0)
.
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Let us now choose l ∈ N so that the right hand side of (4.29) is minimal. For that,

consider first the case when Rp ≥ 1

a
λ

log λ

(
μ(B0)

||u0||L1(M)

)D
t

ι(B0) . Then the right hand side of

(4.29) is minimal if λl+1 = ln λ
ln a ln b, that is, we choose

l =

⌊
1

ln λ
ln

(
ln λ ln b

λ ln a

)⌋

.

Hence, we obtain from (4.29),

‖u‖L∞( 1
2
B×[0,t]) ≤ C

(
t

ι(B0)Rp

) 1
D
(

ln λ ln b

λ ln a

) ln a
ln λ

exp

(
ln a

ln λ

)

= C

(
t

ι(B0)Rp

) 1
D

lnγ b,

where γ = ln a
ln λ . On the other hand, if Rp ≤ 1

a
λ

log λ

(
μ(B0)

||u0||L1(M)

)D
t

ι(B0) , we have b ≤ a
λ

log λ and

whence,

‖u‖L∞( 1
2
B×[0,t]) ≤ C

(
t

ι(B0)Rp

) 1
D

lnγ(2 + b).

Covering 1
2B0 with balls B (xi, r) with small enough radius r we obtain

‖u‖L∞( 1
2
B0×[0,t]) ≤ C

(
t

ι(B0)Rp

) 1
D

lnγ(2 + b),

which proves the claim.

5 Long time decay

The main result of this section is Lemma 5.4.

5.1 Comparison in two cylinders

Let a be defined by (2.15), that is,

a =
1 − q(p − 1)

2 − p
=

D

2 − p
. (5.30)

Note that under condition (4.24) we have a ∈ (0, 1].

Lemma 5.1. Consider two balls B0 = B (x0, r0) and B1 = B (x0, r1) with 0 < r1 < r0 where
B0 is precompact. Assuming 0 < t0 < t1 < T , consider two cylinders Qi = Bi × [ti, T ],
i = 0, 1. Let v0 be non-negative bounded subsolution in Q0. Set for some θ > 0

v1 = (va
0 − θ)1/a

+ ,

where a is as in (5.30). Let σ and λ be reals satisfying (2.16) and (2.17). Set

Ji =
∫

Qi

vσ
i dμdt.

Then

J1 ≤
Crp

0S
ν

(ι(B0)μ(B0))
ν θ

λν
a (r0 − r1)

p
J1+ν

0 , (5.31)

11



where

S =
‖v0‖

D
L∞(Q0)

t1 − t0
+

1
(r0 − r1)

p ,

ν is the Faber-Krahn exponent, ι(B0) is the Faber-Krahn constant in B0, and C depends on
p, q and λ.

Figure 3: Cylinders Q0 and Q1

Proof. From Lemma 2.4 we know that v1 is also a subsolution. Let η(x, t) = η (x) be a bump

function of B1 in B1/2 := B
(
x0,

r0+r1
2

)
. Recall that by (2.20), vα

1 η ∈ Lp
(
[t0, T ]; W 1,p

0 (B)
)
,

where α is defined by (2.17), that is α = σ
p . Hence, applying the Faber-Krahn inequality

(3.21) in ball B0 for any t ∈ [t0, T ] we get that
∫

B1

vσ
1 ≤

∫

B0

(vα
1 η)p ≤ rp

0

(
μ (Dt)

ι(B0)μ(B0)

)ν ∫

B0

|∇ (vα
1 η)|p , (5.32)

where we used that αp = σ and η = 1 in B1 and

Dt = {vα
1 η (∙, t) > 0} = {v1 > 0} ∩ {η > 0} =

{
v0 (∙, t) > θ1/a

}
∩ B1/2.

Also, note that ηt = 0 and |∇η| ≤ 2
r0−r1

. From (2.19) we therefore obtain

c1

∫ T

t1

∫

B0

|∇ (vα
1 η)|p ≤

∫ T

t1

∫

B0

vσ
1 |∇η|p ≤

c3

(r0 − r1)
p J0, (5.33)

where c3 = c22p and we used that v1 ≤ v0.
Let us now apply Lemma 2.5 to function v0 in B0 × [t0, T ]. Take

η (x, t) = η1 (x) η2 (t) ,

where η1 is a bump function of B1/2 in B0 so that

|∇η1| ≤
2

r0 − r1
,

and η2 is a bump function of [t1, T ] in [t0, T ], that is,

η2 (t) =

{
1, t ≥ t1
t−t0
t1−t0

, t0 ≤ t ≤ t1

so that

|∂tη2| ≤
1

t1 − t0
.

12



From (2.18) we obtain

[∫

B0

vλ
0ηp

]T

t0

≤
∫ T

t0

∫

B0

[
pηp−1∂tηvλ

0 + c2 |∇η|p vσ
0

]
=
∫ T

t0

∫

B0

[
pηp−1∂tηvD

0 + c2 |∇η|p
]
vσ
0 .

Hence, for any t ∈ [t1, T ], using that η2(t0) = 0 and η(x, t) = 1 for x ∈ B1/2 and t ≥ t1,

∫

B1/2

vλ
0 (∙, t) ≤ c4

∫ T

t0

∫

B0

[
||v0||DL∞

t1 − t0
+

1
(r0 − r1)p

]

vσ
0 ≤ c4SJ0,

where c4 = max(p, c3). Thus, we deduce

μ (Dt) ≤
1

θλ/a

∫

B1/2

vλ
0 (∙, t) ≤

c4SJ0

θλ/a
.

Combining this with (5.32) and (5.33) we obtain

J1 =
∫ T

t1

∫

B1

vσ
1 ≤ rp

0

(
c4SJ0

ι(B0)μ(B0)θλ/a

)ν
c3

c1 (r0 − r1)
p J0,

which implies (5.31) and finishes the proof.

5.2 Iterations and the mean value theorem

Lemma 5.2. Let the ball B = B (x0, R) be precompact. Let u be a non-negative bounded
subsolution in Q = B × [0, T ] . Let σ and λ be reals such that

σ > 0 and λ = σ + D. (5.34)

Then, for the cylinder

Q′ =
1
2
B × [

1
2
T, T ],

we have

‖u‖L∞(Q′) ≤

(
CS

ι(B)μ(B)

∫

Q
uσ

)1/λ

, (5.35)

where

S =
‖u‖D

L∞(Q)

T
+

1
Rp

, (5.36)

ι(B) is the Faber-Krahn constant in B, and the constant C depends on p, q, λ and ν.

Figure 4: Cylinders Q′ and Q
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Proof. Let us first prove (5.35) for σ large enough as in Lemma 2.5. Consider sequences

rk =

(
1
2

+ 2−k−1

)

R, tk =
(
1 − 2−k

) T

2

where k = 0, 1, 2, ..., so that r0 = R and rk ↘ 1
2R as k → ∞ t0 = 0 and tk ↗ 1

2T as k → ∞.
Set Bk = B (x0, rk), Qk = Bk × [tk, T ] so that B0 = B, Q0 = Q and Q∞ := limk→∞ Qk = Q′.
Choose some θ > 0 to be specified later and define a sequence of functions {uk} by

u0 = u, uk =
(
ua

k−1 − 2−kθ
)1/a

+
for k ≥ 1

where a is given by (5.30). The function fθ (s) = (sa − θ)1/a
+ has the property that fθ1 ◦fθ2 =

fθ1+θ2 . Hence, we obtain

uk =

(

ua −
1
2
θ − ... −

1
2k

θ

)1/a

+

=
(
ua −

(
1 − 2−k

)
θ
)1/a

+
.

Set

Jk =
∫

Qk

uσ
k .

Since uk is a subsolution, we obtain by Lemma 5.1 that

Jk+1 ≤
Crp

kS
ν
k

(ι(Bk)μ(Bk))
ν (2−(k+1)θ

)λν
a (rk − rk+1)

p
J1+ν

k ,

where

Sk =
‖u‖D

L∞(Qk)

tk+1 − tk
+

1
(rk − rk+1)

p .

By monotonicity of the function (3.23), we have

rp
k

(ι(Bk)μ(Bk))
ν ≤

Rp

(ι(B)μ(B))ν .

Since rk − rk+1 = 2−k−2R and tk+1 − tk = 2−k−2T, it follows that

Sk ≤ 2(k+2)p

(
‖u‖D

L∞(Q)

T
+

1
Rp

)

= 2(k+2)pS.

Hence,

Jk+1 ≤
C2(k+1) λν

a 2(k+2)p(1+ν)Sν

(ι(B)μ(B))ν θ
λν
a

J1+ν
k =

AkJ1+ν
k

Θ

where

A = 2
λν
a

+(1+ν)p and Θ = c

(
ι(B)μ(B)θ

λ
a

S

)ν

.

Now let us apply Lemma 7.1 with ω = ν: if

Θ ≥ A1/νJν
0 , (5.37)

then, for all k ≥ 0,
Jk ≤ A−k/νJ0.
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In terms of θ the condition (5.37) is equivalent

c

(
ι(B)μ(B)θ

λ
a

S

)ν

≥ A1/νJν
0

that is,

θ
λ
a ≥

CSJ0

ι(B)μ(B)
.

Hence, we choose θ to have equality here. For this θ we obtain Jk → 0 as k → ∞, which
implies that ua ≤ θ in Q∞. Hence,

‖u‖L∞(Q′) ≤

(
CSJ0

ι(B)μ(B)

)1/λ

,

which proves (5.35).
Now we prove (5.35) for any σ > 0. Let σ0 be such that (5.35) is already known for

σ = σ0, and let σ < σ0. Denote

λ0 = σ0 + D and λ = σ + D

so that λ < λ0.
Consider, for k ≥ 0, sequences rk =

(
1 − 1

2k+1

)
R and tk = 2−(k+1)T so that r0 = 1

2R,

t0 = 1
2T and rk ↑ R, tk ↓ 0 as r → ∞. Set Bk = B(x0, rk) and Q̃k = Bk × [tk, T ]. Denoting

also B = B(x0, R), we see that

1
2
B ⊂ Bk ⊂ B and Bk ↑ B as k → ∞

and thus Q̃0 = Q′ and Q̃k ↑ Q. Set also ρk = rk+1 − rk = 1
2k+2 R. Let us also use the notation

χ(B) = ι(B)μ(B). For any point (x, τ ) ∈ Q̃k, let s be such that

τ < s < min

(

τ +
1
2
tk, T

)

.

Then applying (5.35) from the first part of the proof in B (x, ρk) × [s − tk, s), we obtain

‖u‖λ0

L∞(B(x, 1
2
ρk)×[s− 1

2
tk,s))

≤
CSk

χ (B(x, ρk))

∫

B(x,ρk)×[s−tk,s)
uσ0

≤
CSk

χ (B(x, ρk))
‖u‖σ0−σ

L∞(B(x,ρk)×[s−tk,s))

∫

B(x,ρk)×[s−tk,s)
uσ,

where

Sk =
‖u‖D

L∞(B(x,ρk)×[s−tk,s))

tk
+

1
ρp

k

.

Since B (x, ρk) ⊂ Bk+1 ⊂ B, we have by the monotonicity of (3.23), χ(B(x,ρk))

ρ
p/ν
k

≥ χ(B)

Rp/ν whence

1
χ(B(x, ρk))

≤
(R/ρk)

p/ν

χ(B)
=

2(k+2)p/ν

χ(B)
.

Hence, we obtain

‖u‖λ0

L∞(B(x, 1
2
ρk)×[s− 1

2
tk,s))

≤
C2kp(1+1/ν)S

χ (B)
‖u‖λ0−λ

L∞(Q̃k+1)

∫

Q
uσ.
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Covering Q̃k by a sequence of sets B(x, 1
2ρk) × [s − 1

2 tk, s)) with (x, τ ) ∈ Q̃k, we obtain

‖u‖λ0

L∞(Q̃k)
≤

C2kp(1+1/ν)S

χ (B)
‖u‖λ0−λ

L∞(Q̃k+1)

∫

Q
uσ. (5.38)

Setting Jk = ‖u‖−(λ0−λ)

L∞(Q̃k)
, we rewrite (5.38) as follows:

Jk+1 ≤
Ak

Θ
J

λ0
λ0−λ

k =
Ak

Θ
J1+ω

k ,

where

A = 2p(ν−1+1), Θ−1 =
CS

χ (B)

∫

Q
uσ and ω =

λ0

λ0 − λ
− 1 =

λ

λ0 − λ
.

Applying Lemma 7.1, we obtain

Jk ≤

(
J0

(
A−1/ωΘ

)1/ω

)(1+ω)k
(
A−1/ωΘ

)1/ω
,

that is,

J0 ≥
(
A−1/ωΘ

)1/ω
((

A1/ωΘ−1
)1/ω

Jk

) 1

(1+ω)k

.

Since Jk ≥ ‖u‖−(λ0−λ)

L∞(Q̃k)
=: const > 0, we see that

lim inf
k→∞

((
A1/ωΘ−1

)1/ω
Jk

) 1

(1+ω)k

≥ 1,

whence

J0 ≥
(
A−1/ωΘ

)1/ω
.

It follows that

‖u‖λ0−λ

L∞(Q̃0)
≤ A1/ω2

(
CS

χ (B)

∫

Q
uσ

)1/ω

,

and finally

‖u‖L∞(Q′) ≤

(
CS

χ (B)

∫

Q
uσ

)1/λ

,

where A1/ω2
is absorbed into C and finishes the proof.

5.3 Initial estimate of the long time decay

Lemma 5.3. Assume that M is geodesically complete and satisfies the relative Faber-Krahn
inequality. Let u be a non-negative bounded subsolution in M × [0,∞) with initial function
u0 = u(∙, 0). Set

τ = ‖u0‖
D
L∞(M) .

Let σ ≥ 1 and λ = σ + D. Then, for all T > 0 and all x ∈ M ,

||u(∙, T )||L∞(B(x, 1
2
(T/τ)1/p)) ≤ C

(
τ

μ
(
B(x, (T/τ)1/p)

)
∫

M
uσ

0

)1/λ

,

where C depends on p, q and the constants in the relative Faber-Krahn inequality.
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Proof. We apply Lemma 5.2 with σ ≥ 1 and λ = σ +D. Fix some T > 0 and choose R from
the equation

τ

T
=

1
Rp

.

Fix also some x ∈ M and set B = B(x,R),

Q = B × [0, T ] and Q′ =
1
2
B × [

1
2
T, T ].

Observe that by Lemma 2.6

∫

Q
uσ =

∫ T

0

∫

B
uσ ≤ T

∫

M
uσ

0

and ‖u‖D
L∞(Q) ≤ ‖u0‖

D
L∞(M) = τ . By the choice of R we have

S =
‖u‖D

L∞(Q)

T
+

1
Rp

≤
τ

T
+

1
Rp

=
2

Rp
.

Using also that ι(B) ≥ const > 0 by assumption and applying Lemma 5.2, we obtain that

‖u‖L∞(Q′) ≤

(
C

ι(B)μ(B)Rp

∫

Q
uσ

)1/λ

≤



 Cτ

μ
(
B(x, (T/τ)1/p)

)
∫

M
uσ

0





1/λ

,

whence the claim follows.

5.4 Optimal long time decay

The next lemma is the main result about long time decay.

Lemma 5.4. Assume that M is geodesically complete and satisfies the relative Faber-Krahn
inequality. Assume that, for all x ∈ M and R ≥ 1,

μ(B(x,R)) ≥ cRα, (5.39)

for some c, α > 0. Assume also that

β := p − Dα > 0.

Let u be a non-negative bounded subsolution in M × [0,∞) with initial function u0 = u(∙, 0).
Then, for all t > 0, we have

‖u (∙, t)‖L∞(M) ≤
C

tα/β

(
||u0||L1(M) + ‖u0‖L∞(M)

)p/β
, (5.40)

where C depends on c, α, p, q and on the constants in the relative Faber-Krahn inequality.

Proof. Denote t0 := ‖u0‖
D
L∞(M) and observe first that, for t < t0, the right hand side of

(5.40) is bounded below by

C

t
α/β
0

(
‖u0‖L∞(M)

)p/β
= C ‖u0‖

p/β−Dα/β
L∞(M) = C ‖u0‖L∞(M)

so that (5.40) is trivially satisfied by Lemma 2.6.
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Hence, we assume in what follows that t ≥ t0. Let us first consider the case when ‖u0‖L∞ =
1, that is, t0 = 1. Denote

F (t) = ‖u(∙, t)‖L∞(M)

and note that F (t) ≤ 1. The function u(∙, t+ ∙) is a subsolution in M × [0,∞) with the initial
function u(∙, t). Hence, applying Lemma 5.3 to subsolution u(∙, t + ∙) and with σ = 1 and
τ = ‖u (∙, t)‖D

L∞(M) ≤ t0, we obtain that

||u(∙, 2t)||L∞(B(x, 1
2
(t/τ)1/p)) ≤ C

(
τ

μ
(
B(x, (t/τ)1/p)

) ||u(∙, t)||L1(M)

) 1
1+D

.

Setting λ = 1 + D and using (5.39) with R = (t/τ)1/p ≥ 1, we obtain

||u(∙, 2t)||L∞(B(x, 1
2
(t/τ)1/p)) ≤ C

(
τ

(t/τ)α/p
||u0||L1(M)

) 1
λ

= C

(
1

tα/p
F (t)D(1+ α

p
) ||u0||L1(M)

) 1
λ

.

Covering M with a countable sequence of balls B(xi,
1
2(t/τ)1/p) with xi ∈ M , it follows that

F (2t) ≤ C

(
1

tα/p
F (t)D(1+ α

p
) ||u0||L1(M)

) 1
λ

. (5.41)

By the monotonicity of function F (t) (Lemma 2.6), it suffices to prove (5.40) when t = 2k,
k ≥ 0. By (5.41), we obtain for all k ≥ 0,

F (2k+1) ≤ C

(
1

(2k+1)α/p
F
(
2k
)D(1+ α

p
)
||u0||L1(M)

) 1
λ

. (5.42)

Note that

1
λ

D

(

1 +
α

p

)

− 1 =
D (p + α) − p (1 + D)

(1 + D) p
=

Dα − p

(1 + D) p
= −

β

λp
.

Denoting Fk = F (2k) we obtain from (5.42) for Gk = log2 Fk, that

Gk+1 ≤

(

1 −
β

λp

)

Gk −
α

λp
k + c,

where

c =
1
λ

(log2 ‖u0‖L1)+ + log2 C.

Note that

1 −
β

λp
> 0.

The equation

gk+1 =

(

1 −
β

λp

)

gk −
α

λp
k + c

has a general solution in the form

gk = K

(

1 −
β

λp

)k

+ Ak + B,
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where K,A,B are some constants. The constants A and B are determined from the condition
that Ak + B is a solution, that is,

A (k + 1) + B =

(

1 −
β

λp

)

(Ak + B) −
α

λp
k + c,

whence
A = −

α

β
.

Further, we have

A + B =

(

1 −
β

λp

)

B + c

so that

B =
c − A

β/λp
=

λp

β
c +

αλp

β2 =
p

β
(log2 ‖u0‖L1)+ + c̃,

where

c̃ =
λp

β
log2 C +

αλp

β2 .

Let us choose the initial condition for gk as follows:

g0 = G0 = G(1),

which allows to determine K as follows:

K = G(1) − B ≤ 0,

because G(1) = log2 F (1) ≤ 0 and B > 0. Hence, we obtain, for all k ≥ 0,

Gk ≤ gk ≤ Ak + B = −
α

β
k +

p

β
log2 (‖u0‖L1)+ + c̃,

whence, for t = 2k,
F (t) ≤ C̃t−α/β (1 + ‖u0‖L1)p/β ,

which finishes the proof of (5.40) in the case ‖u0‖L∞ = 1.
In the general case when ‖u0‖L∞ and hence, t0 is arbitrary, consider the function

u′ : (x, t̃) 7→ ‖u0‖
−1
L∞ u(x, t),

where t̃ = ‖u0‖
−D
L∞ t, which satisfies ‖u′

0‖L∞ = 1 and is a subsolution of (2.9) by Lemma 2.3.
Hence, we obtain by the previous part of the proof, for t̃ ≥ 1,

∥
∥u′ (∙, t̃

)∥∥
L∞(M)

≤
C

(
t̃
)α/β

(
1 + ||u′

0||L1(M)

)p/β
.

Noticing that t̃ ≥ 1 ⇔ t ≥ t0, we conclude, for t ≥ t0,

‖u (∙, t)‖L∞(M) ≤
C

tα/β
‖u0‖

Dα/β+1
L∞(M)

(
1 + ‖u0‖

−1
L∞(M) ||u0||L1(M)

)p/β
,

which finishes the proof of (5.40), because Dα/β + 1 = p/β.
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6 Combined estimate

The following theorem is our main result (equivalent to Theorem 1.1 from the Introduction).

Theorem 6.1. Assume that M is geodesically complete and satisfies the relative Faber-Krahn
inequality. Assume that, for all x ∈ M and R ≥ 1,

μ(B(x,R)) ≥ cRα,

for some c, α > 0. Assume that (4.24) holds and that

β := p − Dα > 0.

Let u be a bounded non-negative subsolution in M × [0,∞) with initial function u0 = u (∙, 0) ∈
L1(M) ∩ L∞(M) and set A = supp u0. Denote |x| = d(x,A). Then, for all t > 0 and all
x ∈ M , we have

‖u (∙, t)‖L∞(B(x, 1
2
|x|)) ≤

C

t
α
β

Φ

(

1 +
|x|
t1/β

)

, (6.43)

where
Φ(s) = s−

p
D logγ(1 + s),

where the positive constants C and γ depend on c, α, p, q, ||u0||L1(M), ||u0||L∞(M) and on the
constants in the relative Faber-Krahn inequality.

Proof. Let us first prove that for all t > 0 and all x ∈ M \ A, we have

‖u (∙, t)‖L∞(B(x, 1
2
|x|)) ≤

C1

tα/β
∧ C2

(
t

|x|p

) 1
D

logγ

(

2 +

(
|x|β

t

) 1
D

)

, (6.44)

where the positive constants C1, C2, γ depend on c, α, p, q, ||u0||L1(M), ‖u0‖L∞(M) and on the
constants in the relative Faber-Krahn inequality.

By Lemma 5.4 we have

‖u (∙, t)‖L∞(M) ≤
C

tα/β

(
||u0||L1(M) + ‖u0‖L∞(M)

)p/β
,

which gives the first term in (6.44). In order to obtain the second term in (6.44), we apply
Lemma 4.2 in the ball Bx = B(x, |x|) that is disjoint with supp u0 and deduce

‖u(∙, t)‖L∞( 1
2
Bx) ≤ C

(
t

ι(Bx)|x|p

) 1
D

logγ

(

2 +

(
ι(Bx)|x|p

t

) 1
D ||u0||L1(M)

|x|α

)

≤ C

(
t

|x|p

) 1
D

logγ

(

2 +
|x|

β
D

t
1
D

)

.

Now let us show how (6.44) implies (6.43). In the case when |x|
t1/β ≤ C ′ for some constant

C ′ > 1, we have Φ
(
1 + |x|

t1/β

)
≥ const > 0, which yields (6.43). On the other hand, if

|x|
t1/β ≥ C ′, we see that

1

t
α
β

Φ

(

1 +
|x|
t1/β

)

=
1

t
α
β

(

1 +
|x|
t1/β

)−p/D

logγ

(

2 +
|x|
t1/β

)

'
t1/D

|x|p/D
logγ

(

2 +
|x|
t1/β

)

,

because p
βD − α

β = 1
D , which finishes the proof of (6.43) also in this case.
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Remark 6.2. The model manifold mentioned in Section 7.1 satisfies the volume doubling
property, the Poincaré inequality, and consequently, also the relative Faber-Krahn inequality
(see Proposition 4.10 in [12]). From (7.2), we have on that manifold the estimate

‖u (∙, t)‖L∞(B(x, 1
2
|x|)) '

1

t
α
β

(

1 +
|x|
t1/β

)−p/D

,

which shows that our estimate (6.43) is only logarithmically off the sharp result.

7 Appendix

7.1 Radial solutions on polynomial models

Let M be a model manifold, that is M = (0, +∞) × Sn−1 as topological spaces and M is
equipped with the Riemannian metric ds2 given by

ds2 = dr2 + ψ2(r)dθ2,

where ψ(r) is a smooth positive function on (0, +∞) and dθ2 is the standard Riemannian
metric on Sn−1. We define S(r) = ψn−1(r), which is called the profile of the model manifold.

In the following, we assume that, for some α ∈ (0, n] and all r ≥ r0,

S (r) = Crα−1.

Let us denote D = 1 − q (p − 1). Similarly to Proposition 5.1 in [14] one can show that
if D > 0 and p > αD, then the following function is a non-negative solution of (1.1) in
M \ Br0 × R+:

u (r, t) =
1

tα/β

(

C + κ
( r

t1/β

) p
p−1

)−1/τ

, (7.1)

where C > 0 and

β = p − αD, τ =
D

p − 1
, κ = τ

p − 1

pqβ
1

p−1

.

It follows from (7.1) that

u(r, t) '
1

t
α
β

(
1 +

r

t1/β

)−p/D
. (7.2)

7.2 Auxiliary lemmas

Lemma 7.1. [13] Let a sequence {Jk}
∞
k=0 of non-negative reals satisfy

Jk+1 ≤
Ak

Θ
J1+ω

k for all k ≥ 0.

where A, Θ, ω > 0. Then, for all k ≥ 0,

Jk ≤

((
A1/ωΘ−1

)1/ω
J0

)(1+ω)k (
A−k−1/ωΘ

)1/ω
.

In particular, if Θ ≥ A1/ωJω
0 , then Jk ≤ A−k/ωJ0 for all k ≥ 0.

The next lemma is a version of Lemma 7.1 with the opposite inequality sign, and the
proof is analogous to that of Lemma 7.1.
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Lemma 7.2. Let a sequence {Jk}
∞
k=0 of non-negative reals satisfy

Jk ≥
Ak

Θ
J1+ω

k−1 for all k ≥ 1.

where A, Θ, ω > 0. Then, for all k ≥ 0,

Jk ≥

((
A1/ωΘ−1

)1/ω
J0

)(1+ω)k (
A−k−1/ωΘ

)1/ω
.

In particular, if Θ ≤ A1/ωJω
0 , then Jk ≥ A−k/ωJ0 for all k ≥ 0.
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