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Abstract

We consider on Riemannian manifolds the Leibenson equation
_ q
Oru = Apu

that is also known as a doubly nonlinear evolution equation. We prove upper estimates
of weak subsolutions to this equation on Riemannian manifolds with non-negative Ricci
curvature in the case when p and ¢ satisfy the conditions

1
1<p<?2 and 1<g< ——.
p—1

We show that these estimates are optimal in terms of long time behaviour and near-
optimal in terms of long distance behavior.
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1 Introduction

Let M be an arbitrary Riemannian manifold. We consider solutions of the non-linear evolu-
tion equation

Oru = Apuf, (1.1)

where p > 1, ¢ > 0, u = u(z,t) is an unknown non-negative function of x € M, t > 0, and
A, is the Riemannian p-Laplacian:

Apv = div (|VoP72Vv) .

The equation (1.1) is frequently referred to as a doubly non-linear parabolic equation. For
the physical meaning of this equation see [13, 20, 21].
When M = R", G. L. Barenblatt [1] constructed for all p > 1, ¢ > 0 spherically symmetric
self-similar solutions of (1.1), that are nowadays called Barenblatt solutions.
Let us denote
D=1-gq(p-1).

If D < 0, then the Barenblatt solution has a finite propagation speed, and the same phe-
nomenon occurs on arbitrary Riemannian manifolds (see [2, 6, 7, 13, 14, 15, 26]).

In the borderline case D = 0, the Barenblatt solutions is positive but decays exponentially
in distance. Similar sub-Gaussian upper bounds of solutions of (1.1) on Riemannian manifolds
were proved in the case D = 0 in [25].

In the present paper we are concerned with the case D > 0, that is, when

qlp—1) <1 (1.2)
In this case, equation (1.1) is also called singular. If in addition
B:=p—nD >0,
then the Barenblatt solution satisfies the estimate

1 x|\
u(z,t) ~ v <1 + t‘l_/L> (1.3)

b

ot

(cf. Section 7.1), where the symbol ”"~” means that the ratio of the terms is bounded from
above and below by a positive constant.
In the present paper we prove upper bounds for solutions of the Leibenson equation (1.1)

on geodesically complete Riemannian manifolds in the restricted singular case

1<p<2 and 1§q<ﬁ (1.4)
(note that (1.4) implies (1.2)). We understand solutions of (1.1) in M xR, in a certain weak
sense (see Section 2 for the definition).

Assume that the Riemannian manifold M is geodesically complete. Denote by p the
Riemannian measure on M, by d the geodesic distance and by B(z,r) the geodesic ball of
radius r centered at z.

The main result of the present paper is as follows (cf. Theorem 6.1).

Theorem 1.1. Let M satisfy a relative Faber-Krahn inequality (see Section 3 for definition)
and assume that, for all x € M and all R > 1,

u(B(x, R)) > cR®, (15)



for some ¢, > 0. Assume that (1.4) holds and that
B:=p—aD>0. (1.6)

Let u be a bounded non-negative solution of (1.1) in M x [0,00) with initial function uy =
u(-,0) € LY(M) N L®(M). Set A = suppug and denote |x| = d(z, A). Then, for all t > 0
and all x € M, we have

c ||
Hu("t)HL"O(B(L%WD) < t_%(I) <1 + m) , (1.7)

where
O(s)=sDlog"(1+s),

where the positive constants C' and y depend on ¢, ., p, q, ||uol|r(arys ||uollLiary and on the
constants in the relative Faber-Krahn inequality.

In particular, if the solution u is continuous then the left hand side of (1.7) can be replaced
by u(zx,t).

Note that the relative Faber-Krahn inequality is satisfied if, for example, M has non-
negative Ricci curvature (see [4, 11, 23]).

Comparing the upper bound (1.7) from Theorem 1.1 with the estimate (1.3) of the Baren-
blatt solution, we see that the estimate (1.7) is sharp in R™ up to a logarithmic term. A similar
comparison takes place for some class of spherically symmetric manifolds (model manifolds)
satisfying the relative Faber-Krahn inequality (cf. Section 7.1).

The restrictions (1.4) seem to be technical and we think, that the result should be true
for a general range of p, ¢ given by (1.2), as it is stated in the next conjecture.

Conjecture 1.2. Let M satisfy the relative Faber-Krahn inequality and (1.5). Assume that
(1.2) and (1.6) hold, that is, D > 0 and (3 > 0. Then the estimate (1.7) holds with

s

D(s) =5~

If p = 2 then (1.2) becomes ¢ < 1. In this case, assuming that the n-dimensional
Riemannian manifold satisfies a uniform Sobolev inequality, the long time decay of order
t="/P for solutions of (1.1) (thus matching (1.3)) was proved in [3].

If ¢ = 1 then (1.2) amounts to p < 2. In this case qualitative properties of weak solutions
of (1.1) in R™ were proved in [8, 10].

The structure of the present paper is as follows.

In Section 2 we define the notion of a weak solution of the equation (1.1).

In Section 3 the aforementioned relative Faber-Krahn inequality is discussed.

In Section 4 we prove the main technical lemma (Lemma 4.2) about the long distance
decay of solutions of (1.1). It says the following. Let u be a bounded non-negative solution
of (1.1) in M x [0,00). Let By = B (zp, R) be a ball such that the initial function u(-,0) = wy
satisfies

Uy = 0 in Bo.

Then, for all £ > 0,

1 1
t\? RP\ D |[uollLr(ar)
||u||L°°(%Bo><[U,tD < CBO (_Rp> logV <2+ <_t > W s (18)

where the positive constant Cp, depends on the intrinsic geometry of By and « depends on
p, q and on the constants in the relative Faber-Krahn inequality.



Let us emphasize that this Lemma 4.2 is valid for an arbitrary complete Riemannian
manifold, and the estimate (1.8) depends on the local geometry of the manifold inside the
ball By.

In the proof of Lemma 4.2 we use a certain mean value inequality that is stated in Lemma
4.1 that we borrowed from our previous paper [14]. If one could improve the upper bound
(1.8) to get rid of the log term then this would then imply the validity of Conjecture 1.2.

In Section 5 we prove the main lemma (Lemma 5.4) about the long time decay of solutions
of (1.1). The main technical ingredient is a non-linear mean value inequality (Lemma 5.2)
for solutions of (1.1), which says the following. Let u be a non-negative bounded solution in
Q=B x[0,T], B= B(xg,R), T > 0. Then, for the cylinder

, 1 1
=-B =TT
Q 2 X [2 ) ]7
we have
ol < (S [ )
=@ n(B) Jq
where

”UHLDOO(Q) 1

T RP’

o > 0 is any and the constant C'z depends on p, ¢, o and the intrinsic geometry of the ball B
(in fact, on the Faber-Krahn inequality in B).

The proof of the mean value inequality of Lemma 5.2 in the present paper is inspired by
the proof of a mean value inequality in our previous paper [14] and uses a modification of
the classical De Giorgi iteration argument [5].

In Section 7 (Appendix) we mention the exact solutions of (1.1) on the model manifolds
(generalizing the Barenblatt solutions).

We denote by ¢, c’, C, C’ positive constants whose value might change at each occurance.

S:

2 Weak subsolutions
We consider in what follows the following evolution equation on a Riemannian manifold M:
Oru = Apuf. (2.9)
By a subsolution of (2.9) we mean a non-negative function u satisfying
Oru < Apu? (2.10)

in a certain weak sense as explained below.
We assume throughout that
p>1 and ¢ >0.

Set
D=1-q(p-1).

Let u denote the Riemannian measure on M. For simplicity of notation, we frequently
omit in integrations the notation of measure. All integration in M is done with respect to
dp, and in M x R — with respect to dudt, unless otherwise specified.

Let 2 be an open subset of M and I be an interval in [0, 00).



Definition 2.1. We say that a non-negative function v = u(x,t) is a weak subsolution of
(2.9) in Q x I, if

ue C (I LI(Q)) and w!e L (I; Wl’p(Q)) (2.11)
and (2.10) holds weakly in © x I, which means that for all ¢1,t, € I with #; < t2, and all
non-negative test functions

Y€ WES (I L(Q)) N LY (1; Wol’p(Q)) : (2.12)
we have
ta to
[ / w] + / / —ud + | Vud|P~2(Vul, V) < 0. (2.13)
Q t1 11 Q

For different notions of weak solutions see also [9, 24]. Existence and uniqueness results
for the Cauchy problem with the above notion of weak solutions of (2.9) were obtained in the
euclidean case for example in [17, 18, 19, 22] and on manifolds in [16].

If w is of the class (2.11) then V(u?) is defined as an element of LP(f2). Then we define

Vu as follows: - ()
) g u TV (u?), u >0,
V= { 0, u=0.

Remark 2.2. Note that it follows from (2.11) and (2.12) that the integrals in (2.13) are
finite. Indeed, we have by Holder’s inequality

/ [ vt v vw\</ [ wattivel
([ fowar) ™ ([ fieer)’

Lemma 2.3. Let u(z,t) be a non-negative weak subsolution of (2.9) in Q x [0,00). Then
au(z,a=Pt) is a weak subsolution of (2.9) in Q x [0,00) for any a > 0.

Proof. Let us apply (2.13) with atp(z,t) = atp(z, aPt) noticing that av)(z, aPt) lies again in
the class (2.12) if ¢ (x,t) does. Hence, for all t1,ts € [0,00) with #; < to,

[ /Q w(w, Daw(z, aDt)} z

[3)
—|—/ / —au(z, t)opb(x, aPt) + a|Vu(z, t)1P~2(Vu(z, 1), Vi (z, aPt))dtdp < 0.
t Q

We have
|V (au)?|P~2V (au)? = o~ P | Vu?|P2Vul,

Thus, using that dt = a=P dt, we obtain
to
| [ alVute. 0112 (Tuta, )7, V(e o) ded
t1 Q

= [ 19 eute a0y e, D), Vot Dl

where t; = a”t; and 75 = aPty. Tt follows that

t2

[ /Q au(z, aﬁf)w(x,%“)]ﬂ



2
b [ a0 )+ [Vule. PP (Tule,a P, V(e D) didp <0,
t1 Q

which proves the claim. =
We cite from [13] and [14] the next three lemma.

Lemma 2.4. [14] Let u be a non-negative bounded weak subsolution of (2.9) in Q x [0,T).
Assume that 1
For any 0 > 0, define
a 1/a
f(s) = (s" = 0){",

where

_l—gqp-1) _ D
= T (2.15)

Then f(u) is also a weak subsolution of (2.9).

Figure 1: Function f(s)

Lemma 2.5. [13] (Caccioppoli type inequality) Let v = v (x,t) be a non-negative bounded
subsolution to (2.9) in a cylinder Q x [0,T). Let n(x,t) be a locally Lipschitz non-negative
bounded function in  x [0,T) such that n(-,t) has compact support in Q@ for all t € [0,T).
Fix some real o such that

o = max (p,pq) (2.16)

and set o
A=oc+D and oa=-—. (2.17)

b

Choose 0 < t1 < to < T and set Q = Q X [t1,t2]. Then
to
o] v [weenrs [ e ton e ivar]. iy
Q t1 Q Q

where c1,co are positive constants depending on p, q, A.

In particular, if 7 does not depend on ¢, then

to
[/ v)‘np] +cl/ |V(van)|p§02/ v [VnlP. (2.19)
Q t Q Q

Let us observe for a later usage that

loc

vy e LV ([O,T]; Wg»pm)) . (2.20)

6



Indeed, using o > ¢, we get that the function ®(s) = 54 is Lipschitz on any bounded interval
in [0,00). Thus, v® = ®(v9) € WP(Q) and

V| = & (v)) Vol | < C [V,

whence
/Q IV (o) < /Q Vo 1 + 0P| Vgl? = C /Q VP i+ " [P,

which is finite since
/v"]Vn[p < const Hvﬂz;pq/ VP
Q Q
and proves (2.20).

Lemma 2.6. [14] Let M be geodesically complete and v = v (z,t) be a bounded non-negative
subsolution to (2.9) in M x [0,T). For any A € [1,00], the function

t= ol Dl

is monotone decreasing in [0,T).

3 Faber-Krahn inequality

Let M be a connected Riemannian manifold of dimension n and d be the geodesic distance
on M. For any z € M and r > 0, denote by B(x,r) the geodesic ball of radius r centered at
x, that is,

B(zx,r)={ye M :d(z,y) <r}.

Let the ball B be precompact. Then the following Faber-Krahn inequality in B of order
p > 1 holds: if w € Wol’p(B) is non-negative,

E ={w >0}

and r(B) denotes the radius of the ball B, then

/B\vw\P = r(;)p (L(B)ZEgDV/BwP, (3.21)

where v > 0 and «(B) is a positive constant that depends on the geometry of B. The value
of v is independent of B and can be chosen as follows:

b .

- f

B R Htn=>p (3.22)
any number € (0,1), ifn <p.

Choosing ¢(B) to be an optimal constant in (3.21) we obtain that the function

B (L(B;zﬁé()f))y (3.23)

is monotone decreasing with respect to the partial order C on balls.

We say that M satisfies a relative Faber-Krahn inequality of order p if (3.21) holds with
t(B) > const > 0 for all geodesic balls B. For example, this holds if M is complete, non-
compact and satisfies Riccips > 0 (see [4, 11, 23]).



4 Long distance decay

From now on we always assume that
1
1<p<2 and 1§q<—1. (4.24)
p p—
Let us denote
D=1-q(p-1)

and note that, under condition (4.24), we have D € (0,1). We start with the following
mean-value type inequality from [14].

Lemma 4.1. [14] Let the ball B = B (xg,7) be precompact. Let u be a non-negative bounded
subsolution in

Q=Bx[0,1]
such that
u(-,0)=0 in B.
Let o and X be reals such that
c>0 and A=o0+D. (4.25)
Then, for the cylinder
1
Q/ = §B X [O,t],
we have
c 1/A
um/ﬁ—/ua> , 4.26
Il < (057 (4.26)

where 1(B) is the Faber-Krahn constant in B, and the constant C' depends on p, q, \ and the
Faber-Krahn exponent v.

Figure 2: Cylinders @ and Q’

The next lemma is the main result of this section.

Lemma 4.2. Assume that M is geodesically complete and let u be a bounded mon-negative
subsolution in M x [0,T]. Let By = B (zo, R) be a ball such that

up = u(+,0) = 0 in By.



Then, for all t € [0,T],

1 1
t D t(Bg)RP\ D HUOHLl(M)
HUHLOO(%B()X[O,t]) < C <—L(B0)RP> In” (2 + ( t > 1 (BO) )

where the positive constants C and v depend on p,q and the Faber-Krahn exponent v.

Proof. Fix a point = € %Bg and r < %R so that B := B (z,r) C By. Fix also some t < T
and set, for all 0 < k </,

Qr = 2B x [0,t] and Jj :/ u,
Qk
where [ is the maximal non-negative integer such that
. 1
2'r < §R’ (4.27)

which implies 2¥B € By for all 0 < k < 1.
By Lemma 4.1 with 0 =1 and A\ = 1+ D, we obtain for all 1 < k <1,

. 1/
o0 < '
”UHL (Qr—1) = <L(2kB),LL (QkB) (ri>p /Qk u>
It follows that
Jo1 = /Q u<p <2kle> t HUHL“’(Qzﬁl)
k-1

o 1/
< ulBojt (L(2’“B)u @B) @) Jk)

whence

iz et mn () () (Aen)

Since by the monotonicity of the function (3.23),

(2 B)u (24B) _ u(Bou(By)
(Qk,r)P/V - Rp/v

it follows that

and

w(Bo)t ©

where A = 2P+P/¥ and © = C“L((B;?)Zﬁ ( )p+p/y. By Lemma 7.2 with w = D we obtain
)\k
1/D
Ty > Lw (A—k—l/D@) 7
(a-1/)"

Jo < <A’f/Dﬁ> g
- §

ok p+p/v - A gk
szc—la(B(J)u(Bo)Rp( T) ( = ) =5
R

that is,

?r"“

_Aikl_ik%k
€ = ABNFE T I,



where £ = (A_I/DG)) 1/D. We have by Lemma 2.6

Jké/ ugt/ u(-,0).
By x[0,t] M

On the other hand, by Lemma 4.1,

C
A
<—Jp.
HUHLW(%BX[W]) - L(B),u(B)rPJO
It follows that .
CADNF _1 BN
A 1

Wz (3 mxi0) = Tgyacmye®  (lolliran)

Using that
p < UB)I(DB) pipp _ b (T \PHP/Y
(B (B) 17 = “=EE e P — (B )u(Bo) R (R)

we obtain

k
CADxNE r\PTP/V 11 1
A 1
(o) < Bty (R) € Clollan)
CADNE

7 \Ptp/v
= «(Bo)u(Bo)Rr (Tz)

D ;) p+p/V %(1_/\%>
_ w(Bo)  t R
(A 1/DW <?) > (tluollLr (ary)

Let us choose k£ maximal possible, that is, k = [. Recall that A =1+ D, so that

1 1 1 11
Fi=A=(l-—)+—=1+———
5(1-5) =1+

X
==

and we obtain

T

||u”2<>c(%3x[0,t]) < cani oz (15) <E>(1’+5)(5(1_;Z)_1) (H?L/(;J—g;()]\/[)),\ (W)F-

It follows from (4.27) that % ~ 2!, which yields

Wt 2) (5 (1-%) 1) (Muollzran ) > t o \"
<2 ( iy ) (L(BO)RP> L 4
Also, since &

=7 #, we deduce from (4.28),

A
H“HLOO(%Bx[o,t])

o) (b Y[t )P nllaon |

. < colx(ty) (51

HUHL (3Bx[0t]) = A b L(Bo)Rp L(Bo)RP 1 (Bo)
_o(-—t b LyseT 4.29
= W a DA, (4.29)

where

a

1
23 (PtE)(5-1)  and b= <L(BO)RP> P ||u0||L1(M)‘
1 (Bo)

10



Let us now choose | € N so that the right hand side of (4.29) is minimal. For that,

D
consider first the case when RP > — < 1(Bo) ) a1 EO). Then the right hand side of

alog A HUOHLI(A{)
(4.29) is minimal if N1 = % In b, that is, we choose

- Ll InAInbd
“ox "\ e /|
1

1 Ina
t D (InAlnb) =X Ina t D
< — | = _— In”
lell e (3 0y = © <L(Bo)Rp> < Mna ) P <ln)\> ¢ <L(BQ)RP> n'b,

D A
where v = %E—i On the other hand, if RP < — ( 1(Bo) > L(éo), we have b < alsX and

o X ||“0HL1(1\/[)

Hence, we obtain from (4.29),

whence,
1

t D
Il g < () W72+

Covering %Bo with balls B (z;,7) with small enough radius  we obtain

1
t D
Wi o) < (7))

which proves the claim. m

5 Long time decay

The main result of this section is Lemma 5.4.

5.1 Comparison in two cylinders

Let a be defined by (2.15), that is,

_1—-gq(p-1) D
i= T (5.30)

Note that under condition (4.24) we have a € (0, 1].

Lemma 5.1. Consider two balls By = B (xg,79) and By = B (xg,r1) with 0 < 1 < ro where
By is precompact. Assuming 0 < tg < t1 < T, consider two cylinders Q; = B; x [t;,T],
1=20,1. Let vy be non-negative bounded subsolution in Qq. Set for some 0 > 0

1/a
where a is as in (5.30). Let o and X\ be reals satisfying (2.16) and (2.17). Set
Ji :/ vy dpdt.
Qi
Then

Cr§SY
(«(Bo)p(Bo))” 0% (ro — r1)”

J1 <

Jot, (5.31)

11



where
B ||UOHLDO<>(Q0) 1
 ti—to * (ro —rp)P’
v is the Faber-Krahn exponent, 1(By) is the Faber-Krahn constant in By, and C depends on
p, q and A.

Figure 3: Cylinders @y and @

Proof. From Lemma 2.4 we know that v; is also a subsolution. Let n(z,t) = n(x) be a bump
function of By in By 5 := B (0, 5™ ). Recall that by (2.20), vfn € L? ([tO,T]; Wol’p(B)),
where « is defined by (2.17), that is o = = 7. Hence, applying the Faber-Krahn inequality
(3.21) in ball By for any ¢ € [to, T] we get that

/Bl i = /BO vin) <7 < (BOSD(}B )>V/BO IV (e, (5.32)

where we used that ap = ¢ and n =1 in B; and
Dy = {vfn(8) > 0} = {v1 > 0} N {n > 0} = {wo () > 0/} N By .

Also, note that n, =

(2.19) we therefore obtain

c v p<// VP < —=2 5.33
S Lwers [ ] waes S (5.33

where c3 = 2P and we used that v1 < vg.
Let us now apply Lemma 2.5 to function vy in By X [tg, T']. Take

n(z,t)=mn (x)ny (1),

where 7; is a bump function of By/y in By so that

V| <

To —T1 ’
and 74 is a bump function of [t1,T] in [to, T], that is,
® { 1, t>t
N2 (t) = t—t
ot osSt<t

so that

0 .
O] < L —to

12



From (2.18) we obtain

T T T
[/ 0377’)} < / / [pnp_lamvé +co |V U(ﬂ = / / [pn? L oumu + c2 |VnfP] v§
Bo to to Bog to By

Hence, for any t € [t1,T], using that ny(to) = 0 and n(z,t) =1 for € By, and t > t1,

vol|Pse 1
s | [ st sees
31/2 to JBy Lt1— 1o (0—7“1)’“

where ¢4 = max(p, c3). Thus, we deduce

D)< o [ e SR

Combining this with (5.32) and (5.33) we obtain

I = / / 7 c4SJy c3 o
n JB = Bo)u(Bo)oM* | c1(ro—r1)P

which implies (5.31) and finishes the proof. m

5.2 Iterations and the mean value theorem

Lemma 5.2. Let the ball B = B (z9, R) be precompact. Let u be a non-negative bounded
subsolution in Q = B x [0,T]. Let 0 and X\ be reals such that

c>0 and A=o0+D. (5.34)
Then, for the cylinder
, 1 1
=-Bx|=-T,T
Q' =B x [;T.7)
we have 1
o o)
Ul ;oion < | ——= [ u° , 5.35
where b
ullfoo gy 1

L(B) is the Faber-Krahn constant in B, and the constant C' depends on p, q, X\ and v.

12

Figure 4: Cylinders Q' and Q
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Proof. Let us first prove (5.35) for o large enough as in Lemma 2.5. Consider sequences

1 T
— (421 R 1t = (1—2*)—
Tk <2 + > 5 k 2

where £ =0,1,2,..., so that rp = R and r; \, %R ask —ootg=0andty ~ %T as k — oo.
Set B, =B (.CC(),Tk), Qr = B x [tk,T] so that By = B, Qo = Q and Qs := limy_,oo Q1 = Q/.
Choose some 6 > 0 to be specified later and define a sequence of functions {ug} by

1/
up = u, U = (Uz_l — 27k0> ‘ for k > 1
+

where a is given by (5.30). The function fp (s) = (s* — Q)i/a has the property that fy, o fs, =
fo,+6,- Hence, we obtain

uy, = (ua _ %9 S 2—1ke>:/a — (ua _ (1 - 2—k) 9)1/(1.

Jk:/ uj,.
k

Since uy, is a subsolution, we obtain by Lemma 5.1 that

Set

C’riS,Z
(e(Br)u(By))” (2~ k+1)0)

1
Jk-i-l < Jk—H/v

2 P
@ (rk — The1)
where

D
S, = ||u||L°°(Qk) 1

thyr —te (1 — 1)t
By monotonicity of the function (3.23), we have
v < RP
BB = (BB

Since ry — rp+1 = 2-k=2R and thr1 — tx = 2-k=27 it follows that

| 1
Sy < 2(k+2)p TE=@Q) |~ ) olk+2pg,

T Rp
Hence,
C2k+1) 2 o(k+2)p(1+v) gv Ak jltv
Jk+1 < — J]i-i-y _ @k
(((B)u(B))" 0"
where

A 1%
Ao g @:C<L(B)M(B)9“> |

Now let us apply Lemma 7.1 with w = v: if
0> Ay, (5.37)

then, for all £ > 0,
J < ARV .

14



In terms of # the condition (5.37) is equivalent
AN\ Y
c <L(B)MéB)9a> > Al/VJ(I)/

that is,

95 > CSJO
~ uB)u(B)

Hence, we choose 6 to have equality here. For this 8 we obtain J, — 0 as k — oo, which
implies that u®* < 6 in Q. Hence,

(@) L(‘E )H(‘E) '
which proves (535)

Now we prove (5.35) for any o0 > 0. Let oo be such that (5.35) is already known for
o = 09, and let ¢ < g(. Denote

M=o0o+D and A=0+D

so that A\ < Ag.

Consider, for £ > 0, sequences r, = (1 — Qk%) R and t; = 2= DT g0 that rg = %R,
to = %T and rp T R, t; | 0 as r — oo. Set By = B(x, ) and @k = By X [t,T]. Denoting
also B = B(xg, R), we see that

1
§BCBkCB and B T Bask— o

and thus @0 =@ and @k T Q. Set also py, = rpyp1 — 1K = #R. Let us also use the notation
X(B) = «(B)p(B). For any point (z,7) € Q, let s be such that

1
T < 8 < min (T+§tk,T).

Then applying (5.35) from the first part of the proof in B (z, p;) X [s — tg, s), we obtain

Cs,
112% (50, 2y - 21y < B—k/ -
72pk bk X( (w pk)) B($7pk)><[8—tk,3)

< O g / w
N X(B( )) Lo (Blapi) < [s=tr.9)) B(z,pp,) X[s—tk,s) ’
where b
5. = lullz= B xfs—ts) | 1
tk P
Since B (z, p;,) C Bi+1 C B, we have by the monotonicity of (3.23), X(B(p"’“;’f’“)) > ;;(53 whence
k
L (Rfp)" e
X(B(z, pi)) x(B) x(B)
Hence, we obtain
C2kp(1+1/v) g "
Hqu(lo(B(z Lo )X [s—Ltk,9)) S ” HLOO(Q / u--
2Pk)X[s= 5t X (B) k1) Jo

15



Covering Q. by a sequence of sets Bz, %pk) X [s— %tk, s)) with (z,7) € Qy, we obtain

CQkp(lJrl/z/)S
Ao < Ao—A o
) < gy M [0 (5.39)
. == . ‘
Setting Jj, = Hu||Loo@ ) we rewrite (5.38) as follows:
k
Ak oo AR
Tl S JO0T = Y Jite,

where

- cs A A
A = op ), @1:—/ w and w=——2— — 1= .
X(B) Q )\0—)\ )\0—)\

Applying Lemma 7.1, we obtain

Jp < Jo e e\ MY
‘(W) (a70) ™
that is,

s () (o) )

(M=) _

Since Jj > Hu”LO@(@) =: const > 0, we see that

1
1/w w)k
lim inf ((Al/“’@_l) / Jk> e >1,

k—o0

whence

Jo > (A*l/W@)l/w.

1/w
/\()—>\~ < Al/w2 CS / o

CS/ )W
u %) / g TSN UU 9
P [

where A1/+” is absorbed into C' and finishes the proof. m

It follows that

and finally

5.3 Initial estimate of the long time decay

Lemma 5.3. Assume that M is geodesically complete and satisfies the relative Faber-Krahn
inequality. Let u be a non-negative bounded subsolution in M x [0,00) with initial function
ug = u(-,0). Set
D
7 = [Juol[ oo (ar) -
Leto>1 and A\=0c+ D. Then, for all T >0 and all x € M,

1/
Hu('7T)HLOO(B(x,%(T/T)I/p)) <C (M (B(x, (T/7)/7)) /M u8> )

where C' depends on p,q and the constants in the relative Faber-Krahn inequality.
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Proof. We apply Lemma 5.2 with 0 > 1 and A = o+ D. Fix some T > 0 and choose R from
the equation

Fix also some x € M and set B = B(z, R),
L1 1
Q=Bx[0,T] and Q' =3B x[;T.T]

Observe that by Lemma 2.6

T
L= fye=n ]
Q 0 JB M

and ||u||lL)oo(Q) < ||u0\|LDoo(M) = 7. By the choice of R we have

HUHEOO(Q) 1 T 1 2
= <=
S T R — T * Rr RP

Using also that «(B) > const > 0 by assumption and applying Lemma 5.2, we obtain that

1/

C . 1/ Cr o
[l oo ry < (W/Qu > = " (B(:v, (T/T)l/p)) /M o ’

whence the claim follows. m

5.4 Optimal long time decay

The next lemma is the main result about long time decay.

Lemma 5.4. Assume that M is geodesically complete and satisfies the relative Faber-Krahn
inequality. Assume that, for all x € M and R > 1,

n(B(z, R)) = cR, (5.39)
for some ¢, > 0. Assume also that
G :=p—Da > 0.

Let u be a non-negative bounded subsolution in M x [0, 00) with initial function uy = u(-,0).
Then, for all t > 0, we have

C p/B
w0 oo ary < a8 <||UO||L1(M) + ||U0||Loo(M)> ; (5.40)
where C' depends on c,a, p,q and on the constants in the relative Faber-Krahn inequality.

Proof. Denote ty := ||u0||€oo(M) and observe first that, for ¢ < ¢y, the right hand side of
(5.40) is bounded below by

C p/B b
0

so that (5.40) is trivially satisfied by Lemma 2.6.

17



Hence, we assume in what follows that ¢t > ¢(. Let us first consider the case when ||ug|| ;o =
1, that is, to = 1. Denote

F (@) = [lul )l oo ary
and note that F'(t) < 1. The function u(-,¢+-) is a subsolution in M X [0, c0) with the initial

function wu(-,t). Hence, applying Lemma 5.3 to subsolution wu(-,¢ + -) and with ¢ = 1 and
T =u (-,t)Hgoo(M) < ty, we obtain that

1
1+D

Hu('v2t)||L°°(B(x,%(t/T)l/p)) <C <N (B(CC, (;/T)l/p)) Hu(at)HLl(M))

Setting A = 1 + D and using (5.39) with R = (t/7)'/P > 1, we obtain

T by
Hu('72t)”L°°(B(x,%(t/T)1/p)) S C (WHUOHLl(M))

1 a A
= (P O7 o)

Covering M with a countable sequence of balls B(x;, 1(t/7)1/P) with @; € M, it follows that

1 a A
F(2t) < C <WF )Pty |\u0|\L1(M)> . (5.41)

By the monotonicity of function F(¢) (Lemma 2.6), it suffices to prove (5.40) when ¢ = 2,
k > 0. By (5.41), we obtain for all k£ > 0,

1
1 D(14+2) by
FEHY < © (WF (zk) v ||u0||L1(M)> . (5.42)
Note that
ip <1+g> 1 _Dblta)-p+D) _ Da-p 5
A p (1+D)p (1+D)p  Ap

Denoting Fy = F(2%) we obtain from (5.42) for Gy = logy F}, that

Ié) Q@
Gri1 < |(1—— )Gy — —k+ec
E+1 S ( p k p +c
where )
€= (logy [[uoll 1), + logy C.
Note that 4
1—-—>0
Ap
The equation
1] «
=(1-= —
Ik+1 < p 9k p +c
has a general solution in the form
ﬁ k
Gk =K<1—> + Ak + B,
Ap



where K, A, B are some constants. The constants A and B are determined from the condition
that Ak + B is a solution, that is,
p

(e}
A 1 B=|1—-—](A B) — —
(k+1)+ < Ap)( k+ B) /\pk+c’

whence
A=——.
B
Further, we have

A+B:<1—>\£)B+c

p
so that 4 \
c— D a\p p -
= =—c+ — = = (logy ||u +c,
B/)\p ,8 ﬂg ,8( 2” 0||L1)+
where ) )\
- D ap
c=—log, C + —-.
gt g

Let us choose the initial condition for g; as follows:
90 = Go = G(1),
which allows to determine K as follows:
K =G(1)-B <0,
because G(1) = logy F'(1) <0 and B > 0. Hence, we obtain, for all £ > 0,

Gp<gr <Ak + B = —%k + %10g2 ([luoll 1) + ¢
whence, for ¢t = 2F, _
F () < Ct/P (1 + Jfuol 12"/,

which finishes the proof of (5.40) in the case ||ug|;~ = 1.
In the general case when |Jug||; - and hence, ty is arbitrary, consider the function

o' (2, 8) = uol| g ula, ),

where t = ||u0||Z£ t, which satisfies ||u(||;« = 1 and is a subsolution of (2.9) by Lemma 2.3.
Hence, we obtain by the previous part of the proof, for ¢ > 1,

C
(0"

Noticing that ¢ > 1 < ¢ > to, we conclude, for ¢t > to,

)p/ﬁ_

[ ("?)HLOO(M) < (L + [lugll L1 an)

C Da 1 —
ot ) e ary < 2575 ol 2oy (14 ol agy ol can

)

)p/ﬁ

which finishes the proof of (5.40), because Da/G+1=p/5. =
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6 Combined estimate

The following theorem is our main result (equivalent to Theorem 1.1 from the Introduction).

Theorem 6.1. Assume that M is geodesically complete and satisfies the relative Faber-Krahn
inequality. Assume that, for all x € M and R > 1,

w(B(z, R)) = cR?,
for some ¢, > 0. Assume that (4.24) holds and that
8 :=p—Da > 0.

Let u be a bounded non-negative subsolution in M X [0, 00) with initial function ug = u (-,0) €
LY(M) N L®(M) and set A = suppug. Denote |z| = d(z,A). Then, for all t > 0 and all
x € M, we have

¢ |z|
where
®(s) = s D log" (1 + s),

where the positive constants C' and v depend on c,a,p, q, ||uoll1(ar), ||uol|Loo(ary and on the
constants in the relative Faber-Krahn inequality.

Proof. Let us first prove that for all t > 0 and all z € M \ A, we have

1
%! t \P 2|7\ P
lu G oo (Bo 2 < JayB Cz<| |p> log” <2+< p : (6.44)

where the positive constants C1,C2,~ depend on ¢, a,p, g, [|uol| L1 (), HuoHLoo(M) and on the
constants in the relative Faber-Krahn inequality.
By Lemma 5.4 we have

C p/B
e G )y < 7 (Ilollagany + loll egary)

which gives the first term in (6.44). In order to obtain the second term in (6.44), we apply
Lemma 4.2 in the ball B, = B(x, |z|) that is disjoint with supp ug and deduce

1

1
¢ D L(Ba;)!a?\p>’3 [[uoll 1 (ar)
o] QLI LT 2+(
<L<B$>rxrp> i ( t R
t\? E \D
< C|— log” | 2+ .
|z|P tD

Now let us show how (6.44) implies (6.43). In the case when t‘li/lﬂ < (' for some constant

C’ > 1, we have <I>< + t‘li/lﬁ) > const > 0, which yields (6.43). On the other hand, if

IN

Hu('?t)HLOO(%Bm)

HEiR > (', we see that

/B
1 o]\ _ 1 o] \ P ol \ P al
t—g@<1+m>—t—g<1+m log 2—|—m _|$|p/Dlog 2+W

because 45 — § = %, which finishes the proof of (6.43) also in this case. m
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Remark 6.2. The model manifold mentioned in Section 7.1 satisfies the volume doubling
property, the Poincaré inequality, and consequently, also the relative Faber-Krahn inequality
(see Proposition 4.10 in [12]). From (7.2), we have on that manifold the estimate

1 |.CU‘ -p/D
[ (D oo (B, 2 fafy) = 5 (1 + m) )

which shows that our estimate (6.43) is only logarithmically off the sharp result.

7 Appendix

7.1 Radial solutions on polynomial models

Let M be a model manifold, that is M = (0,+oc0) x S"~! as topological spaces and M is
equipped with the Riemannian metric ds® given by

ds® = dr? + ¢?(r)d6?,

where 1(r) is a smooth positive function on (0,40c) and df? is the standard Riemannian
metric on S*1. We define S(r) = "1 (r), which is called the profile of the model manifold.
In the following, we assume that, for some « € (0,n| and all r > rg,

S(r)=Cro L.

Let us denote D =1 — ¢ (p —1). Similarly to Proposition 5.1 in [14] one can show that
if D > 0 and p > aD, then the following function is a non-negative solution of (1.1) in
M \ B’I‘o X R+Z

1 o\ T a

where C > 0 and D )
B=p—aD, T=—, K}:Tp_l

p—1 pgBr1

It follows from (7.1) that

1 r \—p/D
u(r,t) ~ = <1 + W) . (7.2)

7.2 Auxiliary lemmas

Lemma 7.1. [15] Let a sequence {Ji}roy of non-negative reals satisfy

Ak
Jpr1 < EJ;'H" for all k > 0.

where A,©,w > 0. Then, for all k > 0,
1/w (1+w)* 1/w
I, < <<A1/w@—1) J0> (A—k—l/we) .

In particular, if © > Al/“J(‘)", then Jy, < A=k« Jy for all k > 0.

The next lemma is a version of Lemma 7.1 with the opposite inequality sign, and the
proof is analogous to that of Lemma 7.1.

21



Lemma 7.2. Let a sequence {Jy} 5o, of non-negative reals satisfy

Ak
Jp > Ejlii_i‘) for all k > 1.

where A,©,w > 0. Then, for all k > 0,

Jp > ((Al/w®1>1/w J0>(1+w)k (A,kfl/w@)l/w.

In particular, if © < AI/WJSJ, then Jy, > A=K Jy for all k > 0.
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