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1 Introduction

Product, price, place, and promotion—also known as the ‘4 Ps’ determining
the so-called marketing mix (e.g., Kotler and Keller, 2006)—refer to key con-
siderations when introducing a new product into the market. Obviously, the
corresponding decisions are of high relevance for marketers given the substan-
tial cost that is associated with launching a new product (e.g., a double-digit
million-euro figure for the market introduction of a new car model1). Moreover,
consumers typically do not honor product generations in rapid succession, as
they are not willing to repurchase a product each time a new version hits the
market. Thus, when the opportunity arises, managers need to “get it right” at
their first attempt.

In the work at hand, we address a facet of the latter ‘P’ from the marketing
mix (i.e., promotion), as we are interested in the success of certain firms’ strate-
gies for announcing the future availability of new products in markets for which
the respective technological progress is uncertain at the time of these announce-
ments. Both the firms’ strategies and the corresponding behavior of prospective
customers add complexity to innovation diffusion in such markets. Therefore,
decision makers need to take consumers’ forward-looking utility expectations
and individual needs as well as attitude toward uncertainty into account when
designing a proper announcement strategy as part of their product launching
endeavor.

Autonomous vehicles (AVs)2 constitute a prime example for a market in which
such uncertainties may play a decisive role. Obviously, advanced AVs can im-
prove the productivity of the time spent in cars and they potentially increase
the safety and efficiency of the transportation system. Correspondingly, the AV
market size is projected to reach over 2.3 trillion US dollars in 2030 (Statista,
2023). However, it is difficult to precisely predict the functionality of future AVs
(e.g., with respect to limitations of their self-driving modes regarding maximum
speed or long distances) due to remaining technological challenges (e.g., related
to environment detection, pedestrian detection, path planning, motion control,
and vehicle cybersecurity; see Martinez-Diaz and Soriguera, 2018; Parekh et al.,
2022) and legal issues (e.g., regarding liability; see Dawid and Muehlheusser,
2022).

This uncertainty on the side of the producers makes it particularly difficult
for them to commit to a strategy for announcing the next generation of their
products. Inspired by the work of Lobel et al. (2016), we investigate two alter-

1Estimate was communicated by a senior manager from the automobile industry. However,
these costs are still comparatively low compared with development costs, which may pile up
to a billion euros for a new car series.

2SAE (2021) distinguishes six levels of autonomy ranging from “SAE Level 0,” in which cars
only provide warnings and momentary assistance, to “SAE Level 5,” in which fully autonomous
driving is possible under all conditions. As of today, most AVs can reach level 2, for which
constant supervision by a human driver is required by law, while a few AV models in level 3
are approved for use on public roads in certain countries. For the purpose of our research, we
consider cars from level 3 and above as AVs.
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native strategies for doing so.3 In the first alternative (“time strategy”), a firm
commits itself to a time schedule for introducing the next product generation
into the market (e.g., the next generation is presented regularly at a certain fair,
such as Auto Shanghai, or at a similar event). In the second alternative (“quality
strategy”), a firm does not announce a concrete date for the market introduction
of the next product generation in advance but promises to release new product
versions cyclically with a constant level of technology improvement.4

Model-wise, the game-theoretic approach by Lobel et al. disregards a couple
of factors that play a role in adoption processes of real customers, particularly so
when it comes to high-priced durable and prestigious products that are used on
a regular basis and potentially might even be life-threatening (or life-saving),
such as in the case of AVs. These factors include (i) the shape of technolog-
ical progress (modeled through technological S-curves), (ii) heterogeneity of
customers with respect to their preferences, communication behavior, or their
attitude toward uncertainty, (iii) individual decision-making (purchasing) be-
havior, and (iv) interactions with peers (e.g., through word-of-mouth). When
properly accounting for these factors, we have to deal with a complex system
that is inherently intricate, involves stochastic elements, and is predisposed to
emergent—and sometimes unexpected—outcomes. Consequently, agent-based
modeling (ABM) comes into play, as it often is “the only game in town to (ap-
propriately) deal with such situations” (Bonabeau 2002, p. 7287).

After having set up an agent-based market model and performing extensive
simulation experiments, the research contribution of our work is twofold: First,
we analyze the effects of applying the two distinct firm strategies for announcing
the next generation of AVs. Our results also illustrate that taking into account
the above-mentioned influence factors play a role. It is noteworthy that the
calibration of our simulation runs is based on data from a representative study
on behavioral intentions of consumers in Germany regarding the (hypothetical)
purchase of AVs. Second, we focus on consumers’ attitudes toward dealing with
uncertainty and performed additional simulation experiments. The results from
this additional simulation study show that consideration of different attitudes
toward uncertainty matters. Thus, we open up a novel (sub-) field of research to
be considered by colleagues in their future work when it comes to the adoption
of (radically) new products in which uncertainty plays a significant role.

The remainder of this work is organized in the following manner. In Section 2,
we provide a more in-depth overview of existing literature on AV development,

3Lobel et al. (2016) study non-specific product categories (although referring to Apple’s
iPhone as a motivational application case). In their first setting (“on the run”), no announce-
ment takes place, while in the second setting (“two-cycle”), firms commit to a schedule of
technology release in which a small technology increment is followed by a larger one.

4A possible instrument for firms to commit either to the time of the introduction of new
products or to some product features are product preannouncements. A substantial body of
theoretical and empirical literature has studied different aspects of product preannouncements
(see, e.g., Eliashberg and Robertson, 1988; Hoxmeier, 2000). In particular, Sorescu, Shankar,
and Kushwaha (2007) stress the importance of the reliability of the preannouncement and the
credibility of the preannouncing firm for the size of generated long-term returns, and thereby
highlight the commitment induced by preannouncements.
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launching strategies, ABMs of innovation diffusion, and corresponding specifics
regarding the information transmission in such simulations with respect to so-
cial networks and word-of-mouth communication. In Section 3, our agent-based
market model is introduced. Section 4 presents results from the empirical study
that has been used for calibrating the AV market simulation. Section 5 discusses
findings from a first set of simulation experiments, in which we compared the
two announcement strategies when being employed by competing firms and
analyzed the effect of technology curves as well as the effect of consumer het-
erogeneity. Section 6 is concerned with results that were obtained when also
investigating the effects of different attitudes toward uncertainty. Finally, Sec-
tion 7 concludes this work and provides an outlook to promising directions for
further research. In the Appendix, we give additional information regarding the
Bayesian updating model and the kernel estimates underlying our calibration,
present an extension of our model, and list all parameter values used in our
analysis.

2 Background

2.1 Economic Aspects of AV Diffusion

The potential gains, and also the challenges associated with the development
and diffusion of AVs have attracted considerable attention in different fields of
literature. A common denominator in much of this literature is the substantial
role of different types of uncertainty (technological, economic, legal) arising in
the context of AVs. In that respect, it has been argued that the large uncer-
tainty facing both producers and consumers might be an inhibiting factor for
the market penetration of AVs (see, e.g., Fagnant and Kockelman, 2015) and
the importance of direct experience by consumers has been stressed (Hancock,
Nourbakhsh, and Stewart, 2019).

A large stream of literature has focused, from a purely technical perspective,
on the development of models and methods for controlling AVs (for a recent sur-
vey, see Di and Shi, 2021) for tasks such as overtaking, lane changing, merging,
or similar maneuvers. The uncertainty of the traffic environment is a factor to
be accounted for in these frameworks. Likewise, the reduction of the uncertainty
associated with the behavior of an AV controlled by (AI-based) algorithms, re-
lying, for example, on reinforcement learning approaches, is also an important
issue (see, e.g., Bouton et al., 2018). From a more economic perspective, a num-
ber of theoretical studies have analyzed the incentives of producers to invest in
the safety of AVs (see, e.g., Di, Chen, and Talley, 2020; Friedman and Talley,
2019), which is combined with the consideration of the (optimal) precaution
level of drivers (see, e.g., Shavell, 2020; Guerra, Parisi, and Pi, 2022). This lit-
erature stresses the importance of the liability regime in place for generating
appropriate incentives.5 However, certain, yet unresolved, issues with respect

5See Buiten (2023) for a general discussion of risks associated with AI-related products
and the design of appropriate liability schemes.
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to product and criminal liability in the context of AVs (see, e.g., Geistfeld,
2017; Gless, Silverman, and Weigend, 2016) still contribute to the uncertainty
producers and users of AVs face.

Among the papers examining (optimal) behavior of AV producers and drivers,
only a few explicitly consider the choice of vehicle buyers between purchasing
an AV or a conventional vehicle (CV). De Chiara et al. (2021) consider a multi-
stage game-theoretic model in which a monopolistic AV producer first decides
on how much to invest in the AV safety level and which price to set for the
AV. The consumers then decide between purchasing an AV or a CV (which is
sold on a perfectly competitive market) and, if they purchase a CV, determine
their (costly) level of precaution when driving. This setting allows for the study
of factors influencing the market penetration of AVs, with the focus set on the
comparison of the implications of different liability rules. A related agenda is
pursued in Dawid and Muehlheusser (2022), who developed a dynamic model
with a monopolistic AV producer (which over time builds up the AV safety
level), and heterogeneous consumers, who, at each point in time, choose between
AVs and CVs. This dynamic framework with endogenous demand evolution al-
lows Dawid and Muehlheusser to distinguish between short and long run effects
of different liability schemes on AV sales, accident rates, and welfare.

Our paper complements this stream of literature in several ways. First, we
focus on firms’ market introduction strategies rather than on their R&D invest-
ment, as has been done in the literature so far. Second, we put the uncertainty
associated with the technological development of AVs, as well as with their
perception among consumers, center stage. We also study the implications of
communication processes as well as consumers’ attitudes toward uncertainty
for AV diffusion in general and for the relative performance of different product
launch strategies in particular.

2.2 Product Launch Strategies

Although product launch strategies have not yet been studied in the context of
AVs, there is considerable literature analyzing this problem for durable goods,
some of it with quality increasing over time. The works by Krankel, Duenyas,
and Kapuscinski (2006) and Lobel et al. (2016) are related to our contribution in
the sense that, like us, they study product launch strategies under the assump-
tions that the evolution of the technology level is exogenous and stochastic, and
that a firm launching a new model always takes the old one from the market.
However, contrary to our setting, these papers do not consider market competi-
tion. Furthermore, they assume that all consumers are perfectly informed about
all properties of the product that is currently available, whereas we explicitly
take into account that in the context of AVs there is substantial consumer un-
certainty regarding the performance and safety of the vehicles already on the
market.

Krankel, Duenyas, and Kapuscinski (2006) studied the firm’s optimal launch
strategy under the assumption that sales in every period depend—in a way sim-
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ilar to the well-known Bass diffusion model—on cumulative sales and a market
potential, which increases with the current technology level but not with con-
sumer expectations regarding the performance of future models. They show
that with such ‘myopic’ consumers, it is optimal for the firm to launch the
next product once the current technology is above a threshold. This depends
monotonously on the technology of the product currently on the market and
non-monotonously (inverted U-shaped) on cumulative sales.

Lobel et al. (2016) incorporated forward-looking consumers into a framework
that is otherwise similar to that of Krankel, Duenyas, and Kapuscinski (2006).
In the setting of Lobel et al., consumers are not influenced by cumulative sales
but rely on intertemporal optimization, taking into account the (expected) prop-
erties of models introduced in the future, to determine whether it is optimal for
them to purchase the product currently on the market. In such a setting, it is
important for consumer expectations and, hence, consumer behavior, whether
the firm commits to a schedule of technology levels, at which it will introduce
new models, or avoids such commitment. In the latter case consumers rationally
expect that the firm will introduce new models at technology levels at which
its own value is maximized. Lobel et al. showed that without commitment, the
firm’s optimal strategy is to keep introducing new products once the ratio be-
tween the firm’s current technology and that of the product it offers on the
market exceeds a certain constant threshold. With commitment under certain
conditions, a two-cycle strategy is optimal, in which a large and a small tech-
nology jump between new models alternate. Numerical analyses suggest that
by committing in advance to the optimal launch strategy the firm can improve
its profit between 4 and 12 percent.

In our paper, we restrict our attention to strategies in which the firm commits
in advance, but we compare the effects of commitment to performance and safety
versus commitment to the time of the new product launch. We assume that
consumers are forward-looking and base their decisions on expectations about
the properties or the time of the next product launch. However, in light of the
substantial uncertainty under which consumers act in our setting, we assume
that expectation formation and consumer decision making rely on heuristics
rather than on rational expectations and dynamic optimization, as in the model
by Lobel et al. (2016).

2.3 Agent-based Modeling of Innovation Diffusion

In a typical consumer market, diverse stakeholders (e.g., consumers, producers,
or vendors) make numerous decisions according to their individual aims and
needs, and they also interact with other stakeholders and thereby may influence
them in various ways (e.g., consumers engage in word-of-mouth communication
and, thus, influence the opinion of their interlocutors on certain aspects of a
product). Consequently, such a market forms a complex system, whose behavior
is difficult to predict.

In this setting, ABM has become an established method for innovation diffu-



7

sion research. It represents stakeholders by agents with individual preferences,
knowledge (beliefs), and behaviors, and beyond that, it only requires the encod-
ing of micro-rules governing the behavior of involved stakeholders (i.e., agents)
in order to be able to observe emergent macro-level behavior of the market. For
an early review on ABM in innovation diffusion research, see Garcia (2005); an
often-cited survey is provided by Kiesling et al. (2012). Examples of applications
from other disciplines are given by Macal (2016); for the field of marketing, see
Rand, Rust, and Kim (2018).

Recently, Rand and Stummer (2021) discussed the strengths and criticisms of
ABM with regard to new product market diffusion. Among the strengths, first,
ABM can account for the heterogeneity of diverse stakeholders across a pop-
ulation (e.g., from innovators to laggards, according to their innovativeness as
described by Rogers, 2003). Second, stakeholders can be treated as individuals
by keeping track of the experiences of each agent during the course of a simu-
lation run. Therefore, an agent’s individual attitude toward a certain product
attribute results from the history of this agent’s decisions, the agent’s internal
notion of the external world, the agent’s observation of the reactions of other
agents in response to their actions, and the agent’s retained memory of past
events (Macal and North, 2010). Third, modelers can choose between various
decision-making rules to be used by the agents such as preference matching,
stage-based approaches, utility maximization, and meeting required thresholds
(for a detailed description, see Negahban and Yilmaz, 2014). Fourth, interac-
tion between stakeholders, usually in the form of word-of-mouth communica-
tion, as well as advertisements and corresponding informational influence can
be taken into account (for a comparison of ABM and different equation models,
see Rahmandad and Sterman, 2008). News from media can play a role similar
to word-of-mouth communication, albeit it has to be modeled as a unidirec-
tional information exchange from a media agent to a set of consumer agents.
Fifth, ABM offers a testbed for strategies before they are employed in actual
markets, and thus provides an opportunity to analyze conditions under which
the diffusion of innovations succeeds or fails (e.g., Backs et al., 2021; Haurand
and Stummer, 2023; Stummer, Lüpke, and Günther, 2021).

Among the criticisms, Rand and Stummer (2021) discussed the sometimes
challenging parameterization, the need for a proper verification and validation,
issues regarding arbitrariness and lack of causality, as well as the computational
cost incurred for simulation experiments. All the above are valid concerns and
demand adequate attention. However, Rand and Stummer concluded that ABM
has the ability to capture emergent phenomena and allows for high flexibility
in representing diverse market settings.

2.4 Agents’ Interactions in Social Networks

More often than not, market diffusion of innovations is driven through social
influence that is exerted as informational influence, which refers to accepting
information obtained from others as evidence of reality (e.g., through word-of-
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mouth communication or advertising). This occurs through interaction between
consumer agents who are interconnected in a social network. For an in-depth
discussion on modeling social influence in ABM for innovation diffusion, see the
survey by Kiesling et al. (2012).

The social network describes social ties between agents (e.g., representing
the entries in their smartphones’ contact lists). Real social networks exhibit a
relatively small diameter (i.e., longest shortest path length between two agents),
many clusters (i.e., groups of agents who are strongly interconnected with each
other), and numerous hubs (i.e., certain agents have a large number of contacts).
Usually, a social network is created either as a small-world network following the
generation algorithm by Watts and Strogatz (1998) or as a scale-free network
following the generation algorithm by Barabási, Albert, and Jeong (1999). The
decision to use one or the other approach depends on the specifics of the market
under investigation (see also Negahban and Yilmaz, 2014).

Word-of-mouth communication can take place between two (or even more)
agents who are directly interconnected in the social network. Modelers have
to decide (i) who triggers the information exchange (e.g., each agent starts a
new conversation after a certain period of time) or through which event it is
triggered (e.g., when an existing product is not working any longer and an agent
is looking for a replacement), (ii) whether the information flow is unidirectional
or bidirectional, (iii) which type of information is transferred (e.g., just the
current attitude as a mean of all information received so far or a distribution
of all this information, thus also representing a measure for the certainty of the
sender regarding the accuracy of the information), (iv) whether the confidence
that the sender provides correct information (e.g., the sender being only a novice
in the respective field or she being already an expert) on the part of the receiver
plays a role, and (v) the way the additional information is processed in order to
reach an updated value for the receiver’s attitude. An illustrative example for
word-of-mouth communication in ABM of innovation diffusion can be found in
the work by Stummer et al. (2015).

3 Model

When setting up an ABM as a means for analyzing (i) the effectiveness of two
generic announcement strategies for the market introduction of novel genera-
tions of AVs, (ii) the impact of technology curves and consumer heterogeneity,
and (iii) the role of uncertainty on the sides of producers and consumers, we
drew from three strands of prior research. First, we built on substantial experi-
ence in modeling the market diffusion of innovation and on implementing such
models in simulation tools. Second, in capturing factors influencing the pur-
chase intention of AVs, we relied on empirical evidence reported by Topolšek
et al. (2020) with subjects from Slovenia and Croatia in 2019–2020. The results
indicate that car safety and performance expectancy have the highest positive
effect on purchase intention, which is why we focused on these factors in our
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model.6 Third, we captured in our model that uncertainty of consumers about
AV quality is influenced by signals they receive through social networks and the
media.

In the following, we present our economic model. In doing so, we describe the
key assumptions and components of the model, in particular the different agent
types and how they interact.

3.1 Car Producers and Technology

On the supply side, the market for vehicles consists of N AV producers. CVs
requiring a human driver are offered by a group of separate producers, which we
do not model explicitly. Whereas safety and performance of AVs changes over
time, we assume that for CVs, these properties are constant. Therefore, CVs
serve as an outside option for consumers who are not satisfied with any of the
AV models offered on the market.

For the purpose of this paper, we abstain from explicitly modeling R&D ac-
tivities by the producers and assume that the level of AV technology available to
a producer is determined by instances of randomly arriving innovation at which
the producer jumps (close) to the evolving technological frontier. AV technology
consists of two independent components, namely, the AV’s performance and the
AV’s probability of an accident. The probability of an accident, denoted by p(t),
is used as a proxy for the AV’s safety; performance, denoted by q(t) is meant
to cover all other aspects relevant to consumers when purchasing an AV, such
as capability of driving autonomously under different conditions (e.g., highway
vs. city center), ride comfort, efficiency (e.g., lane selection, anticipatory driv-
ing) and so on.7 We refer to the combination of performance and safety as the
(overall) quality of the technology. Following existing literature on innovation
diffusion (e.g., Foster, 1986), we assume that the two technology curves, de-
scribing the evolution of the two frontiers over time, are S-shaped functions of
time t with the following functional form:

(1) a (t) = a−∞ + (a∞ − a−∞)

(
1

1 + exp (−ashape (t− ashift))

)
, a ∈ {p, q}

where a−∞ and a∞ denote the asymptotic values of the curve for t → −∞
respectively t → ∞, ashape governs the shape of the function, and ashift shifts
the function to the left or right. Figure 1 shows the technology curves used in the
baseline for performance and the monthly probability of accident. We assume
that firms can perfectly observe the performance available at the technological

6Interestingly, a higher level of education seems to reduce purchase intention. The same
holds for anxiety while higher age has a positive effect. However, the effects were low compared
to car safety and performance expectancy, and thus, we disregarded the above factors for
reasons of simplicity (but, in principle, could extend our model in a future version). The
assumed effects of all other factors investigated by Topolšek et al. (2020) were not significant.

7The variables p(t) and q(t) refer to the technological frontier values of accident probability
and performance, whereas the corresponding values for a producer j are denoted by pj(t) and
qj(t).
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(a) (b)

Figure 1
Technology curves for (a) performance and (b) probability of accident.

frontier, but only receive a noisy signal of the safety component. This reflects
that the safety of the newly developed AV technology is inherently difficult to
assess, even for the producer itself, since training for AVs to a large extent relies
on opaque machine learning methods (see Di and Shi, 2021).

Given the S-shaped curves, technological progress is typically slow in the
beginning, speeds up rapidly after a breakthrough has been made, and flattens
out again when the AV technology has been almost fully developed. We assume
that the innovation times of producers are stochastic and arrive at rates λq

for the performance component and λp for the safety component. As soon as a
firm discovers an innovation, its performance or safety level jumps to the value
on the respective technological frontier modified by a stochastic noise term σa.
If such a jump occurs at time t, firm j’s available technology with respect to
performance or safety is then given by

(2) aj,t = a(t) +N(0, σa).

As a result, producers in general differ with respect to the level of AV technology
available to them, resulting in a firm that is the technology leader and firms
that are lagging behind. As discussed above, the probability of accident cannot
be fully observed; instead the producer observes a noisy signal about the AV’s
true probability of accident given by p̃j,t = pj,t +N(0, σobs).

Firms cannot bring every single step of technological progress into the mar-
ket immediately but have to decide on discrete points in time at which a new
vehicle model is introduced onto the market. The newly released model then
corresponds to the level of technology available to a firm at the time of release.
Even though we do not directly model the costs of introducing a new model,
we assume that firms cannot release new models arbitrarily often in time but
have to employ a certain release strategy. We distinguish between two proto-
typical types of strategies, which we refer to as (i) the time strategy and (ii) the
quality strategy. Employing a time strategy means that the producer releases
new models in regular intervals, independently from the progress in technology
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that has been made compared to the previous model. In contrast, employing a
quality strategy means that the producer targets a certain constant (minimum)
absolute quality difference between two succeeding models and releases a new
model as soon as this difference has been reached. Hence, the quality strategy
introduces new models irregularly in time.

Whenever a producer introduces a new model, it discloses information about
performance and the probability of accident of the new model to all potential
customers. Although producers do not strategically spread misleading informa-
tion, the signal on the probability of accident may be inaccurate since safety
cannot be fully observed by the producer itself. Every time a new model is re-
leased, the producer also provides information about its plans for the future:
in the case of the time strategy, it announces a fixed release date of the future
model, while in the case of the quality strategy, it commits to a certain level of
performance and safety for the next model. This implies that there is no infor-
mation about future performance and safety in the first case and no information
about the release date of future models in the second case.

3.2 Consumers

Every consumer in our model owns and drives a car, which she has to replace
from time to time. At the beginning of the simulation, all consumers own a
CV. Whenever a vehicle has to be replaced, the consumer chooses between CV
and AV, and—if she intends to purchase an AV—between the different produc-
ers. We assume that each consumer i ∈ [1,M ] has a minimum and maximum
preferred vehicle lifetime, vmin

i and vmax
i , and will only consider purchasing a

new vehicle when her current vehicle’s age exceeds vmin
i . If so, the consumer

has three elementary options: (i) she can purchase a CV, (ii) she can purchase
an AV, or (iii) she can wait for the release of a new (and better) AV model.
The third option, however, is only available if the age of the consumer’s current
vehicle is below vmax

i . In the following, we will describe how consumers choose
between the first two options and discuss under which conditions they decide
to wait for the release of a new AV model.

Each consumer i has an individual minimal performance and maximum prob-
ability of accident threshold (qmin

i , pmax
i ). Generally speaking, a consumer will

always decide in favor of an AV if her performance and accident probability
thresholds are met and take the CV as an outside option otherwise. However,
consumers cannot directly observe the performance and accident probability
of vehicle models on the market and have to rely on their individual percep-
tion of or belief about these values in order to make a decision. Let Kt denote
the set of AVs available at time t. In order to capture a certain consumer’s
potential uncertainty, we assume that the consumer’s belief Qi,k,t regarding
the performance of an AV model k ∈ Kt is distributed according to a distri-
bution with a cumulative distribution function (CDF) F q

i,k,t(q). Similarly, her
belief Pi,k,t about the accident probability is distributed according to F p

i,k,t(p).
These beliefs are initialized using the producer’s information on performance
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and accident probability at the time of release and may change over time (see
Section 3.3). Given this setup, a consumer cannot tell with certainty that her
thresholds are met by a given AV model. Therefore, each consumer also has an
individual minimum probability threshold θi ∈ [0, 1] which represents her atti-
tude toward uncertainty. A consumer will only buy an AV, if she beliefs that the
AV’s performance is above her performance threshold with probability θi and
that the AV’s accident probability is below her accident probability threshold,
again with probability θi. Consumers with a low value of θi will accept sub-
stantial uncertainty, whereas consumers with a high value of θi require a high
degree of certainty before deciding to purchase an AV. If there is more than
one acceptable AV on the market, the consumer selects the one that offers the
higher joint probability that her performance and safety requirements are met.
The consumer postpones her decision, if she expects that a new and improved
AV model satisfying her requirements will be released in time.

More precisely, the decision between the different options is determined as
follows: Let zi denote the time of consumer i’s last purchase of a new vehicle.
For each point in time t ∈

[
zi + vmin

i , zi + vmax
i

]
, with probability ζ ∈ (0, 1] the

consumer considers the above-mentioned options by performing the following
steps:

Step 1: Determine the best currently available AV. For each vehicle model
k ∈ Kt on the market, calculate the probability P q

k,i,t that the vehicle’s per-
formance is above the consumer’s performance threshold according to her be-
liefs as P q

i,k,t = 1 − F q
i,k,t(q

min
i ). Similarly, calculate the probability P p

k,i,t that
the vehicle’s probability of accident is below the consumer’s accident proba-
bility threshold as P p

i,k,t = F p
i,k,t(p

max
i ). Select the subset K∗

i,t ⊆ Kt = {k ∈
Kt|P q

i,k,t ≥ θi ∧ P p
i,k,t ≥ θi} consisting of all the vehicles satisfying the con-

sumer’s requirements. Then, for every element of this subset, calculate the joint
probability that a vehicle model satisfies both requirements and select the vehi-
cle with the highest probability. Formally, if K∗

i,t is not empty, select the vehicle
k∗i,t according to

(3) k∗i,t = arg max
k∈K∗

i,t

[
P q
i,k,t · P

p
i,k,t

]
.

Step 2: Form expectations on future AVs. Let K̃t denote the set of AVs that
have been announced by the producers. First, for each k ∈ K̃t, determine the
expected release date t̂k. If the AV has been announced by a producer employing
the time strategy, this is simply the announced date. If the producer employs a
quality strategy, the expected release date is the time of the latest release plus
the time difference between the two last release dates of this producer. Next, for
each k ∈ K̃t, determine the expected beliefs about performance and accident
probability F̂ q

i,k,t̂k
, F̂ p

i,k,t̂k
at the expected release date. In the case of the quality

strategy, these can be determined by taking the information on performance
and accident probability from the announcement. In order to form expectations
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on performance and accident probability in the case of a time strategy producer,
we assume that consumers start from the premise that technology advances in a
linear fashion. According to this, the expected mean values for performance and
accident probability are again determined by comparing the producer’s latest
release with the previous release.8 Next, calculate the probabilities that the
vehicle will satisfy the consumer’s requirements at the time of release P̂ q

i,k,t̂k
,

P̂ p

i,k,t̂k
as described under Step 1 and consider the subset

(4) K̃∗
i,t = {k ∈ K̃t|t̂k ≤ zi + vmax

i ∧ P̂ q

i,k,t̂k
≥ θi ∧ P̂ p

i,k,t̂k
≥ θi}.

Step 3: Decide between purchasing AV, purchasing CV, and waiting. If K∗
i,t

is empty and K̃∗
i,t is non-empty, postpone the decision and wait for the release

of a new AV. If both K∗
i,t and K̃∗

i,t are non-empty, check whether there exists
a k̃ ∈ K̃∗

i,t with P q

i,k̃,t
· P p

i,k̃,t
> P q

i,k∗,t · P
p
i,k∗,t, where k∗ = k∗i,t ∈ K∗

i,t is the
best currently available AV from Step 1. If so, postpone the decision; otherwise,
purchase the AV model k∗. If K∗

i,t is non-empty and K̃∗
i,t is empty, purchase the

AV model k∗. If both K∗
i,t and K̃∗

i,t are empty, purchase the CV.

3.3 Formation and Updating of Beliefs

As the consumers’ beliefs regarding vehicle performance and accident prob-
ability of the AVs on the market play an important role in the consumer’s
decision-making process, they are crucial also with regard to the diffusion of
AV technologies. In the following, we explain how the beliefs are initialized and
updated over time.

Initialization of beliefs. We assume that all agents have normally distributed
beliefs over the performance and accident probabilities of AV models. Hence,
beliefs are fully characterized by the mean and the standard deviation of the
respective distribution.9 Whenever a new model k is introduced, the producer
(truthfully) publishes information on the vehicle’s performance qk and accident
probability pk. If this producer has not released an AV before, all agents initial-
ize their beliefs by setting Qi,k,t ∼ N(qk, σ

q
ini) and Pi,k,t ∼ N(pk, σ

p
ini), where

σq
ini and σp

ini represent the maximum initial uncertainty consumers can have in
the model. This uncertainty may be reduced in subsequent iterations of the
model. If a producer that already has an AV on the market releases a new AV
model, we assume that consumers do not initialize their beliefs with maximum

8This implies that consumers underestimate technological progress during periods of accel-
erating technological advancement and overestimate it when the technology curve levels off.
Assuming that consumers would accurately estimate technological progress using the correct
model specification does not qualitatively alter our results.

9Strictly speaking, the assumption of normally distributed beliefs implies that consumers
also allocate positive probability to negative values of these variables. However, under our pa-
rameterization, these probabilities are always negligible and therefore we make this assumption
for analytical convenience.
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uncertainty but instead take their beliefs about the previous model of the pro-
ducer into account. In particular, if the producer introduces a new AV model k
with performance qk, the consumer initializes her belief about the new model’s
performance as

(5) Qi,k,t ∼ N
(
qk, γσ

q
i,k,t + (1− γ)σq

ini

)
,

where γ ∈ [0, 1] is calculated as γ = gq(|qk−µq

i,k̃,t
|), with g′q < 0 and k̃ denoting

the previous AV model of this producer about which the consumer has the belief
Qi,k̃,t ∼ N(µq

i,k̃,t
, σq

i,k̃,t
). This formulation assumes that the consumer takes

into account the difference between the announced performance and the mean
performance according to the belief about the existing model’s performance. The
rationale behind this assumption is that consumers will be less uncertain about
a new AV model if it is similar to an existing one and will face higher uncertainty
if the producer claims that the new AV, for example, has a considerably higher
performance level than the previous one. Beliefs about the probability of an
accident are initialized in an analogous way by using σp

ini and the function gp.

Updating the performance belief. There a two possibilities for an update of the
performance belief about an AV: (i) through first-hand experience (available
only for users of an AV) or (ii) through communication with peers in the social
network. In both cases, consumers receive a signal about the performance of an
AV and we employ Bayesian learning (Baley and Veldkamp, 2023) to update
the consumer’s belief.10

At every point in time t, with probability ϕuse, an AV owner using an AV
model of type k receives a signal about her own AV’s performance. The signal
is given by s ∼ N(qk, σ

use), where qk denotes the true AV’s performance and
σuse is a parameter representing noise in the owner’s AV experience. The AV
owner uses the signal to perform a Bayesian update of her belief about the
AV’s performance, resulting in a new value for the mean as well as the standard
deviation. If an AV owner receives a signal as described above, she will poten-
tially distribute the new information via her social network. To model social
ties between agents, we employ a spatial version of the algorithm introduced
by Barabási, Albert, and Jeong (1999), which creates a scale-free network with
high clustering and small diameter (Stummer et al., 2015). Let χi denote the set
of consumer i’s contacts as given by the social network. For every friend l ∈ χi,
consumer i with probability ϕtalk

i sends a signal about the AV’s performance
given by

(6) s ∼ N

(
µq
i,k,t,

1

2
(σcomm

i + σcomm
l )

)
,

where µq
i,k,t represents consumer i’s own perception of the AV’s mean perfor-

mance and σcomm
m ,m ∈ {i, l} denotes the communication competence of the two

10For a brief description of Bayesian learning see Appendix A.
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consumers. Similar to above, consumer l uses the signal to perform a Bayesian
update of her own belief about AV k’s performance.

Updating the belief about probability of accident. In order to update consumers’
beliefs regarding AV accident rates, in each iteration, we simulate traffic in a
simplified manner: We assume that each month, each consumer experiences a
certain number of occasions in which an accident could occur. On each of these
occasions, we report an accident with probability pk if the consumers drives
AV model k and with probability pCV if she drives a CV. This results in a
certain number of accidents for each AV model currently used by consumers
and the total number of accidents caused by CV drivers. We collect data for 12
months and then estimate the accident probability µ̂p

k,t as well as the standard
deviation of the estimator σ̂p

k,t for each AV model used in that time interval. We
assume that these estimates are published via the media and every consumer
receives this information with probability ϕmedia. Consumers who receive this
information treat it as a signal s = µ̂p

k,t ∼ N
(
µ̂p
k,t, σ̂

p
k,t

)
and employ Bayesian

updating to update their belief about AV model k’s probability of an accident.
Overall, the way in which beliefs about the performance and accident prob-

abilities of AV models are updated implies that the uncertainty of consumers
with respect to both variables decreases as the number of sold AVs goes up. In
particular, a larger number of AV owners implies that potential consumers can
use a larger number of performance signals from social contacts to update their
beliefs. Hence, the standard deviation of beliefs decreases faster. Similarly, the
standard deviation of the estimator of AV accident probabilities decreases as
data from a larger number of AVs can be used.

4 Calibration

To calibrate our model for the German market, we employed a mixed meth-
ods approach and combined a qualitative-empirical study with a quantitative-
empirical one. For the qualitative-empirical study, two interviews with car sales-
men and three interviews with potential consumers of AVs were conducted.
The former two interviews served as a solid basis for understanding both the
announcement strategies of car producers as well as car purchasing behavior.
The latter three interviews provided more detailed insight into the purchasing
processes including possible key buying factors. These factors were then inves-
tigated in a subsequent quantitative-empirical study, the results of which we
used to populate our simulation with agents that were heterogeneous in certain
key properties. All other parameters were chosen to reflect empirical evidence
whenever possible. In the following, we describe how we conducted the quan-
titative survey and incorporated the results in our simulation. The full list of
parameter values can be found in Appendix D.



16

4.1 Sample

Participants were recruited via the panel provider Bilendi (www.bilendi.de),
which guaranteed that all participants were from Germany and at least 18 years
old. All participants were car owners, which was required for three reasons:
they probably had experience in buying a traditional car, they probably use
the car, and they have an interest in owning a car. Moreover, the sample was
representative of the population of Germany with respect to age and gender.
Still, small discrepancies from official statistics can be found due to the ex-
post exclusion of certain responses, which happened when participants failed
to correctly answer attention checks (e.g., “Please check the ‘strongly disagree’
box”), when we found specific patterns in response behavior (e.g., checking the
same answer on the scale for most questions), or when we identified uncommon
response times (e.g., extraordinarily long or short response times or breaks when
answering the questionnaire). Several of the above issues were found in all 35
responses that were excluded. The final sample included responses from 265
participants (51.3% female; Mage = 45.8; SD = 14.0).

4.2 Procedure

At the beginning of our questionnaire, participants were confronted with a
definition of AVs in order to create a common understanding. Only then, we
proceeded by asking participants for their personal opinion on the following
variables.

Addressing the quality strategy, we measured the importance of performance
inspired by Sujan and Bettman (1989) by means of four items: “The performance
of an autonomous car is important”; “The performance of an autonomous car
is relevant to my purchase intention”; “I would only buy an autonomous car
if my requirements referring to performance are fulfilled”; and “Referring to
performance, it is important that all functions of the autonomous car be fully
developed” (α = 0.910).11

As another variable, we also measured the importance of safety by asking
participants about acceptable car accident rates for AVs using the probability
of 5% to be involved in a car accident per year for conventional cars as an
anchor point (Kords, 2022; Destatis, 2022): “I would take an autonomous car
into consideration if the car accident rate per year were below 5%”; “I would
take an autonomous car into consideration if the car accident rate per year
were about 5%”; and “I would take an autonomous car into consideration if the
car accident rate per year is above 5%”.

Next, we used four items adapted from Wang, Yu, and Wei (2012) to measure
peer communication: “I talk to other people about autonomous cars”; “I talk to
other people about buying an autonomous car”; “I ask other people for advice
about autonomous cars”; “I obtain information about autonomous cars from
other people”; and “Other people encourage me to buy an autonomous car” (α =

11Cronbach’s alpha (α) is a reliability coefficient measuring internal consistency of a scale
(Cronbach, 1951).
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0.946).
Three items adapted from Rubin and Martin (1994) were used to measure

communication competence: “When I talk to family members/friends about au-
tonomous cars, the conversations are easy to understand”; “In conversations
with family members/friends about autonomous cars, I perceive not only what
they say but what they do not say”; and “I am able to take charge of conversa-
tions about autonomous cars so that my family members/friends can understand
the topic” (α = 0.877).

Based on the results of our qualitative-empirical study, we also added two
items concerning consumer’s attitude toward uncertainty : “I would buy an au-
tonomous car, even if there were insufficient information about that autonomous
car”; and “I would buy an autonomous car, even if there were inconsistent in-
formation about that autonomous car” (ρ = 0.932).12

Finally, we included questions referring to the minimum and maximum life-
time of CVs: “What is the minimum duration during which you use your con-
ventional car?” and “What is the maximum duration during which you use your
conventional car?”.

4.3 Mapping results to the simulation

In order to use the survey data to initialize and populate the simulation model,
participants’ responses have to be mapped from the scale used in the survey
(possible discrete answers ranging from 1 to 7) to values that are appropriate
in the context of the model. First, for each participant, we take the average
response value from all items belonging to one construct. Second, we linearly
transform this average to a range of decimal numbers that is reasonable for the
respective agent property. Table 1 shows the mapping between survey constructs
and the respective agent properties as well as the minimum and maximum
values used. Apart from the constructs shown in Table 1, we also used the
minimum and maximum vehicle lifetime to inform the agent properties vmin

i

and vmax
i . However, in this case the values from the survey can be used directly

without mapping. In order to be able to create agent populations of arbitrary
size, we performed a multivariate kernel density estimation (KDE) using the
transformed survey data and initialized the model by sampling agent properties
from the KDE distribution. For a visual representation of the KDE result by
marginal distributions, see Appendix B.

5 Firm Strategy and Competition

In order to compare the two prototypical strategies, we consider a duopoly
scenario as a baseline, where one of the producers employs a time strategy
and the other employs a quality strategy. The time strategy producer releases

12The Spearman–Brown formula (ρ), which is also a reliability coefficient measuring internal
consistency of a scale, is used in the case of scales consisting of two items (Brown, 1910;
Spearman, 1910).
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Table 1

Mapping of survey constructs to agent properties.

Construct Property Min Max

Importance of performance qmin
i 0.05 0.95

Importance of safety pmax
i 0.02 0.08

Peer communication ϕtalk
i 0.00 0.04

Communication competence σcomm
i 0.05 0.25

Attitude toward uncertainty θi 0.10 0.90

new AV models in regular intervals of τ months, whereas the quality strategy
producer releases a new AV model as soon as the performance and safety levels
have been improved by some constant value since the last product release. In
order to make the two strategies comparable, for each scenario, this parameter
setting has been calibrated such that the average number of AV models released
in the considered time frame of 700 months is the same compared to the time
strategy. Our analysis is based on batches of 100 simulation runs, carried out
in each considered strategy scenario and parameter constellation.

5.1 Baseline Scenario

Figure 2 shows our results for the baseline scenario. Figure 2a depicts the evo-
lution of the total number of AV owners over time by means of average values
and quantile intervals. Although some consumers prefer and purchase AVs from
the start of the simulation, overall sales numbers and the share of AV owners
are very low until around iteration 300, and subsequently begin to significantly
rise up to around 55% at the end of the simulation horizon. The low number of
sales at the beginning of our simulation runs can be attributed to the low level
of technological development at that time.

Figure 2b depicts the average annual accident rate of all vehicles in use
(CV+AV). For the first half of the simulation, the accident rate fluctuates at
around 5%, which resembles the accident rate for CV traffic in Germany. The
accident rate then starts to visibly decline from around iteration 400 as from
this point on (i) a growing number of consumers switch from a CV to an AV
(and AVs, therefore, gain more and more market share) and (ii) AVs become
significantly safer than CVs.

Figures 2c and 2d show the average performance and accident probability
of the latest AV offered by the two producers. In the beginning, performance
and safety levels are unsatisfactory for the majority of consumers and they still
prefer to purchase CVs. By comparing Figure 2a to Figures 2c and 2d, it can
be noted that the adoption of AV technology is lagging behind technological
development. Although AV technology has been mostly exhausted by the end
of our simulation runs, and both performance and safety levels are close to their
theoretically optimal values, AV adoption is far from complete, and the slope of
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(a) (b)

(c) (d)

(e) (f)

Figure 2
Baseline simulation runs: (a) share of AV owners, (b) overall accident rate (CV+AV), (c)
average performance, (d) average monthly accident probability of AVs on the market, (e)
total AV sales by the time strategy and quality strategy producer, (f) market share of the
quality strategy producer during the final 100 iterations of the simulation. The solid line

depicts the mean of 100 runs; the shaded area represents the 95% confidence band.
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the diffusion curve is already decreasing. The delayed response of consumers to
technological advances can be explained by the role of uncertainty in the decision
to change to an AV in our model. Accordingly, it is not sufficient that the indi-
vidual performance and safety requirements be met in expectations—consumers
also need to have a certain degree of confidence in their expectations. In fact,
uncertainty issues play a major role in practice, as was shown by our survey,
which indicated that the majority of consumers would only consider purchasing
an AV if uncertainty about the AVs performance and safety were low. Unless a
consumer already owns an AV, uncertainty regarding properties of the AV can
only be reduced by signals received from the social network (regarding perfor-
mance) and the media (regarding safety). Since the diffusion of information over
the social network takes time and does not eliminate uncertainty altogether, the
diffusion of AV technology is much slower than the technological development
itself.

Figure 2e shows the accumulated total AV sales for each of the two producers.
On average, the producer employing a quality strategy sells more AVs, and thus,
it can be concluded that the quality strategy performs better in our baseline
scenario. However, the variation between runs is high, and for some of the runs,
the time strategy leads to a higher number of total sales.

In order to obtain a better understanding concerning the relative performance
of the two strategies, Figure 2f provides a histogram of the quality strategies
market shares from the last 100 months for all of our simulation runs combined.
By looking at only the last iterations of each simulation run, we are able to assess
what the long-term outcome in particular will look like (e.g., whether one of the
two strategies was able to drive the respective competitor out of the market).
The x-axis of Figure 2f represents the quality strategy producer’s market share
from 0% to 100% and on the y-axis, we plot the total number of months observed
in which the quality strategy reached the respective market share. The large
bar on the right indicates that numerous runs lead to a situation, in which the
producer employing the quality strategy clearly dominates the market. When
market dominance is defined as having a market share of at least 85% in at
least 95% of the last 100 months, such a clear dominance can be observed in
about 20% of our simulation runs. In contrast, only 3% of the runs result in the
time strategy producer becoming dominant. In the remaining runs, the market
is split more evenly between the two competitors, and the quality strategy
producer reaches a market share of 68% on average and leads the market in 78%
of the observed months. This demonstrates that the quality strategy exhibits
a significant advantage in our baseline scenario. By analyzing single-run time
series, we can confirm that these results do not stem from often and rapid
changes in market shares and that the positions of the two competitors in the
market remain fairly stable once they have settled on a certain range of values.

It should be noted that the emergence of a situation in which the quality
strategy producer dominates is not driven by differences in parameterization of
the two competing firms. In particular, there is no technological difference be-
tween the two producers, as both share the same exogenous technological curve,
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and any difference with respect to quality or safety between the two producers
therefore vanishes over time. Hence, the producers offer homogeneous goods in
the long-run. Moreover, prices are normalized in the model, and there are no
capacity constraints or market (re-) entry barriers that could explain the emer-
gence and stability of such a dominance. However, we observe path-dependencies
related to the existence of uncertainty, which serve as an explanation for the
potential emergence of a dominating firm in our setup. Although both pro-
ducers objectively offer a homogeneous product at the end of the simulation,
consumers’ perception of the products’ properties may be heterogeneous. Even
if consumers have identical expectations about performance and safety of the
two AVs on offer, they purchase the one for which their individual uncertainty
regarding these properties is lower. Uncertainty is reduced by acquiring new in-
formation through the consumer’s social network (regarding performance) and
the media (regarding safety). With respect to both dimensions, the extent of
uncertainty reduction depends on the number of vehicles a producer has on the
road at any given point in time. Since a lower perception of uncertainty is par-
tially carried over to subsequent generations of the AV, the higher number of
AVs sold in the past introduces a lasting advantage for the producer. As a result,
path dependency plays a role in the diffusion dynamics, and market dominance
may emerge due to lower perceived uncertainty.

The discussion above explains why, in our model, a strategy that gains an
advantage with respect to sales is likely to keep that advantage for the future.
However, this does not explain why the quality strategy is more likely to gain
such an advantage in the first place. In order to understand this observation, we
have to turn our view toward the beginning of the simulation, around periods
200–400. In this time window, the technological performance and safety levels
(Figures 2c, 2d) begin to slowly leave the flat part of the respective S-curves;
subsequently, the technological progress accelerates. During this time frame, the
quality strategy producer releases, on average, more new AV models compared
to the time strategy producer, which is bound to the fixed release schedule.
Accordingly, the quality strategy producer exploits technological progress bet-
ter, and in most runs, offers an AV with better performance and safety levels
compared to its competitor. As a result, innovative consumers are more likely to
purchase from the quality strategy producer, resulting in higher market share.
Due to the path dependencies, the quality strategy producer keeps this advan-
tage in most simulation runs.

The apparent advantage of the quality strategy in our baseline prompts the
question of why automobile manufacturers might opt for a time strategy at all.
As detailed in Section 6, this advantage presupposes the presence of considerable
uncertainty, a characteristic not necessarily prevalent in traditional (non-AV)
automotive markets. Furthermore, other factors may come into play, favoring
the adoption of a time strategy. In Appendix C, as a robustness check, we ex-
tended the model and examined a scenario in which the time strategy outper-
forms the quality strategy. For this extended model, we carried out experiments
analogous to those presented in Sections 5.2, 5.3 and 6 and demonstrate that
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the results obtained in these sections carry over to this variation of the baseline
environment.

5.2 Effect of Technology Curves

The above-mentioned reasoning suggests that the competitive advantage of the
quality strategy is closely linked to the S-shape of the technology curves. In order
to further examine this link, we also tested a scenario in which the technology
curves for performance and safety are straight lines, with technological progress
starting in month 1 and reaching its final and optimal value in month 600. These
technology curves model a more rapid technology development as compared to
the previously used S-curves from the baseline scenario up until month 300;
from then on, they fall behind due to the S-curve’s higher local growth rate.

Figure 3 illustrates the difference between the flat technology scenario and
the S-curve used in the baseline scenario. As expected, adoption of the AV tech-
nology starts earlier but at an overall slower rate (Figure 3a). Furthermore, AV
adoption at the end of the run is significantly lower in the case of the linear
technology curves. This result can be attributed to higher uncertainty result-
ing from the slower adoption of AVs: Since a flat technology curve leads to a
delayed adoption, particularly by consumers with high performance thresholds,
there are also fewer consumers communicating their experience with AVs, lead-
ing to a delay in uncertainty reduction through communication. This effect is
not mitigated by the higher initial AV adoption, as the early adopters will only
(truthfully) communicate that their AVs have low performance values, which
is not helpful regarding adoption by consumers with high performance thresh-
olds. Regarding market concentration, it is about 4 times less likely than in
the baseline case that the quality strategy producers is capable of establishing a
dominating position, and the market shares are also, in general, more evenly dis-
tributed (Figure 3b). Still, the quality strategy has a significant advantage, with
an average market share of 58% in the last 100 months of the simulation. Other
than in the baseline scenario, the quality strategy producer has no possibility of
exploiting the S-shaped technological curves in this scenario but it is still able
to exploit the technological uncertainty. The reason for the difference between
the two strategies is that the producer’s current technology level stochastically
fluctuates around the shared technology curve, and the quality strategy, with
higher probability, triggers the release of a new AV model when the producer’s
current technology lies above the technology curve. On the contrary, for the
time strategy producer it is equally likely to release a new AV model, when its
technology lies above or below the technology curve. As a result, the quality
strategy producer finds better release times and offers better AV technology
on average. Hence, employing a quality strategy is more beneficial than using
the (inflexible) time strategy. Again, the advantage in the critical time window
carries over to subsequent periods, but since the advantage is smaller, this is
overall less likely to result in market dominance.
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(a) (b)

Figure 3
Comparison of the flat technology scenario with the baseline scenario: (a) share of AV

owners, (b) market share of the quality strategy producer during the final 100 iterations of
the simulation.

5.3 Effect of Consumer Heterogeneity

Consumer heterogeneity is a distinct feature of our model. In order to examine
the impact of consumer heterogeneity on our results, we removed consumer
heterogeneity from the model by replacing each of the calibrated behavioral
parameters (i.e., θi, q

min
i , pmax

i , ϕtalk
i , σcomm

i , vmin
i , vmax

i ) by the median of the
distribution.

Figure 4 shows the result from the simulation runs in comparison with the
baseline scenario. Without heterogeneity among the consumers, AV adoption
starts about 100 months later than in the baseline scenario. It catches up quickly,
however, and is almost at the same level at the end of the simulation. Another
major difference between the two scenarios is the increase in variance between
runs, as can be seen in Figure 4a. The later start of the adoption process can
be explained by the lack of consumers who have either a high tolerance for
uncertainty (i.e., a low θ value) or low performance and safety requirements.
Thus, they act as early adopters in the baseline scenario. Since all these poten-
tial early adopter have been replaced by the median consumer, adoption takes
place at a later point in time but also at a higher rate, as the homogeneous
consumers start adopting the AV (nearly) all at once. Moreover, the consumers
with high safety and performance requirements or low uncertainty tolerance
have also been replaced by the median consumer, which results in lower resis-
tance toward adoption at the end of the simulation. It should be noted that
adoption does not happen instantaneously, even though all consumers are iden-
tical. The reason for this is that (i) at any given point in time only a small subset
of consumers consider purchasing a new car, and (ii) consumers are identically
parameterized but do not share the same beliefs on performance and safety of
a particular AV model, since they typically receive diverse information through
their social networks. Therefore, even though all agent parameters are identical,
adopting and non-adopting consumers may still co-exist at the same time in one
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simulation run. Nevertheless, by examining single-run time series, it can be ob-
served that the adoption curve for a single run is typically very steep after the
market introduction of the first successful AV model. However, adoption starts
at different points in time, and adoption may suddenly stop if, for example, it
turns out that the AV has a slightly lower performance or safety record than
expected. This explains the increase in variance between the simulation runs
and the finding that the mean adoption curve does not show any sudden steep
increase in AV adoption.

(a) (b)

Figure 4
Comparison of a scenario with homogeneous consumers with the baseline scenario: (a) share

of AV owners, (b) market share of the quality strategy producer during the final 100
iterations of the simulation.

Interestingly, a reduction of heterogeneity in our model, therefore, leads to
more uncertainty with respect to the time of the start of AV adoption and
the shape of the adoption curve. With respect to market shares (Figure 4b),
we observed that a lack of heterogeneity slightly reduces the advantage of the
quality strategy. Consequently, the quality strategy producer is less likely to
become dominant toward the end of the simulation, and there are more runs in
which the time strategy producer dominates the market. Intuitively, this result
is driven by stronger path dependencies arising in the case of homogeneous
consumers, which make it more likely that in runs in which the time strategy
producer happens to gain an initial advantage, it will be able to extend this
advantage until the end of the run. These findings also underline the importance
of capturing heterogeneity in an accurate manner when analyzing the adoption
of new technologies.

6 Uncertainty and Consumer Attitudes Toward Uncertainty

To demonstrate the importance of capturing uncertainty, we first consider a
scenario in which uncertainty is completely removed from the model, that is,
more precisely, we assume that there is no technological uncertainty in the
sense that producers are able to accurately observe their own technology and
consumers have complete trust in all announcements made by producers and
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information obtained from the media. Furthermore, there is no communication
noise when exchanging information through social networks.

Figure 5 shows the results from the corresponding simulation experiments. As
can be seen in Figure 5a, AV adoption starts earlier and significantly faster when
there is no uncertainty compared to the baseline scenario. The corresponding
adoption curve (in the absence of uncertainty) closely resembles the technolog-
ical performance curve, and variance between runs is very limited. This result
indicates that AV adoption in the baseline scenario is considerably delayed by
uncertainty regarding the properties of AVs, and it is not mainly attributed to
an actual lack of performance or safety.

(a) (b)

Figure 5
Comparison of a scenario without uncertainty with the baseline scenario: (a) share of AV

owners, (b) market share of the quality strategy producer during the final 100 iterations of
the simulation.

Uncertainty also has a substantial impact on market shares (Figure 5b). While
in the baseline scenario, the AV market exhibits considerable tendencies for mar-
ket concentration in the long run (up to the formation of a monopoly), in the
absence of uncertainty, there are no signs of market concentration. Furthermore,
the quality strategy has fully lost its advantage, and market shares are evenly
distributed among the two producers in the long run. This result is mainly
driven by the lack of path dependencies in the absence of uncertainty. If uncer-
tainty does not play a role, a producer cannot profit from increased uncertainty
reduction from temporarily having more vehicles on the road; consequently, this
does not create long-lasting advantages.

Thus far, the reported simulation results were based on the empirically cali-
brated version of the model, with a large fraction of the consumer population
seeking a low level of uncertainty (see Section 4). Accordingly, the number of
agents who might adopt the AV technology, even though they are uncertain
about the AV’s properties, is low. In the following, we analyze the impact of a
change in consumers’ attitudes toward uncertainty. In order to do so, we replace
the ‘attitude toward uncertainty’ parameter of a random subset of consumers
(totaling 20% of the population) by a very low value (θ = 0.2). Consequently,
the respective consumers not only accept higher levels of uncertainty but also,
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if uncertainty is high enough to create sufficient upside risk, tend to adopt the
AV technology in spite of their expectation that the AV will not satisfy their
requirements. We refer to such a behavior as ‘using uncertainty.’

Figure 6 illustrates the results from this experiment: AV adoption starts early
and is higher at any point in time compared to the baseline case (Figure 6a).
However, the difference is mainly limited to the part of the population whose
uncertainty threshold has been exogenously changed by our manipulation. There
are no substantial “multiplier effects,” which would lead to earlier adoption for
agents in the remainder of the population. This can be explained by the fact
that AVs, during the beginning of the simulation, exhibit low performance and
safety levels. The earlier adoption by the manipulated agents (who exhibit low
θ values) does in fact also lead to lower uncertainty in the remainder of the
population. However, since the initial level of actual performance and safety is
relatively low, the agents become more certain that they do not want to purchase
an AV. As a result of the low safety levels, the accident rate in this scenario
exceeds the baseline during the first half of the simulation. It is noteworthy that,
due to the higher adoption in absolute terms, the accident rate falls below the
baseline in the second half of the simulation (Figure 6b). In that sense, there
is a trade-off between lower accident rates in the beginning and faster adoption
resulting in lower accident rates in the future.

Figure 6c shows that the quality strategy maintains its advantage in the
scenario with a high fraction of ‘using uncertainty’ consumers. However, when
looking at the market shares during the final 100 iterations (Figure 6d), it can
be seen that market concentration is considerably lower in the ‘using uncer-
tainty’ scenario and that the quality strategy producer is less likely to become
dominant. This can be explained by the 20% of the population purchasing AVs
in the early stages of the simulation at the flatter part of the technology curves,
where the quality strategy does not have an advantage over the time strategy.

7 Conclusions

The agenda of this paper is to study different key aspects influencing the dif-
fusion of smart products, exemplified by autonomous vehicles. In light of the
different types of uncertainties characterizing such products, in particular with
respect to their safety—in terms of accident probabilities—and also their future
technological development, we compare the performance of two prototypical
strategies determining the AV producers’ timing of the release of new models.

Using an agent-based simulation model, which we calibrate based on survey
data about consumer attitudes toward AVs and the uncertainty associated with
them, we show that the quality strategy, under which a new model is introduced
once the quality the producer can deliver exceeds the quality of its current
model on the market by some fixed absolute difference, outperforms the timing
strategy, under which the time between two product releases is constant. In our
baseline setting, which incorporates different types of uncertainty associated
with AVs and consumer heterogeneity, with substantial probability, the producer
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(a) (b)

(c) (d)

Figure 6
Comparison of the ‘using uncertainty’ scenario with the baseline scenario: (a) share of AV
owners, (b) overall accident rate (CV + AV), (c) total AV sales by the time strategy and

quality strategy producer, (d) market share of the quality strategy producer during the final
100 iterations of the simulation.
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using the quality strategy is able to take over the entire market if competing
with a firm using the timing strategy. If the S-shape of the curve governing the
evolution of the technological frontier is less pronounced, the average degree
of concentration in the industry is lower—and the long-run share of AVs on
the street is smaller—while a reduction in the consumer heterogeneity increases
long-run industry concentration.

Furthermore, we show that the tendency toward industry concentration dis-
appears if consumers are certain regarding the quality of (current and future)
AVs offered on the market, and that it becomes much smaller if we assume
that a larger fraction of the consumers show ‘using uncertainty’ behavior. An
increase in consumers with such behavior also pushes up the share of AV users
(in the short and long run) and, thus, induces overall safer traffic in the long
run. Our results suggest that consumer uncertainty regarding key AV character-
istics and the way consumers deal with this uncertainty has crucial implications
not only for the speed of AV diffusion but also for the emerging level of indus-
try concentration and the relative performance of the different product launch
strategies. In this sense, our findings also have potential implications for a policy
maker interested in fostering a fast diffusion of AVs in the market or avoiding
strong (long run) concentration of the market for AVs. Our results indicate that
policies that either reduce the uncertainty of consumers about the properties
of the offered AV models (e.g., through mandatory extensive testing of newly
introduced models by public authorities), or foster early adoption of AVs (i.e.,
mimicking our ‘using uncertainty’ experiment through policies like adoption
subsidies in the early phase of AV diffusion) have positive effects with respect
to both objectives. It should however be pointed out that our results do not
allow any conclusions about whether fostering fast diffusion of AVs is desirable
from a welfare perspective.

Although our analysis focuses on AVs, the main mechanisms captured in our
model also apply to a larger set of products, which are characterized by large
ex-ante uncertainty of consumers about the product’s performance and safety.
Hence, we believe that our results also carry over to the diffusion of other such
types of products, and therefore in particular to products strongly relying on
innovative AI-based technologies.

Our analysis has several limitations and can be extended in different direc-
tions. First, we assume that consumers’ requirements for AV performance and
safety, as well as their network of friends, their communication patterns, and
their attitude toward uncertainty stay constant over time, while it can be ex-
pected that several of these properties—and in particular the consumers’ per-
spective on AVs and the associated uncertainty—will change considerably once
these products become established on the market. Second, our current model
does not take into account mixed traffic effects, that is, a different accident
probability of AVs when meeting another AV compared to meeting a human
driver, such that the share of AVs on the street has an impact on the accident
probability of these vehicles. Third, our assumption that in the case of a suc-
cessful innovation the new quality of the innovator is mainly determined by the
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value of a producer-independent technological frontier strongly simplifies the
structure of dynamic innovation competition and ignores path dependencies,
which might, for example, result from the fact that producers profit from data
they receive from their own models on the street when training the next gen-
eration of AV models. Finally, it would be interesting to extend our analysis
to a broader range of strategies. For example, a mix between the timing and
quality strategy, under which the producer, in principle, releases new models
after a fixed time interval but delays the release if the quality gap between the
previous and the current model is not sufficiently large, could be a profitable
alternative to the prototypical strategies here. All of these extensions could be
integrated into the framework developed in this paper.

Data and Code Availability

The model has been implemented in Julia (Bezanson et al., 2017) using the
Agents.jl package (Datseris, Vahdati, and DuBois, 2024). The code and the
data used in this paper are open source and can be downloaded from GitHub:
https://github.com/ETACE/av_market_model

Appendix A Bayesian Learning

Bayesian learning is a statistical framework used in economics to model how
agents update their beliefs and make decisions in an uncertain world. It is
based on Bayes’ rule, which provides a method for updating prior beliefs in
light of new information. In Bayesian learning, prior beliefs are represented by
a probability distribution and updated using Bayes’ rule whenever new data
becomes available. Following Baley and Veldkamp (2023), we assume that be-
liefs are normally distributed. Let ω ∼ N (µω, σω) denote an agent’s prior belief
about a certain AV’s property. In this case, the agent believes that the mean
value of the property is µω and σω reflects how uncertain the agent is with
respect to the value of this property. Whenever the agent receives a new (noisy)
signal s = ω + η, η ∼ N (0, σs) about the property, she updates her belief by
calculating a new mean as

(A.1) µ̂ω =
1
σω

µω + 1
σss

1
σω

+ 1
σs

and a new variance as

(A.2) σ̂ω =
1

1
σω

+ 1
σs

.

Our assumption that both the prior belief and the signal are normally dis-
tributed implies by standard application of Bayes’ rule that the posterior belief
is again normally distributed. The updated belief ω̂ ∼ N (µ̂ω, σ̂ω) becomes the

https://github.com/ETACE/av_market_model
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new prior and may again be updated if the agent receives another signal about
the AV’s property.

Appendix B Kernel Density Estimation

For each of the agent-specific parameters calibrated using the empirical survey,
Figures B.1 to B.7 show the distribution of the respective parameters in the
survey, as well as the distribution of the parameter values sampled from the
kernel density estimation (KDE).
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Figure B.1
Distribution of minimum performance threshold qmin

i from (a) an empirical survey and (b) a
sample drawn from KDE.
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Distribution of maximum probability of accident threshold pmax

i from (a) an empirical
survey and (b) a sample drawn from KDE.
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Figure B.3
Distribution of probability threshold θi from (a) an empirical survey and (b) a sample

drawn from KDE.
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Figure B.4
Distribution of probability to communicate ϕtalk

i from (a) an empirical survey and (b) a
sample drawn from KDE.

0.10 0.15 0.20 0.25
0

10

20

30

40

(a)

0.10 0.15 0.20 0.25
0

10000

20000

30000

40000

50000

60000

70000

(b)

Figure B.5
Distribution of communication noise σcomm

i from (a) an empirical survey and (b) a sample
drawn from KDE.
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Figure B.6
Distribution of minimum vehicle lifetime vmin

i from (a) an empirical survey and (b) a sample
drawn from KDE.
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Distribution of maximum vehicle lifetime vmax

i from (a) an empirical survey and (b) a
sample drawn from KDE.

Appendix C Model Extension with Motor Shows

The quality strategy demonstrates a considerable advantage over the time strat-
egy in our baseline scenario (Section 5.1). As outlined in Section 6, this advan-
tage becomes pronounced specifically in scenarios marked by significant uncer-
tainty on the consumer side. Traditional (non-AV) automotive markets may not
exhibit such elevated levels of uncertainty, possibly explaining why car compa-
nies tend to adopt strategies characterized by regular development and release
cycles. Nevertheless, other factors may influence the apparent preference for the
time strategy. One such factor is the synchronization of release dates and mar-
keting initiatives with key events, such as international motor shows. Within
the framework of our model, the pivotal effect of motor shows is the reduction
of uncertainty. First, customers gain firsthand experience with new technolo-
gies and car models, and second, these events foster heightened communication
among car enthusiasts, facilitating the dissemination of information about new
car models. Consequently, a time strategy, strategically aligning release dates
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with the recurring schedule of motor shows, would gain competitiveness com-
pared to a quality strategy characterized by unpredictable release dates.

To ascertain the robustness of our findings, we integrated the concept of
uncertainty-reducing motor shows into our model and present the results in
this appendix. We assume motor shows take place every nMS = 24 months and
synchronize the release dates of the time strategy to coincide with these events.
Motor shows exclusively impact the formation of initial beliefs by reducing the
initial uncertainty σq

ini (see Equation (5)). When a producer unveils a new car
model within zMS = 3 months before a motor show, we assume that this segment
of the overall uncertainty is reduced by a factor of (1−σred

MS). Consequently, the
impact of a motor show is more pronounced for releases introducing substantial
novelty and diminishes if the newly launched car closely resembles the previous
model in terms of performance and safety. It is important to note that a time
strategy producer is not obligated to unveil a new car at every motor show, and
conversely, the quality strategy producer may also coincidentally benefit from
motor shows on occasion.

Given that time strategy producers predominantly benefit from motor shows,
the parameter σred

MS can be used to steer the relative performance of the time
strategy. In the following analysis we explore a scenario with a significant motor
show impact (σred

MS = 0.5) enabling the time strategy to clearly outperform the
quality strategy in a modified baseline scenario. Figure C.8 shows total AV
sales by the two producers and a histogram portraying the market shares of
the quality strategy producer in the final 100 months of the simulation runs.
Compared to the baseline scenario in the main part of the paper, the time
strategy demonstrated a significant performance boost with an average market
share of 67% and led the market in 78% of the observed months. In order to test
whether our main findings carry over to scenarios in which the time strategy
outperforms the quality strategy, we use this modified baseline to repeat all
experiments carried out in Sections 5.2, 5.3 and 6.

(a) (b)

Figure C.8
Baseline environment with motor shows: (a) total AV sales by the time strategy and quality

strategy producer, (b) market share of the quality strategy producer during the final 100
iterations of the simulation.
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Figures C.9 to C.12 show the share of AV owners over time as well as the
market share of the quality strategy producer during the final 100 iterations of
the simulation runs for all experiments from the main part of the paper with
the motor show scenario being used as the new (modified) baseline.

Qualitatively, the findings remain intact when considering this variation in
the baseline environment. As in the case without motor shows, AV adoption is
still delayed and the long-run market share of the time strategy is larger in the
flat technology scenario compared to the baseline (see Figure C.9 compared to
Figure 3). Decreasing consumer heterogeneity continues to favor the time strat-
egy and increases the likelihood of market domination similar to the scenario
without motor shows. However, in the presence of motor shows, a reduction in
consumer heterogeneity also provides an additional stimulus for (long-term) AV
adoption, an effect that is not present in the baseline without motor shows (see
Figure C.10 compared to Figure 4). As for the case without motor shows, in
the absence of uncertainty, the diffusion of AVs is much faster compared to the
baseline, and neither of the two strategies exhibits any advantage, such that the
market is equally divided between the two firms (see Figure C.11 compared to
Figure 5). Finally, the results of the ‘using uncertainty’ scenario closely resem-
bles the main findings of the paper; in particular, AV diffusion is faster under the
‘using uncertainty’ scenario and the likelihood of market dominance is smaller
(see Figure C.12 compared to Figure 6(a) and (d)).

(a) (b)

Figure C.9
Comparison of the flat technology scenario with motor shows to the modified baseline: (a)
share of AV owners, (b) market share of the quality strategy producer during the final 100

iterations of the simulation.
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(a) (b)

Figure C.10
Comparison of the scenario with homogeneous consumers with motor shows to the modified
baseline: (a) share of AV owners, (b) market share of the quality strategy producer during

the final 100 iterations of the simulation.

(a) (b)

Figure C.11
Comparison of the scenario without uncertainty with motor shows to the modified baseline:
(a) share of AV owners, (b) market share of the quality strategy producer during the final

100 iterations of the simulation.
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(a) (b)

Figure C.12
Comparison of the ‘using uncertainty’ scenario with motor shows to the modified baseline:
(a) share of AV owners, (b) market share of the quality strategy producer during the final

100 iterations of the simulation.

Appendix D Parameterization

Table D.1 provides the full list of parameters and their respective values in
the baseline simulation runs. The parameters related to the technology have
been calibrated such that they result in a reasonable share of AV adopting
consumers for the baseline during the time frame under consideration. Most of
the consumer-specific parameters were set using the results from a survey of
German car owners. The remaining parameters have been chosen in a way that
reflects empirical evidence whenever possible.

Table D.1
List of parameters.

Symbol Description Value

General
T number of iterations in months 700

N number of AV producers 2

M number of consumers 10 000

pCV CV accident probability (for reference) 0.05

Technology and AV producers
q−∞ asymptotic minimum AV performance 0.0

q∞ asymptotic maximum AV performance 1.0

qshape shape parameter for the performance curve 0.02

qshift shift parameter for the performance curve 300

p−∞ asymptotic maximum monthly AV probability of ac-
cident

0.1
12

Continued on next page
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Table D.1 – continued from previous page – List of parameters

Symbol Description Value

p∞ asymptotic minimum monthly AV probability of ac-
cident

0.01
12

pshape shape parameter for the probability of accident curve 0.02

pshift shift parameter for the probability of accident curve 300

λq monthly innovation rate performance 0.05

λp monthly innovation rate probability of accident 0.05

σq innovation noise performance 0.05

σp innovation noise probability of accident 0.0005

σobs noise when observing probability of accident 0.0005

τ interval between two AV releases when using the time
strategy

96

Consumers
vmin
i minimum vehicle lifetime [12, 240]

vmax
i maximum vehicle lifetime [24, 360]

qmin
i minimum performance threshold [0.05, 0.95]

pmax
i maximum probability of accident threshold [0.02, 0.08]

θi minimum probability threshold [0.1, 0.9]

ζ monthly probability of considering CV/AV purchase 0.25

σq
ini initial uncertainty w.r.t. performance 0.25

σp
ini initial uncertainty w.r.t. probability of accident 0.0025

gq (d) function to calculate initial uncertainty about per-
formance

1
1+exp(50d−0.1)

gp (d) function to calculate initial uncertainty about prob-
ability of accident

1
1+exp(50000d−0.0001)

ϕuse monthly probability to receive performance signal
from AV usage

0.2

σuse noise in performance signal 0.1

ϕtalk
i monthly probability to communicate with friend [0.0, 0.04]

σcomm
i communication noise [0.05, 0.25]

ϕmedia monthly probability to access information about AVs
on media

0.1

Social network (Euclidian Barabasi-Albert)
nlink number of new links per vertex 3

α spacial exponent −5.0

β clustering exponent 1.0
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