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Abstract

We study endogenous, credit-financed innovation under uncertainty in dynamic con-
texts. In our model, a firm with limited cash reserves decides how much to invest in an
R&D project, potentially using external financing. Investing more increases the proba-
bility of a sooner innovation, but higher repayment obligations also increase bankruptcy
risk if the innovation takes longer. We show that the firm reduces its investment dis-
continuously if the financing cost is not favorable enough, in order to avoid the need
for external financing. This insight implies that policies reducing financing costs can
have discontinuous positive effects on investment, innovation rate and welfare. How-
ever, policy measures increasing the effectiveness of R&D might reduce the innovation
rate and welfare due to a discontinuous reduction of R&D investment. Furthermore,
we find that low financing costs can lead to over-investment. The welfare loss from cash
constraints is more severe for radical innovations compared to incremental ones.

Keywords: Innovation, R&D investment, Cash constraints, Bankruptcy risk

1 Introduction

Firms’ research and development (R&D) activities generate new growth opportunities and
potentially greater returns. However, these activities typically require substantial investments
that often exceed available cash reserves. The success of R&D is uncertain, as both the timing
of successful innovations and the associated costs are unknown. Hence, determining optimal
expenditures together with the amount of external financing is a crucial strategic decision for
firms engaged in research and development. We study endogenous, credit-financed innovation
under uncertainty in dynamic contexts.

Accessible financing resources are important for firms’ innovation activities (Ayyagari
et al., 2011; Gorodnichenko and Schnitzer, 2013; Lee et al., 2015; Santos et al., 2024). Large,
established firms often use internal funds to finance their R&D investments (e.g., Hall and
Lerner, 2010). However, small and medium sized enterprises (SMEs) are key players in
the EU economy in terms of added value, accounting for 99.8% of all nonfinancial enter-
prises (Kraemer-Eis et al., 2023). These firms have much lower internal financial resources.
Particularly start-ups and young firms often have only small sales volumes and revenue re-
serves (Fryges et al., 2015). Such firms may turn to external sources to ease the financial
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constraints on their R&D activities. Among all possible external financing channels, credit
financing (bank overdrafts and bank loans) accounts for 39% of the volume used by SMEs
(Kraemer-Eis et al., 2023).1 However, because of the inherent risks of innovation, access to
external financing remains limited and costly for many firms (Brown et al., 2009; Eckel and
Unger, 2023; Giudici and Paleari, 2000). In particular, firms may exhaust their cash reserves
before achieving successful innovation, potentially leading to bankruptcy.

An illustrative example is Aradigm Corporation, a California-based biotech company that
developed the inhaled antibiotic formulation Apulmiq. The company sought Food and Drug
Administration (FDA) approval for Apulmiq but was rejected in 2018. According to the
FDA’s response letter, Aradigm would be required to conduct a new and costly two-year
trial before reapplying for approval. The company had been attempting to raise funds to
revive the program, as it “would not have enough funds to meet all of their future financial
obligations.” At that time, Aradigm had only USD 7.1 million in cash and equivalents
but faced future obligations of USD 10–50 million. Consequently, the company filed for
bankruptcy one year later.2

The aim of this paper is to analyze how limited cash reserves influence a firm’s external
financing decisions under technological uncertainty, specifically whether and how much it
should borrow. We focus on the scenario of a monopoly firm with initial cash reserves that
decides to invest in R&D, which can create new value upon success, although it is uncertain
how long it will take to achieve the success. The firm faces a tradeoff: it can take out loans
to invest heavily, thereby increasing the probability of sooner successful innovation, but also
introducing default risks. A larger loan results in higher coupon payments and an earlier
depletion of the firm’s liquidity.

Within this framework, we address the following research questions: Under what condi-
tions is it optimal for a firm with initial cash reserves to partially finance innovation projects
externally? How does external financing affect the innovation rate and what are the as-
sociated distortions relative to the social optimum? How do the firm’s financing decisions
and resulting distortions vary based on the type of innovation project, whether incremental
or radical? Finally, what policy implications can enhance the effectiveness of firms’ R&D
investments?

Our main results are as follows. First, we find that the firm’s optimal investment and
financing choice has a threshold structure with respect to the coupon rate, i.e., the price of
a loan. Specifically, for coupon rates below this threshold, the firm takes a loan in order to
invest strictly more than its cash reserve in R&D, with the optimal volumes of investment
and loan depending on the exact value of the coupon rate. If the coupon rate is equal to
the threshold or greater, however, the firm abstains from using any loan and constrains the
investment by its internal financing capability, such that the optimal volume does not depend
on the exact value of the coupon rate anymore.

In this context, a further remarkable insight with important implications is that the
transition of the optimal investment size is not continuous at the threshold. The optimal
investments for all coupon rates below the threshold exceed a lower bound strictly greater
than the firm’s cash reserve. This means the optimal investment experiences a downward
jump if the coupon rate reaches the threshold, and this jump is even more pronounced if the

1Similarly, innovating small firms in the UK rely overly on debt financing (Freel, 1999). See also the
references in Geelen et al. (2021) and Ning and Babich (2018) for further evidence that debt is a significant
component of financing firms’ innovation activities.

2https://seekingalpha.com/news/3434163-aradigm-files-for-bankruptcy-in-california
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optimal investment constrained by internal financing is less than the full cash reserve.
Relatedly, we find a nonmonotone relationship between the coupon rate and the proba-

bility that the innovation is eventually attained. We then analyze the implications for social
welfare and show that the welfare loss that is due to the firm’s financial constraints jumps
upward as the coupon rate crosses the critical threshold and the firm abstains from external
financing.

But we establish also an over-investment result. When the coupon rate is relatively low,
close to the risk-free interest rate, the firm tends to invest more than the social optimum.
This occurs because the firm does not bear the full cost of bankruptcy, which incentivizes
increased investment, and this effect may dominate the higher direct cost of external financing
embodied by the coupon rate. For a given coupon rate, the tradeoff favors exploiting the
possibility of default and investing more whenever the innovation rate per unit of investment
is sufficiently small. That is, low investment effectiveness encourages the firm to invest more
in R&D despite the implied higher bankruptcy risk. Considering also the effect of increasing
the innovation rate, we show that this will decrease investment.

Finally, we study how the firm’s optimal investment and the implied welfare loss depend on
varying the type of innovation, from radical to incremental. Although the firm’s investment
approaches the socially optimal volume in both directions, the welfare loss is greatest for
radical innovations because then the firm will take a substantial loan, which leads to an
increased probability of default before achieving the innovation, whereas the firm will not
invest more than its cash reserves for an incremental innovation, which then prevents default
and ensures that the innovation is eventually attained.

Our paper relates to different streams of literature. On the one hand, starting with Jensen
and Meckling (1976) and Myers (1977), there is a broad literature that studies the effects of
debt financing on firms’ investments into risky projects. The central question is how strong
the incentives of borrowing firms are to shift risk to their lenders and whether the implied
agency costs restrain debt financing or if there are ways to mitigate the resulting distortions
(see, e.g., Chava and Roberts, 2008).

On the other hand, there is also a large body of literature on R&D investment and
innovation uncertainty. A typical theme is to study the relation between market competition
and firms’ innovation (see, for example, Kamien and Schwartz, 1975; Loury, 1979; Lee and
Wilde, 1980; Dasgupta and Stiglitz, 1980; Reinganum, 1982; Denicolò, 2000; Doraszelski,
2003). However, it is commonly assumed that firms can finance their innovation investments
internally.

Only a smaller strand of literature considers the role of debt financing for innovation
investments. Tanrısever et al. (2012) study a debt-financed startup firm’s tradeoff between
investing in process innovation to generate future growth opportunities and reducing short-
term bankruptcy risk. Using a model where bankruptcy risk is caused only by the possibility
of low cash flow from running operations, they show that optimal investment is either “conser-
vative” to aim at high survival probability or “aggressive” to aim at high profit conditional
on survival. Ning and Babich (2018) model an R&D investment game between two fully
debt-financed firms and show that the under-investment incentive that arises from knowl-
edge spillover can completely offset the over-investment incentive from debt financing, which
then yields first-best investments. Zhang and Lee (2022) consider a manufacturer’s problem
whether to fund a supplier who has the potential to develop a new technology but no own
resources. The manufacturer chooses both the volume and the mode of financing. Compared
to equity, a loan implies a cost-shifting effect because of the supplier’s limited liability, but it
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depends on the further circumstances which financing mode is optimal for the manufacturer.
These are two- or three-period models in which only the sequence of decisions but not

time as such matters. In our setting, uncertainty about how long it takes to achieve an R&D
success plays a central role. Such uncertainty is also taken into account by Geelen et al.
(2021), who study innovation at the industry level with an optimal leveraging perspective on
debt. Using a Schumpeterian growth model, they show that debt can foster innovation in
aggregate although incumbents are hampered by the debt overhang effect that Myers (1977)
identified, because it stimulates innovation by entrants instead. In their model, however, a
firm’s default decision is driven by maximizing the levered firm value rather than by liquidity
depletion. We, in contrast, focus on the role of limited cash reserves.

Endogenizing the decision on the amount of debt and the corresponding volume of in-
vestment, we analyze the firm’s tradeoff between technological risk and bankruptcy risk
depending on key parameters (notably the cost of external financing), and we also take a
welfare perspective.

The paper is organized as follows. Section 2 sets up the model and derives an instrumental
representation of the firm’s expected payoff. In Section 3 we characterize the firm’s optimal
credit and investment plans. Section 4 investigates the effect of the coupon rate on the firm’s
optimal credit and investment plans. In Section 5 we study how changes in the economic
environment affect the firm’s decisions and the corresponding innovation rate and welfare.
Section 6 adds some further discussion of our results. Finally, the Appendix collects some
supplementary results and the formal proofs.

2 Model

A firm considers how much to invest in an R&D project in order to generate an innovation
that has a net present value of V > 0 when it occurs. The investment size, denoted as x ≥ 0,
determines the innovation arrival rate, represented by h(x), where h is a strictly increasing
and differentiable function with h(0) = 0. The variable x represents the present value of
the cost associated with making a contractual commitment to research and development, as
described by Loury (1979) and the subsequent literature (Weeds, 2002; Clark and Konrad,
2008; Galasso and Simcoe, 2011; Bloom et al., 2013). Alternatively, it can also capture the
situation where the firm invests in a technological development with no direct market impact
until a possible later time (Cohen and Levinthal, 1994).

Let τ ≥ 0 denote the arrival time of the innovation, which is, thus, exponentially dis-
tributed with mean 1/h(x). To mark the dependence on x, we write Fx for the cumulative
distribution function of τ , and the corresponding density function and expectation operator
are fx and Ex, respectively.

To finance the investment, the firm can use its given initial liquidity w > 0 and addition-
ally take a loan; other funding is not available. Thus, if the firm decides to take a loan of
size l ≥ 0, it can invest at most

x ≤ w + l. (1)

In particular, any investment x > w requires a loan. Whenever the firm takes a loan, it
commits to making the coupon payment cl as along as its liquidity is positive, where c > 0
is the fixed coupon rate. Also the proceeds from a successful innovation must be used for
continuing the coupon payments. Once the firm’s liquidity is exhausted, however, it has to
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default on the loan and abandon all operations—including the ongoing R&D project if the
innovation has not occurred, yet.

Liquidity is kept in a cash account where it earns the risk-free interest rate r > 0, which
we assume to be less than c.3 The objective of the firm is to choose l and x satisfying the
feasibility constraint (1) in order to maximize the expected net present value of all cash
inflows and outflows, i.e.,

U(l, x) := Ex

[
1{τ≤T}e

−rτV −
∫ T

0

e−rscl ds

]
+ w + l − x,

where T is the (possibly infinite) time of default. Since T depends on τ , it is stochastic, too.
We shall next characterize T and then derive a more instrumental expression for U(l, x) in
Proposition 1.

2.1 Characterizing bankruptcy

The balance of the firm’s cash account immediately after investment is w+ l− x. If the firm
decides to invest without a loan, which implies x ≤ w by (1), it has no obligations to make
any further payments and, thus, will never default. Once it takes a loan, however, then,
depending on (l, x) and the arrival time of the innovation, it might not always be able to
perpetually pay the coupon cl. We can distinguish the following four scenarios.

1. The first scenario is that the perpetual coupon cl can be fully financed from the reserved
cash w + l − x, which grows at the rate r. Then the firm does not default and we let
T = ∞. This subsumes the case when l = 0.

2. In the second scenario, the reserved cash alone is not enough to cover the coupon pay-
ments forever. However, the innovation arrives before the cash account turns negative,
which would happen at time

T0(l, x) :=
1

r
ln

(
cl

(c− r)l + rx− rw

)
. (2)

The coupon then can be financed forever after adding the proceeds from the innovation
to the remaining cash. Hence, also in this case the firm does not default and T = ∞.

3. In the third scenario, the innovation does not arrive before the firm runs out of the
reserved cash, which causes default at T = T0(l, x) < ∞.

4. In the last scenario, the innovation arrives in time again to prevent immediate de-
fault, but its proceeds and the remaining cash are not sufficient to finance the coupon
perpetually. In this case default is only postponed to a finite time T > T0(l, x). In
Proposition 1, we show that whether this or the second scenario occurs is determined
by the arrival time of the innovation. Specifically, default will happen if and only if the
innovation arrives after the critical time

T1(l, x) :=
1

r
ln

(
rV

(c− r)l + rx− rw

)
. (3)

3Since r is the risk-free rate whereas the lender faces some risk of reduced coupon payments due to firm
bankruptcy, the coupon rate c should be larger than r even under a perfectly competitive lender market.
Nevertheless, we analyze also the case c = r (in Appendix B) and find that it has some degenerate effects.
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Figure 1 shows a timeline for the arrival of the innovation that illustrates the different
scenarios if the coupon cannot be fully financed from the reserved cash, i.e., cases 2–4. The
ordering of T0(l, x) and T1(l, x) depends on the loan size l, and scenario 4 disappears if
T0(l, x) ≤ T1(l, x). We will come back to this figure when we discuss optimal loan sizes in
Section 3.

τ

T1(l, x) T0(l, x)
2. 4. 3.

innovation,
no bankruptcy

innovation,
bankruptcy

no innovation,
bankruptcy

Figure 1: Scenarios depending on the innovation arrival time τ .

Proposition 1. Whenever (l, x) satisfies

w ≥
(c
r
− 1

)
l + x, (4)

then T = ∞ and
U(l, x) = Exe

−rτV + w −
(c
r
− 1

)
l − x. (5)

Otherwise, i.e., whenever

w <
(c
r
− 1

)
l + x, (6)

we have T = ∞ if and only if τ ≤ min(T0(l, x), T1(l, x)), and further

U(l, x) = Ex

[
1{τ≤min(T0(l,x),T1(l,x))}

(
e−rτV + w −

(c
r
− 1

)
l − x︸ ︷︷ ︸

=:π

)]
. (7)

Condition (4) corresponds to the first scenario described above, whereas condition (6)
subsumes the other three scenarios, which then depend on when the innovation occurs. The
expression for the expected firm value in (7) reflects that, if the firm needs the proceeds
from the innovation for covering the coupon payments, it only makes a gain if the innovation
arrives sufficiently fast (scenario 2), and then the net present value of the gain is the term
denoted by π, which is indeed positive whenever τ < T1(l, x). In all other cases, when the
firm defaults at a finite time T , its liquidity is eventually used up for the coupon payments.

Figure 2 illustrates for which combinations of investment x and loan size l the firm faces
the risk of bankruptcy. Increasing the size of the loan reduces the range of investments that
can be done without generating bankruptcy risk, because more liquidity is needed after in-
vestment to guarantee full coverage of the coupon payment without relying on innovation
proceeds. The figure also highlights that any investment above the initial liquidity w neces-
sarily induces some bankruptcy risk. Investments below w can be done without bankruptcy
risk since no loan is needed. Whether it is optimal to abstain from taking a loan in this case
will be analyzed in the next section.
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x
w

w =
(
c
r
− 1

)
l + x

l

l = x− w

infeasibleno
bankruptcy

risk;
(5) holds

bankruptcy
risk;

(7) holds

Figure 2: Credit-and-investment plans (l, x) as distinguished in Proposition 1.

3 Optimal Investment and Financing Decisions

First, as a benchmark, consider the case in which the firm has sufficient liquidity to finance
the investment internally; it just chooses the investment x ≥ 0, thereby determining the
innovation rate h(x). In this case the expected profit is

U0(x) := Exe
−rτV − x =

h(x)

r + h(x)
V − x,

so the first-order condition for optimal investment is given by

h′(x)rV

(r + h(x))2
= 1.

In Lemma 1 in the Appendix we show that the profit function U0(x) is strictly concave if the
innovation rate h(x) is concave. Then there is a unique optimal investment size, denoted by
x∗
0, which can be identified by the first order condition.
With limited cash reserves, however, such a simple characterization is not possible. In-

stead, we now distinguish two candidate classes for the optimal investment size and show
that for each candidate there is a unique optimal loan size to finance it. Afterward we will
address the main question which of the two classes optimal investment belongs to.

Theorem 1. An optimal credit-investment plan (l∗, x∗) exists, and optimal investment has
to belong to one of the following two classes.

1. x ≤ w. For any such x, the optimal loan size is l∗(x) = 0, and then the payoff is

U(0, x) = U0(x) + w =
h(x)

r + h(x)
V − x+ w. (8)

2. w < x ≤ w + (r/c)(V −w). For any such x, the optimal loan size l∗(x) is the unique l
in (w − x, (r/c)V ) that solves the first-order condition

h(x)e−h(x)T0(l,x)

(
V − cl

r

)
x− w

cl2
−
(
1− e−h(x)T0(l,x)

) (c
r
− 1

)
= 0. (9)
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For any l in (w − x, (r/c)V ), we have T0(l, x) ≤ T1(l, x), and then the payoff is

U(l, x) =
h(x)

r + h(x)
V
(
1− e−(r+h(x))T0(l,x)

)
+
(
w −

(c
r
− 1

)
l − x

) (
1− e−h(x)T0(l,x)

)
.

(10)

The first class are all investments that can be fully financed from the internal funds;
then one should not take any loan. Any bigger investment cannot be financed without a
loan. The upper bound on x in the second class shows, however, that it is not worthwhile
to undertake excessive investments financed by loans. The intuition for this bound is that
once the investment exceeds it, the total financing cost (including that for the loan) is so
high that even an immediate innovation occurring with certainty at time t = 0 would not be
worth it. We remark that the second class is empty when w ≥ V , which implies that if the
firm’s initial funds are at least equal to what it can gain from the innovation, it should not
use any loan.

It is possible to provide also some intuition for determining the optimal loan size when
it is worthwhile to consider investments x > w, i.e., when w < V , which is the case we are
primarily interested in. Then U(l, x) satisfies (7), where increasing l obviously decreases the
potential gain denoted by π. A bigger loan also decreases the critical time T1(l, x), because
when the innovation arrives the cash reserve still needs to be big enough for the firm to
be able to perpetually pay the coupon then. This means that whenever T1(l, x) < T0(l, x),
also the probability of realizing the gain π is decreasing in l, so one should then decrease
l until T1(l, x) ≥ T0(l, x). Thus, an optimal loan size prevents that scenario 4 happens—if
the innovation arrives in time to prevent immediate default, the firm will not default at
all (in contrast to the case shown in Figure 1). The corresponding condition for the loan
size is l ≤ (r/c)V . Once this holds, however, a tradeoff arises: if l is further decreased, π
continues to increase, but T0(l, x) then decreases, because the cash reserve from a smaller loan
is depleted earlier (for fixed investment size x). Thus, for l < (r/c)V , one needs to balance
the size of the potential gain and the probability of realizing it—which does the first-order
condition (9).

Now, in order to determine the optimal investment size x∗, we need to study the two
functions given by (8) and (10) on their respective domains.4 Although a full closed form
representation of the optimal values of x∗ and l∗ in both cases is not possible, we can shed
some light on the behavior of the optimal loan size and the resulting payoff at the transition
between the two classes x ≤ w and x > w, before we then proceed to further characterize
the optimal investment size x∗.

Proposition 2. Suppose w < V . Then the optimal loan size l∗(x) is continuous at x = w.
Nevertheless, the implied payoff U(l∗(x), x) is discontinuous at x = w.

4 Impact of the Coupon Rate

The economic question we are interested in is when it is optimal to take a loan in order to be
able to invest more than w. This depends of course strongly on the cost represented by the

4A graphical illustration of these relevant domains is provided in the Appendix; see Figure 6 in Appendix
D. Concerning this illustration, note that the bound l ≤ (r/c)V matters only if w < (r/c)V . Otherwise, for
any x > w ≥ (r/c)V , it is implied by (c/r − 1)l + x ≤ V .
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coupon rate c. In the following, we study the impact of c on the optimal investment decision
and show in particular that it is discontinuous.

Therefore, to stress the dependence of U(l, x) on the parameter c, we will write U(l, x; c),
which, thus, still satisfies (5) or (7) depending on whether (l, x) satisfies (4) or (6).

This also allows us to introduce the notation

U∗(c) = sup{U(l, x; c) | w + l − x ≥ 0}

for the value of the firm’s investment problem depending on the parameter c. Then the
question when optimal investment requires a loan can be rephrased as when U∗(c) exceeds
the value that can be attained without loan. The latter is the maximum of U(0, x) subject
to x ≤ w and does not depend on c. Fix an arbitrary constrained maximizer

x̄∗ ∈ argmax{U(0, x) | x ≤ w},

which indeed exists because U(0, x) inherits continuity in x from h(x); see (8).

Proposition 3. There is a critical threshold c∗ < ∞ such that for any c ≥ c∗ it is optimal
to invest only x̄∗ ≤ w, whereas for any c < c∗ optimal investment must exceed w and, thus,
requires to take a loan.

In particular, if h is concave, then for any c ≥ c∗ it is optimal to invest

x̄∗ = min{x∗
0, w}.

Proposition 3 shows that the firm has an incentive to invest more than its initial liquidity
w if and only if the cost of taking a loan, the coupon rate c, is low enough. Otherwise the
firm’s investment will be (self-)constrained by its ability to finance internally. It is possible
that the threshold c∗ equals r so that it is optimal to invest x̄∗ ≤ w regardless of c—for
instance when the firm has a very high initial liquidity w ≥ V . In fact, since the proof of
Proposition 3 covers also the limiting case c = r, we have c∗ > r if and only if it is optimal
to take a loan under the lowest conceivable cost, i.e., if and only if U∗(r) > U(0, x̄∗) (see
Appendix B for an analysis of the special case c = r).

It is of course intuitive that the firm refrains from taking a loan if the cost is too high. But
the attractiveness to invest more than the internal funds is not slowly fading away. Instead,
we obtain the striking result that the coupon rate has a discontinuous effect on investment
at the critical threshold c∗.

Proposition 4. Assume c∗ > r. Then there is a threshold x̂ > w such that for any c < c∗

optimal investment is at least x̂. Hence, x∗ does not approach w as c increases towards c∗,
rather it exhibits a downward jump when c reaches c∗.

Since investment exhibits a downward jump as the coupon rate crosses the threshold c∗,
this implies that also the optimal size of the loan jumps at c = c∗. In light of Proposition 4
this follows directly from l∗ ≥ x∗ − w for c < c∗ and l∗ = 0 for c ≥ c∗.

5 Economic Analysis

In this section we analyze the implications of variation of key parameters on the optimal
investment and financing strategy as well as on the resulting innovation rate and welfare.

9



To carry out a welfare analysis we assume that the social value of the innovation is given
by V S = V + S, such that S ≥ 0 denotes the difference between the social value and the
value for the firm. Expected discounted welfare is then given by

W (l, x) = Ex

[
e−rτ (V + S)

]
− x =

h(x)

r + h(x)
(V + S)

(
1− e−(r+h(x))T0

)
− x (11)

Accordingly, the welfare maximum under internal financing is given by

W ∗ = W (0, xs
0) =

h(xs
0)

r + h(xs
0)
(V + S)− xs

0,

with xs
0 denoting the socially optimal level of investment. We denote by ∆W = W ∗−W (l∗, x∗)

the welfare loss arising under optimal firm behavior in the presence of cash constraints.
Since a full analytic characterization of the dependence of optimal investment and loan

size on key parameters of the model as well as the associated welfare effects is not possible, we
rely on a numerical approach to analyze these issues. To this end, we specify the innovation
rate as a linear function of investment, i.e., we have h(x) = αx, α > 0. In this case the
unconstrained profit function (for unlimited internal funds) is given by

U0(x) =
αx

r + αx
V − x,

so that the uniquely optimal investment is

x∗
0 =

√
αrV − r

α

if αV > r, whereas it is not worthwhile to invest into research if αV ≤ r. Furthermore, under
the linear innovation rate the socially optimal investment (under internal financing) is given
by

xs
0 =

√
αr(V + S)− r

α
.

Figure 3 illustrates Proposition 3 by demonstrating the downward jump of optimal firm
investment x∗ as the coupon rate c crosses the threshold c∗.5 The shape of the optimal
loan size l∗(x) and of the value function underlying the jump are illustrated in Figure 7
in Appendix D. Panels (c) and (d) of Figure 3 show that the downward jump induces a
nonmonotone relationship between the innovation probability and the coupon rate and that
the welfare loss exhibits an upward jump as c crosses c∗. Panel (a) also highlights that, for
values of the coupon rate close to the interest free rate, investment, and therefore also the
innovation rate, are higher under financial constraints compared to the scenario with internal
financing. Intuitively, this is due to the fact that in the presence of cash constraints, and
hence a positive default probability, the expected costs covered by the firm are smaller than
x, which increases the incentives to choose a larger investment. This effect is countervailed
by the fact that, if the firm does not go bankrupt, marginal costs of investment are larger
under external than under internal financing, but this second effect is dominated for small
c. It should be noted that, if the private and the social value of the innovation coincide,

5In our numerical illustration we use the default parameter setting: α = 0.02, V = 14, S = 0, w = 2.1, c =
0.0525, r = 0.05,.
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Figure 3: (a) Optimal investment x∗, (b) optimal size of the loan l∗, (c) innovation probability
and (d) welfare loss for varying coupon rates c.

i.e., S = 0, the optimal investment of the firm is also higher than the socially optimal level
(which coincides with x∗

0 in this case). For larger values of S, however, the socially optimal
investment always exceeds the optimal firm level (see Figure 8 in Appendix D). Finally,
panel (b) shows that the optimal size of the loan, if a loan is used, exceeds investment by a
factor of at least 2. Such a large loan size is optimal because it gives the firm a substantial
liquidity buffer, which the firm needs to reduce the probability of becoming insolvent before
the innovation has arrived.

Figure 4 shows the effect of the cash constraints for varying effectiveness of innovation
investment. The deviation of investment from the unconstrained optimum is smaller for
projects with low effectiveness of innovation investment, and for projects with very small
values of α investment is even above the level with internal financing. The intuition for this
effect is similar to that for the effect of increasing c, which we discussed above. External
financing has two countervailing effects on expected investment costs, a direct positive one,
since c > r, and an indirect negative one, since in the case of bankruptcy the firm no longer
pays the coupon rate. The importance of the second effect decreases with α, because the
bankruptcy probability goes down as the effectiveness of innovation expenditures becomes
larger. Hence, an increase in α has a positive effect on the expected investment cost. Although
an increase in α also increases the marginal return on investment, Figure 4 illustrates that
the cost effect dominates and x∗ decreases with α in the range of α values where a loan
is taken. If α is sufficiently large such that it is optimal for the firm to not use external
financing, under our parametrization the value of α has no impact on the size of investment,
since it is determined by the level of available liquidity w.
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Figure 4: (a) Optimal investment x∗ and optimal loan size l∗(x) as well as (b) induced welfare
loss for varying effectiveness of innovation investment (α).

The welfare loss induced by cash constraints is the highest for high-risk innovations, i.e.,
small values of α. This is due to the large probability that the firm has to default before the
innovation is reached.

Keeping V constant while α is increased implies that the expected value of the innovation
project increases with α. To analyze how the type of innovation, radical versus incremental,
as such influences the effect of financial constraints, we now consider a simultaneous variation
of α and V with the property that the optimal expected welfare with internal financing, W ∗ is
constant across this variation. We refer to innovations with a small success rate (α), but high
value (V ) as radical, whereas innovations with large α and small V are labeled as incremental.

Figure 5 shows how optimal investment and welfare loss are affected if innovations become
more incremental (i.e., α increases). The deviation of the optimal investment from the socially
optimal level is small for very radical and for highly incremental innovations. The largest
(downward) distortion of investment due to cash constraints occurs for intermediate types of
innovations. The welfare loss induced by cash constraints is smaller the more incremental the
innovation is, with the exception of values of α where making the innovation slightly more
incremental triggers a transition from external to internal financing. In this region of the
parameter space a more incremental innovation induces a larger welfare loss. Considering
actual welfare under cash constraints (rather than welfare loss) shows that in this case the
transition to a more incremental innovation actually reduces welfare (see Figure 9 in Appendix
D).

6 Discussion and Conclusions

This study explores credit-financed innovation under uncertainty. A firm with limited cash
reserve must decide on the volume and the mode of R&D investment. Choosing a larger vol-
ume increases the probability of success until any given point in time, but relying on external
financing introduces bankruptcy risk. We show that optimal R&D investment exhibits a jump
when the mode of financing switches from internal to (partly) external financing, which im-
plies that lowering financing costs can sharply boost investment and innovation. If the firm
faces very low financing costs, it might over-invest relative to the socially optimal level. The
firm’s optimal investment turns out to be the lower, however, the higher R&D effectiveness
is. Distinguishing different types of innovations, we show that cash constraints reduce welfare
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Figure 5: (a) Optimal investment x∗ and optimal loan size l∗(x) as well as (b) induced
welfare loss for varying effectiveness of innovation investment (α) if V is adjusted such that
the expected welfare under internal financing is fixed.

more strongly in case of radical than incremental innovations.
Our analysis provides guidance for the effectiveness of different policy instruments avail-

able to a social planer interested in maximizing welfare. Our results about the impact of a
variation of the parameter c show that the size of the welfare gain induced by measures which
reduce the cost of external financing of R&D depends crucially on the size of the coupon rate
in the absence of a policy. Examples of measures reducing c are subsidies for external R&D
financing, loan guarantees, or public financing schemes. Such policies are especially effective
if the coupon rate without policy is marginally above the threshold that prevents the firm
from using a loan to finance its investment.

For policy measures that induce an increase in the parameter α, such as R&D subsidies
or tax shields for innovation investments as well as policies strengthening public institutions
carrying out research that is relevant for the desired innovation, our analysis shows that in
the presence of financial constraints such policies might have a detrimental effect. If due
to such policy measures the value of α crosses the threshold above which the firm ceases to
finance its innovation expenditures externally, then this results not only in a larger downward
distortion of innovation expenditures, but also in a lower innovation rate, higher welfare loss
and a decrease in welfare (see Appendix D). These insights call for a combination of policies
increasing α with such reducing c, since a reduction in c pushes the threshold above which
the firm finances internally upwards and therefore avoids the potential negative implications
of an increase of the effectiveness of innovation investment α.
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Appendix

A Auxiliary Results

Lemma 1. Suppose the innovation rate h(x) is concave. Then the profit function U0(x) =
h(x)

r+h(x)
V − x is strictly concave and has a unique maximizer x∗

0. If

h′(0) ≤ r

V
,

then x∗
0 = 0; otherwise, x∗

0 is in (0, V ) and the unique solution of the first-order condition

h′(x)rV

(r + h(x))2
= 1.

Proof. Note that the derivative of the profit function is

U ′
0(x) =

h′(x)rV

(r + h(x))2
− 1.

By assumption, h is strictly increasing. This implies that the denominator on the right-hand
side is strictly increasing and that the numerator is strictly positive. If h is concave, however,
the numerator is nonincreasing, so that U ′

0(x) is strictly decreasing. It follows that U0(x) is
strictly concave and that its unique maximizer is x∗

0 = 0 if U ′
0(0) ≤ 0, which is equivalent to

h′(0) ≤ r/V by h(0) = 0. Thus, suppose U ′
0(0) > 0. Since h(x) is strictly increasing from

h(0) = 0, we have U0(0) = 0 > U0(x) for any x > V . By strict concavity and U ′
0(0) > 0 it

follows that U0(x) must have a unique maximizer x∗
0 in (0, V ), which necessarily solves the

first-order condition U ′
0(x) = 0.

B The limit case c = r

In the main text, we assumed that the coupon rate c is higher than the risk-free interest rate
r, because the firm must default with positive probability if it cannot finance the investment
fully internally. In this section, we consider the limit case c = r, because it represents a
further benchmark and because it is useful for proving and applying our main qualitative
results, Propositions 3 and 4.

Without surprise, c = r is a degenerate case. Then the firm can take excessive loans at
no cost. Thus, it turns out that the only requirement for an optimal loan size is to be big
enough.

Proposition 5. Suppose c = r. Then Proposition 1 holds unchanged and simplifies as
follows. Whenever x ≤ w,

U(l, x) = Exe
−rτV + w − x. (12)

Otherwise, whenever x > w,

U(l, x) = Ex

[
1{τ≤min(T0(l,x),T1(l,x))}

(
e−rτV + w − x︸ ︷︷ ︸

=:π

)]
, (13)
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where

T0(l, x) =
1

r
ln

(
l

x− w

)
and T1(l, x) =

1

r
ln

(
V

x− w

)
. (14)

Further, as in Theorem 1, an optimal plan (l∗, x∗) exists, and optimal investment still has
to belong to one of the following two classes, but the optimal loan size is not unique anymore.

1. x ≤ w. Then U(l, x) is constant in l by (12).

2. w < x ≤ V . For any such x, the optimal loan sizes are all l ≥ V . Then T0(l, x) ≥
T1(l, x) and

U(l, x) = Ex

[
1{τ≤T1(l,x)}

(
e−rτV + w − x

)]
= Ex

[
max

{
e−rτV + w − x, 0

}]
=

h(x)

r + h(x)
V − (x− w) +

r

r + h(x)
V

(
x− w

V

) r+h(x)
r

. (15)

The right-hand side of (15) is the sum of the value of financially unconstrained investment
and the value of defaulting on the loan (of any size l ≥ V ). It can be used for checking
whether the critical threshold c∗ from Proposition 3 exceeds r, which is the case if and only
if the maximum of the whole sum for w ≤ x ≤ V is greater than the maximum of the first
summand—which is equal to the right-hand side of (12)—for x ≤ w.

Proof. The proof of Proposition 1 applies identically for c = r, and the simplified represen-
tation resulting from c = r is immediate. From the proof of Theorem 1, also the proofs of
Lemmas 2 and 3 apply identically for c = r. This yields the bound x ≤ V for optimal invest-
ment and implies existence of an optimal plan (l∗, x∗). The two candidate classes for optimal
investment still follow from the upper bound, but the characterization of the optimal loan
sizes now obtains from (12)–(14). This is immediate for x ≤ w. For w < x ≤ V , it is also
clear from (13) and (14) that U(l, x) is constant in all l ≥ V , because then T0(l, x) ≥ T1(l, x)
and the latter is constant in l. Feasibility requires l ≥ x − w. On the interval [x − w, V ],
T0(l, x) is strictly increasing in l from zero to T1(l, x), which implies by (13) that also U(l, x)
is strictly increasing in l, because the term denoted by π is strictly positive for all τ < T1(l, x)
and the distribution of τ has full support on [0,∞). It follows that the optimal loan size is
any l ≥ V . Then (13) and (14) immediately imply (15).

C Proofs

Proof of Proposition 1. The firm’s liquidity left in the cash account after taking a loan
of size l ≥ 0 and making an investment of size x ≥ 0 is w0 = w + l − x, which is required
to be nonnegative by assumption; cf. (1). Paying the coupon cl from the cash account
and capitalizing the interest earned at rate r, the liquidity wt evolves according to dwt =
(rwt − cl) dt. Thus, absent the innovation, we have

wt = ert(w + l − x)−
∫ t

0

er(t−s)cl ds = ert
(
w −

(c
r
− 1

)
l − x

)
+

cl

r
. (16)
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The coupon can be fully financed from the cash reserve if wt given by (16) never becomes
negative, which is if and only if w ≥

(
c
r
− 1

)
l + x, which is condition (4). Then we have

T = ∞ independently of τ . Plugging this into (2), the definition of U(l, x), immediately
yields identity (5).

Now suppose instead w <
(
c
r
− 1

)
l + x, which is condition (6). Then wt given by (16)

turns negative at some t ∈ [0,∞), precisely at t = T0(l, x) defined in (2). This means the
firm defaults at time T = T0(l, x) < ∞ if τ > T0(l, x).

Thus, suppose τ ≤ T0(l, x). Then the innovation generates additional liquidity with net
present value V at time τ . Together with the cash left in the savings account given by (16)
for t = τ , this is enough to finance the remaining coupon payments if and only if

erτ
(
w −

(c
r
− 1

)
l − x

)
+

cl

r
+ V ≥ cl

r
, (17)

which is if and only if τ ≤ T1(l, x) as defined in (3). Thus, if τ ≤ min(T0(l, x), T1(l, x)), we
have T = ∞, but if T1(l, x) < τ ≤ T0(l, x), the firm still runs out of cash at a finite time t.
Note that in the latter case, the precise time of default is

T =
1

r
ln

(
cl

(c− r)l + rx− rw − re−rτV

)
, (18)

which is strictly greater than T0(l, x), because the latter is finite and adding V > 0 at time
τ ≤ T0(l, x) strictly increases the cash balance. This completes the characterization of T .

It remains to verify the identity (7), given that condition (6) holds. Therefore, consider
the definition of U(l, x) given in (2). We now apply the already obtained characterization of
T . First, note that we have τ ≤ T if and only if τ ≤ T0(l, x), because τ > T0(l, x) implies
T = T0(l, x), whereas τ ≤ T0(l, x) implies T > T0(l, x). Next, to consider the different cases
for T also in the integral in (2), let T2 denote the right-hand side of (18). Then

U(l, x) = Ex

[
1{τ≤T0(l,x)}e

−rτV − 1{τ>T0(l,x)}

∫ T0(l,x)

0

e−rscl ds

− 1{T1(l,x)<τ≤T0(l,x)}

∫ T2

0

e−rscl ds

− 1{τ≤min(T0(l,x),T1(l,x))}

∫ ∞

0

e−rscl ds

]
+ w + l − x.

By definition of T0(l, x), the value of the first integral is w + l − x; similarly, the second
integral is equal to w + l − x + e−rτV ; and the third integral is simply cl/r. This yields
(7).

C.1 Proofs of Theorem 1 and Proposition 2

Proof of Theorem 1. The proof is split up into several lemmas. First, we establish some
upper bounds for the optimal loan and investment sizes, which we can then impose.

Lemma 2. Optimal credit-investment plans have to satisfy(c
r
− 1

)
l + x ≤ V, (19)
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which, by (1), further implies

x ≤ w +
r

c
(V − w).

Proof. Note that refraining from any investment yields U(0, 0) = w by h(0) = 0. Now
consider any pair (l, x) violating (19), so (c/r−1)l+x > V . In case (4) holds, (5) and V > 0
together imply

U(l, x) ≤ V + w − (c/r − 1)l − x < w,

so (l, x) is suboptimal in this case. In case (6) holds, (7) together with r > 0, V > 0, and
w > 0 implies

U(l, x) ≤ Ex[1{τ≤min(T0(l,x),T1(l,x))}(V − (c/r − 1)l − x)] + w ≤ w,

where equality would hold throughout only if τ = 0 with probability one, which we cannot
have for any x. Thus, also in this case (l, x) is suboptimal. This proves (19). Combining it
with (1), which is equivalent to l ≥ x− w, yields the second claimed inequality.

Now existence of an optimal plan (l∗, x∗) follows from the next lemma.

Lemma 3. U(l, x) is upper semicontinuous (usc).

Proof. Using the density function fx(t) = h(x)e−h(x)t of τ , (5) implies

U(l, x) =
h(x)

r + h(x)
V + w −

(c
r
− 1

)
l − x (20)

in case w ≥ (c/r − 1)l + x and (7) implies

U(l, x) =
h(x)

r + h(x)
V
(
1− e−(r+h(x))min(T0(l,x),T1(l,x))

)
+
(
w −

(c
r
− 1

)
l − x

) (
1− e−h(x)min(T0(l,x),T1(l,x))

) (21)

in case w < (c/r − 1)l + x. Both functions on the right-hand sides of (20) and (21) are
continuous on the (sub-)domain given by the respective case. Therefore, to show that U(l, x)
is usc, it is enough to verify that lim supU(ln, xn) ≤ U(l, x) for any sequence (ln, xn) with
limit (l, x) such that w < (c/r − 1)ln + xn but, in the limit, w = (c/r − 1)l + x. By (7) and
V > 0 then

U(ln, xn) ≤ E
[
e−rτV + 1{τ≤min(T0(l,x),T1(l,x))}

(
w −

(c
r
− 1

)
ln − xn

)]
.

Here, the right-hand side converges to E[e−rτV ] = h(x)V/(r + h(x)), because the term
w− (c/r− 1)ln−xn is not random and vanishes in the limit. By (20), we also have U(l, x) =
h(x)V/(r + h(x)) at the limit (l, x), which now implies upper semicontinuity.

Next, to characterize the optimal loan size l∗(x) for any relevant x, consider first the case
x ≤ w.

Lemma 4. For any x ≤ w, the optimal loan size is l∗(x) = 0.
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Proof. If x ≤ w, then (1) holds for any l ≥ 0. In particular, l = 0 is feasible. From (5),
it is also clear that l = 0 is uniquely optimal among all l ≥ 0 satisfying (4), because the
distribution of τ is fixed by x alone, and the cost of the loan is linear with slope c/r− 1 > 0.

Now consider any l > 0 such that (6) holds. The cost for such a loan, as implied by (7),
is less than linear, because the firm defaults on the coupon payment if the innovation does
not occur early enough. Nevertheless, we now have

U(l, x) ≤ Ex

[
1{τ≤min(T0(l,x),T1(l,x))}

(
e−rτV + w − x

)]
< Ex

[
e−rτV + w − x

]
= U(0, x),

where the first inequality is implied by (7) and c > r, and the second one follows from V > 0,
x ≤ w, and finiteness of T0(l, x) given that (6) holds.

Equation (8) simply follows from Proposition 1 and applying the density function fx(t) =
h(x)e−h(x)t of τ .

By Lemma 2, it only remains to consider the case w < x ≤ w + (r/c)(V − w).

Lemma 5. For any x such that w < x ≤ w + (r/c)(V − w), the optimal loan size l∗(x) is
the unique l in (w − x, (r/c)V ) that solves the first-order condition

h(x)e−h(x)T0(l,x)

(
V − cl

r

)
x− w

cl2
−
(
1− e−h(x)T0(l,x)

) (c
r
− 1

)
= 0. (9)

Proof. First note that the given upper bound on x and w > 0 together imply

x− w < (r/c)V. (22)

Further, x > w and c > r together imply that (6) holds for any l ≥ 0, in particular for any
feasible l satisfying (1). This means that U(l, x) satisfies (7).

We first consider all l ≥ (r/c)V ; these are feasible by (22). We are going to argue
that l = (r/c)V is in fact better than any l > (r/c)V . Therefore, consider l = (r/c)V . Then
T0(l, x) = T1(l, x) by their definition; see (2) and (3). Moreover, (22) implies that T0(l, x) > 0
for l = (r/c)V . Hence, we have T0(l, x) = T1(l, x) > 0 in (7), so min(T0(l, x), T1(l, x)) =
T1(l, x) and the event {τ < T1(l, x)} has positive probability. Note that also the term
denoted by π is strictly positive whenever τ < T1(l, x) (and π = 0 if τ = T1(l, x)).

Now, if we increase l, then both T1(l, x) and π decrease by c > r. It follows that the
argument of the expectation in (7), which is never negative, cannot increase, and it actually
decreases with positive probability. Thus, also U(l, x) decreases, which shows that l = (r/c)V
was better.

Next, we consider all feasible l ≤ (r/c)V . Then T0(l, x) ≤ T1(l, x) by their definition
and c > 0. Since T0(l, x) is increasing in l whenever x > w, we cannot repeat the previous
argument. Instead, we analyze the derivative of U(l, x) with respect to l. Therefore, note
that applying the inequality T0(l, x) ≤ T1(l, x) and the density function fx(t) = h(x)e−h(x)t

of τ in (7) yields

U(l, x) =
h(x)

r + h(x)
V
(
1− e−(r+h(x))T0(l,x)

)
+
(
w −

(c
r
− 1

)
l − x

) (
1− e−h(x)T0(l,x)

)
. (10)

Then, using also the definition of T0(l, x), we obtain6

∂U(l, x)

∂l
= h(x)e−h(x)T0(l,x)

(
V − cl

r

)
x− w

cl2
−
(
1− e−h(x)T0(l,x)

) (c
r
− 1

)
. (23)

6In particular, we have (c/r − 1)l + x− w = e−rT0(l,x)cl/r, which further implies e−rT0(l,x)∂T0(l, x)/∂l =
(x− w)/(cl2).
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Here, since T0(l, x) is strictly increasing in l given x > w, and c > r, the right-hand side is
strictly decreasing in l ≤ (r/c)V . It becomes strictly positive if l approaches x− w, because
then T0(l, x) vanishes and V > cl/r by (22). For l = (r/c)V , the right-hand side of (23) is
strictly negative by c > r. In consequence, there exists a unique l in (x − w, (r/c)V ) such
that the right-hand side of (23) is zero, i.e., (9) holds. This is the unique optimal l.

Since equation (10) has been established along the proof of Lemma 5, the proof of Theo-
rem 1 is now complete.

Proof of Proposition 2. Since l∗(x) = 0 for any x ≤ w, we need to show that l∗(x)
vanishes as x ↘ w. By c > r and V > w, Theorem 1 implies that l∗(x) < (r/c)V for any
small enough x > w. Now fix any l ∈ (0, (r/c)V ). By (1), l is feasible for any x ≤ w + l,
so in particular for any x ∈ (w,w + l]. Then the partial derivative ∂U(l, x)/∂l satisfies (23).
Keeping l fixed, the derivative becomes strictly negative if we let x approach w, because then
T0(l, x) tends to (1/r) ln(c/c− r) > 0. This means that l is too big to be optimal for any x
close to w, because we showed that ∂U/∂l is strictly decreasing in l ∈ [x−w, (r/c)V ]. Thus,
since l can be chosen arbitrarily close to zero, l∗(x) must vanish as x ↘ w.

To prove that U(l∗(x), x) is discontinuous at x = w, consider any sequence (xn) such that
xn > w but limxn = x = w. Combine this with any sequence (ln) such that ln is feasible,
i.e., ln ≥ xn − w; cf. (1). Then U(ln, xn) satisfies (7), because (c/r − 1)ln + xn > w; cf. (6).
It follows that

U(ln, xn) ≤ Ex

[
1{τ≤T0(ln,xn)}e

−rτV
]
=

h(xn)

r + h(xn)
V
(
1− e−(r+h(xn))T0(ln,xn)

)
.

However, xn > w ensures that T0(ln, xn) is bounded by (1/r) ln(c/(c− r)), which is finite by
c > r. This implies the discontinuity lim supU(ln, xn) < h(x)V/(r + h(x)) = U(0, x) (since
x = w).

C.2 Proofs of Propositions 3 and 4

In the proofs of Propositions 3 and 4, we will appeal to the monotonicity and continuity
of U(l, x; c) in c, which is also (partly) inherited by U∗(c). We are going to establish these
properties first. Further, it will be convenient to explicitly include the limit case c = r, which
is discussed in Section B. In particular, we may apply Proposition 1 also for c = r (see
Proposition 5).

Lemma 6. For any fixed feasible pair (l, x), U(l, x; c) is nonincreasing in c ≥ r.

Proof. Fix any feasible pair (l, x). For any sufficiently small c such that (4) holds, U(l, x; c)
satisfies (5), where the right-hand side is clearly nonincreasing in c. For all bigger c, U(l, x; c)
satisfies (7). To see that also there the right-hand side is nonincreasing in c, note that the term
denoted by π is nonincreasing and nonnegative for all τ ≤ T1(l, x). Further, both T0(l, x)
and T1(l, x) are nonincreasing in c for any feasible l, so the same applies to the indicator
function. Since the distribution of τ does not depend on c, it follows that the expectation is
indeed nonincreasing in c. Finally, note that the right-hand side of (5) is at least equal to
Ex[e

−rτV ] for any c sufficiently small such that (4) holds, whereas the right-hand side of (7)
is at most equal to Ex[e

−rτV ] for any bigger c such that (6) holds, because V ≥ 0. The proof
is now complete.
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Lemma 7. For any fixed feasible pair (l, x), U(l, x; c) is continuous in c ≥ r.

Proof. Fix any feasible pair (l, x) and any c0 ≥ r. If w > (c0/r − 1)l + x, then (4) holds for
all c in a neighborhood of c0 and, thus, U(l, x; c) is continuous in c = c0 by (5). The same
argument applies if l = 0, because then x ≤ w by (1). Next, suppose w < (c0/r − 1)l + x.
Then (6) holds for all c in a neighborhood of c0 and, thus, it is enough to show that the
right-hand side of (7) is continuous in c = c0 by dominated convergence. Therefore, note
that the term denoted by π is nonnegative for all τ ≤ T1(l, x), bounded from above by
V + w − x, and continuous in c. Further, both T0(l, x) and T1(l, x) are continuous in c = c0
by w < (c0/r−1)l+x, r > 0, and (1). It follows that also the indicator function is continuous
in c = c0 except if τ = min(T0(l, x), T1(l, x)) for c = c0. But the latter event has probability
zero, so also the expectation on the right-hand side of (7) is continuous in c = c0. Finally,
suppose w = (c0/r − 1)l + x and l > 0. Then, by (5), U(l, x; c) is left-continuous in c = c0
and U(l, x; c0) = Exe

−rτV . The right-hand limit is determined by the right-hand side of (7).
There, as c → c0, π converges boundedly again, now to e−rτV , whereas both T0(l, x) and
T1(l, x) diverge to ∞. Since τ is finite with probability one, this shows that U(l, x; c) is also
right-continuous in c = c0.

Proof of Proposition 3. By definition, U∗(c) ≥ U(0, x̄∗). We will show that there is
some finite c∗ such that U∗(c) > U(0, x̄∗) if and only if c < c∗. Then it follows that optimal
investment for any c < c∗ must exceed w, because by Lemma 4 (for c > r) and Proposition 5
(for c = r) no feasible plan (l, x) with x ≤ w yields a payoff greater than U(0, x̄∗).

As the first step, note that U∗(c) is nonincreasing in c, because this is the case for each of
the functions U(l, x; c) by Lemma 6. If U∗(r) ≤ U(0, x̄∗), it follows that c∗ = r is a suitable
threshold.

Thus, suppose from now on U∗(r) > U(0, x̄∗) and let c∗ be the supremum of all c ≥ r
such that still U∗(c) > U(0, x̄∗). We show next that c∗ is finite and U∗(c∗) = U(0, x̄∗).

Concerning finiteness of c∗, note that U(0, x̄∗) ≥ U(0, 0) = w > 0. Further, in the
proof of Lemma 2 we showed that U(l, x) < w for any plan violating (19), so in particular
for any plan with x > V . Therefore, it is enough to show that there is an upper bound
for {U(l, x; c) | V ≥ x > w and w + l − x ≥ 0} that converges to zero as c → ∞. Hence,
consider any feasible plan with V ≥ x > w and any c > r. Since x > w, U(l, x; c) satisfies
(7) and there the term denoted by π is less than V . Thus,

U(l, x; c) < Ex

[
1{τ≤min(T0(l,x),T1(l,x))}

]
V ≤ Ex

[
1{τ≤T0(l,x)}

]
V.

The definition of T0(l, x) in (2), x > w, and l ≥ x− w > 0 imply

T0(l, x) <
1

r
ln

(
cl

(c− r)l

)
=

1

r
ln

(
c

c− r

)
,

so we further have

U(l, x; c) < Fx

(
1

r
ln

(
c

c− r

))
V ≤ FV

(
1

r
ln

(
c

c− r

))
V,

where the last inequality follows from V ≥ x and the fact that the arrival rate h(x) is
increasing in x. The last bound on U(l, x; c) does not depend on (l, x) anymore and indeed
vanishes as c → ∞, because FV (0) = 0. This shows that c∗ is finite.
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To see that U∗(c∗) = U(0, x̄∗), note that U∗(c) ≤ U(0, x̄∗) for all c > c∗ by construction of
c∗ and that U∗(c) is lower semicontinuous, because it is the pointwise supremum of a family
of functions U(l, x; c) indexed by (l, x) that are themselves (lower semi-)continuous in c by
Lemma 7.

Finally, assume h is concave. Then U0(x) is strictly concave by Lemma 1. Hence, since
U(0, x) = U0(x) + w, it follows that x̄∗ = min{x∗

0, w}.

Proof of Proposition 4. Recall that, for any given c ≥ r, there exists an optimal plan
(l∗, x∗) by Theorem 1 (see Proposition 5 for c = r). If c < c∗, then necessarily x∗ > w by
Proposition 3.

To argue that x∗ stays even bounded away from w for all c ∈ [r, c∗), we divide the latter
interval into two parts. Therefore, fix any c′ ∈ (r, c∗). First, consider any sequence (cn) from
[r, c′] as well as two sequences (xn) and (ln) such that (ln, xn) is an optimal plan for c = cn.
In consequence of Lemma 6, U∗(c) is nonincreasing in c. Thus, by cn ≤ c′ < c∗,

U(ln, xn; cn) = U∗(cn) ≥ U∗(c′) > U(0, x̄∗). (24)

In particular, we have xn > w for all n. By way of contradiction, however, assume
lim inf xn = w. Passing to a subsequence if necessary, it is no loss to assume in fact limxn = w.

By Lemma 6, U(ln, xn; c) is nonincreasing in c. Further, for c = r and each xn, l = V is
optimal by Proposition 5, because Theorem 1 implies xn ≤ w+(r/c)(V −w) ≤ V . Thus, we
have

U(ln, xn; cn) ≤ U(ln, xn; r) ≤ U(V, xn; r)

for all n. Since U(l, x) is upper semicontinuous by Lemma 3, and xn → w, it follows that

lim supU(ln, xn; cn) ≤ U(V,w; r).

Finally, since l = 0 is optimal for any x ≤ w (by Proposition 5 for c = r), we have

U(V,w; r) ≤ U(0, x̄∗),

which together with the previous inequality contradicts (24). This shows that lim inf xn > w.
Next, let (cn) be any sequence from [c′, c∗). As before, assume (ln, xn) is an optimal plan

for c = cn. Then cn < c∗ still implies xn > w and U(ln, xn; cn) > U(0, x̄∗). By way of
contradiction, assume again lim inf xn = w and hence without loss that lim xn = w.

By xn > w and the feasibility constraint (1), we have ln > 0. Moreover, U(ln, xn; cn) must
satisfy (7). It follows that

U(ln, xn; cn) ≤ Exn

[
1{τ≤T0(ln,xn)}e

−rτV
]
=

h(xn)

r + h(xn)
V
(
1− e−(r+h(xn))T0(ln,xn)

)
,

where T0(ln, xn) needs to be evaluated for c = cn, see (2). Note that, for any x > w and l > 0,
T0(l, x) is bounded by (1/r) ln(c/(c− r)), which is decreasing in c for any r > 0. Thus, since
cn ≥ c′ > r > 0, the lim sup of T0(ln, xn) for c = cn is bounded by (1/r) ln(c′/(c′ − r)) < ∞
as n → ∞. Together with the continuity of h, this implies

lim supU(ln, xn; cn) < h(w)V/(r + h(w)) = U(0, w) ≤ U(0, x̄∗),

which contradicts that U(ln, xn; cn) > U(0, x̄∗) for all n. This shows again that in fact
lim inf xn > w.

D Additional Figures
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Figure 6: Relevant pairs (l, x) (colored) for c > r (left) and c = r (right).
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Figure 7: Illustration of (a) the optimal loan size l∗(x) and (b) the firm profit under the
optimal loan size U(l∗(x), x) for a value of the coupon rates c just below the threshold c∗

(c = 0.0522 < c∗ = 0.05265). The dashed black lines indicate the boundaries between the
regions of no bankruptcy risk, bankruptcy risk and infeasible investment (see Figure 2).
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Figure 8: Optimal innovation investment of the firm (x∗) and socially optimal investment
(x∗

0) if the social value of the innovation is 10% higher than the private value (S = 0.1V ).
The figure illustrates that if the social value exceeds the private value of innovation firm
investments are below the socially optimal level for all values of c.
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Figure 9: Welfare under optimal firm behavior for increasing effectiveness of innovation
investment (α) and constant value of V (a) as well as V adjusted such that the expected
welfare under internal financing is fixed (b).
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