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ABsTRACT. — Under suitable assumptionson 8 : R — R, D : R? - R4 and b : R¢ — R,
the nonlinear Fokker—Planck equation 1, — AB(u) + div(Db(u)u) = 0, in (0, c0) x R? where
D = —V®, can be identified as a smooth gradient flow % u(t) + VEy ) = 0, Vt > 0. Here,
E : £* N L% (R?) — R is the energy function associated with the equation, where $* is a
certain convex subset of the space of probability densities. > * is invariant under the flow and V E,
is the gradient of E, that is, the tangent vector field to  at u defined by (VE,,, zy, )y = diff £y, - 2y,
for all vector fields z,, on £*, where (-, -);, is a scalar product on a suitable tangent space

Tu(P*) C D' (RY).

Keyworps. — Fokker-Planck equation, gradient flow, semigroup, stochastic equations, tensor
metric.
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1. INTRODUCTION

We are concerned here with the nonlinear Fokker—Planck equation (NFPE)

u; — AB(u) + div(Db(u)u) = 0 in (0, 00) x R?,

(1.1) 4
u(0,x) = up(x), x eR%,

where f: R - R, D : R?Y >R, d >1,and b : R — R are assumed to satisfy the
following hypotheses:

(i) BeC'(R),B(0)=0,0<y <p'(r)<y2<o0,VreR.

() beCy(R)YNCYR)and b(r) > by > 0, |b'(r)r + b(r)| < y3 < 00, Vr € R.

(i) D e L2R%RY) N WL (RY;RY) and div D € L2(R?) 4+ L®(R¥).

(iv) D = —V®, where ® € C(RY) N W2 (RY), ® > 1, limy|—00 P(x) = 400,
d™ e L' (R?) for some m > 2.
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NFPE (1.1) is modeling the so-called anomalous diffusion in statistical physics (see,
e.g., [13]) and also describes the dynamics of Itd stochastic processes in terms of
their probability densities. In fact, if u is a distributional solution to (1.1), such that
t — u(t)dx is weakly continuous and u(¢) € &, Vt > 0, then there is a probabilistically
weak solution X; to the McKean—Vlasov stochastic differential equation

1

(1.2) dX: = D(X,)b(u(t, X,))dt + (%;;(X)’)))zdwt,

on a probability space (2, ¥, P, W;) with normal filtration (¥;);>0. More exactly,
one has £x, = u(t, x), where Ly, is the density of the marginal law P o X; ! of X,
with respect to the Lebesgue measure (see [7, 10]).

The function u : [0, 00) X R4 — R is called a mild solution to (1.1)if itis L!-
continuous, that is, u € C([0, c0); L' (R¢)), and

(1.3) u(t) = lim up(t) in L'(R?), Vi >0
—0

where, for each T > 0, uy, : (0, T) — L'(R?) is defined by
up(t) =ul, te€[jh (G +Dh), j=0,1,....[F],
(1.4) . . .
u;lﬂ +hAu{l+1 =uy, j = 01[%] uj) = uo.
Here, A : L'(R?) — L(R?) is the operator
0s) Ay = =AB(y) +div(Db(y)y) in D'(RY); y € D(A),
D(A) = {y € L'(R?); —AB(y) +div (Db(y)y) € L'(RY)}.

As shown in [9] (see also [7, 8, 10]), under the above hypotheses (as a matter of
fact, for less restrictive assumptions), the domain D(A) is dense in L! (Rd), that is,
D(A) = L'(R%), and the operator A is m-accretive in L' (R?), which means that (see,

e.g., [4,5])
R(I + AA) = L'(R%), VA >0,
|+ 27y = (T + 27 2| 11 gay < 101 = Y2lL1®a)s
VA>0, y1, y2€ L' (RY).
Then, by the Crandall-Liggett theorem (see [4], [5, p. 56]), the Cauchy problem

d
(1.6) d—?+Au=0, t>0; u(0) = u,,

has, for each ug € L' (R?), a unique solution u = u(t, u) in the mild sense (1.3)—(1.4).
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Equivalently,
. t -n . 1,md
1.7 u(t,up) = lim (1 —|——A> ug in L' (R?),
n—o00 n

uniformly on the compact intervals of [0, 00).
Moreover, the map ¢ — u(t, ug), denoted by S(¢)uy, is a continuous semigroup of
contractions on L! (Rd), that is,

S(t+s)=S)S(s) foralls,t >0,
| Sy = SOus| 1 gay < lur —uzllprgay, Ve 20, ur,uz € L'(RY),
lim S(1)up = uo in LY (R%).
Note also (see [7—10]) that
(1.8) SO(L'RY) N L=®RY)) ¢ L'(RY) N L®°R?), V>0,
(1.9) SO(L'RY) N LY(RY; @dx)) ¢ L'(RY) N L'(RY; @dx),
(1.10)  S()ug € L=((0,T) x R?Y), VT >0, Yug € L'(R?) N L®(RY),

and S(¢)# C P, Vt > 0, where
(1.11) P = {y € Ll(Rd), y(x) >0, ae. x € RY; / y(x)dx = 1}.
R4

We also note that, though ¢ — u(¢) = S(¢)ug is not differentiable, it is, however, a
Schwartz-distributional solution to (1.1), that is,

(1.12) /oo/ (upr + B)Axp + b(u)uD - Vyp)dx dt
0o JRA
+/ uo(x)e(0, x)dx =0,
R4

for all ¢ € C§°([0, 00) x RY).
Moreover, as shown in [9] (see also [10]), S(¢)u is the unique distributional solution
to NFPE (1.1) in the class of functions

u € L((0,00) x R?) N L>((0, 00) x RY)

such that t — u(t)dx is weakly continuous on [0, co0). In particular, this implies (see,
e.g., [9] and [10, Chapter 5]) that the McKean—Vlasov equation (1.2) has a unique
strong solution X, with the marginal law u(z, -).
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The purpose of this work is to represent the solution ¢ — S(¢)ug to (1.1) as a
subgradient flow of the entropy functional (energy)

E(u)=/Rd (n(u(x)) +@(x)u(x))dx, uePNL®RY)NL'RY; ddx).

(1.13)
B rops ,Bl(f)
n(r)—/o ) dtds, r >0,

with the tangent space 75, (P*) C D'(R?) defined in (3.1) below, for u € £*. Here,

e PNL®NLYRY; ddx): eHl}Rd,ZeLl}Rd
(L14) P* = u ( x); Ju (R?) ” (R?) ’
for some Y € X

where we set % := 400 and

(1.15) X = {w e C2RY) N Cy(RY) N LY (RY), v > 0, VVI/’ € L°°(Rd)}.

We also note that the function E is convex and lower semicontinuous on L?(R%) with
the domain

D(E)={ue PN L®RY)NL®NL (R?; ®dx)}.

The class X is clearly nonempty and, in particular, it contains all functions y of the
form ¥ (x) = (a1 |x|™ + a2) !, a1, a2 and m > d, and, therefore, since X is an algebra
containing the constants, it is a rich class of functions. Hence, so is $* since if ¢ € X,
¥ > 0,u 1= Y?([ga Y>dx)! is easily checked to be in *. We also note that P* is
convex.

We recall (see, e.g., [20]) that if F : X — ] — 0o, +00] is a lower semicontinuous
function on the metric space (X, p), a gradient flow associated with F is the function
u : (0,00) = X given by u(¢) = limy_,¢ u(¢) uniformly on compact intervals where

up(t) =uj, Vie[(j—Dh jh), j=12,..]
(1.16) . . I .
y; ! € argmin {F(y) + o5 P u); u € X}

Formally, the flow ¢+ — u(?) is a generalized solution (in the sense of a finite difference
scheme approximation) to the evolution equation

du(r)
pT = —VFu(z), t >0,

(1.17)

where V F, is the gradient of F' at u in some generalized sense.



NONLINEAR FP EQUATIONS AS SMOOTH HILBERTIAN GRADIENT FLOWS 203

One spectacular application of this idea was developed in the work of Jordan,
Kinderlehrer, and Otto [14] where the linear Fokker—Planck equation with 8(u) = u,
b(u) = 1isrepresented in the variational form (1.17), where X is the space J> endowed
with the Wasserstein metric and F is the function (1.13). Later on, Otto [16] extended
this construction to porous media equations. The general theory of gradient flows in the
Wasserstein spaces was developed in the book of Ambrosio, Gigli, and Savaré [7]. More
precisely, the gradient flow representation means that, for u(¢) = S(t)ug, ug € £*,
we have

d
(1.18) Eu(l‘) = —VEu(t), t >0,

where VE,, € 7,,(P*) is the gradient of E in the sense of the Riemannian type geometry
of & to be defined later on. Such a result was recently established in [17] on the manifold
& endowed with the topology of weak convergence of probability measures and tangent
bundle LZ(]Rd; RY: W) e (see also [1,2,15,18,19]) and in the fundamental work
[16] for the classical porous media equation. Here, to represent the Fokker—Planck
equation in the variational form (1.17), we shall proceed in a different way. Namely,
we organize the space $* as a Riemannian manifold by endowing its tangent space
Tu(P*) at u € P* with a convenient Hilbertian structure with scalar product (metric
tensor {-, -);,). Then one defines the gradient VE,, € %;,(#*) by the formula

(VE,.z2)y = E'(u,z), Vz€ T, (P*), ueP*,
where E’(u, z) is the directional derivative of E,, and
VE, = —AB(u) + div (Db*(u)) € H™'.

This implies also that the flow u(¢) = S(¢)uq given by (1.7) is a.e. differentiable on
(0, 00) in the norm of the Sobolev space H~! = H~'(R?). This is the principal
difference of our result compared with the Wasserstein based construction (1.16). In the
later case, the gradient flow S(¢) is only continuous in L!, but not differentiable in any
convenient Banach space. This result is based on the smoothing effect on initial data
of the semigroup S(¢) in the space H~'(R?) which will be proved in Section 1. As a
matter of fact, the space H~!(R%) is a viable alternative to L' (R¢) for proving the
well-posedness of NFPE (1.1). In fact, as seen below, the operator (1.5) has a quasi-m-
accretive version in H ~'(R?), which generates a Cy-semigroup of quasi-contractions
which coincides with S(z) on L*(R?) N L>®(R?).

One limitation of our approach might be that the gradient V E,, is defined on a
subset #* of the space $ which implies that the flow u(¢) = S(¢)u¢ can be identified
as a gradient flow only for solutions u(¢) with the property that u(z) € £*, V¢ > 0.
This happens, however, for equation (1.1) under hypotheses (i)—(iv).
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We recall that (see, e.g., [4,5]), if H is a Hilbert space with the scalar product (-, -) g
and norm | - |, the operator B : D(B) C H — H is said to be m-accretive if

(Bu; — Bus,u; —uz) >0, Vu; € D(B),i=1,2,

and R(I + AB) = H, VA > 0. It is said to be quasi m-accretive if B + wf is m-
accretive for some w > 0.

Notation. L?(R%), 1 < p < oo (denoted by L?), is the space of Lebesgue measurable
and p-integrable functions on R?, with the standard norm | - | p- (-, )2 denotes the inner
product in L2. By Lﬁc we denote the corresponding local space. Let C¥(R) denote
the space of continuously differentiable functions up to order k and Cp(R) the space of
continuous and bounded functions on R. For any open set @ C R™, let W*2(0), k > 1,
denote the standard Sobolev space on @ and by W]](;jp (O) the corresponding local
space. We set W12(0) = H1(9), W?2(9) = H*(0), Hy (0) = {u € H'(9), u =
0 on 3@}, where 90 is the boundary of @. By H~!(0) we denote the dual space
of H}(O) (of H'(R™), respectively, if @ = R™). We shall also set H! = H'(RY)
and H™! = H™1(RY). Cy°(0) is the space of infinitely differentiable real-valued
functions with compact support in @ and D’(0) is the dual of C§°(0), that is, the
space of Schwartz distributions on @. Lip(R) is the space of real-valued Lipschitz
functions on R with the norm denoted by | - |Lip. The space H ™! is endowed with the
scalar product

1.y2)1 = (=D 7'y, Yy e H

and the Hilbert norm |y|%, = (», y)—1. By g—1(-,-) g1 we denote the duality pairing
on H! x H™' If Y is a Banach space, then C([0, 00); Y) is the space of continuous
functions y : [0, 00) — Y and Cy ([0, 00); Y) is the space of weakly continuous Y -
valued functions. Furthermore, let C§°([0, 0o) x R?) denote the space of all ¢ €
C ([0, 00) x R?) such that support ¢ C K, where K is compact in [0, 00) x R¥. If
u : [0,00) — H~!is a given function, we shall denote its H ~!-strong derivative in ¢ by
‘fi—’t‘ (), and the right derivative by % u(t). We shall also use the following notations:

d d
Br) = B). B0)=b() B =) reR,
dr dr ,
0 dy \d 02
ye=goye Yy { } y ol

8x,~ i=1" :
i=1

i

d
) ay;
divy =) ==, y={ills
i=1

for y = y(t,x), (t, x) € [0,00) x R?, where A and div are taken in the sense of the
distribution space D’(R?).



NONLINEAR FP EQUATIONS AS SMOOTH HILBERTIAN GRADIENT FLOWS 205

2. THE H!-REGULARITY OF THE SEMIGROUP S (¢)

Consider the continuous semigroup S(z) : L' — L! defined earlier by the exponential
formula (1.7). Define the operator A* : H~! — H~!

2.1 A*y = —AB(y) + div(Db*(y)). Vy € D(AY),

with the domain D(A*) = H'. More precisely, for each y € H', A*y € H™! is
defined by

0D gy = [ (V80)- D) Vedr. VeeH

As mentioned earlier, the semigroup S(¢) is not differentiable in L', but as shown
below it is, however, H ~!-differentiable on the right on (0, c0).
Namely, we have the following theorem.

THEOREM 2.1. Assume that hypotheses (1)—(iv) hold. Then, for each ug € $ N L,
the function u(t) = S(t)ug is in C([0, 00); H™1) N Cy ([0, 00); L?), it is H ™' -right
differentiable on (0, co) with % u(t) being H='-continuous from the right on (0, 00),
S(tug € H t >0, and

+
(2.3) ‘;—t S(uo + A*S(t)ug =0, ¥t > 0.

Furthermore, S(t)ug € £ N L, Vt > 0, % S(t)ug exists on (0,00) \ N, where N
is an at most countable subset of (0, 00),

o4 L S(tua + A"S(Oua = 0. V1 € 0,00)\ .

andt — A*S(t)ug is H™'-continuous on (0,00) \ N.
Moreover, \/S(t)ug € Hl(Rd), a.e. t > 0, that is,

VS(t)ug 2
2.5 —————€L", ae 0, 00),
2.5) S(t)uge a.e. t € (0,00)
(2.6) E(S(t)uo) <00, ae.te€(0,00),

for all ug € P such that uglogug € LY. Ifug € HY, then (2.3) holds for all t > 0,
t — S(t)uy is locally H™'-Lipschitz, on [0, 00) and u(t) € H', YVt > 0.
Finally, if ug € $%*, then

2.7 Sug € P*, Vi >0.
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In particular, it follows by Theorem 2.1 that the semigroup S(¢) is generated by the
operator —A* in the space H .
We shall prove Theorem 2.1 in several steps, the first one being the following lemma.

LEMMA 2.2. The operator A* is quasi-m-accretive in H™; that is, A* + wl is m-
accretive for some w > 0.

Proor. We have

(2.8) (A%y1 — A% y2, y1 — y2)-1
=(B(1) —B(32).y1 — y2), — (B — Br2). (I = A7 (31 — y2)),
+ (D (b*(y1) = b*(32)), VU = M) (31 = 12)),
>y1ly1= 213 = v2ly1—y2l-11y1 = y2l2 = Dloo|b*|Lipl y1 = y2l2]y1 = y2| -1
>—wlyi =22 Yyi.y2 € D(AY),

for a suitable chosen @ > 0 and so A* + wI is accretive in H L. (Here, we have
used the inequality |[V(I — A)"Y(y1 — y2)|2 < |¥1 — ¥2|—1.) Now, we shall prove that
R(I + AA*) = H™! for A € (0, Ag), where A is suitably chosen. For this purpose,
we fix f € H™! and consider the equation

(2.9) y —AAB(y) + Adiv(Db*(y)) = f inD'(RY), y e L2
The latter can be written as
(2.10) Gi(y») = -A)7' 1.
where G, : L? — L? is the operator
GA(y) = 2B() + (I = M)y = A1 = A)~Hdiv (Db* () — AT = D)7 B(»),
Vy e L?,
which by hypotheses (i)—(iii) is continuous. Then, by (i)—(iii), we have

(GA(J’I) —Gr(y2),y1 — y2)2 > Ayilyr — y2|% + |y1—y2|31
— Ay2ly1 — y2l-1ly1 = y2l2 = A Dloo 6™ Liply1 — y2l2|y1 — y2|-1

1 1
> E(M/l — 73vA2 = 22D b [F) Iy — yal5 + §|)’1 -l
>alyi —yal3. Yy e L

for some o > 0 and 0 < A < A¢ with Ay sufficiently small. Hence, the operator G is
monotone and coercive in the space L2. Since it is also continuous, we infer that it is
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surjective (see, e.g., [4, p. 37]) and, therefore, R(G;) = L? for 0 < A < A¢. Hence,
(2.10) (equivalently (2.9)) has a solution y € L? for A € (0, A¢) and B(y) € H'. Then,
by (i), it follows that y € H' and so y € D(A*). Hence, A* is quasi-m-accretive
in H™ 1. n

Lemma 2.2 implies that there is a Cp-continuous nonlinear semigroup S*(¢) :
H~! — H™!' t > 0, which is generated by —A*. This means (see, e.g., [4, p. 146] or
[5, p. 56]) that

t —n
2.11)  S*(Hup = lim (1 + - A*) ug in H ', Vt >0, Yuge H™ !,
n—o00 n

uniformly on compact intervals. Moreover, for all ug € D(A*) = H', we have S*(t)ug €
D(A*),[0,00) >t — S*(t)ug € H~! is locally Lipschitz, and

d+
(2.12) = S*(ug + A*S*(t)ug =0, Vit >0,
d
(2.13) o S*(ug + A*S*(t)ug =0, ae.r >0,

and the function ¢ — % S*(t)uy is continuous from the right in the H~!-topology.
Taking into account (2.2), we can rewrite (2.13) as

d
(2.14) d_/ (S*()uo) (x)p(x)dx + / (VB(S*(t)uo)(x))
t Jra R4
— D(x)b*((S*(t)uo)(x)) - Vo(x)dx =0, ae.t>0, Yo e H'.
We also note that the semigroup S*(¢) is quasi-contractive on H !, that is,
|S*(t)u0 - S*(t)ﬁ0|_1 < exp(wt)|ug —ito|—1, VYt >0, Yug,itg € H™!,
for some w > 0. Moreover, we have, for all uy € L2and T > 0,
* 2 ! * 2 2
(2.15) |S*(t)uol, + | |V(S*(9)uo)|,ds < Crluel3. Vi €[0.T].
0
Here is the argument. By (2.11), we have, for all T > 0,
(2.16) S*(HOug = }}im vup(t) in H™ Y, VYt e(0,7),
—0

where
vn(t) =vl, Viel[jh (j+Dh), j=0,1,..., Ny =[Z],

(2.17) - o : .
vit 4 hA*y] T =], =01, Ny v)) = uo.
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Since vg =ug € L?, we getby (2.17)

(ﬂ(vj+1 ]+1 +h’Vﬂ( j+l)}i

—h(vmv’“) Db* (v'“ IVﬂ( I+ |D|°°|b loolvp T 12)7.

By (i), this yields

j+1 j+1
/ Jitdx + - yfh Z Vb < / J(uo)dx + Ch Y |vrl3,
k=1

where j(r) = [; B(s)ds. Since 3 y172 < j(r) < 2 y2r?, Vr € R, we have

ol + [ 1vunoas < o [ s ). re 0.1,

Hence,
t
EXGIX +/ |Voi(s)[3ds < Cluol3, Vi€ (0,T), h>0.
0

Therefore, by (2.16) and by the weak-lower semicontinuity of the L2(0, T'; H')-norm,
(2.15) follows. Hence, S*(¢)ug € H', a.e.t > 0, and so, by the semigroup property,
S*(t +s5)=S*1)S*(s),t,s > 0, we infer that $* () has a smoothing effect on initial
data, that is,

(2.18) S*(t)yup € H' = D(A*), Vt>0, ug € L?.

Then, by (2.12), it follows that ¢ — S*(¢)ug is H ~'-continuous on (0, T') for all
ug € L?; hence, t — |S*(¢)uol, is lower semicontinuous on (0, T'). Furthermore,
(2.18) implies

d+
(2.19) E S*(Z)L{o + A*S*(l)u() =0, VYupe Lz, vt > 0,
and that the function t — % S*(tug = —A*S*(t)ug is H~'-right continuous on

(0, 00). Since S*(-)ug € L>(0,T; L?) N C([0, T]; H™'), it follows that

sup | S*(t)uo|, < ess sup}S (t)uol, Vv |S*(T)ug|, + [uol2 < oo
t€l0,T]
and hence we obtain by the uniqueness of limits that the function t — S™*(¢)uy is
L?-weakly continuous, that is, S*(-)ug € Cy ([0, T]; L?), VT > 0. We set uj,(t) =
ut +h) —u(t), u(t) = S*(t)ug, vt € [0, T], h > 0, ug € L?. By (2.19), we have
+

il—t up(t) + A*u(t +h) — A*u(t) =0, Vie (0,T].
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This yields

3 ar |uh(t)’ . (A"‘u(t+h)—A*u(l),uh(t))_1 =

and, therefore, by (2.8),

2dt |u,,(z)|1 olup@)|>,. Vi€ (0,T].

Hence, for all & > 0, we have
|uh(t)|_1 exp(—wt) < {uh(s)|_1 exp(—ws), O0<s<t<T,

and, therefore, the function t — exp(—w?)|A*S*(¢)ug|-1 is monotonically decreasing
on (0, 00) and so it is everywhere continuous on (0, o), except for a countable set
N C (0, 0).

Since the continuity points of 1 — exp(—wt?)A*S*(¢)uo coincide with that of
t = exp(—wt)|A* S*(¢)ug|—1 (see [12, proof of Lemma 3.17]), we infer that the function
t — exp(—wt) A* S*(t)uo has at most countably many discontinuities. Hence, for each
ug € L2, the function t — S™*(¢)ug is H~! differentiable on (0, c0) \ N and

d
(2.20) o S*(Dug + A*S*(HHug =0, Vi€ (0,00)\ N,
where N is a countable subset of (0, c0).

Proor oF THEOREM 2.1 (CONTINUED). We note first that
(2.21) SHug = S*(H)ug, VvVt >0, uge L' N L2
Indeed, by (2.17), it follows that if ug € L' N L2, then

it < i, Vi=01,...,
and, therefore,

(2.22) i < 000 = voh. V.

This follows by multiplying equation (2.17) with X (v,{“) and integrating over R?,
where X5 is defined by
1 forr > 6,
Xs(r) =15 forre(=4,90),

—1 forr < -6.
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Taking into account that v’ *1 ¢ H, we have by (2.1) that

(A s 0i ) / B/ (0l Vol T P (wl T

/ 1 ] T(D - Vol hydx,
A <x)|<5]

which yields

limsup (A*v] ™', X0 th), 20, Vi =0,1,....
§—0

Hence,
limsup/ ]HX (v]+1)dx§|v£|1, Vj=0,1,...,
§—o00 JRY
and so (2.22) follows.

Comparing (2.17) with (1.4), we infer that u, = vy, Vh, and so, by (1.3) and (2.16),
we get (2.21), as claimed. In particular, we have that if ug € & N L, then by (1.8), it
also follows that S*(¢)ug € N L, Vt > 0.

Roughly speaking, this means that the semigroup S(¢) is smooth on L! N L2 in
H~'-norm. Then, by (2.3)~(2.4), (2.21) and the corresponding properties of S(z) follow
by (2.12), (2.19)—(2.20). As regards (2.5)—(2.6), we note first that by [8, Theorem 4.1]
(see also [10, p. 161]), we have, for all uy € &£ with uglogug € L!,

(2.23) E(S(t)uo) + /Ol U (S(v)ug)dt < E(ug) < oo, Vi =0,

where E is the energy functional (1.13) and

2

4 T(u) —D\/b*(u) dx

Hence, W(S*(¢)ug) < 00, a.e. t > 0, which by (2.21) and hypotheses (i)—(iii) implies
(2.5) (see [8, Lemma 5.1]), as claimed. Moreover, by (2.23), also (2.6) holds.

Assume now that uy € P*; hence, % e L1 for some Y € X, where X is defined by
(1.15). We note that since S(¢)() C P, Vt > 0, we have also that u(¢) > 0, vVt > 0,
and u(t) € L°°, Vt > 0. So, it remains to prove that ( 5 € L', ¥Vt > 0. To this end,
we consider the cut-off function

(2.24) W(u) = /1;

t

on(x) = n(' |2)1ﬁ(x), VxeR? ne N,

where n € C?([0, 00)) is such that 0 < 5 < I and

(2.25) n(ry=1, vre[0,1]; n(r)=0, Vr = 2.
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Since u : [0, 00) — H ™! is locally Lipschitz, [0, 00) 3 t — g—1(u(t), @)1 is locally
Lipschitz for all ¢ € H', and so almost everywhere differentiable. We also note the
chain differentiation rule

d d
I /]Rd g(u(t, x))gn(x)dx = g1 (d—L; (), y(u(t))gon) , ae.te(0,T),

H!

forall 7 > Oandallu € L2(0,T; H'), with 4 € L2(0,T; H™"), where y € C'(R),
g(r) = [y v(s)ds.
In the special case, where d” el? 0,T; Lz), this formula follows by [4, Lemma 4.4,
p. 158]. 1f & d” e L?(0,T;H™ 1) this follows by approximating u by u, = (I —eA) " lu
and lettlng & — 0. We also note that by (2.15) we have that

u=S*(t)ug € L>(0,T; HY).
Let & > 0 be arbitrary, but fixed. Then, since (u(-) +&)~! € L?(0,T; H'), we have

_i w”—@)dxz _(d—u(z),(p—”z) , ae.t>0,
dt Jga u(t,x) +¢ dt (u(r) +¢)"/

and so, by (2.14), we get

d [ e B (e, 0)en (0| Vute. 0
(2.26) ' ./]l;d u(t,x)+sdx+2 » ) o)
ﬂ/(u(t,x))(Vgon(x) Vul(t, x))
R4 (u(t X) + 8)
_/ (D(x) - Vgu (x))b (u(t, x))u(t, x)
R (u(t, x) + s)
4 2/ (u(t x))u(t x)(D(x) Vul(t, x))gon(x) . aei>0.
R4 (u(r, x) + 8)
By (2.25), we have
Vo (x)] < 1/\[/(—) 7loo + @n(x)g(x), x € R,

where g(x) = Ww"”(g)l.

On the other hand, we have by hypotheses (i)—(iii) that

ey o[ PEEDeno]vut, f _2V1/ on () |Vue(t, )|
R4

R4 (u. x) + e) (u(t, x) + 8)3
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and
(2.28) ﬂ’(u(t,x))V%(x)-ZVu(t,x) dx
R4 (u(t,x) + 8)
Vul(r,
<[, |(t”()t j_“”)z (M2 1o+ gn00et0 )
u X &
[Vu(t, X)|<Pn(x) Cay2 Vut. )y ) ,
<C
=T /Rd (u(l X) +£) rr vn Jra (u(l x)+e)

V1 on ()| Vu(t, x)|* Cayr [Vu(t, x)\‘/f(x)
= d
=3 /Rd (u(t. x) + )’ x + Vi Jra (u(, x) +6)°

¢n(x)
+C3/];gd u(t, x)+8dx

(2.29) / D(x) - Vg (x)b (u(t, x))ul(z, x)
. R4 (u([ X) +€)

[Ven ()|
=G4 [l‘{d u(t,x)+e¢ dx

3 on(x) Y0
= C5/d (u(t N te " G +8))dx

2.30) 2 / b(ult. )t x) (D) - Vult. 0))gn(x)
. R (M(t x) +8)

|Vu(t, x)|</’n(x)
< C - -~ -
=en /Rd (u(r, x) + 8)

1 \Vu(l,x)i @n(x) @n(X)
< 2 d C d
2 /Rd (u(t,x)—l—e?)3 T 7/Rd u(t,x) +e¢ *

Then, by (2.27)—(2.30) and by hypotheses (i)—(iii), it follows that

d [ e #n ()| Vu(t, )|
7l [, wore)
¢n(X) Cs ¥ (x)
= 8[1;4 u(t, x)+8dx+7 Re u(t,x) +¢ o
Wu(t x)|w(x)
«/_ R (u(t, x)+e)

ae. t > 0.
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This yields
@n(X) o (X)| Vs, X)|
dxd
/Rd u(t,x)—l—s / /Rd u(s X)+s)3 xds
< ®n(x) @n(x)
/Rd up(x) + & dx+C9/ /Rd u(s, X)+8
/ / V()
R4 u(s x) + 8
/ / |Vu(s x)W();) dxds, Vt=>0,
RY (u(s,x) + &)
while

/ / [Vuts. 0y )
— s
RY (u(s, x) + ¢)
1 ) 3 5 2 - @
< 82(/(; ds/Rd ’Vu(s,x)! dx) (TA‘MW (x)dx) =

because by (2.15) we know that Vu € L2(0, T; L?).
Letting n — o0, we get

V() ¥ (x) ¥ (x)
/Rd ”(tvx)+€dx</Rd uo(x)+e dxtCr / /]Rd u(s,x)+edx’ vie@©.7),

where C7 > 0 is independent of &, and so, for ¢ — 0, it follows by Gronwall’s lemma
(which is applicable since ¥ € L) and by Fatou’s lemma that

¥ (x) ¥ (x)
Rre u(t, x) dx < exp(Cr1) R Uo(x)

dx < oo, VYie(0,T),

as claimed. [

3. A NEW TANGENT SPACE TO P

To represent NFPE (1.1) as a gradient flow as in [16, 17], we shall interpret the space
P* as a Riemannian manifold endowed with an appropriate tangent bundle with scalar
product which is, however, different from the one in [16, 17]. To this purpose, we define
the tangent space 7, (P*) atu € P* C P as follows:

B.D) Tu(P*) = {z=—div(b*)Vy); ye W' (RY), VuVyeL?} (c H™).

loc

(Here, #* is defined by (1.14).)
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The differential structure of the manifold $* is defined by providing for u € P*
the linear space 7, (#*) with the scalar product (metric tensor)

(21, z2) = / b* )V y1 - Vs dx,
]Rd

zi =div (b* () Vyi), i =12,

3.2)

and with the corresponding Hilbertian norm ||-||,,,
(3.3) Iz]12 = / b*(w)|VyPdx, z=—div(b*u)Vy).
R4

As a matter of fact, 7;,(P*) is viewed here as a factor space by identifying in (3.2) two
functions y1, yo € W' if div(h*(u)V(y1 — y2)) = 0. Note also that, since b* (1) >
bou and u > 0, a.e. on R?, ||z, = 0 implies that z = 0. Moreover, we have

(34 Iz1llu = 22l for z; = div (b* () Vy;), i = 1,2,

if div(b*(u)V(y1 — y2)) = 0 in H~!. Indeed, for each ¢ € C(g’o(]R{d), we have in
this case that

/d b*(w)V(y1 — y2) - V(pyi)dx =0, i =1,2,
R
and this yields

(3.5) /R D01~y 9V + iVe)dx =0, i =12

If we take p(x) = n(%), where n € C2([0,00)), n(r) = 1for0<r < 1,9(r) =0
for r > 2, and let n — oo in (3.5), we get via the Lebesgue dominated convergence
theorem that

/b*(u>V<y1—y2)~Vy,-dx=o, i=12.
]Rd

which, as easily seen, implies (3.4), as claimed. Hence, the norm ||z||,, is independent
of representation (3.2) for z. We should also note that 7;,($*) so defined is a Hilbert
space; in particular, it is complete in the norm |-||,,. Here is the argument.

Letu € #* andlet {y,} C Wé;l be such that

20 — Zm |2 = / b*(u)|V(y,, —ym)|2dx —0 asn,m — oco.
R4

This implies that the sequence {/b*(u) Vy,} is convergent in L? as n — oo and by
hypothesis (ii) so is {s/u Vy,}. Let

(3.6) f = lim Vb*(u)Vy, in L2
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1
loc

As ¥ e L' for some v € X, we infer that {V,} is convergent in L
Sobolev embedding theorem (see, e.g., [11, p. 278]), the sequence {y,} is convergent
d

1
loc

and so, by the

in LZ-T and, therefore, in L

e too. Hence, as n — 0o, we have

_d__
Yn —> Y inLllocﬂLd_',

loc
Vyn = Vy in (L)
hence, along a subsequence, a.e. on R¥. So, by (3.6), we infer that f = \/b*—(u) Vy,
where y € Wisc’l. Hence, as n — oo, we have
lzn — zllu = 0 forz = —div (b*(u)Vy), y € Wl;gl,

as claimed.
As a consequence, we have that

(B7) {z=-div(b*w)Vy): y € C(?O(Rd)} is dense in 7, (P*) for all u € P*.

To conclude, we have shown that, for each u € P*, T,,(P*) is a Hilbert space with
the scalar product (3.2) and, as mentioned earlier, this is just the tangent space to P*
atu.

4. THE FOKKER—PLANCK GRADIENT FLOW ON J*

We are going to define here the 7;,(P*)-gradient VE,, : 7;,(P*) — F,(P*) c H™!
of the energy function E : L? — | — 0o, +00] defined by (1.13), that is,

E(u) = {fRd (n) + @u)dx ifu € £ N L2RY N LR Sdx)

400 otherwise.
We note that E is convex, nonidentically +oo, and we have the following result.

Lemma 4.1. E is lower-semicontinuous on L2.

Proor. We first note that if u € £ N L™ N L' (R?; ®dx), then by the proof of (4.6)
in [8] for all « € [m/(m + 1), 1), we have by hypothesis (iv)

/ n(u)dx > —Ca(/ dudx + 1) ;
R4 R4

hence, since r* < =4 r + C., r > 0,
2Cy @

1
4.1) E(u)z—f Qudx—C,)
2 R4

for some Cy, C,,, C. € (0, 00) independent of u.
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Let now u,u, € L%, n € N, such that lim, oo #, = u in L?. We may assume that

liminf E(u,) = lim E(u,) < oo
n—oo n—>o0o

and that E(u,) < oo for all n € N. Then, by (4.1),

4.2) sup/ Du,dx < oo.
neN JR4

Now, suppose that
4.3) E) > lim E(uy).
n—->oo

Then

n—oo

E(u) > liminf/ n(un)dx + liminf/ duy,dx
n—>oo Jprd R4

Zliminf/ n(un)dx+/ Ddudx,
R4 R4

n—>0o0

where we applied Fatou’s lemma to the second summand in the last inequality. If we
can also apply it to the first, then we get a contradiction to (4.3) and the lemma is
proved. To justify the application of Fatou’s lemma to the first summand, it is enough
to prove that there exist f,, € L',n €N, f, >0, such that (along a subsequence)

(4.4) fo— f inL!',
and
4.5) n(un) > —fn, neN.

To find such f;,, n € N, we use (4.2). Recall from [8, (4.4)] that, for some ¢ € (0, c0),
n(r) > —crlog (r)—cr, r>0.

Hence,
n(un) > —cuylog” (uy) — cu,, n€N.

Since u, — u in L? and thus in L} , it follows by(4.2) and our assumptions on ® that

loc?
(again along a subsequence) u, — u in L!. Furthermore, for all & € (0, 1),

—flog™(r) = ljo,17(r)r logr
1

reri™logr! ™ > ——— % r>0.
l-0¢ @— (1—a)e

>—e!

= ljo,11(r)r
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Hence, we find that
4 o
n(uy) > —————u% —cu,, neN.

(1—a)e

But, since u, — u in L? and thus u% — u® in L,

ioc» DY hypothesis (iv), it remains to
show that, for some ¢, € (0, 1),

(4.6) sup/ usy O dx < oo,
neN JR4

to conclude that (along a subsequence) u% — u® in L', and then (again selecting a
subsequence of {u,} if necessary) (4.4) and (4.5) hold with

Jn =

o
u, +cu,, neN.

c
(1 —-a)e

So, let us prove (4.6).
Applying Holder’s inequality with p := al, we find that

o 11—«
/ usy & dx < (/ unfbdx) (/ o~ (G- dx) .
R4 R4 R4

Hence, choosing ¢ small enough and « close enough to 1, so that (é —&)/(1—a)
> m, hypothesis (iv) implies (4.6). [ ]

By Lemma 4.1, we have for E that its directional derivative
1
E'(u,z) = }im X(E(u + Az) — E(u))
—0

exists for all u € $* and z € L? (it is unambiguously either a real number or +00)
(see, e.g., [6, p. 86]).

In the following, we shall take u € £* C D(E) = {u € L?; E(u) < oo} and
z € 7,,(#*) and obtain that

, i L _
@.7) E'(u,z) = kliT(l) )L(E(u + Az) — E(u))

_ v B(x)
_ /Rd z(x)([l b 4Tt CD(x))dx.

Moreover, the subdifferential 0E, : L? — L? of E at u is expressed as (see [0,
Proposition 2.39])

4.8) IEy ={y € L* (z,y)2 < E'(u,z); Vz € L?}.
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We recall that if E is Gateaux differentiable at u, then 0E,, reduces to the L2-gradient
VE, € L? of E at u defined by

(4.9) E'(u,z) = (VEyu,z),, Vzel?

Any element y € JE,, is called a subgradient of E at u. In the following, we shall
denote, for simplicity, again by V E,, any subgradient of E at u and we shall keep the
notation diff Ey, - z for E'(u, z).
If z € 7,,(P*) is of the form z = z, = —div(b*(u)Vy,), where y, € Cé’o(Rd),
then
z==b*(u)Ay, — Vy, - (b'(u)u + b(u))Vu

and so, by (i) and (1.14), it follows that z € L?. Then, by (4.7), we have

4.10)  E'(u,z)=diff E, -z = }Liin %(E(u + Az3) — E(u))
0

_ VB(u(x)) .
= /Rd (m — D(x))b (u(x)) -Vya(x)dx
u(x) p/
— [Rd b*(u(x))Vyz(x)-V(fo f((i)) ds + cb(x))dx.
We claim that
u() B'(s) . 1,1
4.11) X = /0 () ds + ®(x) in W .

To prove this, we first note that by hypotheses (i) and (ii),

n1_p6e _nml o
bloo s = b%) ~bo s’ T

Hence,

u !/
e 1 p(s) ds < 2logu.

4.12
“-12) bl 2" = J) 57 () = by

Now, let ¥ € X such that % € L. Then, for every compact K C R? and K, := {% <
u<l1},neN,

/Kn(logu)_dx < (/Kn(IOgu)Zu dx)z(igw)_;(/l( %dx)2

_ N ([N
Ssgp((logu) u)(/Kn(logu) dx) (12f1ﬂ) (/K;dx) :
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1
loc

Dividing by (fKn (log u)_dx)% and letting n — oo yields logu € L
(logu)* € L} since u € L°. Furthermore, for & > 0,

Vul Vul2  NE Y\
/K|Vlog(u+8)|dx]1;u_f8dx§(/l{ :: dx) (12f1//) (/K;dx) .

1
loc?

since trivially

Letting ¢ — 0 yields |Vlogu| € L
by (4.10),

and (4.11) is proved by hypothesis (iv). Hence,

Bz = [ % (0) V320 V(s = (1. Z2h

where z; = —div(b*(u)Vy1), y1 = 0" 5;((?) ds + ®. Therefore, the functional
Zyp > E'(u,zp) = diff E, 2

extends by continuity to all z = z, € 7;,(#*) and by (3.2) it follows that for u* € £*
there is VE, € T,,(£*) C H™! such that

diff (Eyz2) = (VEy, 22)u

and
(4.13) VE, = —div (b*(u)V( RLACIAN @))
o b*(s)
= —AB(u) + div(Db*(u)) € H".

This is by definition the 7, (P *)-gradient of E at u. Though, for simplicity, we have
denoted it again by V E,,, it should be mentioned that it does not coincide with the
L?-gradient defined by (4.9).

On the other hand, by Theorem 2.1, we know that, for ug € * with uglogug € L,
we have for the flow u(¢) = S(¢)uo,

V(W) _
VS (t)ug
+

(4.14) ”;—t S(t)uo = AB(S(t)ug) —div (Db*(S(H)uo)), Vi >0,

Stuo e H' NP, Vt >0, L? ae.t >0,

@.15) % S(Oo = AB(S(uo) — div (Db*(S(t)u)). Vi € (0,00)\ N,

where N is at most countable set of (0, co). Moreover, if 1y € £*, then, as seen in
Theorem 2.1, it follows that S(f)ug € $*, Vt > 0, and VE,,(,) is well defined, a.e.
t > 0. Taking into account (4.13), we may rewrite (4.14)—(4.15) as the gradient flow
on P* endowed with the metric tensor (3.2). Namely, we have the following theorem.
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THEOREM 4 2 Under hypotheses (1)—(iv), for each uy € P*, the function u(t) =
S(tug € P*, VYt > 0, and it is the solution to the gradzentﬂow

d
(4.16) E u(t) = —VEu(t), ae.t >0,

d+

4.17) " u() =—-VE,u, Vt>0,

d
(4.18) 7 u() =—=VEyy, VYte(0,00)\N,

where N is at most countable set of (0, 00).

By (3.2), we may rewrite (4.17) as

d+ d+t 2
4.19 — E(S(t =— . Vt>0.
@19 T E(sOw0) =~ | S| v
Equivalently,
d+
(4.20) I E(S(t)uo) + A(S(t)ug) =0, Vi >0,

where A* is the generator (2.1) of the Fokker-Planck semigroup S*(¢) (equivalently,
S(t))in H~!. Similarly, by (3.3) and (2.23)—(2.24), we can write

421) di (S(t)uo) = —H—S()uOH o = V(S0u). Ve ©.00)\W.

As a matter of fact, the energy dissipation formula (4.21) was used in [8] (see also
[5, Chapter 4]) to prove that S(¢)ug — Ueo strongly in L! as t — oo, where 1, is the
unique solution to equilibrium equation —AB(Uo) + div(Db(Ueo)too) = 0.

ReMARK 4.3. Taking into account (4.7), we see also that the operator A* defined by
(2.1) can be expressed as

(4.22) A*u = B, diff E,, Yu e D(4*) = H!
where B, : H! — H™! is the linear symmetric operator defined by
Byu(y) = —div(b*(w)Vy). ¥y € D(By).
(4.23)
D(By) ={y €*, VuVy e L?).

This means that V E,, can be equivalently written as

(4.24) VE, = B, (diff E,).
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In the special case b(r) = 1,

B 4 )

T

and so u(t) = S(t)ug is the Wasserstein gradient flow of the functional £ defined by
the time-discretized scheme

up(t) =uj, te€[jh,(G+Dh), j =0,1,...,
. _ 1 i1
uj, =rrbln{%d2(u,ufl )—I—E(u)},

where d, is the Wasserstein distance of order two (see [3, 14, 16]). However, in the
general case considered here, this is not the case.

Funbping. — This work was funded by the DFG (German Research Foundation) Project
ID 317210226-SFB 1283.
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