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Abstract. – Under suitable assumptions on ˇ W R! R, D W Rd ! Rd , and b W Rd ! R,
the nonlinear Fokker–Planck equation ut ��ˇ.u/C div.Db.u/u/ D 0, in .0;1/ �Rd where
D D �rˆ, can be identified as a smooth gradient flow dC

dt
u.t/CrEu.t/ D 0, 8t > 0. Here,

E W P� \ L1.Rd /! R is the energy function associated with the equation, where P� is a
certain convex subset of the space of probability densities. P� is invariant under the flow andrEu
is the gradient ofE, that is, the tangent vector field to P atu defined by hrEu; zuiuD diffEu � zu
for all vector fields zu on P�, where h�; �iu is a scalar product on a suitable tangent space
Tu.P

�/ � D 0.Rd /.

Keywords. – Fokker–Planck equation, gradient flow, semigroup, stochastic equations, tensor
metric.
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1. Introduction

We are concerned here with the nonlinear Fokker–Planck equation (NFPE)

(1.1)
ut ��ˇ.u/C div.Db.u/u/ D 0 in .0;1/ �Rd ;

u.0; x/ D u0.x/; x 2 Rd ;

where ˇ W R! R, D W Rd ! Rd , d � 1, and b W R! R are assumed to satisfy the
following hypotheses:

(i) ˇ 2 C 1.R/, ˇ.0/ D 0, 0 < 
1 � ˇ0.r/ � 
2 <1, 8r 2 R.

(ii) b 2 Cb.R/ \ C
1.R/ and b.r/ � b0 > 0, jb0.r/r C b.r/j � 
3 <1, 8r 2 R.

(iii) D 2 L1.Rd IRd / \W 1;1
loc .R

d IRd / and divD 2 L2.Rd /C L1.Rd /.

(iv) D D �rˆ, where ˆ 2 C.Rd / \W 2;1
loc .R

d /, ˆ � 1, limjxj!1ˆ.x/ D C1,
ˆ�m 2 L1.Rd / for some m � 2.

https://creativecommons.org/licenses/by/4.0/
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NFPE (1.1) is modeling the so-called anomalous diffusion in statistical physics (see,
e.g., [13]) and also describes the dynamics of Itô stochastic processes in terms of
their probability densities. In fact, if u is a distributional solution to (1.1), such that
t! u.t/dx is weakly continuous and u.t/ 2P ,8t � 0, then there is a probabilistically
weak solution Xt to the McKean–Vlasov stochastic differential equation

(1.2) dXt D D.Xt /b
�
u.t; Xt /

�
dt C

�
2ˇ
�
u.t; Xt /

�
u.t; Xt /

� 1
2

dWt ;

on a probability space .�;F ;P ; Wt / with normal filtration .Ft /t�0. More exactly,
one has LXt � u.t; x/, where LXt is the density of the marginal law P ıX�1t of Xt
with respect to the Lebesgue measure (see [7, 10]).

The function u W Œ0;1/ � Rd ! R is called a mild solution to (1.1) if it is L1-
continuous, that is, u 2 C.Œ0;1/IL1.Rd //, and

(1.3) u.t/ D lim
h!0

uh.t/ in L1.Rd /; 8t � 0

where, for each T > 0, uh W .0; T /! L1.Rd / is defined by

(1.4)
uh.t/ D u

j

h
; t 2

�
jh; .j C 1/h

�
; j D 0; 1; : : : ;

�
T
h

�
;

u
jC1

h
C hAu

jC1

h
D u

j

h
; j D 0; 1; : : : ;

�
T
h

�
I u0h D u0:

Here, A W L1.Rd /! L1.Rd / is the operator

(1.5)
Ay D ��ˇ.y/C div

�
Db.y/y

�
in D 0.Rd /I y 2 D.A/;

D.A/ D
®
y 2 L1.Rd /I ��ˇ.y/C div

�
Db.y/y

�
2 L1.Rd /

¯
:

As shown in [9] (see also [7, 8, 10]), under the above hypotheses (as a matter of
fact, for less restrictive assumptions), the domain D.A/ is dense in L1.Rd /, that is,
D.A/D L1.Rd /, and the operatorA ism-accretive inL1.Rd /, which means that (see,
e.g., [4, 5])

R.I C �A/ D L1.Rd /; 8� > 0;

.I C �A/�1y1 � .I C �A/�1y2

L1.Rd / � ky1 � y2kL1.Rd /;
8�>0; y1; y22L

1.Rd /:

Then, by the Crandall–Liggett theorem (see [4], [5, p. 56]), the Cauchy problem

(1.6)
du

dt
C Au D 0; t � 0I u.0/ D u0;

has, for each u0 2L1.Rd /, a unique solution uD u.t;u0/ in the mild sense (1.3)–(1.4).
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Equivalently,

(1.7) u.t; u0/ D lim
n!1

�
I C

t

n
A
��n

u0 in L1.Rd /;

uniformly on the compact intervals of Œ0;1/.
Moreover, the map t ! u.t; u0/, denoted by S.t/u0, is a continuous semigroup of

contractions on L1.Rd /, that is,

S.t C s/ D S.t/S.s/ for all s; t � 0;

S.t/u1 � S.t/u2

L1.Rd / � ku1 � u2kL1.Rd /; 8t � 0; u1; u2 2 L1.Rd /;
lim
t!0

S.t/u0 D u0 in L1.Rd /:

Note also (see [7–10]) that

S.t/
�
L1.Rd / \ L1.Rd /

�
� L1.Rd / \ L1.Rd /; 8t � 0;(1.8)

S.t/
�
L1.Rd / \ L1.Rd Iˆdx/

�
� L1.Rd / \ L1.Rd Iˆdx/;(1.9)

S.t/u0 2 L
1
�
.0; T / �Rd

�
; 8T > 0; 8u0 2 L

1.Rd / \ L1.Rd /;(1.10)

and S.t/P � P , 8t � 0, where

(1.11) P D

²
y 2 L1.Rd /; y.x/ � 0; a.e. x 2 Rd I

Z
Rd
y.x/dx D 1

³
:

We also note that, though t ! u.t/ D S.t/u0 is not differentiable, it is, however, a
Schwartz-distributional solution to (1.1), that is,

(1.12)
Z 1
0

Z
Rd

�
u't C ˇ.u/�x' C b.u/uD � rx'

�
dx dt

C

Z
Rd
u0.x/'.0; x/dx D 0;

for all ' 2 C10 .Œ0;1/ �Rd /.
Moreover, as shown in [9] (see also [10]),S.t/u0 is the unique distributional solution

to NFPE (1.1) in the class of functions

u 2 L1
�
.0;1/ �Rd

�
\ L1

�
.0;1/ �Rd

�
such that t ! u.t/dx is weakly continuous on Œ0;1/. In particular, this implies (see,
e.g., [9] and [10, Chapter 5]) that the McKean–Vlasov equation (1.2) has a unique
strong solution Xt with the marginal law u.t; �/.
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The purpose of this work is to represent the solution t ! S.t/u0 to (1.1) as a
subgradient flow of the entropy functional (energy)

(1.13)
E.u/D

Z
Rd

�
�
�
u.x/

�
Cˆ.x/u.x/

�
dx; u2P \L1.Rd /\L1.Rd Iˆdx/;

�.r/D

Z r

0

Z s

1

ˇ0.�/

�b.�/
d� ds; r � 0;

with the tangent space Tu.P
�/ � D 0.Rd / defined in (3.1) below, for u 2 P �. Here,

(1.14) P � D

8<:u 2 P \ L1 \ L1.Rd Iˆdx/I
p
u 2 H 1.Rd /;

 

u
2 L1.Rd /

for some  2 X

9=; ;
where we set 1

0
WD C1 and

(1.15) X D

²
 2 C 2.Rd / \ Cb.R

d / \ L1.Rd /;  > 0;
r 

 
2 L1.Rd /

³
:

We also note that the function E is convex and lower semicontinuous on L2.Rd / with
the domain

D.E/ D
®
u 2 P \ L1.Rd / \ L1 \ L1.Rd Iˆdx/

¯
:

The class X is clearly nonempty and, in particular, it contains all functions  of the
form .x/D .˛1jxjmC ˛2/�1, ˛1;˛2 andm>d , and, therefore, since X is an algebra
containing the constants, it is a rich class of functions. Hence, so is P � since if  2X,
 > 0, u WD  2.

R
Rd  

2dx/�1 is easily checked to be in P �. We also note that P � is
convex.

We recall (see, e.g., [20]) that if F W X ! � �1;C1� is a lower semicontinuous
function on the metric space .X; �/, a gradient flow associated with F is the function
u W .0;1/!X given by u.t/ D limh!0 uh.t/ uniformly on compact intervals where

(1.16)
uh.t/ D u

j

h
; 8t 2

�
.j � 1/h; jh

�
; j D 1; 2; : : :�;

y
jC1

h
2 arg min

°
F.y/C

1

2h
�2.y; u

j

h
/I u 2 X

±
:

Formally, the flow t ! u.t/ is a generalized solution (in the sense of a finite difference
scheme approximation) to the evolution equation

(1.17)
du.t/

dt
D �rFu.t/; t > 0;

where rFu is the gradient of F at u in some generalized sense.
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One spectacular application of this idea was developed in the work of Jordan,
Kinderlehrer, and Otto [14] where the linear Fokker–Planck equation with ˇ.u/ � u,
b.u/� 1 is represented in the variational form (1.17), where X is the space P endowed
with the Wasserstein metric and F is the function (1.13). Later on, Otto [16] extended
this construction to porous media equations. The general theory of gradient flows in the
Wasserstein spaces was developed in the book of Ambrosio, Gigli, and Savaré [7]. More
precisely, the gradient flow representation means that, for u.t/ D S.t/u0, u0 2 P �,
we have

(1.18)
d

dt
u.t/ D �rEu.t/; t > 0;

whererEu 2 Tu.P
�/ is the gradient ofE in the sense of the Riemannian type geometry

of P to be defined later on. Such a result was recently established in [17] on the manifold
P endowed with the topology of weak convergence of probability measures and tangent
bundle L2.Rd IRd I�/�2P (see also [1, 2, 15, 18, 19]) and in the fundamental work
[16] for the classical porous media equation. Here, to represent the Fokker–Planck
equation in the variational form (1.17), we shall proceed in a different way. Namely,
we organize the space P � as a Riemannian manifold by endowing its tangent space
Tu.P

�/ at u 2 P � with a convenient Hilbertian structure with scalar product (metric
tensor h�; �iu). Then one defines the gradient rEu 2 Fu.P

�/ by the formula

hrEu; ziu D E
0.u; z/; 8z 2 Tu.P

�/; u 2 P �;

where E 0.u; z/ is the directional derivative of Eu and

rEu D ��ˇ.u/C div
�
Db�.u/

�
2 H�1:

This implies also that the flow u.t/ D S.t/u0 given by (1.7) is a.e. differentiable on
.0;1/ in the norm of the Sobolev space H�1 D H�1.Rd /. This is the principal
difference of our result compared with the Wasserstein based construction (1.16). In the
later case, the gradient flow S.t/ is only continuous in L1, but not differentiable in any
convenient Banach space. This result is based on the smoothing effect on initial data
of the semigroup S.t/ in the space H�1.Rd / which will be proved in Section 1. As a
matter of fact, the space H�1.Rd / is a viable alternative to L1.Rd / for proving the
well-posedness of NFPE (1.1). In fact, as seen below, the operator (1.5) has a quasi-m-
accretive version in H�1.Rd /, which generates a C0-semigroup of quasi-contractions
which coincides with S.t/ on L1.Rd / \ L1.Rd /.

One limitation of our approach might be that the gradient rEu is defined on a
subset P � of the space P which implies that the flow u.t/ D S.t/u0 can be identified
as a gradient flow only for solutions u.t/ with the property that u.t/ 2 P �, 8t � 0.
This happens, however, for equation (1.1) under hypotheses (i)–(iv).
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We recall that (see, e.g., [4,5]), ifH is a Hilbert space with the scalar product .�; �/H
and norm j � j, the operator B W D.B/ � H ! H is said to be m-accretive if

.Bu1 � Bu2; u1 � u2/ � 0; 8ui 2 D.B/; i D 1; 2;

and R.I C �B/ D H , 8� > 0. It is said to be quasi m-accretive if B C !f is m-
accretive for some ! � 0.

Notation. Lp.Rd /, 1� p �1 (denoted byLp), is the space of Lebesgue measurable
and p-integrable functions on Rd , with the standard norm j � jp . .�; �/2 denotes the inner
product in L2. By Lploc we denote the corresponding local space. Let C k.R/ denote
the space of continuously differentiable functions up to order k and Cb.R/ the space of
continuous and bounded functions on R. For any open set O �Rm, letW k;p.O/, k � 1,
denote the standard Sobolev space on O and by W k;p

loc .O/ the corresponding local
space. We setW 1;2.O/DH 1.O/,W 2;2.O/DH 2.O/,H 1

0 .O/D ¹u 2H
1.O/; uD

0 on @Oº, where @O is the boundary of O. By H�1.O/ we denote the dual space
of H 1

0 .O/ (of H 1.Rm/, respectively, if O D Rm). We shall also set H 1 D H 1.Rd /

and H�1 D H�1.Rd /. C10 .O/ is the space of infinitely differentiable real-valued
functions with compact support in O and D 0.O/ is the dual of C10 .O/, that is, the
space of Schwartz distributions on O. Lip.R/ is the space of real-valued Lipschitz
functions on R with the norm denoted by j � jLip. The space H�1 is endowed with the
scalar product

hy1; y2i�1 D
�
.I ��/�1y1; y1

�
2
; 8y1; y2 2 H

�1;

and the Hilbert norm jyj2�1 D hy; yi�1. By H�1.�; �/H1 we denote the duality pairing
on H 1 �H�1. If Y is a Banach space, then C.Œ0;1/IY / is the space of continuous
functions y W Œ0;1/! Y and Cw.Œ0;1/I Y / is the space of weakly continuous Y -
valued functions. Furthermore, let C10 .Œ0;1/ � Rd / denote the space of all ' 2
C1.Œ0;1/ �Rd / such that support' � K, where K is compact in Œ0;1/ �Rd . If
u W Œ0;1/!H�1 is a given function, we shall denote itsH�1-strong derivative in t by
du
dt
.t/, and the right derivative by dC

dt
u.t/. We shall also use the following notations:

ˇ0.r/ �
d

dr
ˇ.r/; b0.r/ D

d

dr
b.r/; b�.r/ � b.r/r; r 2 R;

yt D
@

@t
y; ry D

° @y
@xi

±d
iD1
; �y D

dX
iD1

@2

@2xi
y;

divy D
dX
iD1

@yi

@xi
; y D ¹yiº

d
iD1;

for y D y.t; x/, .t; x/ 2 Œ0;1/ �Rd , where � and div are taken in the sense of the
distribution space D 0.Rd /.
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2. The H 1-regularity of the semigroup S.t /

Consider the continuous semigroup S.t/ W L1! L1 defined earlier by the exponential
formula (1.7). Define the operator A� W H�1 ! H�1

(2.1) A�y D ��ˇ.y/C div
�
Db�.y/

�
; 8y 2 D.A�/;

with the domain D.A�/ D H 1. More precisely, for each y 2 H 1, A�y 2 H�1 is
defined by

(2.2) H�1.A
�y; '/H1 D

Z
Rd

�
rˇ.y/ �Db�.y/

�
� r' dx; 8' 2 H 1:

As mentioned earlier, the semigroup S.t/ is not differentiable in L1, but as shown
below it is, however, H�1-differentiable on the right on .0;1/.

Namely, we have the following theorem.

Theorem 2.1. Assume that hypotheses (i)–(iv) hold. Then, for each u0 2 P \ L1,
the function u.t/ D S.t/u0 is in C.Œ0;1/IH�1/ \ Cw.Œ0;1/IL2/, it is H�1-right
differentiable on .0;1/ with dC

dt
u.t/ beingH�1-continuous from the right on .0;1/,

S.t/u0 2 H
1, t > 0, and

(2.3)
dC

dt
S.t/u0 C A

�S.t/u0 D 0; 8t > 0:

Furthermore, S.t/u0 2 P \ L1, 8t � 0, d
dt
S.t/u0 exists on .0;1/ nN , where N

is an at most countable subset of .0;1/,

(2.4)
d

dt
S.t/u0 C A

�S.t/u0 D 0; 8t 2 .0;1/ nN;

and t ! A�S.t/u0 is H�1-continuous on .0;1/ nN .
Moreover,

p
S.t/u0 2 H

1.Rd /, a.e. t > 0, that is,

rS.t/u0p
S.t/u0

2 L2; a.e. t 2 .0;1/;(2.5)

E
�
S.t/u0

�
<1; a.e. t 2 .0;1/;(2.6)

for all u0 2 P such that u0 log u0 2 L1. If u0 2 H 1, then (2.3) holds for all t � 0,
t ! S.t/u0 is locally H�1-Lipschitz, on Œ0;1/ and u.t/ 2 H 1, 8t � 0.

Finally, if u0 2 P �, then

(2.7) S.t/u0 2 P �; 8t � 0:
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In particular, it follows by Theorem 2.1 that the semigroup S.t/ is generated by the
operator �A� in the space H�1.

We shall prove Theorem 2.1 in several steps, the first one being the following lemma.

Lemma 2.2. The operator A� is quasi-m-accretive in H�1; that is, A� C !I is m-
accretive for some ! � 0.

Proof. We have

hA�y1 � A
�y2; y1 � y2i�1

D
�
ˇ.y1/ � ˇ.y2/; y1 � y2

�
2
�
�
ˇ.y1/ � ˇ.y2/; .I ��/

�1.y1 � y2/
�
2

C
�
D
�
b�.y1/ � b

�.y2/
�
;r.I ��/�1.y1 � y2/

�
2

�
1jy1�y2j
2
2�
2jy1�y2j�1jy1�y2j2�jDj1jb

�
jLipjy1�y2j2jy1�y2j�1

��!jy1 � y2j
2
�1; 8y1; y2 2 D.A

�/;

(2.8)

for a suitable chosen ! � 0 and so A� C !I is accretive in H�1. (Here, we have
used the inequality jr.I ��/�1.y1 � y2/j2 � jy1 � y2j�1.) Now, we shall prove that
R.I C �A�/ D H�1 for � 2 .0; �0/, where �0 is suitably chosen. For this purpose,
we fix f 2 H�1 and consider the equation

(2.9) y � ��ˇ.y/C � div
�
Db�.y/

�
D f in D 0.Rd /; y 2 L2:

The latter can be written as

(2.10) G�.y/ D .I ��/
�1f;

where G� W L2 ! L2 is the operator

G�.y/ D �ˇ.y/C .I ��/
�1y � �.I ��/�1 div

�
Db�.y/

�
� �.I ��/�1ˇ.y/;

8y 2 L2;

which by hypotheses (i)–(iii) is continuous. Then, by (i)–(iii), we have�
G�.y1/ �G�.y2/; y1 � y2

�
2
� �
1jy1 � y2j

2
2 C jy1�y2j

2
�1

� �
2jy1 � y2j�1jy1 � y2j2 � �jDj1jb
�
jLipjy1 � y2j2jy1 � y2j�1

�
1

2
.�
1 � 


2
2
�

2
� �2jDj21jb

�
j
2
Lip/jy1 � y2j

2
2 C

1

2
jy1 � y2j

2
�1

� ˛jy1 � y2j
2
2; 8y1; y2 2 L

2;

for some ˛ > 0 and 0 < � < �0 with �0 sufficiently small. Hence, the operator G� is
monotone and coercive in the space L2. Since it is also continuous, we infer that it is
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surjective (see, e.g., [4, p. 37]) and, therefore, R.G�/ D L2 for 0 < � < �0. Hence,
(2.10) (equivalently (2.9)) has a solution y 2 L2 for � 2 .0; �0/ and ˇ.y/ 2H 1. Then,
by (i), it follows that y 2 H 1 and so y 2 D.A�/. Hence, A� is quasi-m-accretive
in H�1.

Lemma 2.2 implies that there is a C0-continuous nonlinear semigroup S�.t/ W
H�1 ! H�1, t � 0, which is generated by �A�. This means (see, e.g., [4, p. 146] or
[5, p. 56]) that

(2.11) S�.t/u0 D lim
n!1

�
I C

t

n
A�
��n

u0 in H�1; 8t � 0; 8u0 2 H�1;

uniformly on compact intervals. Moreover, for allu02D.A�/DH 1, we haveS�.t/u02
D.A�/, Œ0;1/ 3 t 7! S�.t/u0 2 H

�1 is locally Lipschitz, and

dC

dt
S�.t/u0 C A

�S�.t/u0 D 0; 8t � 0;(2.12)

d

dt
S�.t/u0 C A

�S�.t/u0 D 0; a.e. t > 0;(2.13)

and the function t ! dC

dt
S�.t/u0 is continuous from the right in the H�1-topology.

Taking into account (2.2), we can rewrite (2.13) as

(2.14)
d

dt

Z
Rd

�
S�.t/u0

�
.x/'.x/dx C

Z
Rd

�
rˇ

�
S�.t/u0

�
.x/
�

�D.x/b�
�
.S�.t/u0/.x/

�
� r'.x/dx D 0; a.e. t > 0; 8' 2 H 1:

We also note that the semigroup S�.t/ is quasi-contractive on H�1, that is,ˇ̌
S�.t/u0 � S

�.t/ Nu0
ˇ̌
�1
� exp.!t/ju0 � Nu0j�1; 8t � 0; 8u0; Nu0 2 H�1;

for some ! � 0. Moreover, we have, for all u0 2 L2 and T > 0,

(2.15)
ˇ̌
S�.t/u0

ˇ̌2
2
C

Z t

0

ˇ̌
r
�
S�.s/u0

�ˇ̌2
2
ds � CT ju0j

2
2; 8t 2 Œ0; T �:

Here is the argument. By (2.11), we have, for all T > 0,

(2.16) S�.t/u0 D lim
h!0

vh.t/ in H�1; 8t 2 .0; T /;

where

(2.17)
vh.t/ D v

j

h
; 8t 2

�
jh; .j C 1/h

�
; j D 0; 1; : : : ; Nh D

�
T
h

�
;

v
jC1

h
C hA�v

jC1

h
D v

j

h
; j D 0; 1; : : : ; NhI v0h D u0:
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Since v0
h
D u0 2 L

2, we get by (2.17)�
ˇ.v

jC1

h
/; v

jC1

h
� v

j

h

�
2
C h

ˇ̌
rˇ.v

jC1

h
/
ˇ̌2
2

D h
�
rˇ.v

jC1

h
/;Db�.v

jC1

h
/
�
2
�
h

2

ˇ̌
rˇ.v

jC1

h
/
ˇ̌2
2
C
h

2

�
jDj1jb�j1jv

jC1

h
j2

�2
:

By (i), this yieldsZ
Rd
j.v

jC1

h
/dx C

1

2

21h

jC1X
kD1

ˇ̌
r.vkh/

ˇ̌2
2
�

Z
Rd
j.u0/dx C Ch

jC1X
kD1

jvkh j
2
2;

where j.r/ D
R r
0
ˇ.s/ds. Since 1

2

1r

2 � j.r/ � 1
2

2r

2, 8r 2 R, we haveˇ̌
vh.t/

ˇ̌2
2
C

Z t

0

ˇ̌
rvh.s/

ˇ̌2
2
ds � C

�Z t

0

jvh.s/j
2
2ds C ju0j

2
2

�
; t 2 .0; T /:

Hence, ˇ̌
vh.t/

ˇ̌2
2
C

Z t

0

ˇ̌
rvh.s/

ˇ̌2
2
ds � C ju0j

2
2; 8t 2 .0; T /; h > 0:

Therefore, by (2.16) and by the weak-lower semicontinuity of the L2.0; T IH 1/-norm,
(2.15) follows. Hence, S�.t/u0 2 H 1, a.e. t > 0, and so, by the semigroup property,
S�.t C s/D S�.t/S�.s/, t; s � 0, we infer that S�.t/ has a smoothing effect on initial
data, that is,

(2.18) S�.t/u0 2 H
1
D D.A�/; 8t > 0; u0 2 L

2:

Then, by (2.12), it follows that t 7! S�.t/u0 is H�1-continuous on .0; T / for all
u0 2 L

2; hence, t 7! jS�.t/u0j2 is lower semicontinuous on .0; T /. Furthermore,
(2.18) implies

(2.19)
dC

dt
S�.t/u0 C A

�S�.t/u0 D 0; 8u0 2 L
2; 8t > 0;

and that the function t ! dC

dt
S�.t/u0 D �A

�S�.t/u0 is H�1-right continuous on
.0;1/. Since S�.�/u0 2 L1.0; T IL2/ \ C.Œ0; T �IH�1/, it follows that

sup
t2Œ0;T �

ˇ̌
S�.t/u0

ˇ̌
2
� ess sup

t>0

ˇ̌
S�.t/u0

ˇ̌
2
_
ˇ̌
S�.T /u0

ˇ̌
2
C ju0j2 <1

and hence we obtain by the uniqueness of limits that the function t ! S�.t/u0 is
L2-weakly continuous, that is, S�.�/u0 2 Cw.Œ0; T �IL2/, 8T > 0. We set uh.t/ D
u.t C h/ � u.t/, u.t/ � S�.t/u0, 8t 2 Œ0; T �, h > 0, u0 2 L2. By (2.19), we have

dC

dt
uh.t/C A

�u.t C h/ � A�u.t/ D 0; 8t 2 .0; T �:
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This yields

1

2

dC

dt

ˇ̌
uh.t/

ˇ̌2
�1
C
˝
A�u.t C h/ � A�u.t/; uh.t/

˛
�1
D 0

and, therefore, by (2.8),

1

2

dC

dt

ˇ̌
uh.t/

ˇ̌2
�1
� !

ˇ̌
uh.t/

ˇ̌2
�1
; 8t 2 .0; T �:

Hence, for all h > 0, we haveˇ̌
uh.t/

ˇ̌
�1

exp.�!t/ �
ˇ̌
uh.s/

ˇ̌
�1

exp.�!s/; 0 < s < t < T;

and, therefore, the function t ! exp.�!t/jA�S�.t/u0j�1 is monotonically decreasing
on .0;1/ and so it is everywhere continuous on .0;1/, except for a countable set
N � .0;1/.

Since the continuity points of t ! exp.�!t/A�S�.t/u0 coincide with that of
t! exp.�!t/jA�S�.t/u0j�1 (see [12, proof of Lemma 3.1]), we infer that the function
t ! exp.�!t/A�S�.t/u0 has at most countably many discontinuities. Hence, for each
u0 2 L

2, the function t ! S�.t/u0 is H�1 differentiable on .0;1/ nN and

(2.20)
d

dt
S�.t/u0 C A

�S�.t/u0 D 0; 8t 2 .0;1/ nN;

where N is a countable subset of .0;1/.

Proof of Theorem 2.1 (continued). We note first that

(2.21) S.t/u0 D S
�.t/u0; 8t � 0; u0 2 L

1
\ L2:

Indeed, by (2.17), it follows that if u0 2 L1 \ L2, then

jv
jC1

h
j1 � jv

j

k
j1; 8j D 0; 1; : : : ;

and, therefore,

(2.22) jv
jC1

h
j1 � jv

0
j j1 D jv0j1; 8j:

This follows by multiplying equation (2.17) with Xı.v
jC1

h
/ and integrating over Rd ,

where Xı is defined by

Xı.r/ D

8̂̂<̂
:̂
1 for r � ı;
r
ı

for r 2 .�ı; ı/;

�1 for r � �ı:
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Taking into account that vjC1
h
2 H 1, we have by (2.1) that�

A�v
jC1

h
;Xı.v

jC1

h
/
�
2
D

Z
Rd
ˇ0.v

jC1

h
/jrv

jC1

h
j
2X0ı.v

jC1

h
/dx

C

Z
ŒxIjv

jC1

h
.x/j�ı�

.v
jC1

h
/.D � rv

jC1

h
/dx;

which yields

lim sup
ı!0

�
A�v

jC1

h
;Xı.v

jC1

h
/
�
2
� 0; 8j D 0; 1; : : : :

Hence,
lim sup
ı!1

Z
Rd
v
jC1

h
Xı.v

jC1

h
/dx � jv

j

h
j1; 8j D 0; 1; : : : ;

and so (2.22) follows.
Comparing (2.17) with (1.4), we infer that uh � vh, 8h, and so, by (1.3) and (2.16),

we get (2.21), as claimed. In particular, we have that if u0 2 P \L1, then by (1.8), it
also follows that S�.t/u0 2 P \ L1, 8t > 0.

Roughly speaking, this means that the semigroup S.t/ is smooth on L1 \ L2 in
H�1-norm. Then, by (2.3)–(2.4), (2.21) and the corresponding properties ofS.t/ follow
by (2.12), (2.19)–(2.20). As regards (2.5)–(2.6), we note first that by [8, Theorem 4.1]
(see also [10, p. 161]), we have, for all u0 2 P with u0 logu0 2 L1,

(2.23) E
�
S.t/u0

�
C

Z t

0

‰
�
S.�/u0

�
d� � E.u0/ <1; 8t � 0;

where E is the energy functional (1.13) and

(2.24) ‰.u/ �

Z
Rd

ˇ̌̌̌
ˇ0.u/rup
b�.u/

�D
p
b�.u/

ˇ̌̌̌2
dx:

Hence, ‰.S�.t/u0/ <1, a.e. t > 0, which by (2.21) and hypotheses (i)–(iii) implies
(2.5) (see [8, Lemma 5.1]), as claimed. Moreover, by (2.23), also (2.6) holds.

Assume now that u0 2P �; hence,  
u0
2 L1 for some 2X, where X is defined by

(1.15). We note that since S.t/.P / � P , 8t � 0, we have also that u.t/ � 0, 8t � 0,
and u.t/ 2 L1, 8t � 0. So, it remains to prove that  

u.t/
2 L1, 8t � 0. To this end,

we consider the cut-off function

'n.x/ D �

�
jxj2

n

�
 .x/; 8x 2 Rd ; n 2 N;

where � 2 C 2.Œ0;1// is such that 0 � � � 1 and

(2.25) �.r/ D 1; 8r 2 Œ0; 1�I �.r/ D 0; 8r � 2:
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Since u W Œ0;1/! H�1 is locally Lipschitz, Œ0;1/ 3 t ! H�1.u.t/; '/H1 is locally
Lipschitz for all ' 2 H 1, and so almost everywhere differentiable. We also note the
chain differentiation rule

d

dt

Z
Rd
g
�
u.t; x/

�
'n.x/dx D H�1

�
du

dt
.t/; 


�
u.t/

�
'n

�
H1
; a.e. t 2 .0; T /;

for all T > 0 and all u 2 L2.0; T IH 1/, with du
dt
2 L2.0; T IH�1/, where 
 2 C 1.R/,

g.r/ �
R r
0

.s/ds.

In the special case, where du
dt
2L2.0;T IL2/, this formula follows by [4, Lemma 4.4,

p. 158]. If du
dt
2 L2.0;T IH�1/, this follows by approximating u by u" D .I � "�/�1u

and letting "! 0. We also note that by (2.15) we have that

u D S�.t/u0 2 L
2.0; T IH 1/:

Let " > 0 be arbitrary, but fixed. Then, since .u.�/C "/�1 2 L2.0; T IH 1/, we have

�
d

dt

Z
Rd

'n.x/

u.t; x/C "
dx D H�1

�
du

dt
.t/;

'n�
u.t/C "

�2�
H1
; a.e. t > 0;

and so, by (2.14), we get

d

dt

Z
Rd

'n.x/

u.t; x/C "
dx C 2

Z
Rd

ˇ0
�
u.t; x/

�
'n.x/

ˇ̌
ru.t; x/

ˇ̌2�
u.t; x/C "

�3 dx

D

Z
Rd

ˇ0
�
u.t; x/

��
r'n.x/ � ru.t; x/

��
u.t; x/C "

�2 dx

�

Z
Rd

�
D.x/ � r'n.x/

�
b
�
u.t; x/

�
u.t; x/�

u.t; x/C "
�2 dx

C 2

Z
Rd

b
�
u.t; x/

�
u.t; x/

�
D.x/ � ru.t; x/

�
'n.x/�

u.t; x/C "
�3 dx; a.e. t > 0:

(2.26)

By (2.25), we haveˇ̌
r'n.x/

ˇ̌
�
4 .x/
p
n
j�0j1 C 'n.x/g.x/; x 2 Rd ;

where g.x/ D jr .x/j
 .x/

.
On the other hand, we have by hypotheses (i)–(iii) that

(2.27) 2

Z
Rd

ˇ0
�
u.t; x/

�
'n.x/

ˇ̌
ru.t; x/

ˇ̌2�
u.t; x/C "

�3 dx � 2
1

Z
Rd

'n.x/
ˇ̌
ru.t; x/

ˇ̌2�
u.t; x/C "

�3 dx;
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and Z
Rd

ˇ0
�
u.t; x/

�
r'n.x/ � ru.t; x/�

u.t; x/C "
�2 dx

� 
2

Z
Rd

ˇ̌
ru.t; x/

ˇ̌�
u.t; x/C "

�2 �4 .x/p
n
j�0j1 C 'n.x/g.x/

�
dx

� C1
2

Z
Rd

ˇ̌
ru.t; x/

ˇ̌
'n.x/�

u.t; x/C "
�2 dx C

C2
2
p
n

Z
Rd

jru.t; x/j .x/�
u.t; x/C "

�2 dx
�

1

2

Z
Rd

'n.x/
ˇ̌
ru.t; x/

ˇ̌2�
u.t; x/C "

�3 dx C
C2
2
p
n

Z
Rd

ˇ̌
ru.t; x/

ˇ̌
 .x/�

u.t; x/C "
�2 dx

C C3

Z
Rd

'n.x/

u.t; x/C "
dx;

(2.28)

Z
Rd

D.x/ � r'n.x/b
�
u.t; x/

�
u.t; x/�

u.t; x/C "
�2 dx

� C4

Z
Rd

ˇ̌
r'n.x/

ˇ̌
u.t; x/C "

dx

� C5

Z
Rd

�
'n.x/

u.t; x/C "
C

 .x/
p
n.u.t; x/C "/

�
dx;

(2.29)

2

Z
Rd

b
�
u.t; x/

�
u.t; x/

�
D.x/ � ru.t; x/

�
'n.x/�

u.t; x/C "
�3 dx

� C6
3

Z
Rd

ˇ̌
ru.t; x/

ˇ̌
'n.x/�

u.t; x/C "
�2 dx

�

1

2

Z
Rd

ˇ̌
ru.t; x/

ˇ̌2
'n.x/�

u.t; x/C "
�3 dx C C7

Z
Rd

'n.x/

u.t; x/C "
dx:

(2.30)

Then, by (2.27)–(2.30) and by hypotheses (i)–(iii), it follows that

d

dt

Z
Rd

'n.x/

u.t; x/C "
dx C 
1

Z
Rd

'n.x/
ˇ̌
ru.t; x/

ˇ̌2�
u.t; x/C "

�3 dx

� C8

Z
Rd

'n.x/

u.t; x/C "
dx C

C8
p
n

Z
Rd

 .x/

u.t; x/C "
dx

C
C8
p
n

Z
Rd

ˇ̌
ru.t; x/

ˇ̌
 .x/�

u.t; x/C "
�2 dx; a.e. t > 0:
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This yields Z
Rd

'n.x/

u.t; x/C "
dx C 
1

Z t

0

Z
Rd

'n.x/
ˇ̌
ru.s; x/

ˇ̌2�
u.s; x/C "

�3 dx ds

�

Z
Rd

'n.x/

u0.x/C "
dx C C9

Z t

0

ds

Z
Rd

'n.x/

u.s; x/C "
dx

C
C9
p
n

Z t

0

ds

Z
Rd

 .x/

u.s; x/C "
dx

C
C9
p
n

Z t

0

ds

Z
Rd

ˇ̌
ru.s; x/

ˇ̌
 .x/�

u.s; x/C "
�2 dx ds; 8t � 0;

while Z T

0

Z
Rd

ˇ̌
ru.s; x/

ˇ̌
 .x/�

u.s; x/C "
�2 dx ds

�
1

"2

�Z T

0

ds

Z
Rd

ˇ̌
ru.s; x/

ˇ̌2
dx

�1
2
�
T

Z
Rd
 2.x/dx

� 1
2

�
C10

"2
;

because by (2.15) we know that ru 2 L2.0; T IL2/.
Letting n!1, we getZ

Rd

 .x/

u.t; x/C"
dx �

Z
Rd

 .x/

u0.x/C"
dxCCT

Z t

0

ds

Z
Rd

 .x/

u.s; x/C"
dx; 8t2.0;T /;

where CT > 0 is independent of ", and so, for "! 0, it follows by Gronwall’s lemma
(which is applicable since  2 L1) and by Fatou’s lemma thatZ

Rd

 .x/

u.t; x/
dx � exp.CT t /

Z
Rd

 .x/

u0.x/
dx <1; 8t 2 .0; T /;

as claimed.

3. A new tangent space to P

To represent NFPE (1.1) as a gradient flow as in [16, 17], we shall interpret the space
P � as a Riemannian manifold endowed with an appropriate tangent bundle with scalar
product which is, however, different from the one in [16,17]. To this purpose, we define
the tangent space Tu.P

�/ at u 2 P � � P as follows:

(3.1) Tu.P
�/D

®
zD� div

�
b�.u/ry

�
I y2W

1;1
loc .R

d /;
p
ury2L2

¯
.� H�1/:

(Here, P � is defined by (1.14).)
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The differential structure of the manifold P � is defined by providing for u 2 P �

the linear space Tu.P
�/ with the scalar product (metric tensor)

(3.2)
hz1; z2iu D

Z
Rd
b�.u/ry1 � ry2 dx;

zi D div
�
b�.u/ryi

�
; i D 1; 2;

and with the corresponding Hilbertian norm k�ku,

(3.3) kzk2u D

Z
Rd
b�.u/jryj2dx; z D � div

�
b�.u/ry

�
:

As a matter of fact, Tu.P
�/ is viewed here as a factor space by identifying in (3.2) two

functions y1; y2 2 W 1;1
loc if div.b�.u/r.y1 � y2// � 0. Note also that, since b�.u/ �

b0u and u > 0, a.e. on Rd , kzku D 0 implies that z � 0. Moreover, we have

(3.4) kz1ku D kz2ku for zi D div
�
b�.u/ryi

�
; i D 1; 2;

if div.b�.u/r.y1 � y2// � 0 in H�1. Indeed, for each ' 2 C10 .R
d /, we have in

this case that Z
Rd
b�.u/r.y1 � y2/ � r.'yi /dx D 0; i D 1; 2;

and this yields

(3.5)
Z

Rd
b�.u/r.y1 � y2/ � .'ryi C yir'/dx D 0; i D 1; 2:

If we take '.x/ D �. jxj
2

n
/, where � 2 C 2.Œ0;1//, �.r/ D 1 for 0 � r � 1, �.r/ D 0

for r � 2, and let n!1 in (3.5), we get via the Lebesgue dominated convergence
theorem that Z

Rd
b�.u/r.y1 � y2/ � ryi dx D 0; i D 1; 2;

which, as easily seen, implies (3.4), as claimed. Hence, the norm kzku is independent
of representation (3.2) for z. We should also note that Tu.P

�/ so defined is a Hilbert
space; in particular, it is complete in the norm k�ku. Here is the argument.

Let u 2 P � and let ¹ynº � W 1;1
loc be such that

kzn � zmk
2
u D

Z
Rd
b�.u/

ˇ̌
r.yn � ym/

ˇ̌2
dx ! 0 as n;m!1:

This implies that the sequence ¹
p
b�.u/rynº is convergent in L2 as n!1 and by

hypothesis (ii) so is ¹
p
urynº. Let

(3.6) f D lim
n!1

p
b�.u/ryn in L2:
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As  
u
2 L1 for some  2 X, we infer that ¹rynº is convergent in L1loc and so, by the

Sobolev embedding theorem (see, e.g., [11, p. 278]), the sequence ¹ynº is convergent

in L
d
d�1

loc and, therefore, in L1loc too. Hence, as n!1, we have

yn ! y in L1loc \ L
d
d�1

loc ;

ryn ! ry in .L1loc/
d ;

hence, along a subsequence, a.e. on Rd . So, by (3.6), we infer that f D
p
b�.u/ry,

where y 2 W 1;1
loc . Hence, as n!1, we have

kzn � zku ! 0 for z D � div
�
b�.u/ry

�
; y 2 W

1;1
loc ;

as claimed.
As a consequence, we have that

(3.7)
®
z D � div

�
b�.u/ry

�
I y 2 C10 .R

d /
¯

is dense in Tu.P
�/ for all u 2 P �:

To conclude, we have shown that, for each u 2 P �, Tu.P
�/ is a Hilbert space with

the scalar product (3.2) and, as mentioned earlier, this is just the tangent space to P �

at u.

4. The Fokker–Planck gradient flow on P �

We are going to define here the Tu.P
�/-gradient rEu W Tu.P �/! Fu.P

�/ � H�1

of the energy function E W L2 ! � �1;C1� defined by (1.13), that is,

E.u/ D

´R
Rd
�
�.u/Cˆu

�
dx if u 2 P \ L1.Rd / \ L1.Rd Iˆdx/

C1 otherwise:

We note that E is convex, nonidenticallyC1, and we have the following result.

Lemma 4.1. E is lower-semicontinuous on L2.

Proof. We first note that if u 2 P \ L1 \ L1.Rd Iˆdx/, then by the proof of (4.6)
in [8] for all ˛ 2 Œm=.mC 1/; 1/, we have by hypothesis (iv)Z

Rd
�.u/dx � �C˛

�Z
Rd
ˆudx C 1

�˛
I

hence, since r˛ � 1
2C˛

r C C 0˛; r � 0,

(4.1) E.u/ �
1

2

Z
Rd
ˆudx � C 00˛

for some C˛; C 0˛; C 00˛ 2 .0;1/ independent of u.
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Let now u; un 2 L2, n 2 N, such that limn!1 un D u in L2. We may assume that

lim inf
n!1

E.un/ D lim
n!1

E.un/ <1

and that E.un/ <1 for all n 2 N. Then, by (4.1),

(4.2) sup
n2N

Z
Rd
ˆun dx <1:

Now, suppose that

(4.3) E.u/ > lim
n!1

E.un/:

Then

E.u/ > lim inf
n!1

Z
Rd
�.un/dx C lim inf

n!1

Z
Rd
ˆun dx

� lim inf
n!1

Z
Rd
�.un/dx C

Z
Rd
ˆudx;

where we applied Fatou’s lemma to the second summand in the last inequality. If we
can also apply it to the first, then we get a contradiction to (4.3) and the lemma is
proved. To justify the application of Fatou’s lemma to the first summand, it is enough
to prove that there exist fn 2 L1, n 2 N, fn � 0, such that (along a subsequence)

(4.4) fn ! f in L1;

and

(4.5) �.un/ � �fn; n 2 N:

To find such fn, n 2 N, we use (4.2). Recall from [8, (4.4)] that, for some c 2 .0;1/,

�.r/ � �cr log�.r/ � cr; r � 0:

Hence,
�.un/ � �cun log�.un/ � cun; n 2 N:

Since un! u in L2 and thus in L1loc, it follows by(4.2) and our assumptions on ˆ that
(again along a subsequence) un ! u in L1. Furthermore, for all ˛ 2 .0; 1/,

�f log�.r/ D 1Œ0;1�.r/r log r

D 1Œ0;1�.r/r
1

1 � ˛
r˛ r1�˛ log r1�˛„ ƒ‚ …

��e�1

� �
1

.1 � ˛/e
r˛; r � 0:
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Hence, we find that

�.un/ � �
c

.1 � ˛/e
u˛n � cun; n 2 N:

But, since un ! u in L2 and thus u˛n ! u˛ in L1loc, by hypothesis (iv), it remains to
show that, for some "; ˛ 2 .0; 1/,

(4.6) sup
n2N

Z
Rd
u˛n ˆ

" dx <1;

to conclude that (along a subsequence) u˛n ! u˛ in L1, and then (again selecting a
subsequence of ¹unº if necessary) (4.4) and (4.5) hold with

fn WD
c

.1 � ˛/e
u˛n C cun; n 2 N:

So, let us prove (4.6).
Applying Hölder’s inequality with p WD 1

˛
, we find thatZ

Rd
u˛n ˆ

" dx �

�Z
Rd
unˆdx

�˛�Z
Rd
ˆ�.

1
˛�"/=.1�˛/ dx

�1�˛
:

Hence, choosing " small enough and ˛ close enough to 1, so that . 1
˛
�"/=.1�˛/

� m, hypothesis (iv) implies (4.6).

By Lemma 4.1, we have for E that its directional derivative

E 0.u; z/ D lim
�!0

1

�

�
E.uC �z/ �E.u/

�
exists for all u 2 P � and z 2 L2 (it is unambiguously either a real number or C1)
(see, e.g., [6, p. 86]).

In the following, we shall take u 2 P � � D.E/ D ¹u 2 L2IE.u/ < 1º and
z 2 Tu.P

�/ and obtain that

E 0.u; z/ D lim
�#0

1

�

�
E.uC �z/ �E.u/

�
D

Z
Rd
z.x/

�Z u.x/

1

ˇ0.�/

b�.�/
d� Cˆ.x/

�
dx:

(4.7)

Moreover, the subdifferential @Eu W L2 ! L2 of E at u is expressed as (see [6,
Proposition 2.39])

(4.8) @Eu D
®
y 2 L2I .z; y/2 � E

0.u; z/I 8z 2 L2
¯
:
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We recall that if E is Gâteaux differentiable at u, then @Eu reduces to the L2-gradient
rEu 2 L

2 of E at u defined by

(4.9) E 0.u; z/ D .rEu; z/2; 8z 2 L
2:

Any element y 2 @Eu is called a subgradient of E at u. In the following, we shall
denote, for simplicity, again by rEu any subgradient of E at u and we shall keep the
notation diffEu � z for E 0.u; z/.

If z 2 Tu.P
�/ is of the form z D z2 D � div.b�.u/ry2/, where y2 2 C10 .R

d /,
then

z D �b�.u/�y2 � ry2 �
�
b0.u/uC b.u/

�
ru

and so, by (i) and (1.14), it follows that z 2 L2. Then, by (4.7), we have

E 0.u; z/ D diffEu � z D lim
�#0

1

�

�
E.uC �z2/ �E.u/

�
D

Z
Rd

�
rˇ

�
u.x/

�
b�
�
u.x/

� �D.x/�b��u.x/� � ry2.x/ dx
D

Z
Rd
b�
�
u.x/

�
ry2.x/ � r

�Z u.x/

0

ˇ0.s/

b�.s/
ds Cˆ.x/

�
dx:

(4.10)

We claim that

(4.11) x 7!

Z u.x/

0

ˇ0.s/

b�.s/
ds Cˆ.x/ in W 1;1

loc :

To prove this, we first note that by hypotheses (i) and (ii),


1

jbj1

1

s
�
ˇ0.s/

b�.s/
�

2

b0

1

s
; s > 0:

Hence,

(4.12)

1

jbj1
logu �

Z u

0

ˇ0.s/

b�.s/
ds �


2

b0
logu:

Now, let  2X such that  
u
2 L1. Then, for every compactK � Rd andKn WD ¹ 1n �

u � 1º, n 2 N,Z
Kn

.logu/�dx �
�Z

Kn

.logu/2udx
� 1
2 �

inf
K
 
�� 12�Z

K

 

u
dx

� 1
2

� sup
K

�
.logu/�u

�� Z
Kn

.logu/�dx
� 1
2 �

inf
k
 
�� 12�Z

K

 

u
dx

� 1
2

:
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Dividing by .
R
Kn
.logu/�dx/ 12 and letting n!1 yields logu 2 L1loc since trivially

.logu/C 2 L1loc since u 2 L1. Furthermore, for " > 0,Z
K

ˇ̌
r log.uC "/

ˇ̌
dx

Z
K

jruj

uC "
dx �

�Z
K

jruj2

u
dx

� 1
2 �

inf
K
 
�� 12�Z

K

 

u
dx

� 1
2

:

Letting "! 0 yields jr loguj 2 L1loc, and (4.11) is proved by hypothesis (iv). Hence,
by (4.10),

E 0.u; z2/ D

Z
Rd
b�
�
u.x/

�
ry2.x/ � ry1.x/dx D �hz1; z2iu;

where z1 D � div.b�.u/ry1/, y1 D
R u
0
ˇ 0.s/
b�.s/

ds Cˆ. Therefore, the functional

z2 7! E 0.u; z2/ D diffEuz2

extends by continuity to all z D z2 2 Tu.P
�/ and by (3.2) it follows that for u� 2 P �

there is rEu 2 Tu.P
�/ � H�1 such that

diff.Euz2/ D .rEu; z2/u

and

rEu D � div
�
b�.u/r

�Z u

0

ˇ0.s/

b�.s/
ds Cˆ

��
D ��ˇ.u/C div

�
Db�.u/

�
2 H�1:

(4.13)

This is by definition the Tu.P
�/-gradient of E at u. Though, for simplicity, we have

denoted it again by rEu, it should be mentioned that it does not coincide with the
L2-gradient defined by (4.9).

On the other hand, by Theorem 2.1, we know that, for u0 2 P � with u0 logu0 2 L1,
we have for the flow u.t/ � S.t/u0,

S.t/u0 2 H
1
\P ; 8t > 0;

r.S.t/u0/p
S.t/u0

2 L2; a.e. t > 0;

dC

dt
S.t/u0 D �ˇ

�
S.t/u0

�
� div

�
Db�

�
S.t/u0

��
; 8t > 0;(4.14)

d

dt
S.t/u0 D �ˇ

�
S.t/u0

�
� div

�
Db�

�
S.t/u0

��
; 8t 2 .0;1/ nN;(4.15)

where N is at most countable set of .0;1/. Moreover, if u0 2 P �, then, as seen in
Theorem 2.1, it follows that S.t/u0 2 P �, 8t > 0, and rEu.t/ is well defined, a.e.
t > 0. Taking into account (4.13), we may rewrite (4.14)–(4.15) as the gradient flow
on P � endowed with the metric tensor (3.2). Namely, we have the following theorem.
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Theorem 4.2. Under hypotheses (i)–(iv), for each u0 2 P �, the function u.t/ D
S.t/u0 2 P �, 8t > 0, and it is the solution to the gradient flow

d

dt
u.t/ D �rEu.t/; a.e. t > 0;(4.16)

dC

dt
u.t/ D �rEu.t/; 8t > 0;(4.17)

d

dt
u.t/ D �rEu.t/; 8t 2 .0;1/ nN;(4.18)

where N is at most countable set of .0;1/.

By (3.2), we may rewrite (4.17) as

(4.19)
dC

dt
E
�
S.t/u0

�
D �





dCdt S.t/u0




2
u.t/

; 8t > 0:

Equivalently,

(4.20)
dC

dt
E
�
S.t/u0

�
C A

�
S.t/u0

�
D 0; 8t > 0;

where A� is the generator (2.1) of the Fokker–Planck semigroup S�.t/ (equivalently,
S.t/) in H�1. Similarly, by (3.3) and (2.23)–(2.24), we can write

(4.21)
d

dt
E
�
S.t/u0

�
D �




 d
dt
S.t/u0




2
u.t/
D ‰

�
S.t/u0

�
; 8t 2 .0;1/ nN:

As a matter of fact, the energy dissipation formula (4.21) was used in [8] (see also
[5, Chapter 4]) to prove that S.t/u0! u1 strongly in L1 as t !1, where u1 is the
unique solution to equilibrium equation ��ˇ.u1/C div.Db.u1/u1/ D 0.

Remark 4.3. Taking into account (4.7), we see also that the operator A� defined by
(2.1) can be expressed as

(4.22) A�u D Bu diffEu; 8u 2 D.A�/ D H 1;

where Bu W H 1 ! H�1 is the linear symmetric operator defined by

(4.23)
Bu.y/ D � div.b�.u/ry/; 8y 2 D.Bu/;

D.Bu/ D ¹y 2 l
2;
p
ury 2 L2º:

This means that rEu can be equivalently written as

(4.24) rEu D Bu.diffEu/:
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In the special case b.r/ � 1,

Eu �

Z u

1

ˇ0.�/

�
d� Cˆ

and so u.t/ D S.t/u0 is the Wasserstein gradient flow of the functional E defined by
the time-discretized scheme

uh.t/ D u
j

h
; t 2

�
jh; .j C 1/h

�
; j D 0; 1; : : : ;

u
j

h
D min

u

²
1

2h
d2.u; u

j�1

h
/CE.u/

³
;

where d2 is the Wasserstein distance of order two (see [3, 14, 16]). However, in the
general case considered here, this is not the case.
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